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Abstract 

SAD based block matching algorithms form the backbone of various image and video 
processing applications such as video encoding, 3D vision, video surveillance, robotics, 
image registration and contour mapping. Exploiting thread-level parallelism is a 
promising way to improve the performance of such algorithms for running on multi-core 
general-purpose processors and GPUs. 

This thesis describes efficient strategies for implementation of block matching based 

algorithm for motion estimation and stereo vision on Intel multi-core architectures. A 
simple yet elegant GPU implementation of motion estimation has also been performed. 

A multi-pass method to unroll and rearrange the multiple nested loops of the block 

matching has been exploited for parallelization using the OpenMP shared memory 
programming model to improve the performance of motion estimation on general-
purpose multi-core processors. The results have shown good speedups of 7.0lx over the 
sequential code performance on Intel Xeon Dual socket Quad-core processor and 1.69x 

on Intel Core2Duo processor. The GPU based parallel implementation using CUDA has 
also showed speedups up to 9.7x times. 

A simple yet effective strategy has also been developed for parallelization of Stereo 

vision. The method determines the disparity between pixels in two images using a block 

matching technique and has been implemented on multi-core processors showing decent 
speedups of around 5x times. 

This work also illustrates that by exploiting the capabilities of OpenMP and CUDA, a 
variety of exemplary tasks could be efficiently parallelized and the presently available 
general purpose multiprocessors and consumer level graphics cards can be more 
efficiently utilized. This should give software developers a compelling reason to multi-
thread their applications. 
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Chapter 1: Introduction 

1-.1 Introduction 

Sum of Absolute Difference (SAD) is used as a similarity measure in case of block 

matching in several image-processing applications. SAD based block matching is one of 

the most commonly used techniques for motion estimation in various video coding 

standards [1][2] like H.26x and MPEG. It is also a frequently used routine in various 

other algorithms for motion detection in video surveillance algorithms [3], in Stereo 

Depth Analysis [4] and Correspondence Matching and forms a part of many image 

registration and fusion techniques. 

Motion estimation technique is used to aid temporal prediction in video encoding. SAD 

calculation comes to play in the case of motion estimation and detection in the case of 

video algorithms due to the fact consecutive video frames have similarities and in most 

cases that can be intelligently exploited to reduce the number of bits in the encoding 

process or to detect motion. Most of the consecutive video frames will be similar except 

for the changes that might be induced by objects moving within frames. 

Stereo Imaging is a powerful technique for determining the distance to objects and 

extraction of 3D information from digital images using a pair of camera spaced apart. 

This is fundamentally the same visual system used by humans and most other animals. 

Here, SAD based block matching is used to find the location of the possible 

correspondence points between image pairs. The extremely high computational 

requirement of stereo imaging limits its application to non-real time applications or to 

applications where high computational horsepower is available. 

Many techniques have been proposed to speed up the computation of block matching. 

However most of the techniques are concerned with performance improvement of 

1 



hardwired implementations and FPGA based implementations [5] [6] [7]. As such. 

popularity of SAD is limited to hardware architectures. 

1.2 Motivation 

With the advent of massively parallel GPUs and multi-core architectures it is now 
possible to achieve the desired speedups that were earlier possible only on dedicated 

hardware. The newly available multi-core processors like Intel Core2Duo and Quad-core 

and Intel core i series of processors (Core i3, i5 and i7) (with 2/4 processing cores and 4/8 

hardware threads) have a massive amount of computing power that may be exploited for 

motion estimation and stereo matching. 

In order to take advantage of these multiple cores, software applications need to be multi-

threaded. A single threaded application will only execute on a single core at any given 

time and leave the other cores idle. In a well threaded application, the workload is 

divided into equal chunks and distributed evenly to the available cores. The explicit 

parallel programming offered by OpenMP shared-memory programming model and 

CUDA provide a rich set of features, which allow us to exploit thread-level parallelism 
and optimize the performance of applications. 

1.3 Problem Statement 

This dissertation work intends to create a framework for the parallelization and 

implementation of block matching algorithm on multi-core architectures and analyze 

their performance on these systems- with respect to motion estimation and stereo 

matching. In this work strategies have been devised that can efficiently utilise the 

parallel architectures available like multi-core systems and GPUs for solving the 

problem by harnessing the increased computing power at our disposal in form of the 

parallel architectures present. Algorithms using other correlation criteria apart from SAD 

which we have used for demonstration may utilize the same framework for different 

applications. 
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1.4 Chapter Organization 

The dissertation is organized as follows. 

• In Chapter 2 we discuss an overview of the parallel architectures used and a 

description of OpenMP and nVidia CUDA. 

• In Chapter 3 we discuss the basics of motion estimation using block matching. 

• In Chapter 4 we have discussed the strategy for parallel implementation of motion 

estimation on multi-core and GPU as well as the results obtained. 

• In Chapter 5 we discuss the basics of Stereo Vision as well as use of block 

matching for disparity calculation. 

• In Chapter 6 anovel strategy for multi-core implementation of stereo vision and 

its performance has been discussed. 

• Finally Chapter 7 is devoted to the conclusions and future work. 
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Chapter 2: Multi-core Computing 

2.1 Parallelization Using OpenMP Compiler 

On a multi-core architecture the programmer has to decide how" the work should be 

distributed across multiple processors in contrast to the programming of sequential tasks 

on single-core architecture. The POSIX thread library is often used to develop 

parallelized or multi threaded code which is a tedious task for large applications. 

Alternatively, this additional development step can be realized using the parallel 

programming model of OpenMP for shared memory multiprocessors [8]. It provides the 

advantage to simplify managing and synchronization of program threads. OpenMP works 

in conjunction with the prevalent programming languages C/C++ and FORTRAN [9]. 

OpenMP provides a set of compiler, directives and a supporting library of subroutines that 

control the distribution of tasks over the processor cores and the necessary 

synchronization of these tasks. The OpeniMP API is independent of the used platform and 

operating system. Appropriate compilers exist for a variety of all major operating 

systems. 

ork-sha~ing ° ') 	I Synchronization 	Data-sharing 

sections 	( critical l l atomic 

single 	 master LbaTier  

ordered 	fliush 

threadprivate 

Figure 2.1: Overview of main OpenMP directives. 
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Figure 2.2: Fork-Join Model. 

The directives which in the case of C/C++ programs take the form, of #pragmas which are 

instructional notes to any compiler supporting OpenMP (e.g. Intel C++ Compiler, GCC 

4.2). To enhance application portability these pragmas are ignored by any compiler not 

supporting OpenMP. This directive-based parallelization approach has the benefit that it 

allows the same source code to be used for single and multiprocessor development, since 

the code will be executed serially on single core and in parallel on multi-core processors. 

Another benefit of this approach is that it allows an incremental parallelization approach 

starting from an existing serial version by adding parallel code regions step by step. 

The OpenMP language extensions can be separated into control structures for expressing 

parallelism and work-sharing on the one hand and data environment constructs for inter-

thread communication and synchronization on the other 111  OJ . Figure 2. dives an overview 

of the most important OpenMP directives. The control structures for parallelization (i.e. 

parallel) are embedded into a so-called fork/join execution model. Thus, they fork (i.e. 

start) new threads and execute an enclosed code block concurrently, and afterwards they 

join in parallel running threads to a serial master thread. This has been depicted in Figure2. 

2.The work-sharing directives can be used to divide the work within a code block into an 
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existing team of threads. OpenMP features scheduling options which assign chunks to 

threads either statically or dynamically in order to optimize the loop performance. By 

default each thread is statically assigned one chunk of iterations of (nearly) equal size. 

Besides the parallelization of a single task, it is possible to easily assign a sequence of 

independent tasks to different threads with the sections work-sharing construct. The 

required thread synchronization can be done implicitly by OpenMP e.g. at the end of a 

work-sharing construct (join) or explicitly by the programmer through directives like 

barrier or critical. In order to reduce synchronization overhead, the implicit barriers can 

be explicitly removed with the no-wait clause if no synchronization is required between 

consecutive work-sharing constructs within a parallel region 

2.2 GPU Computing 

A-GPU is a highly parallel computing device designed for the task of graphics rendering. 

However, the GPU has evolved in recent years to become a more general processor, 

allowing users to flexibly program certain aspects of the GPU to facilitate sophisticated 

graphics effects and even scientific applications. In general, the GPU has become a 

powerful device for the execution of data-parallel, arithmetic (versus memory) intensive 

applications in which the same operations are carried out on many elements of data in 

parallel. Example applications include the iterative solution of PDEs, video processing, 

machine learning, and 3D medical imaging. 

The performance of GPUs is improving at a rate faster than that of CPUs as can be 

deduced from Figure 2.3. The capabilities of the GPU have increased dramatically and 

the current generation of GPUs has higher floating point performance than the most 

powerful (multi-core) CPUs [11]. The GPU contains hundreds of cores that work great 

for parallel implementation. The programming is done in SIMD style where same code is 

worked on different data locations. Until recently a graphics API was needed to code on 

GPUs which made coding for non graphics oriented calculations tough. Trying to work 

around this limitation nVidia released CUDA which allows GPUs to be programmed 

using a variation of C. This enables a low learning curve and makes programming easier. 

0 
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The three abstractions of the CUBA model are a hierarchy of thread groups, shared-

memories, and barrier synchronization. Threads are arranged in the form of a grid which 

is a two dimensional array of thread blocks. Each thread block is a three dimensional 

structure that houses the threads. This type of hierarchy is given to the programmer so 

that the arrangement of the threads is similar to the way programmer's data is arranged 

(in arrays). Threads within a block can cooperate among themselves by sharing memory. 

Shared memory is expected to behave like an L1 cache where it resides very close to the 

processor core. Synchronization points can be specified by calling the function 

_syncthreads. 
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Figure 2.3: Floating point operations for the CPU and the GPU [11] 

The memory available to the threads is of three types. Every thread has local memory. 

Number of threads which are in the same thread block can share memory. And the third 

type of memory is the global memory that every thread has access to. C code for both the 

GPU and the CPU resides in the same file. The CPU code follows a sequential flow. GPU 

code is called by a kernel call. This is where the code runs in parallel. A large number of 

threads are created by the kernel call. These threads then run in parallel on the GPU. 
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2.2.1 Programming Model 

In this section various aspects of the CUDA programming model have been discussed. 

2.2.1.1 Thread Hierarchy 

Threads in CUDA are arranged in the form of a hierarchy. A number of threads house 

within what is known as a thread block. These thread block can be 1 dimensional, 2 

dimensional or 3 dimensional. These thread blocks are placed in a structure known as 

thread grid. Thread grid can be either 1 dimensional or 2 dimensional. 

Figure 2.4: Figure showing arrangement of threads [11 ] 

A maximum of 512 threads can be placed in a thread block. Thread block are expected to 

run independently of each other. This independence requirement allows thread blocks to 

be scheduled in any order across any number of cores, enabling scalable code to be 

written. Proper selection of grid size and block size is important to gain good speed up. 



2.2.1.2 Memory Hierarchy 

Threads may access memory from different memory spaces during their existence. 

Threads may declare local variable, may share memory with other threads that belong to 

the same block or may be accessing global memory. 

Thread 
Per-thread loci  

;nernory 

Figure 2.5: Figure showing how threads access global, shared and local memory [11] 
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2.2.2 GPU Implementation 

When a CUDA program on the host CPU invokes a kernel grid, the blocks of the grid are 

enumerated and distributed to multiprocessors with available execution capacity. The 

threads of a thread block execute concurrently on one multiprocessor. As thread blocks 

terminate, new blocks are launched on the vacated multiprocessors. A multiprocessor 

consists of eight Scalar Processor (SP) cores. Every multiprocessor has 8192 registers of 
32 bit size each. The multiprocessor creates, manages, and executes concurrent threads in 

hardware with zero scheduling overhead. The general idea is to achieve very fine grained 

parallelism by assigning one thread to work on one data item which is pixel of an image 

in our case. 

The multiprocessor creates, manages, schedules, and executes threads in groups of 32 

parallel threads called warps. Individual threads composing a warp start together at the 

same program address but are otherwise free to branch and execute independently. When 

a multiprocessor is given one or more thread blocks to execute, it splits them into warps. 

The way a block is split into warps is always the same; each warp contains threads of 

consecutive, increasing thread IDs with the first warp containing thread 0. A warp 

executes one common instruction at a time, so full efficiency is realized when all 32 

threads of a warp agree on their execution path. If threads of a warp diverge via a data 

dependent conditional branch, the warp serially executes each branch path taken; 

disabling threads that are not on that path, and when all paths complete, the threads 

converge back to the same execution path. 

A multiprocessor can work on a maximum of 8 thread blocks. However, if the thread 

code required a large number of registers then lesser number of thread blocks is assigned 

to a multiprocessor. In case a thread block is too bulky to be assigned to a multiprocessor 

then in such cases the kernel simply fails to launch. 
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Chapter 3: Motion Estimation 

3.1 Introduction 

A wide range of applications like digital TV, DVD, Internet streaming video, video 

conferencing, distance learning, surveillance and security make use video coding [1] [2] 

[3] as the central technology. A variety of video coding standards and algorithms have to 

address the requirements and operating characteristics of different applications. 

High definition video coding is presently considered to be a very compute intensive 

process. H.264 [1] is one such current video coding standard which is aimed at high-

quality coding of video contents at very low bit-rates. The new standard significantly 

improves the compression efficiency compared with existing standards, such as H.263+ 

and MPEG-4[12] and uses the same hybrid block-based motion compensation and 

transform coding model as existing standards. Moreover, a number of new features and 

capabilities like variable block-size motion compensation (MC), quarter-pixel accuracy 

MC, have been introduced in H.264 and as the standard becomes more complex, the 

encoding process requires much more computation powers than most existing standards. 

Therefore high-definition video encoding is still difficult to process in real-time on CPU 

[3] even with highly optimized code. Hence, we need a number of mechanisms to 

improve the speed of the encoder. 

Tools Datapath Operation (MIPS) Percentage (%) 

Motion Estimation 24,768.2 97.94 

Transform & Quantization 432.527 1.710 

Others 88.0320 0.348 

Table 3.1: Instruction profiling results of MPEG-4 encoder 

A number of studies have analyzed the computation profile of video encoders and shown 

that motion estimation is the most compute intensive procedure of video encoding. An 
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analysis[ 13] of MPEG-4 has shown that motion estimation forms 97.94% of the total 

computation which highlights the fact that improving its performance would speedup 

video encoding. From F igure3-1 [ 141. which shows the execution time breakdown for 

11.264 encoding, we can see that the motion estimation algorithm accounts for as much as 

86% of the total execution time. 

1.5 
0.9 0.5 

65 

#4.7 

7.5 

8.6 

■ SAD Computation 

■ Sub-pel Interpolation 

■ Subpel my prediction 

■ SAD reduction 

■ Residual 

r VLC 

■ Intra Predicton 

v. Deblock Filter 

etc 

Figure 3.1: Breakdown of execution time for 11.264 encoding. 

A motion estimation algorithm exploits the temporal redundancy between frames. A 

video frame is broken down into macroblocks (each macroblock typically covers 16x16 

pixels) and each macroblock's movement from a previous frame (reference frame) is 

tracked and represented as a vector, called motion vector. Storing this vector and residual 

information instead of the complete pixel information greatly reduces the amount of data 

used to store the video. Among many motion estimation algorithms, we adopted the 

exhaustive search algorithm which is more suitable for parallelization than the other 

algorithms due to its simplicity. 

In the past, motion estimation has been accelerated by the use of dedicated hardware of 

multiple parallel processing elements (PEs) [5] [6[. Recently. various GPU-based motion 

estimation algorithms and methods [ I 5 III 6]  have also been proposed. 
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3.2 Block Matching for Motion Estimation 

Motion estimation is defined as searching for the best motion vector, being the 

displacement of the coordinates of the most similar block in the previous frame compared 

to the block in the current frame. Full-search block-matching is the most popular 

algorithm to perform ME, and it searches through every candidate location to find the 

best match. To do this, the current frame is partitioned into two-dimensional blocks 

(typically 8x8 or 16x16 pixel blocks) and a search window (typically 32x32) in the 

reference frame is defined. Each block of the current frame is compared with all the 

blocks of a previous frame within the same window. 

The final motion vector corresponds to the block with minimum distortion within the 

search window. The most commonly used metric to calculate the distortion is the SAD. 

However other metrics like SATD, Normalized Cross Correlation, SSD etc. may also be 

used. The general algorithm for computing the sum of absolute difference is depicted in 

the equation 3.1. 

N-1 N-1 

SAD (x, y, 1,]) = > > I Ax+u,y+u — Bx+i+u,y+j+u 
u=O v=O 

(3.1) 

In this equation (x,y) is the location of current block in the image and (i,j) is the motion 

vector specifying the block shift and NxN is block size. 

The calculation of the SAD value between a reference and a candidate block is performed 

as follows. For every pixel in the reference block, the value. of the corresponding pixel in 

the candidate block is subtracted from it and the absolute value is taken. In other words 

the absolute difference is taken between two pixel values. Lastly, all these absolute 

differences are summed up, to obtain the sum of absolute difference (SAD) value of a 

block. The SAD value can be seen as an error value i.e. if the SAD value equals zero, the 

blocks are exactly the same. 
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Figure 3.2 describes how search area is organized for every current Macroblock (MB). 

Corresponding pairs of pixels are used to calculate SAD values for one reference MB in 

search area. Corresponding pairs of pixels are paired by same position in reference and 

current MB. Number of pairs per MB matches number of pixels in MB. All SAD values 

from every pair for one MB are accumulated and that accumulated SAD value represents 

SAD value for that reference MB in search area at the end there are search area number 

of SAD values for every current MB in a frame. 

Search Window 
- - - - - - - - - - - - - - - - - , 

Reference Block 
N  , 

~ 	e 
L------- --------~ 

Motion Vector(u,v) 

Figure 3.2: Search area for one current block that has to be covered using full search in 
motion estimation 

For block matching, the two source frames are divided into small blocks, with typical 

,values of 4 x 4,8 x 8 or 16 x.16 pixels. Then, for each block in the first frame, the 

algorithm searches for a similar block in the second frame. Lastly, the block from the 

original frame is set in the new intermediate frame at a position in between the matched 

blocks of the two target frames. This way, motion is interpolated by means of a matching 

process between two blocks. The pseudo code for motion estimation, is given in Figure 

3.3. 



For each block in the image{ 
best sad = Infinity; // Initialize best sum of difference with infinity 

For each candidate position{ 
sad = compare_blocks (candidate_block, reference—block—in—old—frame); 

if (sad < best sad) { 
best_sad = sad; 
best block = candidate block; } 
} 

output_position(bestblock); 
} 

compare_blocks(a,b) { 

sum = 0; 
For each pixel p { 

difference = a[p] - b[p]; 
sum += abs(difference); 
} 

return sum; 
} 

Figure 3.3: Pseudo code for Motion Estimation 

In more detail, the different steps can be distinguished for each block - called the 

reference block and the candidate blocks: 

1. First of all, the reference block from the first frame must be compared with a number 

of candidate blocks from the second frame. Typically, this is done within a search 

window, limiting the number of comparisons. Typical window size is of 32 x 32 pixels. 

For example, within a window of 32 times 32 pixels a total of 256 different 16 times 16 

blocks must be compared using a sum of absolute difference (SAD) technique. 
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2. The result of the comparisons denotes the similarity to the reference block. All 

obtained results need to be sorted and the best candidate needs to be found - the winning 

block. In the case of a SAD comparison, the candidate with the lowest SAD value is the 

winning block. 

16 



Chapter 4: Motion Estimation on Multi-core 

This section describes the implementation of block matching based motion estimation on 

a multi-core CPU as well as on a Graphical Processing Unit. The strategy used for 

parallelization has also been mentioned in this chapter. 

4.1 Motion Estimation on Multi-core using OpenMP 

The full search motion estimation algorithm is complex and time consuming because 

multiple nested loops are required. Beside the sum of absolute difference (SAD) 

computation and SAD comparison, in the classic ME algorithm mentioned in Figure 4.1, 
there are four nested loops. 

Due to the high regularity and weak data dependencies the parallelization of this 

algorithm with OpenMP is straight forward. However we have to decide which for-loop 

to be parallelized. Here, it is best to select the outermost loop, which controls the vertical 

iteration over the search blocks, since there are no data dependencies between the SAD 

calculations of the single blocks. Due to this, the workload being distributed over 

.`simultaneously running threads can be maximized and the synchronization overhead can 

be minimized. 

The approach of distributing SAD calculations per block is shown in Figure 4.2. This 

approach has been implemented by for use in embedded devices. However the 

disadvantage of this approach is that it allows parallelization only on a single level. 

However as the classic algorithm shows that there are four different loops and the internal 

loops can also be run simultaneously due to the absence of data dependencies. 

However, nested looping is difficult to implement in OpenMP and may also lead to load 

imbalance and significant overheads. In our parallel ME algorithm implementation 

shown in Figure 4.3, the four classic nested loops are unrolled and rearranged to a one- 
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tiered loop and a two-tiered loop. This two-pass approach is better suited to multi-core 

architecture and is therefore used in our implementation. This strategy would also more 

effectively utilize the L1 cache (32KB per processor core in our case), and would also 

reduce the complexity of parallelization caused due to the nested looping. Assuming n 

cores on the multi-core CPU, all the operations would be scheduled, folded and executed 

concurrently on the n cores. 

Loop(rows of macro blocks (MBs)){ 

Loop(columns of MBs){ 

Loop(rows of search range (SR)) { 

Loop(columns of SR){ 

SAD computation; 

SAD comparison; 

Figure 4.1: The pseudo code of the classic ME algorithm 

#Parallel region 

Loop(rows of macro blocks (MBs)){ 

Loop(columns of MBs){ 

Loop(rows of search range (SR)){ 

Loop(columns of SR) { 

SAD computation; 

SAD comparison; 

Figure 4.2: Basic Parallelization of ME algorithm 



#Parallel region1: 

Loop(candidates per core/thread) { 

SAD computation; 

} 

#Parallel region2: 

Loop(rows of a MB) { 

Loop(columns of a MB){ 

SAD comparison; 

} 

} 

Figure 4.3: The pseudo code of ME algorithm with two parallel regions 

Therefore we have implemented a variant of this ME algorithm which is executed in two 

passes. In the first pass, we perform SAD computation and the SAD values 

corresponding to an MB is generated. In order to perform the full search ME, the number 

of candidates are grouped and mapped to one core or one thread (in the case of multiple 

threads being assigned per core) in the corresponding MB. This is the only loop in the 

first pass. In the second pass, each core compares the SAD values computed from the 

first pass in each MB, to find the smallest global minimum SAD value and the 

corresponding motion vector. This has been illustrated in Figure 4.3. 

4.2 Motion Estimation on GPU using CUDA 

We have used a single kernel approach. First, the complete frame is dividedinto blocks 

with a size equal to the chosen reference block size, for example 16 times 16 pixels. 

These blocks are mapped one on one onto threadblocks. So, the number of threadblocks 

is equal to the number of reference blocks in the image. This division is depicted in 
Figure 4.4. 
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Figure 4.4: Mapping of thread blocks 

Since each thread-block now represents all the processing involved with one reference 

block, the details for each reference block can be described according to these steps: 

1. First, the reference block needs to be compared with each candidate block in the 

second frame. In order to do so, a number of threads is instantiated within the 

threadblock, equal to the number of candidate blocks available. The task of each thread is 

to calculate one SAD value, i.e., to compare one candidate block with the reference 

block. 

2. After the first step is complete, the winning candidate i.e. candidate with minimum 

SAD needs to be found. The result of the previous step consists of a number of SAD 

values, equal to the number of threads in the threadblock. 

In pseudo-code, the complete algorithm as described can be summarized as seen in 

Figure 4.5. 



for all threadblocks 

for all threads 

SAD1 = SAD( referenceBlock , candidateBlock) 

end 

winningBlock = minimum(SAD1) 

for all threads 

writeData (winningBlock) 

end 

end 

Figure 4.5 Pseudo-code for implementation on CUDA 

As discussed in Section 2.2.1, within a threadblock, a fast shared memory is available. 
For the SAD comparison the reference block is used for every thread, while the candidate 

blocks are partially overlapping each other. A typical reference block can fit easily in the 

shared memory, leaving space to schedule other threadblocks with their reference blocks 

onto the same SM. In this way, the reference block is stored once in fast local memory 

and can be shared among each thread. In order to do so, each thread loads zero or more 

pixels from the reference block into the shared memory. Because the number of threads 

can differ from the number of pixels in a reference block due to parameters for the 

algorithm, control has to be added in the case of unfixed parameters at design time. 

In the second step of the block matching algorithm, the shared memory is used again, this 

time to communicate all the resulting SAD values and to do the comparisons. Apart from 

the shared memory, grouping threads into threadblocks makes synchronization between 

threads possible. As seen from the algorithm, between each of the three steps a 

synchronization barrier is needed, since the algorithm must completely finish each step 

before being able to proceed to the next step. 
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4.3 Performance Evaluation 

The tests have been performed on a Dell Precision T7400 workstation with an Intel Dual 

Socket Quad-core with 256 KB of L1 cache (32KB x 8 cores) and 12 MB of L2 cache 

and 8 GB of RAM. The other PC used has a Core 2 Duo P8400 2.26GHz Processor with 
128KB L1 cache and 3MB L2 cache and 3GB of RAM. 

All the tests have been performed using Linux Fedora Core 11 operating system. The 

program to perform motion estimation is written in C programming language. The C 

compiler used is GCC version 4.4.0 and the OpenMP package used is OpenMP 2.0. 

The nVidia GPU used for analysis is Quadro FX 4600. This GPU card is attached to the 

Dell Workstation. The CUDA compute capability of the GPU 1.0. This device has 768 

MB of memory and has 12 multiprocessors of 1.2 GHz each. 

The sequential implementation has been labeled as serial code. There are two parallel 

implementations. The first is the parallel implementation using OpenMP for execution on 

general purpose multiprocessor. The second parallel implementation using CUDA is 

labeled CUDA code and has been executed on the GPU. A video sequence `taxi' with 

frame size 640 x 480 and 256 x 191 has been used as input with a search range of 32 and 
varying block sizes. 

Figure 4.6 depicts the execution time of the sequential and parallel program for 

completely processing one frame of size 640 x 480 in milliseconds for all the 3 

implementations and for different block sizes. Table 4.1 shows the speedups obtained for 

implementations using different blocks and frame sizes. Therefore it can be seen that 

speedups of about 7 times have been obtained on Intel architecture and around 9 times on 
nVidia GPU. 

Figure 4.7 shows the execution time bars for frames of different sizes using a search 

window size of 32 and block size as 4. It can be seen that as the frame size increases and 

we move on to higher resolution videos the computation costs would become extremely 
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high. The comparative performance on different number of cores (2 cores and 8 cores) 

shows that speedup scales linearly with the increase in the number of cores. We have also 

varied the number of threads to analyze the performance. The optimum performance in 

the case of the Xeon eight core processor was achieved when using 16 threads. However 

on increasing the degree of multithreading to 32 the performance was reduced slightly 

due to threading overheads. This has been depicted in Figure 4.8. In Figure 4.9 we have 

plotted the motion vectors for an image of size 480 x 640 using a search window size 32 

and block size 16 using OpenCV. 
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Figure 4.6: Execution times for different block sizes 

Processor No. of 

Processing cores 

Average Speedup 

Obtained 

Parallel Code (Core2Duo) 2 1.69 

Parallel Code (Xeon 8 core) 8 7.01 

CUDA (Quadro FX 4600) 	• 12 9.7 

Table 4.1. Speedup Obtained versus No. of Cores 
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Figure 4.7: Comparison of processing times of different sized frames 
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Chapter 5: Stereo Imaging 

5.1 Introduction 

Given a series of two-dimensional images it is possible to extract a significant amount of 

auxiliary information about the scene being captured. One of the most useful of these 

pieces of information is knowledge about the relative depth of objects in the scene. It is 

known that, given two images of a single scene it is possible to extract the depth of 

various objects in the scene from the disparity between the two images. The human brain 

handles this task constantly, adapting a stream of paired two dimensional images to 

provide us with what is commonly known as depth perception: that is a feel for the 

relative depth of objects in the scene. In a much simpler case we can consider how to 

extract this scene disparity from two images viewing the same scene from close but not 

identical positions. It should be noted that without a significant amount of extra 

information and calculations, it is generally not possible to ascertain an exact depth 

measurement but rather we can isolate "planes" of depth, i.e. localize which parts of the 

scene are at the same, or relatively close, depths. 

Being able to retrieve this depth information is useful for many applications. Stereo 

vision is highly important in automated systems such as robotics and auto-guided 

vehicles to extract information about the relative position of 3D objects in their vicinity, 

for object recognition, where depth information allows for the system to separate 

occluding image components. Scientific applications for digital stereo vision include the 

extraction of information from aerial surveys, calculation of contour maps or surface 

recovering for automatic 3D-model acquisition. 

In order to obtain the desired depth information we need to first determine the disparity 

between the two images. Traditionally these two images are referred to as the left and 

right images. Since the left and right images are viewing the plane from different place, 

there will be a noticeable disparity between the two images. If we are able to calculate the 

relative disparity between points in a scene across the two different images we should be 



able to create a depth map from that information. The vital point here is that points at 

similar depth levels in the world will have similar disparities across the left and right 

stereo images. This is similar to moving our head laterally: objects close to move a large 

distance in the field of view while those further away move a small distance. By 

determining a displacement for each point in an image, we can determine roughly which 

depth layer it belongs to. Thus given a set of point correspondences between the left and 

right images, we can determine the depth map of the scene. 

5 

Li 
(a) left camera image I. 	 (b) right camera image IEz  

(c) right/left image overlay 	 (d) Ground truth disparity 

Figure 5.1: Sample of a stereo image set, captured by two parallel cameras. This set 
called Tsubuka , is commonly used in literature as a reference set to compare disparity 
mapping algorithms[ 17]. (a) and (b) show the two camera images (c) shows an overlay of 
them. It is visible that close objects, like the lamp, are shifted horizontally by a bigger 
distance. (d) shows a ground truth disparity map, which indicates the true disparity of 
objects of the left camera image. 



To compare the images, the two views must be transformed as if there were being 

observed from a common projective camera and the relative shifts between the two 

images can then be seen to be due to parallax, as long as the front face of the images to be 

compared is visible from this location, and that occlusion or transparency does not 

interfere with the calculation. This transformation is called rectification. 

5.1.1 Basic Stereo System 

Stereo algorithms intend to recover depth information by combining information from 

two stereo images. Most stereo algorithms are composed of the following steps: 

1. Pre-processing: Removal of noise and image rectification i.e. the image is 

projected back to a common plane to allow comparison of the image pairs. 

2. Stereo matching: Displacement of relative features is measured to calculate depth 

map. 

3. Disparity refinement: Clustering of the depth map. 

The overview of a basic stereo system is depicted in Figure 5.2. 

Obtain left and right 
images 

Rectify Images 

Stereo Matching: 
Calculate Depth Map 

Cluster Depth Map 

Figure 5.2: Overview of Stereo System 
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5.2 Epipolar Geometry 

Epipolar geometry is a specific example of multiview geometry, which is the only 

available geometry constraint between a stereo pair of images of a single scene. It has 

been extensively studied in computer vision [18][19]. Let us consider a stereo imaging 

setup as shown in Figure 5.3. Let and be the optical centers of the first and second 

cameras and let the plane and be the first and second image planes. According to epipolar 

geometry, for a given image point in the second image, its corresponding point in the first 

image is constrained to lie on line . This line is called the epipolar line. 

nA 

V2 

Figure 5.3: General epipolar geometry 

With two cameras arranged arbitrarily, the general epipolar geometry is shown in Figure 

5.4. The relative position of both cameras is known and Cl and C2 point out the optical 

centres of each camera. The straight line connecting both optical centres is called 

baseline. Each point M observed by the two cameras at the same time along with the two 

corresponding light rays through the optical centres Cl and C2 form an epipolar plane. 
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The epipole e is the intersection of the baseline with the image plane. The epipolar line is 
therefore defined as a straight line g through e and m that is the intersection of the line 
through M and the optical centre with the respective image plane. The point M in Figure 
5.3 is projected as ml in the left image plane. The corresponding point in the right image 
therefore lies - on the previous described epipolar line g. This reduces the search space 
from two dimensional, which would be the whole image, to one dimensional, a straight 
line only. 

Figure 5.4: Stereo epipolar geometry 

A simplification of the general epipolar geometry is shown in Figure 5.4. Both cameras 

are arranged in parallel, their focal length is identical and the two retinal planes are the 

same. Assuming these conditions all epipolar lines are horizontal within the retinal planes 

and the projected images ml and m2 of a point Mwill have the same vertical coordinate. 
Therefore the corresponding point of ml lies on the same horizontal line in the right 
image. 
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M 

.ui 	 U 

Figure 5.5: Disparity 

According to the stereo epipolar geometry the disparity is defined as D = c2—cl as seen 
in Figure 5.5. The depth d therefore calculated by triangulation is 

d =bD 	 - 	(5.1) 

where b is the distance of the two optical centres and f is the focal length. Therefore it can 
be seen the the depth is inversely related to disparity. Therefore if we know the disparity 

the corresponding depth information can be retrieved. A disparity of zero indicates that 
the depth of the appropriate point equals infinity. In order to assure that images follow 
stereo epipolar geometry the rectification of both images is necessary. 

5.3 Stereo Matching 

Stereo matching tries to solve the problem of finding which pixels or objects in one 
image correspond to a pixels or objects in the other. This is also known as the 
Correspondence Problem. 

The existing techniques for general two-view stereo correspondence roughly fall into two 
categories: local method and global method [20]. Local methods use only small 
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areas/neighbourhoods surrounding the pixels, while global methods optimize some global• 

(energy) function. Local methods, such as block matching [4], gradient-based 

optimization and feature matching [21] are very efficient, but they are sensitive to locally 

ambiguous regions in images (e.g., occlusion regions or regions with uniform texture). 

Global methods, such as dynamic programming [22], intrinsic curves and graph cuts can 

be less sensitive to these problems since global constraints provide additional support for 

regions difficult to match locally. However, these methods are more expensive in their 
computational cost. 

The algorithms can roughly also be divided into feature based and area based, also 

known as region based or intensity based. Area based algorithms solve the 

correspondence problem for every single pixel in the image. Therefore they take colour 

values or intensities into account as well as a certain pixel neighbourhood. A block 

consisting of the middle pixel and its surrounding neighbours will then be matched to the 

best corresponding block in the second image. These algorithms result in dense depth 

maps as the depth is known for each pixel. But selecting the right block size is difficult 

because a small neighbourhood will lead to less correct maps but short run times whereas 

a large neighbourhood leads to more exact maps at the expense of long run times. 

Feature based correspondence algorithms on the other hand extract features first and then 

try to detect these features in the second image. These features should be unique within 

the images, like edges, corners, geometric figures, whole objects or part of objects. The 

resulting maps will be less detailed as the depth is not calculated for every pixel. But 

since it is much more unlikely to match a feature incorrectly because of its detailed 

description, feature based algorithms are less error sensitive and result in very exact depth 

maps. 

Besides area based and feature based correspondence algorithms, there are also phase 

based algorithms that transform the images using FFT (fast fourier transformation) first. 

The depth is therefore proportional to the phase displacement. Wavelet based algorithms 

are a subcategory of phase based algorithms and use a wavelet transformation first. 
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There are a number of problems all correspondence analysis algorithms have to deal with. 

An object seen by one of the cameras could be occluded when seen by the other camera 

that has a slightly different point of view. This object will cause wrong correspondences 

when trying to match images. The cameras itself my cause distorted images due to lens 

distortion which will lead to wrong correspondences especially in the outer regions of the 

image. 

Some problems are caused by the objects themselves. Having lots of small objects that 

look alike or having a special pattern that iterates quite often makes it hard to find the 

matching object as there is more than one possible match. This is known as the aperture 

problem. Another big problem is homogeneity. Big homogeneous regions are difficult to 

match when seen through a small window only. The same textures on different positions 

in the image will cause similar problems. 

5.2.2 Block Matching for Stereo Matching 

The block matching method is one of the most popular local methods because of its 

simplicity in implementation. The basic idea of block matching for stereo correspondence 

is as follows: to estimate the disparity of a point in the left image, firstly, we define a 

reference block surrounding this point; and then, find the closest matched block, within a 

search range in the right image, using a pre-specified matching criterion; thus, the relative 

displacement between the reference block and the closest matched block constitutes the 

disparity of the point being evaluated. The commonly used matching criteria are the sum 

of absolute differences (SAD), the sum of squared (SSD) and the normalized SSD. 

With the given matching criteria, the correspondence problem results in essentially a 

search problem, and the standard search method for block matching is an exhaustive 

search, where the matching criterion is calculated for all pixels at all possible search 

positions. This strategy can guarantee that the best-matched block is found with respect to 

the chosen criterion. However, the computation loads of such methods are very 

demanding, even by using the epiploar lines constraint, and therefore many different fast 

algorithms have been developed. 
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In order to obtain the disparity of a point, the candidate block in the search range that best 

matches the reference block is of the main interest. In this dissertation work we propose 

an improved parallel block matching method to efficiently solve the stereo 

correspondence problem using rectified stereo images that uses SAD as the matching 

measure and calculates the disparity map. 
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Chapter 6: Parallel Stereo. Matching 

6.1 Matching Algorithm Description 

The fundamental problem for the disparity determination is the identification of the two 

corresponding or matching pixels that describe the same spot in the two images. Our 

approach belongs to the class of area-based matching algorithms, which are suitable for 

parallel implementation [22]. We choose stereo images that have been rectified on the 

basis of the epipolar constraint which leads to a one dimensional search space parallel to 

the horizontal image lines. This constraint is the key to the efficiency for the parallel 

implementation. Our implementation performs a correspondence search for each pixel in 

the right image block matching, thereby producing a disparity measurement. 

First, given any two or more views of the same scene, at some image scale, a degree of 

similarity exists between the views, and in general, the coarser the scale the more similar 

the views become. These effects form the basis for matching area based stereo algorithms 

by the explanation that now follows. If a view is spatially quantised into smaller 

subregions, eventually any given subregion will begin to look more similar to its 

corresponding subregion in the other view. In this way, the similarity values are 

computed by comparing a fixed window in the reference image to a shifting window in 

the second image. The shifting window is moved over the first one by integer increments 

along the corresponding epipolar line and a curve of similarity • values is generated for 

integer disparity values. 

In Figure 6.1, Jr  is the right Image and Il is the left stereo image. We illustrate the Right 

to Left correspondence search for a pixel pi  having pixel coordinates (xi, yl) in Ir  

comparing it to candidate pixels in I. The candidate pixels are all the pixels in Ii of 

coordinates (xi + t; yi),  for all t, where 0 <t < diimit. The value diimit  represents a -chosen 

limit to the search space size also represents the highest disparity that can be measured. 

The computational complexity is also directly related to diimit.  The comparison of p1 and 

a candidate pixel pcandidate  considers a window of size (2H+1)*(2W+1) around the pixels, 
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the so called blocks. The window around pl  is called reference window, the overlapping 

windows around the candidate blocks constitute the search window. The block with the 

highest similarity to the reference window is chosen as the match guess and its offset d is 

the measured disparity. 

Y 

2W+1 	,reference window 

Y1 ........... 
	

2H+1 

XI  

Right camera image Jr 

X1 	X,+t X,+d X, 
Left camera image 11  

Figure 6.1: Reference and search window for disparity computation of pixel pI(x1, yi). 
The pixel po' represents the corresponding pixel for p', and is located at (xi + d, yl). 

The sum of absolute differences (SAD) computation technique was chosen in our 

implementation due to its low implementation complexity. However we can also use 

different measures such as SSD, normalized correlation, SATD etc. using the same 

framework that has been explained in this section. The area-based algorithm using the 

SAD for calculating disparity can be resumed in equation 3: 

H W 
min 

dEO,dtim 	
IIR(x+i,y+j)— IL(x +i+d,y+j)j 

id 
li=—H j=—W 

Where : II? and IL are the right and left image respectively, 

x is an index on the columns, 

(6.1) 
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y is an index on the rows, 

d is the disparity index, 

H and W define the size of the correlation window and 

dil;  is the maximum value for disparity 

If equation 1 is applied to each pixel in the images, it can be rewritten as: 
H W 

IIR(x + i,Y +j) IL(x ± i,Y +I)I 
li=-H j=-W 
H W II IIR (x+i,y+j)— IL(x+i+1,y +j)11 

i=-H j=-W (6.2) 

H W 

I Y. 1IR(x  + i,y +j) — IL(x +i+diimit,Y +1)J1 
i=-H j=-W 

If for each disparity index we allocate a thread to compute the window, then equation 2 

suggests an implementation. However, the principal inconvenient for this implementation 

is that it would incur a large amount of overhead as well as memory to store the windows 

until the minimisation operation takes place. To solve this problem, it was noticed that 

the calculation of windows is a recursive computation, where adjacent pixels in 

overlapping windows are present, so it is not necessary to compute the complete 

similarity value for a pixel if the adjacent pixel have one already computed. 

6.2 Computational optimisation 

The most expensive task performed by the stereo algorithm is the computation of SAD 

scores, which are needed to carry out the direct matching phase. In this section we outline 

the optimisation techniques adopted to avoid redundant calculations. We show first the 

basic calculation scheme, already described in [23], and then propose an additional level 

of incremental calculation aimed at achieving further speed-up. 
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Suppose that SAD(x, y, d) is the SAD score between a window of size (2n+1)*(2n+1) 

centered at coordinates (x,y) in the left image and the corresponding window centered at 

(x+d,y) in the right image: 
n 	n 

SAD(x,y,d)= 	IIR(x+j,y+i)—IL(x+d+j,y+i)l 	 (6.3) 
i=-n j=-n 

Observing Figure 6.2 [23], it is easy to notice that SAD(x, y +1) can be attained from 

SAD(x,y,d) : 

SAD (x, y + 1, d) = SAD (x, y, d) + U (x, y + 1, d) 
	

(6.4) 

with U(x,y+1,d) representing the difference between the SADs associated with lowermost 

and uppermost rows of the matching window (shown in light-gray in Figure 6.2): 
n 

U(x,y+1,d)= 	IIR(x+j,y+n+1)—IL(x+d+j,y+n+1)I 
j=-n 

n 

— I IIR(x+j,y—n)—IL(x+d+j,y—n)l 	 (6.5) 
j=-n 

Figure 6.2: Incremental calculation scheme. 



Thus it can be observed from the Equation 6.5 that we need not calculate the SAD for 

each and every pixel but it can be calculated in an incremental manner. We utilize the 

above equation and modify it further for implementation on multi-core processor which 

will be discussed in the next section. 

At this point, the main problem with the SAD matching technique is the size of the 

window, which needs to be large enough to include enough variations of intensity to 

make the matching, but small enough to prevent projective distortion. If the window is 
too small and it does not cover sufficient variation of intensity, it gives a poor estimation 

because its SNR is low. On the other hand, if the window is too large and covers a region 

in which the depth of the points, of the scene varies then the position of the SAD 

minimum cannot present correct coincidence due to different projective distortions 

between the left and right images. In the literature, a recommend window size of 7 x 7 for 

real time applications [19]. 

6.3 Strategy for parallel implementation on Multi-core 

Even for the simple block-matching algorithm described above there are many different 

approaches to implementation on the Multi-cores. The strategy employed in this example 

is highly optimized, but certainly not guaranteed to be the only fast approach. 

The primary goal of this implementation is to be fast, with a secondary goal of being 

fairly flexible to allow changing of parameters. Some critical guidelines for optimizing 

this application that we have followed are avoiding obscenely redundant computation — 

Many computations preformed for one pixel can also be used by neighbours. We have 

also tried to minimize global memory reads/writes and create enough threads to keep the 

processors busy. 

Based on the discussion in section 6.2, we have implemented a disparity computing 

system as shown in Figure 6.3. Here the first module performs similarity measurement 
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between pixels from the reference image and the pixels from the shifted image and then 

sums it to obtain column-wise SADs. The second module obtains the sum of the results 

from the column submodule to form the block-wise SAD. Finally, the minimum of the 

block-wise SADs is chosen to obtain the disparity. Both the above modules are computed 

in parallel. 

Left 	n 	rfl Right 

Computing Sum of 

Absolute 	I OpenMP parallel region 1 

Differences 

Computing Block 

SADs by summing I OpenMP parallel region 2 

up of Column SADs 

Calculating 

Minimum SAD and 

Figure 6.3: Implemented Stereo Matching System 

The next step is to determine how to allocate threads to the problem. Our approach uses a 

thread to process a column of pixels. This is a departure from the common approach of 

using a thread per pixel but this allows us to eliminate some redundant computation and 
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reduces threading overheads. The thread per pixel approach is more suited to GPU 

implementations. 

In Figure 6.4 we illustrate the overall scheme using a 7x7 block size and 16 threads. Each 

thread sums the absolute differences of a column of pixels the height of the kernel. It 

accumulates absolute differences between the pixels in the reference image (left mage) 

and the comparison image (right image). 
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THREAD 1 	r THREAD Z ~ THREAD 0   
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Figure 6.4: Allocation of threads 

The sum of absolute differences for each column is stored in shared memory such that it 

can be accessed by multiple threads at a time. After the column sum-of-absolute 

differences are completed for the block of threads then each thread sums the column SAD 

values from the neighbouring columns within the block to determine the total SAD for 
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the entire block. This value is tested to determine if the current disparity value is the best 

correspondence match for the present pixel. Three pixels have been highlighted for 

illustration in red, green and blue with the associated kernel pixels outlined in a line of 

the same colour. 

After the first row of pixels has been processed by a thread block subsequent rows can be 

processed with increased efficiency. A rolling window scheme is used. Rather than repeat 

the summation of all the absolute differences in the column, the absolute difference of the 

pixels in the first row is subtracted from the previous column sum, and then the absolute 

difference of pixels in a new row is added to the column sum. This value is equivalent to 

re-summing the rows involved, but requires only two absolute difference computations 

and two additions. This rolling window computation continues until SAD is determined 

for all the rows allocated to a thread. 

Figure 6.5: Rolling window scheme for calculation of column SAD 

This can be illustrated as follows from Figure 6.5. Let the SAD for the red column block 

be SADred  and for the green column block be SADgr,,n. So once we have SAD«;d  we can 
calculate SADgr«„ as follows: 

.S'A DKree„ = SA Dred - •SA Dp  f  + .SAD 8  
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where SADp1 and SAD1,8 are the SADs for the pixels pl and p8. We already have the 

previous column (red) SADs stored in memory. Every following sum can therefore be 

calculated from the previous one with one addition and one subtraction and then stored. 

This way a lot of computation is saved. Also since the array of intermediate column 

SADs are stored in shared memory this operation can also be performed 

At each disparity step, the SAD value determined for the kernel is compared with the 

current minimum SAD value computed from prior disparity steps. The current minimum 

SAD result and the corresponding d value are stored in memory in arrays the size of the 

image. If the newly computed SAD value is less than the previous minimum SAD value, 

this new value becomes the minimum and is stored along with the corresponding d value 

in memory. At the end of this process a disparity value indicative of the best 

correspondence has been computed and stored in global memory. 

6.4 Performance Analysis 

We conducted experiments to compare the performance of the sequential implementation 

and the OpenMP based parallel implementation. The tests have been performed on a Dell 

Precision T7400 workstation with an Intel Dual Socket Quad-core with 256 KB of L1 

cache (32KB x 8 cores) and 12 MB of L2 cache and 8 GB of RAM. The maximum 

number of processors used for the experiments was eight and the memory was shared. 

All the tests have been performed using Linux Fedora Core 11 operating system. The 

program to perform motion estimation is written in C programming language. The C 

compiler used is GCC version 4.4.0 and the OpenMP package used is OpenMP 2.0. 

The stereo image pairs for the experiments were taken from the middlebury university 

vision database [17]. The image pair used was tsukuba and teddy (Figure 6.5(a)) of size 

384 x 288 pixels. The maximum number of disparity levels was taken as 16 for the 

tsukuba image and as 32 for the teddy image. Figure 6.6 shows the performance for both 
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the serial and parallel implementations. The benefit of using the parallel version can be 

seen from the figure as it reduces the time spent by almost 5 times. 
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Figure 6.5: Disparity Map (a) Test Image (b) Ground Truth (c) Obtained disparity Map 



Figure 6.6: Comparison of Execution times of Serial and Parallel implementations 
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Figure 6.7: Speedup obtained versus No. of threads 

The performance scales approximately the same with the increase number of processors 

used. The performance almost doubles when we use all 8 cores as can be seen from 

Figure 6.7, as when the number of threads is 4, the number of processors used is also 4 

while for 8, 16 and 32 threads all the 8 processing cores are used. One more inference 



from Figure 6.6 is that when we increase the number of disparity levels from 16 to 32 for 

the teddy image, the time taken does not exactly double but is around 1.7 times: This can 

be attributed to considerable savings due to the use of the rolling window scheme. 

The vision research centre of Middlebury University has an online evaluation website 

[24] that can be used to evaluate results and find the percentage of bad pixels. We used 

the evaluation mechanism for evaluating our results (Figure 6.5) i.e. the comparison of 

the obtained depth map with the ground truth thereby determining the accuracy. The 

percentage of bad pixels in the obtained map is approximately 14% for tsukuba image 

and 31% for the teddy image. Though this percentage is normal for most area based 

implementations, however other phase based and feature based methods have known to 

give percentage of bad pixels as less as 5%. However such implementations are 

extremely compute intensive. 



Conclusion 

With the emergence of parallel GPUs and multi-core architectures, a massive amount of 

computing power is available that was exploited in this work to satisfy the increasing 
computation needs of image and video processing algorithms. This dissertation presents 

efficient multithreaded implementations of block matching algorithm which forms a 

backbone of various such algorithms. 

Efficient strategies were described for implementation of block matching based algorithm 

for motion estimation on Intel multi-core architectures using OpenMP compiler giving 7 

times speedup. A simple yet elegant GPU implementation of motion estimation has also 

been performed which gives approximately 9 times speedup. 

A parallel strategy for implementation of an algorithm using block matching for stereo 

matching has also been shown. The implementation written in C and OpenMP, and 

performed on a dual socket quad-core Intel Xeon Windows machine shows that using 

shared memory the algorithms run time is reduced by approximately 5 times. The use of 

shared memory allows maximum benefit of the multi-core processor since there is no 
overhead incurred for splitting the data between the different cores. 

Our multithreaded implementation based on OpenMP and CUDA programming model 

also demonstrates the inherent parallelism of image processing algorithms and the 

parallel computation capabilities of symmetric multiprocessor architectures can be 

efficiently exploited in the future for real time applications currently possible only on 

dedicated hardware. 

Our focus in the thesis was only on the motion estimation part of video encoding. In the 

future implementation of complete video encoding algorithms on GPU and multi-cores 

can be explored, expecting to get higher performance and approaching the real-time 

processing speeds. 
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We have used the SAD criteria as the similarity measure for all implementations. In the 

future, the same framework may be implemented using other correlation criteria instead 

of the sum of absolute differences like SATD,• SSD, Normalized Correlation etc., to 

minimise noise and/or explore different performance for a specific application. Of future 

interest also would be to investigate the implications of parallel implementation of the 

algorithms using MPI and no shared memory. 
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