
AN EFFICIENT IMPLEMENTATION OF NEAREST
NEIGHBOUR MODELS ON MULTICORE GPU

A DISSERTATION
Submitted in partial fulfillment of the

requirements for the award of the degree
of

MASTER OF TECHNOLOGY
in

INFORMATION TECHNOLOGY

M
MUKESII SIIAKMA

G~NTRAL CIe
C 	4 0o5 -9

ACCNo

Date....:J..~ 	d.....

ROOR~~

0

DEPARTMENT OF ELECTRONICS AND COMPUTER ENGINEERING
INDIAN INSTITUTE OF TECHNOLOGY ROORKEE

ROORKEE -247 667 (INDIA)
JUNE, 2010

of

I

CANDIDATE'S DECLARATION

I hereby declare that the work, which is being presented in the dissertation entitled "AN

EFFICIENT IMPLEMENTATION OF NEAREST NEIGHBOUR MODELS ON

MULTICORE GPU" towards the partial fulfillment of the requirement for the award of

the degree of Master of Technology in Information Technology submitted in the

Department of Electronics and Computer Engineering, Indian Institute of Technology

Roorkee, Roorkee (India) is an authentic record of my own work carried out during the

period from August 2009 to June 2010, under the guidance of Dr. R. C. Joshi,

Professor, Department of Electronics and Computer Engineering, IIT Roorkee.

The matter presented in this dissertation has not been submitted by me for the award of

any other degree of this or any other Institute.

Date:)0o612010

Place: Roorkee 	 KESH SHARMA)

CERTIFICATE

This is to certify that the above statement made by the candidate is correct to the best of

my knowledge and belief.

Date:

Place: Roorkee 	 (Dr. R. C. JOSHI]

Professor r
Department of Electronics and Computer Engineering

IIT Roorkee

i

ACKNOWLEDGEMENTS

First and foremost, I would like to extend my heartfelt gratitude to my guide and mentor

Dr. R. C. Joshi, Professor, Department of Electronics and Computer Engineering, Indian

Institute of Technology Roorkee, for his invaluable advices, guidance, encouragement

and for sharing his broad knowledge. His wisdom, knowledge and commitment to the

highest standards inspired and motivated me. He has been very generous in providing the

necessary resources to carry out my research. He is an inspiring teacher, a great advisor,

and most importantly a nice person.

Thanks are due to Dr. Padam Kumar, Head of Institute Computer Center, Indian Institute

of Technology Roorkee, for providing workstation in Research Scholars' Lab.

I am greatly indebted to all my friends, who have graciously applied themselves to the

task of helping me with ample moral supports and valuable suggestions.

On a personal note, I owe everything to the Almighty and my parents. The support which

I enjoyed from my father, mother, elder sister, brother and brother in law provided me the

mental support I needed.

MUKESH SHARMA

ii

Abstract

The nearest neighbour problem is of practical significance in a number of fields such as

bioinformatics, multimedia libraries, information retrieval etc. Finding an object near to

a given query object is often a matter of interest. The problem is old, and a large number

of solutions have been proposed in the literature. Many of these solutions need to build a

model before answering the query. Most of the time the dataset is large or dynamic, we

either opt for the strategy which does not need to build the model or move to some other

solutions like approximations. The solution which uses some model may give answers

efficiently but the drawback is model-building process, which is time consuming. These

methods may answer the queries in less time but the model building process suppresses

this advantage.

We have made an attempt to speed up the model building process using multicore

architecture in order to reduce the pre-processing time. We have chosen cover tree data

structure for model-building on multicore architectures because it scales well for large

and high dimensional dataset.

In this dissertation entitled, "AN EFFICIENT IMPLEMENTATION OF NEAREST

NEIGHBOUR MODELS ON MULTICORE GPU ", a parallel algorithm for cover tree

model building is proposed which implements a model of cover tree on Compute Unified

Device Architecture (CUDA) in order to fasten the model-building process. In order to

implement this parallel algorithm, an iterative cover tree algorithm is also proposed. A

variant of cover tree data structure is also proposed for better parallelization. The

proposed strategy can be extended to other algorithms which need model building.

We have implemented the proposed iterative cover tree algorithm for model-building

using single core CPU and proposed cover tree algorithm for parallel architecture. We

have also implemented our proposed variant of cover tree for single and multicore

architectures. The results obtained from run time statistics of proposed algorithm show

significant gain in speedup over linear algorithm.

iii

Table of Contents

Candidate's Declaration & Certificate i
Acknowledgements .. ii
Abstract.. iii

Table of Contents .. iv

Listof Figures .. vi

Listof Tables .. vii

1. Introduction and Statement of the Problem 	 1

	

1 .1 	Introduction 1

	

1.2 	Motivation ... 2

	

1.3 	Statement of the Problem .. 3

	

1.4 	Organization of the Report ... 3

2. Background and Literature Review 	 4
2.1 Nearest Neighbour Problem: Definition 4
2.2 Extensions and Variations of the Problem 	4
2.3 Applications of the NN problem ... 	5
2.4 Literature Review .. 	6

2.4.1 	K-Dimensional Trees (KDTrees), BBF-Trees and Variants.... 7
2.4.2 	Ball Trees ... 	8
2.4.3 	k-Means .. 9
2.4.4 Navigating Nets and Cover Trees 10

3. Cover Tree Data Structure and CUDA Architecture 	13
3.1 	Cover Tree .. 	13

3.1.1 	Introduction ... 	1 3
3.1.2 Algorithms for Various Operations on Cover Tree 16

iv

3.1.3 Explicit and Implicit Cover Trees 18

	

3.2 	nVidia CUDA Architecture .. 	1 9

3.2.1 	Programming Model ... 21

	

3.2.1.1 	Thread Hierarchy ... 21

	

3.2.1.2 	Memory Hierarchy 22

3.2.2 	GPU Implementation ... 22

4. Proposed Cover Tree Construction on CUDA GPU 	25

	

4.1 	Challenges in Cover Tree Model-building on CUDA GPU 25

	

4.2 	Iterative Algorithm for Cover Tree Construction (CTC) 26

	

4.3 	GPU Cover Tree Construction (GCTC) Algorithm 30

	

4.4 	Cover Tree Variant Construction Algorithm (CTVC) 32

	

4.5 	GPU Cover Tree Variant Construction Algorithm (GCTVC)............ 35

5. Results and Discussions

	

5.1 	Runtime Statistics of Existing Linear Algorithm 38

	

5.2 	Runtime Statistics of GCTVC Algorithm 39

	

5.3 	Runtime Statics of GCTC Algorithm ..39

	

5.4 	Performance Comparison of GCTC and GCTVC Algorithms........... 39

6. Conclusions and Future Work 	 44

	

6.1 	Conclusions ... 44

	

6.2 	Future Work ... 45

REFERENCES ... 46
LIST OF PUBLICATIONS ... 49

V

LIST OF FIGURES

Figure 2.1 s-Approximated Nearest Neighbour 5

Figure 3.1 Cover Tree Data Structure ... 14

Figure 3.2 Graphical Representation of Nesting Property 15

Figure 3.3 Graphical Representation of covering tree Property 15

Figure 3.4 Graphical Representation of separation Property 15

Figure 3.5 Explicit Representation of Cover Tree .. 19

Figure 3.6 Implicit Representation of Cover Tree 19

Figure 3.7 Floating Point Operations for the CPU and the GPU 21

Figure 3.8 Figure Showing Arrangement of Threads 22

Figure 3.9 How Threads Access Global, Shared and Local Memory............ 23

Figure 4.1 Flow diagram of iterative algorithm for cover tree creation 29

Figure 4.2 Tree structure of proposed variant of cover tree 32

Figure 4.3 Flow diagram of cover tree variant construction algorithm............ 33

Figure 4.4 Flow diagram of GCTVC Algorithm 37

Figure 5.1 Comparison of Time Between Linear and GCTC Algorithms....... 40

Figure 5.2 Comparison of Time Between Linear and GCTVC Algorithms..... 40

Figure 5.3 Comparison of GCTC and GVCTC Algorithms for File Phy_train.. 41

Figure 5.4 Comparison of GCTC and GVCTC Algorithms for File Phy_test. . .41

Figure 5.5 Comparison of GCTC and GVCTC Algorithms for File covtype.... 42

Figure 5.6 Comparison of GCTC and GVCTC Algorithms for File Bio_train.. 42

Figure 5.7 Comparison of GCTC and GVCTC Algorithms for File Bio_test... 43

vi

LIST OF TABLES

Table 5.1 	Runtime Statistics of Existing Single Core CPU Algorithm 41

Table 5.1 	Runtime Statistics of GCTC Algorithm .. 42

Table 5.2 	Runtime Statistics of GCTVC algorithm .. 42

vii

Chapter 1

Introduction and Statement of the Problem

1.1 Introduction
Over the last decade, an immense amount of data has become available from collection of

photos, genetic data, and network traffic statistics. Modem technologies and cheap

storage devices have made it possible to accumulate huge datasets. The challenge is to

effectively use this data. The ever growing size of the datasets makes it imperative to

design new algorithms capable of sifting through this data with extreme efficiency. A

fundamental computational primitive for dealing with massive dataset is the Nearest

Neighbour (NN) problem. In the NN problem, the goal is to preprocess a set of objects,

so that for a given query, one can efficiently find the data object most similar to that. A

block B is said to be the neighbour of block A, if B has same property as A and covers an

equal-sized neighborhood of A. NN problem has a broad set of applications in data

processing and analysis. For instance, it forms the basis of widely used classification

methods in machine learning that rely on nearest neighbour operations such as to give

labels for new objects, dimensionality reduction algorithms, find the most similar labeled

object and copy its label. Other applications include information retrieval, searching

image databases, finding duplicate files and web pages, vector quantization, database

queries, in particular for complex data such as multimedia, phylogenetic tree analysis [1]

and in many others such applications.

Many solutions have been proposed for nearest neighbour problem. Some of them need

to build model before answering the NN query and can answer query efficiently than

others. The model building process suppresses this advantage which is time consuming.

Hence there is a need to speed up the model-building process in order to take advantage

of these methods for dynamic or large datasets.

1

1.2 Motivation
Many algorithms have been proposed in order to find the nearest neighbours in some

given metric space such as naive approach, methods given in [2], [3], and [4], Navigating

Nets [5], Cover Tree [6]. The Cover Tree data structure is relatively new and introduced

first by Beygelzimer et al. [6] and was proved to be efficient in terms of space complexity

as well as time complexity for constructing the tree (pre-processing) and nearest

neighbour search as compared to other data structures and methods.

The cover tree model building is a pre-processing stage to find the nearest neighbours.

Since in most of the applications, the dataset is very large or dynamic and the tree

construction is time consuming, speedup in tree construction is required to find the

closest points fast. Serialization has a limit and cannot be improved further but

parallelization is a way to make computationally intensive algorithms more efficient.

Recently, Graphics Processing Units (GPUs) feature hardware was optimized for

simultaneously performing many independent floating-point arithmetic operations in the

display of 3D models and other graphic tasks. Thus, general-purpose GPU (GPGPU)

programming has been successful primarily in the scientific computing disciplines which

involve a high level of numeric computation. However, other applications can also be

successful, provided the applications feature significant parallelism. As the GPU has

become increasingly more powerful and ubiquitous, researchers have begun exploring

ways to tap its power for non-graphics, or GPGPU applications [7].

Multicore architecture seems to be a good option for porting such applications. When

comparison is made on basis of cost, multicore systems are cheaper than multiprocessing

systems or even grids. They consume less power and can be used for a wide variety of

applications. CUDA devices can be used as add on in most of existing systems and can

perform various task. Hence use of such devices to speed up the model building pre-

processing stage will be highly beneficial.

2

1.3 Statement of the Problem
The problem is to design a model which can speed up the model-building process in the

pre-processing stage of the nearest neighbour search algorithms using multicore
architectures such as CUDA GPU.

We have made an attempt to handle the aforementioned problem in the following ways:

• Designing and implementing algorithm for cover tree model-building using

CUDA GPU.

• To _explore the possibilities of variants which overcome the limitations of cover
tree for implementation on multicore architectures and yields better

parallelization.

1.4 Organization of the Report
This dissertation report comprises of six chapters including this chapter that introduces

the topic and states the problem. The rest of the report is organized as follows.

Chapter 2 gives the background information about nearest neighbour problem and

discusses some well known algorithms for nearest neighbour search.

Chapter 3 gives the introduction of cover tree and a brief explanation of algorithms for

various operations on cover tree. We also discuss the hardware architecture of CUDA.

Chapter 4 describes parallel implementation of Cover Tree batch insertion algorithm on

CUDA architecture. We also propose a variation of cover tree and its implementation on

single core and CUDA architecture.

Chapter 5 discusses the runtime statistics of linear and parallel versions of cover tree

implementation algorithm, and parallel version of implementation of proposed variant of

cover tree.

Chapter 6 concludes the dissertation work and gives suggestions for future work.

3

Chapter 2

Background and Literature Review

2.1 Nearest Neighbour Problem : Definition
Finding the nearest neighbour of a point in a given metric is a classical algorithmic

problem. The basic nearest neighbour problem can be formally defined as:

Given a set S of n points in some metric space (X, d), the problem is to pre-process S so

that given a query point p E X, one can efficiently find a point q E S which minimizes

d(p, q).

In other words we can say, in some vector space endowed with a distance function

(typically a d-dimensional Euclidean space), we are given a set of n points (called the

database). Given any other point (called a query), we must find the closest point to it in

the database. We have to pre-process the database efficiently and create a data structure

that will support efficient search. More specifically, the trivial data structure storing the

unprocessed list of points allows us to search spending O(nd) arithmetic operations.

2.2 Extensions and Variations of the Problem
A natural and straight forward extension of this problem is k-nearest neighbour (kNN)

search, in which we are interested in the k (< ISM) nearest points to q, contained in S. The

NN search then just becomes a special case of kNN search with k=1. A slight variation

of NN search, advocated by Indyk et al. [8], and Datar et al. [9] in place of NN search, is

E -approximate NN (E-NN) search, where given a user defined error bound E > 0, the task

is to find a point p' in S which is at most E times farther than the exact NN (also in S), i.e.

p, p' E I S < M(p', q) < (I + E)M(p, q)J. For the kNN case this simply extends to finding

k neighbours pi', p2', ... pk' such that any of the ith E-approximate NN pi' is at most E

times farther than the exact ith NN pi, i.e. M(pi', q) < (1 + E)M(p;, q). Figure 2.1 illustrates

this graphically.

4

Figure 2.1 E-Approximated Nearest Neighbour

2.3 Applications of the NN Problem

The kNN search is of practical significance in a number of fields. Some of those, along
with examples of their use of kNN search, include:

• Data compression: Here, it is used in a method called vector quantization for

speech and image compression as given by Gersho et al. [10]. It involves

blocking speech or image waveform signals into vectors of fixed length. A set of

codevectors is first computed based on a set of training vectors, and then each

new vector is encoded with the index of its nearest neighbour among the
codevectors.

• Pattern recognition, data-mining and machine learning: Here, one of the
most widely used classifier/learner is the kNN classifier as shown by Cover et al.

[11]. It is based on straight forward adoption of the kNN search, and works by

assigning a given test point the majority class of its k-nearest neighbours. Also as
given by Atkeson et al. [12], locally weighted learning is another technique which

utilizes kNN search. It works by training its base classifier/learner on training

points that are nearest neighbours of a given test point.

• Bioinformatics: Here, kNN and its variant classifiers have been applied

successfully to biological and clinical data. They have been used for cancer

classification as described by Niijirna et al. [13], for detecting rRNA sequences

[14], and, using gene-expression data for tumour classification [15] and tissue

classification [16]. In cases involving gene selection [13], [15], [16], these

classifiers have been observed to perform as well or even better than state-of-the-

art SVM based classifiers.

• Multimedia databases and libraries: Here, similarity search is often used to

retrieve multimedia content similar to a user query. The systems usually allow

content-based queries, i.e. queries in the form of object shapes, texture, dominant

colours, and scene descriptions etc. for images and video as described in [17], and

in the form of dominant frequency and pitch (which can also be given as an

acoustic input from the user) etc. in case of an audio/music library [18].

• Computer vision: Here, NN search is an important tool used for the task of

object classification, which involves finding similarities between images. It has

also been applied recently in a prototype of a robust multi-target tracking system,

which tracks players in a hockey rink [19].

• Document/information retrieval: Here, NN search methods are often used to

retrieve and rank documents given a user query [20], [21].

2.4 Literature Review
A brute force approach to find a nearest neighbour would take O(n) time to evaluate each

of n points in a set. Since there might be millions of points, and assessment might be

expensive, time can become a serious issue. Consider also that a 128-dimensional point,

using 8 bit integers occupies 128 bytes. 1 million points would take 125 MB. 32 million

points would take 4 GB. At this number, available memory could become a serious issue

as well. Nearest neighbour search algorithms can be assessed on their use of memory,

storage, and processing power.

2.4.1 k-Dimensional Trees (KDTrees), BBF-Trees and Variants

Multidimensional binary search trees, called in short by the author as KDTrees (where k

is the dimensionality of the space), were originally proposed by Bentley [22] for

associative retrieval of records in a file. Their potential for NN search was observed by

Bentley, and hence were quickly adopted for NN searching, with an optimized version by

Friedman, Bentley and Finkel [23]. Since then, KD Trees are by far the most popular

search technique employed for NN search.

The trees hierarchically partition the point space into mutually exclusive rectangular

regions by recursively splitting it with axis-parallel hyper planes. The splitting is binary,

with each non-terminal internal node splitting a region into two sub regions. The search

for (k)NN is carried out recursively, with the region containing the query point being

searched first and then only those of the remaining ones which are likely to contain the
(k h̀)NN. More specifically, after recursively narrowing down to the region of a leaf node

containing the query, the points inside the region are looked at, and then a ball

(hypersphere to be exact), centred at the query and with radius equal to the query's

distance to the best (kt')NN found so far, is computed. Afterwards during backtracking

only those regions which intersect with this query ball are searched, and the ball is

updated each time a better (kth) NN is encountered in another region.

The trees require data in vector representation. They utilize this representation very

efficiently and do not require any distance computation either during construction or

during much of NN search (distance computations are performed only when looking at

points inside a region of a leaf during the NN search). During both processes they only

look at the value of a point's dimension that is orthogonal to the hyperplane used to split a

region.

The original version proposed requires O(dnlogn) construction (pre-processing) time, and

O(n) storage. For a given query it takes O(logn) time in the expected case for moderate

dimensions. The query time, however, usually grows exponentially in d, and the tree,

suffering from the curse-of-dimensionality, usually degenerates to simple linear search at

7

higher dimensions (with slightly higher query time). The original version is general

enough to be applied even to non-metric distance measures, and requires measures to

satisfy only a few constraints given by the authors. Still, however, it is only known to be

evaluated and found efficient. Also in KD trees, the node divisions are always axis-

aligned, regardless of the data distribution_ This often results in poor search performance.

In real applications, the first problem is typically skirted by relaxing the requirement that

all close neighbours be found. The Best Bin First (BBF) approach [24] is one such

technique. It is based on the observation that the vast majority of the neighbouring cells

usually do not contain a nearest neighbour_ It therefore searches the candidate cells in

ascending order of their distance to the query, and terminates the search early to save

computations. In [25], it is claimed that the method produces 95% of the correct

neighbours at 1% the cost of an exhaustive search for one particular application.

However, we note that this does not guarantee that all nearest neighbours are found,

which can cause problems for various applications (e.g., as described in [26]).

The drawbacks can be summarized as:

1. The number of neighbours for each leaf node grows exponentially with dimension,

causing search to quickly devolve into a linear scan.
P

2. The node divisions are always axis-aligned, regardless of the data distribution. This

often results in poor search performance.

2.4.2 Ball Trees

The kd-tree and its variants can be termed "projective trees," meaning that they

categorize points based on their projection into some lower-dimensional space. In

contrast, all our remaining methods are "metric trees" — structures that organize points

based on some metric defined on pairs of points. Thus, they don't require points to be

finite-dimensional or even in a vector space.

In their original form, each node's points are assigned to the closest centre of the node's

two children. The children are chosen to have maximum distance between them,

typically using the following construction at each level of the tree. First, the centroid of

8

the points is located, and the point with the greatest distance from this centroid is chosen
as the centre of the first child. Then, the second child's centre is chosen to be the point

farthest from the first one. The resulting division of points can be understood as finding

the hyperplane that bisects the line connecting the two centres, and perpendicular to it.
Note that in this construction, there is no constraint on the number of points assigned to
either node and the resulting trees can be highly unbalanced. While unbalanced trees are

larger (and take longer to construct) than their balanced counterparts, this does not mean
that they will be slower to search. On the contrary, such trees might be significantly

faster if they capture the true distribution of points in their native space.

However the ball trees are good if range search is needed but following restrictions can
be seen with ball tree data structure:

• Tree construction algorithm does not scale to very large datasets.

• A ball in RD is not such a useful region shape if sample density varies in the

feature space.

2.4.3 k-Means

While the previous description of ball trees is probably familiar to members of the

machine learning community, we can notice its similarity to the k-means method [27].

This algorithm also assigns points to the closest of k centres, although it does so by

iteratively alternating between selecting centres and assigning points to the centres until

neither the centres nor the point partitions change. As originally described, the k-means

method is a simple non-hierarchical clustering method that requires careful selection of

both k and the initial centres to avoid local minima and bad partitions. Linde et al. [28]

extend this method to a hierarchical structure where k now defines the branching factor
between successive levels of the tree.

Following disadvantages have been observed when using this technique:

• Difficulty in comparing quality of the clusters produced (e.g. for different initial

partitions or values of K affect outcome).
• Fixed number of clusters can make it difficult to predict what K should be.

Al

• Does not work well with non-globular clusters.

• Different initial partitions can result in different final clusters. It is helpful to

rerun the program using the same as well as different K values, to compare the

results achieved.

2.4.4 Navigating Nets and Cover Trees

These structures try to exploit the intrinsic dimensionality of a dataset -(i.e. data points

plus the query points). They work by placing assumptions that the datasets (or the metric

spaces in which they are embedded), regardless of their actual number of dimensions,

exhibit certain restricted or bounded growth. A simple notion of such bounded growth

was presented by Karger and Ruhl [4]. They defined a growth bound on a dataset such

that the number of points in a ball (hypershere to be precise) centred at any point p is at

most c times the number of points in a ball of half the radius centred at the same point;

more formally, for all points p (in the dataset) and for all radii r> 0, 1B(p, 2r)I < c

r)I. Their presented growth bound only allows points to come into view at a constant rate

c (called the expansion rate), and rules out the possibility of suddenly encountering an

exponentially high number of points as the ball around p is expanded. Such growth, as

pointed out by Karger and Ruhi, occurs naturally in domains like peer-to-peer networks

and the Internet. Karger and Ruhl also presented a data structure for NN search which

works well for geometries/datasets satisfying their growth bound.

A similar bound property was defined by Krauthgamer and Lee [5]. Their growth bound,

however is more general than the one by Karger and Ruhl. Their growth bound

definition is, "every set of points in the dataset should be able to be completely covered

with at most 2' sets of half the diameter" or in other words, "any ball about a point p in

the dataset should be able to be completely covered (in terms of the points it contains)

with at most 2P balls of half the radius." They defined the intrinsic or abstract

dimensionality of a dataset, using this growth bound, as the minimum p for which this

bound holds. This growth bound forms the basis of Navigating Nets, data structures for
E-NN search, which the authors also presented with their growth bound in [5].

10

Navigating Nets work by arranging the points in levels, such that each lower level acts as

a cover for the previous level, and each lower level has balls half the radius than the ones

at the previous level. The top level consists of a single point with a ball centred at it that

has radius 2" for an i' big enough to cover the entire set of data points. The next level

consists of points with balls of half the radius than the top most ball (21'-1), which cover

the points at a finer level. The bottom-most level consists of points that have balls

covering only those single points. The structure is built in a greedy manner, where the

first point in the list of points of the top level ball is used to build a smaller ball at the

next level, and the first point inside the smaller ball is used to build a ball smaller at the

level next. This is done recursively until we reach a level where a ball consists of a

single point (on which that ball is centred). Then the build procedure back tracks to the

last higher level cover ball that still has unprocessed points left, and picks the next point

to greedily build cover balls at lower levels. Using the same terminology as Krauthgamer

and Lee, if dmax is the maximum of the inter-point distances of the data points, dmin the

minimum, and A = dmax/dmin the ratio between the maximum and the minimum inter-

point distances, then the number of levels of a Navigating Net on a dataset is O(logA). If

the dataset satisfies the growth bound given by authors, then every ball has at most 0(1)

cover balls at the lower level (because of the constant A). The search for a (k)NN of a

given query q is carried out by going down the levels of a Navigating Net and adding to a

set of candidate NNs the children of a point whose ball intersects with the ball centred at

the query. The radius of the query ball is set to the distance of the current best (kth)NN

plus the radius of cover balls at the level currently being looked at. The search begins by

adding the top-most point to the set of candidate NNs and setting the radius of the query

ball as mentioned, so as to cover the entire point space, and then adding all the children

of the top point to the set of candidate NNs. Then the search descends to the lower level,

contracts the radius of the query ball (to the distance of the current best NN plus the

radius of cover balls at this lower level) and adds the children of only those children of

the top point whose balls intersect with the contracted query ball. The search carries on

in this manner until we reach the bottommost level or if at some level the current best

(kth)NN cannot be at a distance more than c farther from the query than the exact (kth)NN.

Hence, at the end of the search the current best (k)NN is the c-NN of the given query.

11

For a dataset satisfying the authors' growth bound, the search procedure takes no longer

than O(logA), and if the dataset instead satisfies the growth bound of Karger and Ruhl

(which is a special case of Krauthgamer and Lee's' growth bound), then the search

procedure takes no longer than O(logn). Beygelzimer et al_ [6J presented a data structure

for NN and s-NN search based on Navigating Nets, which they called Cover Trees. In a

Navigating Net each point at some lower level is allowed to have more than one parent

point from the previous level (i.e. points are allowed to overlap among balls in any

intermediate level), and also each level has also a pointer to the previous top level. In

Cover Trees, the authors removed these redundancies to convert the graph rendered by a

Navigating Net into a tree, while still preserving the construction and query time.

Furthermore, they also used the growth bound of Karger and Ruhl, as the one by

Krauthgamer and Lee does not have strong theoretical guarantees for exact NN search.

Navigating nets perform well but it does not guarantee to find exact nearest neighbour

and are used for approximate NN search. Cover tree scales well for large dataset and

answers query efficiently but in all tree structures a pre-processing is needed which

consumes time and hence cannot be used for dynamic datasets.

12

Chapter 3

Cover Tree Data Structure and CUDA Architecture

3.1 Cover Tree
3.1.1 Introduction
Beygelzimer et al. [6] introduced cover tree data structure for fast nearest neighbour

operations in general n point metric space. Also, cover tree was proved to be efficient in

terms of space complexity as well as time complexity for constructing the tree

(preprocessing) and nearest neighbour search as compared to other data structures and

methods.

Cover tree is relatively a new data structure. Independent of the doubling dimension, the

space used is O(n). Further, nearest neighbour queries can be done in O(c121n(n)) time

with insertion and removal taking O(c61n(n)). An example of a cover tree can be seen in

Figure 3.1. Note that each point is compared using the Euclidean metric. At first glance,

it might appear that once a node appears it is in the tree forever, that at higher levels

nodes seem to be relatively far apart and that children are somewhat close to the parents.

A cover tree T on a dataset S is a leveled tree. Each level is a cover for the level beneath

it, i.e. level i contain all the elements containing in level i+l. Each level is indexed by an

integer scale i which decreases as the tree is descended. Every node in the tree is

associated with a point in S. Each point in S may be associated with multiple nodes in

the tree; however, it is required that any point appears at most once in every level. A

node in the tree may have many children node but it can have only one parent node.

13

1v7[26.26.1

1e :61 26. 2k).]

3uw.3126.

k,'. 4 t S. 25.1) 	C 1v:4 t 4. 3.1
	

I w:3 [26. 20.]
	 le%-4[12. 6.1) 	(kv4(10. 16.1

1cti3;15.25.1) (1ev.3144. 3.1) (1ct:3136. 11.1) (k:3[26. 	!ev_3 (?6. 20..1) (_1cv~3 [12. 6.]) C icv:3 [tO. 46.]

Ies=:21 s. 33.1) t Ikn 2 [44. 3,]) (W2136. 11.1) (lev2 [26. 36.1) (Irv:2] 2& 20..1) (lei 21 12. 6.1) (lav:21 10. 46.],

Figure 3.1 Cover Tree data structure [25]

Let C; denote the set of points in S associated with the nodes at level i. The cover tree

obeys the following invariants for all i:

(1) C; c C1_1 (nesting). This implies that once a point p E S appears in C; then every

lower level in the tree has a node associated with p.

(2) V p E C;_1, there exists a q E C1 such that d(p, q) <2 and the node in level i associated

with q is a parent of the node in level i - 1 associated with p (covering tree) .

(3) V p, q E C;, d(p, q) > 2` (separation) i.e. at each level, distance between any two points

is greater than 2.

Let us take a closer look at these three properties. In particular, the nesting property

states if a point p is in the tree at the ith stage, then it is also in the tree at the i-1St stage.

If we view this on a scale from oo to -oo, then intuitively there should be only one point at

0o and the dataset S at -oo. See figure 3.2

C{ infinity}

C{I}

C{-infinity}

Figure 3.2 Graphical representation of Nesting Property [29]
The covering tree property says that every node at the i— l St stage has exactly one parent

that is within distance 2' of it. In other words, there exists only one path to each node in

tree, with the parents being close to the children (close with respect to the metric d). See

figure 3.3

Finally, the separation property states that every node at the ith stage is separated by at

least 2'. This means that at every level in the tree, the nodes are far away from one

another with respect to the metric d. See figure 3.4

Q

c{±} C 	`- --- ----->
Parent

c i
P q

d(p,q) <2^i

Figure 3.3 Graphical representation of covering tree Property [29]

P 	 q

Figure 3.4 Graphical representation of separation Property [29]

15

3.1.2 Algorithms for Various Operations on Cover Tree

The insertion algorithm given by Beygelzimer et al. [6], is shown in algorithm I but

Kollar [25] proved that the algorithm was having minor bugs and gave the correct

algorithm which is as given in algorithm 2. In the faulty algorithm given in [6], if "no

parent found" is interpreted to be false and "parent found" to be true, then it can be seen

that this algorithm will fail to maintain the cover tree properties. In particular, it is easy

to see that the covering property will fail to hold. Say that the recursion bottoms out at

the first if statement and that the recursion depth is n. Then, the algorithm recurse up to

depth n-1 and run the else statement, which will go into the second if statement. Now,

this will return true and add a parent of p. Popping up another level of-recursion to n-2,

the last else statement is entered and false is returned. One more recursion to n-3 causes

the algorithm to perhaps enter the second if statement again. Thus, the algorithm has

added two elements to be parents of the point p, which violates the covering property of

cover trees.

Algorithm 1 Original faulty Insert procedure for Cover Trees

(1) Insert(point p, cover set Q', level i):

(2) Q = {Children(q) : q E Q;}

(3) if d(p,Q) > 2':

(4) return "no parent found"

(5) else:

(6) Qi-i = {q C Q : d(p, q) 2`}
(7) if Insert(p, Qe_1, i - 1)-= "parent not found" and d(p,Qi) <2'
(8) pick a single q E Q; such that d(p, q) <2'
(9) insert p into Children(q)

(10) return "parent found"

(11) else:

(12) return "no parent found"

16

Algorithm 2 Insert procedure for Cover Trees

(1) Insert(point p, cover set Q,, level i):

(2) Q = {Children(q) : q E Q;}

(3) if d(p,Q) > 2':

(4) return "parent found" - True

(5) else:

(6) Qj-i={qEQ:d(p,q)52'}

(7) found = Insert(p, Q;_ j, i — 1)

(8) if found and d(p,Q;) < 2'

(9) pick a single q E Q, such that d(p, q) < 2'

(10) insert p into Children(q)

(11) return "finished" — False
(12) else:

(13) return "found"

The algorithm for nearest neighbour search through cover trees is given in algorithm 3.

To find the nearest neighbour of a point p in a cover tree, the algorithm descends through

the tree level by level, keeping track of a subset Q, E C, of nodes that may contain the

nearest neighbour of p as a descendant. The algorithm iteratively constructs Q;_1 by

expanding Q, to its children in Ci~.1 then throwing away any child q that cannot lead to the

nearest neighbour of p. For simplicity, it is easier to think of the tree as having an infinite

number of levels (with C containing only the root, and with C_ 	S). Denote the set of

children of node p by Children(p) and let d(p,Q) = minqEQ d(p, q) be the distance to the

nearest point of p in a set Q. Note that although the algorithm is stated using an infinite

loop over the implicit representation, it only needs to operate on the explicit

representation.

17

Algorithm 3 Find-Nearest (cover tree T, query point p)

(1) Set Q. = C., where C is the root level of T.

(2) for i from oo down to -oo

(3) Set Q = {Children(q) : q E Q'}

(4) Form cover set Qi-1 = {q E Q: d(p, q) < d(p,Q) + 2'}

(5) return arg min q 	d(p, q).

Algorithm 4 Remove(point p, cover sets {Q;,Q;+i , ...,Q-}, level i)

(1) set Q = {Children(q) : q E Q1}

(2) set Qi-1 = {q c Q : d(p, q) < 2'}

(3) Remove(p, {Qi-1,Qi, ...,Q$}, i -- 1)

(4) if d(p,Q) = 0 then

(5) remove p from C;-1 and from Children(Parent(p))

(6) for every q E Children(p)

(7) set i' = i - 1

(8) while d(q,Qi,) > 21 '

(9) insert q into Q. (and Q;') and increment i'

(10) choose q' E Q;' satisfying d(q, q') < 2'' and make q' point to q

3.1.3 Explicit and Implicit Cover Trees
The cover tree can be constructed in two ways: implicit representation and explicit

representation. In implicit representation once the point is inserted at some level in tree

then it will be inserted in all levels until all the points are inserted in the tree while in

explicit representation, once the point is the parent of only itself then it is removed from

all of the levels below it. The explicit and implicit representations are shown in figure

3.5 and figure 3.6 respectively. Theory is based on an implicit implementation, but tree

is built with a condensed explicit implementation to preserve O(n) space bound.

18

i=4

1

2 	U 10 4

7 2 	 4 9

Figure 3.5 Explicit representation of cover tree

Figure 3.6 Implicit representation of cover tree

The cover tree structure can also be used to approximate nearest neighbours. Given a

point p E X and some E > 0, we want to fmd a point q E S satisfying d(p, q) < (1+ E) *

d(p, S). The main idea is to maintain a lower bound as well as an upper bound, stopping

when the interval implied by the bounds is sufficiently small.

19

G 14T RAL t,Q
b

ZACC No.G.. ~P{

3.2 nVidia CUDA architecture
We now discuss a little about nVidia's CUDA (Compute Unified Device Architecture)

architecture which we have used to parallelize Cover Tree algorithms. General purpose

computing on the GPU is an active area of research. GPUs are already widespread. The

performance of GPUs is improving at a rate faster than that of CPUs. The capabilities of

the GPU have increased dramatically in the past few years and the current generation of

GPUs has higher floating point performance than the most powerful (multicore) CPUs

[30]. The GPU contains hundreds of cores that work great for parallel implementation.

The programming is done in SIMD style where same code is worked on different data

locations. Until recently a graphics API was needed to code on GPUs which made

coding for non graphics oriented calculations tough. 	Trying to work around this

limitation nVidia released CUDA which allows GPUs to be programmed using a

variation of C. This enables a low learning curve and makes programming easier.

The three abstractions of the CUDA model are a hierarchy of thread groups, shared-

memories, and barrier synchronization. Threads are arranged in the form of a grid which

is a two dimensional array of thread blocks. Each thread block is a three dimensional

structure that houses the threads. This type of hierarchy is given to the programmer so

that the arrangement of the threads is similar to the way programmer's data is arranged

(in arrays). Threads within a block can cooperate among themselves by sharing memory.

Shared memory is expected to behave like an L1 cache where it resides very close to the

processor core. Synchronization points can be specified by calling the function

_syncthreads.

The memory available to the threads is of three types. Every thread has local memory.

Number of threads which are in the same thread block can share memory. And the third

type of memory is the global memory that every thread has access to. C code for both the

GPU and the CPU resides in the same file. The CPU code follows a sequential flow.

GPU code is called by a kernel call. This is where the code runs in parallel. A large

number of threads are created by the kernel call. These threads then run parallely on the

GPU.

20

Figure 3.7 shows the tremendous computational capability of the GPU. GTX 280 a GT

200 family GPU delivers a peak performance of 933 GFLOPS/sec.

GT200 -1000 — 	_-- —_.— 	 - 	 — 	— 	-

NVIDIA GPU

--nIrI CPU

750

0
500 	-_...--

G70
' 250 - 	

NV35 	40

IINV30 `

G71

G80 G92

G80

3.0 GHz 	garpertowii
Core2 Duo 	,f.

	

Jan Jun 	Apr 	Jun Mar Nov May 	Jun

	

2003 	2004 	2005 	2006 	2007 	2008

Figure 3.7 Floating point operations for the CPU and the GPU 1301

3.2.1 Programming Model

In this part we will discuss aspects that will explain how the CUDA programming model

works and what the various aspects of the model are

3.2.1.1 	Thread Hierarchy

Threads in CUDA are arranged in the form of a hierarchy. A number of threads house

within what is known as a thread block. These thread block can be 1 dimensional, 2

dimensional or 3 dimensional. These thread blocks are placed in a structure known as

thread grid. Thread grid can be either 1 dimensional or 2 dimensional.

A maximum of 512 threads can be placed in a thread block. Thread block are expected to

run independently of each other. This independence requirement allows thread blocks to

be scheduled in any order across any number of cores, enabling scalable code to be

written. Proper selection of grid size and block size is important to gain good speed up.

21

f -Grid.

Black (0, 0) 	Block (1, 0) ;; Block (2, 0)

LII1UR5J. Jm#im i 	 3

1T Block (0, 1)'.! Block (1,1) <1'•Bloch (2, 1)

Block (1, 1) 	~-

Thread (0 0) Thread (1, D)" Thraad.(2, 0) Thread (3, 0)

J j:.i.4 	3
~av

Thread (01)_ Thread (1, 1)1 Thread (2, 1) Thread (3, 1) u
P~*

Thread-(a; 2) Thread (1,2) Three (2, 2) Thread (3

Figure 3.8 Figure showing arrangement of threads [30]

3.2.1.2 Memory Hierarchy

Threads may access memory from different memory spaces during their existence.

Threads may declare local variable, may share memory with other threads that belong to

the same block or may be accessing global memory. •

3.2.2 GPU Implementation

In November 2006 nVidia significantly extended the GPU beyond graphics. It made

available the massively parallel multithreaded GPU for general purpose applications. By

scaling the number of processors and memory nVidia made available a wide range of

products from the high ended GTX 280 with 240 cores and 1 GB RAM to 8400M GS

with 16 cores and 128 Megabytes of RAM. The computing features enable a

straightforward parallelization of the application by using C language. Some extensions

have been made to C for CUDA specific code.

22

Thread
Per-thread local

4 	 memory

Block (0, 0) 	Block (1, 0) i Block (2, 0)

JJJJJ5IJJ5J JJJJJJJJ ,,J,SJJJ
Block (0, 1) 	Block (1, 1) °Block '(2'1)

Grid 1

mock (0, 0) 	(} Block (1, 0)
t II ~

Block (0,1) Block (1,1)

JJJf555
Block (0, 2

155155551

Block (1, 2)

111551511

Figure 3.9 Figure showing how threads access global, shared and local memory [30]

When a CUDA program on the host CPU invokes a kernel grid, the blocks of the grid are

enumerated and distributed to multiprocessors with available execution capacity. The

threads of a thread block execute concurrently on one multiprocessor. As thread blocks

terminate, new blocks are launched on the vacated multiprocessors. A multiprocessor

consists of eight Scalar Processor (SP) cores. Every multiprocessor has 8192 registers of

32 bit size each. The multiprocessor creates, manages, and executes concurrent threads

23

in hardware with zero scheduling overhead. The general idea is to achieve very fine

grained parallelism by assigning one thread to work on one data item. A data element

could be a pixel of an image or a protein base when working with poly peptide chains.

The multiprocessor creates, manages, schedules, and executes threads in groups of 32

parallel threads called warps. Individual threads composing a warp start together at the

same program address but are otherwise free to branch and execute independently. When

a multiprocessor is given one or more thread blocks to execute, it splits them into warps.

The way a block is split into warps is always the same; each warp contains threads of

consecutive, increasing thread IDs with the first warp containing thread 0. A warp

executes one common instruction at a time, so full efficiency is realized when all 32

threads of a warp agree on their execution path. If threads of a warp diverge via a data

dependent conditional branch, the warp serially executes each branch path taken,

disabling threads that are not on that path, and when all paths complete, the threads

converge back to the same execution path. Branch divergence occurs only within a warp;

different warps execute independently regardless of whether they are executing common

or disjointed code paths.

A multiprocessor can work on a maximum of 8 thread blocks. However, if the thread

code required a large number of registers then lesser number of thread blocks are

assigned to a multiprocessor. In case a thread block is too bulky to be assigned to a

multiprocessor then the kernel simply fails to launch.

24

Chapter 4

Proposed' Cover Tree Construction on CUDA GPU

4.1. Challenges in cover tree model-building on CUDA GPU
From the description of cover tree in previous chapter it is clear that cover tree model-

building is a computationally intensive task. Many tree data structures have been

implemented on CUDA GPU and on other parallel architectures but in cover tree data

structure, we cannot implement different parts of tree simultaneously, due to heavy data

dependency. In any level i, the points must be separated from each other by distance 2

and hence the points to be inserted are dependent on each other. Due to this data

dependency, data point insertion cannot be done in parallel. Still inserting a point in the

tree is a computationally intensive task due to such dependencies on other data points.

Before inserting a point we need to make sure that it is well separated from other

elements in the same level and this is where the possibilities of parallelization of cover

tree algorithm can be explored to exploit the massive computation power of GPU.

The challenges in implementing a parallel algorithm for cover tree were as follows:

• Recursive algorithms cannot be implemented over CUDA platform. Existing

algorithm for cover tree construction has recursion and no iterative solution exists

before this work. Tail recursions are easy to remove but the recursion in case of

cover tree is not a tail recursion therefore to remove the recursion, a different

strategy is needed.

• Data dependency is needed to be removed for any algorithm to get good

performance on CUDA platform. Due to the separation property of cover tree its

data is heavily dependent on each other as explained earlier.

To deal with these challenges we have proposed an iterative strategy to construct the

cover tree. With this, in this section we are proposing a variant of cover tree in order to

deal with data dependency in cover tree model building process, so that a faster version

of cover tree on multicore architectures can be implemented. Also the proposed variant

25

of cover tree is easy to construct and less computation intensive due to some relaxation in
separation property.

4.2 Iterative Algorithm for Cover Tree
The primary task before implementing a parallel algorithm for cover tree creation is to

remove the recursion.. Following algorithm shows the procedure and the algorithm works
as follows:

Algorithm: Iterative algorithm for Cover Tree Construction (CTC)
1) p F- first element of S

2) Find d_set = {d(p, q); q E S}

3) root E- p

4) Stack[0] - S

5) d = max {d(insert ele, q); V q E S}

6) While (Stack != empty)

7) S F Stack[index --]
8) While(S != empty)
9) insert ele F p
10) While (insert ele != NULL)

11) if (d (insert ele, p) <= max dirt)

12) Remove insert ele from S

13) if(p != insert_ele)

14) find d(insert ele, qj), Vqj E S

15) new_point set E- pointer to first element in S

16) while(new_point_set != NULL)

17) find far set = { qj; d(qj, insert_ele) > 2^current level, V qj E S}

18) d far = max { d(q, insert ele); V q E S}

19) if (d_far = 0)

20) insert all elements of S as leaf

21) insert_ele = NULL

22) Else

26

23) insert insert ele as child

24) parent = insert ele

25) Stack[index++] = far set

26) else

27) insert ele = next element of S

28) if(Stack.index >1)

29) merge Stack[index] with Stack[index — 1]

30) Stack.index - -

In this algorithm we are using a stack data structure which keeps track of different data

sets at different levels. First the data points are read from the input file and stored as two

dimensional array or vectors. Initially the level at which root of the tree is to be inserted

is find out using the formula given in equation (1).

Level =1og2 (maxd) 	(1)

Where `maid' can be defined as:

maxd = max{d(root, q); V q E S 	(2)

i.e. distance between the root element (here the first element is inserted as root initially)

and the farthest element of data set S. "maxd" is calculated at line (5) of algorithm. The

complete data set is inserted as first element of stack as shown by line (4). Now the loop

at line (6) works on datasets in stack and the number of elements in stack increases when

at each level the far set, calculated on the basis of separation distance i.e. 2', where i is

current level, is inserted onto the stack. Loop at line (10), first tests the element of S for

insertion in current level and for that it tests the distance of element from parent in

current context with 2Ie°eI and if the distance is larger than 21e 'e1 then it looks for another

element from S but since we have calculated the level according to maximum distance

therefore all the elements can be inserted as child of root in case if all elements are very

separated from each other and hence the algorithm will terminate. If distance is less than
211 then we search for near and far elements in S in line (17), and hence far set is kept in

the Stack for further processing which will be done later. The loop goes with the elements

near (not separated by required distance) to the element to be inserted (insert ele in

algorithm). Eventually we remain with either same elements as insert ele or only with

insert ele and in this case line (19 — 21) inserts all elements as children. Now the last far

set inserted in Stack is merged with the far set inserted previous to this set in line (21)

because these elements have already been tested and hence they had been kept in far set.

At this point we take last merged set in S and continue with the same procedure. The

algorithm terminates when all elements kept in the Queue are processed. The distance

measured at all points is Euclidean distance. Figure 4.1 shows a simple flow diagram of

this algorithm.

28

Make first element child node and parent
for next level. Decrement the level

Read data points from input file and store
in two dimensional array

Take first element as root and find
distance form all elements in dataset

Split dataset in far set and near set. Push
far set in Stack and use near set as

dataset for further operations

False
If

Maximum distance of
dataset = 0 i

True

Insert all element of dataset as leaf nodes

End
False 	

If
Stack 1= Empty

True

Merge Last two datasets of Stack and pop
this merged dataset as new dataset for

further process

Take one element from dataset and find
its distance from parent

Find distance from all points in dataset
and make it point to be inserted

False 	If
Distance from parent <_

2"Ievel 	-

True

/ If
Point set has more elements

to be tested 	True

False

Put the remaining points, which could not
be inserted on to stack

Figure 4.1 Flow diagram of iterative algorithm for cover tree creation

29

4.3 GPU Cover Tree Construction (GCTC) Algorithm
The parallel algorithm of cover tree is given in following algorithm and it is very similar

to the iterative algorithm explained before. All the computationally intensive tasks are

done simultaneously by many threads at line (7 — 9), (24 — 25), (30 — 32). These are the

places where we get advantage of multicore architecture and implementation gains the

speedup over existing linear implementation for single core CPU.

Algorithm: Graphics Cover Tree Construction (GCTC) Algorithm
1) parent E- first element of S
2) root E- parent

3) Queue[0] E- S

4) Total threads E- blockDim.x * threadDim.x

5) Call the GPU kernel

6) tid = blockldx.x * blockDim.x + threadIdx.x

7) for(i = tid; i < S.index; i += Total threads)

8) d = max {d(root, q;); qi E S}

9) d.= max {d(root, q); q E S}

10) While (Queue != empty)

11) synchronize all threads

12) if(tid = 0)

13) S F Queue[index --]

14) while(S != empty)

15) if(tid = 0)

16) insert ele EH- p

17) Synchronize all threads

18) While (insert ele != NULL)

19) if(tid = 0)

20) if (d (insert ele , parent) <= max_dist)

21) Remove insert ele from S

22) Synchronize all threads

23) if(parent != insert ele)

EM

24) for(j = tid; j < S.index; j += Total threads)

25) find d(insert ele, qj); V qj E S

26) if(tid = 0)

27) new_point set F- pointer to first element in S

28) synchronize all threads

29) while(new_point_set != NULL)

30) for(j = tid; j < S.index; j += Total thread)

31) find far set = { qj; d (qj, insert ele) > 2^current level, V

qj ES}

32) d near = max {d(q, insert_ele); V q E S}

33) if (d near = 0)

34) insert all elements of S as leaf

35) S f- Empty

36) insert_ele = NULL

37) Else

38) if(tid = 0)

39) insert insert ele as child

40) parent = insert ele

41) if(tid = 0)

42) Queue[index++] = far_set

43) Else

44) if(tid = 0)

45) insert ele = next element of S

46) if(Queue.index >1)

47) if(tid = 0)

48) - 	merge Queue[index] in Queue[index — 1]

49) Queue.index - -

50) synchronize all threads

51) Copy tree from device to host

31

4.4 Cover Tree Variant Construction (CTVC) Algorithm
The new proposed algorithm is a variant of cover tree algorithm and it introduces a

change in third property of cover tree i.e. separation property. While designing the cover
tree batch insertion algorithm for CUDA platform, the main problem faced is that, we

cannot implement different parts of tree simultaneously because of data dependency due

to separation property which says that at each level the distance between each point must

be greater than 2' where `i' is that level. If we start batch insertion of cover tree in many

parts then we cannot maintain the separation property. While designing the algorithm it

was observed that if we apply separation property locally for children of each node than

also this tree maintains all other characteristics.

The same nearest neighbour search algorithm can still be used and we get an advantage

that now different parts of tree can be constructed simultaneously. The iterative

algorithm for this variant is given in following algorithm and an example is shown in

figure 4.2 for dataset {1, 3, 4, 0, 2, 8, 9, 4, -1, 1, 2, and 8}. Figure 4.3 shows the flow

diagram of the variant of cover tree. The iterative variant algorithm for single core

architecture works as follows:

3

2

0

_1

Figure 4.2 Tree structure of proposed variant of cover tree

32

Read data from input file and store points as two
dimensional vector

Find the Distance of first point with all elements In
dataset and find the level where root will be inserted

jr

Set first element as root and put the dataset in a Stack

If
Stack 1= empty 	 End

false

True

Take the point set from stack

false
If

Point set I= Empty

True

Take one element from point set and check its distance
from parent node

If 	
false

Dist(element taken,
arent) <=distance of

level

True

Find distance of point taken from all points in dataset (if
no done previously). Find far set and near set. Put far

set on stack

false

Decrement the level. Set the first 	 If

point as parent for next level 	Maximum distance of near
set 0

True

Insert all elements as leaf nodes and Merge the last
two sets of stack. Take the merged set as point set

Figure 4.3 Flow diagram of cover tree variant construction algorithm

33

The first element is inserted as root of tree and distance of this element is found with all

the elements in the dataset S as done in line (3-4). Now in line (11 - 20) the algorithm

iteratively finds the far set and near set while going deep down in the tree simultaneously
inserting the element to be inserted until in dataset S no element remains or the element

with distance zero with the element being inserted remains and at this point all these

elements are inserted as leaf in tree as shown in line (12 -14). The far sets are kept in

Queue and then each far set is processed in line (7) of algorithm. We have tested the new

algorithm for nearest neighbour and same results are obtained for nearest neighbour

search.

Algorithm: Iterative algorithm for Cover Tree Variant Construction (CTVC)

1) Queue[index++] = S

2) root (- first element of S

3) insert _ele E- root
4) find d = {d(root, q); V q E S}

5) d max = max(d)

6) top_level = log2 d_max

7) while(Queue != empty)
8) point_set F Queue[index]

9) parent F Queue[index]

10) insert ele E- point set[0]

11) while(point set != empty)

12) if(d max = 0)

13) insert q as leaf, V q E point_set

14) point_set F NULL

15) else

16) find far set = {q; d(insert ele, q) > 2^ top_level, V q E point_set}

17) point_set = point_set— (point_set f1 far set)

18) Queue[index ++] = far set

19) insert insert _ele as a child

20) Parent F insert ele

21) return root

ci!

4.5 GPU Cover Tree Variant Construction (GCTVC) Algorithm
The parallel version of the CTVC algorithm works in quite similar manner. Here, as the

far sets are created and kept in Queue then they are processed by another block of threads.

We have assigned a block of thread to process each data set so that we can get advantage

of shared memory area within each block.

Algorithm: Graphics Cover Tree Variant Construction (GCTVC) Algorithm

1) Queue[index++] = S

2) root E- first element of S

3) insert ele E- root

4) total thread = blockDim.x * threadDim.x

5) Call the kernel

6) tid = blockldx.x * blockDim.x + threadldx.x

7) for(i = tid; i < S.index; i += total thread)

8) find d = {d(root, q;); `d q; E S}

9) d_max = max(d)

10) if(threadldx.x = 0)

11) top_level= log2 d_max

12) while(Queue != empty)

13) for(j = blockldx.x; j < Queue.index; j += blockDim.x)

14) if(threadIdx.x = 0)

15) point_set E- Queue[j]

16) parent E- parent.Queue[j]

17) insert ele E- point_set[0]

18) synchronize threads of current block

19) while(point set != empty)

20) if(d_max = 0)

21) for(i = threadldx.x; i < point_set.index; i += blockDim.x)

22) insert qj as leaf, `d qj E point_set

23) if(threadldx.x = 0)

24) point_set E- NULL

25) else

26) find far set = {q ; d(insert ele, q) > 2^ top_level, V q E

point set}

27) if(threadIdx.x = 0)

28) point_set = point set — (point set (1 far set)

29) Queue[index ++] = far_set

30) insert insert ele as a child

31) Parent F- insert ele

32) synchronize all threads of current block

33) copy tree.index elements of tree from device to host

36

CPU Execution

Read data from input file and store points as two
dimensional Array

Put the data set in Queue and Copy data set from host
to device

GPU Execution

Set first element as root find distance of all points in
data set from this point

If 	
ENd eue 1= empty

false

~Blckfld

false

True

Take the point set in Queue corresponding to Blockld
and Find the Distance of first point with all elements In

dataset (if not found previously) and find the level
where root will be inserted

Blockld = Blockld + Total number ~, / 	If
of blocks 	 oint set 1=

false
True

If \
Insert all elements of point set as children 	aximum distance

oint set 1=
false

True

Find far set and near set from first point. Put far set in e
Queue and insert first element as child. Make it parent

for next iteration.

Figure 4.4 Flow diagram of GCTVC Algorithm

37

Chapter 5

Results and Discussions

We measured the relative performance of our algorithm of cover tree by comparing the

execution time of our GPU version of cover tree code and its single core version. The

test machine has 8 intel Xeon processors, each working on 2.00 GHz frequency, having

6144 KB of cache and 3 GB of RAM. The machine has an NVIDIA fx 4600 graphics

card which has 112 cuda cores, and total 768 MB of GPU memory with bandwidth 67.2

GB/sec. The machine was running fedora core 11. The dataset for performance

measurement purpose was taken from UCI ML repository [31]. The data files are from

different fields such as covtype is dataset for prediction of forest cover type from

cartographic variables, bio_train and bio_test are the datasets from molecular biology

related to gene sequences, phy_test and phy_train are the datasets of physical symptoms

of heart disease patients. Table 5.1 shows the runtime statistics and data description for

existing cover tree algorithm for single core CPU. Table 5.2 and table 5.3 shows the

results and performance improvement of GCTC and GCTVC algorithm respectively over

single core CPU execution of cover tree algorithm for different number of thread blocks

and each block had 256 threads.

5.1. 	Runtime Statistics for Existing Linear Algorithm
Table 1: Runtime statistics of existing single core CPU algorithm

File

Name

File Size
(MB)

Dimension of
points

Number of
•data points in

file

Tree construction
time for serial code

(sec)
Phy_train 48.8 79 50000 1.1313

Phy_test 97.3 78 100000 2.3807

covtype 71.1 55 581012 6.3826

Bio train 65 76 135908 7.9179

Bio test 62 74 139658 8.4430

38

5.2. Runtime Statistics for GCTC Algorithm
Table 3: Runtime statistics of GCTC algorithm

File
Name

Time in Sec. for different number of blocks for GCTC
algorithms

1
Block

2
Blocks

16
Blocks

64
Blocks

Maximum
Improvement

%)
Phy_train 1.4706 1.3515 0.4262 0.4261 62.33
Phy_test 3.0949 2.8568 0.8116 0.8114 65.91
Covtype 8.2973 7.6591 1.6720 1.6720 73.80
Bio train 10.2932 9.5014 2.4428 2.4420 69.15
Bio test 10.975 10.0320 2.9598 2.8667 67.89

5.3. Runtime Statistics for GCTVC Algorithm
Table 2: Runtime statistics of GCTVC algorithm

File
Name

Time in Sec. for different number of blocks for GCTVC
algorithms

1
Block-

2
Blocks

16
Blocks

64
Blocks

Maximum
Improvement

%)
Phy train 1.4706 1.3517 0.3399 0.3031 73.20
Phy_test 3.0949 2.8569 0.7152 0.5553 76.67
covtype 8.2973 7.6597 1.5102 1.2770 79.99

Bio train 10.2932 9.5018 2.2131 1.7720 77.62
Bio test 10.975 10.1320 2.2798 1.9907 76.42

5.4. Performance Comparison of Linear, GCTC and GCTVC

Algorithms
The comparisons of time required for Cover Tree construction between linear algorithm

and the two algorithms - GCTC and GCTVC are shown in figure 5.1 and figure 5.2

respectively. The performance comparison of • GCTC and GCTVC algorithms for

different numbers of blocks of threads is shown by comparing the time to construct the

tree for different files using the two algorithms. This comparison is shown using the

graphs shown by figure 5.3 to figure 5.7 for different files. The figures shows that with

small number of threads the performance of two algorithms is quite similar but as the

39

number of blocks of threads increases GCTVC algorithm provides better parallelization

as compare to GCTC algorithm.

9

8

7

6
U
In 5

~ 4 ■ Linear Algorithm

3 	 ■ GCTC
2

1

0

Phy_train Phy_test Covtype Bio_train Bio_test

File Name

Figure 5.1 Comparison of Time between Linear and GCTC Algorithms

9

8

7

6
U
In

i P 4 	 ■ Linear Algorithm

3 	 ■ GCTVC
2

0

Phy_train Phy_test Covtype Bio_train Bio_test

File Name

Figure 5.2 Comparison of Time between Linear and GCTVC Algorithms

40

1.6

1.4

1.7

T 1 -

I 	~).8
m 	 —GiICTC
e 0.6

t(r11
0.4

0.2

0

0 20 40 60 80

Blocks

Figure 5.3 Comparison of GCTC and GCTVC algorithms for file Phy_train

3.5

3

2.5
T

1 2

m
C

1 	 f GCTC

a.s

0

0 20 40 60 80

Blocks

Figure 5.4 Comparison of GCTC and GCTVC algorithms for file Phy_test

41

q

8,

7

T

~ 	5 	-

m 	 —4— GVCT(
e;

—4-GCTC

1

0

0 20 40 60 FO

Blocks

Figure 5.5 Comparison of GCTC and GCTVC algorithms for file covtype

Figure 5.6 Comparison of GCTC and GCTVC algorithms for file Bio_train

42

12

10

8

d
E 6

4

2

0

—•—GCNC

—GCTC

0 	20 	40 	60 	80

Blocks

Figure 5.7 Comparison of GCTC and GCTVC algorithms for file Bio_test

43

Chapter 6

Conclusion and Future Work

6.1 Conclusion
In this thesis we showed how multicore processors can be used for solving

computationally intensive algorithmic problems. We gave an approach to speed up the

process of model-building for nearest neighbour search using CUDA GPU.

We implemented the proposed parallel algorithm for cover tree construction on CUDA

platform. This approach facilitates implementation of algorithms with data dependencies,

yet computationally intensive. We also proposed a variant of cover tree which is easier to

construct and less computationally intensive as compare to cover tree also it gives a better

parallelization on CUDA GPU.

Following conclusions can be made from the results obtained using the proposed

algorithm of cover tree implementation over CUDA GPU and the variant of cover tree

over CUDA GPU on the aforementioned data:

0 The proposed GPU cover tree construction -algorithm and the variant of cover tree

algorithm on CUDA GPU can give better performance by speeding up the cover

tree model building process by approximately three and five times respectively.

• The proposed model can be used for other distance based model-building

processes which are computationally intensive.

• The proposed algorithms outperform the existing linear implementation of cover

tree model building algorithm on single core CPU architecture.

• The proposed variant of cover tree is simple to implement and less computation

intensive in terms of model building process time.

• The proposed models are highly suitable for applications with dynamic dataset

which needs to find neighbours.

• Advantages of multicore systems lie not only in performance improvement but

also in terms of cost effectiveness and resource utilization. Thus, the trend of

using multicore systems for solving computationally intensive problems can be

44

viewed as a simple and highly beneficial means for performance improvement.

With the use of cover tree construction on multicore processors various

applications that require such model building in real time can be successfully

deployed.

6.2 Future Work
There is significant room for improvement in our work for fast model-building process of

cover tree and other similar model-building processes. The possible improvements are

listed below:

• There are other parallel processing multicore architectures such as CELL BE,

which can work with less communication cost and hence further performance

improvement may be achieved.

• There are some places in the parallel algorithms presented here, where

synchronization between threads has been used and this reduces the performance

of parallel algorithm. These synchronizations can be removed for better

performance than the solution presented here.

• The nearest neighbour search algorithm using cover tree can be implemented on

multicore architecture so that the overall nearest neighbour search cost can be

reduced and the model will become more suitable for dynamic dataset.

• Other classification and clustering problems which are computation intensive and

require model-building, can be improved using the same approach.

The algorithms given in this thesis can be optimized further for better results.

Since we are rapidly moving towards the automation of everything, there will be huge

requirement for fast nearest neighbour search using dynamic datasets.

45

REFERENCES

[1] P. Legendre, "Reconstructing Biogeographic History Using Phylogenetic- Tree

Analysis of Community Structure," Systematic Zoology, vol. 35, pp. 68-80,
1986.

[2] J. L. Bentley, B. W. Weide, and A. C. Yao, "Optimal Expected-Time Algorithms

for Closest Point Problems," ACM Transactions on Mathematical Software
(TOMS), vol. 6, pp. 563-580, 1980.

[3] K. Clarkson, "Nearest neighbour queries in metric spaces," in Proc. Fourth
Annual ACM-SIAM Symposium on Discrete Algorithms, pp. 63-93, 1999.

[4] D. Karger and M. Ruhl, "Finding Nearest Neighbours in Growth Restricted

Metrics," in Proc. 34th annual A CM symposium on Theory of computing, pp. 74-
750, 2002.

[5] R. Krauthgamer and J. Lee, "Navigating Nets: Simple Algorithms for Proximity

Search," in Proc. 15th Annual Symposium on Discrete Algorithms (SODA), pp.
791-801, 2004.

[6] A. Beygelzimer, S. Kakade, and J. Langford, "Cover Trees for Nearest

Neighbour," in Proc. 23rd international conference on Machine learning, pp.
97-104, 2006.

[7] J. D. Owens, D. Luebke, N. Govindaraju, M. Harris, J. Kruger, A. E. Lefohn, T.

Purcell, "A Survey of General-Purpose Computation on Graphics Hardware,"

Computer Graphics Forum, vol. 26, pp.80-113, 2007.

[8] P. Indyk, and R. Motwani, "Approximate Nearest Neighbors: Towards Removing

the Curse of Dimensionality" in Proc. thirtieth Annual ACM Symposium on

Theory of Computing, pp. 604-613, 1998.

[9] B. Babcock, M. Datar, and R. Motwani, "Load Shedding for Aggregation Queries

over Data Streams," in Proc. 20th International Conference on Data Engineering,

(ICDE), pp. 350-361, 2004.

[10] A. Gersho, and R. M. Gray, "VECTOR QUANTIZATION AND SIGNAL

COMPRESSION," Kluwer Academic Publishers (USA), 1991.

46

[11] T. M. Cover, and P. E. Hart, "Nearest Neighbor Pattern Classification," IEEE
Transactions on Information Theory, vol. 13, no. 1, pp. 21-27, 1967.

[12] C. G. Atkeson, A. W. Moore, and S. Schaal, "Locally Weighted Learning,"

Artificial Intelligence Review, vol. 11, no. 1-5, pp. 11-73, 1997.

[13] S. Niijima, S. Kuhara, "Effective Nearest Neighbor Methods for Multiclass

Cancer Classification Using Microarray Data," in Proc. 16th International

Conference on Genome Informatics, pp. 57-59, 2005.

[14] J. F. Robinson-Cox, M. M. Bateson, and D. M. Ward, "Evaluation of Nearest

Neighbor Methods for Detection of Chimeric Small-subunit rrna Sequences,"

Applied and Environmental Microbiology, vol. 61, no. 4, pp. 1240-1245, 1995.

[15] S. Dudoit, J. Fridlyand, and T. P. Speed, "Comparison of Discrimination Methods

for the Classification of Tumors Using Gene Expression Data," Journal of the

American Statistical Association, vol. 97, no. 457, pp. 77-87, 2002.

[16] T. Li, C. Zhang, M. Ogihara, "A Comparative Study of Feature Selection and

Multiclass Classification Methods for Tissue Classification Based on Gene

Expression," Bioinformatics, vol. 20, no. 15, pp. 2429-2437, 2004.

[17] M. Flickner, H. Sawhney, W. Niblack, J. Ashley, Q. Huang, B. Dom, M. Gorkani,

J. Hafner, D. Lee, D. Petkovic, D. Steele, and P. Yanker, "Query by Image and

Video Content: The Qbic System" Computer; vol. 28, no. 9, pp. 23-32, 1995.

[18] A. Ghias, J. Logan, D. Chamberlin, and B. C. Smith, "Query by Humming:

Musical Information Retrieval in an Audio Database," in Proc. third ACM

international conference on Multimedia, pp. 231-236, 1995.

[19] Y. Cai, N. Freitas, and J. J. Little, "Robust Visual Tracking for Multiple Targets,"

in Proc. 9th European Conference on Computer Vision, pp. 107-118, 2006.

[20] D. Lucarella, "A Document Retrieval System Based on Nearest Neighbour

Searching," Journal ofInformation Science, vol. 14, no. 1, pp. 25-33, 1988.

[21] S. C. Deerwester, S. T. Dumais, T. K. Landauer, G. W. Furnas, and R. Harshman,

"Indexing by Latent Semantic Analysis," Journal of the American Society of

Information Science, vol. 41, no. 6, pp. 391-407, 1990.

[22] J. L. Bentley, "Multidimensional Binary Search Trees Used for Associative

Searching," Communications of the ACM, vol. 18, no. 9, pp. 509-517, 1975.

47

[23] J. H. Friedman, J. L. Bentley, and R. A. Finkel, "An Algorithm for Finding Best

Matches in Logarithmic Expected Time," ACM Transactions on Mathematics

Software, vol. 3, no. 3, pp. 209-226, 1977.

[24] J. S. Beis, D. G. Lowe, "Shape Indexing Using Approximate Nearest-Neighbour

Search," in Proc. Conference on Computer Vision and Pattern Recognition, pp.

1000-1006, 1997.

[25] T. Kollar, "Fast Nearest Neighbours," Massachusetts Institute of Technology,

Department of Electrical Engineering and Computer Science, Technical report,

2006.

[26] J. Hays and A. A. Efros, "Scene Completion Using Millions of Photographs,"

ACM Transactions on Graphics (SIGGRAPH), vol. 26, no. 3, 2007.

[27] J. MacQueen, "Some Methods for Classification and Analysis of Multivariate

Observations," in Proc. fifth Berkeley Symposium on Mathematical Statistics and

Probability, pp. 281-297, 1967.

[28] Y. Linde, A. Buzo, and R. M. Gray, "An Algorithm for Vector Quantizer

Design," IEEE Transactions on Communications, vol. 28, no. 1, pp. 84-94,

January 1980.

[29] A. W. Fu, P. M. Chan, Y. Cheung, Y. S. Moon, "Dynamic Vp-tree Indexing for n-

nearest Neighbor Search Given Pair-wise Distances."International Journal on

Very Large Data Bases, vol. 9, no. 2, pp. 154-173, 2000.

[30] NVIDIA Corporation: "NVIDIA CUDA COMPUTE UNIFIED DEVICE

ARCHITECTURE PROGRAMMING GUIDE," Published: NVIDIA

Corporation, Jan 2007.

[31] "UCI Machine Learning Repository," http://archive.ics.uci.edu/ml, Last Accessed

on 13 h̀ June 2010.

LIST OF PUBLICATIONS

[1] Mukesh Sharma, R C Joshi, "Design and Implementation of Cover Tree Algorithm on

CUDA-Compatible GPU", International Journal of Computer Applications, vol. 3,

no. 8, pp. 24 -27, 2010.

DOI: 10.5120/748-1057

URI: http://www.ijcaonline.org/archives/volume3/number8/748-1057

[2] Mukesh Sharma, R C Joshi, "Model Building For Nearest Neighbor Search on CUDA

Compatible GPU", in Proc. International Conference on Advances in Information

and Communication Technologies (ICT), Kochi, Kerala, India, Sep 07-09, 2010.

(Accepted for publication in Springer)

49

	Title
	Abstract
	Chapter 1
	Chapter 2
	Chapter 3
	Chapter 4
	Chapter 5
	Chapter 6
	References

