
PARALLELIZING SUFFIX ARRAY ON CUD ► FOR
BIOINFORMATICS APPLICATIONS

A DISSERTATION
Submitted in partial fulfillment of the

requirements for the award of the degree
of

MASTER OF TECHNOLOGY
in

COMPUTER SCIENCE AND ENGINEERING

By

LAX MI KANT SAHU

DEPARTMENT OF ELECTRONICS AND COMPUTER ENGINEERING
INDIAN INSTITUTE OF TECHNOLOGY ROORKEE

ROORKEE -247 667 (INDIA)
JUNE, 2010

Candidate Declaration

I hereby declare that the work being presented in the dissertation report titled "Parallelizing
Suffix Array on CUDA for Bioinformatics Applications" in partial fulfillment of the

requirement for the award of the degree of Master of Technology in Computer Science and

Engineering, submitted in the Department of Electronics and Computer Engineering, Indian

Institute of Technology Roorkee, is an authentic record of my own work carried out under the

guidance of Dr Rajdeep Niyogi, in the Department of Electronics and Computer Engineering,

Indian Institute of Technology Roorkee. I have not submitted the matter embodied in this

dissertation report for the award of any other degree.

Dated: 02-LOGE 10

Place: IIT Roorkee. 	 Laxmi iThiu

Certificate

This is to certify that above statements made by the candidate are correct to the best of my

knowledge and belief.

Dated: O 2/ o 1 t 0

Place: IIT Roorkee

I11-

Dr Rajdeep Niyogi

Assistant Professor,

Department of Electronics

And Computer Engineering

1

Acknowledgements

First of all and foremost, I would like to express my deep sense of gratitude and indebtedness to

my. guide Dr Rajdeep Niyogi, for his invaluable guidance and constant encouragement

throughout the dissertation. His zeal for getting the best out of his students helped me to perform

above my par.

I am also grateful to my ex-guide Dr Ankush Mittal, for his guidance and suggestions in my

dissertation.

I would want to express thanks to my colleagues Anant Bhushan, Sanketh D and Binay Kumar

Pandey, for their "taken for granted" help with trivial matters, without which I am sure my work

might have hit a dead end.

I would want to express thanks to Institute Computer Centre Head and their staff for providing

me high performance computing facility.

Laxmi Kant Sahu

2

Abstract

Suffix trees have been applied to fundamental string problems such as finding the longest

repeated substring, finding all squares or repetitions in a string, computing substring statistics,

approximate string matching and string comparison. They have also been used to address other

types of problems such as text compression, compressing assembly code, inverted indices and

analyzing genetic sequences.

Suffix array is a simpler and compact alternative to the suffix tree; suffix sorting is the

fundamental building block in suffix array construction process. Suffix array widely used in field

of bioinformatics and text processing. The repeat structure of genomic DNA is considered an

essential mechanism for evolution and other fundamental biological functions. Any kind of

repeats finding problems are always deemed as one of the prerequisites for genome sequencing

and analysis, and among these problems exact repeat finding is the first step for most other

repeats finding problems.

This work depicts the parallel implementation of suffix array and then their applications in

bioinformatics such as exact repeats finding, tandem repeats finding, exact string matching etc.

the parallel implementation of suffix array algorithm on a GPU using the Compute Unified

Device Architecture (CUDA) platform, both from NVIDIA Corporation. CUDA is a parallel

computing architecture. It is a middle-ware. compute engine which exposes the power of

NVIDIA Graphics Processing Units to software developers through industry standard

programming language. The thread level parallel code block provides an efficient primitive for

building a high performance suffix array construction program and many other applications.

The parallel version runs much faster than any serial implementation on CPU for the large size of

input data elements. The parallel algorithm can also be easily adapted for similar type of

problems with little modification.

Table of Contents

CandidateDeclaration ... 	1
Acknowledgements... 2
Abstract... 3

Listof Figures 6

Listof Tables 	.. 	7
Chapter1: 	Introduction ... 8

1 .1 	Suffix Array ... 	8
1.2 Repeats finding and exact string matching ... 8
1 .3 	Multicore Architecture .. 9
1.4 	Problem 	Statement .. 9
1 .5 	Organization of Report .. 9

Chapter2: 	CUDA 	... 11

2.1 General Programming on GPU (GPGPU):.. 11

2.2 General Architecture of GPUs .. 12
2.3 	CUDA .. 13
2.4 Programming constructs and Thread Hierarchy .. 16

2.5 	Memory Hierarchy .. 18
Chapter3: 	Suffix Array .. 20

3.1 	Sequential implementation of suffix array 21
3.2 Parallel implementation of suffix array ... 22
3.3 Performance comparison of parallel and sequential implementations 25

Chapter 4: Application of Suffix Array in Bioinformatics ... 26
4.1 	Exact Repeats 26

4.1.1 Sequential implementation of exact repeats finding ... 27
4.1.2 Parallel implementation of exact repeats finding ... 28
4.1.3 Performance comparison of sequential and parallel exact repeats finding 31

4.2 Tandem Repeats 32
4.2.1 Sequential implementation of tandem repeats finding ... 35
4.2.2 Parallel implementation of tandem repeats finding .. 37

4.2.3 Performance comparison of sequential and parallel tandem repeats finding 38
4.3 Exact String Matching ... 39

4.3.1 Sequential implementation of exact string matching ... 42
4.3.2 Parallel implementation of exact string matching .. 44
4.3.3 Performance comparison of sequential and parallel exact string matching 45

Chapter 5: Conclusion and future works .. 46
References... 47

F

List of Figures

Figure 2.1: Floating point operations for the CPU and the GPU .. 12

Figure 2.2; General architecture difference between CPU and GPU ... 13

Figure 2.3: Common CUDA program flow .. 15

Figure 2.4: Thread Hierarchy in CUDA ... 17

Figure 2.5: How threads access global, shared and local memory ... 19

Figure 3.1: Flow diagram of sequential implementation of suffix array 22

Figure 3.2: Flow diagram of parallel implementation of suffix array .. 23

Figure 3.3: Comparison of parallel and sequential implementation of suffix array 25

Figure 4.1: Finding Exact Repeats with length w=4 .. 26

Figure 4.2: Flow diagram of sequential implementation of exact repeats finding 27

Figure 4.3: Flow diagram of parallel implementation of exact repeats finding 29

Figure 4.4: Comparison of parallel and sequential implementation of exact repeats finding 31

Figure 4.5: Illustration of satellite bands .. 32

Figure 4.6: A partial human STR profile obtained using Applied Biosystems Identifiler kit...... 33

Figure 4.7: Schematic of a Variable Number of Tandem Repeats in 4 alleles 34

Figure 4.8: Flow diagram of sequential implementation of tandem repeats finding 35

Figure 4.9: Flow diagram of parallel implementation of tandem repeats finding 37

Figure 4.10: Comparison of parallel and sequential implementation of tandem repeats finding. 38

Figure 4.11: The time spent in each phase of the suffix tree matching program on the CPU 41

Figure 4.12: The time spent in each phase of the suffix tree matching program on GPU............ 42

Figure 4.13: Flow diagram of sequential implementation of exact string matching 43

Figure 4.14: Flow diagram of parallel implementation of exact string matching 44

Figure 4.15: Comparison of parallel and sequential implementation of exact string matching ... 45

0

List of Tables

Table 3.1: Example of Suffix Array ... 20

Table 4.1: Timing comparison for exact repeats finding .. 31

Table 4.2: Timing comparison for tandem repeats finding ... 38

Table 4.3: Timing comparison for exact string matching ... 45

7

Chapter 1: Introduction

1.1 Suffix Array
Suffix trees and suffix arrays are widely used and largely interchangeable index structures on

strings and sequences. Practitioners prefer suffix arrays due to their simplicity and space

efficiency while theoreticians use suffix trees due to linear-time construction algorithms and

more explicit structure [10]. The suffix array can be used to provide all the facility that can be

provided by suffix tree such as all kind of strings operations. The fastest direct suffix array

construction algorithms that do not use suffix trees require O(JNjlogJNJ) time, where N is a main

string [11]. The main advantage of suffix arrays over suffix trees is that, in practice, they use

three to five times less space. From a complexity standpoint, suffix arrays permit on-line string

searches of the type, "Is W a substring of N?" can be done in time O(JWIlogINj). Suffix arrays

have been proved to be better in practice than suffix trees for many applications [14].

1.2 Repeats finding and exact string matching
Suffix trees and suffix genomes contain not only genes but also many repetitive DNA sequences,

the significance of internal sequence repeats is quite clear in both eukaryote and procaryote. In
procaryote, short repeats may act as regulators, virus binding sites, or enzyme binding sites etc.

and long repeats seem to have other functions, such as evolution. In eukaryote, it is particularly

true that these repetitive elements make up the majority of DNA in most eukaryotes, for

example, 50% of the human genome has been identified as repetitive, these repeats drive genome

evolution in diverse ways and should be masked off prior to performing homology searches

which is not efficient and using the parallel implementation the time can be reduced [1].

In a tandem repeat, four features need to be analyzed: the pattern size, the pattern structure, the

number of copies, and the positions of the patterns. According to the pattern size, repeats can be

classified into three types: satellites, minisatellites, and microsatellites [4]. Our work makes an

attempt to replace an entire computational grid of computers used for repeats findings and exact

string matching with a single highly parallel commodity multiprocessing board, in the form of a

implementation by using of suffix array and their performance comparison, and then discusses

exact string matching and its sequential and faster implementation by using of suffix array and

their performance comparison.

Chapter 5 concludes the dissertation report and gives suggestion for future work.

Chapter 2: CUDA

2.1 General Programming on GPU (GPGPU)
The GPU [5] refers to the commodity off-the-shelf 3D Graphics Processing Units, which are

specifically designed to be extremely fast at processing large graphics data sets for rendering

tasks. GPU designers traditionally have expressed its image-synthesis process as a hardware

pipeline of specialized stages which necessarily involve Vector/Matrix Operations. The need for

efficient hardware to perform floating-point vector arithmetic for millions of vertices each

second has helped drive the GPU parallel-computing revolution.

GPUs have evolved from a hard-wired implementation of the graphics pipeline to a more

programmable one. Fixed-function units for transforming vertices and texturing pixels have been

replaced by programmable shaders. These shaders provide units that the programmer can use for

performing matrix-vector multiplication, exponentiation, and square root calculations etc. This

however necessitates that there should be some means by which general purpose software could

be translated into GPU specific primitives.

General purpose computing on the GPU is an active area of research. GPUs are already

widespread. The performance of GPUs is improving at a rate faster than that of CPUs. The

capabilities of the GPU have increased dramatically in the past few years and the current

generation of GPUs has higher floating point performance than the most powerful (multicore)

CPUs [5]. The GPU contains hundreds of cores that work great for parallel implementation. The

programming is done in SIMD style where same code is worked on different data locations.

Until recently a graphics API was needed to code on GPUs which made coding for non graphics

oriented calculations tough. Trying to work around this limitation Nvidia released CUDA which

allows GPUs to be programmed using a variation of C. This enables a low learning curve and
makes programming easier.

11

GT200
1000 ..._

MVIUTA CPU

— —kiteI CPU
	

080
	G92

750
	

Ultra
GSO

500
G71

I.
G70 	 3.2 GHz._.. 250 	 N 40 -.. 	 ,,. _

3.0 GHz 	gp own
NV30 	 , : 	 Core2 Duo

	

Jan Jun 	Apr 	Jun 	Mar Nov May 	Jun

	

2003 	2004 	2005 	2006 	2007 	2008

Figure 2.1: Floating point operations for the CPU and the GPU [5]

The figure 2.1 shows the tremendous computational capability of the GPU. GTX 280 a GT 200

family GPU delivers a peak performance of 933 GFLOPS/sec.

2.2 General Architecture of GPUs
Whereas CPUs are optimized for low latency, GPUs are optimized for high throughput. Thus

applications that do not have requirement for low latency can be ported to GPUs to take

advantage of their superior performance. The programmable GPU has evolved into a highly

parallel, multi-threaded, many-core processor with tremendous computational horsepower and

very high memory bandwidth. There is a widening gap between the raw performance capability

of CPUs and GPUs, which is because the GPU is specialized for compute-intensive, highly

parallel computation, exactly what graphics rendering is about, and therefore designed such that

more transistors are devoted to data processing rather than data caching and flow control. The

general architectural difference between CPUs and GPUs is schematically illustrated below in

figure 2.2

12

ALU. ALU
F t F'f 	F

~74fi~!t

,,;i,y~jf,

GPU

Figure 2.2: General architecture difference between CPU and GPU [5]

More specifically, the GPU is especially well-suited to address problems that can be expressed as

data-parallel computations; the same program is executed on many data elements in parallel,

with high ratio of arithmetic operations to memory operations. Because the same program is

executed for each data element, there is a lower requirement for sophisticated flow control, and

because it is executed on many data elements and has high arithmetic intensity, the memory

access latency can be hidden with calculations instead of big data caches. The CUDA

programming model is very well suited to expose the parallel capabilities of GPUs.

2.3 CUDA
CUDA (Compute Unified Device Architecture) is a parallel programming model and software

environment developed by Nvidia [5]. It was designed as a middle-ware to allow application

software that transparently scales its parallelism on GPU. The core .concepts involved with

CUDA are a hierarchy of thread groups, shared memories, and barrier synchronization. The

thread hierarchy allows user to divide his task in a similar hierarchy, where coarse sub-problems

can be solved independently and finer pieces that can be solved cooperatively in parallel using

shared memory. CUDA achieves all this using a minimal extension to C thus maintaining a low

learning curve for programmers already familiar with the standard programming language.

To manage the numerous threads, the multiprocessor employs a single-instruction, multiple-

thread (SIMT) architecture. This allows each thread to execute independent of the other threads

on one of eight scalar processors. Instructions are issued to groups of 32 threads called warps,

13

which execute one common instruction at a time. If the instructions assigned to threads within a

warp differ due to conditional branching, the warp executes each path sequentially while

disabling threads that are not on the path. When all branch paths are complete, the threads join

back to the common execution path. It is for this reason that code within conditional statements

such as if/else should be limited.

Given the above information, it is now relevant to note that the GPUs of concern for this work

have the following specifications:

> The maximum number of threads per block is 512

> The maximum size of each dimension of a grid of thread blocks is 65535

The maximum number of active blocks per multiprocessor is 8

The maximum number of active threads per multiprocessor is 1024

The maximum number of active warps per multiprocessor is 32

CUDA also provides limited synchronization between threads of the same block via the

syncthreads function call. Upon hitting a syncthread, each thread will wait until all remaining

threads reach the call. Syncthreads is primarily used to coordinate communication between the

threads within a block to prevent read/write data hazards with shared or global memory. The

only way to synchronize across thread blocks is by breaking the computation into multiple

kernels, as one kernel must complete before another can launch.

Most CUDA applications follow a set program flow. The host first loads data from a source such

as a text file and stores it into a data structure in host memory. The host then allocates device

memory for the data and copies the data to the allocated space. Kernels are then launched to

process the data and produce results. These results are then copied back to the host for display or

further processing.

14

Start

Application.

Read data and
al locate
memory

Copy data to
device

Launch kernel
to process data

Copy results
back to host

Process result
and display

output

Figure 2.3: Common CUDA program flow

15

high performance Graphics Processing Unit (GPU) programmed in the Compute Unified Device

Architecture (CUDA) framework [8].

1.3 Multicore Architecture
The Graphics Processing Units (GPUs) model themselves as multi-core processing and expect

programs to take advantage of them as raw parallel number-crunchers. The multicore processors

allow program to leverage their computing power by various means like independent threads per

core, or allow user to manipulate efficient data flow between cores, or provide a layer of

software which manages the scalability of the cores. With the future micro-processor trends

likely to increase number of cores as the only means of their increasing computing power, it

becomes necessary to ensure that important algorithms be parallelized to run on next generation

of micro-processors. Thus multi-core processors provide the perfect means of increasing the

runtimes of our sequential algorithm

1.4 Problem Statement
The performance improvement of Suffix Array on CUDA [5] was majorly due to the possibility

of parallel sorting which took bulk of the runtime in the sequential implementation. The overall

running time of the can be improved if the suffix sorting part of the algorithm is implemented

using techniques of parallel sorting. Then these results can be used to solve lots of problems in

the field of bioinformatics such as finding the exact repeats finding, all kind of tandem repeats in

genome sequence and exact sequence matching.

1.5 Organization of Report
Organization of this dissertation report is as follows:

Chapter 2 covers a detailed explanation of the architecture of CUDA programming environment,

which have been used in this dissertation.

Chapter 3 starts with the explanation of concepts of suffix array. The chapter then discusses the

sequential and parallel implementation of suffix array and their performance comparison.

Chapter 4 starts with the role of exact repeats finding in bioinformatics applications. The chapter

then discusses the sequential as well as faster implementation of the exact repeating finding and

their performance comparison, then discusses the tandem repeats and its sequential and faster

E

2.4 Programming constructs and Thread Hierarchy
CUDA extends C[5{ by allowing the programmer to define C functions, called kernels, that;

when called, are executed N times in parallel by N different CUDA threads, as opposed to only

once like regular C functions.

A kernel is defined using the __global_ declaration specifier and the number of CUDA threads

for each call is specified using a new <<<...>>> syntax

// Kernel definition

_global— void vecAdd(float* A, float* B, float* C) {

// Kernel code

}

int main() {

// Kernel invocation

vecAdd<<<1, N>>>(A, B, C);

}

Each of the threads that execute a kernel is given a unique thread ID that is accessible within the

kernel through the built-in threadldx variable. This threadldx values gives the index of the

current thread within its block. In the above code, if the kernel were to add the two vectors A and

B of size N and stores the result into vector C, the kernel code would be

___global_ void vecAdd(float* A, float* B, float* C)

{

int i = threadldx.x;

C[i] = A[i] + B[i];

}

16

The logical organization of the thread hierarchy is thus, with the entire set of threads arranged as

a two dimensional grid of blocks, with each block containing a three dimensional set of threads,

as shown in figure 2.4

Figure 2.4: Thread Hierarchy in CUDA [5]

Threads within a block can cooperate among themselves by sharing data through some shared

memory and synchronizing their execution to coordinate memory accesses. Such

synchronization is possible by means of a programming primitive _syncthreads() as exposed by

CUDA API. This serves as barrier synchronization. The number of threads per block is restricted

17

by the limited memory resources of a processor core. On NVIDIA Tesla architecture, a thread

block may contain up to 512 threads.

In addition to the variable threadldx, CUDA threads also have a few other built-in variables

namely blockldx and blockDim. The blockldx variable gives the index of the thread's parent

block within the grid, and blockDim which gives the number of threads per block, with the

blockDim being supplied in the call to the kernel as the second parameter to the <<<>>> syntax.

Since grids are two-dimensional, blockIdx has a x component and y component and since blocks

are three-dimensional, blockDim and threadldx have x, y and z components. If the above code

was to be a matrix addition instead of vector addition and was to be processes by a hierarchical

arrangement of threads as shown in the above figure 2.4, with each thread processing one

element of the matrix, the code becomes

{

int i = blockldx.x * blockDim.x + threadldx.x;

int j = blockIdx.y * blockDim.y + threadldx.y;

if(i<N&&j<N)

C[i)[j] = A[i](j] + B[i]jj];
}

int main()

{

// Kernel invocation

dim3 dimBlock(16, 16);

matAdd<<<l, dimBlock>>>(A, B, C);

}

2.5 Memory Hierarchy
CUDA threads may access data from multiple memory spaces during their execution. Each

thread has a private local memory, which is akin to local variable declaration for any normal

CPU code. Each thread block has a shared memory visible to all threads of the block and with

the same lifetime as the block. Finally, all threads have access to the same global memory.

18

CUDA assumes that both the host and the device maintain their own DRAM, referred to as host

memory and device memory respectively. The global memory is persistent across kernel

launches by the same application and is allocated in the device memory. Memory management at

runtime on the GPU RAM is done using CUDA API equivalents. The general procedure is to

allocate memory on both host and device RAM, using cudaMalloc function call for the device

memory. The data contents are copied from host memory to device memory using cudaMemcpy

function. Writing data directly onto device memory from CPU code is not possible. The kernel

calls are then made to do appropriate processing on the data. The processed data contents are

copied back from the device to the host using cudaMernepy function.
Thread

Per-thread local
memory

Figure 2.5: How threads access global, shared and local memory [5]

19

1 	.

dM.ff asfo.R,_tm /
Chapter 3: Suffix Array

A suffix array [12] is an array of integers giving the starting positions of suffixes of a string in
lexicographical order.

Following table 3.1 shows the suffix array for string "ATTCGATTCGATTCG"

Table 3.1: Example of Suffix Array

Suffix
Array

Suffix 	—T

10 ATTCG

5 ATTCGATTCG

0 ATTCGATTCGATTCG

13 CG

8 CGATTCG

3 CGATTCGATTCG

14 G

9 GATTCG

4 GATTCGATTCG

12 TCG

7 TCGATTCG

2 TCGATTCGATTCG

11 TTCG

6 TTCGATTCG

1 TTCGATTCGATTCG

If the original string is available, each suffix can be completely specified by the index of its first

character. The suffix array is the array of the indices of suffixes sorted in lexicographical order.

For the string "ATTCGATTCGATTCG", using one-based indexing, the suffix array is

{ 10,5,0,13,8,3,14,9,4,12,7,2,11,6,1 }.

The suffix array is a simpler and more compact alternative to the suffix tree. Furthermore,

parallel suffix array construction has emerged as an interesting research field to meet high-

20

performance computing requirement in full text index, data compression [2]. The suffix arrays

can also be used to index protein structure [3].

Suffix sorting is one of the fundamental steps in suffix array construction process, which builds

the unique index value of each suffix according to its alphabetic order, as shown in table 3.1. The

naive method to build these index values is directly sorting all the suffixes, though this is not

efficient method but we can make it more efficient by implementation of parallel sorting

techniques and CUDA provides the many cores for parallel processing and that will definitely

improve the performance with respect to sequential processing.

3.1 Sequential implementation of suffix array
Several algorithms have also been developed which provide faster construction and have space

usage of O(n) with low constants. The easiest way to construct a suffix array is to use an efficient

comparison sort algorithm which requires no extra space. Though it is more time consuming

approach but very much space efficient. Figure 3.1 shows the flow diagram of sequential

implementation and the algorithm 3.1 has been used for its implementation. In this algorithm

my_sticmp is our customized string compare function and suffixlndex array is used to store

indexes of sorted suffixes.

Algorithm 3.1: Sequential implementation of suffix array

for i := 0 to MAXLENGTH - 1
for j:=0 to MAXLENGTH - (i + 2)

if (my_strcmp(stringBaseAddr + suffixlndex[j],
stringBaseAddr + suffixlndex[j + 1])> 0)

then
temp := suffixIndex[j];
suffixIndex[j] := suffixlndex[+ 1];
suffixlndex[j + I] :=temp;

end if

21

CPU

Figure 3.1: Flow diagram of sequential implementation of suffix array

3.2 Parallel implementation of suffix array
The GPU implementation primarily consists of two main phases, namely data construction and

data comparisons. The data construction phase consists of allocating memory on the GPU and

transferring data onto it from the CPU. The data as required by the algorithms was to be

generated and processed on the GPU, with the CPU doing the initial work of reading the gene

sequences and have them transferred to the GPU. One of the problem encountered in use of

CUDA was the absence of string processing libraries on GPUs (since the device is primarily

math-intensive), which required that they be written from scratch as device-level user functions.

Once the allocation of memory on device is done, the process of generation of suffix array

divided between the thread as show in figure 3.2 on the device using a parallelized form on

comparison of suffix at position 2 *threadld and 2 *threadld - 1 then comparison of suffix at

position 2 *threadld and 2*threadld + 1, These steps carried out up to half of the input length of

gene sequence. Cormen[13] argued that these procedure gives the correct result. Our algorithm

3.2 shows the execution steps in detail.

22

CPU
	

GPU
(Sequentiai .Procssing)
	 (Parallel Processing)

	

Read data and
	

Read data from

No 	Execute loop 	 Yes 	Parallel comparison of

	

half times of 	 sutfixesat2'thread!dand
the iflf)Ut
	 2*threadki_1 and swap

Parallel comparison of

suffixes at 2*threadld and

Copy results
	 2*threadld+1 and swap

Display Results

Figure 3.2: Flow diagram of parallel implementation of suffix array

23

Algorithm 3.2: Parallel implementation of suffix array

//Steps from CPU

for i := 0 to (MAXLENGTH / 2)
Step 1: CUDA steps for first pass comparisons
Step 2; CUDA steps for second pass comparisons

//CUDA steps for first pass comparisons

Initialize threadid := blockIdx.x * 512 + threadIdx.x;
if (2*threadld + 1 >= MAXLENGTH) then return;
end if
if (my_strcmp(stringBaseAddr + suffixlndex[2*threadld],

stringBaseAddr + suffixIndex[2*threaded + 1])> 0)
then

temp := stringBaseAddr + suffixlndex[2*threadld];
suffixlndex[2*threadId] := stringBaseAddr+
suffixlndex[2*threadId + 1];
suffixlndex[2*threadld + 1] := temp;

end if

//CUDA steps for second pass comparisons

Initialize threadId := blockIdx.x * 512 + threadIdx.x;
if (2*threadld + 2 >= MAXLENGTH) then return;
end if
if (my_strcmp(stringBaseAddr + suff xlndex[2*threaded + I],

stringBaseAddr + suffixIndex[2*threadId + 2]) > 0)
then

temp := stringBaseAddr + suffixIndex[2*threadId 4- 1];
suffixlndex[2*threadld + 1] := stringBaseAddr +
suffixlndex[2*threadld ± 2];
suffixIndex[2*threadld + 1] := temp;

end if

3.3 Performance comparison of parallel and sequential implementations
The following table 3.2 shows the comparison between sequential and parallel implementation of

suffix array. The processing time depends upon the length of the input data. As we can see in

figure 3.3 the GPU implementation giving the better performance over the CPU implementation

as long as input length keeps increasing.

Table 3.2: Timing comparison for suffix array

Input Length Sequential

Processing Time (seconds)

Parallel

Processing Time (seconds)

64 0.000352 0.000354

128 0.002213 0.000666

192 0.007104 0.000983

256 0.016507 0.001317

0.018

0.016 -
4

0.014

0.012 - ---

7H 0.01
CPU

0.008

0.006 _~ - 	 ®GPU

0.004 __ 	-

0.002 -

0

64 	114 164 	214 	264

Input length

Figure 3.3: Comparison of parallel and sequential implementation of suffix array

25

Chapter 4: Application of Suffix Array in Bioinformatics

Suffix array has mainly used for indexing purpose and it has many applications in field of

bioinformatics. Repeats finding and sequence matching problems are always deemed as one of

the prerequisites for genome sequencing and analysis.

4.1 Exact Repeats

The problem can be defined as [1]: given an input DNA sequence S as a string of length n over

alphabet E= {A,C,G,T}, S[i] is the i h̀ character of S, i E[l,n], we want to find exact repeats

subsequence of length w. For i<j, let S[i,j] denote the substring of S between the position of i and

j. When we refer to a string with fixed length w, Si can be used as a shorthand for S[i,j], for

j j+w-1.

A pair of substrings R=(S;,Sj) is an exact repeat if and only if i#j and each corresponding

characters of Si and Sj are equal.

I6' 	pO4tL'Z1 U hex

GTkCGTACGTACGT, r=t6

ACGT

CGTA

GTAC 	 I3 ubtrixig of

ACOT

`ou c tiv Rheas; {Q 	{1. 9} 37, ,% Aj

Figure 4.1: Finding Exact Repeats with length w=4 [1]

There are many algorithms to compute exact repeats, for example, the most simple and natural

idea is exhaustive enumeration, which is easy for implementation and parallelization, but the

O(n2) time complexity is prohibitive when we thinking the problem size at genome level, so we

only mention the feasible algorithms in time complexity. Hashing method is the standard

approach to do exact repeat which will work at O(n) time complexity, when appropriate hashing

function is selected, but the variable length of repeat sequence put a severe restriction on hashing

techniques [1].

4.1.1 Sequential implementation of exact repeats finding
We have proposed an algorithm based on suffix array to find out the exact repeats with arbitrary

length, which provide a much simple way to solve the DNA sequence repeats problem. The

figure 4.2 shows the flow diagram of our sequential implementation. In addition to suffix array

an extra space O(n) have been used as auxiliaryArray to provide the ease of exact repeats finding

and algorithm 4.1 shows the execution steps.

CPU
(Sequential Processing)

Reid data

Sequential code

Load

Exact RepeaLs
search,

Di ipla~y

zewits
wn.~aaw.....a54ud34Y~.vca:~les~5

Figure 4.2: Flow diagram of sequential implementation of exact repeats finding

27

Algorithm 4.1: Sequential exact repeats finding

1) Call algorithm 3.1: Sequential implementation of suffix array (refer page no. 21)
2) Call algorithm 4.2: Loading of auxiliaryArray (refer page no. 28)
3) for i := 0 to (MAXLENGTH - 1)

if(auxiliaryArray[i + 1] >= w) then
flag := 1;
Print: suffixIndex[i], groupindex

else
if(flag 	1)

Print: suffixlndex[i], groupindex;
flag := 0;
groupindex+-t;

end if
end if

Algorithm 4.2: Loading of auxiliaryArray

Initialize i := 0;
for j:=0 to (MAXLENGTH - 2)
str 1 := stringBaseAddr + suffixlndex[j];
str_2 := stringBaseAddr + suffixlndex[j + 1];
while ((str 1[i] == str_2[i]) && strl [i] && str_2[i])

auxiliaryArray [j + 1] := i;

4.1.2 Parallel implementation of exact repeats finding
We proposed an algorithm based on parallel suffix array to find out the exact repeats with

arbitrary length, which provide a much simple way to solve the DNA sequence repeats problem

with higher efficiency than sequential approach for this type of problems. Figure 4.3 shows the

flow diagram of our fast exact repeats finding on CPU and GPU. In addition to suffix array an

extra space O(n) have been used as auxiliaryArray to provide the ease of exact repeats finding.

Algorithm 4.3 shows the execution steps in details.

28

CPU 	 GPU
(Sequential Processing) 	 (Parallel Processing)

Pro 	Reu]ts

Figure 4.3: Flow diagram of parallel implementation of exact repeats finding

IM

Algorithm 4.3: Parallel implementation for exact repeats finding

1) Call algorithm 3.2: Parallel implementation of suffix array (refer page no. 24)
2) Call algorithm 4.4: Loading of auxiliaryArray using cuda (refer page no. 30)
3) for i := 0 to (MAXLENGTI-I — 1)

if(auxiliaryArray[i + 1] >= w) then
flag := 1;
Print: suffixIndex[i], groupIndex

else
if(flag == 1)

Print: suffixIndex[i], groupIndex;
flag := 0;
groupindex++;

end if
end if

Algorithm 4.4: Loading of auxiliaryArray using cuda

//cuda steps for loading of auxiliaryArray

Initialize threadld := blockldx.x * 512 + threadldx.x, i := 0;
if (threadId + I > MAXLENGTH) then

return;
end if
str l := stringBaseAddr + suffixlndex[threadId];
str 2 := stringBaseAddr + suffixlndex[threadld + 1];
while ((str_1 [i] _= str 2[i]) && str_1 [i] && str_2[i])
i++;

auxiliaryArray [threadld + 1] := i;

4.1.3 Performance comparison of sequential and parallel exact repeats finding
The linear and parallel programs were executed in a CUDA based machine having Intel Xeon
CPU (2.5 GHz) and NVIDIA Quadro FX 3700. The figure 4.4 shows the performance
comparison of parallel and sequential implementation and it's very clear that GPU
implementation giving the better performance than CPU implementation.

Table 4.1: Timing comparison for exact repeats finding

Input Length Sequential

Processing Time (seconds)

Parallel

Processing Time (seconds)

Speed Up

512 0.130170 0.219764 0.592317

1024 1.021849 1.309891 0.780102

2048 8.098172 5.971737 1.356083

4096 64.530180 31.382746 2.056231

8192 483.522656 202.490094 2.387883

Figure 4.4: Comparison of parallel and sequential implementation of exact repeats fmding

31

4.2 Tandem Repeats
A tandem repeat consists of two or more contiguous copies of a nucleotide pattern [4]. An

example would be: A-T-T-C-G-A-T-T-C-G-A-T-T-C-G in which the sequence A-T-T-C-G is

repeated three times [6]. In a tandem repeat, four features need to be analyzed: the pattern size,

the pattern structure, the number of copies, and the positions of the patterns. According to the

pattern size, repeats can be classified into three types: satellites, minisatellites, and

microsatellites [4].

lvlain band

r
UJ

CD

6
U

IN

nds

Buoyant density

Figure 4.5: Illustration of satellite bands [7]

By using buoyant density gradient centrifugation, DNA fragments with significantly different

base compositions may be separated, and then monitored by the absorption spectra of ultraviolet

light. The main band represents the bulk DNA, and the "satellite" bands originate from tandem

repeats.

Satellites
The size of a satellite DNA ranges from 100 kb to over 1 Mb. In humans, a well known example

is the alphoid DNA located at the centromere of all chromosomes. Its repeat unit is 171 bp and

the repetitive region accounts for 3-5% of the DNA in each chromosome. Other satellites have a

shorter repeat unit. Most satellites in humans or in other organisms are located at the centromere

[7]. Figure 4.6 shows the a partial human STR profile obtained using Applied Biosystems

Identifiler kit.

32

70

1700

0

2000

Figure 4.6: A partial human STR profile obtained using Applied Biosystems Identifiler kit [6]

Minisatellites

The size of a minisatellite ranges from 1 kb to 20 kb. One type of minisatellites is called variable

number of tandem repeats (VNTR). Its repeat unit ranges from 9 bp to 80 bp. They are located

in non-coding regions. The number of repeats for a given minisatellite may differ between

individuals. This feature is the basis of DNA fingerprinting. Another type of minisatellites is the

telomere. In a human germ cell, the size of a telomere is about 15 kb. In an aging somatic cell,

the telomere is shorter. The telomere contains tandemly repeated sequence GGGTTA [7].

Microsatellites

Microsatellites are also known as short tandem repeats (STR), because a repeat unit consists of

only 1 to 6 bp and the whole repetitive region spans less than 150 bp. Similar to minisatellites,

the number of repeats for a given microsatellite may differ between individuals. Therefore,

microsatellites can also be used for DNA fingerprinting [7].

One of the most interesting features of prokaryotic and eukaryotic genomes (both coding and

non-coding regions) is the presence of relatively short perfect tandemly repeated DNA

sequences. These repeated DNA sequences are distributed almost at random throughout the

genome. Repeats containing DNA sequences have attracted much attention from researchers

since (i) they play important roles in the formation of hairpin structures that may provide some

structural or replication mechanism, (ii) they are often associated with neurological disorders and

33

(iii) they are used as DNA markers, such as microsatellites or Simple Sequence Repeats (SSR),

Inter Simple Sequence Repeats (ISSR) and Directed Amplification of Minisatellite DNA

(DAMD-PCR) in Marker Assisted Selection (MAS), positional cloning, identification of

quantitative and qualitative loci and mapping for breeding and evolutionary studies. Recent

evidence also suggests that some Variable Number of Tandem Repeats (VNTRs) and SSR

sequences play significant roles in the regulation of transcription, and that some may also

influence the translational efficiency or stability of mRNA, or modifies the activity of proteins

by altering their structure [9].

Figure 4.7: Schematic of a Variable Number of Tandem Repeats in 4 alleles [6]

Expressed Sequence Tags (ESTs) are single-pass DNA sequences, usually about 300-500

nucleotides in length, obtained from mRNA (cDNA) representing genes expressed in a given

tissue and/or at a given development stage A typical EST usually contains only a portion of the

coding region (either translated or untranslated, or both) of the original gene transcript. One of

the useful applications of ESTs is in the study of the gene expression pattern in a given organ,

tissue or development stage in response to a particular treatment. The composition of a tissue

specific EST population, therefore, offers an overall overview of the expressed genes and,

consequently, is a novel tool in gene discovery and in understanding the biochemical pathways

involved in physiological responses. ESTs have also been mined for Single Nucleotide

Polymorphisms (SNP) and SSR. Microsatellites or SSRs are stretches of DNA consisting of

exact simple tandemly repeated short motifs of 1-6 base pairs in length. SSRs are one of the best

DNA markers because they are highly polymorphic, inherited in a co-dominant fashion, and

highly abundant, being dispersed evenly throughout the genome. They can serve as sequence-

tagged sites for anchoring in genetic and physical maps. The standard procedure for developing

34

SSRs involves the construction of a small-insert genomic library, its subsequent hybridization

with tandemly repeated oligonucleotides, and the sequencing of candidate clones. Unfortunately,

this process is time consuming and labourintensive [9].

4.2.1 Sequential implementation of tandem repeats finding

We have proposed an algorithm based on suffix array to find out the exact repeats with arbitrary

length, which provide a much simple way to solve the DNA sequence repeats problem. The

figure 4.8 shows the flow diagram of our sequential implementation. The algorithm 4.5 shows

the actual implementation in uniprocessor.

CPL
(Sequential Processing)

Re Lid cl.aLi

SquenIdl code

Load

Tandem Repeats
Search

Display

Results

Figure 4.8: Flow diagram of sequential implementation of tandem repeats finding

35

Algorithm 4.5: Sequential implementation for tandem repeats finding

1) Call algorithm 3.1: Sequential implementation of suffix array (refer page no. 21)

2) Call algorithm 4.2: Loading of auxiliaryArray (refer page no. 28)

3) Call algorithm 4.6: Function for tandem repeats search (refer page no. 36)

Algorithm 4.6: Function for tandem repeats search

Step 1: Top down pass

for i := 0 to (MAXLENGTH -- 2)
if(flag == 0) then

temp := auxiliaryArray[i + 1];
end if

if(suffixIndex[i + 11 == (suffixlndex[i] - temp))then
Print: suffixlndex[i];
flag := 1;
Goto step!;

end if
if(flag == l)then

Print: suffixIndex[i];
flag := 0;

end if

Step 2: Bottom up pass

Initialize flag := 0;
for i := MAXLENGTH to I

if(flag = 0)then
temp := auxiliaryArray[i];

end if
if(suffixIndex[i - 1] _= (suffixlndex[i]-temp)) then

Print: suffixlndex[i]);
flag := 1;
Goto step 2;

end if
if(flag= =1)

Printf: suffixlndex[i];
flag :=0;

end if

36

4.2.2 Parallel implementation of tandem repeats finding
We proposed an algorithm based on parallel suffix array to find the exact repeats with arbitrary

length, which provide a much simple way to solve the DNA sequence tandem repeats problem

with higher efficiency than sequential approach. In this algorithm tandem repeats group occurs

either in ascending order or descending order so we have used two passes for that (i) Top down

pass, if tandem repeated sequence occurs in ascending order (ii) Bottom up pass, if tandem

repeated sequence occurs in descending order and before execution of above passes, executed the

parallel version code of suffix array and parallel loading of auxiliary array. Figure 4.9 shows the

flow diagram of fast tandem repeats finding and algorithm 4.7 shows the execution steps in

details.

CPL
	

G PL
(Sequential Processing) 	 (Parallel Processing)

T`a tdtrn Rcpeab. 	 Load
search

Proc:e:,s Results

Figure 4.9: Flow diagram of parallel implementation of tandem repeats finding

Algorithm 4.7: Parallel implementation for tandem repeats finding

1). Call algorithm 3.2: Parallel implementation of suffix array (refer page no. 24)
2) Call algorithm 4.4: Loading of auxiliaryArray using cuda (refer page no. 30)
3) Call algorithm 4.6: Function for tandem repeats search (refer page no. 36)

4.2.3 Performance comparison of sequential and parallel tandem repeats fording
The linear and parallel programs were executed in a CUDA based machine having Intel Xeon

CPU (2.5 GHz) and NVIDIA Quadro FX 3700. The figure 4.10 shows the performance

comparison of parallel and sequential implementation and it's very clear that GPU

implementation giving the better performance than CPU implementation.
Table 4.2: Timing comparison for tandem repeats finding

Input Length Sequential

Processing Time (seconds)

Parallel

Processing Time (seconds)

Speed Up

512 0.129631 0.220139 0.588859

1024 1.020677 1.310667 0.778746

2048 8.097908 5.969227 1.356609

4096 64.629652 31.351945 2.061424

8192 483.478469 202.494625 2.387611

Figure 4.10: Comparison of parallel and sequential implementation of tandem repeats finding

38

4.3 Exact String Matching
String matching has a long history in computational biology with roots in finding similar proteins

and gene sequences in a database of known sequences.

Genetic information is passed from parent to offspring in the biological macromolecule DNA,

and is encoded in the individual's sequence of 4 different nucleotides. The full sequence of

nucleotides for an organism, its genome, varies in length from hundreds of thousands of

nucleotides for genetically simple organisms, such as bacteria, to billions of nucleotides for

genetically complex organisms, such as humans. Genes are the regions of the genome that

encode for proteins, which are the functionally active molecules in an organism. Gene sequences

specify a protein's sequence of component molecules called amino acids. Each triple of

nucleotides in the DNA of a gene specifies one of the 20 possible standard amino acids. The

chain of hundreds or thousands of amino acids specified by the gene folds into a very complex

configuration, and the physical shape of a folded protein determines its biological function.

Pairs of similar sequences are biologically related under the commonly held assumption that two

homologous (highly similar) protein sequences will fold into similar configurations, and thus

have a similar biological function. Given a database of sequences with known function and a

novel sequence with unknown function, one can use a String matching algorithm to discover

homologous sequences, and thereby infer the function of the novel sequence. A String matching

algorithm reports the biological similarity between a pair of sequences, by modelling potential

mutations between the sequences.

Early work on detecting homologous sequences focused on creating optimal algorithms that

would exactly compute and report the similarity score between pairs of sequences. However,

improvements in high throughput sequencing technology led to an explosion in number of

known sequences, and motivated research for more efficient methods for detecting similar

sequences [8]. This inspired the development of heuristics that find highly similar alignments

very quickly at the cost of potentially not reporting lower similarity sequences.

Computational biologists entered into the era of comparative genomics, in which the entire

genomes of organisms are compared. In comparative genomics, the relatively simple techniques

used for scanning a single short query sequence against a database of known sequences proved

too inefficient yet again, and required the use of even faster algorithms, using sophisticated data

structures such as suffix array.

The earliest algorithms, such as the Needleman-Wunsch global alignment and Smith-Waterman

local alignment algorithms from the 70s and early 80s, were developed to detect similarity

between a pair of DNA or protein sequences. These early algorithms use dynamic programming

to compute optimal alignments between a pair of sequences in time proportional to the product

of their lengths.

In the 80s and 90s, the number of DNA and protein sequences grew exponentially and it quickly

became infeasible to compute an optimal alignment between a query sequence and every

sequence in the database of known sequences. As a result, researchers developed heuristic

techniques such as FASTA and BLAST to more quickly discover highly similar alignments,

while not reporting more distant alignments. Researchers found this to be an acceptable tradeoff

between sensitivity and speed, since in most applications only the highly similar alignments are

relevant. Consequently, BLAST became the de facto bioinformatics tool of choice for finding

homologous gene or protein sequences.

These techniques use the key insight that two highly similar sequences must share common

substrings, although possibly separated by relatively short sequences of mutated residues. They

use this insight by pre-processing the database to construct a catalog of the short fixed-length

substrings found in the database sequences. After this pre-processing, each query string is

processed by first finding exact matches between substrings of the query string and the catalog of

database substrings. Using a hash table or similar technique, this executes in time proportional to

the number of occurrence of each short substring in the database. These short exact matches then

act to seed longer, possibly inexact alignments, by connecting together overlapping exact

matches, and using Smith-Waterman local alignments to align regions with mismatching

characters. The time to pre-process the database may be considerable, but is amortized by

constructing it once for many query searches, after which the seed-and-extend style algorithms

run in time proportional to the length of the query string and relatively independent of the

number of strings in the database.

Unlike protein searches, comparative genomics commonly performs comparisons between the

much longer whole genome sequences of related organisms. As such, the two genomes will

typically share many very long substrings. Consequently, BLAST and related tools which seed

their alignments using short fixed length substrings will process many seeds from these exact

matches, and thus run relatively inefficiently. This motivated research in the late 90s for new

alignment algorithms which could be used for aligning sequences of any length and potentially

containing very long exact matches.

A suffix tree [15] can be naively constructed in O(n2) time and O(n) space by iteratively inserting

all n suffixes, but can be constructing in O(n) time and O(n) space for a string over a fixed

alphabet, such as for DNA or amino acids, by more carefully exploiting the relationships

between suffixes. The more sophisticated algorithms make extensive use of additional pointers
called suffix links which connect nodes along the path to the ith suffix to same relative position
on the i+lth suffix.

rn

rM

Figure 4.11: The time spent in each phase of the suffix tree matching program on the CPU [8]

41

Figure 4.12: The time spent in each phase of the suffix tree matching program on GPU [8]

As shown in figure 4.11 and figure 4.12 that GPU implementation of suffix tree gives the better

query processing time over CPU and as we already discusses the suffix array can be alternatively
used in place suffix tree so its GPU implementation will give the better performance over its

CPU implementation. Even with the highly efficient algorithms and data structures invented,

modern computational biologist still rely on computational grids consisting of many computers

executing algorithms in parallel to increase the throughput of their searches. Our work acts to

replace an entire computational grid of computers used for string matching with a single highly

parallel commodity multiprocessing board, in the form of a high performance Graphics
Processing Unit (GPU) programmed in the Compute Unified Device Architecture (CUDA)

framework [5].

4.3.1 Sequential implementation of exact string matching
We have proposed an algorithm based on suffix array to find out the exact repeats with arbitrary

length, which provide a much simple way to solve the sequence matching problem. The figure

4.13 shows the flow diagram of our sequential implementation and algorithm 4.8 has been used

for implementation.

Algorithm 4.8: Sequential implementation for exact string matching

1) Call algorithm 3.1: Sequential implementation of suffix array (refer page no. 21)

2) Call algorithm 4.9: Function for exact string matching (refer page no. 43)

42

Exact string

1)1 splay 	
..._.... .;

Results .

Figure 4.13: Flow diagram of sequential implementation of exact string matching

Algorithm 4.9: Function for exact string matching

Initialize end := MAXLENGTI-1— 1, mid := (beg + end)/2;
while(beg <= end && my_strcmp(stringBaseAddr+suffixlndex[mid],pattern,pattern_len)! = 1)

if(strcmp(pattern,str + suffixlndex[mid]) < 0) then
end := mid - 1;

else
beg := mid + 1 , mid := (beg + end)/2;

end if
if(my_strcmp(pattern,str+suffixlndex[.mid], pattern_len) _= 1)
then

up := down := mid;
while((auxiliaryArray[up] >= pattern_len) && (up>0))

up--;
Print: suffixlndex[up]

while((auxiliaryArray[down ++- 1] >= pattern_len)
&& ((down + 1) <= MAXLENGTH))

down++;
Print: suffixlndex[dowl];

end if

43

4.3.2 Parallel implementation of exact string matching
We proposed an algorithm based on parallel suffix array to find out the exact string matching

with arbitrary length, which provide a much simple way to solve the sequence search problem

with higher efficiency than sequential approach. Figure 4.14 shows the flow diagram of our fast

exact string matching on CPU and GPU.

CPU
	

G:IE'L.
(Sequential Processing) 	 (Parallel Processing)

Exact String

Process Results

Figure 4.14: Flow diagram of parallel implementation of exact string matching

Algorithm 4.10: Parallel implementation for exact string matching

1) Call algorithm 3.2: Parallel implementation of suffix array (refer page no. 24)

2) Call algorithm 4.9: Function for exact string matching (refer page no. 43)

J

4.3.3 Performance comparison of sequential and parallel exact string matching
The sequential and parallel programs were executed in a CUDA based machine having Intel
Xeon CPU (2.5 GHz) and NVIDIA Quadro FX 3700. The figure 4.15 shows the performance

comparison of parallel and sequential implementation and it's very clear that GPU
implementation giving the better performance than CPU implementation.

Table 4.3: Timing comparison for exact string matching

Input Length Sequential Processing Time

(seconds)

Parallel Processing Time

(seconds)

Speed Up

512 0.029631 0.044035 0.672889

1024 1.029656 0.983634 1.046787

2048 4.098279 2.363038 1.734326

4096 52.654532 24.529133 2.146612

8192 287.783169 89.065052 3.231157

Figure 4.15: Comparison of parallel and sequential implementation of exact string matching

45

Chapter 5: Conclusion and future works

As we have seen that our parallel algorithm giving better performance than CPU version code for

large size of input data elements. For small size input data the GPU implementation is slower

than CPU implementation.

The major bottle neck for performance in the Suffix Array algorithm was the process of sorting

the intermediate data. The performance improvement of Suffix Array on CUDA was majorly due

to the possibility of parallel sorting which took bulk of the runtime in the sequential

implementation. The running time of the algorithm can be improved if the sorting part of the

algorithm is implemented using O(log n) techniques of parallel sorting. However this would

require that such a technique is implemented without recursion.

Future programming model may be the hybrid of current serial CPU and data parallel GPU

execution paradigm for high performance computing so we will try to employ these codes as the

fundamental functions to solve more complex bioinformatics and text processing applications to

meet the high computing power requirements.

References

[1] W. Sun and Z. Ma. A Fast Exact Repeats Search Algorithm for Genome Analysis. In Proc.
9th International Conference on Hybrid Intelligent Systems (HIS'09), Shenyang, China,

pp.427-430, 2009.

[2] W. Sun and Z. Ma. Parallel Lexicographic Names Construction with CUDA. In Proc. 15th
International Conference on Parallel and Distributed Systems (ICPADS), Shenzhen, China,

pp.913-918, 2009.

[3] T. Gharib. A hybrid approach for indexing and searching protein structures. WSEAS

Transactions on Computers, 8(6), pp.966-975, 2009.

[4] H. Zhou, L. Du and H. Yan. Detection of Tandem Repeats in DNA Sequences Based on

Parametric Spectral Estimation. IEEE Transactions on Information Technology in

Biomedicine, 13(5), pp.747-755, 2009.

[5] CUDA Programming Guide, Version 2.3, NVIDIA, January 2009.

[6] http://en.wikipedia.org/wiki/Tandem_repeats (Last accessed on 20th May 2010).,

[7] http://www.web-books.com/MoBio/Free/Ch3GI.htm (Last accessed on 20th May 2010).

[8] C. Schatz and C. Trapnell. Fast exact string matching on the gpu, Technical Report.

Available from: http://www.cbeb.umd.edu/software/cmatch (Last accessed on 20th May
2010).

[9] M. Karaca, M. Bilgen, A. Onus, A. Ince and S. Elmasulu. Exact Tandem Repeats Analyzer

(E-TRA): a new program for DNA sequence mining, Journal of Genetics, 8(4). pp.49-54,
2005.

[10] J. Karkkainen, P. Sanders and S. Burkhardt. Linear work suffix array Construction. J. ACM,

53(6), pp. 918-936, 2006.

47

[11] J. Karkkainen and P. Sanders. Simple linear work suffix array construction. In Proc. 30th

International Colloquium on Automata, Languages and Programming (ICALP '03), LNCS

2719, Springer, pp. 943-955, 2003.

[12] http://en.wikipedia.org/wiki/Suffix_array (Last accessed on 20th May 2010).

[13] T. Cormen, C. Leiserson, R. Rivest and C. Stein. Introduction to Algorithms. 2nd edition.

MIT Press and McGraw-Hill, 2001.

[14] U. Manber and G. Myers. Suffix arrays: A new method for on-line string searches. SIAM
Journal of Computing, 22(5), pp.935-948, 1993.

[15] D. Gusfield Algorithms on strings, trees and sequences: computer science and

computational biology. New York: Cambridge University Press, 1997.

	Title
	Abstract
	Chapter 1
	Chapter2
	Chapter 3
	Chapter 4
	Chapter 5
	References

