
CLIENT-SIDE DEFENSE AGAINST PHISHING 
WITH PAGESAFE 

A DISSERTATION 

Submitted in partial fulfillment of the 
requirements for the award of the degree 

of 

MASTER OF TECHNOLOGY 
in 

COMPUTER SCIENCE AND ENGINEERING 

I 
PAN KAJ KUMAR SENGAR 

G~NTRAL L Sle,~ 
' ACC No ... .......... ~-C 
Date..° 1..t.. ! 0..... 

ROOR~~~ ~~ 

X 

DEPARTMENT OF ELECTRONICS AND COMPUTER ENGINEERING 
INDIAN INSTITUTE OF TECHNOLOGY ROORKEE 

ROORKEE •247 667 (INDIA) 
JUNE, 2010 



Candidate's Declaration 

I hereby declare that the work being presented in the dissertation report titled "Client-Side 

Defense Against Phishing With PageSafe" in partial fulfillment of the requirement for the 

award of the degree of Master of Technology in Computer Science and Engineering, submitted 

in the Department of Electronics and Computer Engineering, Indian Institute of Technology 

Roorkee, is an authentic record of my own work carried out under the guidance of Dr Kuldip 

Singh, in the Department of Electronics and Computer Engineering, Indian Institute of 

Technology Roorkee. I have not submitted the matter embodied in this dissertation report for the 

award of any other degree. 

Dated: 16- 06 -  ]0  

Place: IIT Roorkee. 	 (Pankaj Kumar Sengar) 

Certificate 

This is to certify that above statements made by the candidate are correct to the best of my 

knowledge and belief. 

Dated:  

Place:IlT Ik.00rkee. 

lb 
Dr. KJ'S ng , 

Professor, 

Department of Electronics 

and Computer Engineering, 

IIT Roorkee, Roorkee, 

247667 (India) 



ACKNOWLEDGMENTS 

First of all and foremost, I would like to thank the Almighty, without whose grace, I would not 

be even here. I would like to express my deep sense of gratitude and indebtedness to my guide 

Dr. Kuldip Singh, for his invaluable guidance and constant encouragement throughout the 

dissertation. His zeal for getting the best out of his students helped me to perform above my par. 

I was able to complete this dissertation in time due to the constant motivation and support 

received from him. 

I am also grateful to Mr. Sandeep Sood for helping me to clarify some basic and important 

concepts explored in this dissertation work. I would want to express thanks to my colleagues, 

Vijay Joshi, Ashish Kumar, Ankush Aggarwal and Laxmikant Sahu, for their "taken for granted" 

help with trivial matters, without which I am sure my work might have hit a dead end. 

Last but not the least I would like to thank my family for their constant support, motivation and 

showing interest which sometimes lead to ray of hope in darkness. 

(Pankaj Kumar Sengar) 



ABSTRACT 

Everyday, a number of attacks are launched with the aim of making web users believe that they 

are communicating with a trusted entity for the purpose of stealing account information, logon 

credentials, and identity information in general. These attacks, commonly known as "phishing 

attacks," are most commonly initiated by sending out emails with links to spoofed websites that 

harvest information. Many anti-phishing schemes have recently been proposed in literature. 

Despite all those efforts, the threat of phishing attacks is not mitigated. Blacklist approaches 

where a list of phishing URLs is maintained by anti-phishing organizations, are partially 

effective. These schemes require the blacklist provider organizations to be much faster than 

phishers and effectiveness is based on the quality of blacklist otherwise phishing attack can cause 

damage. Another approach is to preserve secret information but to keep their private information 

could be irritating works for users. The effectiveness of private information preserving 

approaches is totally dependent on users. Solutions based on automatic classification have 

problems of false negatives and false positives. 

This dissertation proposes PageSafe — an anti-phishing tool that prevents accesses to phishing 

sites through URL validation and also detects DNS poisoning attacks. PageSafe also examines 

the anomalies in web pages and uses a machine learning approach for automatic classification. 

PageSafe does not preserve any secret information and requires very less input from user. 

PageSafe performs automatic classification but by taking advantage of user assistance and 

external repositories, hence the number of false positives is reduced by a significant value. 

PageSafe is based on an approach opposite to blacklist approach removing the race between 

phishers and anti-phishing organizations. PageSafe maintains  a whitelist of URLs with the 

mapping of corresponding IPs. This list is referenced first for resolving JP of a URL to protect 

user from DNS poisoning attacks. With PageSafe users help to decide whether or not a web page 

is legitimate. This report also presents an analysis on effectiveness of PageSafe based on an 

experiment done on a set of phishing pages and compares PageSafe with other available browser 

toolbars. 

ID 



Table of Contents 

CANDIDATE'S DECLARATION ..........................................................................................i 
CERTIFICATE .........................................................................................................................i 
ACKNOWLEDGMENTS ........................................................................................................ii 
ABSTRACT ...............................................................................................................................iii 
TABLE OF CONTENTS .................................................................................iv 
LISTOF FIGURES ...................................................................................................................vii 
LIST OF TABLES ................................................................ 	 iii .........................viii 
Chapter1: Phishing Attack ........................................................................................1 

1.1 Introduction ................................................................................................ I 
1.2 History Background ...............................................................1 
1.3 Current Status ..............................................................................................1 
1.4 Phishing Success Reasons .........................................................3 
1.5 Motivation ........................................................................... 3 
1.6 Problem Statement ......................................................................................4 
1.7 Organization of the Report ..........................................................................5 

Chapter 2: Phishing Attack Vectors ..........................................................................6 

2.1 Man-In-Middle Attacks ................................................................................6 
2.1.1 Transparent Proxies ...................................................... 6 
2.1.2 DNS Cache Poisoning ...................................................6 
2.1.3 Browser Proxy Configuration ..........................................6 

2.2 URL Obfuscation Attacks .............................................................................7 
2.2.1 Bad Domains Names ................................................................7 
2.2.2 Friendly Login URLs ....................... 	 .........7 ..................................... 
2.2.3 Third-Party Shortened URL .............................................8 
2.2.4 Host Name Obfuscation ..................................................8 
2.2.5 URL Obfuscation ..........................................................9 

2.3 Cross-Site Scripting Attacks .........................................................................9 
2.4 Preset Session Attack ....................................................................................11 
2.5 Hidden Attacks ...............................................................................................12 

iv 



2.5.1 Hidden Frames ...........................................................................12 
2.5.2 Overriding Page Contents ................................................12 
2.5.3 Graphical Substitution ....................................................13 

2.6 Observing Customer Data ............................................................13 
2.6.1 Key Logging ................................................................13 
2.6.2 Screen Grabbing ............................................................14 

2.7 Client Side Vulnerabilities ............................................................14 
2.8 Pharming .................................................................................15 
2.9 Spear Phishing ..........................................................................15 
2.10 In-Session Phishing ................................... 	............................16 

Chapter3: Defense Mechanisms ....................................................................................17 
3.1 Client-Side .......................................................................................................17 

3.1.1 Desktop Protecting Agent ................................................17 
3.1.2 Email Sophistication ......................................................17 
3.1.3 Browser Capabilities ......................................................18 
3.1.4 Digitally Signed Emails ...................................................19 
3.1.5 Customer Vigil lance .......................................................20 

3.2 Server-Side ....................................................................................................20 
3.2.1 Customer Awareness .........................................................................20 
3.2.2 Validating Official Communication ..................................................21 
3.2.3 Custom Web Application Security ....................................................21 
3.2.4 Strong Token-Based Authentication .....................................22 

3.3 Enterprise .............................................................................. 23 
3.3.1 Digitally Signed Email ......................................................23 
3.3.2 Domain Monitoring ................................................. 	.......23 
3.3.3 Mail Server Authentication ................................................24 
3.3.4 Gateway Services ............................................................25 
3.3.5 Managed Services ...........................................................25 

Chapter4: Design Details .................................................................................................27 
4.1 Page Safe Model ................................................................................................27 
4.2 Neural Network ........................................................................................27 

u 



4.3 Main Functionality .................................................................................29 
Chapter5: Implementation Details ................................................................................. 34 

5.1 Background .............................................................................. 34 
5.2 PageSafe Working .......................................................................34 
5.3 Description Of Classes ..................................................................34 
5.4 Results ....................................................................................3 8 

Chapter 6: Conclusions and Future Work........... ............................................40 

6.1 Conclusion ................................................................................40 

6.2 Future Work ..............................................................................40 

REFERENCES......................................................................................41 

vi 



List of Figures 

Figure 2.1: Cross Site Scripting Attack .........................................................................................10 
Figure 2.2: Preset Session Attack ..................................................................................................11 
Figure 3.1: Strong Token Based Authentication ............................................................................23 
Figure 3.2: Mail Server Authentication-DNS querying of MX records ........................................24 
Figure4.1: PageSafe Model ...........................................................................................................28 
Figure 4.2: PageSafe Flow-Chart ...................................................................................................33 
Figure 5.1: Confusion matrix .........................................................................................................40 

M 



List of Tables 

Table 1.1: Anti-Phishing Working Group Report 2009..................................................2 
Table 6.1: Comparison With Available Browser Toolbars ...............................................40 

VIII 



Chapter 1: Phishing Attack 

1.1 Introduction 
The aim of phishing attacks is to steal user's secret information such as passwords, credit card 

number and pin etc. Phishing attackers use various tricks to convince user to visit bogus sites. 

Social engineering, such as phishing emails, or/and technical subterfuge, such as Trojan horses 

can be used for attack. Phishing sites mislead users to believe that they are legitimate sites and 

ask for the secret information. 

1.2 History Background 
The word "phishing" originally comes from the analogy that early Internet criminals used emails 

to "phish" for passwords and financial data from a sea of Internet .user. The use of "ph" in the 

terminology is linked to popular hacker naming conventions such as "Phreaks" who were early 

hackers involved in the hacking of telephone systems. 

The term came into light in the 1996 timeframe by hackers who were stealing America Online 

(AOL) accounts by scamming passwords from unsuspecting AOL users. The popularized first 

mention on the Internet of phishing was made in alt.2600 hacker newsgroup in January, 1996, 

however the term may have been used even earlier in the popular hacker newsletter "2600". 

By 1996, hacked accounts were called "phish", and by 1997 phish were actively being traded 

between hackers as a form of electronic currency. There are instances whereby Phishers would 

routinely trade 10 working AOL phish for a piece of hacking software or stolen copyrighted 

applications and games. 

The term Phishing covers not only obtaining user account details, but now includes access to all 

personal and financial data. Form emails, now it has been expanded into fake websites, 

installation of Trojan horse key-loggers and screen captures, and man-in-the-middle data proxies 

delivered through any electronic communication channel. 

1.3 Current Status 
The statistics show that phishing remained highly localized in certain Internet namespaces, and 

that some anti-phishing measures had noticeable impacts. Phishing is a damaging phenomenon 

1 



which results in many millions of dollars in losses. Phishing has always been attractive to 

criminals because it has low start-up costs and few barriers to entry. 

According to Anti-phishing Working Group Report 2009 [1], by mid-2009, phishing is 

dominated by one player as never before the "Avalanche phishing operation". "Avalanche" is the 

name given to the world's most prolific phishing gang, and to the infrastructure it uses to host 

phishing sites. This criminal enterprise perfected a system for deploying mass-produced phishing 

sites, and for distributing malware that gives the gang additional capabilities for theft. Avalanche 

was responsible for two-thirds (66%) of all phishing attacks launched in the second half of 2009. 

There were at least 126,697 phishing attacks. This is more than double the 55,698 attacks we 

recorded in first half of 2009. 

2H2009 1112009 2H2008 1H2008 

Attacks 126,697 -55,698 56,959 47,324 

Phishing domain names 28,775 30,131 30,454 26,678 

TLDs used 173 171 170 155 

IP-based phish (unique IPs) 2,031 3,563 2,809 3,389 

Maliciously registered domains 6,372 4,382 5,591 

IDN domains 12 13 10 52 

Table 1.1: Anti-Phishing Working Group Report-2009 

The average uptimes of phishing attacks have fallen steadily from 19 hours 30 minutes in first 

half of 2008 to 11 hours 44 minutes in second half of 2009. The longer a phishing attack remains 

active, the more money the victims and target institutions lose, and the more money the Phisher 

can make. The great majority of phishing continues to be concentrated in just a few namespaces. 

76% of all phishing attacks occurred in just four TLDs:.COM, .EU, .NET, and .UK. Out of 

28,775 domains used for phishing, 6,372 were maliciously registered domain registered by 

phisher. The remaining 22,403 domains used for phishing were "compromised" or hacked 

domains. Phishers still do not tend to abuse Internationalized Domain Names (IDNs). 

2 



1.4 Phishing Success Reasons 
Successful phishers not only present a high credibility web presence to their victims but they 

create a so impressive presence also, which causes the victim to fail to recognize security 

measures installed in web browsers. An analysis on a phishing database addresses the question of 

why phishing works. The answer to this question is organized along three dimensions: lack of 

knowledge, visual deception, and lack of attention [2]. 

• Many users do not understand the meaning or the syntax of domain names and email headers. 

They cannot distinguish legitimate versus fraudulent URLs (e.g., they may think www.sbi-

security.com belongs to www.sbi.com or cannot differentiate between www.paypal.com and 

www.paypai.com). 

• Many users do not know that a closed padlock icon in the browser indicates that the page 

they are viewing was delivered securely by SSL. They do not know how to check the digital 

certificate. 

• People have very little awareness about phishing. Some have misconceptions about which 

website features indicate security. 

• User can be fooled by using an image of a legitimate hyperlink. The image itself serves as a 

hyperlink to a different rogue site. 

• A common phishing technique is to place an illegitimate browser window on top of, or next 

to, a legitimate window. If they have the same look and feel, users may mistakenly believe 

that both windows are from the same source. 

• If images and logos are copied perfectly, sometimes the only cues that are available to the 

user are the tone of the language, misspellings or other signs of unprofessional designer and 

the type and quantity of requested personal information. 

• Security is often a secondary goal. When users are focused on their primary tasks, they may 

not notice security indicators or read warning messages. 

1.5 Motivation 

Today organizations are moving towards electronic transactions. The reason behind this is ease 

of business and global reach. Now a days each aspect of business, from order placement to 

3 



payment, is conducted through Internet in form of electronic transactions. Phishing is an obstacle 

to these electronic transactions. 

Data suggest that some phishing attacks have convinced up to 5% of their recipients to provide 

sensitive information to spoofed websites [2]. About two million users gave information to 

spoofed websites resulting in direct losses of $1.2 billion for U.S. banks and card issuers in 2003 

[3]. Phishing attacks are increasing rapidly every year. The total attacks launched in 2009 were 

182,395 while in 2008 the number was 104,283 [1]. 

1.6 Problem Statement 

Phishing attacks are rapidly growing in number. Though a number of anti-phishing browser 

toolbars are available but unfortunately no one fully solves phishing attacks problem. For 

example, Antiphish '[8] stores mapping of secret information with *mapping to corresponding 

domain, SpoofGuard [9] examines domain name, images and links on web pages and raises 

alarm if the site has high probability of phishing, Microsoft and Google integrated [12] the 

blacklisted phishing domains into browser and browser warns user against these URLs, 

PwdHash [16] authenticates a user with domain specific password, DSS (Dynamic Security 

Skins) [17] provides trusted password window and uses SRP (secure remote password) protocol 

for authentication, PhishGuard [18] maintains trustlist containing mapping of trusted domains 

and corresponding IP addresses, ItrustPage [19] validates a URL through external information 

repositories. The problems with current toolbars are: 

1. Most of the toolbars fail against DNS poisoning where DNS cache on local host is 

corrupted by installing some malicious software. 

2. Few rely on automation but these have problems of false negatives (identifying a real 

website as phishing site) and false positives (identifying a phishing website as real 

website). 

3. Most of the toolbars rely on users input even in some toolbars security is totally 

dependent on user inputs. 

4. Some toolbars store secret information but it is not good to store secret information which 

is memorized by user. 

5. Few depend on blacklist of phishing URLs but problem with this approach is that there is 

always a race between phisher and blacklist provider organization. 

4 



6. Few works in combination with server side where changes at server side are required. 

This report presents PageSafe — an anti-phishing toolbar which works at client side without any 

change at server-side. PageSafe does not store any secret information like password etc. and 

requires very less input from user. Instead of querying with blacklist server, it validates URL by 

using external information repositories. PageSafe performs automatic classification but by taking 

advantages of user input so that the number of false positives are reduced by a significant value. 

1.7 Organization of report 
The report is organized as: 

Chapter 2 discusses the phishing attack vectors, i.e. the various tricks used to launch phishing 

attack. 

Chapter 3 explains the various security measures that can be adopted by users and organizations 

against phishing attack. 

Chapter 4 describes the design principles. It discusses the various steps in working of proposed 

anti-phishing tool — PageSafe. 

Chapter 5 explains technology used for implementation and details of implementation. It also 

presents performance analysis of PageSafe. 

Chapter 6 concludes the dissertation work. It describes limitations and suggests future work for 

PageSafe. 

5 



Chapter 2: Phishing Attack Vectors 

A number of methods are used by phisher to trick customer into doing something with their 

supplied page content. There are an ever increasing number of ways to do this. The common 

methods are explained below [3]: 

2.1 Man-in-the-middle Attacks 

In this type of attack, the attacker locates themselves between the customer and the real web-

based application, and proxies, all communications between the systems. This form of attack is 

successful for both HTTP and HTTPS communications. The customer connects to the attacker's 

server as if it was the real site, while the attacker's server makes a simultaneous connection to 

the real site. For man-in-the-middle attacks to be successful, the attacker must be able to direct 

the customer to their proxy server instead of the real server. This may be carried out through a 

number of methods: 

2.1.1 Transparent Proxies 

These proxies are located on route to the real server (e.g. corporate gateway or intermediary 

ISP), a transparent proxy service 'can intercept all data by forcing all outbound HTTP and 

HTTPS traffic through itself. In this transparent operation no configuration changes are required 

at the customer end. 

2.1.2 DNS Cache Poisoning 

"DNS Cache Poisoning" may be used to change normal traffic routing by injecting false IP 

addresses for key domain names so that all traffic destined for the legitimate URL goes to IP 

address of the attackers proxy server IP address. 

2.1.3 Browser Proxy Configuration 

By changing the browser proxy configuration options, an attacker can force all web traffic 

through to their nominated proxy server. This method is not transparent to the customer, and the 

customer may easily review their web browser settings to identify an offending proxy server. In 

0 



many cases browser proxy configuration changes setting up the attack will have been carried out 

in advance of receipt of the Phishing message. 

2.2 URL Obfuscation Attacks 
Phishing email convinces recipient to follow a hyperlink (URL) to the attacker's server, without 

them realizing that they have been duped. Unfortunately phishers have access to an increasingly 

large number of methods for obfuscating the final destination of the customer's web request. The 

most common methods of URL obfuscation include: 

2.2.1 Bad Domain Names 

The most common obfuscation method is through the registration and use of bad domain names. 

Consider the financial institute SBI with the registered domain sbi.com and the associated 

customer transactional site 

http://privatebanking.sbi.com. The Phisher could set up a server using any of the following 

names to help obfuscate the real destination host: 

• http://privatebanking.sbi.com.ch 

• http://sbi.privatebanking.com 

• http://privatebanking.sbl.com 

• http://privatebanking.sbi.members.com 

It is important to note that as domain registration organizations move to internationalize their 

services, it is possible to register domain names in other languages and their specific character 

sets. For example, the Cyrillic "o" looks identical to the standard ASCII "o" but can be used for 

different domain registration purposes. Even the standard ASCII character set allows for 

ambiguities such as upper=case "i" and lower-case "L". 

2.2.2 Friendly Login URLs 

Many common web browser implementations allow for complex URLs that can include 

authentication information such as a login name and password. In general the format is 

URI://username:password@hostname/path. 

7 



Phishers may substitute the username and password fields for details associated with the target 

organization. For example the following URL sets the username = mybank.com, password = e-

banking and the destination hostname is evilsite.com. 

http://mybank.com:ebankingevilsite.comfphishingIfakepage.htm 

This friendly login URL can successfully trick many customers into thinking that they are 

actually visiting the legitimate MyBank page. Because of its success, many current browser 

versions have dropped support for this URL encoding method. 

2.2.3 Third-Party Shortened URL's 

Due to the length and complexity of many web-based application URLs third-party organizations 

have sprung up offering free services designed to provide shorter URL's. Through a combination 

of social engineering and deliberately broken longs or incorrect URL's, Phishers may use these 

free services to obfuscate the true destination. Common free services include http://smallurl.com 

and http://tinyurl.com. 

2.2.4 Host Name Obfuscation 

Web browser communicates over the Internet by resolving URL to an IP address, such as 

209.134.161.35, with the help of DNS servers. A Phisher may wish to use the IP address as part 

of a URL to obfuscate the host and possibly hide the destination from the end user. For example 

the following URL: 

http://mybank.com:ebanking@evilsite.com/phishing/fakepage.htm could be obfuscated such as: 

http://mybank. com: ebanking@210.134.161.35/login.htm 

Different IP representations within an URL can be used to obscure the host destination. There 

other ways to encode the address other than the classic dotted-decimal format include: 

• Dword - meaning double word because it consists essentially of two binary "words" 

• of 16 bits; but it is expressed in decimal (base 10), 

• Octal - address expressed in base 8, and 

• Hexadecimal - address expressed in base 16. 

For example, consider the URL http://www.evilsite.com/, resolving to 210.134.161.35. This can 

be interpreted as: 

• Decimal — http://210.134.161.35/ 

8 



• Dword — http:// 3532038435/ 

• Octal — http://0322.0206.0241.0043/ 

• Hexadecimal — http://OxD2.Ox86.OxA1.0x23/ or even http://OxD286A 123/ 

2.2.5 URL Obfuscation 

Internet software such as web browsers and email clients support local languages, most software 

supports alternate encoding systems for data. A Phisher can obfuscate the true nature of a 

supplied URL using one (or a mix) of these encoding schemes. Typical encoding schemes 

include: 

• Escape Encoding: It is the accepted method of representing characters within a URL that may 

need special syntax handling to be correctly interpreted. This is done using a triplet sequence 

consists of the percentage character "%" followed by the two hexadecimal digits representing the 

octet code of the original character. For example, the ASCII character set represents a space with 

hexadecimal 20. Thus its URL-encoded representation is %20. 

• Unicode Encoding: Unicode Encoding is a method of referencing and storing characters with 

multiple bytes by providing a unique reference number for every character no matter what the 

language or platform. For example %u0020 represents a space. 

• Inappropriate UTF-8 Encoding: Unicode UTF-8 preserves the full ASCII character range. 

This great flexibility provides many opportunities for disguising standard characters in longer 

escape-encoded sequences. For example, the full stop character "." may be represented as %2E, 

or %C0%AE, or %E0%80%AE, or %F0%80%80%AE, or %F8%80%80%80%AE, or even 

%FX%80%80%80%80%AE. . 

• Multiple Encoding: Many applications still incorrectly parse escape-encoded data multiple 

times. Consequently, Phishers may further obfuscate the URL information by encoding 

characters multiple times. For example, the back-slash "\" character may be encoded as %25 

originally, but could be extended to: %255C, or %35C, or %%35%63, or %25%35%63, etc. 

2.3 Cross-site Scripting Attacks 
Cross-site scripting attacks (commonly referred to as CSS or XSS) make use of custom URL or 

code injection into a valid web-based application URL or imbedded data field. In general, these 



Real MyBank Server 
	

Attackers Code Server 
http://www.mybank.com/ 

	
http-.//evilsite.com/phishing/fakepage.htm 

CSS techniques are the result of poor web-application development processes. Phishers must 

make use of URL formatted attacks. Typical formats for CSS injection into valid URL's include: 

• Redirection URL: 

http://mybank.com/ebanking?U RL=http://evilsite.com/ph ish ing/fakepage.htm 

• Inline embedding of scripting content: 

http://mybank.com/ebanking?page= l &client=<SCRIPT>evilcode... 

• Loading scripting code from attacker server: 

http://mybank.com/ebanking?page= I &response=eviIsite.com%2 I evilcode.js&go=2. 

Content provided by the 
real MyBank server 

J Fake content from the 
attackers Code server 

Sc 

`.w 

M 0 

m 	 Ultra-solo crd -cc :;onki. ngpo^::. 
d 	 a 	 ~  	 6 a yww yurC Wwr. of n 

vtxt tC+•n sr. earl ao,. 
 Gds V<v dWW1Vr t% 	•  

aM '*y.ro..c T.tr.wc1. ...* I 

 -A PNNo .. o. yo. o.s. o.,n1p d~ 

♦ M~ 

N Tt.vshc flirt,., .47' 

'•+HAC;E ,..wa.cnn wraa. i1L~YttilC7'Tm a*+.•= r.rrn .ter 
•. as:t ..mewr .m.ts. v tim~+~a so" M" - romp 1l.t 	aMMMMIMV o.-b. 4M .n aM ;uH  

v.Bri sMS r •wy. d I+rtYr 	• I tfif DY rI Ya/ ^t.A 	M'trtt I'.l 
- ~ma:nr a'.q tnrc. rea wtn..a 

 
' MMr~t +n.r .lo/ wtwN4l.w.c.q 

s 	~• •. a :... u.., ..r 	$.4.d w goon'nooK Eunon to co *n,. 

My B t. I*.m~I.nY Us.rn 
err, rs ~•r ar m wr~m 

+- rrrr. I w+ur W .ra a.r. s..rr tea 
— rr.. f.s 	ate. a— .Are. 

Customer  Maw 	 ru. 

Requesting - http://mybank.com/ebanking?URL=http://evilsite.com/phishing/fakepage.htm 

Figure 2.1: Cross Site Scripting Attack 



2.4 Preset Session Attack 
Since both HTTP and HTTPS are stateless protocols, web-based applications use cookies to 

track users through its pages and also manage access to resources that require authentication. 

These cookies contain Session Identifiers (SessionlD's). Many web-based applications 

implement poor state management systems and will allow client connections to define a 

SessionlD. The web application will track the user around the application using the preset 

SessionlD, but will usually require the user to authenticate before allowing them access to 

"restricted" page content. 

~RJ 

Attacker Customer 
MyBank Server 

corn: 

Phishing link contains: 	Session ID not 
session=3V1L5e551ON 	Authentic. at 

	
HI IPS kegLest k- 

404 Page Not Found 

Attacker Tries 
https. mybank corn!ebankmg'>session•3V1LS,SS1ON&Transf,c.Trus 

SessioniD 	Failure 

HTTPS Rccn ett 	waiting for 
Customer 

Authentication 

Customer 
successfully logs in 

SessionlD  
Authentcatd 	Authenticated 	HTTPS Request  

200 OK 
Fund Transfer Page 

Attacker Tries: 
htips.Ihnybank.com/ebanking?sassion.3V1L6a5510N&TranslecTrue 

Success 

Figure 2.2: Preset session attack 

In this class of attack the phishing message contains a web link to the real application server, but 

also contains a predefined Session ID field. The attackers system constantly polls the application 

server for a restricted page using the preset SessionlD. Until a valid user authenticates against 

11 



this SessionID, the attacker will receive errors from the web-application server. The Phisher 

must wait until a message recipient follows the link and authenticates themselves using the 

SessionlD. Once authenticated, the application server will allow any connection using the 

authorized SessionlD to access restricted content. Therefore, the attacker can use the preset 

SessionlD to access a restricted page and carryout his attack. 

2.5 Hidden Attacks 

HTML, DHTML and other scriptable code can be used to manipulate the display of the rendered 

information by web browsers. The attackers use these techniques to disguise fake content (in 

particular the source of the page content) as coming from the real site while fake copy of the site 

is hosted on the attackers own systems. The most common vectors include: 

2.5.1 Hidden Frames 
Hidden frame can be used to deliver additional content (e.g. overriding page content or graphical 

substitution), forcing the browser to display a fake padlock for non-SSL connection or to execute 

screen-grabbing and key-logging observation code. In the following example, two frames are 

defined. The first frame contains the legitimate site URL information, while the second frame — 

occupying 0% of the browser interface —references the Phisher's chosen content. 

<frameset rows=" 100%, *" framespacing="0 "> 

<frame name="real" src="http://mybank.com/" scrolling="auto"> 

<frame name="hiddenContent" src="http://evilsite.com/bad.htm" scrolling="auto"> 

</frameset> 

2.5.2 Overriding Page Content 
Several methods exist to override displayed content. One of the most popular methods of 

inserting fake content within a page is to use the DHTML function - DIV. The DIV function 

allows an attacker to place content into a "virtual container" that can be positioned to hide 

underlying content. An attacker can build a complete page on top of the real page. 

12 



2.5.3 Graphical Substitution 

Web Browsers provide visual clues such as URL presented within the browsers URL field, the 

secure padlock representing an HTTPS encrypted connection, and the Zone of the page source. 

Browser scripting languages (such as JavaScript, VBScript and Java) can be used to overcome 

these clues by locating specially created graphics over these key areas with fake information. 

Therefore the attacker may prepare images for a range of common browsers and code their page 

in such a way that the appropriate images are always used. Graphical substitution combined with 

additional scripting code can be used to fake other browser functionality. Examples include: 

• Implementing "right-click" functionality and menu access, 

• Presenting false popup messages just as the real browser or web application would, 

• Displaying fake SSL certificate details when reviewing page properties or security settings 

through the use of images. 

2.6 Observing Customer Data 
Phishers can employ key-loggers and screen-grabbers to observe confidential customer data as it 

is entered into a web-based application. This information is collected locally and typically 

retrieved through by attacker through the following different methods: 

• Continuous streaming of data through sender/receiver pair. To do this, the attacker must often 

keep a connection open to the customer's computer. 

• Local collection and batching of information for upload to the attacker's server. This may be 

done through protocols such as FTP, HTTP, SMTP, etc. 

• Backdoor collection software allows the attacker to connect remotely to the customer's 

machine and pull back the data as and when required. 

2.6.1 Key-Logging 

Key loggers observe and record all key presses by the customer when they enter their 

authentication information into the web-based application login pages. Key-loggers may be pre-

compiled objects that will observe all key presses — regardless of application or context or they 

may be written in client-side scripting code to observe key presses within the context of the web 

browser. 

13 



2.6.2 Screen-Grabbing 

Screen grabbers are designed to take a screen shot of data that has been entered into a web-based 

application. This functionality is used to overcome some of the more secure financial 

applications that have special features build-in to prevent against standard key-logging attacks. 

For example, in a recent Phishing attempt against Barclays, the attack used screen grabbing 

techniques to capture an image of the second-tier login process designed to prevent key-logging 

attempts. 

2.7 Client-side Vulnerabilities 
The web browsers, customers use to surf the web, are often vulnerable to a myriad of attacks. 

The more functionality built into the browser, the more likely there exists a vulnerability that can 

be exploited by an attacker. This, combined with the ability to install add-ons (such as Flash, 

RealPlayer and other embedded applications) means that there are many opportunities for attack. 

Example: Microsoft Internet Explorer URL Mishandling 

By inserting some special character in URL, a user would be redirected to the attackers server, 

but characters after would not be displayed in the browser URL field because of limited size. For 

example: 'http://www.mybank.com%O 1 @evilsite.com/phishing/fakepage.htm'. 

Example : RealPlayer/RealOne Browser Extension Heap Corruption 

All popular web browsers offer support for RealPlayer and the automatic playing of media. By 

crafting a malformed .RA, .RM, .RV or .RMJ file it possible to cause heap corruption that can 

lead to execution of an attacker's arbitrary code. This code will run in the security context of the 

logged on user. 

<OBJECT ID="RealOneActiveXObject" WIDTH=O HEIGHT=O 

CLASSID="CLSID:FDC7A535-4070-4B92-AOEA-D9994BCCODC5 "></OBJECT> 

// Play a clip and show new status display 

function clipPlay() { 

window.parent.extemal.PlayC lip( 

"rtsp://evilsite.com/hackme.rm", 

"Title=Glorious DaylArtist name=Me Alone") 

} 

14 



2.8 Pharming 
Pharming [5] attacks redirect you to a hacker's site even when you type the URL of a real site 

into your browser. Pharming does not require that a user clicks on an email message. Pharming is 

a scamming practice in which malicious code is installed on a personal computer or server, 

misdirecting users to fraudulent web sites without their knowledge or consent. Pharming is also 

called "phishing without a lure". Pharmers typically redirect users to a spoofed website by 

poisoning company's hosts files or DNS (changing the mapping of a legitimate URL to fake site 

IP) so that requests for certain URLs return a bogus address and subsequent communications are 

then directed to a fake site. Other types. of Pharming attacks involve Trojan horses, worms or 

other technologies that attack the browser address bar, thus redirecting the user to a fraudulent 

website when the user types in a legitimate address. 

2.9 Spear Phishing 
Spear phishing is an e-mail spoofing fraud attempt that targets a specific organization, seeking 

unauthorized access to confidential data. As with the e-mail messages used in regular phishing, 

spear phishing messages appear to come from a trusted source. These attacks use personal 

information about the victim to make the email appear more legitimate. The attacker finds a Web 

site for a targeted organization that supplies contact information for employees and other 

relevant data about the company. Using available details to make the message seem authentic, 

the perpetrator drafts an e-mail appearing to come from an individual who might reasonably 

request confidential information, such as a network administrator. 

According to an article in the New York Times [6], spear phishing attempts are not typically 

initiated by "random hackers" but are more likely to be conducted by "sophisticated groups out 

for financial gain, trade secrets or military information." 

Typically, a spear phisher requests user names and passwords or asks recipients to click on a 

link that will result in the user downloading spyware or other malicious programming. If a single 

employee falls for the spear phisher's ploy, the attacker can masquerade as that individual and 

gain access to sensitive data. 

15 



2.10 In Session Phishing 
In-session phishing [7] is next generation of phishing attacks that has recently come in focus. In 

this phishing the specific focus is on what we call "in-session" attacks. In-session phishing attack 

takes place when the victim is logged in an online banking application and therefore is much 

more likely to succeed. The scenario for the attack is user logs in their online banking application 

to perform some tasks. User leaves a browser window open for some time and navigates to 

another website for some other work leaving this browser window open. After some time a 

popup appears, allegedly from the banking website, which asks the user to retype their username 

and password because the session has expired, or complete a customer satisfaction survey, or 

participate in a promotion, etc. As the user has recently logged in the banking website, he will 

not suspect this popup as fraudulent and follows the pop-up. 

For this type of attack the attacker injects code into a compromised website which does not 

change the appearance of the website and does not download malware to the user's PC. 

Therefore it is very hard to detect. This code only searches for online banking websites that 

visitors are currently logged onto, and present them with a popup that claims, to be from the 

banking website they are logged on to. A method for finding the user who are logged in is 

discussed by hackers in 2006. In this method if the offensive website code is capable of loading 

the image (i.e. those images that accessible to logged-in users only),this confirms the user is 

logged on. 

A vulnerability of JavaScript engine in most of browsers - Internet Explorer, Firefox, Safari, and 

Chrome — allows a website to check whether a user is currently logged onto another website. 

This vulnerability comes because of a specific JavaScript function which is use by majority of 

websites, including financial institutions, online retailers. When this function is called it leaves a 

temporary footprint on the computer and any other website can identify this footprint. Websites 

that use this function can be easily traced. The compromised website maintains a list of websites 

for checking logged on users. There is no limit of URL that a compromised website can check 

for logged in users. This only answers a question to browser whether the user in logged in or not 

and browser replies. 

16 



Chanter 3: Defense Mechanisms 

Defense mechanisms against phishing can be deployed at three logical layers [4]: 

1. The Client-side — this includes the user's PC. 

2. The Server-side — this includes the businesses Internet visible systems and custom 

applications. 

3. Enterprise Level — distributed technologies and third-party management services 

3.1 Client-side 

The client-side should be seen as representing the forefront of anti-phishing security. There are 

many solutions available for use at client-side to counter phishing attack. 

3.1.1 Desktop Protection Agents 
Desktop systems should be configured to use multiple desktop protection agents that are capable 

of performing the following services such as Anti-Virus, Firewall, IDS, anti-spam, anti-phish etc. 

Specific to phishing attack vectors, these solutions should provide the following functionality: 

- The ability to detect and block installation of malicious software (such as Trojan horses, key-

loggers, screen-grabbers and creating backdoors) through email attachments, file downloads, 

dynamic HTML and scripted content. 

• The ability to identify common Spam delivery techniques. 

• The ability to pull down the latest anti-virus and anti-spam signatures and apply them to the 

intercepting protection software as a daily activity. 

• The ability to detect and block unauthorized out-bound and inbound connections from installed 

software or active processes and automatic block of delivery of sensitive information through 

these connections. 

• The ability to detect and block common Spyware installations. 

3.1.2 Email Sophistication 
Email applications provide users an increasing level of functionality and sophistication. Most of 

this functionality is not required for day-to-day use particularly for Internet communication 

services. This unnecessary embedded (and often default) functionality is exploited by Phishing 

attacks. Most popular applications allow users to turn off the most dangerous functionality. 

17 



• HTML-based Email: HTML base emails provide ability to obfuscate the true destination of 

links, the ability to embed scripting elements and the automatic rendering of embedded (or 

linked) multimedia elements. HTML functionality must be disabled in all email client 

applications. Instead plain-text email representation should be used, and ideally the chosen 

font should be fixed. However, users should be prepared to receive some emails that appear 

to be "gobbldy-gook" due to textual formatting issues and probable HTML code inclusions. 

Some popular email clients will automatically remove the HTML code. Users should not use 

other email rendering options (such as Rich-text or Microsoft Word editors) as there are 

known security flaws with these formats which could also be exploited by Phishers. 

• Attachment Blocking: Email applications must be capable of blocking "dangerous" 

attachments and preventing users from quickly executing or viewing attached content. Some 

popular email applications (such ' as Microsoft Outlook) maintain a list of "dangerous" 

attachment formats, and prevent users from opening them. Ideally, users should not be able to 

directly access email attachments (i.e. saving it locally) from within the email application. 

This applies to all attachment types (including Microsoft Word documents, multimedia files 

and binary files) as many of these file formats can contain malicious code capable of 

compromising the associated rendering application. In addition, by saving the file locally, 

local antivirus solutions are better able to inspect the file for viruses or other malicious 

content. 

3.1.3 Browser Capabilities 

Web browsers also offer extended functionality that can be exploited by phisher (often to a 

higher degree than email clients). Much of the sophistication is devoted to being a "jack of all 

trades", and no single user can be expected to require the use of all this functionality. In 

particular, if the purpose of the web browser is to only browse Internet web services, a 

sophisticated web browser is not required. To help prevent many Phishing attack vectors, web 

browser users should: 

• Disable all window pop-up functionality 

• Disable Java runtime support 

• Disable ActiveX support 

• Disable all multimedia and auto-play/auto-execute extensions 

18 



• Prevent the storage of non-secure cookies 

• Ensure that any downloads- cannot be automatically run from the browser, and must instead be 

downloaded into a directory for anti-virus inspection 

There are number of browser plug-ins available that can be added to the browsers toolbar and 

provide an active monitoring facility. These toolbars verify that the requested server host is not 

currently on a list of known phishing scams. 

3.1.4 Digitally Signed Email 

Digital signatures can be used to verify the integrity of the messages content — thereby 

identifying whether the message content has been altered during transit. A signed message 

consists of original message attached with its encrypted hash by sender's private key with date 

and time. It can be verified by receiver using sender's public key. Almost all popular email client 

applications support the signing and verification of signed email messages. It is recommended 

that users have a personal public/private key pair, enable automatic signing of emails by default 

and verify all signatures on received emails and be careful of unsigned or invalid signed 

messages. Therefore it is still possible for a Phisher to send forth an email with a spoofed 

address and digitally sign it with a key that they own. 

S/MIME and PGP: There are currently two popular methods for providing digital signing. 

These are S/MIME and PGP. Most major Internet mail application vendor's ship products 

capable of using and understanding S/MIME, PGP/MIME, and OpenPGP signed mail. Although 

they offer similar services to email users, the two methods have very different formats. Users of 

one protocol can also communicate users of the other protocol. Key points for S/MIME and PGP 

are: 

• S/MIME was originally developed by RSA Data Security, Inc. It is based on the PKCS #7 data 

format for the messages, and the X.509v3 format for certificates. 

• PGP/MIME is based on PGP, which was developed by many individuals. The message and 

certificate formats were created from scratch and use simple binary encoding. OpenPGP is also 

based on PGP. 

• S/MIME, PGP/MIME, and OpenPGP use MIME to structure their messages. They rely on the 

multipart/signed MIME type that is described in RFC 1847 for moving signed messages over the 

Internet. 

19 



3.1.5 Customer Vigilance: Customer's vigilance plays an important role against phishing attack 

which involves inspecting content that is presented to them and verifying its authenticity. 

General vigilance includes: 

• If you get an email that warns you, with little or no notice, that an account of yours will be shut 

down unless you reconfirm billing information, do not reply or click on the link in the email. 

Instead, contact the company cited in the email using a telephone number or Web site address 

you know to be genuine. 

• Never respond to HTML email with embedded submission forms. Any information submitted 

via the email (even if it is legitimate) will be sent in clear text and could be observed. 

• Avoid emailing personal and financial information and also check padlock icon on browser 

status bar before submitting financial information through a Web site. 

• For sites that indicate they are secure, check the SSL certificate and ensure that it has been 

issued by a trusted certificate authority. SSL certificate information can be obtained by double-

clicking on the "lock" icon or by right-clicking on a page and selecting properties. 

• Review credit card and bank account statements as soon as you receive them to determine 

whether there are any unauthorized charges. If your statement is late by more than a couple of 

days, call your credit card company or bank to confirm your billing address and account 

balances. 	 0  $1RAL 

ACC NO ................. 
3.2 Server Side 	 Date .................... 

The interaction with server must 	.ape 	 plemented as a protocol that is either 

independent from other protocols or enhances an already existing protocol, such as the SSL/TLS 

protocol. By carrying out this work from the server-side, organizations can help to protect 

against a complex threat. The application at server side must provide: 

3.2.1 Customer Awareness 

It is important that organizations constantly spread awareness about dangers of phishing attack 

and appropriate actions to be taken. The key steps in helping to ensure customer awareness and 

vigilance include: 

• Notifications on login pages about how the organization communicates with their customers. 

20 



Customers reaching the page should be prompted to think about the legitimacy of the email (or 
other communication) that drove them to the page. 

• Provide clear links for customers to report phishing scams, or other possible fraudulent emails 
sent in the organizations name. 
• Provide advice on how to verify the integrity, i.e. how to check the security settings, SSL, 

"padlock" and certificate signature of the page, decipher the URL line. 

3.2.2 Validating Official Communications 
There are a number of techniques an organization can apply to official communications but also 

these must take care of user's technical ability and value of transactions. These techniques 

include: 

• Use personalized emails for the specific recipient such as using of the customer's name 

instead of common addressing (such as dear sir), or reference some other piece (not 

complete) of unique information shared between the customer. 

• Clearly referencing the subject and date of the previous email with a new mail and 

providing sequence number to each mail. 

• Use of digital certificates to sign messages. 

• Providing a portal on the corporate website to allow customer to copy/paste their received 

message contents or URL to an interactive form for the verification of authenticity of the 

message and validation of URL. 

3.2.3 Custom Web Application Security 
Many popular Phishing attack vectors can be removed by applying robust content checking 

functions and implementing a few "personalization" security additions. For example, cross-site 

scripting vulnerabilities, resulting in highly successful attacks, can be detected by content 

checking. 

Content Validation: 
• Never directly trust data submitted by a user or other application components and always 

sanitize data before processing or storing it. 

• Never present submitted data directly back to an application user without sanitizing it 



• Ensure that all dangerous characters as constituting an executable language are replaced with 

their appropriate HTML safe versions. This decoding process may have to be carried out many 

times — until all encoded sequences have been removed. 

Session Handling: Custom applications are used to implement session handling because of 

stateless nature of HTTP and HTTPS. To overcome a Preset Session attack, these applications 

must ensure: 

• Never accept session information within a URL. 

• Ensure that SessionlD's have expiry time limits and that they are checked before use with each 

client request. 

• Submission of an invalid SessionlD (i.e. expired, revoked, or extended beyond it's life), should 

result in a server side redirection to the login page with a new SessionID. 

• Never keep a SessionID that was initially provided over HTTP after the customer has logged in 

over a secure connection (i.e. HTTPS) and after authenticating, the customer should always be 

issued a new SessionlD. 

URI. Qualification: For some applications redirection is necessary. For such application greater 

care must be taken in qualifying the nature of the link before redirection. These application must 

ensure: 

• Do not reference redirection URL's or alternative file paths directly within the browsers URL 

path (e.g. http://mybank.com/redirect.aspx?URL=secure.mybank.com) 

• Always maintain a valid "approved" list of redirection URL's. 

• Never allow customers to supply their own URL's. 

• Never allow IP addresses to be used in URL information. 

3.2.4 Strong Token-based Authentication 

Using single-use time-based time passwords is another way for achieving strong authentication. 

These passwords are generated by external systems. A password cannot be repeated for 

authentication. These systems, often referred to as token based authentication systems, may be 

based on physical devices (such as key-fobs or calculators) or software. Customers of the 

legitimate web-based application may use a physical token such as a smartcard or calculator to 

provide a single-use or time-dependant password. 

22 



HTTPS + Secure Token 

User's Browser  Web Application Server 

Figure 3.1: Strong Token-Based Authentication 

By reducing the likelihood of authentication details being shared between multiple 

organizations, there is less opportunities for an attacker to achieve an identity theft. 

3.3 Enterprise 
There is no single silver bullet solution exists at enterprise level against phishing. Enterprise 

security solutions work in combination with client-side and server-side security mechanisms, 

offering considerable defense against phishing and other threats. Key steps to anti-phishing 

enterprise-level security include: 

3.3.1 Digitally Signed Email 

One tool available to senders of legitimate emails to aid the recipient in this process is to 

digitally sign their messages, allowing the recipient to establish a level of comfort that the 

message actually came from the indicated sender. An enterprise must configure their receiving 

email servers to automatically validate digitally signed emails before they reach the recipient. In 

addition, the enterprise email server can be configured to always sign outbound email. 

3.3.2 Domain Monitoring 

Organizations must carefully monitor the expiry and renewal of existing corporate domains and 

the registration of similarly named domains. There are numerous agencies that allow the 

registration of domains previously owned by an organization that have not been renewed. Many 

organizations own multiple domains that must be renewed in a timely fashion. Failure will result 

in a loss of service, (i.e. domain name lookup) or may be purchased by a third-party. It is a 

23 



simple process for someone to register a domain name through any domain registrar, anywhere 

in the world. A phisher can register domain names that may infringe upon an organizations 

trademark or used to trick customers into believing that they have reached a legitimate host. For 

example, assuming the organizations name is "Paypal" and their normal website is 

www.paypal.com, the organization should keep a watchful eye out for hyphenated names ( i.e 

www.pay-pal.com),country specific (i.e. www.paypal.com.au), legitimate possibilities ( i.e. 

www.secure-paypal.com),or mixed wording ( i.e. www.paypalglobal.com) etc. Now commercial 

services available that help organizations monitor the domain name service and alert when 

potentially threatening new domains are registered. 

3.3.3 Mail Server Authentication 

The sender's mail server is authenticated by the receiving mail server by reverse resolution of 

Domain information to a specific IP address or range. If the senders IP address is not an 

authorized address for the email domain, the email is dropped by the receiving mail server. _________________ 	DNS Server 
Only servers with a registerec IP Address 
of 8G102.92. t 1 are autroisei senders or 
the domaii ' @domain u<' 

Senders D•~main and IP 
Address are checked 

SMTP 

Senders Email Server 
user@domain.u< ;IP 212.80.12.10) 

x 
/\\ 

Email Dropped 	C~ 

Receiving Email Server 	
Recipient 

Figure 3.2: Mail Server Authentication-DNS querying of MX records 

24 



Another solution is to use Secure SMTP, email transport is conducted over an encrypted 

SSL/TLS link. When the sender mail server connects to the recipient mail server, certificates are 

exchanged and an encrypted link is established: Invalid and missing certificates will prevent a 

secure connection and do not allow delivery of emails. 

3.3.4 Gateway Services 

A gateway protection services, located on route to Internet, can monitor and control both 

inbound and outbound communications. These services can be used to identify malicious 

Phishing content; whether it is in email or other communication streams. 

Typical enterprise-level gateway services include: 

• Gateway Anti-Virus Scanning is used to detect viruses, malicious scripting code and binary 

attachments that contain Trojan horse software. 

• Gateway Anti-Spam Filtering is a rule-based inspection of email content for key phrases (such 

as Viagra) and bad words, typically used to identify common spam, but also capable of stopping 

many forms of phishing attack that are designed to look like legitimate spam. 

• Gateway Content Filtering performs inspection of many types of communication methods (e.g. 

email, IM, AOL, HTTP, FTP) for bad content or requests. 

• Proxy Services provide protection against inbound attacks through the use of network address 

translation. Good protection against common information leakage of internal network 

configurations. 

3.3.5 Managed Services 

Managed services are becoming an essential component of preventing e-mail security risks. 

Managed services have the ability to analyze email messages delivered at a global level, and 

identify common threads between malicious emails. Security needs vary for different-size 

companies. Rather than trusting network security to an internal staff, hiring a security firm to 

manage the process every day is a growing trend. For instance, an organization may only receive 

5 or 6 carefully disguised phishing emails with minor content changes not enough to trigger an 

anti-spam response while the managed service provider has spotted several thousand of the same 

style emails which triggers the anti-spam/anti-phishing blocking processes. When dealing with 

phishing and spam, email volume is a key component in identifying malicious activities. 

25 



Managed security software allows the security firm to check corporate computer systems and 

then keep them intruder-free through remote-access security checks and daily traffic monitoring. 

Managed security services also provide active web monitoring. Managed service providers may 

deploy agent-based `hots to monitor URL's and web content from remote sites, actively 

searching for all instances of an organizations logo, trademark, or unique web content. The 

subscribing organization institution provides a "white list" of authorized users of logo, 

trademark, and unique web content to the service provider. When the `hots detect unauthorized 

deployments or instances of the logos, trademarks, or other web content, remediation actions 

may be taken by the subscriber. 

26 



Chapter 4: Design Details 

4.1 PageSafe Model 
PageSafe performs automatic classification but does not completely rely on automation to detect 

phishing. Instead, PageSafe asks for user input and also examines anomalies in web page to 

perform automatic classification to decide on the legitimacy of a web page. It uses external 

information repositories on the Internet to help the user with decision-making. PageSafe prevents 

accesses to phishing sites and warns against DNS poisoning attacks. PageSafe maintains a 

Whitelist-a list of domains with mapping to corresponding IP addresses. Whitelist is encrypted 

by a master password to protect it from corruption through malicious softwares. It maintains a 

dynamic whitelist containing domains with mapping to corresponding IP addresses. It considers 

that phishing sites are short lived and only allows those sites that are not short lived. This section 

presents the PageSafe model for preventing accesses to Phishing sites as well as Pharming 

detection. PageSafe uses artificial neural network approach for automatic classification after 

identifying anomalies in a web page. 

4.1.1 Neural Networks 
ANNs develop their own solutions from examples for a class of problems. Artificial neural 

network consists of a collection of processing elements (neurons) that are highly interconnected 

and transform a set of inputs to a set of desired outputs. The neurons process information 

parallelly and collectively within the structure of the network. The result of the transformation is 

determined by the characteristics of the elements and the weights associated with the 

interconnections among them. A neural network conducts an analysis of the information and 

provides a probability estimate that it matches with the data it has been trained to recognize. The 

neural network gains the experience initially by training the system with both the input and 

output of the desired problem. The network configuration is refined until satisfactory results are 

obtained. Artificial neural networks have different types of architectures, which consequently 

require different types of algorithms. In this thesis work Scaled Conjugate Gradient 

Backpropagation (trainscg) algorithm is used for training neural network. 

Scaled Conjugate Gradient Backpropagation Algorithm: The scaled conjugate gradient 

algorithm [20] is an implementation of avoiding the complicated line search procedure of 

27 



Google Server 

conventional conjugate gradient algorithm (CGA). According to the SCGA, the Hessian matrix 

is approximated by: 

E' (wk + ok  k) - E' (wk) 
E" (wk) pk = 

	
+ akpk 

where E' and E" are the first and second derivative information of global error function E (wk). 

The other terms Pk,  ak and 2,k represent the weights, search direction, parameter controlling the 

change in weight for second derivative approximation and parameter for regulating the 

indefiniteness of the Hessian. 

Figure 4.1: PageSafe Model 

28 



4.1.2 Main Functionality 

PageSafe has four modules-Initial look up, URL validation, Pharming detection and Page 

anomalies check. When a user requests a URL, these modules becomes active and performs 

different functions: 

Initial Look-Up Module: The Initial look-up module looks up the domains of URL in whitelist 

and picks up the corresponding IP from the whitelist if domain is found in whitelist. URL is 

passed to URL validation module if URL is not found on whitelist. 

URL Validation Module: URL validation module issues a search query to Google for The 

URL. If the top 10 search results contain the URL, then it infers that the URL is legitimate. The 

average life time of a phishing site is 5-6 days [14]. The fact that the site appears in the top 10 

search results means that the Google crawler indexed the site, and that the site is not short-lived. 

Sometimes, the user reaches a web page by navigating to it from the Google search page. These 

domains are automatically added to, whitelist after performing pharming check. If URL is not 

found in top 10 results, PageSafe involves users to specify the search term for the web page they 

intend to visit. PageSafe performs a Google Search and provides the search results to users. 

Users can choose a URL from the search results. After URL validation it URL is passed to 

Pharming detection module. 

Pharming Detection Module: Malicious softwares attached with emails or web pages can cause 

DNS poisoning or Pharming. There are 3 entities involved in resolving a URL to IP: 

Local DNS: means a local host file which is firstly referenced to resolve a web address to a 

specific IP address. 

Network DNS: means DNS server inside an organization. If the Local DNS doesn't know the 

corresponding IP address, the Network DNS is asked. 

Remote DNS: means the DNS servers of ISPs. We use these to check the Network DNS 

Pharming. 

Pharming detection module compares the IP addresses from Local DNS and Network DNS with 

the IP address form remote DNS for the requested URL. If all are not same then pharming is 

detected and alert is made to user. We assume Remote DNSs such as ISP DNS are highly 

ME 



secured and are not contaminated. If no pharming is detected the URL is added to whitelist with 

mapping to its IP and web page is retrieved from the server. After retrieving the web page Page 

Anomalies Check module examines the page. 

Page Anomalies Check Module: This module first selects high frequency words appearing in a 

web page and removes stop words from the set. Suppose, S={sl, s2, s3.......} is a set found after 

removing stop words from the set of high frequency words. It performs the checks in two rounds. 

In first round it performs: 

1. Similarity Check: The attacker uses a URL that seems similar to actual legitimate URL This 

finds out a URL in whitelist with maximum similarity to requested URL. Ratcliff/Obershelp 

pattern matching algorithm [14] is used for matching substrings. The algorithm works by 

examining two strings passed to it and locating the largest group of characters in common. The 

algorithm uses this group of characters as an anchor between the two strings. The algorithm then 

places any group of characters found to the left or the right of the anchor on a stack for further 

examination. This procedure is repeated for all substrings on the stack until there is nothing left 

to examine. The algorithm calculates the score returned as the number of characters found in 

common divided by the total number of characters in the string. Alternatively this algorithm 

finds out the percentage of legitimate URL in current page URL. For example, suppose you want 

to compare the similarity between the word https://www.sbi.com and http://www.sbi-

members.com.The largest common group of characters that the algorithm would find is 

`://www.sbi`. The two sub groups remaining to the left are `https` and `http`, and to the right are 

`.com` and `-members.com`. The algorithm places both of these string sections groups on the 

stack to be examined, and advances the current score to 10, equal to number of characters in 

common substrings. `.com' and `-members.com` are next to come off of the stack and are then 

examined. The algorithm finds 4 character in common '.com'. The score is advanced to 14. Next, 

the algorithm pulls `https` and `http` off of the stack. The largest common substring found is 

`http`. The algorithm advances the score to 18 .There is nothing to the left now, stack is now 

empty and the'algorithm ready to return the similarity value found. There was a score of 18 out 

of a total of 19. The result means that the two strings were 95 percent alike. 

30 



2. Title check: The contents of title tag in HTML appear on the top of browser window. Attacker 

uses the name of real site to make user to believe that he is visiting a legitimate website. The 

contents of title, after removing stop words, are compared with the domains in secure list. 

Appearance of title contents in some secure list domains causes phishing suspiciousness. If both 

the checks indicate the same domain in whitelist, user is alerted for phishing warning. Otherwise 

next round is executed. 

In second round it checks anomalies in web page and applies the following rules: 

1. URL Check : A web page's URL (Uniform Resource Location) is unique in the cyberspace. 

For a regular web site, its identity is usually part of its domain name. For a phishing site, its true 

URL is usually similar but different from its claimed identity. Specifically, we consider three 

cases: 

a. For URL address L, no s; is a substring of L for all 0 < i <— k, or the domain name 

looks 	obscured, 	e.g 	http://www.paypal.com@123.123.123.123, 	or 

http://www.paypal.com.secure.login.cmd.path.hotelielsi.com/cgi.bin/, F1=1, 

b. If one page only uses the IP address, F1=0, 

c. Otherwise , F1= —1. 

2. Link Check: Anchors in a normal web page usually point to pages in the same domain. For 

phishing pages, there are possible abnormalities listed below. In the following, let Aa be the total 

number of anchors in page. 

a. Nil anchor: An anchor is called a nil anchor if it points to nowhere. Examples are 

<a href"#">, <a href="#skip">, <a href="javascript::void(0)">, etc. 

b. Foreign anchor: An anchor is called foreign anchor if it points to foreign domain. The 

attacker does not want to create the complete website. The percentage of nil and foreign anchors 

in a page reflects the degree of suspiciousness. Let The higher the percentage, the more likely 

that page is a phishing page. A1 Jf be the number of nil and foreign anchors in web page. F2  is 

assigned as follows: 

	

0 	Aa =0 

F2  = A&f/Aa AnIf > 0 

	

—1 	otherwise 

31 



3. Request URL check: Web pages are object rich, containing numerous objects including 

images, CSS files, scripts etc., a large percent of objects are loaded from its own domain. Only a 

small portion of them are from foreign domains. While in phishing pages, most objects are 

copied or loaded from the real sites since the attackers intend to reduce their cost of faking. We 

observe that more request URLs in page indicates a higher probability of page being faked. 

0 	Ra  = 0 

F3  = 	Ri/Ra  Rf > 0 

L_1 	otherwise 

where Rf is the number of request URLs to foreign domains. 

4. Form handler check: The ultimate goal of phishing attacks is to steal user's private 

information, such as user name and password. Phishing pages often contain forms requesting 

user inputs. It shows where the data is to be sent. However, the handler of such a form in a 

phishing page usually refers to the real site or simply is void or to some foreign domain. We set 

F4 = 1, if there is an occurrence of any void handler (e.g. <form action="#">, <form 

action="about: blank">, <form action=' javascript:true">), or any handler referring to a foreign 

domain. If there is no handler in page, F4=0 and F4= —1 for other cases. 

5. SSL Check: In a SSL transaction, the web 'client usually requests the server to present a 

public key certificate. For a legitimate web site, the presented certificate contains identity 

relevant information, e.g. the Distinguished Name (DN). Moreover, a certificate for web usage 

usually defines its serving URL explicitly. A phishing site may choose to use the same certificate 

as its victim's one. Otherwise, its own certificate would not match the identity it attempts to 

impersonate. So, F5  = 1 if one of the claimed identities does not appear in the certificate attached 

to page or the URL specified in the certificate is different from L; F5 = 0 if the SSL is not 

applied; and F5 = —1 for other cases. 

6. Hidden fields: Hidden fields can be used to steel information. These fields are not visible to 

user but can be used to hide information such as username, passwords etc using java scripts. A 

large number of hidden fields in a page lead suspiciousness of page being fake. F6  is the number 

of hidden fields in a webpage. 

32 



4 
Page anomalies 

check 

Prompt User for ,. Yes 
against phishing 

NQ 

Allow to proceed 

Figure 4.2: PageSafe FlowChart 

After calculating values of all rules, it applies these values to a trained neural network. This 

neural network was trained on a set of web pages containing phishing as well as legitimate web 

pages. User is allowed to proceed or prompted against phishing attack based on decision. 

33 



Chapter 5: Implementation Details 

5.1 Background 
PageSafe is written in C++ and interfaces with the Internet Explorer browser through Microsoft's 

COM interface. For the development of PageSafe Microsoft's Platform SDK and the Microsoft 

WTL classes have been used. It was also needed to set up Visual Studio to access these libraries 

and header files. 

5.2 PageSafe Working 
There are three buttons. The first, the Settings Button, brings up the Settings dialog (displays 

Whitelist with edit options). The second, the Status Button, displays the status (RED color for 

phishing) and also brings up a status message. The third, the Reset Button clears the whitelist. 

Whenever the browser navigates to a new page, PageSafe starts performing the various checks in 

two rounds. A new site is flagged if any check fails. If a site is flagged, a red light will be 

displayed and status message is appeared. If you select, in the Settings dialog, to be stopped 

before visiting a suspicious site, a flagged site will trigger a pop-up window that will warn you 

either before or after the browser navigates to a new page, depending on whether the site can be 

flagged with only the first round of checks, which occurs before navigation. The first round of 

checks occurs before the browser attempts to navigate to a new page. At this point, the only 

information available to the browser (and the PageSafe Toolbar) is the URL that it will attempt to 

navigate to. The two checks executed in the first round are the Pharming Detection & URL 

Validation. If the checks in first round fail, you will be warned before the page is loaded and be 

given the option not to navigate to the attempted page. Second round of checks, is executed after 

requested web page has been loaded to browser. In this round PageSafe performs Similarity check, Title 

check, URL Check, Link check, Requesting URL check, Form Handler check, SSL check, Hidden fields 

check. 

5.3 Description of classes 

AlertBar 
This is the primary class required to implement an Internet Explorer toolbar. AlertBar is a COM 

component (the only COM component in PageSafe) that extends the IDeskBand interface, 

34 



among others; this interface exposes the necessary methods. AlertBar is where most of the 

interesting work is done, and will be discussed in further detail below, after the rest of the classes 

involved in PageSafe are discussed. Two window classes must be implemented in order to define 

the appearance and user interaction of the bar. Both implement the CWindowlmpl interface to 

do this. Upon initialization of AlertBar, a new instance of ReflectionWnd is created and 

registered, which creates a new instance of UWToolBar. 

ReflectionWnd 

This window class implements a transparent window that sits on top of the toolbar and takes user 

messages (like mouse clicks) and reflects them to the UWToolbar, which defines the buttons that 

respond to these messages. When this class is created by AlertBar, it creates and registers a new 

UWToolBar. From AlertBar, accessing UWToolBar is done through this class. ReflectionWnd 

is able to pass messages to its instance of UWToolBar by registering it in a message map 

constructed with macros defined in the Microsoft ATL. 

UWToolBar 

This window class defines the buttons and appearance of the toolbar. It receives messages from 

the ReflectionWnd that created it. While the toolbar is running, UWToolBar maintains and 

updates whitelist. AlertBar, which uses this data, must access UWToolBar each time it wants to 

retrieve this data. Additionally, UWToolBar exports methods to set status of the page. That is, 

other classes, particularly AlertBar, can change the Status Button as well as the message that 

appears on the Status Dialog. Upon initialization of UWToolBar, two buttons are created and 

registered such that they fire IDM OPTIONS and IDM_STATUSBUTTON events, which are 

meant to trigger the Settings (whitelist) and Page Status, respectively. When a user clicks on 

one of these buttons, the message is received by ReflectionWnd and is passed to UWToolBar, 

which fires OnCommand. OnCommand interprets the command and, if the event is an 

IDM OPTIONS or an IDM STATUSBUTTON, the appropriate dialog is initialized and fired. 

In the case where the Settings Dialog is fired, a new ConfigDlg is initialized displaying whitelist 

with edit options, and the UWToolBar updates the whitelist based on the result that ConfigDlg 

returns when the dialog terminates. Similarly, the Status Dialog is initialized with a string that 

represents the status of the current page, passed to UWToolBar from AlertBar whenever the 

browser navigates to a new page. 

35 



TestDlg 
This class exists only to handle the Settings Dialog. When UWToolBar opens a new Settings 

Dialog, which occurs each time the Settings button is pressed, it creates a new instance of 

TestDlg and sets the initial state of the dialog box by initializing TestDlg's instance variables. 

While the Settings Dialog is running, TestDlg intercepts all the events it fires, like clicking on a 

radio button, and continually stores the state of the dialog. When the user terminates the dialog, 

UWToolBar extracts the values of the instance variables from ConfigDlg and saves them. 

StatusDlg 
This class exists only to handle the Status Dialog. It is very similar to ConfigDlg, but much 

simpler. This dialog only displays the warnings associated with the current page, so StatusDlg 

needs to interact with it only upon initialization to set the status message. 

AlertBar 

With the previous classes in place, AlertBar can retrieve, the current state of the user settings and 

set the status of the current page. When the toolbar is not running, the user settings are saved in 

the registry. They are loaded in LoadRegValsO and saved in SaveRegVals() upon initialization 

and termination of the toolbar. Additionally, AlertBar can make calls to its instance of 

ReflectionWnd to fire pop-up windows when necessary. AlertBar also implements several COM 

interfaces using ATL macros. 

IObjectWithSite 

The SetSite method in this implementation is used to initialize AlertBar and register the browser 

with it. This method is called by the containing browser at the beginning of its execution and 

passes it a pointer to the containing object, the web browser. This is a convenient place to put 

the initialization of AlertBar, which includes loading user settings from the registry and passing 

the browser object to the ReflectionWnd and UWToolBar, which are also created here. SetSite 

is also called immediately before the web browser terminates AlertBar, with a null value passed 

in. In this case, this is used as a destructor, which un-registers the UWToolBar. 

DWebBrowserEvents2 

This class has two event handlers BeforeNavigate2 and DocumentComplete: 

36 



BeforeNavigate2 
This event fires before navigation in the given object (pDisp). This also gives AlertBar the URL 

that the browser is attempting to navigate to and allows AlertBar to cancel the browser's 

navigation. This is where AlertBar performs the first round checks, as these checks need only the 

URL of the attempted navigation. 

AlertBar will not perform the first round checks if the domain of the attempted URL is already in 

the whitelist. In this case, the variable outerFrameIsInwhitelist is set to TRUE so that this page 

will also be ignored after navigation is complete. Otherwise, the first round checks are done in 

the function FirstAlert, and a warning string is created to notify the user of any problems that the 

first round checks detected. The three checks done here are Initial look-up, Pharming check and 

URL validation Check. The Initial look-up iterates through the whitelist and compares the 

current URL to each of them. The Pharming check simply compares IP for a URL retrieved 

from Local DNS, Remote DNS and Network DNS. URL validation check searches a URL in 

Google Search. If activated first round checks, that is, those that detect problems, then a pop-up 

warning message is fired, with the warning string that describes all the possible problems 

detected so far, where the user is given the option to cancel navigation. If the user decides to do 

so, the value of Cancel, passed in by the browser, is set to TRUE to cancel navigation. 

DocumentComplete 

This event fires when the given object (pDisp) has been completely loaded and initialized. This 

means that every page, image and script of the document has loaded. This is very similar to 

BeforeNavigate2, but there is no option to cancel navigation because navigation has already 

occurred when this has fired. AlertBar performs the second round checks here. These include the 

Request URL Check, Link Check and SSL Check, Hidden fields check, Form handler check. 

These checks each retrieve the browser object from the given pDisp. From this, they retrieve the 

current document. Each check queries the document for a different set of information. The URL 

check Checks the current URL of the page. The Link Check simply retrieves a collection of all 

the links on the page and iterates through them. Similarly, the SSL Check retrieves certificate is 

verified or not. Request URL Check retrieves a collection of request URLs from the current 

document. Form handler check finds out that is information is submitted to foreign domain. 

Hidden fields check counts the number of hidden fields in page. Once the checks are done, 

results of all checks are applied to trained neural network and the status message is updated. The 

37 



decision is supplied to the warning light in UWToolbar's Status Button and, will pop up the 

current status of the page as a warning message, through ReflectionWnd. Here user can choose 

to stop or proceed based on the results and also if user wants to add current URL to whitelist of 

domains. 

5.4 Results 
PageSafe, can successfully detects all phishing attacks taking place through DNS poisoning or 

pharming attacks. Phishing sites are short lived. PageSafe only allows those URLs that have been 

indexed by Google i.e. these URL related websites are not short lived. By doing this, a large 

percentage of total phishing sites, is removed. But a phishing website can be hosted on a 

compromised legitimate server indexed by Google. To cope up with phishing websites hosted on 

a legitimate domain, PageSafe performs automatic classification of web pages using artificial 

neural network. 

A sample of 101 websites including phishing as well as legitimate websites is taken from 

www.phishtank.com. The performance of rules is analyzed using MATLAB. The sample is used 

as: 71 sites in training, 20 sites for validation and 10 sites for testing. Percentage errors in 

training, validation and testing are 5.6, 0 and 0 respectively. 

After training the neural network a new dataset of 60 sites was taken containing phishing as well 

as legitimate sites. The accuracy achieved was 97% i.e. only 3% sites are wrongly classified. 

Figure 6.1 shows the confusion matrix which is achieved when this sample is tested by trained 

neural network using MATLAB. 

PageSafe warns when a user tries to visit a website which is not indexed by Google i.e. only 

allows those websites that are not short lived. Phishing sites are short lived hence by allowing 

only Google indexed web sites reduces the probability of a website being a phish. PageSafe 

performs automatic classification only for those phishing websites that are hosted on legitimate 

domains which are lesser in number hence false positives are reduced by a significant value. 

Table 6.1 compares PageSafe with other available browser toolbars. 

38 



4L%. 
1 QtY'/•: 
00% 

A 

2i  
13% 	 d(1 3". 

<) 

Ji 
65% 

I .111'i •1 	I.1'.'. 

figure o.i: Confusion Iviatrix 

Toolbars I 	Pharming 

Detection 

I Page Anomalies 1 URL Validation I User-Assistance 

Analysis 

Antiphish No No No Complete 

Spoofguard No Yes No Complete 

PhishGuard Yes No No Complete 

Blacklist No No No No 

ITrustPage No No Yes Very less 

PageSafe Yes Yes Yes Very less 

Table 6.1: Comparison With Available Browser Toolbars 

M 



Chapter 6: Conclusion And Future Work 

Conclusion 
Phishing have brought a dramatic increase in the number and sophistication of attacks involved 

in stealing user's secret information. This thesis work presents PageSafe for preventing user from 

filling out phishing web forms. PageSafe relies on two key observations: (1) user's input can be 

used to disambiguate between legitimate and phishing sites and (2) Internet repositories of 

information can be used to assist the user with the decision making process. PageSafe does not 

preserve any secret information as information preserving approach completely dependent on 

user. PageSafe merges user assistance with automatic classification reducing the false positives 

by a significant value. PageSafe uses some new features and uses a machine learning approach 

(Artificial Neural Network) for automatic classification and achieves 97% accuracy. PageSafe 

protects user even if the system is compromised by detecting DNS poisoning and also from those 

phishing sites hosted on legitimate domains. PageSafe cannot protect user from key-loggers 

screen-grabbers and client side scripting. 

Future Scope 

More functionally can be added to PageSafe for protecting user against key-loggers and screen-

grabbers and client side scripting attacks. PageSafe uses Google search to validate a URL which 

can be refined by using more external repositories such as Yahoo search etc. PageSafe uses 

artificial neural network approach and achieves 97% accuracy. This can be improved by adding 

more effective rules and using other machine learning approaches. 

40 



References 

[1] G. Aaron, R. Rasmussen, "Global Phishing Survey: Trends and Domain Name Use 

2H2009", Anti-Phishing Working Group, 2009. Internet: http://www.antiphishing.org/. 

[Last accessed: May 12, 2010]. 

[2] R. Dhamija, J. D. Tygar, and M. Hearst, "Why Phishing Works", In Proceedings of the 

Conference on Human Factors In Computing Systems (CHI) , ACM Press, Montreal, 

Canada, 2006, pp. 581-590. 

[3] A. Litan, "Phishing Attack Victims Likely Targets for Identity Theft", Gartner Research 

(2004). Internet: http://www.gartner.com/resources/120800/120804/phishing_attack.pdf. 

[Last accessed: May 12, 2010] 

[4] G. 011mann, "The Phishing Guide" , Next Generation Security Software Ltd. Internet: 

http://www.ngssoftware.com/papers/nisr-wp-phishing.pdf. [Last accessed: May 30, 2010] 

[5] G. 011mann, "The Pharming Guide", Next Generation Security Software Ltd. Internet: 

http://www.ngssoftware.com/papers/nisr-wp-pharming.pdf. [Last accessed: May 15, 2010] 

[6] http://searchsecurity.techtarget.com/sDefinition/0„sid 14_gci 1134829,00.html. 

[7] "In Session Phishing Attacks", Trusteer Research Paper, December 29, 2008. Internet: 

www.trusteer.com/files/In-session-phishing-advisory-2.pdf. [Last accessed: June 11, 

20101 

[8] E. Kirda and C. Kruegel, "Protecting Users against Phishing Attacks with AntiPhish", 29" 

Annual International Computer Software and Applications Conference, ACM Press, 

Washington, USA, 2005, Vol. 01, pp. 517-524. 

[9] N. Chou, R. Ledesma, Y. Teraguchi, D. Boneh, and J. C.Mitchell, "Client-side defense 

against web-based identity theft", 11th Annual Network and Distributed System Security 

Symposium, ACM Press, Ontario, Canada, 2004, Vol. 380. 

[10] B. Ross, C. Jackson, N. Miyake, D. Boneh, J. C. Mitchell, "Stronger Password 

Authentication Using Browser Extensions ", Proceedings of the 14th conference on 

USENIX Security Symposium ,ACM Press, Baltimore, MD, 2005, Vol. 14, pp. 2-2 

[11] R. Dhamija and J.D. Tygar, "The Battle Against Phishing: Dynamic Security Skins", 

Proceedings of the 2005 symposium of usable privacy and security, ACM Press, Pittsburg, 

Pennsylvania, 2005, Vol. 93, pp. 77-88. 

41 



[12] L. Sean M. Allister, E. Kirda, C. Kruegel , "On the Effectiveness of Techniques to Detect 

Phishing Sites ", Proceedings of the 4th international conference on Detection of 

Intrusions and Malware, and Vulnerability Assessment, ACM Press, Switzerland, 2007, 

Vol. 4579, pp. 20-39. 

[13] K. Oberoi, A. K. Sarje, "An Anti-Phishing Application for the End User", IIT Kanpur 

Hackers' Workshop 2009, IIT Kanpur, UP, INDIA, March 2009. 

[14] J.W. Ratcliff and D.Metzener, "Pattern Matching: The Gestalt Approach", Dr. Dobb's 

Journal, 1988, pp. 46-51. 

[15] Y. Pan, X. Ding, "Anomaly Based Web Phishing Page Detection", Proceedings of the 

22nd Annual Computer Security Applications Conference, ACM press, Washington, 

USA, 2006, pp. 381392 

[16] B. Ross, C. Jackson, N. Miyake, D. Boneh, J. C. Mitchell, "Stronger Password 

Authentication Using Browser Extensions", Proceedings of the 14th conference on 

USENIX Security Symposium ,2005, Vol. 14. 

[17] R. Dhamija and J.D. Tygar, "The Battle Against Phishing: Dynamic Security Skins ", 

Proceedings of the 2005 symposium on Usable privacy and security, ACM Press, 

Pitsburg, Pennsylvania, 2005, Vol.93, PP 77-88. 

[18] J. Kang and D. Lee, " Advanced White List Approach for Preventing Access to 

phishing Sites " International Conference on Convergence Information Technology, 

Korea, 2007. 

[19] T. Ronda, S. Saroiu, A. wolman, "Itrustpage: a user-assisted anti-phishing tool", ACM 

SIGOPS Operating System Reviews, ACM Press, 2008, Vol. 42. 

[20] M.F. Moller, "A Scaled Conjugate Gradient Algorithm For Fast Supervised Learning", 

Neural Network Letters, ScienceDirect, 1993, vol.6, PP 525-533. 

42 


	Title
	Abstract
	Chapter 1
	Chapter 2
	Chapter 3
	Chapter 4
	Chapter 5
	Conclusions
	References

