
roCoo 4TRA!' (fie
'.~ d s 9 'Q!? • icc ra „4 '20110110

Date ,

\• T ont%t

SEGMENTED AVERAGE-SUFFERAGE HEURISTIC
FOR INDEPENDENT TASK SCHEDULING IN GRID

A DISSERTATION

Submitted in partial fulfillment of the
requirements for the award of the degree

of

MASTER OF TECHNOLOGY
in

COMPUTER SCIENCE AND ENGINEERING

ASIIISH KUMAR

DEPARTMENT OF ELECTRONICS AND COMPUTER ENGINEERING
INDIAN INSTITUTE OF TECHNOLOGY ROORKEE

ROORKEE -247 667 (INDIA)
JUNE, 2010

CANDIDATE'S DECLARATION

I hereby declare that the work, which is being presented in the dissertation entitled

"SEGMENTED AVERAGE-SUFFERAGE HEURISTIC FOR INDEPENDENT

TASK SCHEDULING IN GRID" towards the partial fulfillment of the

requirement for the award of the degree of Master of Technology in Computer

Science and Engineering submitted in the Department of Electronics and Computer

Engineering, Indian Institute of Technology Roorkee, Roorkee (India) is an authentic
record of my own work carried out during the period from July 2009 to June 2010,

under the guidance of Dr. A. K. Sarje, Professor, Department of Electronics and

Computer Engineering, IIT Roorkee.

The matter presented in this dissertation has not been submitted by me for the award

of any other degree of this or any other Institute.

Date:
Place: Roorkee 	 (ASHISH KUMAR)

CERTIFICATE

This is to certify that the above statement made by the candidate is correct to the best

of my knowledge and belief.

(Dr. A. K. Sarje)
Professor

Date 	 Department of Electronics and Computer Engineering

Place :- Roorkee 	 IIT Roorkee

i

ACKNOWLEDGEMENTS

First and foremost, I would like to extend my heartfelt gratitude to my guide and

mentor Dr. A. K. Sarje, Professor, Department of Electronics and Computer

Engineering, Indian Institute of Technology Roorkee, for his invaluable advices,

guidance, encouragement, and for sharing his broad knowledge. His wisdom,

knowledge and commitment to the highest standards inspired and motivated me. He

has been very generous in providing the necessary resources to carry out my research.

He is an inspiring teacher, a great advisor, and most importantly a nice person.

I also wish to thank my friends, Sameer Singh Chauhan and Mukesh Sharma for their

valuable suggestions and timely help regarding the domain knowledge. I am greatly

indebted to all, who have graciously applied themselves to the task of helping me with

ample moral supports and valuable suggestions.

I would also like to thank all faculty members of Department of Electronics and

Computer Engineering, Indian Institute of Technology Roorkee for their kind _help

and support.

ASHISH KUMAR

ii

Abstract

Grid Computing enables the secured, controlled and flexible sharing of resources

among various dynamically created virtual organizations. These virtual organizations

are setup for collaborative problem solving that requires a great number of processing

cycles. In high throughput computing, the grid is used to schedule large number of

task, with the aim of putting unused processor cycles to work. Grid computing

provides highly scalable, highly secure and utmost high performance mechanisms for

discovering and negotiating access to the computing resources among an infinite

number of geographically distributed groups to solve complex scientific or technical

problems.

Scheduling is a fundamental issue in achieving high performance on computational

grids. An efficient grid scheduling system is an essential part of the grid. Even

though middleware support for grid computing. has been the subject of extensive_

research, scheduling policies for the grid context have not been much- studied. In

addition to processor utilization, it is important to consider: the waiting time,

throughput, and response times of tasks in - evaluating the, performance of grid

scheduling strategies. The task scheduling problem for grid computing has been

studied as a combinatorial optimization problem, which can be solved only .using

heuristic algorithms.

In this thesis, we consider the problem of allocating independent, heterogeneous tasks

on grid environment. A heuristic namely, Segmented-Average Sufferage for batch

mode independent task scheduling is proposed in this dissertation. The segmentation

is done to give better makespan and load balancing. The heuristic is tested in

GridSim simulator. The experiment results show that the Segmented Average-

Sufferage heuristic gives significantly improvements, in makespan, resource

utilization and load balancing than existing Sufferage, Min-Min and Max-Min

heuristics.

iii

Table of Contents

Candidate's Declaration and Certificate...

Acknowledgementii

Abstract........................iii

Tableof Contents,.,..iv

Listof Figuresvi

List of Tables... vii

Chapter 1.. Introduction 	 1
1.1 Introduction ...1
1.2 Motivation .. 2
1.3 Statement of the Problem ...3
1.4 Organization of Report:.....................3

Chapter 2. Grid Computing
	 4

2.1 Introduction ...4
2.2 Types of Grid4

	

2.2.1 	Cluster Grids .. 5

	

2.2.2 	Enterprise Grids ..5

	

2.2.3 	Global Grids ...,5

	

2.2.4 	Compute Grids ..6

	

2.2.5 	Data Grids ..6
2.3 Grid Application Areas ..6
2.4 Grid Architecture ...7

Chapter 3. Task Scheduling in Grid Computing 	 9
3.1 Grid Scheduling Process. ...12

3.1.1Phase 1: Resource Discovery ..12
3.1.2 Phase 2: System Selection ...13
3.1.3 Phase 3: Run the Job ...14

iv

3.2 Types of Grid Scheduling ...15
3.3 Challenges in Grid Scheduling ..18

3.3.1 Resource Heterogeneity ...19
3.3.2 Site Autonomy ..19
3.3.3 Local Priority ..19
3.3.4 Resource Non-Dedication ...20
3.3.5 Application Diversity:...............20
3.3.6 Dynamic Behavior ..20

3.4 Batch Mode Heuristics for Independent Task21

	

3.4.1 	Min-Min ...21

	

3.4.2 	Max-Min :... 21

	

3.4.3 	Sufferage ...21

Chapter 4. Proposed Segmented Average-Sufferage Heuristic 	23
4.1 Segmented Average-Sufferage Heuristic23
4.2 Mapping Comparison of Sufferage and Segmented Average-Sufferage

Heuristics.. 25

Chapter 5. Results and Discussions 	 33
5.1 Performance Metrics ...33
5.2 Simulation Environment ...34
5.3 Results ..3 5

Chapter 6. Conclusions and Scope for Future Work 	 41
6.1 Conclusions ..
6.2 Scope for Future Work ..41

REFERENCES:..............................42

LIST OF PUBLICATIONS45

Appendix A Introduction to GridSim46

v

LIST OF FIGURES

Figure 2.1 	Cluster Grids ..5

Figure 2.2 	Enterprise Grids ...5

Figure 2.3 	Global Grids ...6

Figure 2.4 	Grid Components ..8

Figure 3.1 	Grid Scheduling Process ...13

Figure 3.2 	Centralized Scheduler ..17

Figure 3.3 	Hierarchical Scheduler ..17

Figure 3.4 	Decentralized Scheduler ...17

Figure 4.1 	Segmented Average-Sufferage heuristic ..24

Figure 4.2 	Result of Sufferage heuristic................ ..27

Figure 4.3 Result of Segmented Average-Sufferage heuristic32

Figure 5.1 Makespan in Case I ..36

Figure 5.2 Makespan in Case II ..37

Figure 5.3 Makespan in Case III ...37

Figure 5.4 Average resource utilization rate in Case I... 38

Figure 5.5 Average resource utilization rate in Case II ..38

Figure 5.6 Average resource utilization rate in Case III39

Figure 5.7 Load balancing level in Case I..39

Figure 5.8 Load balancing level in Case II 	..40

Figure 5.9 Load balancing level in Case III ...40

Figure A. 1 A modular architecture for Gridsim platform and components47

vi

LIST OF TABLES

Table 4.1 	ETC Matrix of Ten Tasks on Four Resources ...25

Table 5.1 	Makespan Comparison of Segmented Average-Sufferage with Sufferage36

Table 5.2 	Makespan Comparison of Segmented Average-Sufferage with Sufferage36

Table 5.3 	Makespan Comparison of Segmented Average-Sufferage with Sufferage.........36

VII

Chapter 1

Introduction

1.1 Introduction

The rapid development in computing resources has enhanced the performance of

computers and reduced their costs. This availability of low cost powerful computers

coupled with the popularity of the Internet and high-speed networks has led the

computing environment to be mapped from distributed to Grid environments [1]. In

fact, recent researches on computing architectures are allowed the emergence of a new

computing paradigm known as Grid computing. Grid is a type of distributed system

which supports the sharing and coordinated use of geographically distributed and

multi-owner resources, independently from their physical type and location, in

dynamic virtual organizations that share the same goal of solving large-scale

applications.

In order to fulfill the user expectations in terms of performance and efficiency, the

Grid system needs efficient scheduling algorithms for the distribution of tasks. A

scheduling algorithm attempts to improve the response time of user's submitted

applications by ensuring maximal utilization of available resources. The main goal is

to prevent, if possible, the condition where some processors are overloaded with a set

of tasks while others are lightly loaded or even idle [2].;

Although , scheduling problem in conventional distributed systems has been

intensively studied, new challenges in Grid computing still ..make. it an interesting

topic and many research projects are under way. This is due to the characteristics of

Grid computing and the complex nature of the problem itself. Scheduling algorithms

in classical distributed systems, which usually run . on homogeneous and dedicated

resources, cannot work well in the Grid architectures.

1

1.2 Motivation

A typical distributed system will have a number of interconnected resources which

can work independently or in cooperation with each other [3]. Each resource has

owner workload, which represents an amount of work to be performed and every one

may have a different processing capability. To minimize the time needed to perform

all tasks, the workload has to be evenly distributed over all resources based on their

processing speed. The essential objective of a scheduling consists primarily in

optimizing the average response time of applications, which often means maintaining

the workload proportionally equivalent on the whole resources of a system. Job

scheduling is a fundamental issue in achieving high performance in Grid computing

systems. However, it is a big challenge for efficient scheduling algorithm design and

implementation. Unlike scheduling problems in conventional distributed systems,

this problem is much more complex as new features of Grid systems such as its

dynamic nature. And the high degree of heterogeneity of jobs and resources must be

tackled. The problem is multi-objective in its general formulation, the two most

important objectives being the minimization of makespan and flow time of the

system. Job scheduling is known to be NP-complete [4], therefore the use, of non-

heuristics is the de facto approach in order to cope in practice with its .difficulty,

> Heterogeneity: Heterogeneity exists in both of computational and networks

resources.

➢ Autonomy: Because the multiple administrative domains that share. Grid

resources, a site are viewed as an autonomous computational entity.

> Scalability: A Grid might grow from few resources to millions. This raises the

problem of potential performance degradation as the size. of a Grid increases.

> Resource selection: In traditional systems, executable codes of applications and

input/output data are usually in the• same site, . or the input sources and output

destinations are determined before the submission of an application [2, 3]. Thus

the cost for data staging can be neglected or the cost is a constant determined

before execution and load balancing algorithms need not consider it. But in a Grid

the computation sites of an application are usually selected by the Grid. scheduler

according to resource status and some performance criterion.

2

1.3 Statement of the Problem

The main objective of this research work is to develop Segmented Average-Sufferage

heuristic for independent task scheduling in Grid.

This main objective can be further divided into following sub problem.

i) To design and propose algorithm for independent task scheduling in Grid.

ii) To validate the proposed algorithm.

1.4 Organization of the Report

The remainder of the report is organized as follows:

The second chapter briefly introduces Grid computing concepts, types of Grid, Grid

computing application areas and Grid architecture.

The third chapter explains Grid scheduler, Grid scheduling process, types of Grid

scheduling, and various challenges in Grid scheduling.. This section also gives a brief

literature review of batch mode centralized heuristics for independent tasks.

The fourth -chapter describes the proposed scheduling algorithm "Segmented

Average-Sufferage. Heuristic" and gives an example to briefly explain the proposed

algorithm. Also, this section compares the proposed algorithm with sufferage

heuristic.

The fifth chapter describes implementation details and provides the experimental

results of the Segmented Average-Sufferage with Max-Min, Min-Min and Sufferage

heuristics.

The sixth chapter concludes the report work, gives the contribution of report and

what future work can done on it.

3

Chapter 2

Grid Computing

2.1 Introduction

In today's complex world of high speed computing, computers have become

extremely powerful, even home-based desktops are powerful enough to run complex

applications. But still we have numerous complex scientific experiments, advanced

modeling scenarios, genome matching, astronomical research, a wide variety of

simulations, complex scientific & business modeling scenarios and real-time personal

portfolio management, which require huge amount of computational resources. To

satisfy some of these aforementioned requirements, Grid computing is born.

The Grid is a wide-scale, distributed computing infrastructure that promises to support

resource sharing and coordinated problem solving in dynamic, multi-institutional

Virtual Organization [5]. Grid computing is applying the resources of many

computers in a network for a single problem at the same time-usually to a scientific or

technical problem that requires a great number of computer processing cycles or

access to large amounts of data. Grid computing can be thought of as distributed and

large-scale cluster computing and as a form of network-distributed parallel

processing. Grid resources [6] fall into the categories of computation (i.e. a machine

sharing its CPU), storage (i.e. a machine sharing its RAM or disk, space),

communication (i.e. sharing of bandwidth or a communication path), software and

licenses and special equipment (i.e. sharing of devices).

2.2 Types of Grid

Grid computing can be used in a variety of ways to address various kinds of

application requirements. Often, Grids may be a combination of two or more of these

[7, 8]. Grids can be classified on the basis of two factors, scale and functionality. On

basis of scale they can be further classified as.

> Global Grids

> Enterprise Grids

> Cluster Grids

rd

2.2.1 Cluster Grids

Cluster Grids consist of one or more systems working together to provide a single

point of access to users. Typically owned and used by a small number of users, such

as a project or department, Cluster Grids support both high-throughput and high-

performance jobs. Resources in the Grid can be focused on a narrow set of repetitive

tasks, or made to work in true parallel fashion to execute a complex job.

Figure 2.1: Cluster Grids [9]

2.2.2 Enterprise Grids

Enterprise Grids enable multiple project or department to share recourses with in

enterprise or campus and not necessary have to address security and other global

policy management issues associated with global Grid.

Figure 2.2: Enterprise Grids [9]

2.2.3 Global Grids

Global Grids are collection of enterprise and cluster Grid as well as other

geographically distributed resources, all of which are agreed upon global usage

policies and protocols to enable resources sharing [10].

G

Figure 2.3: Global Grids [9]

On basis of Functionality they can be further classified as:

> Compute Grids

> Data Grids

2.2.4 Compute Grids

A compute Grid is essentially a collection of distributed computing resources, within

or across locations that are aggregated to act as a unified processing resource or

virtual supercomputer.

2.2.5 Data Grids

A data Grid provides wide area, secure access to current data. Data Grids enable

users and applications to manage and efficiently use database information from

distributed locations.

2.3 Grid Application Areas

Applications with heavy use of computing resources (e.g., simulations, number

crunching, the so-called grand challenge applications), applications using large

information resources (e.g., multimedia databases), applications using special sub

applications (e.g., visualization), and applications using special devices (e.g.,

expensive scanners, laboratory equipment) are candidates for Grids. Especially we

mention the following important application areas [9]:

> Medical Applications: In diagnostics huge amounts of data are generated at one

place by specialized devices. These data have to be transported to the specialists,

possibly located at several locations, while the patient might be at a third location.

The task of a Grid in this scenario is to prepare and transport the medical data, so
that they are available at the right location at the right time [11].

> Support for multinational enterprises: Multinational enterprises work at several

locations in several time zones. Data, e.g., multimedia data from inspections,

must be pre-processed and forwarded to specialists who can take decisions.

> Multimedia Applications: Several Multimedia Applications make use of a Grid

for processing media streams within multimedia QoS control is very important.

Applications often include the handling of Digital Rights Management, e.g.,

multimedia data can be watermarked scrambled etc.

> Applications from bio-informatics, seismology, meteorology, etc. are data — and

computing-intensive, and need often other information resources [11].

2.4 Grid Architecture

Architecture identifies the fundamental system components, specifies purpose and

function of these components, and indicates how these components interact with each

other. Grid architecture is protocol architecture, with protocols defining the basic

mechanisms by which Virtual Origination [12, 13] users and resources negotiate,

establish, manage and exploit sharing relationships. Grid architecture is also a

services standards based open architecture that facilitates extensibility,

interoperability, portability and code sharing. The components that are necessary to

form a Grid are shown in Figure 2.4 and they are briefly discussed below:

➢ Grid Fabric: It comprises all the resources geographically distributed (across the

globe) and accessible from anywhere on the Internet. They could be computers

(such as PCs or Workstations running operating systems such as UNIX or NT),

clusters (running cluster operating systems or resource management systems such

as LSF, Condor or PBS), storage devices, databases, and special scientific

instruments such as a. radio telescope.

➢ Grid Middleware: It offers core services such as remote process management, co

allocation of resources, storage access, information (registry), security,

authentication, and Quality of Service (QoS) such as resource reservation and

trading.

7

Application and Portals
Grid

Scientific 	Engineering 	Collaboration Prob. Solving Env. -------- 	Web enabled app
	Apps.

Development Environment and Tools 	
Grid
Tools

Languages 	Libraries 	Debuggers 	Monitoring 	Resource Brokers ------------ 	Web tools

Distributed Resource Coupling Services

Comm. 	Sign on & 	Information 	Process 	
IMiddleware

Data Access 	------------ 	Qo5
Security

Local Resource Managers
Grid
Fabric

Figure 2.4: Grid Components [6]

> Grid Development Environments and Tools: These offer high-level services that

allow programmers to develop applications and brokers that act as user agents that

can manage or schedule computations across global resources.

➢ Grid Applications and Portals: They are developed using Grid-enabled languages

such as HPC++, and message-passing systems such as MPI. Applications, such as

parameter simulations and grand-challenge problems often require considerable

computational power, require access to remote data sets, and may need to interact

with scientific instruments. Grid portals offer web-enabled application services

— i.e., users can submit and collect results for their jobs on remote resources

through a web interface.

8

Chapter 3
Task Scheduling in Grid Computing

A precise definition of a Grid scheduler will much depend on the way the scheduler is

organized (whether it is a super-scheduler, meta-scheduler, decentralized scheduler or

a local scheduler) and the characteristics of the environment such as dynamics of the

system. In a general setting, however, a Grid scheduler will be permanently running

as follows: receive new incoming jobs, check for available resources, select the

appropriate resources according to availability, performance criteria and produce a

planning of jobs to selected resources.

Usually the following terminology is employed for scheduling in Grids.

> Task: Represents a computational unit (typically a program and possibly

associated data) to run on a Grid node. Although in the literature there is no

unique definition of task concept, usually a task is considered as an indivisible

schedulable unit. Tasks could be independent (or loosely coupled) or there could

be dependencies (Grid workflows).

> Job: A job is a computational activity made up of several tasks that could require

different processing capabilities and could have different -resource requirements

(CPU, number of nodes, memory, software libraries, etc.) and constraints, usually

expressed within the job description. In the simplest case, a job could have just

one task.

> Application: An application is the software for solving a problem in a

computational infrastructure; it may require splitting the computation into jobs or

it could be a "monolithic" application. In the later case, the whole application is

allocated in a computational node and is usually referred to as application

deployment. Applications could have different resource requirements and

constraints, usually expressed within the application description.

➢ Resource: A resource is a basic computational _entity (computational device or

service) where tasks, jobs and applications are scheduled, allocated and processed

accordingly. 	Resources have their own characteristics such as CPU

characteristics, memory, software, etc. Several parameters are usually associated

with a resource, among them the processing speed and workload, which change

0

over time. Moreover, the resources may belong to different administrative

domains, implying different policies on usage and access.

> Specifications: Task, job and application requirements are usually specified using

high-level specification languages (meta-languages). Similarly, the resource

characteristics are expressed using specification languages. One such language is
the ClassAds language.

> Resource pre-reservation: Pre-reservation is needed either when tasks have

requirements on the fmishing time or when there are dependencies that require

advance resource reservation to assure the correct execution of the workflow. The

advance reservation goes through negotiation and agreement protocols between

resource providers and consumers.

> Planning: A planning is the mapping of tasks to computational resources.

> Grid scheduler: Software components in charge of computing a mapping of tasks

to Grid resources under multiple criteria and Grid environment configurations.

Different levels within a Grid scheduler have . been identified in the Grid

computing literature, comprising super-schedulers, meta-schedulers, local/cluster

schedulers and enterprise schedulers. As a main component of any Grid system,

the Grid scheduler interacts with other components of the Grid system: Grid

information system, local resource management systems and network

management systems. It should be noted that, in Grid environments, all these

kinds of schedulers must coexist, and they could in _general pursue conflicting

goals; thus, there is the need for interaction and coordination between the different

schedulers in order to execute the tasks.

> Super-scheduler: This kind of scheduler corresponds to a centralized scheduling

approach in which local schedulers are used to reserve and allocate resources in

the Grid, while the local schedulers manage their job queue processing. The

super-scheduler is in charge of managing the advance reservation, negotiation and

service level agreement.

> Meta-scheduler: This kind of scheduler (also known as a metabroker) arises when

a single job or application is allocated in more than one resource across different

systems. As in the case of super-schedulers, a meta-scheduler uses local

schedulers of the particular systems. Thus, meta-schedulers coordinate local

schedulers to compute an overall schedule. Performing load balancing across

multiple systems is, a main objective here.

10

> Local/cluster scheduler: This kind of scheduler is in charge of assigning tasks to

resources in the same local area network. The scheduler manages the local

resources and the local job queuing system and is thus a "close to resource"

scheduler type.

> Enterprise scheduler: This type of scheduler arises in large enterprises having

computational resources distributed in many enterprise departments. The

enterprise scheduler uses the different local schedulers belonging to the same

enterprise.

> Online mode scheduling: In online mode scheduling, tasks are scheduled as soon

as they enter the system.

> Batch mode scheduling: In batch mode scheduling, tasks are grouped into batches

which are allocated to the resources by the scheduler. The results of processing

are usually obtained at a later time.

> Non-Preemptive/preemptive scheduling: This classification of scheduling

establishes whether a task, job or application can be interrupted or . not, once

allocated to the resource. In the non-preemptive mode, a task, job or application

should entirely be completed in the resource (the resource cannot be taken away

from the task, job or application). In the preemptive mode, preemption is allowed;

that is, the current execution of the job can be interrupted and the job is migrated

to another resource. Preemption can be useful if job priority, is to be considered as

one of the constraints.

> Cooperative scheduling: In cooperative scheduling, a feasible schedule is

computed through the cooperation of procedures, rules, and Grid users.

> High-throughput schedulers: The objective of this kind of scheduler [14] is to

maximize the throughput (average number of tasks or jobs processed per unit of

time) in the system. These schedulers are thus task-oriented schedulers; that is,

the focus is in task performance criteria.

➢ Resource-oriented schedulers: The objective of this kind of scheduler is to

maximize resource utilization. These schedulers are thus resource-oriented

schedulers; that is, the focus is in resource performance criteria.

> Application-oriented schedulers: This kind of scheduler is concerned with

scheduling applications in order to meet a user's performance criteria. To this end,

the scheduler have to take into account the application specific as well as system

11

information to achieve the best performance of the application. The interaction

with the user could also be considered.

3.1 Grid Scheduling Process

A user goes through three stages to schedule a job when it involves multiple sites.

Phase one is Resource Discovery, in which the user makes a list of potential resources

to use. Phase two involves gathering information about those resources and choosing -

a best set to use. In phase three the user runs the job.

3.1.1 Phase 1: Resource Discovery

Resource discovery [15] involves the user selecting a set of resources to investigate in

more detail; in phase two information gathering. At the beginning of this phase, the

potential set of resources is empty set and at the end of this phase, the potential set of

resources is some set that has passed a minimal feasibility requirement. Most users

do this in three steps namely:

➢ Authorization filtering: It is generally assumed that a user will know which

resources he has access to in terms of basic services. At the end of this step the

user will have a list of machines or resources to which he has access.

> Application Requirement Definition: In order to proceed in resource discovery,

the user must be able to specify some minimal set of job requirements in order to

further filter the set of feasible resources. The set of possible job requirements

can be very broad and vary significantly between jobs. It may include static

details such as operating system or hardware for which a binary of the code is

available. Or that the code is best suited to a specific architecture. Dynamic

details are also possible e.g. a minimum RAM requirement, connectivity needed.

This may include any information about the job that should be specified to make

sure that the job could be matched to a set of resources.

➢ Minimal Requirement Filtering: Given a set of resources to which a user has

access and the minimal set of requirements the job has, the third step in the

resource discovery step is to filter out the resources that do not meet the minimal

job requirements. The user generally does this step by going through the list of

resources and eliminating the ones that do not meet the job requirements as much

12

as they are known. It could also be combined with the gathering more detailed

information about each resource.

Phase One — Resource Discovery

Phase Three —Job Execution

2. Ancil cation Definition,

7. Job Submission

9 Monitor na Progress

Phase Two — System Selection

4 Information Gathering.;

5 System Selection ,.

Figure 3.1: Grid Scheduling Process [15]

3.1.2 Phase 2: System Selection

Given a group of possible resources (or a group of possible resource sets), all of

which meet the minimum requirements for the job, a single resource (or. single

resource set) must be selected on which to schedule the job. This is generally done in

two steps [15]:

> Gathering Information (QUERY): In order to make, the best possible resource

match, a user needs to gather dynamic information about the resources in

question. Depending on the application and resource in question, different

information may be needed. Take for instance the simple case of fmding the best

single resource for a job to run .on. A user might want to know the load on the

various machine(s) and queue lengths if the machine has queues. In addition,

physical characteristics and software requirements playa role, is the disk big

enough for the data etc. then there are location/connectivity issues is the machine

close enough to the data store. All of these issues are multiplied in the case of

13

multiple resources. Making an advance reservation may or may not be a part of

this step.

> Select the system(s) to run on: Given the information gathered by the previous

step, a decision of which resource (or set of resources) should the user submit a

job is made in this step. This can be done in variety of ways. Note that this does

not address the situation of speculative execution, where a job is submitted to

multiple resources and when one begins to run the other submissions is cancelled.

3.1.3 Phase 3: Run the Job

The third phase of scheduling is running a job. This involves a.number of steps [15]:

> Make an Advance Reservation (Optional): It may be the case that to make the

best use of a given system, part or all of the resources will have to be reserved in

advance. Depending on the resource, this can be easy or hard to do, may be done

with mechanical means as opposed to human means, and the reservations may or

may not expire with or without cost.

> Submit Job to Resources: Once resources are chosen the application must be

submitted to resources. This may be easy as running a single command or as

complicated as running a series of scripts, and may or may ,not- include -setup or

staging.

> Preparation Tasks: The preparation stage may involve setup, claiming a

reservation, or other. actions needed to prepare the resource to run the application.

One of the first attempts at writing a scheduler to run over multiple machines at

America's National Aeronautics and Space Agency (NASA) was considered

unsuccessful because it did not address the need to stage files automatically.

> Monitor Progress: Depending on the application and its running time, users may

monitor the progress of their application.

> Find out if Job is done: When the job is finished, the user needs to be notified.

> Completion Tasks: After a job is run, the user may need to retrieve files from that

resource in order to do analysis on the results, break down the environment and

remove temporary settings etc.

14

3.2 	Types of Grid Scheduling

Different types of scheduling are found in Grid systems as applications could have

different scheduling needs such as batch or online mode, task independent or

dependent; on the other hand, the Grid environment characteristics themselves impose

restrictions such as dynamics, use of local schedulers, centralized or decentralized

approach, etc. It is clear that in order to achieve the desired performance, both the

problem specifics and Grid environment information should be "embedded" in the

scheduler. In the following, we describe the main types of scheduling arising in Grid

environments.

> Independent scheduling. Computational Grids are parallel in nature. The

potential of a massive capacity of parallel computation is one of the most

attractive characteristics of computational Grids. Aside from the purely scientific

needs, the computational power is causing changes in important industries such as

oil exploration, digital animation, aviation, financial fields, and many others. The

common characteristic in these uses is that the applications are written to be able

to be partitioned into almost independent parts (or loosely coupled), which can be

scheduled independently.

> Grid workflows. Solving many complex problems in Grids, requires the

combination and orchestration of several processes (actors, services, etc.). This

arises due to the dependencies in the solution flow. (determined by control and

data dependencies). This class of applications is known as Grid workflows. Such

applications can take advantage of the power of Grid computing; however, the

characteristics of the Grid environment make the coordination of its execution

very complex [16, 17]. Besides the efficiency, Grid workflows should deal with

robustness. Certainly, a Grid workflow could run for .a long period, which in a

dynamic setting increases the possibility of process failure, causing failure of the

whole workflow, if failure recovery mechanisms are not used.

> Centralized, hierarchical and decentralized scheduling. Both centralized and

decentralized scheduling is, useful in Grid computing. Essentially, they-differ in

'the control of the resources and knowledge of the overall Grid system. In the case

of centralized scheduling, there is more control on resources: the scheduler has

knowledge of the system by monitoring of the resource state, and therefore it is

easier to obtain efficient schedulers. This type of scheduling, however, suffers

15

from limited scalability and is thus not appropriate for large-scale Grids.

Moreover, centralized schedulers have a single point of failure. Another way to

organize Grid schedulers is hierarchically, which allows one to coordinate

different schedulers at a certain level. In this case, schedulers at the lowest level in

the hierarchy have knowledge of the resources. This scheduler type still suffers

from lack of scalability and fault tolerance, yet it scales better and is more fault

tolerant than centralized schedulers. In decentralized or distributed scheduling

there is no central entity for controlling resources. The autonomous Grid sites

make it more challenging to obtain efficient schedulers. In decentralized

schedulers, the local schedulers play an important role. The scheduling requests,

either by local users or other Grid schedulers, are sent to local schedulers, which

manage and maintain the state of the job queue. This type of scheduling is more

realistic for real Grid systems of large scale, although decentralized schedulers

could be less efficient than centralized schedulers.

> Static versus dynamic scheduling. There are essentially two main aspects. that

determine the dynamics of the Grid scheduling, namely: (a) The dynamics of job

execution, which refers to the situation when job execution could fail or, in the

preemptive mode, job execution is stopped due to the arrival in the system of high

priority jobs; and (b) The dynamics of resources, in which resources can join or

leave the Grid in an unpredictable way, their workload can significantly vary over

time, the local policies on usage of resources could change over time, etc. These

two factors decide the behavior of the Grid scheduler, ranging from static to

highly dynamic. For instance, in the static case, there is no job failure and

resources are assumed available all the time (e.g. in enterprise Grids). Although

this is unrealistic for most Grids, it could be useful to consider for batch ,mode

scheduling: the number of jobs and resources is considered fixed during short

intervals of time (time interval between two successive activations _ of the

scheduler) and the computing capacity is also considered unchangeable. Other

variations are possible to consider: for instance, just the dynamics of resources but

not that of jobs.

16

Figure 3.2: Centralized Scheduler 	 Figure 3.3: Hierarchical Scheduler

Figure 3.4: Decentralized Scheduler

➢ Online versus batch mode scheduling. Online and batch scheduling are well-

known methods, largely explored in distributed computing. They are also useful

for Grid scheduling. In online mode, jobs are scheduled as soon as they enter the

system, without waiting for the next time interval when the scheduler will get

activated or the job arrival rate is small having thus available resources to execute

jobs immediately. In batch mode, tasks are grouped in batches and scheduled as a

group. In contrast to online scheduling, batch scheduling could take better

advantage of job and resource characteristics in deciding which job to map to

which resource since they dispose of the time interval between two successive

activations of the scheduler.

17

> Adaptive scheduling. The changeability over time of the Grid computing

environment requires adaptive scheduling techniques [18], which will take into

account both the current status of the resources and predictions for their future

status with the aim of detecting and avoiding performance deterioration.

Rescheduling can also be seen as a form of adaptive scheduling in which running

jobs are migrated to more suitable resources. Casanova et al. [19] considered a

class of Grid applications with large numbers of independent tasks (Monte Carlo

simulations, parameter-space searches, etc.), also known as task farming

applications. For these applications with loosely coupled tasks, the authors

developed a general adaptive scheduling algorithm. The authors used NetSolve

[20] as a test bed for evaluating the proposed algorithm. Othman et al. [21] stress

the need for the Grid system's ability to recognize the state of the resources. The

authors presented an approach for system adaptation, in which Grid jobs are

maintained, using an adaptable Resource Broker. Huedo et al. [22] reported a

scheduling algorithm built on top of the GridWay framework, which uses

internally adaptive scheduling.

➢ Scheduling in Data Grids. Grid computing environments are making possible

applications that work on distributed data and even across different data, centers.

In such applications, it is not only important to ,allocate tasks, jobs or application

to the fastest and reliable nodes but also to minimize data movement and ensure

fast access to data. In other terms, data location is important in such a type of

scheduling. In fact, the usefulness of the large computing capacity of the Grid

could be compromised by slow data transmission, which could be affected by.both

network bandwidth and available storage resources. Therefore, in general,- data

should be "close" to tasks to achieve efficient access.

3.3 Challenges in Grid Scheduling

Although Grids fall into the category of distributed parallel computing environments,

they have a lot of unique characteristics, which make the Scheduling in Grids highly

difficult. An adequate Grid scheduling system should overcome these challenges to

leverage the promising potential of Grid systems, providing High-Performance

services [23].

18

3.3.1 Resource Heterogeneity

A Grid has mainly two categories of resources: networks and computational

resources. Heterogeneity exits in both of the two categories of resources. First,

networks used to interconnect these resources may differ significantly in terms of

their bandwidth and communicational protocols. A wide area Grid may have to

utilize the best effort services provided by the internet. Second, computational

resources are usually heterogeneous in that these resources may have different

hardware, such as instruction set, computer architecture, number of processors,

physical memory size, CPU speed and so on and also different software such as

different operating systems, file systems, cluster management software and so on.

The heterogeneity results in differing capability of processing jobs. Resources with

different capacity cannot be considered uniformly. An adequate scheduling system

should address the heterogeneity and further leverage different computing powers of

diverse resources.

3.3.2 Site Autonomy

Typically a Grid may compromise multiple administrative domains. Each domain

shares a common security and management policy. Each domain usually authorizes a
group of users to use the resources in the domain. Thus applications from

unauthorized users should not be eligible to run on the -resources in. some specific

domains. Furthermore, a site is an autonomous -computational entity. A shared site

will result in many problems. It usually has its own scheduling policy, - which

complicates the prediction of a job on the site. A single overall performance goal is

not feasible for a Grid - system since each site has its -own performance goal and

scheduling decision is made independently of other sites according to its own

performance goal.

3.3.3 Local Priority

It's another important issue. Each site within the Grid has its own scheduling policy.

Certain classes of jobs have higher priority only on certain specific resources. For

example, it can be expected that local jobs will be assigned higher priorities such that

local jobs will be better served on the local resources.

19

3.3.4 Resource Non-Dedication

Because of non-dedication of resources, resource usage contention is a major issue.

Competition may exist for both computational resources and interconnection

networks. Due to the non-dedication of resources, a resource may join multiple Grids

simultaneously. The workloads from both local users and other Grids share the

resource concurrently. The underlying interconnection network is shared as well. One

consequence of contention is that behavior and performance may vary over the time;

Contention free at the guaranteed level schedulers must be able to consider the effects

of contention and predict the available resource capabilities 	$,L !L,

 'ACC No
3.3.5 Application Diversity 	 Date....................

This problem arises because the Grid applications are fro /)v& 	sers,

each having its own special requirements. For example, some applications may

require sequential execution, some applications may consist of a set of independent

jobs, and others may consist of a set of dependent jobs. In this context, building a

general-purpose scheduling system seems extremely difficult. 	An adequate

scheduling system should be able to handle a variety of applications.

3.3.6 Dynamic Behavior

In Traditional parallel computing environments such as a cluster, the pool of

resources is assumed to be fixed or stable. In a Grid Environment, dynamics exists in

both the networks and computational resources. First, a network shared by many

parties cannot provide guaranteed bandwidth. This is particularly true when wide

areas networks such as the internet are involved. Second, both the availability and

capability of computational resources will exhibit dynamic behavior. On one hand

new resources may join the Grid and on other hand, some resources may become

unavailable due to problems such as network failure. The capability of resources may

vary overtime due to the contention among many parties who share the resources. An

adequate scheduler should adapt to such dynamic behavior. After a new resource

joins the Grid, the scheduler should be able to detect it automatically and leverage the

new resources in the later Scheduling decision making. When a computational

resource becomes unavailable resulting from an unexpected failure, mechanisms such

as check pointing or rescheduling should be used to guarantee the reliability of Grid

20

systems. These challenges pose significant obstacles on the problem of designing an

efficient and effective scheduling system for Grid environments.

3.4 Batch Mode Heuristics for Independent Task

In the following discussion, m denotes number of machines, and t denotes the number
of tasks in the meta-task. In the batch mode, tasks are collected into a set called
metatask (MT). MT is mapped at prescheduled time called mapping events. Min-

Min[24], Max-Min[24] and Sufferage[24] belongs to batch mode mapping.

3.4.1 Min-Min

Min-Min begins with the set MT of all unassigned tasks. It has two phases. In the

first phase, the set of minimum expected completion time (such that task has the

earliest expected completion time on the machine) for each task in MT is found. In
the second phase, the task with the overall minimum expected completion time from

MT is chosen and assigned to the corresponding resource. Then this task is removed
from MT and the process is repeated until all tasks in the MT are mapped. This

heuristic takes O(t2m) time.

3.4.2 Max-Min

Max-Min is very similar to Min-Min, except that in second phase. Max-Min assigns

task with maximum expected completion time to the corresponding resource, the

resource giving maximum completion time. It also takes O(t2m) time.

3.4.3 Sufferage

The Sufferage heuristic is based on the idea that -better mappings can be generated by
assigning a machine to a task that would "suffer" most in terms of expected

completion time if that particular machine is not assigned to it. Sufferage gives each

task its priority according to its suffrage value. For each task, its sufferage value is

defined as the difference between its best completion time and its second best

completion time. The sufferage value of each task varies over time because of the
change of processor speed in a Grid. That is, it assigns the task t; to machine m~ with

earliest completion time for each task if machine m is available, otherwise it

21 	- 	-

calculates the sufferage value and assigns the task to that machine with high sufferage

value. It also takes O(t2m) time.

The Min-Min heuristic, in most situations, maps as many tasks as possible to their

first choice of service resources. In Min-Min, it is expected that a smaller makespan

can be obtained if more tasks are assigned to the machines that completes them the

earliest and also executes them fastest. However, the Min-Min algorithm is unable to

balance the load well since it usually schedules small tasks first. The Max-Min

algorithm may give a mapping with more balanced loads across the service resources

in some environments. Max-Min attempts to minimize the penalties incurred from

performing tasks with longer execution times. For example, let there are many tasks

with shorter execution times and one task with larger execution time. Mapping the

task with larger execution time to its best machine allows this task to be executed

concurrently with the remaining tasks, having shorter execution time. In this case the

Max-Min will give better mapping than Min-Min by executing larger task with

parallel shorter tasks. In cases similar to this example, the Max-Min heuristic may

give more balanced load and better makespan. The sufferage heuristic maps the task

with highest sufferage value. It generally maps the short tasks first. This . creates

resource load unbalancing.

P*a

Chapter 4

Proposed Segmented Average-Sufferage Heuristic

The Sufferage heuristic is based on the idea that better mapping can be generated by
assigning a machine to a task that would suffer most in terms of expected completion
time if that particular machine is not assigned to it. For each task, its sufferage value

is defined as the difference between its best minimum completion time and its second

best minimum completion time. Tasks with high sufferage value take precedence.

The proposed, Segmented Average-Sufferage heuristic divides the metatask in
number of segments. The segment having larger tasks is mapped first. This way the
task with larger execution time is executed first and finally, it results higher resource

utilization and load balancing.

The following terminologies are used in this chapter. First is expected time to
compute ETC;. It can be defined as time taken by the resource m to execute the task

t;, when there is no load with resource m~. Second is expected completion time

It can be defined as the wall-clock time when resource m completes the task t; after

finishing the previously assigned load.

4.1 Segmented Average-Sufferage Heuristic

Segmented Average-Sufferage heuristic first computes ETC matrix for all task t on m

resources. It is a t x m matrix. Then, it computes average of each row of ETC. By
taking this average value as key, it sorts these tasks in decreasing order of their

respective key. The heuristic partitions the metatask into N segments and schedules

each segment as their order in sorted list of task set by applying sufferage heuristic.

Determining the optimal value of N is a trade-off. More segments result in better load

balance. On the other hand, too many segments will lose advantages of the sufferage
algorithm. Intuitively, as long as we partition the tasks into a few segments, such as

large, medium, and small tasks, the load can be balanced fairly well. When t/m is
large, sufferage performs well. For small t/m, which means the number of tasks per

machine is not large, the optimal value of N is about 4 or 5. Therefore, we fix the

23

value of t/m to 4, which means that we always partition the tasks into four segments.

The algorithm's steps are shown in figure 4.1.

1. Compute the key for each task of metatask:

Avg-ETC: Compute the average value of each row in ETC matrix

Key ; _ ETC (ij) / m.

2. Sort the tasks into a task list in decreasing order of their key.

3. Partition the metatask evenly into N segments and numbered them.

4. for each segment make a meta-task set M,,

a. for all tasks tk in meta-task M„ (in an arbitrary order)

b. for all machines m; (in a fixed arbitrary order)
C. 	ck;= ekJ +r;

d. do until all tasks in M„ are mapped
e. mark all machines as unassigned
f. for each task tk in M„ (in an arbitrary order).
g. find machine mj that gives the earliest completion time
h. sufferage value = second earliest completion time - . earliest

completion time
i. if machine mj is unassigned
j. assign tk to machine m j , delete tk

from M,,, mark mj assigned
k. else

I. 	 if sufferage value of task t, already
assigned to mj is less than the
sufferage value of task tk

m. unassign t,, add tj back to M,,,
• assign tk to machine mj,-

delete tk from M„
n. endfor

o. update the vector r based on the tasks that
were assigned to the machines

p. update the c matrix
q. enddo
r. Increment segment number by one

5. endfor

Figure 4.1: Segmented Average-Sufferage heuristic

Segmented Average-Sufferage performs task sorting before scheduling. Sorting
implies that larger tasks are promoted to schedule earlier. Segmentation makes this
algorithm faster than the existing Sufferage heuristic. Because after sorting them we

24

have N sets and we have to apply Sufferage in each segment. Now in each task set

t/N tasks can be scheduled in short time by applying Sufferage.

4.2 Mapping Comparison of Sufferage and Segmented Average-

Sufferage Heuristics

The expected execution times of ten tasks on four resources are shown in Table 4.1

Table 4.1 ETC Matrix for Ten Tasks on Four Resources

RI R2 R3 R4
ti 13.7 2.28 4.56 1.14
t2 11.75 1.95 3.91 0.97
t3 14.5 2.41 4.83 1.2
t4 11.84 1.97 3.94 0.98
t5 9.28 1.54 3.09 0.77
t6 16.53 2.75. 5.51 1.37
t7 8.84 1.47 2.94 0.73
t8 16 2.66 5.33 1.33
t9 14.32 2.38 4.77. 1.19
t10 8.66 1.44 2.88 0.72

a) Sufferage
The sufferage value of each task is computed. The task t6 is having the

maximum sufferage value. It will be mapped on resource R4.

RI R2 R3. R4
Sufferage

value
ti 13.7 2.28 4.56 1.14 1.14
t2 11.75 1.95 3.91 0.97 0.98
t3 14.5 2.41 4.83 1.2 1.21
t4 11.84 1.97 3.94 0.98 0.99
t5 9.28 1.54 3.09 0.77 0.77
t6 16.53 2.75 5.51 1.37 1.38
t7 8.84 1.47 2.94 0.73 0.74
t8 16 2.66 5.33 1.33 1.33
t9 14.32 2.38 4.77 1.19 1.19

t10 8.66 1.44 2.88 0.72 0.72

In next iteration, task t10 is having maximum sufferage value and it will be mapped

on resource R2.

25

R1 R2 R3 R4
Sufferage

value
tl 13.7 2.28 4.56 2.51 0.23
t2 11.75 1.95 3.91 2.34 0.39
t3 14.5 2.41 4.83 2.57 0.16
t4 11.84 1.97 3.94 2.35 0.38
t5 9.28 1.54 3.09 2.14 0.6
t7 8.84 1.47 2.94 2.1 0.63
t8 16 2.66 5.33 2.7 0.04
t9 14.32 2.38 4.77 2.56 0.18

t10 8.66 1.44 2.88 2.09 0.65

In next iteration, task t8 is having maximum sufferage value and it will be mapped on

resource R4.

Rl R2 R3 R4
Sufferage

value
ti 13.7 3.72 4.56 2.51 1.21
t2 11.75 3.39 3.91 2.34 1.05
t3 14.5 3.85 4:83 2.57 1.28.
t4 11.84 3.41 3.94 2.35 1.06
t5 9.28 2.98 3.09 2.14 0.84
t7 8.84 2.91 2.94 2.1 0.81
t8 16 4.1 5.33 2.7 1.40
t9 14.32. 3.82 4.77 2.56 1.26

Similarly, for the remaining tasks, we are finding first the sufferage value and

selecting the task with maximum sufferage value for mapping. The complete result of

mapping is shown in figure 4.2. We are getting 6.88 makespan using Sufferage.

M

7

6 - L14
ti

S 3-29 a
4

 1.54 t~ -
ts 1.2

3 13

2
2.94

i7 1 1.44 L37 --
tlo is

0 -__ -T
R1 R2 R3 	R4

Figure 42: Result of Suffer age Heuristic

b) Segme.ted AverageStfferage
First, the average execution time of each task on all resources is computed.

This is called the key.

RI R2 R3 R4
Key; _ Y_ ETC

i' /m
tl 13.7 2.28 4.56 1.14 5.42
t2 11.75 1.95 3.91 0.97 4.64
13 14.5 2.41 4.83 1.2 5.73
t4 11.84 1.97 3.94 0.98 4.68
t5 9.28 1.54 3.09 0.77 3.67
t6 16.53 2.75 5.51 137 6.54
t7 8.84 1.47 2.94 0.73 3.49
t8 16 2.66 533 133 6.33
t9 14.32 2.38 4.77 1.19 5.66
t10 8.66 1.44 2.88 0.72 3.42

27

Sort the task set into decreasing order of their key.

Rl R2 R3 R4
Key; _ 	ETC

(ij)/m
t6 16.53 2.75 5.51 1.37 6.54
t8 16 2.66 5.33 1.33 6.33
t3 14.5 2.41 4.83 1.2 5.73
t9 14.32 2.38 4.77 1.19 5.66
ti 13.7 2.28 4.56 1.14 5.42
t4 11.84 1.97 3.94 0.98 4.68
t2 11.75 1.95 3.91 0.97 4.64
t5 9.28 1.54 3.09 0.77 3.67
t7 8.84 1.47 2.94 0.73 3.49
t10 8.66 1.44 2.88 0.72 3.42

We created 2 segments. Task t6, t8, t3,- t9 and ti is assigned to segmentl and task t4,
t2, t5, t7 and t10 is assigned to segment 2. For each segment, the sufferage heuristic

is applied for mapping. First tasks from segment 1 are mapped. The detailed steps

are shown below.

Segment 1

Segment 2

• Rl R2 R3 R4
t6 16.53 2.75 5.51 1.37
t8 16 2.66 5.33 1.33
t3 14.5 2.41 4.83 1.2
t9 14.32 .2.38 4.77 1.19
tl 13.7 2.28 4.56 1.14
t4 11.84 1.97 3.94 0.98
t2 • 11.75 1.95 3.91 0.97
t5 9.28 1.54 3.09 0.77
t7 - 8.84 1.47 2.94 0.73
t10 	. 8.66 1.44 2.88 0.72

Before assigning any task. to any resource all resources having ready time 0.0.

R1. 	R2 	R3 	R4
Ready
time 0.0 	0.0 	0.0 	0.0

28

Now calculating sufferage value of each task {t6, t8, t3, t9, t1 }.

Rl R2 R3 R4
Sufferage

value
t6 16.53 2.75 5.51 1.37 1.38
t8 16 2.66 5.33 1.33 1.33
t3 14.5 2.41 4.83 1.2 1.21
t9 14.32 2.38 4.77 1.19 1.19
ti 13.7 2.28 4.56 1.14 1.14

R1 R2 R3 R4
~Readytixne 0.0 0.0 0.0 1.37

Task t6 have largest sufferage value 1.38, so it will be mapped on resource R4 and

now the updated ready time of R4 is 1.37.

Rl R2 R3 R4
Sufferage

value
t8 16 2.66 5.33 2.7 0.04
t3 14.5 2.41 4.83 2.57 0.16
t9 14.32 2.38 4.77 ' 2.56 0.18
ti 13.7 2.28 4.56 2.51 0.23

R1 R2 R3 R4
Ready time 0.0 2.28 0.0 1.37

Task ti have largest sufferage value 0.23, so it will be mapped resource R2 and now

the updated ready time of R2 is 2.28.

Sufferage
R1 R2 R3 R4 value

t8 16 4.94 5.33 2.7 2.24
t3 14.5 4.69 4.83 2.57 2.12
t9 14.32 4.66 4.77 - 2.56 2.1

R1 R2 R3 R4
Ready time 0.0 2.28 0.0 2.7

Task t8 have largest sufferage value 2.24, so it will be mapped on resource R4 and

now the updated ready time of R4 is 2.7.

Sufferage
R1 	R2 	R3 	R4 value

t3 14.5 	4.69. 4.83 - 3.9 0.79
t9 14.32 	4.66 	4.77 	3.89 0.77

R1 R2 R3 R4
Ready time 0.0 2.28 0.0 3.9

29

Task t3 have largest sufferage value 0.79, so it will be mapped on resource R4 and

now the updated ready time of R4 is 3.9.

Rl 	R2 	R3 	R4
Sufferage

value
t9 14.32 	4.66 	4.77 	5.09 0.11

R1 R2 R3 R4
Ready time 0.0 4.66 0.0 3.9

Now the remaining task t9 having sufferage value 0.11, it will go to resource R2 and

now updated ready time of R2 is 4.66.
Ready times of resources are 0.0, 4.66, 0.0 and 3.9. After completing with segment 1

now applying same steps from 4.a to 4.r of figure 4.1 on segment 2.

Segment 2

R1 R2 R3 R4
t4 11.84 1.97 3.94. 0.98
t2 11.75 1.95 3.91 0.97
t5 9.28 1.54 3.09 0.77
t7 8.84 1.47 2.94 0.73
t10 8.66 1.44 2.88 0.72

Ready times of all the resources are 0.0, 4.66, 0.0 and 3.9.

R1 R2 R3 R4
Read 	time 0.0 4.66 0.0 3.9

Now calculating sufferage value of each task {t4, t2, t5, t7, t10}.

R1 R2 R3 R4
•Sufferage

value
t4 11.84 6.63 3.94 4.88 0.94
t2 11.75 6.61 3.91 4.87 0.96
t5 9.28 6.2 3.09 4.67 -1.58
t7 8.84 6.13 2.94 4.63 1.69
t10 8.66 6.1 2.88 4.62 1.74

R1 R2 R3 R4
Ready time 0.0 4.66 2.88 3.9

30

Task t10 have largest sufferage value 1.74, so it will be mapped to resource R3 and
now the updated ready time of R3 is 2.88.

Rl R2 R3 R4
Sufferage

Value
t4 11.84 6.63 6.82 4.88 1.75
t2 11.75 6.61 6.79 4.86 1.75
t5 9.28 6.2 5.97 4.67 1.3
t7 8.84 6.13 5.82 4.63 1.19

R1 R2 R3 R4
Ready time 0.0 4.66 2.88 4.88

Task t4 have largest sufferage value 1.75, so it will be mapped to resource R4 and

now the updated ready time of R4 is 4.88.

Sufferage
R1 R2 R3 R4 Value

t2 11.75 6.61 6.79 5.84 0.95
t5 9.28 6.2 5.97 5.65 0.32
t7 8.84 6.13 5.82 5.61 0.21

R1 R2 R3 R4
~Readyfinie 0.0 4.66 2.88 5.84

Task t2 have largest sufferage value 0.95, so it will be mapped to resource R4 and

now the updated ready time of R4 is 5.84.

Sufferage
R1 	R2 	R3 	R4 value

t5 9.28 	6.2 	5.97 	6.62 0.65
t7 8.84 	6.13 	5.82 	6.58 - 0.76

R1 R2 R3 R4
Read time 0.0 4.66 5.82 5.84

Task t7 have largest sufferage value 0.76, so it will be mapped to resource R3 and

now the updated ready time of R3 is 5.82.

R1 	R2 	R3 	R4
Sufferage

value
t5 9.28 	6.2 	8.76 	6.62 0.42 Rl . R2. R3. . R4 .

Read -time . 0.0 6.2 - 5.82 .5.84

Now the remaining task t5 having sufferage value 0.42, it will go to resource R2 and

now updated ready time of R2 is 6.2. Segmented Average-Sufferage heuristic gives

6.2 makespan. The results are shown in figure 4.3.

31

7-

6-

5-

C

.. 4 -n

3

2 -

1-

0 -

R1
	

R2 	R3 	R4
RRSOUroes

Figure 43: Result of Segmented Average-Sufferage

Above example explains Segmented Average-Sufferage heuristic achieves significant

improvement in makesp®n compared to Sufferage heuristic.

32

Chapter 5

Results and Discussions

5.1 Performance Metrics

Depending on what scheduling performance is desired in Grid, there are different

performance metrics for evaluating scheduling algorithms. Here, the results are

evaluated on the basis of following performance matrices.

Makespan: - Makespan is the measure of the throughput of the Grid. It can be

calculated using equation (5.1).

makespan = maxt1 EMT(CT;) 	 (5.1)

Here CT; is the total time taken by task t; for execution. The less the makespan, the

better is the algorithm.
Average Resource _ Utilization [25]:- Average resource utilization rate of all

resources can be calculated through equation (52) 	 - -

= zm 1-j 	 (5.2) rU
m

Here rub is the resource utilization rate of resource r~. It can be calculated using

equation (5.3)

L where tihas been executed onxn (tei—tsi) 	 (5.3) ruj = 	 T

Here tee is the fmish time and tsi is the start time of task t; on resource mj. T is the-

total application time elapsed so far. It can be calculated using equation (5.4)

T = max(te;) — min (ts;)
(5.4)

Load Balancing Level [25]:- The mean square deviation of ru is given by equation

(5.5)

d= ;_1(m- ru)Z
m

(5.5)

33

The load balancing level, (3, is determined through the relative deviation of d over ru.

l3 = 1_ N 	 (5.6)

The best load balancing level is achieved if [i reaches to 1 and d is close to 0.

5.2 Simulation Environment

To evaluate the Segmented Average-Sufferage heuristic, we have used the Gridsim

Toolkit [26], a Grid Simulator as a simulation tool. We have compared the results

given by our heuristic with the results given by Min-Min, Max-Min and Sufferage

heuristics. For evaluating and comparing the results of Segmented Average-Sufferage

heuristic we have used the three task cases as listed below.

Task length generation is done based on the formula given below.

Task length = { value * (1 - lessFactor + (lessFactor + moreFactor) *randDouble) }

value - the estimated value
0.0 < lessFactor and moreFactor < 1.0
randDouble - an uniformly distributed double value between 0.0 and 1.0

Case I: - A few short tasks (2% to 10%) along with many long tasks.

For short tasks: value = 100, lessFactor = 0.1,- moreFactor = 0.9 and

randDouble = An uniformly distributed random double value between 0.0 and

1.0

For long _tasks: _ value = 9000, lessFactor = 0.1, moreFactor = 0.9 and

randDouble = An uniformly distributed random double value between 0.0 and

1.0

Case II: - A-few long tasks (2% to 10%) along with many short tasks.....

For short tasks: value. = 9000,. lessFactor .= 0.1, moreFactor = 0.9 and

randDouble = An uniformly distributed random double. value between 0.0 and

1.0

For long tasks: value = 100, lessFactor = 0.1, moreFactor = 0.9 and

randDouble = An uniformly distributed random double value between 0.0 and

1.0

Case III: - Length of tasks is randomly determined

34

For all task value = An uniformly distributed random double value between
100 and 9000, lessFactor, moreFactor and randDouble are uniformly
distributed random double value between 0 and 1.

We have taken loresources and 1000 task for each case. Every resource has 15 to 20
machines and each machine has 2 to 4 processing elements. The arrival of tasks is

modeled as Poisson random process.

5.3 Results

We have used the performance metrics given in section 5.1 for evacuating the results
of Segmented Average-Sufferage (Avg-Suff), Sufferage, Min-Min and Max-Min

heuristics. We have taken the task cases given in section 5.2. The results of
makespan, average resource utilization and load balancing level are shown below.

a) Makespan Results
The makespan results are shown in figure 5.1, 5.2 and ;5.3 for the task cases I, II,
III, respectively. The results are compared with the results of Sufferage, Min-Min
and Max-Mih heuristics. Table 5.1 shows the comparison of Segmented Average-

Sufferage and Sufferage heuristics. We canobserve that the proposed heuristic

gives 9.9%, 25.31% and 4.36% gain in makespan over sufferage for task cases I,

II, Ill, respectively. Table 52 shows the comparison of Segmented Average-
Sufferage and Min-Min heuristics. We can observe that the proposed heuristic

gives 11.17%, 26.96% and 5.12% gain in makespan over Min-Min for task cases

I, H, III, respectively. Table 5.3 shows the comparison of Segmented Average-

Sufferage . and Max-Min heuristics. We can observe that the proposed heuristic

gives 12.78%, 26.56% and 4.97% gain in makespan over sufferage for task cases

I, II, III, respectively. Over all, the proposed heuristic gives better makespan than
Sufferage, Min-Min and Max-Min for each task case.

35

Table 5.1. Makespan Comparison of Segmented Average-Sufferage with Sufferage

Cases
Makespan (In Hundred Seconds) Improvement over

Sufferage Avg-Sufi Sufferage
Case I 39.37 43.70 9.9%
Case II 29.45 39.43 25.31%
Case III 42.99 44.95 - 4.36%

Table 5.2. Makespan comparison of Segmented Average-Sufferage with Min-Min

Cases
Makespan (In Hundred Seconds) Improvement over

Min-Min Avg-Suff Min-Min
Case I 39.37 44.32 11.17%
Case II 29.45 40.32 26.96%
Case III 42.99 45.31 5.12%

Table 5.3. Makespan comparison of Segmented Average-Sufferage with Max-Min

Cases
Makespan (In Hundred Seconds) Improvement over

Max-Min Avg-Suff Max-Min
Case I 39.37 45.14 12.78%
Case II 29.45 40.1 26.56%
Case III 42.99 45.24 4.97%

Figure 5.1: Makespan in Case I

45.00

40.00

35.00

30.00

25.00

20.00

0 	15.00

10.00

5.00

0.00
MinMin MaxMin I 	Suff I 	Avg-Suff

Makespan 40.32 40.10 39.43 29.45

Figure 5.2: Makespan in Case 11

50.00

45.00

40.00 .

35.00

- 30.00

25.00

20.00

R, 15.00
C
'x 10.00

5.00

0.00
MinMin 	MaxMin 	Suff 	Avg-Suff

Makespan 	45.31 	45.24 	44.95 	42.99

Figure 5.3: Makespan in Case III

b) Average Resource Utilization

Figures 5.4, 5.5 and 5.6 show the results of resource utilization rate for the

case I, II and III, respectively. We can observe from them the proposed

heuristic gives better resource utilization than others.

37

A1 , LIV ..T. LXV4IGLSV 1VJV UINV U L111 G(LL1 V11111 VGLJLi L

1'1r'Ull, J.J. 	 1liJVUIVV UL111GaLLL11 in Vaz%., 11

38

0.72

0.71

0.69

0.68

0.67

0.66

MinMin 	MaxMin 	Suff 	Avg-Suff

Heuristics

Figure 5.6: Average resource utilization in Case III

c) Load Balancing Level

rigure J.i: "au va1a.ncing icvei in LasC r

39

I.Ir,uIG J.O. luau Va1CLLI.,III 1GVGl III l.[WG 11

Figure 5.9: load balancing level in Case III

Figures 5.7, 5.8 and 5.9 show the results of load balancing level for the case I, II and

III, respectively. We can observe from them the proposed heuristic gives better
resource load balancing than others.

40

Chapter 6

Conclusions and Future Work

6.1 Conclusions

In this dissertation, we have proposed Segmented Average-Sufferage heuristic to

achieve high throughput in Grid computing. The study concentrates for batch mode

independent task scheduling. We have used segmentation method to get better load

balancing. It also helps to improve makespan.

The following improvements in makespan are obtained.

➢ The Segmented Average-Sufferage gives up to 26.96% improvement in

makespan than-Min-Min heuristic.

> The Segmented Average-Sufferage gives up to 26.56% improvement in

makespan than Max-Min heuristic.

> The segmented Average-Sufferage gives up to 25.31% improvement in

makespan than Sufferage heuristic.

The heuristic are also tested for resource utilization and load balancing. From the _

results given in chapter 5, we can conclude that the proposed heuristic, segmented

average sufferage gives better resource utilization and resource load balancing than

Min-Min, Max-Min and Sufferage heuristics.

6.2 Scope for Future Work

The proposed heuristic is tested for independent tasks batch mode scheduling in static

environment. The following domains can be considered for future work.

i) The heuristic can be implemented and tested in actual Grid environment.

ii) The heuristic can be modified to consider the QoS demands of tasks.

iii) The heuristic can be investigated in dynamic environment.

41

References

[1] Krishnaram Kenthapadi, and Gurmeet Singh Mankuy, "Decentralized

Algorithms using both Local and Random Probes for P2P Load Balancing,"

Proceedings of the seventeenth annual ACM symposium on Parallelism in

algorithms and architectures, Las Vegas, Nevada, USA, July 18 — 20, 2005,

pp. 135-144.

[2] B. Yagoubi and Y. Slimani, "Task Load Balancing Strategy for Grid

Computing," 22nd international symposium on Journal of Computer Science,

vol. 3, no. 3, Ankara, Nov. 7 - 9 2007, pp. 186-194.

[3] Dazhang Gu, Lin Yang, Lonnie R. Welch "A Predictive, Decentralized Load

Balancing Approach", Proceedings of 19th IEEE International Parallel and

Distributed Processing Symposium, April 2005 pp. 131b - 131b.

[4] Ibarra 0 H and Kim C E. "Heuristic algorithms for scheduling independent

tasks on non-identical processors". Journal of the ACM, vol. 24, no. 2, 1977,

pp. 280-289,

[5] Foster, .I., Kesselman, C. and Tuecke,. S. The Anatomy of the Grid: Enabling

Scalable. Virtual. Organizations. International Journal of High .Performance

Computing applications, vol. 15, no..3, 2001, pp. 200-222.

[6] Jarek Nabrzyski, Jennifer M. Schopf, & Jan Weglarz, "GRID _ RESOURCE

MANAGEMENT—STATE OF THE ART AND FUTURE TRENDS", Kluwer

Academic Publisher. Norwell, MA, USA-Year of Publication: 2004.

[7] Hai Zhuge, Xiaoping Sun, Jie Liu, Erlin Yao, and Xue Chen , "A Scalable P2P

Platform for the Knowledge Grid", IEEE Transactions on Knowledge and

Data Engineering, vol. 17, no. 2, June 2002, pp. 1721 —1736.

[8] Scheduling and Resource Management in Computational Mini-Grids,

www.parl.clemson.edu/—wjones/research/draft.pdf, July. 1, 2002

[9] Thierry Prioi, "Grid Middleware", http://www.gridatasia.net, Advanced Grid

Research Workshops through European and Asian Co-operation.

[10] Yih-Jiun Lee and Peter Henderson, "A Practical Modelling Notation for

Secure Distributed Computation", Proceedings of 19th International

Conference on Advanced Information Networking and Applications, 28-30

March 2005 pp.439 — 442.

42

[11] I. Foster, et al., "The Physiology of the Grid: An Open Grid Services

Architecture for Distributed Systems Integration," Technical Report, Glous
Project; http://www.globus.org/research/papers/ogsa.pdf (current June 2010).

[12] Foster, I., C. Kesselman, and S. Tuecke, "The Anatomy of the Grid: Enabling

Scalable Virtual Organizations". International Journal of High Performance

Computing Applications, vol. 15, no. 3, 200-222, 2001.

[13] Clovis Chapman1, Paul Wilson.2, "Condor services for the Global Grid:

Interoperability between Condor and OGSA", Proceedings of the 2004 UK e-
Science All Hands Meeting, ISBN 1-904425-21-6, pp. 870-877, Nottingham,

UK, August 2004 http://www.cs.wisc.edu/condor/doc/condor-ogsa-2004.pdf

[14] E. Caron, V. Garonne, A. Tsaregorodtsev, "Definition, Modelling and

Simulation of a Grid Computing Scheduling System for High Throughput
Computing", Future Generation Computer Systems, vol. 23, no. 6, 2007, pp.

968-976.

[15] J. M. Schopf, "A General Architecture for Scheduling in the Grid", Journal of

parallel and distributed computing, special issue of Grid Computing, 2002.

[16] J. Cao, S.A. Jarvis, .S. Saini, G.R. Nudd, "GridFlow: Workflow Management
for Grid Computing", in Proceedings of the 3rd International Symposium on

Cluster 	Computing and the Grid, CCGrid'03, 2003, pp. 198-205..

[17] J. Yu, R. Buyya, "A Taxonomy of Workflow Management Systems for Grid

Computing, Journal of Grid Computing, vol. 3, no. 2, 2006, pp._ 171-200.

[18] L. Lee, C. Liang, H. Chang, "An Adaptive Task Scheduling System for Grid

Computing", in Proceedings of the Sixth IEEE international Conference on

Computer and information Technology, CIT'06, 2006, p. 57.

[19] H. Casanova, M. Kim, J.S. Plank, J.J. Dongarra, "Adaptive Scheduling for

Task Farming with Grid Middleware", International Journal of ,High

Performance Computing Applications vol. 13, no. 3, 1999, pp. 231-240.

[20] H. Casanova, J. Dongarra, Netsolve: "Network Enabled Solvers, IEEE
Computational Science and Engineering, vol. 5, no.3, ,1998, pp. 57-67..

[21] A. Othman, P. Dew, K. Djemame, K. Gourlay, "Adaptive Grid Resource

Brokering", in Proceedings of . IEEE International Conference on Cluster

Computing, Hong Kong, 1 -4 Dec. 2003, pp. 172-179..

[22] E. Huedo, R.S. Montero, I.M. Llorente, "Experiences on Adaptive Grid
Scheduling of Parameter Sweep Applications", in ..Processings of 12th

43

Euromicro Conference on Parallel, Distributed and Network-based, PDP'04,

11-13 Feb. 2004, pp. 28 - 33.

[23] N. Tonellotto, R. Yahyapour, "A Proposal for a Generic Grid Scheduling
Architecture", Technical Report CoreGrid no TR-0015, Institute of Resource

Management and Scheduling, Germany, 2006.

[24] M. Maheswaran, S. Ali, H. J. Siegel, D. , Hensgen, and R. Freund, "Dynamic

Mapping of a Class of Independent Tasks onto Heterogeneous Computing
Systems", in proceedings of 8th IEEE Heterogeneous Computing Workshop

(HCW '99), San Juan, Puerto Rico, April 1999, pp. 30 - 44.

[25] Kobra Etminani, M. Naghibzadeh, "A Min-Min Max-Min Selective Algorithm

for Grid Task Scheduling," 3rd IEEE/IFIP International Conference on

Internet in Central Asia, 26-28 Sept, 2007, pp. 1 — 7.

[26] R. Buyya, M. Murshed, "Gridsim: A Toolkit for the Modeling and Simulation
of Distributed Resource Management and Scheduling for Grid Computing,"

Journal of Concurrency and Computation: Practice and Experience, vol._ 14,

no. 13, Wiley Press, Nov. - Dec., 2002, pp. 1175-1220.

List of Publications

[1] Ashish Kumar, Anil. K. Sarje, "Segmented Average-Sufferage Heuristic for

Independent Task Scheduling in Grid", 4th International Conference on

Information Processing — 2010, August 6-8, 2010, Bangalore, India. (Accepted)

45

Appendix A
Introduction to Gridsim

The Gridsim toolkit provides a comprehensive facility for simulation of different

classes of heterogeneous resources, users, applications, resource brokers, and

schedulers. It can be used to simulate application schedulers for single or multiple

administrative domains distributed computing systems such as clusters and Grids.

Application schedulers in the Grid environment, called resource brokers, perform

resource discovery, selection, and aggregation of a diverse set of distributed resources

for an individual user. This means that each user has his or her own private resource

broker and hence it can be targeted to optimize for the requirements and objectives of

its owner. In contrast, schedulers, managing resources such as clusters in a single

administrative domain, have complete control over the policy used for allocation of

resources. This means that all users need to submit their jobs to the central scheduler,

which can be targeted to perform global optimization such as higher system utilization

and overall user satisfaction depending on resource allocation policy or optimize for

high priority users.

System Architecture of Gridsim

It employed a layered and modular architecture for Grid simulation to. leverage

existing technologies and manage them as separate components [26]. A multi-layer

architecture and abstraction for . the development of Gridsim platform and its

applications is shown in. Figure A-1. The first layer is concerned with the scalable

Java interface and the runtime machinery, called JVM (Java Virtual Machine), whose

implementation is available nor single and multiprocessor systems including clusters.

The second layer is concerned with a basic discrete-event infrastructure built using the

interfaces provided by the first layer. One of the popular discrete-event infrastructure

implementations available in Java is SimJava. Recently, a distributed implementation

of SimJava was also made available. The third layer is concerned with modeling and

simulation of core Grid entities such as resources, information services, and so on;

application model, uniform access interface, and primitives application modeling and

framework for creating higher level entities. The Gridsim toolkit focuses on this layer

that simulates system entities using the discrete event services offered by the lower-

level infrastructure. The fourth layer is concerned with the simulation of resource
aggregators called Grid resource brokers or schedulers. The final layer is focused on

application and resource modeling with different scenarios using the services
provided by the two lower-level layers for evaluating scheduling and resource
management policies, heuristics, and algorithms. In this section, we briefly discuss the
SimJava model for discrete events (a second-layer component) and focus mainly on
the Gridsim (the third layer) design and implementation. Resource broker simulation
and performance evaluation are highlighted in the next two sections.

Application, User, Grid Scenario's Input and Results

Application 	Resource 	 User 	Grid
Configuration 	Configuration 	Requirements 	Scenario 	Output

Grid Resource Brokers or Schedulers

GridSim Toolkit
..v....................................o..

4pplication 	Resource 	Information 	: 	Job : 	Resom ce° 	Statistics'
Modeling 	Entities 	Services 	Management 	Allocation •

Resource Modeling and Simulation (with Time and Space shared schedulers)

Single CPU - S1IPs 	Clusters 	Load Pattern 	Network 	Reservation-

Basic Discrete Event Simulation Infrastructure

SimJava 	Distributed SimJava

Virtual Machine (Java, cJVM, RMI)

PCs 	Workstations 	SMPs 	Clusters 	Distributed Resources

Figure A.1: A modular architecture for Gridsim platform and components.

47

	Title
	Abstract
	Chapter 1
	Chapter 2
	Chapter 3
	Chapter 4
	Chapter 5
	Chapter 6
	References
	Appendix

