
FRAMEWORK FOR PARALLELIZATION OF BLOCK
MATCHING FOR MOTION ESTIMATION

AND STEREO MATCHING

A DISSERTATION
Submitted in partial fulfillment of the

requirements for the award of the degree
of

MASTER OF TECHNOLOGY
in

COMPUTER SCIENCE AND ENGINEERING

M : 1 	! - 	1 	4 	11

C• A44 NO1(

Date...r°-!{°.....

z• Rao'

DEPARTMENT OF ELECTRONICS AND COMPUTER ENGINEERING
INDIAN INSTITUTE OF TECHNOLOGY ROORKEE

ROORKEE -247 667 (INDIA)
JUNE, 2010

Candidate's Declaration

I hereby declare that the work, which is being presented in the dissertation entitled,

"Framework for Parallelization of Block Matching for Motion Estimation and Stereo

Matching", which is submitted in the partial fulfillment of the requirements for the award

of the degree of Master of Technology in Computer Science and Engineering,

submitted in the Department of Electronics and Computer Engineering, Indian Institute of

Technology Roorkee (India), is an authentic record of my own work carried out under the

guidance of Dr Kuldip Singh, Professor and Dr. Ankush Mittal (Ex-Faculty), Department

of Electronics and Computer Engineering, Indian Institute of Technology Roorkee. I have

not submitted the matter embodied in this dissertation report for the award of any other

degree.

Dated: 11 - 06.2010
Place: IIT Roorkee. (Abed Mohammad Kamaluddin)

Certificate

This is to certify that above statements made by the candidate are correct to the best of

my knowledge and belief

Dated:

Place: IIT Roorkee.

~.~1vtLo
Dr. Kuldip Singh, 	 Dr. Ankush Mittal,

Professor,
 Former Associate Professor,

Dept. of E & CE, 	 Dept. of E & CE,

IIT Roorkee. 	 IIT Roorkee.

1

Acknowledgments

It gives me immense pleasure to take this opportunity to express my deep sense of

gratitude to my guide Dr. Kuldip Singh, Professor, Department of Electronic and

Computer Engineering, Indian Institute of Technology Roorkee, for his valuable

guidance. I would also like to thank my guide Dr. Ankush Mittal, for his encouragement

and constant motivation during the course of this work.

I would like to thank the staff of the Department of Electronics & Computer Engineering

for their cooperation and the Institute Computer Center for making the resources

available for the purpose of this dissertation work.

My special sincere heartfelt gratitude to my family, whose best wishes, support and

encouragement has been a constant source of strength to me during the entire work. My

friends and seniors also -deserve special thanks for their support and valuable suggestions.

Finally, I would like to thank the Almighty to whom we are indebted for our very

existence.

(Abed Mohammed Kamaluddin)

ii

Q

Abstract

SAD based block matching algorithms form the backbone of various image and video
processing applications such as video encoding, 3D vision, video surveillance, robotics,
image registration and contour mapping. Exploiting thread-level parallelism is a
promising way to improve the performance of such algorithms for running on multi-core
general-purpose processors and GPUs.

This thesis describes efficient strategies for implementation of block matching based

algorithm for motion estimation and stereo vision on Intel multi-core architectures. A
simple yet elegant GPU implementation of motion estimation has also been performed.

A multi-pass method to unroll and rearrange the multiple nested loops of the block

matching has been exploited for parallelization using the OpenMP shared memory
programming model to improve the performance of motion estimation on general-
purpose multi-core processors. The results have shown good speedups of 7.0lx over the
sequential code performance on Intel Xeon Dual socket Quad-core processor and 1.69x

on Intel Core2Duo processor. The GPU based parallel implementation using CUDA has
also showed speedups up to 9.7x times.

A simple yet effective strategy has also been developed for parallelization of Stereo

vision. The method determines the disparity between pixels in two images using a block

matching technique and has been implemented on multi-core processors showing decent
speedups of around 5x times.

This work also illustrates that by exploiting the capabilities of OpenMP and CUDA, a
variety of exemplary tasks could be efficiently parallelized and the presently available
general purpose multiprocessors and consumer level graphics cards can be more
efficiently utilized. This should give software developers a compelling reason to multi-
thread their applications.

iii

Contents

Acknowledgments

Abstract.. iii

Contents..iv

Listof Figures ...vi

List of Tables 	 '

Abbreviations.. ix

Chapter 1: Introduction ...1

1.1 	Introduction ...1

1.2 Motivation ..2

1.3 Problem Statement .. 2

1.4 Chapter Organization .. 3

Chapter 2: Multi-core Computing ...4

2.1 Parallelization Using OpenMP Compiler ..4

2.2 GPU Computing ...6

2.2.1 Programming Model .. 8

2.2.2 GPU Implementation ..10

Chapter 3: Motion Estimation ...11

3.1 Introduction ...11

3.2 Block Matching for Motion Estimation ...13

Chapter 4: Motion Estimation on Multi-core ..17

4.1 Motion Estimation on Multi-core using OpenMP ...17

4.2 Motion Estimation on GPU using CUDA ..:..19

4.3 Performance Evaluation22

lv

Chapter 5: Stereo Imaging ...26

5.1 Introduction ... 26

5.1.1 Basic Stereo System28

5.2 Epipolar Geometry ...29

5.3 Stereo Matching ...31

5.2.2 Block Matching for Stereo Matching ..33

Chapter 6: Parallel Stereo Matching ..35

6.1 Matching Algorithm Description.................. ...35

6.2 Computational optimisation ..37

6.3 Strategy for parallel implementation on Multi-core ..39

6.4 Performance Analysis ..43

Conclusion... 47

References...49

List of Publications 52 ..

List of Figures

Figure 2.1: 	Overview of main OpenMP directives ...4

Figure 2.2: 	Fork-Join Model:..5

Figure 2.3: 	Floating point operations for the CPU and the GPU 7

Figure 2.4: Figure showing arrangement of threads

Figure 2.5: Figure showing how threads access global, shared and local memory9

Figure 3.1: 	Breakdown of execution time for H.264 encoding ..12

Figure 3.2: Search area for one current block that has to be covered using full

search in motion estimation ...14

Figure 3.3: Pseudo code for Motion Estimation ..15

Figure 4.1: The pseudo code of the classic ME algorithm ..18

Figure 4.2: Basic Parallelization of ME algorithm ..18

Figure 4.3: The pseudo code of ME algorithm with two parallel regions19

Figure 4.4: Mapping of thread blocks ...20

Figure 4.5 Pseudo-code for implementation on CUDA ...21

Figure 4.6: Execution times for different block sizes ...23

Figure 4.7: Comparison of processing times of different sized frames24

Figure 4.8: Speedup obtained on Intel Xeon dual Socket Quad-core versus

theno. of threads ...24

Figure 4.9: Resultant motion vectors25

Figure 5.1: Sample of a stereo image set ...27

Figure 5.2: Overview of Stereo System ..28

Figure 5.3: General epipolar geometry ..29

Figure 5.4: Stereo epipolar geometry ..30

vi

Chapter5: Stereo Imaging ...26

5.1 Introduction ...26

5.1.1 Basic Stereo System ..28

5.2 Epipolar Geometry ...29

5.3 Stereo Matching .. 31

5.2.2 Block Matching for Stereo Matching

Chapter 6: Parallel Stereo Matching ..35

6.1 Matching Algorithm Description.......................

6.2 Computational optimisation ..37

6.3 Strategy for parallel implementation on Multi-core ..39

6.4 Performance Analysis ..:...................43

Conclusion... 47

References...:... 49

Listof Publications .. 52

v

Figure5.5: Disparity .. 31

Figure 6.1: Reference and search window for disparity computation36

Figure 6.2: Incremental calculation scheme ...38

Figure 6.3: Implemented Stereo Matching System ...40

Figure 6.4: Allocation of threads ...41

Figure 6.5: Rolling window scheme for calculation of column SAD42

Figure6.5: Disparity Map ...44

Figure 6.6: Comparison of Execution times of Serial and Parallel implementations.......45

Figure 6.7: Speedup obtained versus No. of threads ..45

vi'

List of Tables

Table 3.1: Instruction profiling results of MPEG-4 encoder20
Table 4.1: Speedup Obtained versus No. of Cores:...........................32

viii

Abbreviations

CUDA 	 Compute Unified Device Architecture

GPU 	 Graphics Processing Unit

MB 	 Macro Block

ME 	 Motion Estimation

NCC 	 Normalized Cross Correlation

SAD 	 Sum of Absolute Difference

SATD 	 Sum of Absolute Transformed Distances

SSD 	 Sum of Squared Differences

ix

Chapter 1: Introduction

1-.1 Introduction

Sum of Absolute Difference (SAD) is used as a similarity measure in case of block

matching in several image-processing applications. SAD based block matching is one of

the most commonly used techniques for motion estimation in various video coding

standards [1][2] like H.26x and MPEG. It is also a frequently used routine in various

other algorithms for motion detection in video surveillance algorithms [3], in Stereo

Depth Analysis [4] and Correspondence Matching and forms a part of many image

registration and fusion techniques.

Motion estimation technique is used to aid temporal prediction in video encoding. SAD

calculation comes to play in the case of motion estimation and detection in the case of

video algorithms due to the fact consecutive video frames have similarities and in most

cases that can be intelligently exploited to reduce the number of bits in the encoding

process or to detect motion. Most of the consecutive video frames will be similar except

for the changes that might be induced by objects moving within frames.

Stereo Imaging is a powerful technique for determining the distance to objects and

extraction of 3D information from digital images using a pair of camera spaced apart.

This is fundamentally the same visual system used by humans and most other animals.

Here, SAD based block matching is used to find the location of the possible

correspondence points between image pairs. The extremely high computational

requirement of stereo imaging limits its application to non-real time applications or to

applications where high computational horsepower is available.

Many techniques have been proposed to speed up the computation of block matching.

However most of the techniques are concerned with performance improvement of

1

hardwired implementations and FPGA based implementations [5] [6] [7]. As such.

popularity of SAD is limited to hardware architectures.

1.2 Motivation

With the advent of massively parallel GPUs and multi-core architectures it is now
possible to achieve the desired speedups that were earlier possible only on dedicated

hardware. The newly available multi-core processors like Intel Core2Duo and Quad-core

and Intel core i series of processors (Core i3, i5 and i7) (with 2/4 processing cores and 4/8

hardware threads) have a massive amount of computing power that may be exploited for

motion estimation and stereo matching.

In order to take advantage of these multiple cores, software applications need to be multi-

threaded. A single threaded application will only execute on a single core at any given

time and leave the other cores idle. In a well threaded application, the workload is

divided into equal chunks and distributed evenly to the available cores. The explicit

parallel programming offered by OpenMP shared-memory programming model and

CUDA provide a rich set of features, which allow us to exploit thread-level parallelism
and optimize the performance of applications.

1.3 Problem Statement

This dissertation work intends to create a framework for the parallelization and

implementation of block matching algorithm on multi-core architectures and analyze

their performance on these systems- with respect to motion estimation and stereo

matching. In this work strategies have been devised that can efficiently utilise the

parallel architectures available like multi-core systems and GPUs for solving the

problem by harnessing the increased computing power at our disposal in form of the

parallel architectures present. Algorithms using other correlation criteria apart from SAD

which we have used for demonstration may utilize the same framework for different

applications.

2

1.4 Chapter Organization

The dissertation is organized as follows.

• In Chapter 2 we discuss an overview of the parallel architectures used and a

description of OpenMP and nVidia CUDA.

• In Chapter 3 we discuss the basics of motion estimation using block matching.

• In Chapter 4 we have discussed the strategy for parallel implementation of motion

estimation on multi-core and GPU as well as the results obtained.

• In Chapter 5 we discuss the basics of Stereo Vision as well as use of block

matching for disparity calculation.

• In Chapter 6 anovel strategy for multi-core implementation of stereo vision and

its performance has been discussed.

• Finally Chapter 7 is devoted to the conclusions and future work.

3

Chapter 2: Multi-core Computing

2.1 Parallelization Using OpenMP Compiler

On a multi-core architecture the programmer has to decide how" the work should be

distributed across multiple processors in contrast to the programming of sequential tasks

on single-core architecture. The POSIX thread library is often used to develop

parallelized or multi threaded code which is a tedious task for large applications.

Alternatively, this additional development step can be realized using the parallel

programming model of OpenMP for shared memory multiprocessors [8]. It provides the

advantage to simplify managing and synchronization of program threads. OpenMP works

in conjunction with the prevalent programming languages C/C++ and FORTRAN [9].

OpenMP provides a set of compiler, directives and a supporting library of subroutines that

control the distribution of tasks over the processor cores and the necessary

synchronization of these tasks. The OpeniMP API is independent of the used platform and

operating system. Appropriate compilers exist for a variety of all major operating

systems.

ork-sha~ing ° ') 	I Synchronization 	Data-sharing

sections 	(critical l l atomic

single 	 master LbaTier

ordered 	fliush

threadprivate

Figure 2.1: Overview of main OpenMP directives.

0

MASTER THREAD

PARALLEL...

FORK

THREADS

1
COMPUTATION

OIN

END PARA

MASTER THREAD

Figure 2.2: Fork-Join Model.

The directives which in the case of C/C++ programs take the form, of #pragmas which are

instructional notes to any compiler supporting OpenMP (e.g. Intel C++ Compiler, GCC

4.2). To enhance application portability these pragmas are ignored by any compiler not

supporting OpenMP. This directive-based parallelization approach has the benefit that it

allows the same source code to be used for single and multiprocessor development, since

the code will be executed serially on single core and in parallel on multi-core processors.

Another benefit of this approach is that it allows an incremental parallelization approach

starting from an existing serial version by adding parallel code regions step by step.

The OpenMP language extensions can be separated into control structures for expressing

parallelism and work-sharing on the one hand and data environment constructs for inter-

thread communication and synchronization on the other 111 OJ . Figure 2. dives an overview

of the most important OpenMP directives. The control structures for parallelization (i.e.

parallel) are embedded into a so-called fork/join execution model. Thus, they fork (i.e.

start) new threads and execute an enclosed code block concurrently, and afterwards they

join in parallel running threads to a serial master thread. This has been depicted in Figure2.

2.The work-sharing directives can be used to divide the work within a code block into an

5

existing team of threads. OpenMP features scheduling options which assign chunks to

threads either statically or dynamically in order to optimize the loop performance. By

default each thread is statically assigned one chunk of iterations of (nearly) equal size.

Besides the parallelization of a single task, it is possible to easily assign a sequence of

independent tasks to different threads with the sections work-sharing construct. The

required thread synchronization can be done implicitly by OpenMP e.g. at the end of a

work-sharing construct (join) or explicitly by the programmer through directives like

barrier or critical. In order to reduce synchronization overhead, the implicit barriers can

be explicitly removed with the no-wait clause if no synchronization is required between

consecutive work-sharing constructs within a parallel region

2.2 GPU Computing

A-GPU is a highly parallel computing device designed for the task of graphics rendering.

However, the GPU has evolved in recent years to become a more general processor,

allowing users to flexibly program certain aspects of the GPU to facilitate sophisticated

graphics effects and even scientific applications. In general, the GPU has become a

powerful device for the execution of data-parallel, arithmetic (versus memory) intensive

applications in which the same operations are carried out on many elements of data in

parallel. Example applications include the iterative solution of PDEs, video processing,

machine learning, and 3D medical imaging.

The performance of GPUs is improving at a rate faster than that of CPUs as can be

deduced from Figure 2.3. The capabilities of the GPU have increased dramatically and

the current generation of GPUs has higher floating point performance than the most

powerful (multi-core) CPUs [11]. The GPU contains hundreds of cores that work great

for parallel implementation. The programming is done in SIMD style where same code is

worked on different data locations. Until recently a graphics API was needed to code on

GPUs which made coding for non graphics oriented calculations tough. Trying to work

around this limitation nVidia released CUDA which allows GPUs to be programmed

using a variation of C. This enables a low learning curve and makes programming easier.

0

Jun
2008

Jun Mar Nov May
2005 	2006 	2007

GT200

The three abstractions of the CUBA model are a hierarchy of thread groups, shared-

memories, and barrier synchronization. Threads are arranged in the form of a grid which

is a two dimensional array of thread blocks. Each thread block is a three dimensional

structure that houses the threads. This type of hierarchy is given to the programmer so

that the arrangement of the threads is similar to the way programmer's data is arranged

(in arrays). Threads within a block can cooperate among themselves by sharing memory.

Shared memory is expected to behave like an L1 cache where it resides very close to the

processor core. Synchronization points can be specified by calling the function

_syncthreads.

iOdQ

t IDIA :GPU

—06i[al CPU

a,

tv 	5oo

a
250

NV35 NV40
NV30

	

Jan Jun 	Apr

	

2003 	2004

Figure 2.3: Floating point operations for the CPU and the GPU [11]

The memory available to the threads is of three types. Every thread has local memory.

Number of threads which are in the same thread block can share memory. And the third

type of memory is the global memory that every thread has access to. C code for both the

GPU and the CPU resides in the same file. The CPU code follows a sequential flow. GPU

code is called by a kernel call. This is where the code runs in parallel. A large number of

threads are created by the kernel call. These threads then run in parallel on the GPU.

7

2.2.1 Programming Model

In this section various aspects of the CUDA programming model have been discussed.

2.2.1.1 Thread Hierarchy

Threads in CUDA are arranged in the form of a hierarchy. A number of threads house

within what is known as a thread block. These thread block can be 1 dimensional, 2

dimensional or 3 dimensional. These thread blocks are placed in a structure known as

thread grid. Thread grid can be either 1 dimensional or 2 dimensional.

Figure 2.4: Figure showing arrangement of threads [11]

A maximum of 512 threads can be placed in a thread block. Thread block are expected to

run independently of each other. This independence requirement allows thread blocks to

be scheduled in any order across any number of cores, enabling scalable code to be

written. Proper selection of grid size and block size is important to gain good speed up.

2.2.1.2 Memory Hierarchy

Threads may access memory from different memory spaces during their existence.

Threads may declare local variable, may share memory with other threads that belong to

the same block or may be accessing global memory.

Thread
Per-thread loci

;nernory

Figure 2.5: Figure showing how threads access global, shared and local memory [11]

E

2.2.2 GPU Implementation

When a CUDA program on the host CPU invokes a kernel grid, the blocks of the grid are

enumerated and distributed to multiprocessors with available execution capacity. The

threads of a thread block execute concurrently on one multiprocessor. As thread blocks

terminate, new blocks are launched on the vacated multiprocessors. A multiprocessor

consists of eight Scalar Processor (SP) cores. Every multiprocessor has 8192 registers of
32 bit size each. The multiprocessor creates, manages, and executes concurrent threads in

hardware with zero scheduling overhead. The general idea is to achieve very fine grained

parallelism by assigning one thread to work on one data item which is pixel of an image

in our case.

The multiprocessor creates, manages, schedules, and executes threads in groups of 32

parallel threads called warps. Individual threads composing a warp start together at the

same program address but are otherwise free to branch and execute independently. When

a multiprocessor is given one or more thread blocks to execute, it splits them into warps.

The way a block is split into warps is always the same; each warp contains threads of

consecutive, increasing thread IDs with the first warp containing thread 0. A warp

executes one common instruction at a time, so full efficiency is realized when all 32

threads of a warp agree on their execution path. If threads of a warp diverge via a data

dependent conditional branch, the warp serially executes each branch path taken;

disabling threads that are not on that path, and when all paths complete, the threads

converge back to the same execution path.

A multiprocessor can work on a maximum of 8 thread blocks. However, if the thread

code required a large number of registers then lesser number of thread blocks is assigned

to a multiprocessor. In case a thread block is too bulky to be assigned to a multiprocessor

then in such cases the kernel simply fails to launch.

10

Chapter 3: Motion Estimation

3.1 Introduction

A wide range of applications like digital TV, DVD, Internet streaming video, video

conferencing, distance learning, surveillance and security make use video coding [1] [2]

[3] as the central technology. A variety of video coding standards and algorithms have to

address the requirements and operating characteristics of different applications.

High definition video coding is presently considered to be a very compute intensive

process. H.264 [1] is one such current video coding standard which is aimed at high-

quality coding of video contents at very low bit-rates. The new standard significantly

improves the compression efficiency compared with existing standards, such as H.263+

and MPEG-4[12] and uses the same hybrid block-based motion compensation and

transform coding model as existing standards. Moreover, a number of new features and

capabilities like variable block-size motion compensation (MC), quarter-pixel accuracy

MC, have been introduced in H.264 and as the standard becomes more complex, the

encoding process requires much more computation powers than most existing standards.

Therefore high-definition video encoding is still difficult to process in real-time on CPU

[3] even with highly optimized code. Hence, we need a number of mechanisms to

improve the speed of the encoder.

Tools Datapath Operation (MIPS) Percentage (%)

Motion Estimation 24,768.2 97.94

Transform & Quantization 432.527 1.710

Others 88.0320 0.348

Table 3.1: Instruction profiling results of MPEG-4 encoder

A number of studies have analyzed the computation profile of video encoders and shown

that motion estimation is the most compute intensive procedure of video encoding. An

11

analysis[13] of MPEG-4 has shown that motion estimation forms 97.94% of the total

computation which highlights the fact that improving its performance would speedup

video encoding. From F igure3-1 [141. which shows the execution time breakdown for

11.264 encoding, we can see that the motion estimation algorithm accounts for as much as

86% of the total execution time.

1.5
0.9 0.5

65

#4.7

7.5

8.6

■ SAD Computation

■ Sub-pel Interpolation

■ Subpel my prediction

■ SAD reduction

■ Residual

r VLC

■ Intra Predicton

v. Deblock Filter

etc

Figure 3.1: Breakdown of execution time for 11.264 encoding.

A motion estimation algorithm exploits the temporal redundancy between frames. A

video frame is broken down into macroblocks (each macroblock typically covers 16x16

pixels) and each macroblock's movement from a previous frame (reference frame) is

tracked and represented as a vector, called motion vector. Storing this vector and residual

information instead of the complete pixel information greatly reduces the amount of data

used to store the video. Among many motion estimation algorithms, we adopted the

exhaustive search algorithm which is more suitable for parallelization than the other

algorithms due to its simplicity.

In the past, motion estimation has been accelerated by the use of dedicated hardware of

multiple parallel processing elements (PEs) [5] [6[. Recently. various GPU-based motion

estimation algorithms and methods [I 5 III 6] have also been proposed.

12

3.2 Block Matching for Motion Estimation

Motion estimation is defined as searching for the best motion vector, being the

displacement of the coordinates of the most similar block in the previous frame compared

to the block in the current frame. Full-search block-matching is the most popular

algorithm to perform ME, and it searches through every candidate location to find the

best match. To do this, the current frame is partitioned into two-dimensional blocks

(typically 8x8 or 16x16 pixel blocks) and a search window (typically 32x32) in the

reference frame is defined. Each block of the current frame is compared with all the

blocks of a previous frame within the same window.

The final motion vector corresponds to the block with minimum distortion within the

search window. The most commonly used metric to calculate the distortion is the SAD.

However other metrics like SATD, Normalized Cross Correlation, SSD etc. may also be

used. The general algorithm for computing the sum of absolute difference is depicted in

the equation 3.1.

N-1 N-1

SAD (x, y, 1,]) = > > I Ax+u,y+u — Bx+i+u,y+j+u
u=O v=O

(3.1)

In this equation (x,y) is the location of current block in the image and (i,j) is the motion

vector specifying the block shift and NxN is block size.

The calculation of the SAD value between a reference and a candidate block is performed

as follows. For every pixel in the reference block, the value. of the corresponding pixel in

the candidate block is subtracted from it and the absolute value is taken. In other words

the absolute difference is taken between two pixel values. Lastly, all these absolute

differences are summed up, to obtain the sum of absolute difference (SAD) value of a

block. The SAD value can be seen as an error value i.e. if the SAD value equals zero, the

blocks are exactly the same.

13

Figure 3.2 describes how search area is organized for every current Macroblock (MB).

Corresponding pairs of pixels are used to calculate SAD values for one reference MB in

search area. Corresponding pairs of pixels are paired by same position in reference and

current MB. Number of pairs per MB matches number of pixels in MB. All SAD values

from every pair for one MB are accumulated and that accumulated SAD value represents

SAD value for that reference MB in search area at the end there are search area number

of SAD values for every current MB in a frame.

Search Window
- - - - - - - - - - - - - - - - - ,

Reference Block
N ,

~ 	e
L------- --------~

Motion Vector(u,v)

Figure 3.2: Search area for one current block that has to be covered using full search in
motion estimation

For block matching, the two source frames are divided into small blocks, with typical

,values of 4 x 4,8 x 8 or 16 x.16 pixels. Then, for each block in the first frame, the

algorithm searches for a similar block in the second frame. Lastly, the block from the

original frame is set in the new intermediate frame at a position in between the matched

blocks of the two target frames. This way, motion is interpolated by means of a matching

process between two blocks. The pseudo code for motion estimation, is given in Figure

3.3.

For each block in the image{
best sad = Infinity; // Initialize best sum of difference with infinity

For each candidate position{
sad = compare_blocks (candidate_block, reference—block—in—old—frame);

if (sad < best sad) {
best_sad = sad;
best block = candidate block; }
}

output_position(bestblock);
}

compare_blocks(a,b) {

sum = 0;
For each pixel p {

difference = a[p] - b[p];
sum += abs(difference);
}

return sum;
}

Figure 3.3: Pseudo code for Motion Estimation

In more detail, the different steps can be distinguished for each block - called the

reference block and the candidate blocks:

1. First of all, the reference block from the first frame must be compared with a number

of candidate blocks from the second frame. Typically, this is done within a search

window, limiting the number of comparisons. Typical window size is of 32 x 32 pixels.

For example, within a window of 32 times 32 pixels a total of 256 different 16 times 16

blocks must be compared using a sum of absolute difference (SAD) technique.

15

2. The result of the comparisons denotes the similarity to the reference block. All

obtained results need to be sorted and the best candidate needs to be found - the winning

block. In the case of a SAD comparison, the candidate with the lowest SAD value is the

winning block.

16

Chapter 4: Motion Estimation on Multi-core

This section describes the implementation of block matching based motion estimation on

a multi-core CPU as well as on a Graphical Processing Unit. The strategy used for

parallelization has also been mentioned in this chapter.

4.1 Motion Estimation on Multi-core using OpenMP

The full search motion estimation algorithm is complex and time consuming because

multiple nested loops are required. Beside the sum of absolute difference (SAD)

computation and SAD comparison, in the classic ME algorithm mentioned in Figure 4.1,
there are four nested loops.

Due to the high regularity and weak data dependencies the parallelization of this

algorithm with OpenMP is straight forward. However we have to decide which for-loop

to be parallelized. Here, it is best to select the outermost loop, which controls the vertical

iteration over the search blocks, since there are no data dependencies between the SAD

calculations of the single blocks. Due to this, the workload being distributed over

.`simultaneously running threads can be maximized and the synchronization overhead can

be minimized.

The approach of distributing SAD calculations per block is shown in Figure 4.2. This

approach has been implemented by for use in embedded devices. However the

disadvantage of this approach is that it allows parallelization only on a single level.

However as the classic algorithm shows that there are four different loops and the internal

loops can also be run simultaneously due to the absence of data dependencies.

However, nested looping is difficult to implement in OpenMP and may also lead to load

imbalance and significant overheads. In our parallel ME algorithm implementation

shown in Figure 4.3, the four classic nested loops are unrolled and rearranged to a one-

17

tiered loop and a two-tiered loop. This two-pass approach is better suited to multi-core

architecture and is therefore used in our implementation. This strategy would also more

effectively utilize the L1 cache (32KB per processor core in our case), and would also

reduce the complexity of parallelization caused due to the nested looping. Assuming n

cores on the multi-core CPU, all the operations would be scheduled, folded and executed

concurrently on the n cores.

Loop(rows of macro blocks (MBs)){

Loop(columns of MBs){

Loop(rows of search range (SR)) {

Loop(columns of SR){

SAD computation;

SAD comparison;

Figure 4.1: The pseudo code of the classic ME algorithm

#Parallel region

Loop(rows of macro blocks (MBs)){

Loop(columns of MBs){

Loop(rows of search range (SR)){

Loop(columns of SR) {

SAD computation;

SAD comparison;

Figure 4.2: Basic Parallelization of ME algorithm

#Parallel region1:

Loop(candidates per core/thread) {

SAD computation;

}

#Parallel region2:

Loop(rows of a MB) {

Loop(columns of a MB){

SAD comparison;

}

}

Figure 4.3: The pseudo code of ME algorithm with two parallel regions

Therefore we have implemented a variant of this ME algorithm which is executed in two

passes. In the first pass, we perform SAD computation and the SAD values

corresponding to an MB is generated. In order to perform the full search ME, the number

of candidates are grouped and mapped to one core or one thread (in the case of multiple

threads being assigned per core) in the corresponding MB. This is the only loop in the

first pass. In the second pass, each core compares the SAD values computed from the

first pass in each MB, to find the smallest global minimum SAD value and the

corresponding motion vector. This has been illustrated in Figure 4.3.

4.2 Motion Estimation on GPU using CUDA

We have used a single kernel approach. First, the complete frame is dividedinto blocks

with a size equal to the chosen reference block size, for example 16 times 16 pixels.

These blocks are mapped one on one onto threadblocks. So, the number of threadblocks

is equal to the number of reference blocks in the image. This division is depicted in
Figure 4.4.

19

thread 	thread 	thread 	 thread
block 	block 	block 	 block

thread
block

thread
block

searchwindow ---•--------------- :

thread thread

thread
thread
block

thread I 	I
thread

------------------------------•---.• thread
block

Figure 4.4: Mapping of thread blocks

Since each thread-block now represents all the processing involved with one reference

block, the details for each reference block can be described according to these steps:

1. First, the reference block needs to be compared with each candidate block in the

second frame. In order to do so, a number of threads is instantiated within the

threadblock, equal to the number of candidate blocks available. The task of each thread is

to calculate one SAD value, i.e., to compare one candidate block with the reference

block.

2. After the first step is complete, the winning candidate i.e. candidate with minimum

SAD needs to be found. The result of the previous step consists of a number of SAD

values, equal to the number of threads in the threadblock.

In pseudo-code, the complete algorithm as described can be summarized as seen in

Figure 4.5.

for all threadblocks

for all threads

SAD1 = SAD(referenceBlock , candidateBlock)

end

winningBlock = minimum(SAD1)

for all threads

writeData (winningBlock)

end

end

Figure 4.5 Pseudo-code for implementation on CUDA

As discussed in Section 2.2.1, within a threadblock, a fast shared memory is available.
For the SAD comparison the reference block is used for every thread, while the candidate

blocks are partially overlapping each other. A typical reference block can fit easily in the

shared memory, leaving space to schedule other threadblocks with their reference blocks

onto the same SM. In this way, the reference block is stored once in fast local memory

and can be shared among each thread. In order to do so, each thread loads zero or more

pixels from the reference block into the shared memory. Because the number of threads

can differ from the number of pixels in a reference block due to parameters for the

algorithm, control has to be added in the case of unfixed parameters at design time.

In the second step of the block matching algorithm, the shared memory is used again, this

time to communicate all the resulting SAD values and to do the comparisons. Apart from

the shared memory, grouping threads into threadblocks makes synchronization between

threads possible. As seen from the algorithm, between each of the three steps a

synchronization barrier is needed, since the algorithm must completely finish each step

before being able to proceed to the next step.

21

4.3 Performance Evaluation

The tests have been performed on a Dell Precision T7400 workstation with an Intel Dual

Socket Quad-core with 256 KB of L1 cache (32KB x 8 cores) and 12 MB of L2 cache

and 8 GB of RAM. The other PC used has a Core 2 Duo P8400 2.26GHz Processor with
128KB L1 cache and 3MB L2 cache and 3GB of RAM.

All the tests have been performed using Linux Fedora Core 11 operating system. The

program to perform motion estimation is written in C programming language. The C

compiler used is GCC version 4.4.0 and the OpenMP package used is OpenMP 2.0.

The nVidia GPU used for analysis is Quadro FX 4600. This GPU card is attached to the

Dell Workstation. The CUDA compute capability of the GPU 1.0. This device has 768

MB of memory and has 12 multiprocessors of 1.2 GHz each.

The sequential implementation has been labeled as serial code. There are two parallel

implementations. The first is the parallel implementation using OpenMP for execution on

general purpose multiprocessor. The second parallel implementation using CUDA is

labeled CUDA code and has been executed on the GPU. A video sequence `taxi' with

frame size 640 x 480 and 256 x 191 has been used as input with a search range of 32 and
varying block sizes.

Figure 4.6 depicts the execution time of the sequential and parallel program for

completely processing one frame of size 640 x 480 in milliseconds for all the 3

implementations and for different block sizes. Table 4.1 shows the speedups obtained for

implementations using different blocks and frame sizes. Therefore it can be seen that

speedups of about 7 times have been obtained on Intel architecture and around 9 times on
nVidia GPU.

Figure 4.7 shows the execution time bars for frames of different sizes using a search

window size of 32 and block size as 4. It can be seen that as the frame size increases and

we move on to higher resolution videos the computation costs would become extremely

22

high. The comparative performance on different number of cores (2 cores and 8 cores)

shows that speedup scales linearly with the increase in the number of cores. We have also

varied the number of threads to analyze the performance. The optimum performance in

the case of the Xeon eight core processor was achieved when using 16 threads. However

on increasing the degree of multithreading to 32 the performance was reduced slightly

due to threading overheads. This has been depicted in Figure 4.8. In Figure 4.9 we have

plotted the motion vectors for an image of size 480 x 640 using a search window size 32

and block size 16 using OpenCV.

25000

20000

In

E v 15000
E
 -+—Serial Code 0

10000 	 rCUDA

LL+

	

	 Parallel Code (8 core)

5000

0

4x4 	8x8 	16 x16

Block size

Figure 4.6: Execution times for different block sizes

Processor No. of

Processing cores

Average Speedup

Obtained

Parallel Code (Core2Duo) 2 1.69

Parallel Code (Xeon 8 core) 8 7.01

CUDA (Quadro FX 4600) 	• 12 9.7

Table 4.1. Speedup Obtained versus No. of Cores

23

25 000

20799

20000

E
ti+

'0 15000

	

10000 	 •640x480

a 	 0256x191 x
W

5000
325 2522

47 	31
0

Serial Code 	CUDA 	Parallel
Code (8
core)

Figure 4.7: Comparison of processing times of different sized frames

8

7 • 6.82

6

Q 5

4
N 	 3.4

3

2

0

	

4 	 8 	 '16 	 32

No of Threads

Figure 4.8: Speedup obtained on Intel Xeon dual Socket Quad-core versus the no. of
threads

Chapter 5: Stereo Imaging

5.1 Introduction

Given a series of two-dimensional images it is possible to extract a significant amount of

auxiliary information about the scene being captured. One of the most useful of these

pieces of information is knowledge about the relative depth of objects in the scene. It is

known that, given two images of a single scene it is possible to extract the depth of

various objects in the scene from the disparity between the two images. The human brain

handles this task constantly, adapting a stream of paired two dimensional images to

provide us with what is commonly known as depth perception: that is a feel for the

relative depth of objects in the scene. In a much simpler case we can consider how to

extract this scene disparity from two images viewing the same scene from close but not

identical positions. It should be noted that without a significant amount of extra

information and calculations, it is generally not possible to ascertain an exact depth

measurement but rather we can isolate "planes" of depth, i.e. localize which parts of the

scene are at the same, or relatively close, depths.

Being able to retrieve this depth information is useful for many applications. Stereo

vision is highly important in automated systems such as robotics and auto-guided

vehicles to extract information about the relative position of 3D objects in their vicinity,

for object recognition, where depth information allows for the system to separate

occluding image components. Scientific applications for digital stereo vision include the

extraction of information from aerial surveys, calculation of contour maps or surface

recovering for automatic 3D-model acquisition.

In order to obtain the desired depth information we need to first determine the disparity

between the two images. Traditionally these two images are referred to as the left and

right images. Since the left and right images are viewing the plane from different place,

there will be a noticeable disparity between the two images. If we are able to calculate the

relative disparity between points in a scene across the two different images we should be

able to create a depth map from that information. The vital point here is that points at

similar depth levels in the world will have similar disparities across the left and right

stereo images. This is similar to moving our head laterally: objects close to move a large

distance in the field of view while those further away move a small distance. By

determining a displacement for each point in an image, we can determine roughly which

depth layer it belongs to. Thus given a set of point correspondences between the left and

right images, we can determine the depth map of the scene.

5

Li
(a) left camera image I. 	 (b) right camera image IEz

(c) right/left image overlay 	 (d) Ground truth disparity

Figure 5.1: Sample of a stereo image set, captured by two parallel cameras. This set
called Tsubuka , is commonly used in literature as a reference set to compare disparity
mapping algorithms[17]. (a) and (b) show the two camera images (c) shows an overlay of
them. It is visible that close objects, like the lamp, are shifted horizontally by a bigger
distance. (d) shows a ground truth disparity map, which indicates the true disparity of
objects of the left camera image.

To compare the images, the two views must be transformed as if there were being

observed from a common projective camera and the relative shifts between the two

images can then be seen to be due to parallax, as long as the front face of the images to be

compared is visible from this location, and that occlusion or transparency does not

interfere with the calculation. This transformation is called rectification.

5.1.1 Basic Stereo System

Stereo algorithms intend to recover depth information by combining information from

two stereo images. Most stereo algorithms are composed of the following steps:

1. Pre-processing: Removal of noise and image rectification i.e. the image is

projected back to a common plane to allow comparison of the image pairs.

2. Stereo matching: Displacement of relative features is measured to calculate depth

map.

3. Disparity refinement: Clustering of the depth map.

The overview of a basic stereo system is depicted in Figure 5.2.

Obtain left and right
images

Rectify Images

Stereo Matching:
Calculate Depth Map

Cluster Depth Map

Figure 5.2: Overview of Stereo System

28

5.2 Epipolar Geometry

Epipolar geometry is a specific example of multiview geometry, which is the only

available geometry constraint between a stereo pair of images of a single scene. It has

been extensively studied in computer vision [18][19]. Let us consider a stereo imaging

setup as shown in Figure 5.3. Let and be the optical centers of the first and second

cameras and let the plane and be the first and second image planes. According to epipolar

geometry, for a given image point in the second image, its corresponding point in the first

image is constrained to lie on line . This line is called the epipolar line.

nA

V2

Figure 5.3: General epipolar geometry

With two cameras arranged arbitrarily, the general epipolar geometry is shown in Figure

5.4. The relative position of both cameras is known and Cl and C2 point out the optical

centres of each camera. The straight line connecting both optical centres is called

baseline. Each point M observed by the two cameras at the same time along with the two

corresponding light rays through the optical centres Cl and C2 form an epipolar plane.

OM

The epipole e is the intersection of the baseline with the image plane. The epipolar line is
therefore defined as a straight line g through e and m that is the intersection of the line
through M and the optical centre with the respective image plane. The point M in Figure
5.3 is projected as ml in the left image plane. The corresponding point in the right image
therefore lies - on the previous described epipolar line g. This reduces the search space
from two dimensional, which would be the whole image, to one dimensional, a straight
line only.

Figure 5.4: Stereo epipolar geometry

A simplification of the general epipolar geometry is shown in Figure 5.4. Both cameras

are arranged in parallel, their focal length is identical and the two retinal planes are the

same. Assuming these conditions all epipolar lines are horizontal within the retinal planes

and the projected images ml and m2 of a point Mwill have the same vertical coordinate.
Therefore the corresponding point of ml lies on the same horizontal line in the right
image.

30

M

.ui 	 U

Figure 5.5: Disparity

According to the stereo epipolar geometry the disparity is defined as D = c2—cl as seen
in Figure 5.5. The depth d therefore calculated by triangulation is

d =bD 	 - 	(5.1)

where b is the distance of the two optical centres and f is the focal length. Therefore it can
be seen the the depth is inversely related to disparity. Therefore if we know the disparity

the corresponding depth information can be retrieved. A disparity of zero indicates that
the depth of the appropriate point equals infinity. In order to assure that images follow
stereo epipolar geometry the rectification of both images is necessary.

5.3 Stereo Matching

Stereo matching tries to solve the problem of finding which pixels or objects in one
image correspond to a pixels or objects in the other. This is also known as the
Correspondence Problem.

The existing techniques for general two-view stereo correspondence roughly fall into two
categories: local method and global method [20]. Local methods use only small

31

areas/neighbourhoods surrounding the pixels, while global methods optimize some global•

(energy) function. Local methods, such as block matching [4], gradient-based

optimization and feature matching [21] are very efficient, but they are sensitive to locally

ambiguous regions in images (e.g., occlusion regions or regions with uniform texture).

Global methods, such as dynamic programming [22], intrinsic curves and graph cuts can

be less sensitive to these problems since global constraints provide additional support for

regions difficult to match locally. However, these methods are more expensive in their
computational cost.

The algorithms can roughly also be divided into feature based and area based, also

known as region based or intensity based. Area based algorithms solve the

correspondence problem for every single pixel in the image. Therefore they take colour

values or intensities into account as well as a certain pixel neighbourhood. A block

consisting of the middle pixel and its surrounding neighbours will then be matched to the

best corresponding block in the second image. These algorithms result in dense depth

maps as the depth is known for each pixel. But selecting the right block size is difficult

because a small neighbourhood will lead to less correct maps but short run times whereas

a large neighbourhood leads to more exact maps at the expense of long run times.

Feature based correspondence algorithms on the other hand extract features first and then

try to detect these features in the second image. These features should be unique within

the images, like edges, corners, geometric figures, whole objects or part of objects. The

resulting maps will be less detailed as the depth is not calculated for every pixel. But

since it is much more unlikely to match a feature incorrectly because of its detailed

description, feature based algorithms are less error sensitive and result in very exact depth

maps.

Besides area based and feature based correspondence algorithms, there are also phase

based algorithms that transform the images using FFT (fast fourier transformation) first.

The depth is therefore proportional to the phase displacement. Wavelet based algorithms

are a subcategory of phase based algorithms and use a wavelet transformation first.

32

There are a number of problems all correspondence analysis algorithms have to deal with.

An object seen by one of the cameras could be occluded when seen by the other camera

that has a slightly different point of view. This object will cause wrong correspondences

when trying to match images. The cameras itself my cause distorted images due to lens

distortion which will lead to wrong correspondences especially in the outer regions of the

image.

Some problems are caused by the objects themselves. Having lots of small objects that

look alike or having a special pattern that iterates quite often makes it hard to find the

matching object as there is more than one possible match. This is known as the aperture

problem. Another big problem is homogeneity. Big homogeneous regions are difficult to

match when seen through a small window only. The same textures on different positions

in the image will cause similar problems.

5.2.2 Block Matching for Stereo Matching

The block matching method is one of the most popular local methods because of its

simplicity in implementation. The basic idea of block matching for stereo correspondence

is as follows: to estimate the disparity of a point in the left image, firstly, we define a

reference block surrounding this point; and then, find the closest matched block, within a

search range in the right image, using a pre-specified matching criterion; thus, the relative

displacement between the reference block and the closest matched block constitutes the

disparity of the point being evaluated. The commonly used matching criteria are the sum

of absolute differences (SAD), the sum of squared (SSD) and the normalized SSD.

With the given matching criteria, the correspondence problem results in essentially a

search problem, and the standard search method for block matching is an exhaustive

search, where the matching criterion is calculated for all pixels at all possible search

positions. This strategy can guarantee that the best-matched block is found with respect to

the chosen criterion. However, the computation loads of such methods are very

demanding, even by using the epiploar lines constraint, and therefore many different fast

algorithms have been developed.

33

In order to obtain the disparity of a point, the candidate block in the search range that best

matches the reference block is of the main interest. In this dissertation work we propose

an improved parallel block matching method to efficiently solve the stereo

correspondence problem using rectified stereo images that uses SAD as the matching

measure and calculates the disparity map.

34

Chapter 6: Parallel Stereo. Matching

6.1 Matching Algorithm Description

The fundamental problem for the disparity determination is the identification of the two

corresponding or matching pixels that describe the same spot in the two images. Our

approach belongs to the class of area-based matching algorithms, which are suitable for

parallel implementation [22]. We choose stereo images that have been rectified on the

basis of the epipolar constraint which leads to a one dimensional search space parallel to

the horizontal image lines. This constraint is the key to the efficiency for the parallel

implementation. Our implementation performs a correspondence search for each pixel in

the right image block matching, thereby producing a disparity measurement.

First, given any two or more views of the same scene, at some image scale, a degree of

similarity exists between the views, and in general, the coarser the scale the more similar

the views become. These effects form the basis for matching area based stereo algorithms

by the explanation that now follows. If a view is spatially quantised into smaller

subregions, eventually any given subregion will begin to look more similar to its

corresponding subregion in the other view. In this way, the similarity values are

computed by comparing a fixed window in the reference image to a shifting window in

the second image. The shifting window is moved over the first one by integer increments

along the corresponding epipolar line and a curve of similarity • values is generated for

integer disparity values.

In Figure 6.1, Jr is the right Image and Il is the left stereo image. We illustrate the Right

to Left correspondence search for a pixel pi having pixel coordinates (xi, yl) in Ir

comparing it to candidate pixels in I. The candidate pixels are all the pixels in Ii of

coordinates (xi + t; yi), for all t, where 0 <t < diimit. The value diimit represents a -chosen

limit to the search space size also represents the highest disparity that can be measured.

The computational complexity is also directly related to diimit. The comparison of p1 and

a candidate pixel pcandidate considers a window of size (2H+1)*(2W+1) around the pixels,

35

the so called blocks. The window around pl is called reference window, the overlapping

windows around the candidate blocks constitute the search window. The block with the

highest similarity to the reference window is chosen as the match guess and its offset d is

the measured disparity.

Y

2W+1 	,reference window

Y1
	

2H+1

XI

Right camera image Jr

X1 	X,+t X,+d X,
Left camera image 11

Figure 6.1: Reference and search window for disparity computation of pixel pI(x1, yi).
The pixel po' represents the corresponding pixel for p', and is located at (xi + d, yl).

The sum of absolute differences (SAD) computation technique was chosen in our

implementation due to its low implementation complexity. However we can also use

different measures such as SSD, normalized correlation, SATD etc. using the same

framework that has been explained in this section. The area-based algorithm using the

SAD for calculating disparity can be resumed in equation 3:

H W
min

dEO,dtim 	
IIR(x+i,y+j)— IL(x +i+d,y+j)j

id
li=—H j=—W

Where : II? and IL are the right and left image respectively,

x is an index on the columns,

(6.1)

36

y is an index on the rows,

d is the disparity index,

H and W define the size of the correlation window and

dil; is the maximum value for disparity

If equation 1 is applied to each pixel in the images, it can be rewritten as:
H W

IIR(x + i,Y +j) IL(x ± i,Y +I)I
li=-H j=-W
H W II IIR (x+i,y+j)— IL(x+i+1,y +j)11

i=-H j=-W (6.2)

H W

I Y. 1IR(x + i,y +j) — IL(x +i+diimit,Y +1)J1
i=-H j=-W

If for each disparity index we allocate a thread to compute the window, then equation 2

suggests an implementation. However, the principal inconvenient for this implementation

is that it would incur a large amount of overhead as well as memory to store the windows

until the minimisation operation takes place. To solve this problem, it was noticed that

the calculation of windows is a recursive computation, where adjacent pixels in

overlapping windows are present, so it is not necessary to compute the complete

similarity value for a pixel if the adjacent pixel have one already computed.

6.2 Computational optimisation

The most expensive task performed by the stereo algorithm is the computation of SAD

scores, which are needed to carry out the direct matching phase. In this section we outline

the optimisation techniques adopted to avoid redundant calculations. We show first the

basic calculation scheme, already described in [23], and then propose an additional level

of incremental calculation aimed at achieving further speed-up.

37

raiiiiii

•■ ■uR
~~~~ ■Giiiii ussasnsusa ■~~ ■nom 

iiiIN OU~iRiR 
ilL 

4. v-i-n+I 

+c 	x+cI+iz 

Suppose that SAD(x, y, d) is the SAD score between a window of size (2n+1)*(2n+1) 

centered at coordinates (x,y) in the left image and the corresponding window centered at 

(x+d,y) in the right image: 
n 	n 

SAD(x,y,d)= 	IIR(x+j,y+i)—IL(x+d+j,y+i)l 	 (6.3) 
i=-n j=-n 

Observing Figure 6.2 [23], it is easy to notice that SAD(x, y +1) can be attained from 

SAD(x,y,d) : 

SAD (x, y + 1, d) = SAD (x, y, d) + U (x, y + 1, d) 
	

(6.4) 

with U(x,y+1,d) representing the difference between the SADs associated with lowermost 

and uppermost rows of the matching window (shown in light-gray in Figure 6.2): 
n 

U(x,y+1,d)= 	IIR(x+j,y+n+1)—IL(x+d+j,y+n+1)I 
j=-n 

n 

— I IIR(x+j,y—n)—IL(x+d+j,y—n)l 	 (6.5) 
j=-n 

Figure 6.2: Incremental calculation scheme. 



Thus it can be observed from the Equation 6.5 that we need not calculate the SAD for 

each and every pixel but it can be calculated in an incremental manner. We utilize the 

above equation and modify it further for implementation on multi-core processor which 

will be discussed in the next section. 

At this point, the main problem with the SAD matching technique is the size of the 

window, which needs to be large enough to include enough variations of intensity to 

make the matching, but small enough to prevent projective distortion. If the window is 
too small and it does not cover sufficient variation of intensity, it gives a poor estimation 

because its SNR is low. On the other hand, if the window is too large and covers a region 

in which the depth of the points, of the scene varies then the position of the SAD 

minimum cannot present correct coincidence due to different projective distortions 

between the left and right images. In the literature, a recommend window size of 7 x 7 for 

real time applications [19]. 

6.3 Strategy for parallel implementation on Multi-core 

Even for the simple block-matching algorithm described above there are many different 

approaches to implementation on the Multi-cores. The strategy employed in this example 

is highly optimized, but certainly not guaranteed to be the only fast approach. 

The primary goal of this implementation is to be fast, with a secondary goal of being 

fairly flexible to allow changing of parameters. Some critical guidelines for optimizing 

this application that we have followed are avoiding obscenely redundant computation — 

Many computations preformed for one pixel can also be used by neighbours. We have 

also tried to minimize global memory reads/writes and create enough threads to keep the 

processors busy. 

Based on the discussion in section 6.2, we have implemented a disparity computing 

system as shown in Figure 6.3. Here the first module performs similarity measurement 

39 



between pixels from the reference image and the pixels from the shifted image and then 

sums it to obtain column-wise SADs. The second module obtains the sum of the results 

from the column submodule to form the block-wise SAD. Finally, the minimum of the 

block-wise SADs is chosen to obtain the disparity. Both the above modules are computed 

in parallel. 

Left 	n 	rfl Right 

Computing Sum of 

Absolute 	I OpenMP parallel region 1 

Differences 

Computing Block 

SADs by summing I OpenMP parallel region 2 

up of Column SADs 

Calculating 

Minimum SAD and 

Figure 6.3: Implemented Stereo Matching System 

The next step is to determine how to allocate threads to the problem. Our approach uses a 

thread to process a column of pixels. This is a departure from the common approach of 

using a thread per pixel but this allows us to eliminate some redundant computation and 

Ei 



reduces threading overheads. The thread per pixel approach is more suited to GPU 

implementations. 

In Figure 6.4 we illustrate the overall scheme using a 7x7 block size and 16 threads. Each 

thread sums the absolute differences of a column of pixels the height of the kernel. It 

accumulates absolute differences between the pixels in the reference image (left mage) 

and the comparison image (right image). 

-1 -4 -4 -4 -4 -4 -4 -4 -I -4 -4 -4 -4 -4 -4 -4 -4 -1 -4 
_ = z z = _ = 2 = _ _ _ _ _ _ _ = S = _ 
m rn m m m m m m m m m m m m m rn m m rn D D D D D D D D D D D D D D D D D D D D 
D O D D D O G O C C C C 0 G O O O O C O 
O W N W A VA O ►+ N W 

O ♦+ N W A U' 

THREAD 1 	r THREAD Z ~ THREAD 0   
Blockl = 	Blockl = 	Blockl = 

1 col(0..7) 	1 coI(1..8) 	1 col(2..9) 

Figure 6.4: Allocation of threads 

The sum of absolute differences for each column is stored in shared memory such that it 

can be accessed by multiple threads at a time. After the column sum-of-absolute 

differences are completed for the block of threads then each thread sums the column SAD 

values from the neighbouring columns within the block to determine the total SAD for 

is 



the entire block. This value is tested to determine if the current disparity value is the best 

correspondence match for the present pixel. Three pixels have been highlighted for 

illustration in red, green and blue with the associated kernel pixels outlined in a line of 

the same colour. 

After the first row of pixels has been processed by a thread block subsequent rows can be 

processed with increased efficiency. A rolling window scheme is used. Rather than repeat 

the summation of all the absolute differences in the column, the absolute difference of the 

pixels in the first row is subtracted from the previous column sum, and then the absolute 

difference of pixels in a new row is added to the column sum. This value is equivalent to 

re-summing the rows involved, but requires only two absolute difference computations 

and two additions. This rolling window computation continues until SAD is determined 

for all the rows allocated to a thread. 

Figure 6.5: Rolling window scheme for calculation of column SAD 

This can be illustrated as follows from Figure 6.5. Let the SAD for the red column block 

be SADred  and for the green column block be SADgr,,n. So once we have SAD«;d  we can 
calculate SADgr«„ as follows: 

.S'A DKree„ = SA Dred - •SA Dp  f  + .SAD 8  

42 



where SADp1 and SAD1,8 are the SADs for the pixels pl and p8. We already have the 

previous column (red) SADs stored in memory. Every following sum can therefore be 

calculated from the previous one with one addition and one subtraction and then stored. 

This way a lot of computation is saved. Also since the array of intermediate column 

SADs are stored in shared memory this operation can also be performed 

At each disparity step, the SAD value determined for the kernel is compared with the 

current minimum SAD value computed from prior disparity steps. The current minimum 

SAD result and the corresponding d value are stored in memory in arrays the size of the 

image. If the newly computed SAD value is less than the previous minimum SAD value, 

this new value becomes the minimum and is stored along with the corresponding d value 

in memory. At the end of this process a disparity value indicative of the best 

correspondence has been computed and stored in global memory. 

6.4 Performance Analysis 

We conducted experiments to compare the performance of the sequential implementation 

and the OpenMP based parallel implementation. The tests have been performed on a Dell 

Precision T7400 workstation with an Intel Dual Socket Quad-core with 256 KB of L1 

cache (32KB x 8 cores) and 12 MB of L2 cache and 8 GB of RAM. The maximum 

number of processors used for the experiments was eight and the memory was shared. 

All the tests have been performed using Linux Fedora Core 11 operating system. The 

program to perform motion estimation is written in C programming language. The C 

compiler used is GCC version 4.4.0 and the OpenMP package used is OpenMP 2.0. 

The stereo image pairs for the experiments were taken from the middlebury university 

vision database [17]. The image pair used was tsukuba and teddy (Figure 6.5(a)) of size 

384 x 288 pixels. The maximum number of disparity levels was taken as 16 for the 

tsukuba image and as 32 for the teddy image. Figure 6.6 shows the performance for both 

43 



. 	0 1 

(b)  

I 	1. 	
/ . 	

:. 

J. 	

4L 

(a) 

the serial and parallel implementations. The benefit of using the parallel version can be 

seen from the figure as it reduces the time spent by almost 5 times. 

` 

it 	C   

, 
_____l - L 	, 

r  •~  ~ 

LlU .i 

_ 	
F 	 , 

1 

(c)  

Figure 6.5: Disparity Map (a) Test Image (b) Ground Truth (c) Obtained disparity Map 



Figure 6.6: Comparison of Execution times of Serial and Parallel implementations 

6 
4.98 	5.12 	5.08 

5 

4 

I

3~°w 3 a, Q 
"' 2 	 Speedup 

1 

0 

4 	8 	16 	32 

No. of Threads 

Figure 6.7: Speedup obtained versus No. of threads 

The performance scales approximately the same with the increase number of processors 

used. The performance almost doubles when we use all 8 cores as can be seen from 

Figure 6.7, as when the number of threads is 4, the number of processors used is also 4 

while for 8, 16 and 32 threads all the 8 processing cores are used. One more inference 



from Figure 6.6 is that when we increase the number of disparity levels from 16 to 32 for 

the teddy image, the time taken does not exactly double but is around 1.7 times: This can 

be attributed to considerable savings due to the use of the rolling window scheme. 

The vision research centre of Middlebury University has an online evaluation website 

[24] that can be used to evaluate results and find the percentage of bad pixels. We used 

the evaluation mechanism for evaluating our results (Figure 6.5) i.e. the comparison of 

the obtained depth map with the ground truth thereby determining the accuracy. The 

percentage of bad pixels in the obtained map is approximately 14% for tsukuba image 

and 31% for the teddy image. Though this percentage is normal for most area based 

implementations, however other phase based and feature based methods have known to 

give percentage of bad pixels as less as 5%. However such implementations are 

extremely compute intensive. 



Conclusion 

With the emergence of parallel GPUs and multi-core architectures, a massive amount of 

computing power is available that was exploited in this work to satisfy the increasing 
computation needs of image and video processing algorithms. This dissertation presents 

efficient multithreaded implementations of block matching algorithm which forms a 

backbone of various such algorithms. 

Efficient strategies were described for implementation of block matching based algorithm 

for motion estimation on Intel multi-core architectures using OpenMP compiler giving 7 

times speedup. A simple yet elegant GPU implementation of motion estimation has also 

been performed which gives approximately 9 times speedup. 

A parallel strategy for implementation of an algorithm using block matching for stereo 

matching has also been shown. The implementation written in C and OpenMP, and 

performed on a dual socket quad-core Intel Xeon Windows machine shows that using 

shared memory the algorithms run time is reduced by approximately 5 times. The use of 

shared memory allows maximum benefit of the multi-core processor since there is no 
overhead incurred for splitting the data between the different cores. 

Our multithreaded implementation based on OpenMP and CUDA programming model 

also demonstrates the inherent parallelism of image processing algorithms and the 

parallel computation capabilities of symmetric multiprocessor architectures can be 

efficiently exploited in the future for real time applications currently possible only on 

dedicated hardware. 

Our focus in the thesis was only on the motion estimation part of video encoding. In the 

future implementation of complete video encoding algorithms on GPU and multi-cores 

can be explored, expecting to get higher performance and approaching the real-time 

processing speeds. 

47 



We have used the SAD criteria as the similarity measure for all implementations. In the 

future, the same framework may be implemented using other correlation criteria instead 

of the sum of absolute differences like SATD,• SSD, Normalized Correlation etc., to 

minimise noise and/or explore different performance for a specific application. Of future 

interest also would be to investigate the implications of parallel implementation of the 

algorithms using MPI and no shared memory. 



References 

[1] T. Wiegand, "Joint final committee draft for joint video specification H.264," Joint 

Video Team (JVT) of ISO/IEC MPEG and ITU-T VCEG, Tech. Rep. JVT-D157, 

2002.   

[2] L. Yu, F..Yi, J. Dong, and C. Zhang, "Overview of AVS-Video: tools, performance 

and complexity," in Proc. Visual Communications and Image Processing (VCIP), 

2005. 

[3] Y. Wang, J. Ostermann, and Y. Zhang, Video Processing and Communications, 

Prentice Hall, 2002. 

[4] B.D. Lucas and T. Kanade, "An iterative image registration technique with an 

application to stereo vision," Proc. Int'l Joint Conf. Artificial Intelligence, pp. 674-

679, 1981. 

[5] Y. Jehng, L. Chen, and T. Chiueh, "An efficient and simple VLSI tree architecture 

• for motion estimation algorithms," IEEE Trans. Signal Processing, vol. 41, no. 2, 

February 1993, pp. 889-900. 

[6] H. Yeo and Y. H. Hu, "A novel modular systolic array architecture for full-search 

block matching motion estimation," IEEE Trans. Circuits Syst. Video Technol., vol. 

5, no. 5,, Oct. 1995 pp. 407-416. 

[7] A. Estrada, J. M. Xicotencatl, "Multiple Stereo Matching Using an Extended 

Architecture," in Proc. Field Programmable logic and Application, Springer-Verlag, 

vol. 2147, Aug. 2001, pp. 203-212. 

[8] R. Chandra, Parallel Programming in OpenMP, Morgan Kaufmann, 2001 

[9] X. Tian, A. Bik, M. Girkar, P. Grey, H. Saito, E. Su, "Intel OpenMP 

C++/FORTRAN Compiler for Hyper-Threading Technology: Implementation and 

Performance," Intel Technology Journal, Vol. 6, Q1,2002 

[10] H. Blume, J. Livonius, L. Rotenberg, T. Noll, H. Bothe, J. Brakensiek, "OpenMP-

based parallelization on an MPCore multiprocessor platform - A performance and 

power analysis", Journal of Systems Architecture, Volume 54, Issue 11, November 

2008, pp 1019-1029. 



[11] NVIDIA Corporation: NVIDIA CUDA compute unified device architecture 

programming guide, Version 2.0, NVIDIA Corporation, July 2008. 

[12] International Standard Organization, "Information Technology-Coding of Audio-

Visual Objects,Part2 --Visual," ISO/IEC 14496-2. 

[13] H.-C. Chang, L.-G. Chen, M.-Y Hsu, and Y-C. Chang, "Performance analysis and 

architecture evaluation of mpeg-4 video codec system," in Proc..IEEE International 

Symposium on Circuits and Systems, May 2000, pp. 449-452 

[14] K. Shring, "H.264/AVC Software Coordination". http://iphome.hhi.de/suehring/tml 

[15] G. Shen, G. P. Gao, S. Li, H. Y. Shum, and Y-Q. Zhang, "Accelerate video decoding 

with generic GPU," IEEE Trans. Circuits Syst. Video Technology, vol. 15, no. 5, 

May 2005, pp. 685-69 

[16] W. Chen and H. Hang, "H.264/AVC motion estimation implementation on compute 

unified device architecture (CUDA)", Multimedia and Expo, 2008 IEEE 

International Conference on, April 2008, pp 697-700. 

[17] "Middlebury Stereo Datasets" 

http://vision.middlbury.edu/stereo/datal, Last Accessed 02"d  June 2010 

[18] R. Hartley and A. Zisserman, Multiple View Geometry in Computer Vision. 

Cambridge, U.K.: Cambridge Univ. Press, 2000. 

[19] D. V. Papadimitriou and T. J. Dennis,"Epipolar line estimation and rectification for 

stereo image pairs," IEEE Trans. Image Processing, vol.5, no.4, 1996, pp.672-676. 

[20] M. Z. Brown, D. Burschka, and G. D. Hager, "Advances in computational stereo," 

IEEE Trans. Pattern Analysis and Machine Intelligence, vol. 25, no. 8, 2003, 

pp.993-1001. 

[21] C. Schmid and A. Zisserman, "The geometry and matching of curves in multiple 

views," Proc. European Conf. Computer Vision, pp. 104-118, 1998. 

[22] O. Faugeras, B. Hotz, H. Matthieu, T. Vieville, Z. Zhang, P. Fua, E.Theron, L. Moll, 

G. Berry, J. Vuillemin, P. Bertin, and C. Proy, "Real time correlation-based stereo: 

algorithm, implementations and applications," INRIA Technical Report 2013, 1993. 

[23] L. Di Stefano, M. Marchionni, and S. Mattoccia. A fast area-based stereo matching 

algorithm. Image and Vision Computing, 22(12):983-1005, Oct 2004. 

50 



[24] "Middlebury Stereo Evaluation — Version 2" 

http://vision.middlebury.edu/stereo/eval/, Last Accessed 02 June 2010 

51 



List of Publications 

• Abed Mohammad Kamaluddin, Dr Kuldip Singh and Dr Ankush Mittal, 

"Parallelization of Multipass Algorithm For Motion Estimation on Multicore 

CPUs," In Proceedings of IEEE International Conference on Advances in 

Communication, Network and Computing, Calicut, India, 04-05 Oct 2010 

[Accepted for Publication] 

52 


	Title
	Abstract
	Chapter 1
	Chapter 2
	Chapter 3
	Chapter 4
	Chapter 5
	Chapter 6
	Conclusion
	References

