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Abstract 

Suffix trees have been applied to fundamental string problems such as finding the longest 

repeated substring, finding all squares or repetitions in a string, computing substring statistics, 

approximate string matching and string comparison. They have also been used to address other 

types of problems such as text compression, compressing assembly code, inverted indices and 

analyzing genetic sequences. 

Suffix array is a simpler and compact alternative to the suffix tree; suffix sorting is the 

fundamental building block in suffix array construction process. Suffix array widely used in field 

of bioinformatics and text processing. The repeat structure of genomic DNA is considered an 

essential mechanism for evolution and other fundamental biological functions. Any kind of 

repeats finding problems are always deemed as one of the prerequisites for genome sequencing 

and analysis, and among these problems exact repeat finding is the first step for most other 

repeats finding problems. 

This work depicts the parallel implementation of suffix array and then their applications in 

bioinformatics such as exact repeats finding, tandem repeats finding, exact string matching etc. 

the parallel implementation of suffix array algorithm on a GPU using the Compute Unified 

Device Architecture (CUDA) platform, both from NVIDIA Corporation. CUDA is a parallel 

computing architecture. It is a middle-ware. compute engine which exposes the power of 

NVIDIA Graphics Processing Units to software developers through industry standard 

programming language. The thread level parallel code block provides an efficient primitive for 

building a high performance suffix array construction program and many other applications. 

The parallel version runs much faster than any serial implementation on CPU for the large size of 

input data elements. The parallel algorithm can also be easily adapted for similar type of 

problems with little modification. 
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Chapter 1: Introduction 

1.1 Suffix Array 
Suffix trees and suffix arrays are widely used and largely interchangeable index structures on 

strings and sequences. Practitioners prefer suffix arrays due to their simplicity and space 

efficiency while theoreticians use suffix trees due to linear-time construction algorithms and 

more explicit structure [10]. The suffix array can be used to provide all the facility that can be 

provided by suffix tree such as all kind of strings operations. The fastest direct suffix array 

construction algorithms that do not use suffix trees require O(JNjlogJNJ) time, where N is a main 

string [11]. The main advantage of suffix arrays over suffix trees is that, in practice, they use 

three to five times less space. From a complexity standpoint, suffix arrays permit on-line string 

searches of the type, "Is W a substring of N?" can be done in time O(JWIlogINj). Suffix arrays 

have been proved to be better in practice than suffix trees for many applications [14]. 

1.2 Repeats finding and exact string matching 
Suffix trees and suffix genomes contain not only genes but also many repetitive DNA sequences, 

the significance of internal sequence repeats is quite clear in both eukaryote and procaryote. In 
procaryote, short repeats may act as regulators, virus binding sites, or enzyme binding sites etc. 

and long repeats seem to have other functions, such as evolution. In eukaryote, it is particularly 

true that these repetitive elements make up the majority of DNA in most eukaryotes, for 

example, 50% of the human genome has been identified as repetitive, these repeats drive genome 

evolution in diverse ways and should be masked off prior to performing homology searches 

which is not efficient and using the parallel implementation the time can be reduced [1]. 

In a tandem repeat, four features need to be analyzed: the pattern size, the pattern structure, the 

number of copies, and the positions of the patterns. According to the pattern size, repeats can be 

classified into three types: satellites, minisatellites, and microsatellites [4]. Our work makes an 

attempt to replace an entire computational grid of computers used for repeats findings and exact 

string matching with a single highly parallel commodity multiprocessing board, in the form of a 



implementation by using of suffix array and their performance comparison, and then discusses 

exact string matching and its sequential and faster implementation by using of suffix array and 

their performance comparison. 

Chapter 5 concludes the dissertation report and gives suggestion for future work. 



Chapter 2: CUDA 

2.1 General Programming on GPU (GPGPU) 
The GPU [5] refers to the commodity off-the-shelf 3D Graphics Processing Units, which are 

specifically designed to be extremely fast at processing large graphics data sets for rendering 

tasks. GPU designers traditionally have expressed its image-synthesis process as a hardware 

pipeline of specialized stages which necessarily involve Vector/Matrix Operations. The need for 

efficient hardware to perform floating-point vector arithmetic for millions of vertices each 

second has helped drive the GPU parallel-computing revolution. 

GPUs have evolved from a hard-wired implementation of the graphics pipeline to a more 

programmable one. Fixed-function units for transforming vertices and texturing pixels have been 

replaced by programmable shaders. These shaders provide units that the programmer can use for 

performing matrix-vector multiplication, exponentiation, and square root calculations etc. This 

however necessitates that there should be some means by which general purpose software could 

be translated into GPU specific primitives. 

General purpose computing on the GPU is an active area of research. GPUs are already 

widespread. The performance of GPUs is improving at a rate faster than that of CPUs. The 

capabilities of the GPU have increased dramatically in the past few years and the current 

generation of GPUs has higher floating point performance than the most powerful (multicore) 

CPUs [5]. The GPU contains hundreds of cores that work great for parallel implementation. The 

programming is done in SIMD style where same code is worked on different data locations. 

Until recently a graphics API was needed to code on GPUs which made coding for non graphics 

oriented calculations tough. Trying to work around this limitation Nvidia released CUDA which 

allows GPUs to be programmed using a variation of C. This enables a low learning curve and 
makes programming easier. 
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Figure 2.1: Floating point operations for the CPU and the GPU [5] 

The figure 2.1 shows the tremendous computational capability of the GPU. GTX 280 a GT 200 

family GPU delivers a peak performance of 933 GFLOPS/sec. 

2.2 General Architecture of GPUs 
Whereas CPUs are optimized for low latency, GPUs are optimized for high throughput. Thus 

applications that do not have requirement for low latency can be ported to GPUs to take 

advantage of their superior performance. The programmable GPU has evolved into a highly 

parallel, multi-threaded, many-core processor with tremendous computational horsepower and 

very high memory bandwidth. There is a widening gap between the raw performance capability 

of CPUs and GPUs, which is because the GPU is specialized for compute-intensive, highly 

parallel computation, exactly what graphics rendering is about, and therefore designed such that 

more transistors are devoted to data processing rather than data caching and flow control. The 

general architectural difference between CPUs and GPUs is schematically illustrated below in 

figure 2.2 
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Figure 2.2: General architecture difference between CPU and GPU [5] 

More specifically, the GPU is especially well-suited to address problems that can be expressed as 

data-parallel computations; the same program is executed on many data elements in parallel, 

with high ratio of arithmetic operations to memory operations. Because the same program is 

executed for each data element, there is a lower requirement for sophisticated flow control, and 

because it is executed on many data elements and has high arithmetic intensity, the memory 

access latency can be hidden with calculations instead of big data caches. The CUDA 

programming model is very well suited to expose the parallel capabilities of GPUs. 

2.3 CUDA 
CUDA (Compute Unified Device Architecture) is a parallel programming model and software 

environment developed by Nvidia [5]. It was designed as a middle-ware to allow application 

software that transparently scales its parallelism on GPU. The core .concepts involved with 

CUDA are a hierarchy of thread groups, shared memories, and barrier synchronization. The 

thread hierarchy allows user to divide his task in a similar hierarchy, where coarse sub-problems 

can be solved independently and finer pieces that can be solved cooperatively in parallel using 

shared memory. CUDA achieves all this using a minimal extension to C thus maintaining a low 

learning curve for programmers already familiar with the standard programming language. 

To manage the numerous threads, the multiprocessor employs a single-instruction, multiple-

thread (SIMT) architecture. This allows each thread to execute independent of the other threads 

on one of eight scalar processors. Instructions are issued to groups of 32 threads called warps, 

13 



which execute one common instruction at a time. If the instructions assigned to threads within a 

warp differ due to conditional branching, the warp executes each path sequentially while 

disabling threads that are not on the path. When all branch paths are complete, the threads join 

back to the common execution path. It is for this reason that code within conditional statements 

such as if/else should be limited. 

Given the above information, it is now relevant to note that the GPUs of concern for this work 

have the following specifications: 

> The maximum number of threads per block is 512 

> The maximum size of each dimension of a grid of thread blocks is 65535 

The maximum number of active blocks per multiprocessor is 8 

The maximum number of active threads per multiprocessor is 1024 

The maximum number of active warps per multiprocessor is 32 

CUDA also provides limited synchronization between threads of the same block via the 

syncthreads function call. Upon hitting a syncthread, each thread will wait until all remaining 

threads reach the call. Syncthreads is primarily used to coordinate communication between the 

threads within a block to prevent read/write data hazards with shared or global memory. The 

only way to synchronize across thread blocks is by breaking the computation into multiple 

kernels, as one kernel must complete before another can launch. 

Most CUDA applications follow a set program flow. The host first loads data from a source such 

as a text file and stores it into a data structure in host memory. The host then allocates device 

memory for the data and copies the data to the allocated space. Kernels are then launched to 

process the data and produce results. These results are then copied back to the host for display or 

further processing. 

14 
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high performance Graphics Processing Unit (GPU) programmed in the Compute Unified Device 

Architecture (CUDA) framework [8]. 

1.3 Multicore Architecture 
The Graphics Processing Units (GPUs) model themselves as multi-core processing and expect 

programs to take advantage of them as raw parallel number-crunchers. The multicore processors 

allow program to leverage their computing power by various means like independent threads per 

core, or allow user to manipulate efficient data flow between cores, or provide a layer of 

software which manages the scalability of the cores. With the future micro-processor trends 

likely to increase number of cores as the only means of their increasing computing power, it 

becomes necessary to ensure that important algorithms be parallelized to run on next generation 

of micro-processors. Thus multi-core processors provide the perfect means of increasing the 

runtimes of our sequential algorithm 

1.4 Problem Statement 
The performance improvement of Suffix Array on CUDA [5] was majorly due to the possibility 

of parallel sorting which took bulk of the runtime in the sequential implementation. The overall 

running time of the can be improved if the suffix sorting part of the algorithm is implemented 

using techniques of parallel sorting. Then these results can be used to solve lots of problems in 

the field of bioinformatics such as finding the exact repeats finding, all kind of tandem repeats in 

genome sequence and exact sequence matching. 

1.5 Organization of Report 
Organization of this dissertation report is as follows: 

Chapter 2 covers a detailed explanation of the architecture of CUDA programming environment, 

which have been used in this dissertation. 

Chapter 3 starts with the explanation of concepts of suffix array. The chapter then discusses the 

sequential and parallel implementation of suffix array and their performance comparison. 

Chapter 4 starts with the role of exact repeats finding in bioinformatics applications. The chapter 

then discusses the sequential as well as faster implementation of the exact repeating finding and 

their performance comparison, then discusses the tandem repeats and its sequential and faster 
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2.4 Programming constructs and Thread Hierarchy 
CUDA extends C[5{ by allowing the programmer to define C functions, called kernels, that; 

when called, are executed N times in parallel by N different CUDA threads, as opposed to only 

once like regular C functions. 

A kernel is defined using the __global_ declaration specifier and the number of CUDA threads 

for each call is specified using a new <<<...>>> syntax 

// Kernel definition 

_global—  void vecAdd(float* A, float* B, float* C) { 

// Kernel code 

} 

int main() { 

// Kernel invocation 

vecAdd<<<1, N>>>(A, B, C); 

} 

Each of the threads that execute a kernel is given a unique thread ID that is accessible within the 

kernel through the built-in threadldx variable. This threadldx values gives the index of the 

current thread within its block. In the above code, if the kernel were to add the two vectors A and 

B of size N and stores the result into vector C, the kernel code would be 

___global_ void vecAdd(float* A, float* B, float* C) 

{ 

int i = threadldx.x; 

C[i] = A[i] + B[i]; 

} 

16 



The logical organization of the thread hierarchy is thus, with the entire set of threads arranged as 

a two dimensional grid of blocks, with each block containing a three dimensional set of threads, 

as shown in figure 2.4 

Figure 2.4: Thread Hierarchy in CUDA [5] 

Threads within a block can cooperate among themselves by sharing data through some shared 

memory and synchronizing their execution to coordinate memory accesses. Such 

synchronization is possible by means of a programming primitive _syncthreads() as exposed by 

CUDA API. This serves as barrier synchronization. The number of threads per block is restricted 

17 



by the limited memory resources of a processor core. On NVIDIA Tesla architecture, a thread 

block may contain up to 512 threads. 

In addition to the variable threadldx, CUDA threads also have a few other built-in variables 

namely blockldx and blockDim. The blockldx variable gives the index of the thread's parent 

block within the grid, and blockDim which gives the number of threads per block, with the 

blockDim being supplied in the call to the kernel as the second parameter to the <<<>>> syntax. 

Since grids are two-dimensional, blockIdx has a x component and y component and since blocks 

are three-dimensional, blockDim and threadldx have x, y and z components. If the above code 

was to be a matrix addition instead of vector addition and was to be processes by a hierarchical 

arrangement of threads as shown in the above figure 2.4, with each thread processing one 

element of the matrix, the code becomes 

{ 

int i = blockldx.x * blockDim.x + threadldx.x; 

int j = blockIdx.y * blockDim.y + threadldx.y; 

if(i<N&&j<N) 

C[i)[j] = A[i](j] + B[ i]jj]; 
} 

int main() 

{ 

// Kernel invocation 

dim3 dimBlock(16, 16); 

matAdd<<<l, dimBlock>>>(A, B, C); 

} 

2.5 Memory Hierarchy 
CUDA threads may access data from multiple memory spaces during their execution. Each 

thread has a private local memory, which is akin to local variable declaration for any normal 

CPU code. Each thread block has a shared memory visible to all threads of the block and with 

the same lifetime as the block. Finally, all threads have access to the same global memory. 

18 



CUDA assumes that both the host and the device maintain their own DRAM, referred to as host 

memory and device memory respectively. The global memory is persistent across kernel 

launches by the same application and is allocated in the device memory. Memory management at 

runtime on the GPU RAM is done using CUDA API equivalents. The general procedure is to 

allocate memory on both host and device RAM, using cudaMalloc function call for the device 

memory. The data contents are copied from host memory to device memory using cudaMemcpy 

function. Writing data directly onto device memory from CPU code is not possible. The kernel 

calls are then made to do appropriate processing on the data. The processed data contents are 

copied back from the device to the host using cudaMernepy function. 
Thread 

Per-thread local 
memory 

Figure 2.5: How threads access global, shared and local memory [5] 
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Chapter 3: Suffix Array 

A suffix array [12] is an array of integers giving the starting positions of suffixes of a string in 
lexicographical order. 

Following table 3.1 shows the suffix array for string "ATTCGATTCGATTCG" 

Table 3.1: Example of Suffix Array 

Suffix 
Array 

Suffix 	—T  

10 ATTCG 

5 ATTCGATTCG 

0 ATTCGATTCGATTCG 

13 CG 

8  CGATTCG 

3 CGATTCGATTCG 

14 G 

9 GATTCG 

4 GATTCGATTCG 

12 TCG 

7 TCGATTCG 

2 TCGATTCGATTCG 

11 TTCG 

6 TTCGATTCG 

1 TTCGATTCGATTCG 

If the original string is available, each suffix can be completely specified by the index of its first 

character. The suffix array is the array of the indices of suffixes sorted in lexicographical order. 

For the string "ATTCGATTCGATTCG", using one-based indexing, the suffix array is 

{ 10,5,0,13,8,3,14,9,4,12,7,2,11,6,1 }. 

The suffix array is a simpler and more compact alternative to the suffix tree. Furthermore, 

parallel suffix array construction has emerged as an interesting research field to meet high- 
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performance computing requirement in full text index, data compression [2]. The suffix arrays 

can also be used to index protein structure [3]. 

Suffix sorting is one of the fundamental steps in suffix array construction process, which builds 

the unique index value of each suffix according to its alphabetic order, as shown in table 3.1. The 

naive method to build these index values is directly sorting all the suffixes, though this is not 

efficient method but we can make it more efficient by implementation of parallel sorting 

techniques and CUDA provides the many cores for parallel processing and that will definitely 

improve the performance with respect to sequential processing. 

3.1 Sequential implementation of suffix array 
Several algorithms have also been developed which provide faster construction and have space 

usage of O(n) with low constants. The easiest way to construct a suffix array is to use an efficient 

comparison sort algorithm which requires no extra space. Though it is more time consuming 

approach but very much space efficient. Figure 3.1 shows the flow diagram of sequential 

implementation and the algorithm 3.1 has been used for its implementation. In this algorithm 

my_sticmp is our customized string compare function and suffixlndex array is used to store 

indexes of sorted suffixes. 

Algorithm 3.1: Sequential implementation of suffix array 

for i := 0 to MAXLENGTH - 1 
for j:=0 to MAXLENGTH - (i + 2) 

if (my_strcmp(stringBaseAddr + suffixlndex[j], 
stringBaseAddr + suffixlndex[j + 1])>  0) 

then 
temp := suffixIndex[j]; 
suffixIndex[j] := suffixlndex[ + 1]; 
suffixlndex[j + I] :=temp; 

end if 
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CPU 

Figure 3.1: Flow diagram of sequential implementation of suffix array 

3.2 Parallel implementation of suffix array 
The GPU implementation primarily consists of two main phases, namely data construction and 

data comparisons. The data construction phase consists of allocating memory on the GPU and 

transferring data onto it from the CPU. The data as required by the algorithms was to be 

generated and processed on the GPU, with the CPU doing the initial work of reading the gene 

sequences and have them transferred to the GPU. One of the problem encountered in use of 

CUDA was the absence of string processing libraries on GPUs (since the device is primarily 

math-intensive), which required that they be written from scratch as device-level user functions. 

Once the allocation of memory on device is done, the process of generation of suffix array 

divided between the thread as show in figure 3.2 on the device using a parallelized form on 

comparison of suffix at position 2 *threadld and 2 *threadld - 1 then comparison of suffix at 

position 2 *threadld and 2*threadld + 1, These steps carried out up to half of the input length of 

gene sequence. Cormen[13] argued that these procedure gives the correct result. Our algorithm 

3.2 shows the execution steps in detail. 

22 



CPU 
	

GPU 
(Sequentiai .Procssing) 
	 (Parallel Processing) 

	

Read data and 
	

Read data from 

No 	Execute loop 	 Yes 	Parallel comparison of 

	

half times of 	 sutfixesat2'thread!dand 
the iflf)Ut 
	 2*threadki_1 and swap 

Parallel comparison of 

suffixes at 2*threadld  and 

Copy results 
	 2*threadld+1 and swap 

Display Results 

Figure 3.2: Flow diagram of parallel implementation of suffix array 
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Algorithm 3.2: Parallel implementation of suffix array 

//Steps from CPU 

for i := 0 to (MAXLENGTH / 2) 
Step 1: CUDA steps for first pass comparisons 
Step 2; CUDA steps for second pass comparisons 

//CUDA steps for first pass comparisons 

Initialize threadid := blockIdx.x * 512 + threadIdx.x; 
if (2*threadld + 1 >= MAXLENGTH) then return; 
end if 
if (my_strcmp(stringBaseAddr + suffixlndex[2*threadld], 

stringBaseAddr + suffixIndex[2*threaded + 1])> 0) 
then 

temp := stringBaseAddr + suffixlndex[2*threadld]; 
suffixlndex[2*threadId] := stringBaseAddr+ 
suffixlndex[2*threadId + 1]; 
suffixlndex[2*threadld + 1] := temp; 

end if 

//CUDA steps for second pass comparisons 

Initialize threadId := blockIdx.x * 512 + threadIdx.x; 
if (2*threadld + 2 >= MAXLENGTH) then return; 
end if 
if (my_strcmp(stringBaseAddr + suff xlndex[2*threaded + I], 

stringBaseAddr + suffixIndex[2*threadId + 2]) > 0) 
then 

temp := stringBaseAddr + suffixIndex[2*threadId 4- 1]; 
suffixlndex[2*threadld + 1 ] := stringBaseAddr + 
suffixlndex[2*threadld ± 2]; 
suffixIndex[2*threadld + 1 ] := temp; 

end if 



3.3 Performance comparison of parallel and sequential implementations 
The following table 3.2 shows the comparison between sequential and parallel implementation of 

suffix array. The processing time depends upon the length of the input data. As we can see in 

figure 3.3 the GPU implementation giving the better performance over the CPU implementation 

as long as input length keeps increasing. 

Table 3.2: Timing comparison for suffix array 

Input Length Sequential 

Processing Time ( seconds) 

Parallel 

Processing Time ( seconds) 

64 0.000352 0.000354 

128 0.002213 0.000666 

192 0.007104 0.000983 

256 0.016507 0.001317 

0.018 

0.016 - 
4 

0.014  

0.012 - --- 

7H 0.01 
CPU 

0.008 

0.006 _~ - 	 ®GPU 

0.004 __ 	- 

0.002 - 

0 

64 	114 164 	214 	264 

Input length 

Figure 3.3: Comparison of parallel and sequential implementation of suffix array 

25 



Chapter 4: Application of Suffix Array in Bioinformatics 

Suffix array has mainly used for indexing purpose and it has many applications in field of 

bioinformatics. Repeats finding and sequence matching problems are always deemed as one of 

the prerequisites for genome sequencing and analysis. 

4.1 Exact Repeats 

The problem can be defined as [1]:  given an input DNA sequence S as a string of length n over 

alphabet E= {A,C,G,T}, S[i] is the i h̀  character of S, i E[l,n], we want to find exact repeats 

subsequence of length w. For i<j, let S[i,j] denote the substring of S between the position of i and 

j. When we refer to a string with fixed length w, Si can be used as a shorthand for S[i,j], for 

j j+w-1. 

A pair of substrings R=(S;,Sj) is an exact repeat if and only if i#j and each corresponding 

characters of Si and Sj are equal. 
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Figure 4.1: Finding Exact Repeats with length w=4 [1] 



There are many algorithms to compute exact repeats, for example, the most simple and natural 

idea is exhaustive enumeration, which is easy for implementation and parallelization, but the 

O(n2) time complexity is prohibitive when we thinking the problem size at genome level, so we 

only mention the feasible algorithms in time complexity. Hashing method is the standard 

approach to do exact repeat which will work at O(n) time complexity, when appropriate hashing 

function is selected, but the variable length of repeat sequence put a severe restriction on hashing 

techniques [1]. 

4.1.1 Sequential implementation of exact repeats finding 
We have proposed an algorithm based on suffix array to find out the exact repeats with arbitrary 

length, which provide a much simple way to solve the DNA sequence repeats problem. The 

figure 4.2 shows the flow diagram of our sequential implementation. In addition to suffix array 

an extra space O(n) have been used as auxiliaryArray to provide the ease of exact repeats finding 

and algorithm 4.1 shows the execution steps. 
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Sequential code 

Load 
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Figure 4.2: Flow diagram of sequential implementation of exact repeats finding 
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Algorithm 4.1: Sequential exact repeats finding 

1) Call algorithm 3.1: Sequential implementation of suffix array (refer page no. 21) 
2) Call algorithm 4.2: Loading of auxiliaryArray (refer page no. 28) 
3) for i := 0 to (MAXLENGTH - 1) 

if(auxiliaryArray[i + 1] >= w) then 
flag := 1; 
Print: suffixIndex[i], groupindex 

else 
if(flag 	1) 

Print: suffixlndex[i], groupindex; 
flag := 0; 
groupindex+-t; 

end if 
end if 

Algorithm 4.2: Loading of auxiliaryArray 

Initialize i := 0; 
for j:=0 to (MAXLENGTH - 2) 
str 1 := stringBaseAddr + suffixlndex[j]; 
str_2 := stringBaseAddr + suffixlndex[j + 1]; 
while ((str 1[i] == str_2[i]) && strl [i] && str_2[i]) 

auxiliaryArray [j + 1] := i; 

4.1.2 Parallel implementation of exact repeats finding 
We proposed an algorithm based on parallel suffix array to find out the exact repeats with 

arbitrary length, which provide a much simple way to solve the DNA sequence repeats problem 

with higher efficiency than sequential approach for this type of problems. Figure 4.3 shows the 

flow diagram of our fast exact repeats finding on CPU and GPU. In addition to suffix array an 

extra space O(n) have been used as auxiliaryArray to provide the ease of exact repeats finding. 

Algorithm 4.3 shows the execution steps in details. 
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Figure 4.3: Flow diagram of parallel implementation of exact repeats finding 
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Algorithm 4.3: Parallel implementation for exact repeats finding 

1) Call algorithm 3.2: Parallel implementation of suffix array (refer page no. 24) 
2) Call algorithm 4.4: Loading of auxiliaryArray using cuda (refer page no. 30) 
3) for i := 0 to (MAXLENGTI-I — 1) 

if(auxiliaryArray[i + 1] >= w) then 
flag := 1; 
Print: suffixIndex[i], groupIndex 

else 
if(flag == 1) 

Print: suffixIndex[i], groupIndex; 
flag := 0; 
groupindex++; 

end if 
end if 

Algorithm 4.4: Loading of auxiliaryArray using cuda 

//cuda steps for loading of auxiliaryArray 

Initialize threadld := blockldx.x * 512 + threadldx.x, i := 0; 
if (threadId + I > MAXLENGTH) then 

return; 
end if 
str l := stringBaseAddr + suffixlndex[threadId]; 
str 2 := stringBaseAddr + suffixlndex[threadld + 1]; 
while ((str_1 [i] _= str 2[i]) && str_1 [i] && str_2[i]) 
i++; 

auxiliaryArray [threadld + 1] := i; 



4.1.3 Performance comparison of sequential and parallel exact repeats finding 
The linear and parallel programs were executed in a CUDA based machine having Intel Xeon 
CPU (2.5 GHz) and NVIDIA Quadro FX 3700. The figure 4.4 shows the performance 
comparison of parallel and sequential implementation and it's very clear that GPU 
implementation giving the better performance than CPU implementation. 

Table 4.1: Timing comparison for exact repeats finding 

Input Length Sequential 

Processing Time ( seconds) 

Parallel 

Processing Time ( seconds) 

Speed Up 

512 0.130170 0.219764 0.592317 

1024 1.021849 1.309891 0.780102 

2048 8.098172 5.971737 1.356083 

4096 64.530180 31.382746 2.056231 

8192 483.522656 202.490094 2.387883 

Figure 4.4: Comparison of parallel and sequential implementation of exact repeats fmding 
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4.2 Tandem Repeats 
A tandem repeat consists of two or more contiguous copies of a nucleotide pattern [4]. An 

example would be: A-T-T-C-G-A-T-T-C-G-A-T-T-C-G in which the sequence A-T-T-C-G is 

repeated three times [6]. In a tandem repeat, four features need to be analyzed: the pattern size, 

the pattern structure, the number of copies, and the positions of the patterns. According to the 

pattern size, repeats can be classified into three types: satellites, minisatellites, and 

microsatellites [4]. 
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Figure 4.5: Illustration of satellite bands [7] 

By using buoyant density gradient centrifugation, DNA fragments with significantly different 

base compositions may be separated, and then monitored by the absorption spectra of ultraviolet 

light. The main band represents the bulk DNA, and the "satellite" bands originate from tandem 

repeats. 

Satellites 
The size of a satellite DNA ranges from 100 kb to over 1 Mb. In humans, a well known example 

is the alphoid DNA located at the centromere of all chromosomes. Its repeat unit is 171 bp and 

the repetitive region accounts for 3-5% of the DNA in each chromosome. Other satellites have a 

shorter repeat unit. Most satellites in humans or in other organisms are located at the centromere 

[7]. Figure 4.6 shows the a partial human STR profile obtained using Applied Biosystems 

Identifiler kit. 
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Figure 4.6: A partial human STR profile obtained using Applied Biosystems Identifiler kit [6] 

Minisatellites 

The size of a minisatellite ranges from 1 kb to 20 kb. One type of minisatellites is called variable 

number of tandem repeats (VNTR). Its repeat unit ranges from 9 bp to 80 bp. They are located 

in non-coding regions. The number of repeats for a given minisatellite may differ between 

individuals. This feature is the basis of DNA fingerprinting. Another type of minisatellites is the 

telomere. In a human germ cell, the size of a telomere is about 15 kb. In an aging somatic cell, 

the telomere is shorter. The telomere contains tandemly repeated sequence GGGTTA [7]. 

Microsatellites 

Microsatellites are also known as short tandem repeats (STR), because a repeat unit consists of 

only 1 to 6 bp and the whole repetitive region spans less than 150 bp. Similar to minisatellites, 

the number of repeats for a given microsatellite may differ between individuals. Therefore, 

microsatellites can also be used for DNA fingerprinting [7]. 

One of the most interesting features of prokaryotic and eukaryotic genomes (both coding and 

non-coding regions) is the presence of relatively short perfect tandemly repeated DNA 

sequences. These repeated DNA sequences are distributed almost at random throughout the 

genome. Repeats containing DNA sequences have attracted much attention from researchers 

since (i) they play important roles in the formation of hairpin structures that may provide some 

structural or replication mechanism, (ii) they are often associated with neurological disorders and 
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(iii) they are used as DNA markers, such as microsatellites or Simple Sequence Repeats (SSR), 

Inter Simple Sequence Repeats (ISSR) and Directed Amplification of Minisatellite DNA 

(DAMD-PCR) in Marker Assisted Selection (MAS), positional cloning, identification of 

quantitative and qualitative loci and mapping for breeding and evolutionary studies. Recent 

evidence also suggests that some Variable Number of Tandem Repeats (VNTRs) and SSR 

sequences play significant roles in the regulation of transcription, and that some may also 

influence the translational efficiency or stability of mRNA, or modifies the activity of proteins 

by altering their structure [9]. 

Figure 4.7: Schematic of a Variable Number of Tandem Repeats in 4 alleles [6] 

Expressed Sequence Tags (ESTs) are single-pass DNA sequences, usually about 300-500 

nucleotides in length, obtained from mRNA (cDNA) representing genes expressed in a given 

tissue and/or at a given development stage A typical EST usually contains only a portion of the 

coding region (either translated or untranslated, or both) of the original gene transcript. One of 

the useful applications of ESTs is in the study of the gene expression pattern in a given organ, 

tissue or development stage in response to a particular treatment. The composition of a tissue 

specific EST population, therefore, offers an overall overview of the expressed genes and, 

consequently, is a novel tool in gene discovery and in understanding the biochemical pathways 

involved in physiological responses. ESTs have also been mined for Single Nucleotide 

Polymorphisms (SNP) and SSR. Microsatellites or SSRs are stretches of DNA consisting of 

exact simple tandemly repeated short motifs of 1-6 base pairs in length. SSRs are one of the best 

DNA markers because they are highly polymorphic, inherited in a co-dominant fashion, and 

highly abundant, being dispersed evenly throughout the genome. They can serve as sequence-

tagged sites for anchoring in genetic and physical maps. The standard procedure for developing 
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SSRs involves the construction of a small-insert genomic library, its subsequent hybridization 

with tandemly repeated oligonucleotides, and the sequencing of candidate clones. Unfortunately, 

this process is time consuming and labourintensive [9]. 

4.2.1 Sequential implementation of tandem repeats finding 

We have proposed an algorithm based on suffix array to find out the exact repeats with arbitrary 

length, which provide a much simple way to solve the DNA sequence repeats problem. The 

figure 4.8 shows the flow diagram of our sequential implementation. The algorithm 4.5 shows 

the actual implementation in uniprocessor. 
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Figure 4.8: Flow diagram of sequential implementation of tandem repeats finding 
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Algorithm 4.5: Sequential implementation for tandem repeats finding 

1) Call algorithm 3.1: Sequential implementation of suffix array (refer page no. 21) 

2) Call algorithm 4.2: Loading of auxiliaryArray (refer page no. 28) 

3) Call algorithm 4.6: Function for tandem repeats search (refer page no. 36) 

Algorithm 4.6: Function for tandem repeats search 

Step 1: Top down pass 

for i := 0 to (MAXLENGTH -- 2) 
if(flag == 0) then 

temp := auxiliaryArray[i + 1]; 
end if 

if(suffixIndex[i + 11 == (suffixlndex[i] - temp))then 
Print: suffixlndex[i]; 
flag := 1; 
Goto step!; 

end if 
if(flag == l)then 

Print: suffixIndex[i]; 
flag := 0; 

end if 

Step 2: Bottom up pass 

Initialize flag := 0; 
for i := MAXLENGTH to I 

if(flag = 0)then 
temp := auxiliaryArray[i]; 

end if 
if(suffixIndex[i - 1] _= (suffixlndex[i]-temp)) then 

Print: suffixlndex[i]); 
flag := 1; 
Goto step 2; 

end if 
if(flag= =1) 

Printf: suffixlndex[i]; 
flag :=0; 

end if 
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4.2.2 Parallel implementation of tandem repeats finding 
We proposed an algorithm based on parallel suffix array to find the exact repeats with arbitrary 

length, which provide a much simple way to solve the DNA sequence tandem repeats problem 

with higher efficiency than sequential approach. In this algorithm tandem repeats group occurs 

either in ascending order or descending order so we have used two passes for that (i) Top down 

pass, if tandem repeated sequence occurs in ascending order (ii) Bottom up pass, if tandem 

repeated sequence occurs in descending order and before execution of above passes, executed the 

parallel version code of suffix array and parallel loading of auxiliary array. Figure 4.9 shows the 

flow diagram of fast tandem repeats finding and algorithm 4.7 shows the execution steps in 

details. 
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Figure 4.9: Flow diagram of parallel implementation of tandem repeats finding 

Algorithm 4.7: Parallel implementation for tandem repeats finding 

1). Call algorithm 3.2: Parallel implementation of suffix array (refer page no. 24) 
2) Call algorithm 4.4: Loading of auxiliaryArray using cuda (refer page no. 30) 
3) Call algorithm 4.6: Function for tandem repeats search  (refer page no. 36) 



4.2.3 Performance comparison of sequential and parallel tandem repeats fording 
The linear and parallel programs were executed in a CUDA based machine having Intel Xeon 

CPU (2.5 GHz) and NVIDIA Quadro FX 3700. The figure 4.10 shows the performance 

comparison of parallel and sequential implementation and it's very clear that GPU 

implementation giving the better performance than CPU implementation. 
Table 4.2: Timing comparison for tandem repeats finding 

Input Length Sequential 

Processing Time ( seconds) 

Parallel 

Processing Time ( seconds) 

Speed Up 

512 0.129631 0.220139 0.588859 

1024 1.020677 1.310667 0.778746 

2048 8.097908 5.969227 1.356609 

4096 64.629652 31.351945 2.061424 

8192 483.478469 202.494625 2.387611 

Figure 4.10: Comparison of parallel and sequential implementation of tandem repeats finding 
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4.3 Exact String Matching 
String matching has a long history in computational biology with roots in finding similar proteins 

and gene sequences in a database of known sequences. 

Genetic information is passed from parent to offspring in the biological macromolecule DNA, 

and is encoded in the individual's sequence of 4 different nucleotides. The full sequence of 

nucleotides for an organism, its genome, varies in length from hundreds of thousands of 

nucleotides for genetically simple organisms, such as bacteria, to billions of nucleotides for 

genetically complex organisms, such as humans. Genes are the regions of the genome that 

encode for proteins, which are the functionally active molecules in an organism. Gene sequences 

specify a protein's sequence of component molecules called amino acids. Each triple of 

nucleotides in the DNA of a gene specifies one of the 20 possible standard amino acids. The 

chain of hundreds or thousands of amino acids specified by the gene folds into a very complex 

configuration, and the physical shape of a folded protein determines its biological function. 

Pairs of similar sequences are biologically related under the commonly held assumption that two 

homologous (highly similar) protein sequences will fold into similar configurations, and thus 

have a similar biological function. Given a database of sequences with known function and a 

novel sequence with unknown function, one can use a String matching algorithm to discover 

homologous sequences, and thereby infer the function of the novel sequence. A String matching 

algorithm reports the biological similarity between a pair of sequences, by modelling potential 

mutations between the sequences. 

Early work on detecting homologous sequences focused on creating optimal algorithms that 

would exactly compute and report the similarity score between pairs of sequences. However, 

improvements in high throughput sequencing technology led to an explosion in number of 

known sequences, and motivated research for more efficient methods for detecting similar 

sequences [8]. This inspired the development of heuristics that find highly similar alignments 

very quickly at the cost of potentially not reporting lower similarity sequences. 

Computational biologists entered into the era of comparative genomics, in which the entire 

genomes of organisms are compared. In comparative genomics, the relatively simple techniques 



used for scanning a single short query sequence against a database of known sequences proved 

too inefficient yet again, and required the use of even faster algorithms, using sophisticated data 

structures such as suffix array. 

The earliest algorithms, such as the Needleman-Wunsch global alignment and Smith-Waterman 

local alignment algorithms from the 70s and early 80s, were developed to detect similarity 

between a pair of DNA or protein sequences. These early algorithms use dynamic programming 

to compute optimal alignments between a pair of sequences in time proportional to the product 

of their lengths. 

In the 80s and 90s, the number of DNA and protein sequences grew exponentially and it quickly 

became infeasible to compute an optimal alignment between a query sequence and every 

sequence in the database of known sequences. As a result, researchers developed heuristic 

techniques such as FASTA and BLAST to more quickly discover highly similar alignments, 

while not reporting more distant alignments. Researchers found this to be an acceptable tradeoff 

between sensitivity and speed, since in most applications only the highly similar alignments are 

relevant. Consequently, BLAST became the de facto bioinformatics tool of choice for finding 

homologous gene or protein sequences. 

These techniques use the key insight that two highly similar sequences must share common 

substrings, although possibly separated by relatively short sequences of mutated residues. They 

use this insight by pre-processing the database to construct a catalog of the short fixed-length 

substrings found in the database sequences. After this pre-processing, each query string is 

processed by first finding exact matches between substrings of the query string and the catalog of 

database substrings. Using a hash table or similar technique, this executes in time proportional to 

the number of occurrence of each short substring in the database. These short exact matches then 

act to seed longer, possibly inexact alignments, by connecting together overlapping exact 

matches, and using Smith-Waterman local alignments to align regions with mismatching 

characters. The time to pre-process the database may be considerable, but is amortized by 

constructing it once for many query searches, after which the seed-and-extend style algorithms 

run in time proportional to the length of the query string and relatively independent of the 

number of strings in the database. 



Unlike protein searches, comparative genomics commonly performs comparisons between the 

much longer whole genome sequences of related organisms. As such, the two genomes will 

typically share many very long substrings. Consequently, BLAST and related tools which seed 

their alignments using short fixed length substrings will process many seeds from these exact 

matches, and thus run relatively inefficiently. This motivated research in the late 90s for new 

alignment algorithms which could be used for aligning sequences of any length and potentially 

containing very long exact matches. 

A suffix tree [15] can be naively constructed in O(n2) time and O(n) space by iteratively inserting 

all n suffixes, but can be constructing in O(n) time and O(n) space for a string over a fixed 

alphabet, such as for DNA or amino acids, by more carefully exploiting the relationships 

between suffixes. The more sophisticated algorithms make extensive use of additional pointers 
called suffix links which connect nodes along the path to the ith  suffix to same relative position 
on the i+lth  suffix. 

rn 

rM 

Figure 4.11: The time spent in each phase of the suffix tree matching program on the CPU [8] 
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Figure 4.12: The time spent in each phase of the suffix tree matching program on GPU [8] 

As shown in figure 4.11 and figure 4.12 that GPU implementation of suffix tree gives the better 

query processing time over CPU and as we already discusses the suffix array can be alternatively 
used in place suffix tree so its GPU implementation will give the better performance over its 

CPU implementation. Even with the highly efficient algorithms and data structures invented, 

modern computational biologist still rely on computational grids consisting of many computers 

executing algorithms in parallel to increase the throughput of their searches. Our work acts to 

replace an entire computational grid of computers used for string matching with a single highly 

parallel commodity multiprocessing board, in the form of a high performance Graphics 
Processing Unit (GPU) programmed in the Compute Unified Device Architecture (CUDA) 

framework [5]. 

4.3.1 Sequential implementation of exact string matching 
We have proposed an algorithm based on suffix array to find out the exact repeats with arbitrary 

length, which provide a much simple way to solve the sequence matching problem. The figure 

4.13 shows the flow diagram of our sequential implementation and algorithm 4.8 has been used 

for implementation. 

Algorithm 4.8: Sequential implementation for exact string matching 

1) Call algorithm 3.1: Sequential implementation of suffix array (refer page no. 21) 

2) Call algorithm 4.9: Function for exact string matching (refer page no. 43) 
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Figure 4.13: Flow diagram of sequential implementation of exact string matching 

Algorithm 4.9: Function for exact string matching 

Initialize end := MAXLENGTI-1— 1, mid := (beg + end)/2; 
while(beg <= end && my_strcmp(stringBaseAddr+suffixlndex[mid],pattern,pattern_len)! = 1) 

if(strcmp(pattern,str + suffixlndex[mid]) < 0) then 
end := mid - 1; 

else 
beg := mid + 1 , mid := (beg + end)/2; 

end if 
if(my_strcmp(pattern,str+suffixlndex[.mid], pattern_len) _= 1) 
then 

up := down := mid; 
while((auxiliaryArray[up] >= pattern_len) && (up>0)) 

up--; 
Print: suffixlndex[up] 

while((auxiliaryArray[down ++- 1] >= pattern_len) 
&& ((down + 1) <= MAXLENGTH)) 

down++; 
Print: suffixlndex[dowl]; 

end if 
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4.3.2 Parallel implementation of exact string matching 
We proposed an algorithm based on parallel suffix array to find out the exact string matching 

with arbitrary length, which provide a much simple way to solve the sequence search problem 

with higher efficiency than sequential approach. Figure 4.14 shows the flow diagram of our fast 

exact string matching on CPU and GPU. 
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Figure 4.14: Flow diagram of parallel implementation of exact string matching 

Algorithm 4.10: Parallel implementation for exact string matching 

1) Call algorithm 3.2: Parallel implementation of suffix array (refer page no. 24) 

2) Call algorithm 4.9: Function for exact string matching (refer page no. 43) 
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4.3.3 Performance comparison of sequential and parallel exact string matching 
The sequential and parallel programs were executed in a CUDA based machine having Intel 
Xeon CPU (2.5 GHz) and NVIDIA Quadro FX 3700. The figure 4.15 shows the performance 

comparison of parallel and sequential implementation and it's very clear that GPU 
implementation giving the better performance than CPU implementation. 

Table 4.3: Timing comparison for exact string matching 

Input Length Sequential Processing Time 

( seconds) 

Parallel Processing Time 

( seconds) 

Speed Up 

512 0.029631 0.044035 0.672889 

1024 1.029656 0.983634 1.046787 

2048 4.098279 2.363038 1.734326 

4096 52.654532 24.529133 2.146612 

8192 287.783169 89.065052 3.231157 

Figure 4.15: Comparison of parallel and sequential implementation of exact string matching 
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Chapter 5: Conclusion and future works 

As we have seen that our parallel algorithm giving better performance than CPU version code for 

large size of input data elements. For small size input data the GPU implementation is slower 

than CPU implementation. 

The major bottle neck for performance in the Suffix Array algorithm was the process of sorting 

the intermediate data. The performance improvement of Suffix Array on CUDA was majorly due 

to the possibility of parallel sorting which took bulk of the runtime in the sequential 

implementation. The running time of the algorithm can be improved if the sorting part of the 

algorithm is implemented using O(log n ) techniques of parallel sorting. However this would 

require that such a technique is implemented without recursion. 

Future programming model may be the hybrid of current serial CPU and data parallel GPU 

execution paradigm for high performance computing so we will try to employ these codes as the 

fundamental functions to solve more complex bioinformatics and text processing applications to 

meet the high computing power requirements. 
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