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ABSTRACT 

Permanent Magnet Synchronous Motor Drives are highly efficient, high speed drives which 
are used extensively in many applications. The main aim of this thesis is to develop an intelli-
gent controller for the speed control of a permanent magnet synchronous motor(PMSM), which 

reduces the uncertainties and effect of load disturbances while maintaining the performance 
with respect to speed, torque and stator current.In order to achieve this level of intelligence, 

this thesis . investigates how to unify and hybridize many softcomputing techniques including 

Fuzzy logic,Neurocomputing, Genetic algorithms. First learning capabilities of neurocomputing 

are explored in interaction with environment and knowledge acquisition.An adaptive Neural 
Network based Model reference controller is proposed for the control of the parameters of the 

PMSM.Secondly knowledge tuning of fuzzy logic systems are developed through knowledge-

based' and Neuro-fuzzy approaches. An Interval Type-2 Fuzzy Logic Controller(FLC) is pro-

posed and adaptive Neuro Fuzzy Based Inference System(ANFIS) for the control of synchronous 

motor. Thirdly an hybrid approach in the learning of a fuzzy logic system is explored using 

Particle Swarm Optimization(PSO).These applications are analyzed for the PMSM using digi-

tal simulation.The results of the application show the capabilities of the proposed algorithms, 
i.e., the type-2 FLC and PSO based optimizers in dealing with complex uncertain problems 

and robust, simple viable and visible solutions offered by soft computing techniques for such 
nonlinearities. 
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Chapter 1 

Introduction 

1.1 Statement of - Problem 

High performance drive systems such as Synchronous Motors must provide fast and accurate 
speed responses, quick recoveries of reference speed from sudden disturbances of all natures 
and show insensitivity to parameter variations. [1]. Each of the systems presented to date have 
shortcomings that require remedy if the synchronous motor is to be practically implemented in 
high performance drive standards. Thus,it is necessary to further develop control algorithms 
and approaches to produce this high standard of performance in a practical manner. 

While the synchronous motor has many advantages[2] over conventional motors, its op-
eration is strongly affected by motor magnetic saliency, saturation and armature reaction ef-
fects.Particularly, the saturation of the iron portion of the rotor around the permanent magnets 
produce distortion of the air-gap flux that affects the reactance parameters of the motor. These 
reactance changes with different operating conditions and hence, affect the performance of the 
drive systems if they are accounted for. This makes the control of Synchronous motor for high 
performance drive applications an engineering challenge. 

The objective of this work is to develop and implement a complete Synchronous motor 
drive systems to be used in high performance drive applications. The vector control scheme, 
incorporating a speed controller and a current controller is used because it decouples the torque 
and flux,thus providing faster transient responses and making the control task easier. An 
efficient speed controller, incorporating heretofore undeveloped methods is presented for the 
high performance permanent magnet synchronous motor[3]. 

A fixed gain Proportional Integral(PI) [4], Model reference adaptive Controller[40] all require 
the accurate and precise knowledge of system model parameters. Moreover, the fixed- gain PI 
and PID controllers are especially sensitive to parameter variations, load changes and other sys-
tems disturbances. Intelligent controllers, such as the fuzzy logic controller(FLC) [16],Type-2 

1 



FLC[24],Adaptive Neuro Fuzzy Inference System[43] ANFIS do not need any information about 

the system mathematical model, are self-adaptive to uncertainties and can handle any kind of 

system non-linearity. However FLC based drive systems incorporate complex algorithms that im-

pose such computational burdens that they can only be incorporated by making performance 

compromises or by use of the latest, most powerful personal computer systems.Thererfore, a 

large part of the work is to achieve the control with minimal complexity and computational 
burden.Apart from fuzzy logic, neural network control is also well -  suited for control of corn-
'plex systems where there is an abundance of experimental data. Also using the stand alone 

fuzzy logic or neural network based controllers, there is a feasibility of combining the two soft 
computing methods. 

As high performance drive systems[3] are becoming more complex, conventional controllers 

that utilize the mathematical model are insufficient. This resulted in the evolution of soft com-

puting techniques based on biological processes such as learning and evolutionary development. 

Soft computing techniques based on tools of fuzzy logic, neural networks and genetic algorithm 

techniques based on particle swarm intelligence are the main techniques in the artificial intelli-

gence and 'expertsystems design.Fuzzy logic reasoning depends on the human experience and 

expert knowledge. It has the ability to make decisions when the system is with vague and impre-

cise information. Neural network reasoning depends on the extraction of hidden relationships 

in given data sets. It has the ability to learn from examples, drawing conclusions based on past 

experiences. Particle swarm optimization algorithm[33] is essentially an optimization technique 

based on the ideas of evolution in biological development. It has the ability to systematically 

obtain solutions in complex problems. Type-2 fuzzy sets are used for modeling uncertainty 

and imprecision in a better way. Type-2 FLC have grades of membership function that are 

themselves fuzzy.At each value of a primary variable (Speed, Torque,Current) the membership 

is a function.The secondary membership function whose domain is the primary membership 

interval.Hence, the membership function is a three dimensional and Type-2 uses the third di-

mension that provides new design degrees of freedom for handling the various disturbances and 
uncertainties. 

Soft computing techniques model human intelligence which provides decisions under im-

precise and uncertain information. Appropriate combinations of these tools can make them 

very powerful to tackle ill-defined systems: i.e., systems whose dynamics or working environ-

ments are fully/partially known or poorly understood. In fact, several combinations of these 

techniques have been successfully integrated in a wide range of applications. Integrating soft 

computing tools with conventional control methods gave birth to an ever growing research area 

that has become .known in the research community as intelligent control. 

2 



1.2 Brief Review of literature 

Field Oriented Control methods have been sufficiently discussed in the literature and extensively 
implemented in AC motor drives [1] [ 2] [ 3] . Though there are many advantages of speed sensorless 
drives using flux observers are obvious, there always exist some difficulties and uncertainties 
resulting from model inaccuracy, motor parameter variations, and rotor time constant variation. 

So extensive research has been concentrated on current control strategies and also presented 
some .comparative studies in this topic[ll] [ 12] .These strategies can be classified as a linear 
controller such as PI controller[4]. In [2], it was reported that the transient response of the 
hysteresis controller was better and its implementation is simple and fast current control can 
be considered as a simple and efficient strategy applied for inverters to govern the currents of 
ac motors. 

Although there are several novel control methods, such as Fuzzy logic[23], neural networks[37] 
[40] [ 42] [ 44] [ 48], to show some possibilities of replacing PI type control schemes up to now, the 
most widely used form of feedback control in industrial motor drives is still based on the PI 
structure[4].To date much research has been done in self tuning control of PI controllers [4]. The 
development of neural networks was inspired by the studies of understanding of the biologi-
cal nervous system[36] [ 37] [44 ].This thesis paper laid the ground for supervised training using 
model reference controller[39]. They showed that their technique for adjusting weights could 
minimize the sum squared error over all patterns in the training set.Despite all the hype, the 
development of neural networks slowed at the end of 60's and middle 70's due to development 
of still novel methods using fuzzy logic techniques. [19] [22 ] [47 ] explained uncertain rule based 
fuzzy logic systems.Fuzzy Logic Controllers(FLC's) have been reported to be successfully used 
for a number of complex and nonlinear processes. Simple fuzzy controllers show performance 
that match classical controllers with adaptive characteristics, but are much easier to implement. 
The first fuzzy controller was introduced by Mamdani[6] [ 7].Fuzzy controllers[41] are linguistic 
controllers with human logic and sense.But they have no ability to adapt their structure. 

Adaptive Neuro Fuzzy controllers like ANFIS by Jang[43] came in 90's which have linguistic 
approach like fuzzy and adjustable weight systems like neural controllers.ANFIS controller are 
simple real time controllers which take training data from the system and using fuzzy rule base 
control the motor. 

Genetic algorithms are powerful search techniques though they are time consuming tech-
niques they guarantee global minimum/maximum search.They provide a systematic approach 
to control optimization and design.Particle swarm intelligence is a type of genetic algorithm 
technique found by kennedy[31] [33]. In this thesis work swarm intelligence is used to control 
the fuzzy scaling parameters in the control of synchronous motor. 

Type-2 fuzzy sets are used for modeling uncertainty and imprecision in a betterway.These 
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Type-2 fuzzy sets were originally presented by Zadeh in 1975 and are essentially "fuzzy fuzzy" 
sets where the fuzzy degree of membership is a Type-1 fuzzy set[18][ 30].The new concepts were 
introduced by Mendel and Liang[16] [ 20] [ 27] allowing the characterization of a Type-2 fuzzy set 
with a superior membership function and an inferior membership function;these two functions 
can be represented each one by a Type-I fuzzy set membership function.The interval between 
these two functions represents the foot print of uncertainty(FOU),which is used to characterize a 
Type-2 fuzzy set of the inputs and output of PMSM. Type-2 FLC[24] have grades of membership 
function that are themselves fuzzy.At each value of a primary variable (Speed, Torque,Current) 
the membership is a function.A new Interval based Type-2 based FLC [21] is introduced in 
this thesis work which is a simpler type-2 FLC than general type-2 FLCs in the control of 
synchronous motors. 

1.3 -Organization of Dissertation 

This thesis consists of six chapters. The introduction of vector control techniques for syn-
chronous motor along by describing the statement of problem and contributions have been 
covered in this chapter. 

Chapter 2 provides a nonlinear model of a permanent magnet synchronous motor drive 
operating employing vector control method for removing the nonlinearity. 

Chapter 3 provides a neural network based approach such as Adaptive Model Reference 
Neural Network Controller in the control of motor. 

Chapter 4 provides an Fuzzy Logic Controller based control of Synchronous motor and it 
.provides a way to tune the scaling parameters using the particle swarm optimization. 

Chapter 5 describes an Adaptive Neuro Fuzzy Inference System(ANFIS) which combines 
the characteristics of fuzzy and neural networks to control the synchronous motor.And also a 
Type-2 Fuzzy Logic Controller is also described which uses fuzzy fuzzy approaches to control 
the synchronous motor. 

Chapter 6 summarizes all the softcomputing techniques by providing the simulation results 
Chapter 7 summarizes the whole dissertation. Recommendations for future work are pre-

sented. 
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Chapter 2 

Permanent Magnet Synchronous 
•Motor Drive 

2.1 Vector Control for PMSM 

2.1.1 Principle of vector Control 

Vector control makes it possible for ac drives to behave similarly to DC drives with an inde-
pendent control of flux and torque,and with good steady-state performance and fast dynamic 
responses.The main idea of vector control is to project electrical variables from a three-phase 
time and speed dependent non-rotating reference frame into a two-phase time and speed depen-
dent non-rotating reference frame into a two-phase orthogonal time invariant rotating reference 
frame, and to control the stator currents represented by a vector. Since the control is achieved 
in field coordinates, vector control is also named as field oriented control. 

The vector control for PMSM resolves the stator current vector into two orthogonal coor-
dinate axes of a d-q synchronously rotating rotor reference frame.Three phase stator currents 
ia , ib , i are expressed as follows: 

i,, = IS sin(We(t))ib = IS sin(We (t) — 	= IS sin(We(t) + 3) 	(2.1.1) 

where Is is the amplitude of three-phase stator currents. and We is the electrical angular 
frequency. Taking into account the mechanical 120o angle between the stator coils in space, the 
stator current vector represented in the 3-phase non rotating frame is defined as in 2.1.2 

IS =ia + e 3 i6~ e 3 i6 	 (2.1.2) 

In figure 2.1.1, it is represented in the three-phase stationery reference frame. 
To implement vector control, the stator current vector needs to be transformed into a time 
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Figure 2.1.1: Three Phase Stationery reference_ frame 

invariant two-coordinate system. Generally, this transformation can be done in two steps using 
the Clarke transformation and the Park transformation in sequence. Here, for the vector control 
for PMSM, a transformation of the three-phase variables of stationary reference variables to 
the d-q synchronously rotating rotor reference frame can be expressed as Eq 2.1.3 

fgdo = Kfabc  (2.1.3) 

where 

( T ~ff]f 	ffffgdO~ — fgd0b = ILLS  

—S2fl0e b C 

k=2/3 1 	d  e f 

g 	hi 

• In the above equations, the 0-sequence variables as denoted by subscript "0" are independent 
of Be and 'are normally non-existent; f can represent not only current, but also voltage, flux 
linkage or electric charge;9e is the electrical angle between d-axis of the rotor reference frame 
and • a axis of the three-phase stationary frame. Furthermore, if rotor flux linkage vector is 
always aligned with d-axis by the vector control for PMSM, 0e is also the field angle. It can be 
derived from equation 2.1.5 

Oe =Wet+00 
	

(2.1.5) 

where 00 is the initial 0e at t=0. This transformation of the stator current vector can be 
illustrated in Fig.2.1.2 



S 

Figure 2.1.2: Stator current vector and its component in d-q reference frame 

In the above figure, A f  stands for the rotor flux linkage vector. 6 is the angle between the 
rotor field and stator current vector, known as the torque angle, iq  is the torque-producing 
component of stator current. id  is the flux-producing component of stator current. They are 
given by 

i9  = is  sin Sid = is  cos 5 
	

(2.1.6) 

For the PMSM operation at a lower than the base speed, the torque angle can be 0 <8 < 900. 

if 8 > 90°, id will be negative and the rotor flux linkage will decrease, which is names as 

flux-weakening. Although the flux-weakening can extend the speed range, it will reduce the 

torque-to-current ratio. In this project, the examined scope is within the base speed of the 

PMSM. In vector control, if desired iq  and id are already known, an inverse transformation is 

needed to obtain the stator-phase commands. According to fig. 2.1.2, an inverse transformation 

is needed to obtain the stator-phase current commands. According to fig. 2.1.2, an inverse 

transformation of K is expressed as follows: 

fabc = K-1  fqd° 	 ( 2.1.7) 

It should be mentioned that the definition of the angle used in the transformation is not unique. 

Here Be  is chosen on purpose because it is convenient to realize vector, control strategy with the 

digital simulation using MATLAB. 
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2.1.2 PMSM Model 

The more comprehensive dynamic performance of a synchronous machine can be studied by 
synchronously rotating d-q frame model known as Park equations. The dynamic model of 
synchronous motor in d-q frame can be represented by the following equations(1)-(3) [14, 13]: 

d 

	

Vds = Rid s + j lds — w'J' gs 	 (2.1.8) 

d 
V qs = Rsigs + d (Dqs  — weds 	 (2.1.9) 

	

Vf=Rsif+dt of 	 (2.1.10) 

The mechanical equation of synchronous .motor can be represented as: 

J t SZ = Te  — — BO 	 (2.1.11) 

Where the electromagnetic torque is given in d-q frame: 

T. = P(1?dsigs —'gsids) 	 (2.1.12) 

In which: 
SZ= d9,0= fStdt,w= doe = pS2,0,=p0. 
The flux linkage equations are: 

(Dds = Ldsids + Mfdif 	 (2.1.13) 

	

(Dqs  = Lqsiqs 	 (2.1.14) 

	

J?f=Lfif +Mfdids 	 (2.1.15) 

Where Rs  stator resistance,Rf field resistance, Lds  , Lq ,5  respectively direct and quadrature 

-stator inductances, Lf  field leakage inductance, M fd  mutual inductance between inductor and 

armature, 'd, and I q$  respectively direct and quadrature flux, c f field flux,TT  electromagnetic 
torque,T,. external load disturbance, p pair number of poles, B is the damping coefficient, J 
is the moment of inertia, w electrical angular speed of motor. S2 Mechanical angular- speed of 

'3 



motor, 0 mechanical rotor position, 0e  electrical rotor position. 

2.1.3 Speed Field Oriented Control Scheme for the PMSM 

The speed FOC scheme for the PMSM in this thesis is shown in Fig. 2.1.3 In the fig. 2.1.3 

Figure 2.1.3: The Speed Field Oriented Control Scheme 

variables with a subscript * stand for the reference variables. The complete system consists 
of two control loops. The outer loop (Speed loop) is for regulating the motor's speed and 
the inner loop(Current Loop) is to modulate the stator currents. Using the field-orientation 
concept, id is set to zero so that the torque equation becomes linear and the maximization of 
the torque-to-current ratio is assured.iq serves as the input to the motor torque control. In the 
hysteresis current controller, stator currents iQ , ib, i, are forced to follow the reference currents 
2Q,2b,2C, respectively, within a fixed hysteresis band are set for the motor currents and three 
hysteresis- current loops work independently. 

In vector control method [14], an alternative current machine is controlled like a separately 
excited direct current machine, the principle is to maintain the armature flux and the field flux 
in an orthogonal or decoupled .axis. 
For an optimal function with a. maximal torque, the simple solution in a synchronous motor 
is to maintain the direct component of stator current ids  = 0 , and control the speed by the 
quadrature component of the stator current iqs  . In order to have an optimal functioning, the 
direct current ids  is maintained equal to zero [13]. Substituting Eqn. 2.1.14, 2.1.15 in Eqn. 2.1.11, 
the electromagnetic torque can be rewritten for if = constant and ids  = 0 as follow: 

X 



Te(t) = Aigs(t) 	 (2.1.16) 

where A = pM fdi f . 
In the same conditions, it appears that the vds  andvq,s  equations are coupled. We have to in-
troduce a decoupling system, by introducing the compensation terms emfd and em fq  in which 

	

ernfd = WLgsiqs 	 (2.1.17) 

	

em fq  = —wLd8id3 — WMafif 	 (2.1.18) 

2-.1.4 The Current-Controlled Voltage Source Inverter 

The structure of a typical 3-phase Voltage Source Inverter(VSI) with six switches is shown in 
Fig. 2.1.4 

Figure 2.1.4: The Current Controller Voltage Source Inverter 

• S1-S6 are six power switches, which are IGBTs in this project. Va , Vb, VV  are the phase volt-
ages applied to the motor windings. Each stator phase of the PMSM is connected to each leg 
of the VLSI. At any time, three power switches are on and the other power switches are OFF. 
Also, the upper switch and the lower switch in the same bridge are driven with two compli-
mentary firing signals so as to avoid conducting through(short circuit) faults. According to the 
ON-OFF switching states of power switches,there are eight possible switching combinations, 
corresponding to eight phase voltage configurations, respectively[12].The switching patterns of 
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a three-phase VSI under current control are given in Fig 2.1.5. The voltage vectors correspond- 
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Figure 2.1.5: Switching Patterns of a 3-phase VSI 

ing to the active states are shown in Fig 2.1.6. There are six active voltage vectors from Vi to 
Vs. The remaining two vectors, i.e.,Vo toV7 are the zero voltage vectors, which correspond to 
the freewheeling states. 

Figure 2.1.6: VSI Voltage Vectors 

Current control strategies are important to high-performance drive applications. The effi-
cient of current controllers determines characteristics of motor drive systems. The hysteresis 
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current controllers provide fast responses and good accuracy due to their quick actions. Here, 
a fixed band hysteresis current controller is used to control the VSI. The switching signals are 

derived form the comparison of the current error with this band. The control target is to limit 
the current error within a desired band, which is shown in Fig 2.1.7 

Figure 2.1.7: Fixed Band Hysteresis Current Control 

The upper and lower boundaries of the hysteresis band are set for the PMSM stator currents 
and the hysteresis loops work independently. 
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Chapter 3 

Adaptive Model Reference Neural 
Network Controller 

A neural network is an information-processing system that has been developed as generalizations 

of mathematical models matching human cognition. They are composed of a large number of 

highly-interconnected processing units (neurons) that work together to perform a specific task. 

According to Haykin[44], aneural network is a massively parallel-distributed processor that 

has a natural prosperity for storing experimental knowledge. It resembles the brain in three 
respects: 

1. Knowledge is acquired by the network through a learning process 

2. Inter-connected connection strengths known as synaptic Weights are used to store the 

knowledge 

3. Each neuron has an internal state called its activation function (or transfer function) used 

for classifying vectors. 

Neural classification generally comprises of four steps: 

1. Pre-processing, e.g., noise suppression, Principal Component Analysis, etc. 

2. Training - selection of the particular features which best describe the pattern; 

3. Decision - choice of suitable method for comparing the input with the target 

4. Assessing the accuracy of the classification. The fundamental model of an artificial neuron 

that closely matches a biological neuron is given by an op-amp summer like configuration 

shown in figure 3.0.1. 
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Figure 3.0.1: Structure of Artificial Neuron 

Wherexl, x1, x1 , ... are input signals, each of the input signal flows through a gain called 
synaptic weight. The weight can be positive (excitory) or negative (inhibitory) corresponding, 
respectively, to acceleration or inhibition [8]. The summing nodes accumulate all the input 
weighted signals and then pass to the output through the transfer function which is usually 
nonlinear. The transfer function can be step or threshold type, signum type, or linear threshold 
type. The transfer function can also be nonlinear continuously varying type, such as sigmoid, 
inverse-tan, hyperbolic, or Gaussian type. The sigmoidal transfer function is most commonly 
used, and it is given by Eqn. 3.0.1 

Y = 	1 	 (3.0.1) 1 ± e  

- Where a is the coefficient or gain which adjusts the slope of the function. With high 
gain, this function approaches a step function. The sigmoidal function is nonlinear, monotonic, 
differentiable, and has the largest incremental gain at zero signal, and these properties are of 
particular interest. 

3.1 Neural network architecture 

An artificial neural network is an electrical analogue of a biological neural network. The cell 
body in an artificial neural network is modeled by a linear activation function. The activation 
function, in general, attempts to enhance the signal contribution received through different 

deuterons. The synapse in the artificial neural net is modeled by a non-linear inhibiting function, 
for limiting the amplitude of the signal processed at cell body. 

The most common non-linear functions used for synaptic inhibition are: Sigmoid unction, 
Tanh-function, Signum function, Step function as shown in Fig. 4.4.10.Sigmoid and tan hyper-
bolic (tanh) functions are grouped under soft non-linearity, whereas signum and step functions 
are under hard type non-linearity. 
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Figure 3.1.2: Common Non-linear Function used for synaptic Functions 

Depending on the nature of problems, the artificial neural net is organized in different 
structural arrangements. 
•Feedf orwardnetwork 
• Recurrentnetwork. 

Fig - 4.4.11 Common topologies of Neural Network The single layered recurrent network 
'topology was proposed by Grossberg, which has successfully been applied for classifying analog 
patterns. The feed forward structured neurals are the most common structures for the well-
known backpropogation algorithm. 

15 



Figure 3.1.3: Common Non-linear Function used for synaptic Functions 

3.1.1 Supervised Learning in Neural Networks 

Supervised learning is a process of approximating a set of "labelled" data, that is, each datum 

(which is a data point in the input-output problem space) contains values for attributes (fea-

tures, independent variables) labelled by the desired value(s) for the dependant variables, for 

example, the set of Iris examples, each labelled by the class label. Supervised learning can be 

viewed as approximating a mapping between a domain and a solution space of a problem: X Y, 

when samples (examples) of (input vector, output vector) pairs (x, y) are known, x E X, y E Y, 

x = (xl, x2, . . .,xn), y = (yl, y2, . . ., ym). How to achieve an approximation F' of labelled 

data by using a neural network such that it can generalize on new inputs x is the problem super-

vised learning is concerned with. Supervised learning in neural networks is usually performed 

in the following sequence: 

1. Set an appropriate structure of a neural network, having, for example, (n + 1) input 

neurons (n for the input variables and .1 for the bias, x0) and m output neurons and set 

initial values of the connection weights of the network. 

2. Supply an input vector x from the set of the training examples X to the network. 

3. Calculate the output vector o as produced by the neural network. 

4. Compare the desired output vector y (answer, from the training data) and the output 

vector o produced by the network; if possible, evaluate the error. 
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5. Correct the connection weights in such a way that the next time x is presented to the 
network, the produced output o becomes closer to the desired output y. 

6. If necessary, repeat steps 2 to 5 until the network reach a convergence state. 

Evaluating an error of approximation can be done in many ways; the most used being 
instantaneous error: 

Err = (o — y), orErr = j o — y I; 	 (3.1.2) 

Mean-square error (MSE): 
Err = (o — y)2 /2 	 (3.1.3) 

a total MSE sums the error over all individual examples and all the output neurons in the 
network 

P in 
Err = ( 

	

	>((k) — y(k} ) 2 )/P.m 
	 (3.1.4) 

k=1 j=1 

Where: 
• 0(k)18 the output value of the jth output of the network when the kth training example is 
presented; 
eyckl is the desired result (the desired output) for the jth output (jth independent variable) for 
the kth training example; 
• p is the number of training examples in the training data; 
• m is the dimension of the output space (the number of independent variables equal to the 
number of the output neurons in the neural network); and root-mean-square error (RMS), the 

root of the MSE. 
Depending on how an error is calculated, two types of error can be evaluated for a neural 
network. The first, called - apparent error, estimates how well a trained network approximates 

• the training examples. The second, called test error, estimates how good a trained network can 
generalize, that is, react to new input. vectors. For evaluating a test error we obviously have 

• to know the desired results for the test examples. Supervised learning is a very useful learning 
paradigm for solving problems like classification, or for learning a certain prescribed behavior, 
when the classes, labels, or desired behavior patterns are known. Supervised learning can be 
used for learning "micro rules" of stimulus-reaction type, element-class type, source-destination 
type, etc. The above general algorithm for supervised learning in a neural network has different 
implementations, mainly distinguished by the way the connection weights are changed through 
training. Some of the algorithms are discussed in this section-perceptron learning (Rosenblatt 
1958); ADALINE (Widrow and Hoff 1960); the backpropagation algorithm (Ruinelhart et al. 
1986b; and others); and (learning vector quantization) LVQ1, 2, 3 algorithms (Kohonen 1990). 
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Supervised learning uses as much of the information and knowledge as given in the data, 
but it is considered by many authors not to be plausible at a low, synaptic level. It is obviously 
plausible at a psychological level because people do learn by being supervised in one way or 
another, as well as through their own experience (which sometimes can be painful). 

3.1.2 The Feed Forward Network 

Feed forward networks often have one or more hidden layers of sigmoid neurons followed by 
an output layer of neurons. Multiple layers if neurons with nonlinear transfer functions allow 
network to learn nonlinear and linear relationships between input and output vectors. A two-
layer feed forward network is shown below in Fig. 3.1.4 

iput 	Hidden, layer 	 Output,. layer 

Pi 

n1=tansig (IW1.p1 f B1) 	: a-,=67nsig (ITV2.aj +.B2) 

Figure 3.1.4: A two layer feed forward network 

The feedforward network is used in present work because it can deal with nonlinear classi-

fication problems. Both the hidden layer and the output layer use a continuous network based 
on the nonlinear sigmoid dis.criminant function. In a multilayer feedforward neural network, 
the number of nodes in the input layer is determined by the dimension of the feature space (i.e. 

the dimension of the input vector. The number of nodes in the output layer is determined by 
the problem's desired response (i.e. the size of the target vector). Physically, the hidden layers 
are inaccessible while the output layer provides the user with learning responses after training. 
However, by adding more hidden layers, the neural network is able to extract higher-order 



statistics in order to perform more complex tasks . A multilayer feedforward network produces 
a response to the input signal by propagating in the forward direction only.There is no feedback. 
A backpropagation network is a feedforward network with feedback function added. 

Figure 3.1.5: A Multi layer feed forward network 

In general, neural networks can be classified as feedforward and feedback types depending 
on the interconnection of the neurons. At present, the majority of the problems use feedforward 
architecture, and it is of direct relevance to power electronics and motion control applications. 
Figure 3.1.5 shows the structure of a feedforward multiplayer network with two input and two 
output signals. The topology is based on Perceptron which was proposed by Rosenblatt in 
1958. 

The circles represent neurons and the dots in the connections represent the weights. Fig 3.1.5 
shows that Feed Forward Multi-Layer Neural Network The network has three layers, defined 
as input layer (a), hidden layer (b), and output layer (c). The hidden layer functions as 
a connection between the input and the output layers. The input and output layers have 
neurons equal to the respective number of signals. The input layer neurons do not have transfer 
functions, but there are scale factors, as shown, to normalize the input signals. The number of 
hidden layers and the number of neurons in each hidden layer depend on the network design 
considerations. The input layer transmits the signals to the hidden layer, and the hidden layer, 
in turn, transmits the signals to the output layer, as shown. The network can be fully connected 
or partially connected. 
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3.1.3 Back Propagation Training 

Back-Propagation training algorithm is most commonly used in a feedforward neural network 
as mentioned before. For this reason, a feed forward network is often defined as "back-prop" 
network. Figure 3.1.6 shows the principle of back propagation training. 

el.1 	e1, 2 	el. 3 

CENTRAL Cle 
' ACC Ns.......,... $ -.. 

Figure 3.1.6: Principle of Back 

In the beginning, the network is assigned random positive and negative weights. For a 
given input signal pattern, step by step calculations are made in the forward direction to derive 
the output pattern. A cost functional given by the squared difference between the net output 
and the desired net output for the set of input patterns is generated and this is minimized by 
gradient descent method altering the weights one at time starting from the output layer. The 
equations for the output of a single processing unit are given as 

N 

Net _ 	Wi~X 2 	 (3.1.5) 

Y~ = f 3 (Netp 	 (3.1.6) 

Where, 

• j is the processing unit under consideration 

• p is the input pattern number 
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• Xz is the output of the neuron connected to the neuron 

• Wj is the connection weight between the and neurons. 

• Net is the output of the summing node, i.e., the neuron activation signal. 

• N is the number of the neurons feeding the neuron. 

• f is the nonlinear differentiable transfer function (usually sigmoid), and 

• yPis the output of the corresponding neuron. 

For the input pattern p, the squared output error for all the output layer neurons of the network 
is given as 

Ep = 1(dd — yP )2 = 2YI ~(dP — yP)2 	 (3.1.7) 

Where, 

• d' is the desired output of the neuron in the output layer, 

• 4 is the corresponding actual output, 

• S is the dimension of the output vector, 

• yP is the actual net output vector, and 

• dp is the corresponding desired output vector. 

The total squared error E for the set of P patterns is then given by 

E = 2~ 1 = 2EP 1 1(d — y~)2 	 (3.1.8) 

The weights are changed to reduce the cost functional E in a minimum value by gradient descent 
method, as mentioned. The weight update equation is then given as 

W3 (t + 1) = W(  t) + 77( SWi p(t) ) 	 (3.1.9) 

Where 

• . rJ is the learning rate, 

• 	Wig (t + 1) is the new weight and 

• Wzj (t) is the old weight. The weights are updated for all the P training patterns. Suffi-
cient learning is achieved when the total error E summed over the patterns falls below a 
prescribed threshold value. The iterative process propagates the error back-propagation 
[8, 46, 45] 
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3.1.4 Neural Network Model reference Controller 

ANN is one of the branches of artificial intelligence finding widespread application in controlling 
the power flow of transmission and distribution networks using FACTS technology. ANN has 
been successfully applied in the identification and control of dynamic systems. Neural network 
controllers[40] have been implemented in the field of electrical power in many applications 
such as electric load forecasting, transient ability assessment, harmonic source identification, 
inverter current controllers, speed control of synchronous motor drives, etc. The self-adapting 
and superfast computing features of ANN make them well suited to handle nonlinearities, 
uncertainities, and parameter variations that can occur in power electronic systems. In learning 
process, neural network adjusts its structure such that it is able to output the same signals as the 
supervisor. The learning is repeated until the difference between network output and supervisor 
is enough. 

This research article introduces the application of one of the popular neural network con-
trollers, namely, model reference controller implemented in neural network toolbox of MATLAB. 
MRC could be used to regulate the speed by controlling the armature voltage. There are two. 
stages involved in the implementation of this controller, namely, system identification stage and 
controller training stage. Figure 3.1.7 shows the block diagram representation of the system 
identification stage. Plant identification GUI is an interactive environment for developing a 
neural network capable of modeling a given plant. In the control design stage, the developed 
neural network plant model is used to the train the controller. It has been observed that well 
trained controllers will be able to keep track of the reference signal. 

3.1.5 System Identification stage 

The first phase of plant identification process is to generate input/output data to train a neural 
network to represent the forward dynamics of the plant. This could be achieved by either 
generating the training data from simulink plant model or by importing the training data from 
a valid data file with input and output values. The LevenbergMarquadt algorithm [42]is used 
for training the plant model. Once the training data is acceptable, a neural network could be 
trained to identify the function of the plant identification model described as: 

y(k + d) = N(y(k), y(k — 1).....y(k — n + 1), u(k), u(k — 1), ...u(k — m + 1)) 	(3.1.10) 

where u(k)is the system input, y(k) is the system output and d is the system delay. To determine 
the control input that causes the plant output to follow a specific reference, the controller could 
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Figure 3.1.7: Block diagram representation of system identification stage 

be identified using the expression: 

— y,.(k + d) — f (y(k), y(k — 1).....y(k — n + 1), u(k), u(k — 1), ...u(k — m + 1)) 	3.1.11 ( ) — 	g(y(k), y(k — 1).....y(k — n + 1), u(k), u(k — 1), ...u(k — m + 1)) 	( 	) 
u  

However, determination of the control input based on the output at the same time is not realistic 
and hence uses the model. 

y(k + d) = f (y(k), y(k — 1).....y(k — n + 1),u(k) , u(k — 1), ...u(k — m + 1))+ 
(3.1.12) 

g(y(k), y(k — 1).....y(k — n — 1), u(k), u(k — 1), ...u(k — m + 1)) * u(k + 1) 

The SIMULINK plant model shown in Fig. 3.1.8 is used to generate the inputoutput pattern 
required in the controller training stage. The plant model must have an input port and output 
port. One may note that the input of the plant is the driving voltage to the armature and 
the output is the corresponding speed of the motor. Plant model specifications are tabulated 
in Appendix 1 . As specified in appendix 1, the maximum and minimum input voltages to 
the armature have been treated as 240 and 0 V, respectively. Random inputs in between 240 
and 0 V will be applied to the SIMULINK plant model[40] to generate the training data.The 
maximum plant output has been taken as the rated speed of the motor. Performance graph and 
training data obtained for neural network MRC at the system identification stage are illustrated 
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in Fig 3.1.10, respectively. The neural network simulation results are: 
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Figure 3.1.8: Block diagram representation of Model Reference Controller 
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Figure 3.1.9: Performance curve for the plant identification model 

The testing, validation and training data are shown in the Figures 3.1.11 

3.2 Model Reference Neural Network Controller in the 
control of Permanent Magnet Synchronous Motor 

To investigate the effectiveness of the proposed adaptive neural speed controller, a second-order 
system transfer function with the following prescribed characteristics: 0.3 s rise time, no steady-
state error and unity damping ratio to avoid overshoot is chosen as the reference mode 1 for the 
periodic step command. Therefore, in accordance with [39], the following transfer function is 

chosen in this study: 

24 



I..t.i.t-.."".>..sY.a..• cot f• NN Madan R/w rr 	Garza. :.~~  

RoTo ro rtco Mo_.  
l - 

O . 5 

-O.5 	LJ 	u 	 llL..11l 	 I 

R~T~r~rt,c~ Modo~ Output 

_os 

'o 	io 	~0 	30 	ao 	so 

Figure 3.1.10: performance curve and input-output curve for XX model 

F.1 Edit 	Ir.z:rt Toolz Oktc,p W,.dc.w Hiy 

Input 	 Plant Output 

70 	~- 	 70 

O  ~  5 

-200 	5 	10 	 O 	5 	70 

x 70 	Error 	 NN Outp~• 
7 

0.6 	 10 

0 --Mw1 	~ 	s 

70 	5 	10 	O 	5 	10 
time (s) 	 t.ms (s) 

Figure 3.1.11: Testing Data 

168.11 

G(s) = sa + 25.93s + 168.11 	
(3.2.13 )  

The PMSh1 used in this drive system is a three-phase four-pole 750 W3.47 A 1500 rpm type 

is shown in fig 3.2.14 
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Chapter 4 

Fuzzy Logic Based Speed Controller 

4.1 General Introduction 

The two most commonly implemented command current generating algorithms for controlling 
the current-controlled VSI are PI and PID schemes.In these schemes the speed error(Command 
speed-actual speed) is used to generate the command torque necessary in order to return the 
rotor to the command speed. The stator currents that must be applied to the motor in order 
to produce this desired speed are obtained from the required torque, and then the VSI is used 
to apply these currents, under the influence of the command currents, the rotor speed is made 
to track the command speed. 

The calculations of command torque, however, rely upon mathematical modeling equations 
of the PMSM that are dependent upon the internal motor parameters of d-and q- axis reac-
tances. This leads to problems because, in the PMSM, the rotor magnetic saliency, saturation 
and armature reaction vary during operation under different speed and loading conditions and 
thus affect the air gap flux and reactance parameters. Therefore, under operating conditions, 
the PMSM model contains unknown dynamics. This affects the performance of PI and PID 
based control systems at different operating conditions, because in these controllers the d-q axis 
parameters are assumed to be constant. In addition, conventional PI and PID controllers are 
very sensitive to step changes of command speed and load disturbances. Thus, the effective 
control of PMSM needs a complex structure for high performance applications, where rapid 
speed response, fast and precise handling of load changes and parameter variations, overload 
capacity, maintenance free operation, size, weight and robustness are all of primary concern. 

The use of fuzzy logic controllers(FLC) eliminates much of these problems and makes the 
control systems more generic. The FLC has the advantage over conventional controllers because 
it does not need the exact systems mathematical model, and therefore it does no rely upon 
knowledge of dynamically changing parameters, such as reactances. Thus it can handle nonlinear 



functions of any arbitrary complexity, and it is easily expanded and modified. 

4.2 Fundamentals of Fuzzy Logic Control 

Fuzzy logic is an extension of Boolean logic that is designed to handle the concept of partial 
truth-truth values between "completely true" and "completely false"- between 0 and 1 [5]For 
instance, in fuzzy logic a statement may be true to a degree of 0.7, not just 1 or 0. 

The fuzzy set(subset) A on the universe(set) X is defined by a membership function, µA 
from X to the real interval[0,1], which associates a number AA(x) E• [ 0,1] to each element x 
of universe X.P A(x) represents the degree of membership of the element x to the fuzzy set 
A. For example, the equation t A(x) =0.5 means x has A-ness of about 50A fuzzy singleton 
S(x0 ) = ,A(x) is a fuzzy set that supports only one element xo.Therefore, the fuzzy set(A in 
this discussion) is the union of the fuzzy singletons of all its constituent elements(here, all the 
elements x of universe X). However, in fuzzy set theory, the boundaries of the fuzzy sets can 
be vague and ambiguous, making it useful for appropriate systems. Fuzzy sets are represented 
graphically buy means of their membership functions. The four most popularly use membership 
functions are shown in Fig. 4.2.1 These membership functions can be defined as, 
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GaussianFunction : f (x; or, c) = e 22 	 (4.2.1) 

Trapezoidal : f (x; a, b, c) = {0, x < a 
x—a  

_ 	,a<x<b 
b—a 
1,b<x<c 
c—x  

_ 	,c<x<d 
c—b 

=0,x>d} 

Singleton : f (x) _ {1,x = x,, :: 0, x x0 } 	 (4.2.2) 

Fig. 4.2.1 shows some possible choices of membership functions for a fuzzy set associated with 

the linguistic value ZE in the universe X= [-1,1].In these examples we see that the number 0 

fully belongs to the fuzzy sets while the numbers -1 and +1 do not. This need not necessarily be 

the case for all possible choices of membership functions.The choice of fuzzy logic membership 

functions depends on the expert. 

The complete process of formulating the mapping from a given input to an output using 

fuzzy logic is known as fuzzy inference. There are two types of fuzzy inference methods: 

Mamdani and Sugeno types [6].The difference between the two methods is only in the way the 

output is defined. In control applications, Mamdani type fuzzy inference is the most commonly 

used method and is the one utilized for this work. The process of fuzzy inference consists of 

three main components. These are given as follows: 

1. Fuzzification 

2. Rule Base Evaluation 

3. Defuzzification 

4.2.1 Fuzzification 

The general structure of a complete fuzzy control system is given in Fig. 4.2.2 . The plant 

control u is inferred from the two state variables, error (e) and change in error Le [7]. 

The fuzzification module converts the crisp values of the control inputs into fuzzy values. A 

fuzzy variable has values which are defined by linguistic variables (fuzzy sets or subsets) such as 
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Figure 4.2.2: Basic Structure of Fuzzy Control System 

low, Medium, high, big, slow where each is defined by a gradually varying membership function 

[7, 8] 

4.2.2 Database and Rules 

The data base and the rules form the knowledge base which is used to obtain the inference 
relation R. The data base contains a description of input and output variables using fuzzy sets. 
The rule base is essentially the control strategy of the system. It is usually obtained from expert 
knowledge or heuristics; it contains a collection of fuzzy conditional statements expressed as a 
set of IF-THEN rules, such as: R(i) : 
If xlisF1 and x2isF2 and xnisF THEN Y is G(i), i=1, , M 
where : x1 , x2 , , xn is the input variables vector, Y is the control variable, M is the number of 
rules, n is the number fuzzy variables, (Fl , F2 , Fes,) are the fuzzy sets. For the given rule base 
of a control system, the fuzzy controller determines the rule base to be fired for the specific 
input signal condition and then computes the effective control action (the output fuzzy variable) 
[7, 9]. The mathematical procedure of converting fuzzy values into crisp values is known as 
'defuzzification'. This operation can be performed by several methods of which center of gravity 
(or centrod) and height methods are common [9, 10]. The actual crisp input are approximates 
to the closer values of the respective universes of discourse. Hence, the fuzzyfied inputs are 
described by singleton fuzzy sets. The elaboration of this controller is based on the phase plan. 
The control rules are designed to assign a fuzzy set of the control input U for each combination 
of fuzzy sets of e and De [11]. Fig. 4.7.15 shows one of possible control rules. Fig. 4.7.15 shows 
the rules base. The rows represent the rate of the error change De and the columns represent 
the error e. Each pair (e,De) determines the output level NB to PB corresponding to control 
input U. 
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Figure 4.2.3: Basic Structure of Fuzzy Control System 

Here NB is negative big, NM is negative medium, ZR is zero, PM is positive medium and 
PB is positive big, are labels of fuzzy sets and their corresponding membership functions are 
.depicted in Figures ??, respectively. The continuity of input membership functions, reasoning 
method, and defuzzification method for the continuity of the mapping iaf uzz y(e, é is necessary. 

Figure 4.2.4: Membership function of input Le 
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Figure 4.2.6: Membership function of output U 

4.2.3 Inferencing 

Max-Min reasoning Method: The MAX-MIN method tests the magnitudes of each rule and 

selects the highest one. The horizontal coordinate of the "fuzzy centroid" of the area under 

that function is taken as the output. This method does not combine the effects of all applicable 

rules but does produce a continuous output function and is easy to implement. 
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We shall consider the following multiple fuzzy reasoning form: RULE 1: A l andB1  => C1  
RULE 2: A2andB2  => C2  

RULE n: AnandB => C. 
FACT: X AND Y CONS: C' 
The inference result Ci'(i=1,2,3....n) which is inferred form the fact[X and Y] and the fuzzy 

rule is given as below: 

,uci'(z) = ,aA (X0) A µBi(Y.) A,uci(Z.) 	 (4.2.3) 

The final consequence C' is aggregated by taking the union(U) of C1',C2',.....Cn' obtained by 

µcg(z) = µci'(Xo) V ,t2(Z)  V I-ics'(Z) 	 (4.2.4) 

This fuzzy reasoning method is known as Mamdani's method and called " MIN-MAX GRAV-
ITY METHOD". 

4.3 Defuzzification 

The tasks of defuzzification module are to: convert the set of controller output values into a 
single point wise value, perform output re-normalization that maps the point wise value of the 
controller output into its physical domain. The choice of defuzzification operator is the most 
important consideration in the defuzzification stage. Some of the most widely used defuzzifiers 
are: 

The center of gravity defuzzifier specifies the z* as the center of the area (COA) covered by 
the membership function of C' and is given by equation of the form. 

Z# 	 fw , ( z)dz _  
fw  µ,(z)z.dz (4.3.5) 

Where fw  is the convolution integral. The advantage of the center of gravity defuzzifier lies in 
its intuitive plausibility. The disadvantage is that it is computationally intensive. 

4.4 Control Of Permanent Magnet Synchronous Motor 
through Fuzzy Logic Control 

The schematic diagram of the speed control system under study is shown in Fig. 4.4.7. The 
power circuit consists of a continuous voltage supply which can provided by a six rectifier 
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thyristors and a three phase GTO thyristors inverter whose output is connected to the stator 
of the synchronous machine.The field current of the synchronous machine, which determines 
the field flux level is controlled by voltage . The self-control operation of the inverter-fed 
synchronous machine results in a rotor field oriented control of the torque and flux in the 
machine as mentioned earlier. The flux in the machine is controlled independently by the field 
winding and the torque is affected by the fundamental component of armature current Fig. 4.4.7 
shows the schematic diagram of the speed control of synchronous motor using the FLC. 
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Figure 4.4.7: Center of Area Defuzzifier Method 

The blocks FLC,,, NC,,,, Plid , Pliq are regulators, the first one is the fuzzy controller for 
speed and the third is the proportional integral (PI) regulator. For direct current and the fourth 
is the PI regulator for the quadrature current. To avoid the appearance of an inadmissible value 
of current, a saturation block is used. 

4.4.1 FLC Structure for the PMSM Drive 

The motor dynamics can be represented by the following equation: 

Te = TL + BmW,. + - JmPW r 	 (4.4.6) 

where Te is the electrical torque,TL is the load torque,B,,,, is the friction damping coefficient,Jm 
is the rotor inertia constant, p is the differential operator and wT is the rotor speed. 
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The dynamic model of the PMSM can be rewritten from the synchronous motor dynamic 
equation and Eqn. 4.4.6 as 

Lgpiq + LdPWrid = vq — rsiq — Kbw,.pwr = (Te — TL — Bmwr)/Jm 	(4.4.7) 

where Kb = PW,,,,.As the FLC can handle any non-linearity, one can consider the load as having 
unknown nonlinear mechanical characteristics. The load can be modeled using the following 
equation as 

TL=AwT+Bw,+C 	 (4.4.8) 

where A,B,C are arbitrary constants.To make the control task easier, the equations of an 
PMSM are expressed as a single input and single output system by combining equations ?? in 
continous time domain form as, 

Jm dtr = Te — (Bm + B)wr — A(wr + AW,.) 2 — C 	 (4.4.9) 

J. dw, + Owr 
dt 

	= (Te + ATe) — (Bm + B) (w,. + Aw,) — A(wr + &)r )2 — C 	(4.4.10) 

Subtracting Eqn. 4.4.9 from Eqn. 4.4.10 gives, 

d( dt T) 	(ATe) — ((B,,,,+ B + 2Awr )(Awr ) — A(Awr )2 	(4.4.11) 

By replacing all the continous quantities of Eqn. 4.4.11 by their finiter differences, the discrete 
time small signal model of the simplified PMSM with nonlinear load can be given as 

AT(n) _ "zAe(n) + (B,,,, + B + 2Awr(n))(Awr(n)) + A(Awr (n))2 	(4.4.12) 

Hence, 

Te(n) = 	AT,(n) = .f (Ae(n), Ow,(n), w,(n)) 	(4.4.13) 
discrete 

whereAe (n) = Aw,. (n) — Ow,. (n —1) is the change of speed error, Aw,. (n) = w(  n) — w,r (n) is the 
present sample of speed error,Awr(n — 1) is the past sample of speed error,wr(n) is the present 
sample of actual speed,w,*. (n) is the present sample of command speed,ts is the sampling time 
interval and f denotes the nonlinear function. Thus the purpose of using the FLC is to map 
the nonlinear functional relationship between electrical torque Te and the rotor speed w,.. 

In real-time, the command q-axis and d-axis currents iq and is are used to get the motor 
command phase currents ia,ib,i~ by using Park's Transformation. 
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4.4.2 Tuning Procedure of Fuzzy parameters 

There are two categories of Fuzzy Logic metering parameters that can be tuned: dynamic range 
limits and rule weights. The dynamic ranges, affect controller behavior by defining the linguistic 
variables. The rule weights,affect controller behavior by defining the relative importance of 
each rule. Rule weights can be thought of as a way to balance objectives. Two dynamic range 
parameters, LL, representing the low limit, and HL, representing the high limit, are associated 
with both inputs and outputs of the FL ramp metering algorithm. 

Essentially, these dynamic range parameters can be adjusted to redefine each fuzzy class, 
such as,NB,NM,ZR,PM,PB. Adjusting these parameters changes both the shape and range of 
the fuzzy class,which changes the behavior of the controller as a result. Within the fuzzification 
process of the controller, the the following scaling equation normalizes the crisp variables from 
the (LL, HL) range to the [0, 1] range (Taylor and Meldrum, 1995, 1997, 2000a; Taylor et al., 
1998), as shown. 
Normalized variable = OriginalCrispvariable  _  LL  

HL—LL - 	HL—LL 

4.5 Introduction to Particle Swarm Optimization Algo-
rithm 

4.5.1 Overview of Intelligent Optimization Using Stochastic Search 

Here, intelligent optimization refers to a broad category of population based stochastic opti-
mization algorithms, such as Differential Evolution (DE), Genetic Algorithms (GA), Particle 
Swarm Optimization (PSO), etc. Intelligent optimization algorithms are considered advan-
tageous compared with classic optimization methods if the optimization problem is complex, 
stochastic, or highly nonlinear with multiple local optima. Specifically, the advantages of intel-
ligent optimization lie in their intrinsic parallelism, ability to solve huge and complex problems, 
minimum requirement on domain specific knowledge, etc. Details about these advantages are 
discussed as follows. 

First, these intelligent optimization algorithms are intrinsically parallel. Most classic algorithms 
are serial and can only explore the searching space in one direction at a time. This difference 
between classic algorithms and intelligent algorithms is illustrated in Figure 4.5.8. From this 
figure, , it can seen that if the solution discovered turns out to be suboptimal, there is nothing 
to do but abandon the current search and start over. Instead, the intelligent optimization al-
gorithms can explore the solution space in multiple directions simultaneously. If one path does 
not work, they can easily eliminate that path and continue work on more promising ones. This 
provides a greater chance to find the optimal solution. 
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Due to the parallelism, intelligent optimization algorithms are particularly suitable for huge 
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Figure 4.5.8: Difference Between Classic and Intelligent Algorithms 

problems where the solution space is too vast to search exhaustively in reasonable time. For 
example, for the defensive islanding problem of a power system consisting of n transmission 
lines described in [?], the number of possible solutions is equal to 2n. Thus, the search space 
is huge even for a medium scale power system with 41 lines because of the existence of 241 
= 2.199* 1012 possible solutions. The implicit parallelism of the intelligent optimization al-
gorithms allow there to successfully find optimal or very good results in a short time after 
exploring a small region of the searching space. 
Another notable strength of the intelligent optimization algorithms is that they perform well 
for complex problems with multiple local optima. Figure 4.5.9 illustrates the existence of local 
optima in a two-dimensional searching space. Most practical problems are much more complex 
than this example and may have a vast searching space that is impossible to search thoroughly. 
Many classic search algorithms can be trapped in local optima. Intelligent optimization algo-
ritlimti have been proven to be cff(xctive at escaping from local optinia and discovering tlic global 
optimum in complex searching spaces. It should be noted that, sometimes, there is no way to 
tell whether a solution is the global optimum or just a very good local optimum. However, 
even when the intelligent optimization algorithms cannot find the global optima, it can usually 
find a good local optimum. The last advantage worth mentioning here is that these intelligent 
optimization algorithms do not require detailed domain specific knowledge as other optimiza-
tion algorithms do. This advantage is very important for their possible application to the fault 
diagnosis problem here. Instead of using domain specific information to guide the search, these 
algorithms make random changes to their candidate solutions and then use a fitness function, 
often multivalued, to determine whether those solutions are good or not. 

As a new development of the intelligent optimization algorithms, Particle Swarm Optimiza- 
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Figure 4.5.9: Existence of local optima in a two-dimensional searching space 

tion is simple in concept and highly computationally efficient. It has been proved to be a very 
powerful algorithm and has been applied to a lot of practical problems in the past years. For the 
above mentioned defensive islanding problem, the PSO algorithm can find efficient solutions by 
investigating just a very small percent of the candidate solutions. i.e. 400 instead of 2.199*1012 
solutions [?]. This work explores the application of PSO to the PXISNI speed control problem 
under dynamic conditions. 

4.5.2 Particle Swarm Optimization 

Particle Swarm Optimization (PSO) is a population based stochastic search algorithm. It was 
first introduced by Kennedy and Eberhart in 1995 [31]. Since then, it has been widely used 
to solve a broad range of optimization problems. The algorithm was presented as simulating 
animals social activities, e.g. insects, birds, etc. It attempts to mimic the natural process of 
group communication to share individual knowledge when such swarms flock, migrate. or hunt. 
If one member sees a desirable path to go, the rest of this swarm will follow quickly. In PSO, this 
behavior of animals is imitated by particles with certain positions and velocities in a searching 
space, wherein the population is called a swarm, and each member of the swarm is called a 
particle. Starting with a randomly initialized population, each particle in PSO flies through the 
searching space and remembers the best position it has seen. Members of a swarm communicate 
good positions to each other and dynamically adjust their own position and velocity based on 
these good positions. The velocity adjustment is based upon the historical behaviors of the 
particles themselves as well as their companions. In this way. the particles tend to fly towards 
better and better searching areas over the searching process [31. 34]. The searching procedure 
based on this concept can be described by 4.5.14. 



vk+1 = w * vi + c1rand1  x (pbest i  — xi) + c2rand2  x (gbest — Xk)xk+l = xk + v,! +1 (4.5.14) 

In 4.5.14,C1,C2 are constants, defined as acceleration coefficients; w is the inertia weight factor; 
rand, and rand2  are two random functions in the range of [0,1]; x i  represents the ith particle 
and pbest. the best previous position of xi, gbest is the particle among the entire population; 
vz  is the rate of the position change(velocity) for particle x i ; gbest is the best particle among 
the entire population; vz  is the position change(velocity) for particle xi. Velocity changes in 
(5.5a). comprise three parts, i.e. the momentum part, the cognitive part, and the social part. 
This combination provides a velocity getting closer to pbest and gbest. Every particles current 
position is then evolved according to 4.5.14, which produces a better position in the solution 
space. Figure 4.5.10 is a conceptual illustration of this searching process according to 4.5.14. 

;f 	 • 

Figure 4.5.10: Vector space representation of PSO 

According to 4.5.14, several factors impact the performance of the PSO algorithm, i.e. the 
inertia weight factor w and the two acceleration coefficients, cl and c2. Since the introduction 
of the PSO method in 1995, a considerable amount of work have been done in improving the 
original version of PSO by varying these three factors. Using different or time varying inertia 
weight factor can balance the local and global search during the optimization process. The 
acceleration constants serve dual purposes in this algorithm. First, they control the relative 
influence toward gbest i  and pbest z  respectively. Second, the two acceleration coefficients corn- 



bined form what is analogous to the step size of an adaptive algorithm. Acceleration coefficients 
closer to zero will produce fine searches of a region, while coefficients closer to one will result in 
lesser exploration and faster convergence. Setting the acceleration greater than one allows the 
particle to possibly overstep gbest and pbesti, resulting in a broader search. Further discussion 
about the proper parameter setting can be found in [32]-[35] and their references. 

4.53 PSO Algorithm 

In fully exploring the search region, one wants each particle (each bird in the preceding ex-
ample) to have a certain degree of randomness in its search. Also, the particle should be able 
to approach the optimum. Particles are .then coded with speed and position only. Speed de-
termines the search direction. Position determines its fitness value by evaluating the objective 
function. PSO is easy to implement. There are very few parameters that need to be specified. 
Studies also indicate that PSO is robust and quickly solves optimization problems. PSO is first 
initialized with a swarm of particles.. These initial particles are generally randomly assigned. 
The position of each particle represents a feasible solution. Then, PSO searches for the optimal 
solution by updating its generations. In every generation (iteration), each particle is compared 
with two "best" values, pbest and gbest. Pbest in the best solution (with the greatest fitness 
value of the corresponding objective function) a particular particle has achieved so far. Gbest 
is the global best that any particle has achieved. The particle then updates its position and 
velocity with the following pseudo code: 

1. Initialize Xid and V d, for all i, d; 

2. Let pbesti  = x igbest i  = min z  f (x3 ) f oralli(Initializepbesti )andgbesti); 

3. For i=1 to n Do 

4. For d=1tomDo 

5. xid = xid + V d 

6. Vd — w * Vd + clxrandx() * (pbest id — x id) + c2xrand2() * (gbestd — 

8. If f (xi ) < f (pbesti ), thenpbesti  = x i ; 

9. If f (xi ) < f (gbesti), thengbesti = x i ; 

10. End Do 
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where 

• i = 1 to n, the index number of particles that comprise the "swarm", 

• d = 1 to m, the index number of the dimension of a particle, 

• f =f(x), the objective function, 

• Xi= the position of particle i 

•. V = the velocity of particle, 

• w = the inertia weight, 

• C1, c2  = learning factors, 

• rand,(), rand2()= random scalars that fall between 0 and 1, 

• pbestid= the the particle best for the dth dimension of the ith particle, 

• gbestd  = the dth dimension of the global best. 

The number of particles in the group typically ranges from 20 to 40. A group size of 10 is 

generally large enough to achieve good results. For some particularly complicated optimization 

problems, a larger group size, say 200, can be applied. Increasing the group size will accelerate 

the convergence speed and the probability of finding a global optimum; however, a larger group 

size normally takes a longer time to compute. Furthermore, a larger group may not be suitable 

for real-time optimization. In this research, the group size is set to 10. 

Particle dimension indicates the number of elements that compose a particle. It is deter-

mined by the problem to be optimized. For this research, the particle dimension is set to the 

number of parameters that will be tuned for the FLC. Such parameters include high and low 

limits of fuzzy membership functions and the weights for individual fuzzy rules. Particle veloc-

ity indicates how fast a particle will move. This variable is an m-dimensional vector, where in 

is the particle dimension. To search effectively, particles' velocities are confined to predefined 

maximum values Vmax. The maximum velocity is then set for each of its dimension (variable 

to be optimized). A high Vmax enables particles to fully explore the search region . However, 

with too high a Vmax, particles will be moving too fast and will easily pass the optimum solu-

tion. A -low Vmax will allow particles to easily catch the local optimum. However, a low Vmax. 

may result in incomplete exploration, of the search region and may confine the searching to a 

local optimum rather than a global optimum. Suppose that [A,B] is the feasible range defining 

the search region of the jth dimension of particle i; the maximum velocity will then generally 
be defined as —A-B—. 
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• The inertia weight w is applied to weight the impact of the history of velocities on the 
current velocity, thus affecting the equilibrium between global (wide-ranging) and local (nearby) 
exploration abilities of the particles (Shi and Eberhart, 1998). A large value of w favors global 
searching (exploring new areas), while a small w tends to facilitate local searching that finds 
better solutions within the current search area. A proper inertia weight helps to maintain the 
balance between global searching and localsearching abilities. Thus, the PSO will require a 
smaller number of iterations, or fast convergence. A study by Shi and Eberhart (1998)[50] 
indicates that when Vmax is relatively large, an inertia weight w = 0.8 is a good choice. When 
Vmax is relatively small, an inertia weight of approximately 1 is a good choice. 

Learning constant ci is the factor that indicates how much a particle is affected by its 
historical personal (particle) best position (solution). Learning constant Q indicates how much 
the particle is affected by the global (group) best position within the whole group. Under most 
conditions, Cl and C2 range from 0 to 4. Generally, C1=C2=1.4, but this need not to be 
the case. The best particle position, pbest, represents the individual best solution a particular 
particle has ever found. For a group of particles, the value of pbest is equal to the number 
of particles. The best global position, gbest, is the best solution that has ever been found by 
the whole group (swarm). Accordingly, there is only one gbest in every iteration. Normally, 
an exit condition is activated when PSO either finds a solution that meets the minimum error 
requirement, or when the maximum number of iterations is reached. In this research, PSO 
will not exit until it reaches its maximum number of iterations. This is because the objective 
function minimizes the speed error in the PMSM. Intuitively, there will not be any particle that 
can achieve a error of 0. As a result, the global optimum is used as the optimal solution for the 
objective function after a whole set of iterations. 

xid = xid -~ V dV d = X * V d + Cl * rand, () * (pbeStid — xi,d) + c2 * rand2 () * (gbestd — Xid) (4.5.15) 

Eqn 3.1.11updates a particle's position after every iteration. Equation 3.1.12 updates a 
particle's speed after every iteration. Equation 3.1.11 is easily understood. Equation 3.1.12 
has three components. Component 1 expresses the inertia of particles. Component 2 can be 
explained by Thorndike's law of effect (1927)[49], which indicates that a "correct" random 
action is more likely to be repeated in the future. Here, the cognitive action stresses the action 
of moving toward the "correct" solution. This component represents the learning of individual 
particles. Such learning stimulates the particle to move toward a better ,position. Component 3 
can be explained by Bandura's vicarious reinforcement and imitative learning (1963) [48], which 
indicates that the probability of a certain action will be stressed once the result of that action 
leads to a better solution. In other words, the cognition of a particular member will be emulated 
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by other members if this member's action produces a better solution. 

4.5.4 Objective Function 

After the PSO creates a population of solutions for the FLC parameters, the fitness value of 
each solution is calculated using the objective function of the torque based on speed and its 
change. The Objective Function is given as follows 

speedl = ge * e9e*lo + 10 * overshoot 

 

speed2 = gce * e9Ce*10  + 10 * overshoot  (4.5.16) 

speed3 = gu * e9u*" + 10 * overshoot 

Hence,Fitness Function 

F1 =  1  F2 =  1  F3 =  1  (4.5.17) 1 + speed  1 + speed  1 + speed 

The optimization is performed every 20 seconds and the FLC parameters are updated in the 
same timely manner. A default FLC parameter set is selected to be used as the initial pa-
rameters for the very frst simulation interval.PSO then attempts to perform optimization. At 
the beginning of every other simulation interval, the PSO is initialized with several randomly 
selected FLC parameter sets as its particles.The fitness value of each FLC parameter set is then 
calculated according to the objective function.PSO then updates its global best and particle 
best for the next iteration. After the PSO reaches its maximum iteration, the optimization is 
finished and the parameter set with the highest fitness value is selected as the FLC parame-
ter set to be applied in the next simulation interval. The PSO is stopped at the end of the 
simulation. 

Fig. 4.5.11 shows the optimization of fuzzy parameters in the PMSM Model. 

4.6 Type-2 Fuzzy Logic Control Approach 

Permanent magnet synchronous motor drives are highly efficient, high speed machines and they 
have simple mechanical construction and possess high reliability. However the performance is 
affected by the uncertainties in the drive system and also load disturbances due to the growing 
demands of consumer power consumption. They should operate even under conditions of high 
uncertainties and load disturbances. Traditional control strategies have already been developed 
to handle such uncertainties. But they lack high precision and under very high load disturbances 
they cannot handle uncertainties. 



Figure 4.5.11: PSO optimization of FLC in Permanent Magnet Synchronous Motor Control 

Fuzzy Logic controller is such a traditional controllers using expert decision making rules and 
with a powerful reasoning capacity. The fuzzy sets were presented by L.A.Zadeh in 1965[18] to 
process/manipulate data and information affected by unavoidable uncertainty/imprecision. They 
were designed to mathematically represent the vagueness and uncertainty of linguistic prob-. 
lems;there by obtaining formal tools to work with intrinsic imprecision. indifferent type of prob-
lems;it is considered a generalization of the classic set theory. Intelligent Systems based on 
fuzzy logic are fundamental tools for non linear complex system modeling.The fuzzy sets and 
fuzzy logic are the base for fuzzy systems,where their objective has been to model how the 
brain manipulates inexact information such as an uncertainty in system. The uncertainty here 
is the measurement and process uncertainty of PMSM. Uncertainty in the antecedent part of 
fuzzy occurs due to the sensor measurements which typically contains some amount of noise 
due to atmospheric conditions which is given as input.The uncertainties at the consequents of 
the fuzzy occur due to the external load disturbances. 

The traditional Type-1 FLC's cannot fully handle the uncertainties associated with linguistic 
and numerical reasoning problems under changing dynamic disturbances.Type-1 FLC handles 
the uncertainties associated by using precise and crisp membership functions. Once the Type-1 
MF has been chosen, all the uncertainty disappears, because Type-1 membership functions are 
totally precise[15] and become certain.The designed Type-1 Fuzzy sets may not be precise with 
the associated uncertanties.It may cause the degradation in the PMSM's control. 

Type-2 fuzzy sets are used for modeling uncertainty and imprecision in a betterway.These 
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Type-2 fuzzy sets were originally presented by Zadeh in 1975 and are essentially "fuzzy fuzzy" 
sets where the fuzzy degree of membership is a Type-1 fuzzy set[18, 30].The new concepts were 
introduced by Mendel and Liang[16, 27] allowing the characterization of a Type-2 fuzzy set 
with a superior membership function and an inferior membership function;these two functions 
can be represented each one by a Type-I fuzzy set membership function.The interval between 
these two functions represents the foot print of uncertainty(FOU),which is used to characterize 
a Type-2 fuzzy set of the inputs and output of PMSM. Type-2 FLC have grades of membership 
function that are themselves fuzzy.At each value of a primary variable (Speed, Torque,Current) 
the membership is a function.The secondary membership function whose domain is the primary 
membership interval.Hence, the membership function is a three dimensional and Type-2 uses 
the third dimension that provides new design degrees of freedom for handling the various 
disturbances and uncertainties. 

4.7 Interval Type-2 Fuzzy Set Theory 

4.7.1 Type-2 Fuzzy Sets 
A type-2 fuzzy set [26, 25]expresses the non-deterministic truth degree with imprecision and 
uncertainty for an element that belongs to a set.A type-2 fuzzy set denoted by A, is characterized 
by a type-2 membership function / A(x, u), where xEX,u€J~ C [0, 1] and 0 < /A(x, u) < 1 
defined in equation(12)[15]. 

A = (x, µa (x)) Ix E XA = (x, u, µa (x, u)) I x E X, VuEJJ u C [0,1] 	(4.7.18) 

A can also be expressed as follows[21]: 

A = f ~.cA(x, u)/(x, u)Jx u C [0, 1] 	 (4.7.19) 
2EXEJ 

where f f denotes union over all admissible x and u[21]. J, is called primary membership of 
x,where Jr,, C[0,1] Vx E X [21].The uncertainty in the primary memberships of a type-2 fuzzy 
set A, consists of a bounded region that is called the footprint of uncertainty(FOU). It is the 
union of all primary memberships [21]. Recently, it has been shown that regardless of the 
choice of the primary membership function (triangle, Gaussian, trapezoid), the resulting FOU 
is. about the same[22]. According to [22], the FOU of a type-2 membership function also handles 
the rich variety of choices that can be made for a type-1 membership function, i.e., by using 
type-2 fuzzy sets instead of type-1 fuzzy sets, the issue of which type-1 membership function 
to choose diminishes in importance. For type-2 fuzzy sets there are new operators named the 



meet (denoted by Tl ) and join (denoted by U ) to account for the intersection and union[27]. 
According to [28], a type-2 fuzzy set can be thought of as a large collection of embedded type-1 
sets each having a weight to associated with it. 

At each value of x say x= x', the 2-D plane whose axes are u and µA(x', u) is called a vertical 
slice of µA(x, u). It is µA(x = x', u) for x' E X and Vu E J C [0, 1]. A secondary membership 
function is a vertical slice of µA(x, u),It is UA(x = x', u) for x' E X and VuEJX ,u C [0, 1] [18],i.e., 

PA(x = x', u) = ILA(x) = f .fx'(u)/(u)J ,  C [0,1] 	(4.7.20) 
EJI 

in which 0 < f f , (u) < 1. BecauseVx' E X , the prime notation onpA(x') is dropped and MA(x) 
is referred to as a secondary membership function [21]; it is a type-1 fuzzy set which is also 
referred to as a secondary set [21]. Many choices are possible for the secondary membership 
functions. According to [20], the name that we use to describe the entire type-2 membership 
function is associated with the name of the secondary membership functions. For example, 
when f(u) = 1,Vu E JJ  C [0, 1] then the secondary membership functions are interval sets, 
and, if this is true for Vx E X,we have the case of an interval type-2 membership function 
which characterizes the interval type-2 fuzzy sets[20]. Interval secondary membership functions 
reflect a uniform uncertainty at the primary memberships of x[20]. Since all the memberships 
in an interval type-1 set are unity, in the sequel, an interval type-1 set is represented just by its 
domain interval, which can be represented by its left and right end-points as [l,r] [25]. The two 
end-points are associated with two type-1 membership functions that are referred to as upper 
and lower membership functions which are bounds for the footprint of uncertainty FOU(A)[25]. 
The upper membership function is associated with the upper bound of FOU(A) and is denoted 
by µA(x),`dx E X [20]. The lower membership function is associated with the lower bound of 
FOU(A) and is denoted by µA(x),Vx E X[20]. 

The type-2 fuzzy controller which controls the synchronous motor has many advantages 
when compared to a conventional type-1 fuzzy controller. Following are some of the advantages: 
As the type-2 fuzzy sets membership functions are themselves fuzzy and include a FOU, then 
they can model and handle the linguistic and numerical uncertainties associated with the inputs 
and outputs of the synchronous motor FLC in changing and dynamic unstructured environments 
and hence they can handle the difficulty associated with determining the exact membership 
functions for the fuzzy sets [25]. Therefore, FLCs that are based on type-2 fuzzy sets will have 
the potential to produce a better performance than the type-1 FLCs. Using type-2 fuzzy sets 
to represent the FLC inputs and outputs will result in the reduction of the FLC rule base 
when compared to using type-1 fuzzy sets as the uncertainty represented in the footprint of 
uncertainty in type-2 fuzzy sets lets us cover the same range as type-1 fuzzy sets with smaller 
number of labels and the rule reduction will be greater when the number of the FLC inputs 
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Figure 4.7.12: Type-2 Fuzzy Logic Controller 

increases [20]. Each input and output will be represented by a large number of type-1 fuzzy 
sets which are embedded in the type-2 fuzzy sets[25, 21],. The use of such a large number of 
type-1 fuzzy sets to describe the input and output variables allows for a detailed description of 
the analytical control surface as the addition of the extra levels of classification gives a much 
smoother control surface and response. 

4.7.2 Type-2 Fuzzy Logic controller (FLC) 

A type-2 FLC contains five components which are fuzzifier, rule base, fuzzy inference engine,type-
reducer and defuzzifier.The synchronous motor control uses an Interval type-2 fuzzy set as they 
are simple to use[21] and they distribute uncertainty evenly among all membership functions [20] .Since 
the general type-2 FLC is computationally intensive and the computation simplifies a lot when 
using interval type-2 FLC[21] (using interval type-2 fuzzy sets) which enables us to design a 
controller for synchronous motor in real time. The type-2 FLC works as follows, the crisp inputs 
from the input sensors are first fuzzified into, in general, input type-2 fuzzy sets which then 
activates the inference engine and , the rule base to produce output type-2 fuzzy sets. These 
output type-2 fuzzy sets are then processed by the type-reducer which combines the output 
sets and then performs a centroid calculation, which leads to type-1 fuzzy sets called the type-
reduced sets[20]. The defuzzifier can then defuzzify the type-reduced type-1 fuzzy outputs to 
produce crisp outputs to be fed to the motor. The uncertainty is handled by the antecedents 
and consequents of interval type-2 fuzzy sets which include FOUs to accommodate the linguistic 
and numerical uncertainties associated with changing unstructured environments. The interval 
type-2 fuzzy sets also include a large number of embedded type-1 fuzzy sets and thus according 
to [11] the type-2 FLC can be thought of as a collection of many different embedded type-1 
FLCs [11] to deal with the different uncertainties. An interval type-2 FLC can be depicted in 
fig. 4.7.12 



The synchronous motor is controlled using a seven term fuzzy logic controller as shown in the 
figure 4.7.15.Where NB-negative big,NM-Negative Medium,NS-Negative Small, ZR-Zero ,PB-
Positive Big,PS-Positive Small. The Interval Type-2 Fuzzy logic system(IT2 FLS) is constructed 
by a gaussian primary Membership function(MF) with uncertain mean and fixed standard de-
viation.It can be described as 

= exp[ -1(  0_2  m)2 ] 	 (4.7.21) 

The Type-2 Fuzzy set is in a region called a footprint of uncertainity and is bounded by an 
upper MF and a lower MF, which are denoted as PA(x) and EA(x) 

Both the inputs and outputs used the same membership functions in the controller.And we 
use MIN-MAX method for inferencing and for type reduction we use Center of Sets Method 
and Defuzzification Method employed is Centroid Defuzzification [17]. 

4.7.3 Seven Term Fuzzy Logic Controller 

The conventional Type-1 Fuzzy Controller using the seven term rule base is shown in the fig 
4.7.15. 

CONTROL 
:CH NGF' 

ERROR CHANGE 
- 

NB .NZt NS ZR - PS PM PB.  
NB: NB NB NB -NB NM NS •ZR. 
NM -NB NB.; NB. NM NS ZR PS 

ERROR NS NM NS -ZR:  PS PIVI 
ZR NB. -NM- NS ZR.. PS PM PB 
PS NM NS ZR PS Pro PB PB 

M.  NS -ZR, PS -PM PB PB PB 
PB ZR-. PS PM. PB PB PB -PB 

Figure 4.7.13: Seven Term Type-1 Fuzzy Logic -Rule Base 

where NB-Negative Big,NM-Negative medium,NS-Negative Small, ZR- Zero ,PB- Positive Big,PM-
Positive Medium,PS-Positive Small.It uses triangular membership functions(MFs).Both the In-
puts and Outputs use same MFs in the controller.The type-2 Foot print of Uncertainty can be 
obtained by taking the base end point values of the type-1 MFs and adding an arbitrary +/-10 
pert to give uncertainty intervals associated with them. The type-2 FLC uses gaussian MFs 
for both the input error, change in error and the outputs. 

The type-2 FLC is shown in figure 4.7.16 

4.7.4 FLC Inference and Defuzzification 

The FLCs uses the MIN rule connection method, the MIN inference action method and the 
MAX aggregation Method. For defuzzification, the Type-1 FLCs used is a centre of gravity 
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method to generate crisp values of output and the Interval Type-2 FLC used is a Centroid Of 
Gravity Method[17], and a crisp value was obtained by averaging the upper and lower interval 
values. 

4.8 Description of the system 

To investigate the effectiveness of the Type-2 FLC, a second-order system transfer function with 
the following prescribed characteristics: 0.3 s rise time, no steady-state error and unity damp-
ing ratio to avoid overshoot is chosen as the reference model for the periodic step command. 
Therefore, in accordance with [29], the following transfer function is chosen in this study: 

G(s) = 
168.11 

s2 +25.93s+168.11 
(4.8.22) 

The PMSM used in this drive system is a three-phase four-pole 750 W, 3.47 A. 1000 rpm 
type. By using the field-oriented technique, the PMSM drive can be reasonably represented liy 
the following equations [29] : 

1 _ b 
T,= K,* q.,H(s)= Js--B s+a (4.8.23) 
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where the detailed parameters of the system scale are 
K =0.6732 nm/a, a=4.4,b=15.2,j = 0.066Nmsrad/v 
B = 0.289Nm/V 

The schematic diagram of the speed control system under study is shown in figure 4.8.17 
using Type-2 FLC and figure 4.8.18 shows the Type-1 FLC. The power circuit consists of a 
continuous voltage supply which can provided by a six rectifier thyristors and a three phase 
GTO thyristors inverter whose output is connected to the stator of the synchronous machine 
[14]. The field current i f of the synchronous machine, which determines the field flux level is 

controlled by voltage zc f . The self control operation of the inverter-fed synchronous machine 
results in a rotor field oriented control of the torque and flux in the machine as mentioned in 
section 2. The flux in the machine is controlled independently by the field winding and the 
torque is affected by the i f . The parameters of the synchronous machine are given in the 
Figure 4.8.17 shows the schematic diagram of the speed control of synchronous motor using the 
Type-2 Fuzzy Logic System. 

4.9 Synchronous Motor control using Type-2 FLC 

The Rule base of the Type-2 FLC is shown in figure 4.9.2O which shows the firing of different 
rules.The surface viewer is shown in figure 5.1.4.It shows variation of the control output for 
varying inputs applied based on the firing of the given fuzzy rules.The speed and the three 
phase current of the synchronous motor using a Type-2 FLC is shown in figure 6.1.12. There 
are no overshoots in the speed and the rise time is less and the speed settles into a steady 
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Rot. 5 

Figure 4.8.18: Schematic diagram of speed control of PMSM using Type-1 Fuzzy Logic 

state position in a very less time period. The Three phase stator currents shows that at the 

instant of starting, maximum current is drawn from the supply system and the permanent 

magnet synchronous motor easily maintains it steady state and hence using the Type-2 FLC 
the stability is fastly achieved to the PMSM motor. 
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Figure 4.9.20: Firing of different rules in a Type-2 FLC 
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Figure 4.9.22: Three Phase stator Current of PMISM using Type-2 FLC 
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Chapter 5 

Adaptive Networks: Architectures and 
Learning Algorithms 

The fuzzy model under the framework of adaptive networks is called Adaptive Neuro-Fuzzy 
Inference System (ANFIS) [43]. The adaptive neural networks have the advantages of being 
able to learn, and adapt to the system. Fuzzy logic is a rule based method that is framed with 
the expertise of human knowledge. Thus, ANFIS combines the advantages of adaptive neural 
networks and fuzzy logic. 

5.1 Adaptive Neuro Fuzzy Inference System 

Adaptive neural-fuzzy inference system ANFIS was first introduced by J. Jang in 1993 [53]. The 
model considered here is based on Takagi-Sugeno inference model [51, 52]. ANFIS uses a hybrid 
learning algorithm to identify consequent parameters of Sugeno-type fuzzy inference systems. 
It applies a combination of the leastsquares method and backpropagation gradient descent 
method for training fuzzy inference system membership function parameters to emulate a given 
training data set. The neuro-fuzzy system owes much from the feedforward neural network 
with supervised learning capability. The fuzzy inference system under consideration has two 
inputs speed and load torque and disturbance (load parameters) and produce the value of speed 
separately. 

The ANFIS uses five membership functions as shown in figure 5.1.3. 	These member- 
ships characteristics are trained by ANFIS to provide the previously calculated gain values for 
each cases of values of (speed) given the specific load characteristics (speed, torque, current ) as 
inputs.The figure 5.1.4represents the output surface for the ANFIS controller. 

The output of the fuzzy system for approximation of P and K is trained by the ANFIS in 
five layers of networks as follows:The anfis model is shown in the figure 5.2.7. 
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5.1.1 The first layer 
This laver is a basic Fuzzification layer where the crisp inputs are allocated relative fuzzy, val-
ues.Bell shaped fuzzy memberships are utilized. The output of the layer one for ith  membership 

function is calculated as: 

_ -", 
0,' = jAi(x)  = e(-( n:  )) (5.1.1) 

where n p (or n q ) is the load model parameter. The parameters a i , h i and c are 
premise parameters derived from the characteristics of the bell-shaped membership functions 
as shown in the Fig. 5.1.6 . These premise parameters are updated in the adaptation process 

using gradient decent method in the backward pass . 
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5.1.2 The second layer 

The outputs of the nodes labeled p in layer two are a result of multiplication of inputs from 

the layer one nodes. 

O = w = µa~(X)ftBj(Y)"i = 1, 2 
	

(5.1.2) 

In this case the value of the nodes output represents the strength of the rule. 
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5.1.3 The third layer 

The nodes in this layer are represented by circular nodes labeled N. The outputs of these nodes 
are basically the ratios of the ith output of the previous layer to the sum of all output of the 

previous layer. 

ulZ 03=wi = 	i=1.2 
WWI+u1.) 

(5.1.3) 

5.1.4 The fourth layer 

This layer produces the defuzzified Takagi and Sugeno-type output, for each previous- ith output 

4 ~i = w~f~ = Th (p + q j + r.)i = 1.2 (5.1.4) 
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where pi, qi, r i are consequent parameters 

5.1.5 The fifth layer 

The single node in this layer computes the overall outputs as the summation of all incoming 
signals, i.e., 

O = overallout ut = 	w 	~i wzfi . Z 	P 	~ Zfz = 	a = 1,2 	 (5.1.5) 
ti Ei wi 

Therefore, the ANFIS output is clearly a linear function of the adjustable defuzzifier pa-
rameters. 

5.1.6 Hybrid Learning Algorithm 

The premise parameters, the overall output can be expressed as a linear combinations of the 
consequent parameters.More precisely, the output fin fig. 5.1.6 can be rewritten as 

1w2  
f = 	fi+ 	f2 = wifi+w2f2 = (wix)Pi f (wiy)qi+(wi)ri+(w2x)P2+(w2y)g2+(w2)r2 wi+W2 w1+w2 

(5.1.6) 

which is linear in the consequent parameters(pi, q1, rl, P2, q2, r2).As a result, we have S= set of 
total parameters S1= set of premise parameters S2 =- set of consequent parameters 

More specifically, in the forward pass of the hybrid learning algorithm, functional signals go 
forward till layer 4 and the consequent parameters are identified by the least squares estimate. 
In the backward pass, the error rates propogate backward and the premise parameters are 
updated by the gradient descent. 5.1 summarizes the activities in each pass[47]. 

The Consequent parameters thus identified are optimal under condition that the premise 
parameters are fixed. Accordingly the hybrid approach is much faster than the strict gradient 
descent and it is worthwhile to look for the possibility of decomposing the parameter set in the 
manner of (10). For type-1 M, this can be achieved if the membership function on the consequent 
part of each rule is replaced by a piecewise linear approximation with two consequent parameters 
(see Fig. 5.1.6).- In this case, again, the consequent parameters constitute set S2 and the hybrid 
learning rule can be employed directly. However, it should be noted that the computation 
complexity of the least squares estimate is higher than that of the gradient descent. 



Table 5.1: Two Passes In The Hybrid Learning Procedure For ANFIS 
— 	 Forward Pass 	Backward Pass 

Premise Parameters 	Fixed 	Gradient Descent 
Consequent Parameters Least Squares Estimate 	Fixed 

Signals 	 Node Outputs 	Error rates 

5.2 Modeling of the synchronous motor using the AN-
FIS 

ANFIS is a fuzzy system and used in classification, modeling and control problems. It is based 
on Takagi and Sugeno model fuzzy if-then rules representation [54], which is different from 
commonly used fuzzy logic controllers [54, 55] . The consequent part of the rule is a function of 
input variables. The system considered in this paper has three inputs speed(we), torque(te) and 
current(ia) and the output is current(iqs) The inference mechanism of ANFIS is mathematically 
expressed by the set of the rules.These rules are generated through the experience of operating 
the system, which may be feedback from the plant operator, design engineer, or the expert. 
The kth  rule is generally expressed in the form (If premise THEN consequence). Fig. ?? shows 
the synchronous motor control using ANFIS. 

rpm. Nm, A 

Figure 5.2.7: Synchronous Motor Control using Anfis. 
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Chapter 6 

Results and Discussion 

6.1 Model Reference Neural Network Controller 

To investigate the effectiveness of the proposed adaptive neural speed controller, a second-order 
system transfer function with the following prescribed characteristics: 0.3 s rise time, no steady-
state error and unity damping ratio to avoid overshoot is chosen as the reference mode 1 for the 
periodic step command. Therefore, in accordance with [39], the following transfer function is 
chosen in this study: 

G(s) = 
168.11 

s2  + 25.93s + 168.11 
(6.1.1) 

The PMSM used in this drive system is a three-phase four-pole 750 W3.47 A 1500 rpm 
type. By using the field-oriented technique, the PMSM drive can be reasonably represented by 
the following equations [14]: 

Te  = Kt  * igsH(s) = 	1 	b 	 (6.1.2) 
Js+B s+a 

where the detailed parameters of the system scale are 
Kt=0.6732 nm/a, a=4.4,b=15.2,j = 0.066Nmsrad/v B = 0.289Nm/V The simulation is real-
ized using the SIMULINK software in MATLAB environment. Figure 6.1.12 shows the perfor-
mances of the neural MRC controller. 
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Figure 6.1.1: a.Speed b.Torque C.stator current 

To illustrate the performances of control, we have simulated the starting mode of the motor 

without load. and the T )at the instance t = 2 s and its elimination at t application of the 

load ( T= 2\ m) = 3 s; in presence of the variation of parameters considered (the moment of 

inertia) with speed step of +100 rad/s. 
The robustness of the system can be shown in the Figure 6.1.2 and the torque figure( 6.1.2) 

after the application of load at instants t= 0.45,1.6,2.1 with loads Tj=3\ ni.5N m,6\ m. 
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Figure 6.1.2: speed and Torque 

6.1.1 Fuzzy Controller 

The fuzzy scalilig parameters used for control of the synchronous inotor are ge=0.l gce=0.4 and 
gu=30. The output of fuzzy logic controller for load torque of 4 N-in are shown in Fig. 6.1.6.The 
fuzzy surface Viewer is shown in fig. 6.1.3. 
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Figure 6.1.5: Torque using Fuzzy Logic Controller 
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Figure 6.1.6: Stator Current using Fuzzy Logic Controller 

The particle swarm based minimum and maximum values for the scaling of fuzzy logic 
controller are shown in table 6.1. 

PSO optimization results for the first run are shown in table 6.2 
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5 
T'irri© in ecorid& 	 x lo' 

ge gee g u 
Minimum 0.01 0.01 0.1 
Maximum 0.4 0.4 30 

Table 6.1: Minimum and maximum search limits for each parameter 

ge gee gu 
FirstRun 0.0788 0.01 8.685 

Table 6.2: Particle Swarm Optimization results 

6.1.2 Anfis Controller 

The performance results using the ANFIS controller resulted in better control as shown in 
figure 6.1.9 shows the output at different loads of lfl= 4Nm, 6. m, 7Nm at time instants t= 
0.45 sec,1.6 sec. 2.1 sec 
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Figure 6.1.7: Speed using ANFIS 

Figure 6.1.8: Torque using ANFIS 
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Figure 6.1.9: Stator Current using ANFIS 

6.1.3 Comparison Between Neural,Fuzzy and ANFIS Controller 

Comparison of the three controllers are shown in the following table 6.3 

Property NC FLC ANFIS 
Overshoot less than 0.5 less than 0.1 Less Than 0.2 
Settling Time 0.4s 0.06s 0.2s 
Starting Maximum Current 60 A 58 A 30 A 
Speed range up to critical speed up to double speed Up to extreme speed 
Computation High Very High Lower Than Others 
High 	 High 	 Less than Others 

Table 6.3: Comparison of the three controllers 

6.1.4 Comparison between Type-1 Fuzzy and Type-2 Fuzzy Logic 

The simulation is realized using the SIML LI\ K software in MATLAB environment. Fig-
ure 6.1.12 shows the performances of the Type-2 FLC.It can be observed that at the instant of 
applying load torques at 0.1s,0.5s,0.84s.1.15s there exists sudden spikes and dips in the type-1 
Fuzzy Controller where as the type-2 Fuzzy Logic Controller shows no oscillations, overshoots 
or dip in the motor speed.The torque output for a type-1 FLC as shown in fig 6.1.12 large 
oscillations at various instants of applied load torque.The type-2 FLC shows no oscillations in 
the output torque as shown in fig 6.1.12 
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Figure 6.1.10: Speed comparison of typel and type2 FLC 
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Figure 6.1.11: Torque comparison of typel and type? FLC 

70 



-20 

DD 	D5 	1.0 	15 	2.0 

TIME in SECONDS 

Figure 6.1.12: Direct axis and Quadrature axis currents for type2 FLC 

Table 6.4 gives the comparison of results of the simulation of a type-1 FLC and type-2 FLC 
based vector controlled PNISNI along with the conventional based controller.lt can be observed 
from the table that the settling time is least in case of type-2 FLC than in Type-1 FLC.The 
rise time of Type-2 FLC is less than the conventional PI controller and Type-1 FLC. 

RiseTirne SettingT irne 
Type — 1 0.3 0.6 
Type -2 0.1 0.3 

Table 6.4: Comparison of type-1 and type-2 fuzzy 
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Chapter 7 

Conclusion 

7.1 Conclusion and Scope of Future work 

From the review of the previous works the synchronous motor is a good choice for high per-
formance variable speed drives in industry in view of performance and economy.However,the 
performance depends on the type of controllers used.Using simple controller with the assump-
tion of ds=0, the control of synchronous motor becomes easier with the cost of reluctance torque 
and high speed operation.The equivalent circuit) model of permanent magnet synchronous mo- 
for drive is investigated and the operation is analyzed. A vector control method is incorporated 
by controlling the quadrature axis component 

An Adaptive Model Reference Neural Network Controller is proposed for controlling the 
-synchronous motor.It is able to follow the command speed smoothly and quickly maintaining 
global stability.The disadvantage is that it requires a lot of computation which makes it dif-
ficult and cumbersome to design and implement. Moreover a -large number of parameters are 
associated with theses types of controllers which make it more expensive. Uncertainty and non-
linearity from the motor mechanical load sometimes cause the drive system to become unstable 
in the absence of proper control. 

A Fuzzy logic controller is developed to control the speed and torque component such that 
the motor can be run efficiently. In order to verify the efficacy of FLC in high performance 
application, a vector control scheme of the PMSM incorporating the FLC has been simulated. 
However the FLC showed good transient response but shows steady state ripple.Particle swarm 
intelligence is used in estimating the fuzzy scaling parameters of the FLC. 

For further improvement of the intelligent control performance, an ANFIS based Neuro 
.fuzzy controller is developed with tuning the membership function.The tuning procedure of the 

• membership functions of the neuro fuzzy logic controller is discussed in this chapter.The neuro 
fuzzy controller is designed in such a way that the computational burdern remain low which is 



suitable for real-time implementation. 

A Type-2 FLC is proposed which has a fuzzy fuzzy nature incorporating a third membership 

function eliminates nonlinearities and effects under dynamic conditions and in applications 

requiring three dimensional control such as robotics. Simulation results verify the feasibility 
of the proposed controllers for real life industrial applications. Finally simulation results are 

presented to validate the controllers performance. This thesis develops different types of speed 
controllers for high performance synchronous motor. 

• In the development of an adaptive controller,only the mechanical parameters were esti-

mated. d and q axes inductances are varying with different operating condition. So future 

work can be done with the estimation of electrical parameters too. 

• In neuro fuzzy controller design, the tuning of membership functions was done online. 

But there was still ripple in speed. These ripples caused by the ripple in command q-axis 

current. a filter can be designed and used to optimize the speed ripple.But this might 
make the controller slow. 

• In the development of Type-2 Fuzzy logic controller for synchronous motor the controller 

though shows ripple free speed and ripple free torque content even on application of high 
loads,the controller is very slow in giving the results. 

• Work has been started in developing a type-2 fuzzy logic controller based synchronous 

motor to apply on six Degrees Of freedom robot system-Since the fuzzy fuzzy nature of 

type-2 fuzzy eliminates any uncertainty 
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Appendix. A 

App endice 

A.1 Model reference Parameters 

The parameters of model reference controller are 

• Size of the Hidden layer=13 

• Maximum reference value=0.7 

• Minimum reference value=-0.7 

• Maximum interval value=2 sec 

• minimum interval value=0.1 sec 

• Controller training samples=6000 

• Controller `Training Epochs=10 

• Controller Training segments=30 

The parameters of plant identification model are 

• .Size of the Hidden layer=10 

• Sampling Interval=0.05 sec 

• No of training samples=10000 

• Maximum Plant input=15 

• Minimum Plant input=-15 

• Maximum interval value=2 sec 
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• minimum interval value=0.1 sec 

• Controller Training Epochs=300 

• training function = trainlm 

A.2 Synchronous Motor Parameters 

Three phase Synchronous Motor parameters are Rated output power 3HP, Rated phase voltage 
60V, Rated phase current 14 A, Rated field voltage v f =1.5V, Rated field current i1 =30A, 
Stator resistance R =0.05ohms, Direct stator inductance Ls  = 0.32552, Field resistance R1 = 
0.05Q,Direct stator InductanceLd3  = 8.4mH Quadrature stator inductance Lqs  = 3.5rnH, Field 
leakage inductance Lf =8.1 mH, Mutual inductance between inductor and armature M fd  
7.56mH, The damping coefficient -B =0.005 N.m/s, The moment of inertia J = 0.05kg.m2  

Pair number of poles p = 2. 
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