
FRAMEWORK FOR FASTER IMPLEMENTATION
OF

UNSUPERVISED CLUSTERING ALGORITHMS

A DISSERTATION

Submitted in partial fulfillment of the
requirements for the award of the degree

of
MASTER OF TECHNOLOGY

in
INFORMATION TECHNOLOGY

By

ANANT BHUSHAN

'1• ACC No•,{
k. &, ,2,o23 9A
41RAL LI

Date.... . o;[o J/o

R
	~t ok TEGNp©~

f

x

T,

DEPARTMENT OF ELECTRONICS AND COMPUTER ENGINEERING
INDIAN INSTITUTE OF TECHNOLOGY ROORKEE

ROORKEE •247 667 (INDIA)
JUNE, 2010

CANDIDATE'S DECLARATION

I hereby declare that the work, which is being presented in the dissertation entitled,
"Framework for Faster Implementation of Unsupervised Clustering Al-

gorithms", which is submitted in the partial fulfillment of the requirements for the
award of degree of Master of Technology in Information Technology, submit-
ted in the Department of Electronics and Computer Engineering, Indian Institute of
Technology Roorkee (India), is an authentic record of my own work carried out under
the guidance of Dr. Kuldip Singh, Professor, and Dr. Ankush Mittal (Ex-Faciilty)
Department of Electronics & Computer Engineering, Indian. In.stittitc of Technology

Roorkee.

The matter embodied in the dissertation report to the best of . y knowledge has not

been submitted for the award of any other degree elsewhere.

Dated : June, 2010 	 (Anant Bhushan)

Place : Roorkee

CERTIFICATE

This is to certify that the above statement made by the candidate is correct to the
best of our knowledge.

Dr. Kuldip Singh 	 r. ~Pr ush Mittal

Professor 	 Ex-Associate Professor

Dept. of E&CE
	 Dept. of E&CE

IIT Roorkee 	 IIT Roorkee

ii

ACKNOWLEDGMENTS

It gives me immense pleasure to take this opportunity to thank and express my
deep sense of gratitude to my guide Dr. Kuldip Singh, Professor, Department of
Electronic and Computer Engineering, Indian Institute of Technology Roorkee, for
his valuable guidance. I would also like to thank my ex-guide Dr. Ankush Mitta.] ; for
his encouragement during the course of this work.

I would like to thank the Institute Computer Center for making its resources avail-
able for the purpose of this work and the staff of the Department of Electronics &
Computer Engineering for their cooperation during this dissertation work.

My special sincere heartfelt gratitude to my family, whose best wishes, support and
encouragement has been a constant source of strength to me during the entire work.

Finally, I would also like to thank all my friends and seniors for their support and
valuable suggestions.

(Anant Bhushan)

111

Abstract

Clustering, particularly unsupervised clustering is central to a large number of com-
puting application which involve machine learning and information retrieval. Algo-
rithmic methods of improving the execution times by using filtering algorithm and
kd-trees have been successful but do not provide scope for further improvements.
The emergence of multi-core procdssors and their easy availability and low cost has
made it possible to have increased computing power. The need of the hour is to have
algorithms that can harness the increased computing power available at our disposal.

In this work a novel approach has been presented which can reduce the running time of
the clustering algorithms by exploiting the parallel computing architectures available
today. We utilize the MPI libraries for creating parallel execution threads on multicore
processors.Our approach involves adding a pre-processing and post-processing step to
the parallel implementation of clustering using filtering algorithm.The preprocessing
step is for finding groups of dimensions which have similar characteristics and which
can therefore yield better quality clusters. These sub-groups of similar dimensions
are clubbed together for parallel clustering operations in the subsequent steps, based

on a similarity metric. The sub-groups of dimensions are created with an overlapping
dimension among adjacent groups to facilitate merging of cluster centers during
the post-processing step. The parallel clustering step produces overlapping cluster
centers for the sub-groups of dimensions. The post-processing step takes the clusters
created by the sub-groups of dimensions and merges the cluster centers based on the
overlapping dimensions.

The feasibility of the framework has been demonstrated through an implementation
on multi-spectral image clustering using the filtering algorithm a.nd significantly re-
duced running times were obtained. The pre-processing step involved the calculation
of the kurtosis of the image data for calculating the similarity metric and grouping
into sub-groups. The overhead involved in execution of the pre and post-processing
steps was less than one percent of the time taken for clustering the data in parallel.

Contents

	

Abstract 	i

Candidate's Declaration 	.

Certificate .

	

Acknowledgements . 	iii

	

Table of Contents 	i v
List of Figures 	vi
List of Tables 	. 	vii

1 Introduction 	 I
1.1 	Unsupervised Clustering . 	1

1.2 	Parallel Computing . 	2

1.3 	Problem Statement . 	2

1.4 	Organisation of the Report . 	3

2 Unsupervised Clustering 	 4
2.1 	The ISOCLUS Algorithm 	. 	5

	

2.1.1 kd-trees . 	8

2.1.2 	The Filtering Algorithm . 	8

3 Parallel Processing Architectures 	 12
3.1 	Multi-core processors . 	1.2

3.2 	Multicore Architecture . 	12

3.3 Clusters 	14

4 Message Passing Interface 	 15
4.1 	Communication Routines . 	15

iv

	

4.1.1 MPI point-to-point communication routines 	15

	

4.1.2 MPI Collective communication routines 	16

	

4.1.3 Persistent Communication Requests 	16

	

4.2 MPI Communicators, contexts, Groups 	17

	

4.3 Programming Paradigms . 	17

5 The Proposed Framework 19
5.1 	Pre-processing 	20
5.2 	Clustering 	20
5.3 	Post-processing 	24
5.4 	The Algorithm 	26

6 Experimental Results 	 29
6.1 	Pre-Processing step . 	29
6.2 	Parallel Clustering 	. 	32
6.3 	Post-processing step 	. 	33

7 Conclusion 	 34
Bibliography . 	35
List of Publications . I 	37

h1

List of Figures

2.1 	Satellite Image Bands . 	6

2.2 	Image after combining bands . 	7

2.3 An example of a kd-tree of a set of points in the plane 	8
2.4 Classifying nodes in the filtering algorithm 	10

3.1 	Multi-Core Processor Architecture . 	13

5.1 	The Pre-processing Step . 	21

5.2 Flow of Data through the proposed framework 	23

5.3 	The Post-processing Step . 	25

6.1 Comparison of Serial and parallel execution time 	30

vi

List of Tables

6.1 	Results of Landsat data test . 	30

6.2 Image Statistics of ISODATA bands 	31

6.3 Bands Sorted by Kurtosis of Image data 	32

6.4 Parallel clustering execution times for different number of clusters . . 	33

vii

Chapter 1

Introduction

1.1 Unsupervised Clustering

Unsupervised clustering is an indispensable tool for machine learning in the present
day world. It is used for geoscience and remote sensing applications for obtaining
vegetation maps of interest. Its used for analyzing trends in sales of goods from
data warehouses. It is also used in the field of bioinformatics for analysis of DNA
micro array expression data, it is useful in high range resolution(HRR) radar range
profiles [1]. In short unsupervised clustering finds its use in many fields where system
automation is required and in cases where information about the existing data is
scarce, or non existent, or expensive. In such cases unsupervised clustering is helpful.
towards the goal of unsupervised extraction of information from data. The goal of
clustering is to simplify the characterization of the data into semantically mea.ningfnl

groups. In the absence of apriori knowledge, the nearest neighbor proximity constraint
is fundamental to any clustering algorithm. It is based on the rationale that for a
good feature representation objects that lie together in the feature space would also
lie together in the reality. Attempts have been made to improve the execution times
of unsupervised clustering algorithms using techniques like filtering algorithms and
kd-trees. But these algorithms do not provide further scope for reducing the execution

time.

1

1.2 Parallel Computing

Moore's law had predicted that the chip manufacturing technology would be able
to double the transistors on chip roughly every two years, and the prediction has

stood good so far. Microprocessor technology has been upho . iding this prediction
to improve its frequency by various techniques. However in the recent past micro-
processors have hit a frequency wall, and not been able to take advantage of the

predicted exponential growth. The outcome is the emergence of multicore processors,
which offer the performance benefits of multi-processors on single chip. The prc~cin(r
of such architectures as common desktop processors has made it possible for hitherto

time-consuming algorithms to be solved on simple desktop machines. The multicorc
processors allow program to leverage their computing power by various means like
independent threads per core, or allow user to manipulate efficient data flow between
cores, or provide a layer of software which manages the scalability of the cores. With
the future micro-processor trends likely to increase number of cores as the only means

of their increasing computing power, it has become necessary to ensure that important
algorithms be parallelized to run on next generation of micro-processors.

1.3 Problem Statement

The problem of clustering points in a multidimensional space is one of a large number
of optimization problems, such as the Euclidean k-median problem. in which we have
to reduce the sum of distances to the nearest center. There are no efficient soiut.ions

available for general k, and some formulations are known to be NP-Hard. [2]

In this dissertation, an attempt has been made to create a framework for parallel imple-
mentation of unsupervised clustering algorithms that can be applied to arty algorithm,
that processes large number of dimensions. Typically, dimensionality has been a curse
and many efforts have been made to reduce the number of dimensions before clustering
of the data [3], through the use of techniques like feature extraction, feature selection,

Principal Component Analysis(PCA) etc. However almost all these techiques discard

some amount of information based on certain criterion, which leads to information
loss. In this work an approach has been presented that adds pre-processing and post-

2

processing steps to an unsupervised clustering algorithm so that they can utilize the
parallel architectures available today like multicore systems, clusters etc. for solving
the problem by harnessing the increased computing power at our disposal in form of
the parallel architectures present.

1.4 Organisation of the Report

The organisation of the Dissertation report is as follows:

• Chapter 2 starts with an overview of the unsupervised clustering algorithms,
with a background on the work done so far in the field. It proceeds to give

an example of unsupervised clustering and then gives a brief overview of the
ISOCLUS algorithm implementation with filtering algorithm and kd-trees.

• Chapter 3 provides a detaled overview of the multicore architectures and clusters

that have been used in this dissertation.

• Chapter 4 covers the Message Passing Interface(MPI) that has been employed
for creating parallel threads of execution for demonstrating the working of our

proposed framework.

• Chapter 5 gives a detailed explanation of the framework that the author is
proposing for increasing the performance of algorithms on parallel architectures.

• Chapter 6 discusses the implementation of the framework proposed on clustering
using the filtering algorithm. The results obtained are also discussed.

• Finally Chapter 7 concludes the report and gives suggestions for future work

3

Chapter 2

Unsupervised Clustering

Unsupervised clustering either does not require training data to be specified in ad-
vance, or performs. a form of automated selection from the input data. With these
techniques it is possible to create clusters even with estimates of the number of clusters
present as the algorithms are able to narrow down to the number of naturally lying
clusters based on various parameters like cluster size, standard deviation among the
data points in the cluster.

The classical K-means algorithm are very dependent on selection of number of clusters
and their initial center locations (seed locations). This is a heuristic, greedy algorithm
for minimizing SSE (Sum of Squared Errors) hence it may not converge to a. global.
optimum. The ISOCLUS algorithm is similar to the K-means procedure but at each
iteration the various clusters are examined to see if they would benefit from being
combined or split, based on a number of criteria: (i) combination if two cluster
centers are closer than a pre-defined tolerance they are combined and a new mean
calculated as the cluster center; (ii) if the number of members in a cluster is bolo v

a given level the cluster is discarded and the members re-assigned to the closest,
cluster; and (iii) separation if the number of members, or the standard deviation,
or the average distance from the cluster center exceed pre-defined values then the
cluster may be split. ISOCLUS is an automated procedure similar to the ISODATA
procedure. It produces better quality clusters than K-means as it can adapt based
on the characterictics of the input data.

0

An application of Unsupervised clustering is in finding out vegetation maps from
satellite images [4]. Figure 2.1 shows three bands of data.

• Band 1 - Blue spectrum(0.45 - 0.52 µm)[Figure 2.1(a)] and is meant for water
body penetration, making it useful for coastal water mapping. Also, useful
for soil/vegetation discrimination, forest type mapping and . cultural feature
identification.

• Band 2 - Green spectrum(0.52 -0.60 pm)[Figure 2.1(b)] is useful for measuring
green reflection of vegetation. It can also be used for cultural feature identili-

cation.

• Band 3 - Red (0.63 -0.69,um)[Figure 2.1(c)] is sensitive to chlorophyll absorption
region. It is useful for vegetation a.nalysis and can even be used to differentiate
plant types. It is also useful for cultural feature identification.

The Band data is black and white and does not contain any color information. What
is done is that bands are merged by assigning them to any of the Bands of primary
colors- Red, Green or Blue. These are the colors that our eyes actually see. These
are called false color images because we can assign any band data to any primary
color we want depending on what color we want to assign a particular property. For
example, since Band 2 measures the reflection from vegetation, the value of a data at
a point will indicate the amount of forest cover in the region. Thus by combining the

knowledge from the various bands we can infer a large amount of information about
a region, like, presence of water bodies, forest cover, kind of vegetation etc.

2.1 The ISOCLUS Algorithm

ISOCLUS is a clustering algorithm based on the ISODATA clustering algorithm [5], [6]
with minor modifications. Like the k-means algorithm,ISOCLUS tries to find the best

cluster centers through an iterative approach, until some convergence criteria are
met.ISOCLUS uses different heuristics to determine when to merge or split clusters
[5].There are a number of user-supplied parameters. These include the following [7]:

• The Desired number of clusters(Numclus)

k,

(a) Band 1 - Blue (0.45 - 0.52 tim)
	

(b) Band 2 - Green (0.52 -0.60 µm)

(c) Band 3 - Red (0.63 -0.69 µm)

Figure 2.1: Satellite Image Bands

Figure 2.2: Figure obtained after merging Bands 1,2 and 3

• The minimum number of samples in a cluster(SampRm)

• The Maximum number of Iterations(Maxlter)

• Maximum standard deviation per cluster(StdDev)

• The Lumping parameter(Lump) and Maximum number of pairs that can be

lumped per iteration(MaxPair)

The algorithm can run very slowly on large data sets, hence in order to increase the

speed of execution points are randomly sampled from the original data set and thnn

randomly selects NumClus centers from the samples. Depending upon the parametei s

passed to the algorithm the distance to the cluster centers are calculated and the

points are assigned to the nearest cluster center. Next clusters with fewer than

SampRm are deleted. The cluster centers are then moved to the mean centroid

of samples in the remaining clusters.

Next the algorithm considers merging or deleting clusters depending on the relation-

ship between number of clusters and Numclus and number of Iterations and Maxlter.

For Each cluster the standard deviation along each of the coordinate axes is computed

7

a 	P5 •plo

p. pa

3.101 p7

Figure 2.3: An example of a kd-tree of a set of points in the plane, showing both the
associated spatial subdivision (left) and the binary tree structure (right).

and the maximum standard deviation is calculated. Based on this information and

the values of StdDev and Numclus the clusters are split. And the parameters Lump

and MaxPair and used to merge pairs of nearby clusters.

2.1.1 kd-trees

A kd-tree is a hierarchical decomposition of space into axis-aligned hyperrectangles
called cells. Each node of the tree is implicitly associated with a unique cell and
the subset of the points that lie within this cell. Each internal node of the kd-tree
stores an axis-orthogonal splitting hyperplane. This hyperplane subdivides the cell
into two subcells, which are associated with the left and right subtrees of the Hoch.

Nodes holding a. single point are declared to be leaves of the tree. In Figure 2.3, the
highlighted node u of the tree is associated with the shaded rectangular cell shown
on the left side of the figure and the subset pi , P2, P3 of points. It is well known that

a kd-tree on n points can be constructed in O(n log n) time [8].

2.1.2 The Filtering Algorithm

The ISOCLUS algorithm is based on an enhancement of a simple and widely used
heuristic for k-means clustering, sometimes called Lloyd's algorithm or the k-means

algorithm [9] [10] . The Isoclus algorithm combines Lloyd's algorithm with additional
mechanisms for eliminating very small clusters, splitting large clusters, and merging

nearby clusters. As with isoclus, the running time of Lloyd's algorithm is dominated
by the time to compute the nearest cluster center to each data point. Naively, this
would require O(kn) time. Kanungo et al. presented a more efficient implementation
of Lloyd's algorithm, called the filtering algorithm. Although its worst-case asymp-
totic running time is not better than the naive algorithm, this approach was shown
to be quite efficient in practice. In the approach used by Nargess et. al. [7] points

are assigned, not to their nearest neighbor, but to an approximate nearest neighbor.
The filtering algorithm builds a standard kd-tree [11], augmented with additional
statistical information [12].

The computational effort that is required to solve the problem depends on the time
taken to compute distances and distortions among the points that need to be clus-
tered. These steps take O(kn) time in the original ISOCLUS implementation, where
the implementation using the filtering algorithm has an order of execution of O(k;).
This improvement is achieved by adapting the filtering algorithm to compute the

desired information.

The implementation also reduces computation by using squared distances between
points rather than euclidean distances.

Given a kd-tree for the data points S and the current set of k center points, the
algorithm processes the nodes of the kd-tree in a top-down recursive manner, starting
at the root [7]. Consider some node u of the tree. Let S(u) denote the subset of points
S that are associated with this node. If it can be inferred that all the points of S(u)

are closer to some center zz than to any other center (that is, the node's associated
rectangular cell lies entirely within the Voronoi cell of z j), then we may assign v, 10

cluster S3 . Every point associated with u is thus implicitly assigned to this cluster.
(For example, this is the case for the node associated with cell a shown in Fig. 2.4.)
If this cannot be inferred, then the cell is split, and we apply the process recursively
to its two children. (This is the case for the node associated with cell b in the figurc,

which is split and whose two children are bl and b2.) Finally, if the process arrives at
a leaf node, which contains a single point, then we determine which center is closest
to the point, and assign its associated node to this center. (This is the case for the
node associated with cell c of the figure.)

At the conclusion of the process, the filtering algorithm assigns the nodes of the kd-

9

a

s a 	 C

___ 1/

t

Figure 2.4: Classifying nodes in the filtering algorithm

10

tree to clusters in such a manner that every point of S is implicitly assigned to its
closest cluster center. Furthermore, this is done so that the sets S(u) assigned to a
given cluster form a disjoint union of the associated cluster.

11

Chapter 3

Parallel Processing Architectures

3.1 Multi-core processors

Multi-core computers or systems containing Symmetric Multiprocessing(SMP) units

are becoming ubiquitous and almost every new laptop, desktop or server machine is

equipped with multiple cores. The shift from single-core to multi-core is mainly due to

the difficulties of scaling processors to ever higher clock speeds, but the impact on the

programming community is enormous. Existing applications can no longer run faster

just because of a faster CPU, the programmer needs to write parallel programs in

order to make use of the processing power available with the multiple cares/processing

units.

3.2 Multicore Architecture

Symmetric multiprocessing or SMP involves a multiprocessor computer hardware

architecture where two or more identical processors are connected to a single shared

main memory and are controlled by a single OS instance. Most common multiproces-

sor systems today use an SMP architecture. In the case of multi-core processors,

the SMP architecture applies to the cores, treating them as separate processors.

Processors may be interconnected using buses, crossbar switches or on-chip mesh

networks. The bottleneck in the scalability of SMP using buses or crossbar switches

12

a

I coreJ I Col;J I Coiej Fe 4j

s

L,2 Caclie 	I 	I

Main Memory

Figure 3.1: Multi-Core Processor Architecture

is the bandwidth and power consumption of the interconnect among the various

processors, the memory, and the disk arrays. Mesh architectures avoid these bottle-

necks, and provide nearly linear scalability to much higher processor counts [13]. The

architecture of a symmetric multiprocessor is shown in Figure 3.1.

Uniprocessor and multiprocessor architectures require different programming models

to utilize the power of the system completely. The amount of performance gained by

the use of a multi-core processor depends very much on the software algorithms and

implementation. Multicore and multithreaded CPUs have become the new approach

to obtaining increases in CPU performance. Numeric applications mostly benefit

from a large number of computationally powerful cores. [14]

The proximity of multiple CPU cores on the same die allows the cache coherency

circuitry to operate at a much higher clock-rate than is possible if the signals have

to travel off chip. Combining equivalent CPUs on a single die significantly improves

13

the performance of cache snoop operations. Put simply, this means that signals
between different CPUs travel shorter distances, and therefore those signals degrade
less. These higher quality signals allow more data to be sent in a given time period
since individual signals can be shorter and do not need to be repeated as often [15].

As shown in Figure 3.1, processors typically have two levels of cache. The level I
cache is closer to the processor; level 2 is between level 1 and the primary memory.
The level 1 cache is smaller but faster than the level 2 cache, and is often organized
differently. For example, level 1 cache can be direct mapped, whereas the level 2
cache can be set-associative. And also the level 1 cache contains separate sections for
instruction and data, while the level 2 cache is unified, containing both instruction
and data [13]. The speed difference can be illustrated by the fact that the level 1
cache can typically be accessed in one or two clock cycles, while it takes order of 10
clock cycles to access the level 2 cache and 50 to 100 or more clock cycles to access
the primary memory.

3.3 Clusters

Cluster computing is the technique of linking two or more computers into a network
(usually through a local area network) in order to take advantage of the parallel
processing power of those computers. MPI is a widely used library that facilitates
communication between parallel programs written in C, C++, FORTRAN, Python

etc.

The concept of a cluster involves taking two or more computers and organizing them
to work together to provide higher availability, reliability and scalability than can
be obtained by using a single system. When failure occurs in a cluster, resources
can be redirected and the workload can be redistributed.The use of MPl libraries
have greatly helped in making it easier to utilize the power of clusters as the same
implementation that runs on a multicore system can also run on a. cluster.

14

Chapter 4

Message Passing Interface

The generic form of message passing in parallel processing is the Message Passing
Interface (MPI), which is used as the medium of communication. Most of f,lbc

programming languages in parallel programming differ in view of the address space
that is available to the programmer, the degree of synchronization imposed on con-
current activities and the multiplicity of programs. A proposed standard Message.
Passing Interface (MPI) is originally designed for writing applications and libraries for
distributed memory environments. In message-passing model, the data is moved from
the address space of one process to that of another by means of a cooperative operation
such as a send/receive pair. This restriction sharply distinguishes the message-passing
model from the shared-memory model, in which processes have access to a common
pool of memory and can simply perform ordinary memory operations (load from,
store into) on some set of addresses.

4.1 Communication Routines

4.1.1 MPI point-to-point communication routines

MPI has a rich set of point-to-point communciation routines include the basic send
and receive routines in both blocking and nonblocking forms and in four modes.

15

• A blocking send blocks until its message buffer can be written with a new

message.

• A blocking receive blocks until the received message is in the receive buffer.

• Nonblocking sends and receives differ from blocking sends and receives in that,

they return immediately and their completion must be waited for or tested for.

It is expected that eventually nonblocking send and receive calls will allow the

overlap of communication and computation.

4.1.2 MPI Collective communication routines

Collective communication routines are blocking routines that involve all processes

in a communicator. Collective communication includes broadcasts and scatters.

reductions and gathers, all-gathers and all-to-ails, scans, and a synchronizing barrier

call.

4.1.3 Persistent Communication Requests

Sometimes within an inner loop of a parallel computation, a communication with the

same argument list is executed repeatedly. The communication can be optimized by
using a persistent communication request, which reduces the overhead for communi-

cation between the process and the communication controller. A persistent request

can be thought of as a communication port or half-channel.

All MPI communication routines have a data type argument. These may be primitive

data types, such as integers or floating-point numbers, or they may be user-defined,

derived data types, which are specified in terms of primitive types. Derived data

types allow users to specify more general, mixed, and noncontiguous communication

buffers, such as array sections and structures that contain combinations of primitive
data types

16

4.2 MPI Communicators, contexts, Groups

A distinguishing feature of the MPI standard is that it includes a mechanism for creat-
ing separate worlds of communication, accomplished through communicators, contexts,
and groups.

• A communicator specifies a group of processes that will conduct communication
operations within a specified context without affecting or being affected by
operations occurring in other groups or contexts elsewhere in the program. A.
communicator also guarantees that, within any group and context, Paint-t,o-

point and collective communication are isolated from each other.

• A group is an ordered collection of processes. Each process has a rank in the
group;the rank runs from 0 to nl. A process can belong to more than one
group; its rank in one group has nothing to do with its rank in any other group.
A context is the internal mechanism by which a communicator guarantees safe
communication space to the group.

• Communicators provide a caching mechanism, which allows an application to
attach attributes to communicators. Attributes can be user data or any other

kind of information.

4.3 Programming Paradigms

The application users commonly use two types of MPI programming Paradigm:
SPMD (Single Program Multiple Data) and MPMD (Multiple Program Multiple
Data). In SPMD model (Single Program Multiple Data), each process runs the
same program in which branching statements may be used. The statement executed
by various processes may be different in various segments of the program, but one
executable (same program) file runs on all processes [16].

In MPMD programming Paradigms, each process may execute different, programs,
depending on the rank of processes. More than one executable (program) is needed
in MPMD model. The application user writes several distinct programs, which may
or may not depend on the rank of the processes.

17

• For execution of an SPMD program, the command format used is:

mpirun -n <number of processes> <Executable>

• For execution of an MPMD program, the command format used is:

mpirun -n <number of processes> -host <Number of Hosts> <Master
Executable> : -n <number of processes> -host <hosts> <Number of
Hosts> <Slave Executable>

I:]

Chapter 5

The Proposed Framework

The filtering algorithm implementation significantly reduces the computation rcgt_iircc.l
to solve the problem. In order to further reduce the execution time, we can utilize the
parallel architectures available with us for faster execution like Multi-core systems,
CELL BE etc.

The main problem with utilizing parallel architectures is to decide the criterion on
which the work must be divided among compute nodes that are running in parallel.
The filtering algorithm implementation, i.e. our algorithm of choice is basically
sequential and does not give any scope for outright parallelization. Hence we have
chosen to divide the problem into smaller parts based on dimensions. Traditionally the
dimensionality reduction techniques have focused on the discarding some dimensions
based on importance or priorities which requires prior knowledge of the nature of the
data, which is often not available immediately or is expensive.

Our approach does not cause any information loss as dimensions are not discarded.
The pre-processing and post-processing steps add a small amount of overhead to the
clustering time itself. However this small overhead helps us in reducing the running

time of the actual clustering phase of the algorithm which is the major component of
the running time as we will see in the coming sections.

19

A

(.$TP(#L Li'

CCNO <

5.1 Pre-processing 	Date••••••••.••••.••..••

The purpose of the preprocessing step is to fin groups of dimensions which have
similar characteristics and which can therefore yield better quality clusters. The
step can also help us extract information about the nature of the data from the
knowledge of dimensions that have similar mathematical characteristics. The idea for
this approach is derived from the work done by Mart et. al. [17].

Finding mathematical information about the nature of the data can also help us in
deferring the use of a Subject Matter Expert(SME) for analyzing the data, along with

providing the SME more information and detailed meta-data about the data to be
analyzed as and when they are involved in the process of information extraction. This
can help us in establishing how the different dimensions are related to each other.

Figure 5.1 explains the working of the pre-processing step for 7 dimensions. The input
dimensions are passed to the code which analyses the mathematical statistics of the
input dimensions. The mathematical statistic retrieved from the data can be channel
depth, its minima and maxima, the mean, the standard deviation, the kurtosis and
the skewness among others. In this work we have used the kurtosis of the image data
for deciding on the grouping criterion. However based on our requirements we can
use any of the values or a combination of values retrieved to decide on the grouping
criterion without any significant impact on the time taken by the pre-processing step.
Based on the similarity metric(Kurtosis in this case), we sort the dimensions and pass
it on for creating sub-groups of dimensions. These sub-groups will be used by the
clustering phase of the algorithm for parallel clustering.

5.2 Clustering

Based on the information obtained from the pre-processing step the root process runs
the unsupervised clustering algorithm in parallel so that we can arrive upon the sub-
clusters formed from the sub-groups of dimensions. We must decide upon a value
(DimMin)for the minimum number of dimensions that must be clustered together.
Our choice for the value of DimMin was determined by the following factors:

Input

1 2

EEHRH Calculaty

if a 	o a__
Si miiarity
measure

Sort Based on
Similarity
Measure

Group
Dimensions

Sub-Group 2 	

6 1 2

Sub-Group 1 	4 5 6 	2 7 3 	Sub-Group 3

Figure 5.1: The Pre-processing Step

21

• Visualisation: Since we can better visualise data in 3-dimensional space, clus-
tering data in three dimensions has obvious advantages for analysis of data..

• The number of threads that can run in parallel and hence the number of sub-
groups of dimensions that need to be created.

In order to merge our clusters during the post-processing stage we need an intersection
point between the clusters centers of two sub-groups. Hence for a data containing
N dimensions and the minimum number of dimensions in a sub group DimMin, the
number of sub-groups of dimensions is given by:

Nswb = [.N/(DimMin — 1)j 	 (5.1)

The Figure 5.2 shows the flow of data through the proposed framework.

The MPI APIs used for communication among the threads of execution during the
clustering phase are [18] :

1 int MPI_Send(void *buf, int count, MPI_Datatype datatype, int dest, hit
tag,MPI_Comm comm)

where,

buf Starting address of send buffer (choice).
count Number of elements to send (nonnegative integer).
datatype Datatype of each send buffer element (handle).
dest Rank of destination (integer).
tag Message tag (integer) .
comm Communicator (handle) .

2
	

int MPI_Recv(void *buf, int count, MPI_Datatype datatype, int source,
int tag, MPI_Comm comm, MPI_Status *status)

where,
count Maximum number of elements to receive (integer).
datatype Datatype of each receive buffer entry (handle).
source Rank of source (integer).
tag Message tag (integer).
comm Communicator (handle).

22

Q p Q 4 , . .
D 	N-Dimensional

1 ~ 3 	
. „ Data

Preprocessing stage

FFFH" 1E•
Data sorted
on similarity
measure

Parallel
Clustering

coc1c2 	...~ ci+1ci+2 	...
2 C3 I, 	-C-i+2 i+3 ci+4

Rost-processing stage

G C2 Ca Ga ... G.C. l G. 2 ... G
n-1

C 	Merged
1 	 i ,t 	i+ , n 	Dimension s

Figure 5.2: Flow of Data through the proposed framework

23

buf Initial address of receive buffer (choice) .

status Status object (status).

3
	

int MPI_Bcast(void *buffer, int count, MPI_Data.type datatype, int root,

MPI-Comm Comm)

where,

buffer Starting address of buffer (choice).

count Number of entries in buffer (integer).

datatype Data type of buffer (handle).

root Rank of broadcast root (integer).

comm Communicator (handle).

5.3 Post-processing

The post-processing step takes the clusters created by the sub-group of dimensions

and merges them based on the overlapping dimensions, with the error threshold for

merging two clusters being the minimum of the Average of Squared distances of the

two sub-clusters formed from the sub-groups of dimensions, being merged.

The figure 5.3 provides a schematic explanation of how the post-processing steps

operate on the output of the parallel clustering step.

The new cluster centers are created based on the property that for an ideal cluster if

there is a cluster center in a Data Set D, having n Dimensions, given by

Co, Ca, ...C2 , ..C.~. 	 (5.2)

When the dimensions are divided into groups (0,1,2... i,i+l) and (i+1,i+2,i+3... n),

then in case of a ideal cluster, the centers of the clusters formed in the different groups

would be

Co,C1,...,C2+1 and 	 (5.3) (5.3)

In order to account for the fact that the real time data is noisy and the clusters arc net

24

Merging
Dim enslo ns

Grouping
Centers

Merging _
Dimensions,)

El DDIlEIEIiDD
DDDDDIDDDD I Merged

Cluster 0000000000
Q[JDDDLMIDDD J

Centers

Figure 5.3: The Post-processing Step

25

ideal, we introduce a factor into the merging process which is very unimaginativcly
called the Ideal Coefl"icient(II). When I I= 0, clusters centers are merged only if their
centers match exactly in both the sub groups.

For cases where the value of I, is non zero, the cluster centers of two sub-groups are
merged only if they fall within the squared distance of I, x min(the two cluster radii).

Mathematically, For two consecutive sub-groups G1 having cluster centers CO , C1

and C3 and sub-group G2 having cluster centers C3, C4 and 6c5, for the sake of
differentiation we denote the value of the third dimension of the group G1 with C31
and first dimension of G2 with C32 . The Average of Squared Distance of the cluster
G1 and G2 is denoted by Avg? and Avg.

Then we combine the dimensions of G1 and G2 only if

(G31 - %32)2 < min(Avgi,Avg2) 	 (5.4)

Now in order to introduce the Ideal Coefficient(I,) mentioned earlier into equation
5.4. For the ideal scenario the values C31 and C32 are same, and

0

(C31 - C32)2 = 0
	

(5.5)

Thus the value of I, is zero.

When the value of II is non-zero, we have

(C31 - C32)2 <I x min(Avgi, Avg) 	 (5.6)

5.4 The Algorithm

An overview of the modified algorithm for parallel clustering of data is as given below.

Let S = x1 ...,x,,, denote the set of points to be clustered. And, let 	j denote the
Euclidean length of the vector x.

1: For each dimension in input D1 , D2 ..., Dn, calculate the similarity metric Si , S2...,

26

2: Sort the dimensions Di based on similarity measure Si and divide into Nub groups
based on the value of DimMin with the adjacent sub-groups having an overlapping
dimension,

N..b = LN/(DimMin — 1)] 	 (5.7)

3: Run steps 4 to 14 for all Nub sub-groups of dimensions in parallel and then go
to Step 15.

4: Letting k = ki,zit, randomly sample k cluster initial centers Z = z1 ,z2 , ... zk from
S.

5: Assign each point to its closest cluster center. For I < i < k, let S;, C S be the
subset of points that are closer to zi than to any other cluster center of Z. That

is, for any x E S,

	

x E Si if lx— ZA < x — z, Vi 	. 	 (5.8)

(Ties for the closest center are broken arbitrarily.) Let n denote the number of

points of S. .
6: Remove cluster centers with fewer than n,n,2,,, points. (The associated points of S

are not deleted, but are ignored for the remainder of the iteration.) Adjust the
value of k and relabel the remaining clusters Si ...,Si accordingly.

7: Move each cluster center to the centroid of the associated set of points. That is,

	

zi : 1 E x; f orl <_ j < k. 	 (5.9)
ni xES2

If any clusters were deleted in Step 6, then the algorithm goes back to Step 5.

8: Let A be the average distance of points of S) to the associated cluster center z;

, and let A be the overall average of these distances.

lix — z j JJ,forl<j <k. A<--n.~0.~ 	(5.10)
n~ xES3 	

- - 	
n 9=1

Let v j,mo,x denote the largest coordinate of v~ .

9: If this is the last iteration, then set L,, jm = 0 and go to Step 12. Also, if 2k. >

and it is either an even numbered iteration or k > 2k2,tiit , then go to Step 12.

27

10: For each cluster Si , compute a vector v = (v1; ..., vd) whose ith coordinate is

the standard deviation of the ith coordinates of the vectors directed from z3 to

every point of S~ . That is,
1/2

1 	 2
F— — 	(xi — z3)

n~ XESj

forl<j<kand1<i<d. 	(5.11)

11: For each cluster S, , if V j,max > 'A max and either

((z > 0)and(nj > 2(nmin + 1))) or k <
k2~t, 	(5.12)

then increment k and split S into two clusters by replacing its center with two

cluster centers centered around zz and separated by an amount and direction that

depends on v,,,.,. If any clusters are split in this step, then go to Step 5.

12: Compute the pairwise intercluster distances between all distinct pairs of cluster

centers

 for1 < 2 < J < k.

13: Sort the intercluster distances of Step 12 in increasing order, and select a subset

of at most P,,,,;,~ of the closest such pairs of clusters, such that each pair has an

intercluster distance of at most L,,Ljn. For each such pair (i, j), if neither Si nor Sj
has been involved in a merger in this iteration, replace the two clusters Si and S3

with a merged cluster Si U S~, whose associated cluster center is their weighted

average
1

(ni zi + n j z3). 	 (5.14)
nz +7?~

Relabel the remaining clusters and decrease k accordingly.

14: If the number of iterations is less than Lrr ax , then go to Step 5.

15: For i= 1 to N8ub-1 repeat steps 16 to 17.

16: Compare the last dimension of sub-group i with first dimension of sub-group i+1.

Merge the two groups of centers if they follow the constraint

(G31 — %32) 2 < Ic x min(Avgi, Avg) 	 (5.1.5)

17: If i = Nb — 1 then insert the merged centers into the list of Merged Cluster

centers.

Chapter 6

Experimental Results

The image data we ran the tests on were 1123 x 1080 Landsat images of Path 146
Row 40(n = 1212840). The experiments involved all 7 bands of da.ta., running for
20 iterations and with StdDev = Lump = 10 and SampRm = 100. The results
are presented in Table 6.1.The parallel version of the code using MPI was faster by
a about two times for an execution with NumClus=100. As we can see from the
results as shown in Table 6.1 and Figure 6.1, the parallel algorithm really shines
when the amount of computation needed is significant. We expect even better results
for problems of higher dimensions and larger number of clusters.

6.1 Pre-Processing step

For separating the dimensions into subgroups, the similarity measure that was used
is kurtosis of the image data. The Kurtosis of an Image is defined as the measure of
whether the data is peaked or flat relative to a normal distribution. After finding the
kurtosis the dimensions are sorted based on the values obtained so that the dimensions
with similar values lie together. Since kurtosis gives us an estimate of how the da.to:o.

varies, which is similar to what clustering tries to achieve for multiple dimensions, it
can help in determining the characteristics of the data to be clustered in this case.

For finding the kurtosis of the image the APIs provided by the IrnageMagick libray
were used. The MagickWand API is the recommended interface between the C

29

80

70

60

50

40
c
a

30 H

20

10

0-
25 50 	100 	200

Number of clusters

'WSerI
,eM Par aJ I e

400

T11 1 1 	 of T.rnr'lc A+ r-lc-Q 1ncf

NumClus StdDev Serial code

(in secs)

Parallel Code

(in secs)

Speedup

25 10 38.26 29.31 1.31

50 10 43.36 30.57 1.42

100 10 49.89 32.14 1.55

200 10 57.81 32.21 1.79

400 10 67.07 32.88 2.04

Figure 6.1: Comparison of Serial and parallel execution time

30

programming language and the ImageMagick image processing libraries. The function
used for finding the image statistics is MagickGetImageChannelStatistics(), The func-
tion returns statistics for each channel in the image. The statistics include the channel
depth, its minima and maxima, the mean, the standard deviation, the kurtosis and
the skewness.

The format of the MagickGetlmageChannelStatistics method is:

ChannelStatistics *MagickGetImageChannelStatistics(MagickWand *wand)

where,
wand: is the Magic Wand Object created on passing an Image file to it,

The pre-processing step gives us the values of the kurtosis among others for each band
of LANDSAT image data. The values are shown in the table 6.2

Table 6.2: Image Statistics of ISODATA bands

Band Mean Maxima Std-Dev Kurtosis Skewness

1 13722.447870 65535.000000 8603.656996 -0.842767 -0.807476

2 6282.232393 51143.000000 4026.154022 -0.559548 -0.647161

3 6227.028588 63736.000000 4254.461937 0.089190 -0.213133

4 14034.895148 58339.000000 8829.011116 -1.072793 -0.841.465

5 13209.891964 65535.000000 8762.995117 -1.027934 -0.517764

6 27627.177277 51914.000000 16835.649467 -0.938688 -1.011677

7 5537.834025 42662.000000 4190.343359 -0.2329811. 0.24144 7

We sort the bands based on the kurtosis(Table 6.3), its important to note that we can
use any of the matematical measures obtained from the analysis of the image data. or
a combination of them, without any significant variation in the amount of time taken
by the pre-processing stage.

31

Table 6.3: Bands Sorted by Kurtosis of Image data

Band Mean Maxima Std-Dev Kurtosis Skewness

4 14034.895148 58339.000000 8829.011116 -1.072793 -0.841465

5 13209.891964 65535.000000 8762.995117 -1.027934 -0.51.7764

6 27627.177277 51914.000000 16835.649467 -0.938688 -1.01.1677

1 13722.447870 65535.000000 8603.656996 -0.842767 -0.807476

2 6282.232393 51143.000000 4026.154022 -0.559548 -0.647161

7 5537.834025 42662.000000 4190.343359 -0.232981 0.241447

3 6227.028588 63736.000000 4254.461937 0.089190 -0.213133

6.2 Parallel Clustering

In order to run parallel clustering of the subgroups, we modified the implementation
of clustering algorithm to include the parameter DimMin. Message Passing Inter-

face(MPI) libraries were used to create parallel threads of execution.

The root process first reads the Directive file which contains parameters for running
the filtering algorithm and broadcasts it using the MPI-Bcast. Aftc.r obt;ainng Ow
sorted dimensions from the pre-processing step the root process reads the dimension
data into memory and transmits the data to slave processes based on the value of the

DimMin using MPLSend, the slave processes receive the data using MPLRecv. In our

experiments we have kept the value of DimMin as 3. Therefore as per equation 5.1 on
page 22, for 7 dimensions we form 3 sub-groups because of the overlapping dimensions
that are required for post-processing of sub-clusters. While creating subgroups of
clusters if there are not enough dimensions left to form a different sub-group of
dimensions, then we add the remaining dimensions to the last sub-group created. The

final value of the number of dimensions being processed by each thread of execution

is passed to the corresponding thread from the root thread.

The time taken for parallel clustering is given in Table 6.4. We can see from table
6.4 and table 6.1, that the rate of increase of computation time with the increase in

32

Table 6.4: Parallel clustering execution times for different number of clusters

Number of Clusters(NumClus) Execution Time (in sees)

25 26.093

50 27.351

100 28.922

200 28.99

400 29.66

computation required for solving the problem does not increase super linearly as in
the case of the serial implementation of the algorithm.

6.3 Post-processing step

After we have obtained the centers for the sub-clusters through the parallel clustering
step. The post-processing step merges the cluster centers for the different clusters
to obtain the final cluster centers. The amount of time taken by the pre-processing
and post-processing steps together adds very little overhead to the actual clustcc-ihig
process. The running times of the pre-processing and the post-processing steps
together did not exceed more I percent of the time taken for clustering.

The number of sub-clusters from the three subgroups formed from the dimensions
(4,5,6), (6,1,2), and (2,7,3) were N456 =110, N612=80 and N456 =78 respectively. On
the merging the sub-clusters we obtained 126 clusters with a value for Coefficient of
Imperfection(Ic) as 1 .

33

Chapter 7

Conclusion

This work has proposed a framework through which we can strive for faster implemen-
tations of clustering algorithms. The proposed framework adds a pre-processing and
a post-processing step so that the computation can be spread across multiple threads
of execution. The feasibility of the approach has been demonstrated by modifying the
implementation of clustering of LANDSAT image data using the filtering algorithm.
The results were encouraging and it was possible to reduce the execution time of the.

algorithm to half its original execution time. An encouraging fact observed during the
course of experimentation was that the rate of increase of the execution time is not as
steep as in the original implementation, i.e. the running time of the algorithm does
not increase non-linearly as in the original implementation using filtering algorithm.
Hence even higher speedups are expected for clustering of larger data sets.

The work has introduced a new parameter in the post-processing stage called the
Ideal Coefficient(I) through theoretical analysis of the clustering algorithms. One
possible direction of future research can be to take the information about the data
available in the pre-processing step and using it to determine the value of I.

34

Bibliography

[1] John A. Richards and Xiuping Jia. Remote Sensing Digital Image Analysis: An
Introduction. Springer-Verlag New York, Inc., Secaucus, NJ, USA, 2005.

[2] Vijay Arya, Naveen Garg, Rohit Khandekar, Adam Meyerson, Kamcsh
Munagala, and Vinayaka Pandit. Local search heuristics for k-median and facility

location problems. SIAM J. Comput., 33(3):544--562, 2004.

[3] Imola Fodor. A survey of dimension reduction techniques. Technical report,

2002.

[4] NASA. Multispectral bands. http : //rst . gsf c . nasa . gov/Sect3/Sect3_1.

html, 2007. [Online; accessed March 13-14, 2010].

[5] Anil K. Jain and Richard C. Dubes. Algorithms for clustering data. Prentice-

Hall, Inc., Upper Saddle River, NJ, USA, 1988.

[6] Tapas Kanungo, David M. Mount, Nathan S. Netanyahu, Christine D. Piatko,
Ruth Silverman, and Angela Y. Wu. A local search approximation algorithm for
k-means clustering. In SCG '02: Proceedings of the eighteenth annual symposium
on Computational geometry, pages 10-18, New York, NY, USA, 2002. ACM.

[7] Nargess Memarsadeghi, David M. Mount, Nathan S. Netanyahu, and Jacque-
line Le Moigne. A fast implementation of the isodata clustering algorithm. Trd.

J. Comput. Geometry Appl., 17(1):71-103, 2007.

[8] Jerome H. Friedman, Jon Louis Bentley, and Raphael An Finkel. An algorithm
for finding best matches in logarithmic expected time. ACM Trans. Math. Softw.,
3(3):209-226, 1977.

35

[9] Edward Forgy. 	Cluster analysis of multivariate data: efficiency versus

interpretability of classifications. Biometrics, 21:768-780, 1965.

[10] Leon Bottou and Yoshua Bengio. Convergence properties of the k-means

algorithms. In NIPS, pages 585-592, 1994.

[11] Jon Louis Bentley. Multidimensional binary search trees used for associative

searching. Commun. ACM, 18(9):509-517, 1975.

[12] Olvi L. Mangasarian. Mathematical programming in data mining. Data Min.

Knowl. Discov., 1(2):183-201, 1997.

[13] Greg R Andrews. 	Foundations of Parallel and Distributed Programminn,'j.

Addison-Wesley Longman Publishing Co., Inc., Boston, MA, USA, 1999.

[14] Samuel Williams, Leonid Oliker, Richard Vuduc, John Shalf, Katherine Yelick,

and James Demmel. Optimization of sparse matrix-vector multiplication on

emerging multicore platforms. In SC '07: Proceedings of the 2007 ACM/IEEE

conference on Supercomputing, pages 1-12, New York, NY, USA, 2007. ACM.

[15] Chiu-Pi Shih Tian Tian. 	Software techniques for shared-cache

multi-core systems. 	http : //software . intel . com/en-us/articles/

software-techniques-for-shared-cache-multi-core-systems, 	2009.

[Online; accessed March 10-11, 2010].

[16] Michelle Mills Strout, Barbara Kreaseck, and Paul D. Hovland. Data-flow

analysis for mpi programs. In ICPP '06: Proceedings of the 2006 International

Conference on Parallel Processing, pages 175-184, Washington, DC, USA, 2006.

IEEE Computer Society.

[17] Jose Martinez Sotoca and Filiberto Pla. 	Supervised feature selection by

clustering using conditional mutual information-based distances. 	Pattern

Recognition, 43(6):2068-2081, Feb 2008.

[18] The Open MPI Project. Multispectral bands. http://www.open-mpi.org/doe/

vl.4/, 2010. [Online; accessed February 11-12, 2010].

List of Publications
• Anant Bhushan, Dr. Kuldip Singh and Dr. Ankush Mittal, "Framework for

faster implementation of unsupervised clustering algorithms," In Proceedings
of International Conference on Advances in Communication, Network, and
Computing, Calicut, India, 04-05 Oct 2010 [Accepted for publication]

37

	Title
	Abstract
	Chapter 1
	Chapter 2
	Chapter 3
	Chapter 4
	Chapter 5
	Chapter 6
	Chapter 7
	Bibliography

