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Abstract 

Clustering, particularly unsupervised clustering is central to a large number of com-
puting application which involve machine learning and information retrieval. Algo-
rithmic methods of improving the execution times by using filtering algorithm and 
kd-trees have been successful but do not provide scope for further improvements. 
The emergence of multi-core procdssors and their easy availability and low cost has 
made it possible to have increased computing power. The need of the hour is to have 
algorithms that can harness the increased computing power available at our disposal. 

In this work a novel approach has been presented which can reduce the running time of 
the clustering algorithms by exploiting the parallel computing architectures available 
today. We utilize the MPI libraries for creating parallel execution threads on multicore 
processors.Our approach involves adding a pre-processing and post-processing step to 
the parallel implementation of clustering using filtering algorithm.The preprocessing 
step is for finding groups of dimensions which have similar characteristics and which 
can therefore yield better quality clusters. These sub-groups of similar dimensions 
are clubbed together for parallel clustering operations in the subsequent steps, based 

on a similarity metric. The sub-groups of dimensions are created with an overlapping 
dimension among adjacent groups to facilitate merging of cluster centers during 
the post-processing step. The parallel clustering step produces overlapping cluster 
centers for the sub-groups of dimensions. The post-processing step takes the clusters 
created by the sub-groups of dimensions and merges the cluster centers based on the 
overlapping dimensions. 

The feasibility of the framework has been demonstrated through an implementation 
on multi-spectral image clustering using the filtering algorithm a.nd significantly re-
duced running times were obtained. The pre-processing step involved the calculation 
of the kurtosis of the image data for calculating the similarity metric and grouping 
into sub-groups. The overhead involved in execution of the pre and post-processing 
steps was less than one percent of the time taken for clustering the data in parallel. 
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Chapter 1 

Introduction 

1.1 Unsupervised Clustering 

Unsupervised clustering is an indispensable tool for machine learning in the present 
day world. It is used for geoscience and remote sensing applications for obtaining 
vegetation maps of interest. Its used for analyzing trends in sales of goods from 
data warehouses. It is also used in the field of bioinformatics for analysis of DNA 
micro array expression data, it is useful in high range resolution(HRR) radar range 
profiles [1]. In short unsupervised clustering finds its use in many fields where system 
automation is required and in cases where information about the existing data is 
scarce, or non existent, or expensive. In such cases unsupervised clustering is helpful. 
towards the goal of unsupervised extraction of information from data. The goal of 
clustering is to simplify the characterization of the data into semantically mea.ningfnl 

groups. In the absence of apriori knowledge, the nearest neighbor proximity constraint 
is fundamental to any clustering algorithm. It is based on the rationale that for a 
good feature representation objects that lie together in the feature space would also 
lie together in the reality. Attempts have been made to improve the execution times 
of unsupervised clustering algorithms using techniques like filtering algorithms and 
kd-trees. But these algorithms do not provide further scope for reducing the execution 

time. 
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1.2 Parallel Computing 

Moore's law had predicted that the chip manufacturing technology would be able 
to double the transistors on chip roughly every two years, and the prediction has 

stood good so far. Microprocessor technology has been upho . iding this prediction 
to improve its frequency by various techniques. However in the recent past micro-
processors have hit a frequency wall, and not been able to take advantage of the 

predicted exponential growth. The outcome is the emergence of multicore processors, 
which offer the performance benefits of multi-processors on single chip. The prc~cin( r 
of such architectures as common desktop processors has made it possible for hitherto 

time-consuming algorithms to be solved on simple desktop machines. The multicorc 
processors allow program to leverage their computing power by various means like 
independent threads per core, or allow user to manipulate efficient data flow between 
cores, or provide a layer of software which manages the scalability of the cores. With 
the future micro-processor trends likely to increase number of cores as the only means 

of their increasing computing power, it has become necessary to ensure that important 
algorithms be parallelized to run on next generation of micro-processors. 

1.3 Problem Statement 

The problem of clustering points in a multidimensional space is one of a large number 
of optimization problems, such as the Euclidean k-median problem. in which we have 
to reduce the sum of distances to the nearest center. There are no efficient soiut.ions 

available for general k, and some formulations are known to be NP-Hard. [2] 

In this dissertation, an attempt has been made to create a framework for parallel imple-
mentation of unsupervised clustering algorithms that can be applied to arty algorithm, 
that processes large number of dimensions. Typically, dimensionality has been a curse 
and many efforts have been made to reduce the number of dimensions before clustering 
of the data [3], through the use of techniques like feature extraction, feature selection, 

Principal Component Analysis(PCA) etc. However almost all these techiques discard 

some amount of information based on certain criterion, which leads to information 
loss. In this work an approach has been presented that adds pre-processing and post- 
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processing steps to an unsupervised clustering algorithm so that they can utilize the 
parallel architectures available today like multicore systems, clusters etc. for solving 
the problem by harnessing the increased computing power at our disposal in form of 
the parallel architectures present. 

1.4 Organisation of the Report 

The organisation of the Dissertation report is as follows: 

• Chapter 2 starts with an overview of the unsupervised clustering algorithms, 
with a background on the work done so far in the field. It proceeds to give 

an example of unsupervised clustering and then gives a brief overview of the 
ISOCLUS algorithm implementation with filtering algorithm and kd-trees. 

• Chapter 3 provides a detaled overview of the multicore architectures and clusters 

that have been used in this dissertation. 

• Chapter 4 covers the Message Passing Interface(MPI) that has been employed 
for creating parallel threads of execution for demonstrating the working of our 

proposed framework. 

• Chapter 5 gives a detailed explanation of the framework that the author is 
proposing for increasing the performance of algorithms on parallel architectures. 

• Chapter 6 discusses the implementation of the framework proposed on clustering 
using the filtering algorithm. The results obtained are also discussed. 

• Finally Chapter 7 concludes the report and gives suggestions for future work 
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Chapter 2 

Unsupervised Clustering 

Unsupervised clustering either does not require training data to be specified in ad-
vance, or performs. a form of automated selection from the input data. With these 
techniques it is possible to create clusters even with estimates of the number of clusters 
present as the algorithms are able to narrow down to the number of naturally lying 
clusters based on various parameters like cluster size, standard deviation among the 
data points in the cluster. 

The classical K-means algorithm are very dependent on selection of number of clusters 
and their initial center locations (seed locations). This is a heuristic, greedy algorithm 
for minimizing SSE (Sum of Squared Errors) hence it may not converge to a. global. 
optimum. The ISOCLUS algorithm is similar to the K-means procedure but at each 
iteration the various clusters are examined to see if they would benefit from being 
combined or split, based on a number of criteria: (i) combination if two cluster 
centers are closer than a pre-defined tolerance they are combined and a new mean 
calculated as the cluster center; (ii) if the number of members in a cluster is bolo v 

a given level the cluster is discarded and the members re-assigned to the closest, 
cluster; and (iii) separation if the number of members, or the standard deviation, 
or the average distance from the cluster center exceed pre-defined values then the 
cluster may be split. ISOCLUS is an automated procedure similar to the ISODATA 
procedure. It produces better quality clusters than K-means as it can adapt based 
on the characterictics of the input data. 

0 



An application of Unsupervised clustering is in finding out vegetation maps from 
satellite images [4]. Figure 2.1 shows three bands of data. 

• Band 1 - Blue spectrum(0.45 - 0.52 µm)[Figure 2.1(a)] and is meant for water 
body penetration, making it useful for coastal water mapping. Also, useful 
for soil/vegetation discrimination, forest type mapping and .  cultural feature 
identification. 

• Band 2 - Green spectrum(0.52 -0.60 pm)[Figure 2.1(b)] is useful for measuring 
green reflection of vegetation. It can also be used for cultural feature identili-

cation. 

• Band 3 - Red (0.63 -0.69,um)[Figure 2.1(c)] is sensitive to chlorophyll absorption 
region. It is useful for vegetation a.nalysis and can even be used to differentiate 
plant types. It is also useful for cultural feature identification. 

The Band data is black and white and does not contain any color information. What 
is done is that bands are merged by assigning them to any of the Bands of primary 
colors- Red, Green or Blue. These are the colors that our eyes actually see. These 
are called false color images because we can assign any band data to any primary 
color we want depending on what color we want to assign a particular property. For 
example, since Band 2 measures the reflection from vegetation, the value of a data at 
a point will indicate the amount of forest cover in the region. Thus by combining the 

knowledge from the various bands we can infer a large amount of information about 
a region, like, presence of water bodies, forest cover, kind of vegetation etc. 

2.1 The ISOCLUS Algorithm 

ISOCLUS is a clustering algorithm based on the ISODATA clustering algorithm [5], [6] 
with minor modifications. Like the k-means algorithm,ISOCLUS tries to find the best 

cluster centers through an iterative approach, until some convergence criteria are 
met.ISOCLUS uses different heuristics to determine when to merge or split clusters 
[5].There are a number of user-supplied parameters. These include the following [7]: 

• The Desired number of clusters(Numclus) 

k, 



(a) Band 1 - Blue (0.45 - 0.52 tim) 
	

(b) Band 2 - Green (0.52 -0.60 µm) 

(c) Band 3 - Red (0.63 -0.69 µm) 

Figure 2.1: Satellite Image Bands 



Figure 2.2: Figure obtained after merging Bands 1,2 and 3 

• The minimum number of samples in a cluster(SampRm) 

• The Maximum number of Iterations(Maxlter) 

• Maximum standard deviation per cluster(StdDev) 

• The Lumping parameter(Lump) and Maximum number of pairs that can be 

lumped per iteration(MaxPair) 

The algorithm can run very slowly on large data sets, hence in order to increase the 

speed of execution points are randomly sampled from the original data set and thnn 

randomly selects NumClus centers from the samples. Depending upon the parametei s 

passed to the algorithm the distance to the cluster centers are calculated and the 

points are assigned to the nearest cluster center. Next clusters with fewer than 

SampRm are deleted. The cluster centers are then moved to the mean centroid 

of samples in the remaining clusters. 

Next the algorithm considers merging or deleting clusters depending on the relation-

ship between number of clusters and Numclus and number of Iterations and Maxlter. 

For Each cluster the standard deviation along each of the coordinate axes is computed 
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a 	P5 •plo 

p. pa 

3.101 p7  

Figure 2.3: An example of a kd-tree of a set of points in the plane, showing both the 
associated spatial subdivision (left) and the binary tree structure (right). 

and the maximum standard deviation is calculated. Based on this information and 

the values of StdDev and Numclus the clusters are split. And the parameters Lump 

and MaxPair and used to merge pairs of nearby clusters. 

2.1.1 kd-trees 

A kd-tree is a hierarchical decomposition of space into axis-aligned hyperrectangles 
called cells. Each node of the tree is implicitly associated with a unique cell and 
the subset of the points that lie within this cell. Each internal node of the kd-tree 
stores an axis-orthogonal splitting hyperplane. This hyperplane subdivides the cell 
into two subcells, which are associated with the left and right subtrees of the Hoch. 

Nodes holding a. single point are declared to be leaves of the tree. In Figure 2.3, the 
highlighted node u of the tree is associated with the shaded rectangular cell shown 
on the left side of the figure and the subset pi , P2, P3 of points. It is well known that 

a kd-tree on n points can be constructed in O(n log n) time [8]. 

2.1.2 The Filtering Algorithm 

The ISOCLUS algorithm is based on an enhancement of a simple and widely used 
heuristic for k-means clustering, sometimes called Lloyd's algorithm or the k-means 

algorithm [9] [10] . The Isoclus algorithm combines Lloyd's algorithm with additional 
mechanisms for eliminating very small clusters, splitting large clusters, and merging 



nearby clusters. As with isoclus, the running time of Lloyd's algorithm is dominated 
by the time to compute the nearest cluster center to each data point. Naively, this 
would require O(kn) time. Kanungo et al. presented a more efficient implementation 
of Lloyd's algorithm, called the filtering algorithm. Although its worst-case asymp-
totic running time is not better than the naive algorithm, this approach was shown 
to be quite efficient in practice. In the approach used by Nargess et. al. [7] points 

are assigned, not to their nearest neighbor, but to an approximate nearest neighbor. 
The filtering algorithm builds a standard kd-tree [11], augmented with additional 
statistical information [12]. 

The computational effort that is required to solve the problem depends on the time 
taken to compute distances and distortions among the points that need to be clus-
tered. These steps take O(kn) time in the original ISOCLUS implementation, where 
the implementation using the filtering algorithm has an order of execution of O(k;). 
This improvement is achieved by adapting the filtering algorithm to compute the 

desired information. 

The implementation also reduces computation by using squared distances between 
points rather than euclidean distances. 

Given a kd-tree for the data points S and the current set of k center points, the 
algorithm processes the nodes of the kd-tree in a top-down recursive manner, starting 
at the root [7]. Consider some node u of the tree. Let S(u) denote the subset of points 
S that are associated with this node. If it can be inferred that all the points of S(u) 

are closer to some center zz  than to any other center (that is, the node's associated 
rectangular cell lies entirely within the Voronoi cell of z j  ), then we may assign v, 10 

cluster S3  . Every point associated with u is thus implicitly assigned to this cluster. 
(For example, this is the case for the node associated with cell a shown in Fig. 2.4.) 
If this cannot be inferred, then the cell is split, and we apply the process recursively 
to its two children. (This is the case for the node associated with cell b in the figurc, 

which is split and whose two children are bl  and b2.) Finally, if the process arrives at 
a leaf node, which contains a single point, then we determine which center is closest 
to the point, and assign its associated node to this center. (This is the case for the 
node associated with cell c of the figure.) 

At the conclusion of the process, the filtering algorithm assigns the nodes of the kd- 
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Figure 2.4: Classifying nodes in the filtering algorithm 
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tree to clusters in such a manner that every point of S is implicitly assigned to its 
closest cluster center. Furthermore, this is done so that the sets S(u) assigned to a 
given cluster form a disjoint union of the associated cluster. 
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Chapter 3 

Parallel Processing Architectures 

3.1 Multi-core processors 

Multi-core computers or systems containing Symmetric Multiprocessing(SMP) units 

are becoming ubiquitous and almost every new laptop, desktop or server machine is 

equipped with multiple cores. The shift from single-core to multi-core is mainly due to 

the difficulties of scaling processors to ever higher clock speeds, but the impact on the 

programming community is enormous. Existing applications can no longer run faster 

just because of a faster CPU, the programmer needs to write parallel programs in 

order to make use of the processing power available with the multiple cares/processing 

units. 

3.2 Multicore Architecture 

Symmetric multiprocessing or SMP involves a multiprocessor computer hardware 

architecture where two or more identical processors are connected to a single shared 

main memory and are controlled by a single OS instance. Most common multiproces-

sor systems today use an SMP architecture. In the case of multi-core processors, 

the SMP architecture applies to the cores, treating them as separate processors. 

Processors may be interconnected using buses, crossbar switches or on-chip mesh 

networks. The bottleneck in the scalability of SMP using buses or crossbar switches 

12 
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Figure 3.1: Multi-Core Processor Architecture 

is the bandwidth and power consumption of the interconnect among the various 

processors, the memory, and the disk arrays. Mesh architectures avoid these bottle-

necks, and provide nearly linear scalability to much higher processor counts [13]. The 

architecture of a symmetric multiprocessor is shown in Figure 3.1. 

Uniprocessor and multiprocessor architectures require different programming models 

to utilize the power of the system completely. The amount of performance gained by 

the use of a multi-core processor depends very much on the software algorithms and 

implementation. Multicore and multithreaded CPUs have become the new approach 

to obtaining increases in CPU performance. Numeric applications mostly benefit 

from a large number of computationally powerful cores. [14] 

The proximity of multiple CPU cores on the same die allows the cache coherency 

circuitry to operate at a much higher clock-rate than is possible if the signals have 

to travel off chip. Combining equivalent CPUs on a single die significantly improves 

13 



the performance of cache snoop operations. Put simply, this means that signals 
between different CPUs travel shorter distances, and therefore those signals degrade 
less. These higher quality signals allow more data to be sent in a given time period 
since individual signals can be shorter and do not need to be repeated as often [15]. 

As shown in Figure 3.1, processors typically have two levels of cache. The level I 
cache is closer to the processor; level 2 is between level 1 and the primary memory. 
The level 1 cache is smaller but faster than the level 2 cache, and is often organized 
differently. For example, level 1 cache can be direct mapped, whereas the level 2 
cache can be set-associative. And also the level 1 cache contains separate sections for 
instruction and data, while the level 2 cache is unified, containing both instruction 
and data [13]. The speed difference can be illustrated by the fact that the level 1 
cache can typically be accessed in one or two clock cycles, while it takes order of 10 
clock cycles to access the level 2 cache and 50 to 100 or more clock cycles to access 
the primary memory. 

3.3 Clusters 

Cluster computing is the technique of linking two or more computers into a network 
(usually through a local area network) in order to take advantage of the parallel 
processing power of those computers. MPI is a widely used library that facilitates 
communication between parallel programs written in C, C++, FORTRAN, Python 

etc. 

The concept of a cluster involves taking two or more computers and organizing them 
to work together to provide higher availability, reliability and scalability than can 
be obtained by using a single system. When failure occurs in a cluster, resources 
can be redirected and the workload can be redistributed.The use of MPl libraries 
have greatly helped in making it easier to utilize the power of clusters as the same 
implementation that runs on a multicore system can also run on a. cluster. 
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Chapter 4 

Message Passing Interface 

The generic form of message passing in parallel processing is the Message Passing 
Interface (MPI), which is used as the medium of communication. Most of f,lbc 

programming languages in parallel programming differ in view of the address space 
that is available to the programmer, the degree of synchronization imposed on con-
current activities and the multiplicity of programs. A proposed standard Message. 
Passing Interface (MPI) is originally designed for writing applications and libraries for 
distributed memory environments. In message-passing model, the data is moved from 
the address space of one process to that of another by means of a cooperative operation 
such as a send/receive pair. This restriction sharply distinguishes the message-passing 
model from the shared-memory model, in which processes have access to a common 
pool of memory and can simply perform ordinary memory operations (load from, 
store into) on some set of addresses. 

4.1 Communication Routines 

4.1.1 MPI point-to-point communication routines 

MPI has a rich set of point-to-point communciation routines include the basic send 
and receive routines in both blocking and nonblocking forms and in four modes. 

15 



• A blocking send blocks until its message buffer can be written with a new 

message. 

• A blocking receive blocks until the received message is in the receive buffer. 

• Nonblocking sends and receives differ from blocking sends and receives in that, 

they return immediately and their completion must be waited for or tested for. 

It is expected that eventually nonblocking send and receive calls will allow the 

overlap of communication and computation. 

4.1.2 MPI Collective communication routines 

Collective communication routines are blocking routines that involve all processes 

in a communicator. Collective communication includes broadcasts and scatters. 

reductions and gathers, all-gathers and all-to-ails, scans, and a synchronizing barrier 

call. 

4.1.3 Persistent Communication Requests 

Sometimes within an inner loop of a parallel computation, a communication with the 

same argument list is executed repeatedly. The communication can be optimized by 
using a persistent communication request, which reduces the overhead for communi-

cation between the process and the communication controller. A persistent request 

can be thought of as a communication port or half-channel. 

All MPI communication routines have a data type argument. These may be primitive 

data types, such as integers or floating-point numbers, or they may be user-defined, 

derived data types, which are specified in terms of primitive types. Derived data 

types allow users to specify more general, mixed, and noncontiguous communication 

buffers, such as array sections and structures that contain combinations of primitive 
data types 
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4.2 MPI Communicators, contexts, Groups 

A distinguishing feature of the MPI standard is that it includes a mechanism for creat-
ing separate worlds of communication, accomplished through communicators, contexts, 
and groups. 

• A communicator specifies a group of processes that will conduct communication 
operations within a specified context without affecting or being affected by 
operations occurring in other groups or contexts elsewhere in the program. A. 
communicator also guarantees that, within any group and context, Paint-t,o-

point and collective communication are isolated from each other. 

• A group is an ordered collection of processes. Each process has a rank in the 
group;the rank runs from 0 to nl. A process can belong to more than one 
group; its rank in one group has nothing to do with its rank in any other group. 
A context is the internal mechanism by which a communicator guarantees safe 
communication space to the group. 

• Communicators provide a caching mechanism, which allows an application to 
attach attributes to communicators. Attributes can be user data or any other 

kind of information. 

4.3 Programming Paradigms 

The application users commonly use two types of MPI programming Paradigm: 
SPMD (Single Program Multiple Data) and MPMD (Multiple Program Multiple 
Data). In SPMD model (Single Program Multiple Data), each process runs the 
same program in which branching statements may be used. The statement executed 
by various processes may be different in various segments of the program, but one 
executable (same program) file runs on all processes [16]. 

In MPMD programming Paradigms, each process may execute different, programs, 
depending on the rank of processes. More than one executable (program) is needed 
in MPMD model. The application user writes several distinct programs, which may 
or may not depend on the rank of the processes. 
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• For execution of an SPMD program, the command format used is: 

mpirun -n <number of processes> <Executable> 

• For execution of an MPMD program, the command format used is: 

mpirun -n <number of processes> -host <Number of Hosts> <Master 
Executable> : -n <number of processes> -host <hosts> <Number of 
Hosts> <Slave Executable> 

I:] 



Chapter 5 

The Proposed Framework 

The filtering algorithm implementation significantly reduces the computation rcgt_iircc.l 
to solve the problem. In order to further reduce the execution time, we can utilize the 
parallel architectures available with us for faster execution like Multi-core systems, 
CELL BE etc. 

The main problem with utilizing parallel architectures is to decide the criterion on 
which the work must be divided among compute nodes that are running in parallel. 
The filtering algorithm implementation, i.e. our algorithm of choice is basically 
sequential and does not give any scope for outright parallelization. Hence we have 
chosen to divide the problem into smaller parts based on dimensions. Traditionally the 
dimensionality reduction techniques have focused on the discarding some dimensions 
based on importance or priorities which requires prior knowledge of the nature of the 
data, which is often not available immediately or is expensive. 

Our approach does not cause any information loss as dimensions are not discarded. 
The pre-processing and post-processing steps add a small amount of overhead to the 
clustering time itself. However this small overhead helps us in reducing the running 

time of the actual clustering phase of the algorithm which is the major component of 
the running time as we will see in the coming sections. 
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5.1 Pre-processing 	Date••••••••.••••.••..•• 

The purpose of the preprocessing step is to fin groups of dimensions which have 
similar characteristics and which can therefore yield better quality clusters. The 
step can also help us extract information about the nature of the data from the 
knowledge of dimensions that have similar mathematical characteristics. The idea for 
this approach is derived from the work done by Mart et. al. [17]. 

Finding mathematical information about the nature of the data can also help us in 
deferring the use of a Subject Matter Expert(SME) for analyzing the data, along with 

providing the SME more information and detailed meta-data about the data to be 
analyzed as and when they are involved in the process of information extraction. This 
can help us in establishing how the different dimensions are related to each other. 

Figure 5.1 explains the working of the pre-processing step for 7 dimensions. The input 
dimensions are passed to the code which analyses the mathematical statistics of the 
input dimensions. The mathematical statistic retrieved from the data can be channel 
depth, its minima and maxima, the mean, the standard deviation, the kurtosis and 
the skewness among others. In this work we have used the kurtosis of the image data 
for deciding on the grouping criterion. However based on our requirements we can 
use any of the values or a combination of values retrieved to decide on the grouping 
criterion without any significant impact on the time taken by the pre-processing step. 
Based on the similarity metric(Kurtosis in this case), we sort the dimensions and pass 
it on for creating sub-groups of dimensions. These sub-groups will be used by the 
clustering phase of the algorithm for parallel clustering. 

5.2 Clustering 

Based on the information obtained from the pre-processing step the root process runs 
the unsupervised clustering algorithm in parallel so that we can arrive upon the sub-
clusters formed from the sub-groups of dimensions. We must decide upon a value 
(DimMin)for the minimum number of dimensions that must be clustered together. 
Our choice for the value of DimMin was determined by the following factors: 
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Figure 5.1: The Pre-processing Step 
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• Visualisation: Since we can better visualise data in 3-dimensional space, clus- 
tering data in three dimensions has obvious advantages for analysis of data.. 

• The number of threads that can run in parallel and hence the number of sub-
groups of dimensions that need to be created. 

In order to merge our clusters during the post-processing stage we need an intersection 
point between the clusters centers of two sub-groups. Hence for a data containing 
N dimensions and the minimum number of dimensions in a sub group DimMin, the 
number of sub-groups of dimensions is given by: 

Nswb  = [ .N/(DimMin — 1)j 	 (5.1) 

The Figure 5.2 shows the flow of data through the proposed framework. 

The MPI APIs used for communication among the threads of execution during the 
clustering phase are [18] : 

1 int MPI_Send(void *buf, int count, MPI_Datatype datatype, int dest, hit 
tag,MPI_Comm comm) 

where, 

buf Starting address of send buffer (choice). 
count Number of elements to send (nonnegative integer). 
datatype Datatype of each send buffer element (handle). 
dest Rank of destination (integer). 
tag Message tag (integer) . 
comm Communicator (handle) . 

2 
	

int MPI_Recv(void *buf, int count, MPI_Datatype datatype, int source, 
int tag, MPI_Comm comm, MPI_Status *status) 

where, 
count Maximum number of elements to receive (integer). 
datatype Datatype of each receive buffer entry (handle). 
source Rank of source (integer). 
tag Message tag (integer). 
comm Communicator (handle). 
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buf Initial address of receive buffer (choice) . 

status Status object (status). 

3 
	

int MPI_Bcast(void *buffer, int count, MPI_Data.type datatype, int root, 

MPI-Comm Comm) 

where, 

buffer Starting address of buffer (choice). 

count Number of entries in buffer (integer). 

datatype Data type of buffer (handle). 

root Rank of broadcast root (integer). 

comm Communicator (handle). 

5.3 Post-processing 

The post-processing step takes the clusters created by the sub-group of dimensions 

and merges them based on the overlapping dimensions, with the error threshold for 

merging two clusters being the minimum of the Average of Squared distances of the 

two sub-clusters formed from the sub-groups of dimensions, being merged. 

The figure 5.3 provides a schematic explanation of how the post-processing steps 

operate on the output of the parallel clustering step. 

The new cluster centers are created based on the property that for an ideal cluster if 

there is a cluster center in a Data Set D, having n Dimensions, given by 

Co, Ca, ...C2 , ..C.~. 	 (5.2) 

When the dimensions are divided into groups (0,1,2... i,i+l) and (i+1,i+2,i+3... n), 

then in case of a ideal cluster, the centers of the clusters formed in the different groups 

would be 

Co,C1,...,C2+1 and 	 (5.3) (5.3) 

In order to account for the fact that the real time data is noisy and the clusters arc net 
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ideal, we introduce a factor into the merging process which is very unimaginativcly 
called the Ideal Coefl"icient(II). When I I= 0, clusters centers are merged only if their 
centers match exactly in both the sub groups. 

For cases where the value of I, is non zero, the cluster centers of two sub-groups are 
merged only if they fall within the squared distance of I, x min(the two cluster radii). 

Mathematically, For two consecutive sub-groups G1 having cluster centers CO , C1  

and C3 and sub-group G2 having cluster centers C3, C4 and 6c5, for the sake of 
differentiation we denote the value of the third dimension of the group G1 with C31 
and first dimension of G2 with C32 . The Average of Squared Distance of the cluster 
G1  and G2  is denoted by Avg?  and Avg. 

Then we combine the dimensions of G1 and G2 only if 

(G31 - %32)2 < min(Avgi,Avg2) 	 (5.4) 

Now in order to introduce the Ideal Coefficient(I,) mentioned earlier into equation 
5.4. For the ideal scenario the values C31 and C32  are same, and 

0 

(C31 - C32)2  = 0 
	

(5.5) 

Thus the value of I, is zero. 

When the value of II  is non-zero, we have 

(C31 - C32)2 <I x min(Avgi, Avg) 	 (5.6) 

5.4 The Algorithm 

An overview of the modified algorithm for parallel clustering of data is as given below. 

Let S = x1 ...,x,,, denote the set of points to be clustered. And, let 	j denote the 
Euclidean length of the vector x. 

1: For each dimension in input D1 , D2 ..., Dn, calculate the similarity metric Si , S2..., 
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2: Sort the dimensions Di based on similarity measure Si and divide into Nub groups 
based on the value of DimMin with the adjacent sub-groups having an overlapping 
dimension, 

N..b = LN/(DimMin — 1)] 	 (5.7) 

3: Run steps 4 to 14 for all Nub sub-groups of dimensions in parallel and then go 
to Step 15. 

4: Letting k = ki,zit, randomly sample k cluster initial centers Z = z1 ,z2 , ... zk from 
S. 

5: Assign each point to its closest cluster center. For I < i < k, let S;, C S be the 
subset of points that are closer to zi than to any other cluster center of Z. That 

is, for any x E S, 

	

x E Si if lx— ZA < x — z, Vi 	. 	 (5.8) 

(Ties for the closest center are broken arbitrarily.) Let n denote the number of 

points of S. . 
6: Remove cluster centers with fewer than n,n,2,,, points. (The associated points of S 

are not deleted, but are ignored for the remainder of the iteration.) Adjust the 
value of k and relabel the remaining clusters Si ...,Si accordingly. 

7: Move each cluster center to the centroid of the associated set of points. That is, 

	

zi : 1 E x; f orl <_ j < k. 	 (5.9) 
ni xES2 

If any clusters were deleted in Step 6, then the algorithm goes back to Step 5. 

8: Let A be the average distance of points of S) to the associated cluster center z; 

, and let A be the overall average of these distances. 

lix — z j JJ,forl<j <k. A<--n.~0.~ 	(5.10) 
n~ xES3 	

- - 	
n 9=1 

Let v j,mo,x denote the largest coordinate of v~ . 

9: If this is the last iteration, then set L,, jm = 0 and go to Step 12. Also, if 2k. > 

and it is either an even numbered iteration or k > 2k2,tiit , then go to Step 12. 
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10: For each cluster Si , compute a vector v = (v1; ..., vd) whose ith coordinate is 

the standard deviation of the ith coordinates of the vectors directed from z3 to 

every point of S~ . That is, 
1/2 

1 	 2 
F— — 	(xi — z3 ) 

n~ XESj 

forl<j<kand1<i<d. 	(5.11) 

11: For each cluster S, , if V j,max > 'A max and either 

((z > 0)and(nj > 2(nmin + 1))) or k < 
k2~t, 	(5.12) 

then increment k and split S into two clusters by replacing its center with two 

cluster centers centered around zz and separated by an amount and direction that 

depends on v,,,.,. If any clusters are split in this step, then go to Step 5. 

12: Compute the pairwise intercluster distances between all distinct pairs of cluster 

centers 

 for1 < 2 < J < k. 

13: Sort the intercluster distances of Step 12 in increasing order, and select a subset 

of at most P,,,,;,~ of the closest such pairs of clusters, such that each pair has an 

intercluster distance of at most L,,Ljn. For each such pair (i, j), if neither Si nor Sj 
has been involved in a merger in this iteration, replace the two clusters Si and S3 

with a merged cluster Si U S~, whose associated cluster center is their weighted 

average 
1 

(ni zi + n j z3 ). 	 (5.14) 
nz +7?~ 

Relabel the remaining clusters and decrease k accordingly. 

14: If the number of iterations is less than Lrr ax , then go to Step 5. 

15: For i= 1 to N8ub-1 repeat steps 16 to 17. 

16: Compare the last dimension of sub-group i with first dimension of sub-group i+1. 

Merge the two groups of centers if they follow the constraint 

(G31 — %32) 2 < Ic x min(Avgi, Avg) 	 (5.1.5) 

17: If i = Nb — 1 then insert the merged centers into the list of Merged Cluster 

centers. 



Chapter 6 

Experimental Results 

The image data we ran the tests on were 1123 x 1080 Landsat images of Path 146 
Row 40(n = 1212840). The experiments involved all 7 bands of da.ta., running for 
20 iterations and with StdDev = Lump = 10 and SampRm = 100. The results 
are presented in Table 6.1.The parallel version of the code using MPI was faster by 
a about two times for an execution with NumClus=100. As we can see from the 
results as shown in Table 6.1 and Figure 6.1, the parallel algorithm really shines 
when the amount of computation needed is significant. We expect even better results 
for problems of higher dimensions and larger number of clusters. 

6.1 Pre-Processing step 

For separating the dimensions into subgroups, the similarity measure that was used 
is kurtosis of the image data. The Kurtosis of an Image is defined as the measure of 
whether the data is peaked or flat relative to a normal distribution. After finding the 
kurtosis the dimensions are sorted based on the values obtained so that the dimensions 
with similar values lie together. Since kurtosis gives us an estimate of how the da.to:o. 

varies, which is similar to what clustering tries to achieve for multiple dimensions, it 
can help in determining the characteristics of the data to be clustered in this case. 

For finding the kurtosis of the image the APIs provided by the IrnageMagick libray 
were used. The MagickWand API is the recommended interface between the C 
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programming language and the ImageMagick image processing libraries. The function 
used for finding the image statistics is MagickGetImageChannelStatistics(), The func-
tion returns statistics for each channel in the image. The statistics include the channel 
depth, its minima and maxima, the mean, the standard deviation, the kurtosis and 
the skewness. 

The format of the MagickGetlmageChannelStatistics method is: 

ChannelStatistics *MagickGetImageChannelStatistics(MagickWand *wand) 

where, 
wand: is the Magic Wand Object created on passing an Image file to it, 

The pre-processing step gives us the values of the kurtosis among others for each band 
of LANDSAT image data. The values are shown in the table 6.2 

Table 6.2: Image Statistics of ISODATA bands 

Band Mean Maxima Std-Dev Kurtosis Skewness 

1 13722.447870 65535.000000 8603.656996 -0.842767 -0.807476 

2 6282.232393 51143.000000 4026.154022 -0.559548 -0.647161 

3 6227.028588 63736.000000 4254.461937 0.089190 -0.213133 

4 14034.895148 58339.000000 8829.011116 -1.072793 -0.841.465 

5 13209.891964 65535.000000 8762.995117 -1.027934 -0.517764 

6 27627.177277 51914.000000 16835.649467 -0.938688 -1.011677 

7 5537.834025 42662.000000 4190.343359 -0.2329811. 0.24144 7 

We sort the bands based on the kurtosis(Table 6.3), its important to note that we can 
use any of the matematical measures obtained from the analysis of the image data. or 
a combination of them, without any significant variation in the amount of time taken 
by the pre-processing stage. 
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Table 6.3: Bands Sorted by Kurtosis of Image data 

Band Mean Maxima Std-Dev Kurtosis Skewness 

4 14034.895148 58339.000000 8829.011116 -1.072793 -0.841465 

5 13209.891964 65535.000000 8762.995117 -1.027934 -0.51.7764 

6 27627.177277 51914.000000 16835.649467 -0.938688 -1.01.1677 

1 13722.447870 65535.000000 8603.656996 -0.842767 -0.807476 

2 6282.232393 51143.000000 4026.154022 -0.559548 -0.647161 

7 5537.834025 42662.000000 4190.343359 -0.232981 0.241447 

3 6227.028588 63736.000000 4254.461937 0.089190 -0.213133 

6.2 Parallel Clustering 

In order to run parallel clustering of the subgroups, we modified the implementation 
of clustering algorithm to include the parameter DimMin. Message Passing Inter-

face(MPI) libraries were used to create parallel threads of execution. 

The root process first reads the Directive file which contains parameters for running  
the filtering algorithm and broadcasts it using the MPI-Bcast. Aftc.r obt;ainng Ow 
sorted dimensions from the pre-processing step the root process reads the dimension 
data into memory and transmits the data to slave processes based on the value of the 

DimMin using MPLSend, the slave processes receive the data using MPLRecv. In our 

experiments we have kept the value of DimMin as 3. Therefore as per equation 5.1 on 
page 22, for 7 dimensions we form 3 sub-groups because of the overlapping dimensions 
that are required for post-processing of sub-clusters. While creating subgroups of 
clusters if there are not enough dimensions left to form a different sub-group of 
dimensions, then we add the remaining dimensions to the last sub-group created. The 

final value of the number of dimensions being processed by each thread of execution 

is passed to the corresponding thread from the root thread. 

The time taken for parallel clustering is given in Table 6.4. We can see from table 
6.4 and table 6.1, that the rate of increase of computation time with the increase in 
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Table 6.4: Parallel clustering execution times for different number of clusters 

Number of Clusters(NumClus) Execution Time (in sees) 

25 26.093 

50 27.351 

100 28.922 

200 28.99 

400 29.66 

computation required for solving the problem does not increase super linearly as in 
the case of the serial implementation of the algorithm. 

6.3 Post-processing step 

After we have obtained the centers for the sub-clusters through the parallel clustering 
step. The post-processing step merges the cluster centers for the different clusters 
to obtain the final cluster centers. The amount of time taken by the pre-processing 
and post-processing steps together adds very little overhead to the actual clustcc-ihig 
process. The running times of the pre-processing and the post-processing steps 
together did not exceed more I percent of the time taken for clustering. 

The number of sub-clusters from the three subgroups formed from the dimensions 
(4,5,6), (6,1,2), and (2,7,3) were N456 =110, N612=80  and  N456 =78  respectively. On 
the merging the sub-clusters we obtained 126 clusters with a value for Coefficient of 
Imperfection(Ic) as 1 . 
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Chapter 7 

Conclusion 

This work has proposed a framework through which we can strive for faster implemen-
tations of clustering algorithms. The proposed framework adds a pre-processing and 
a post-processing step so that the computation can be spread across multiple threads 
of execution. The feasibility of the approach has been demonstrated by modifying the 
implementation of clustering of LANDSAT image data using the filtering algorithm. 
The results were encouraging and it was possible to reduce the execution time of the. 

algorithm to half its original execution time. An encouraging fact observed during the 
course of experimentation was that the rate of increase of the execution time is not as 
steep as in the original implementation, i.e. the running time of the algorithm does 
not increase non-linearly as in the original implementation using filtering algorithm. 
Hence even higher speedups are expected for clustering of larger data sets. 

The work has introduced a new parameter in the post-processing stage called the 
Ideal Coefficient(I) through theoretical analysis of the clustering algorithms. One 
possible direction of future research can be to take the information about the data 
available in the pre-processing step and using it to determine the value of I. 
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