
RESOURCE PERFORMANCE AND QoS GUIDED
INDEPENDENT TASK SCHEDULING IN

GRID COMPUTING

A DISSERTATION

Submitted in partial fulfillment of the
requirements for the award of the degree

of
MASTER OF TECHNOLOGY

In
INFORMATION TECHNOLOGY

CHAUIIAN SAIMEERSING11 AS11OKSINGEI

r RAL L1,e
~ ..o °72 ~9

.t• ACC 	 -C
r 	e

Oitf..... L 6 j 	
it TECiq t~0

DEPARTMENT OF ELECTRONICS AND COMPUTER ENGINEERING
INDIAN INSTITUTE OF TECHNOLOGY ROORKEE

ROORKEE -247 667 (INDIA)
JUNE, 2010

CANDIDATE'S DECLARATION

I hereby declare that the work, which is being presented in the dissertation entitled

"RESOURCE PERFORMANCE AND QoS GUIDED INDEPENDENT TASK

SCHEDULING IN GRID COMPUTING" towards the partial fulfillment of the

requirement for the award of the degree of Master of Technology in Information

Technology submitted to the Department of Electronics and Computer Engineering,

Indian Institute of Technology Roorkee, Roorkee, India is an authentic record of my

own work carried out during the period from July 2009 to June 2010, under the

guidance of Dr. R C. Joshi, Professor, Department of Electronics and Computer

Engineering, Indian Institute of Technology Roorkee.

The matter presented in this dissertation has not been submitted by me for the award

of any other degree of this or any other Institute.

Date: ~(~ 11}

Place: Roorkee. 	 (CHAUHAN SAM RSINGH ASHOKSINGH)

CERTIFICATE

This is to certify that the above statement made by the candidate is correct to the best

of my knowledge and belief

Date: -jMfl t4, 201O.
Place: Roorkee. 	 (Dr. R. C. JOSH

Professor

Department of Electronics and Computer Engineering

Indian Institute of Technology Roorkee

I

Acknowledgement

It gives me immense pleasure to express my deepest sense of gratitude towards my

guide Dr. R. C. Joshi, Professor, Department of Electronics and Computer

Engineering, Indian Institute of Technology Roorkee for his expert guidance,
encouragement and support throughout the dissertation work. His suggestions and

invaluable ideas provided the platform to the entire dissertation work. In spite of his
extremely busy schedule, I have always found him accessible for suggestions and

discussions. I look at him with great respect for his profound knowledge and
relentless pursuit for perfection. His ever-encouraging attitude and help has been

immensely valuable.

Nothing would have been possible without the support of my family members, who

have been backing me up throughout my life. I wish to convey my sincere thanks to
my parents, Ashok Singh Chauhan and Shanti Devi. I also wish to convey my
sincere gratitude to my wife, Manjari and son, Avi, who have given me endless

support and love. Without their support, it would not be possible to reach this far
with my studies.

I would also like to thank all faculty members of Department of Electronics and

Computer Engineering, Indian Institute of Technology Roorkee for their kind help
and support.

CHAUHAN SAMEERSINGH ASHOKSINGH

ii

Abstract

Task scheduling in grid computing is a challenging problem because of heterogeneous

and dynamic nature of grid resources. The performance of grid resources is

constantly changing. Task scheduling becomes more complicated when various
quality of service (QoS) demands arise from users. QoS is an extensive concept and it

varies from application to application. QoS is set of constraints for effective
execution of an application.

In this dissertation work, six heuristics are proposed for independent task batch mode

scheduling. Two heuristics, namely, segmented weighted time-min (SWT-Min) and

segmented weighted time-max (SWT-Max) are for resource performance based
independent task scheduling. Both heuristics first finds the performance metric of

resources and uses this metric to find the weighted time of each task. They divide the

tasks in number of segments. Each segment is assigned a priority and mapping of

tasks is done in the descending order of priority of segments. Four heuristics, namely,

QoS guided weighted mean time-min(QWMTM), QoS guided weighted mean time
min-min max-min selective(QWMTS), priority based QoS guided weighted time min-

min max-min selective(PQWMTS) and multiple QoS guided weighted mean time

min-min max-min selective(MQWMTS) are proposed for QoS based independent

task scheduling. The QWMTM, QWMTS and PQWMTS heuristics are for single

QoS based task scheduling and network bandwidth is considered as QoS parameter.

The MQWMTS heuristic is for multiple QoS based task scheduling. Response time,
execution cost and priority are considered as QoS parameters for testing the heuristic.

A generalized function is presented to consider all QoS and to generate a utility value

of tasks. This utility value decides the order of execution of tasks.

The gridsim simulation toolkit is used to validate the proposed heuristics. The
heuristics are evaluated on the basis of makespan and resource load balancing. The

results show that all proposed heuristics gives good improvements in makespan and
do better resource load balancing than existing heuristics such as QoS guided min-

min, weighted mean time-min, weighted mean time min-min max-min selective, min-
min and max-min.

III

Table of Contents

Candidate's Declaration and Certificatei

Acknowledgement..ii

Abstract...:........iii

Table of Contentsiv

Listof Figures ..vii

Listof Tables ..ix

1. Introduction and Problem Statement 	 1
1.1 Introduction ..1
1.2 Motivation .. 2
1.3 Problem Statement ...2
1.4 Organization of Report ..3

2. Background and Literature Review 	 4
2.1 Grid Computing — Overview ..4

	

2.1.1 	Grid Systems ...4
2.2 Task Scheduling in Grid ..6

	

2.2.1 	Task Scheduling Phases ..7
2.2.2 Challenges of Task Scheduling in Grid9

	

2.2.3 	Mapping Modes ..1 0
2.3 QoS in Grid ..1 1

	

2.3.1 	Layered Structure of Grid QoS ...12
2.4 Literature Review ...13

	

2.4.1 	Batch Mode Heuristics ...1 3

	

2.4.2 	Qo S Guided Heuristics ...1 5
2.5 Research Gaps ...1 6
2.6 Terminology1 6

iv

3. Proposed Resource Performance Guided Independent Task
Scheduling Heuristics 	 17

3.1 Segmented Weighted Time — Min Heuristic17
3.2 Segmented Weighted Time — Max Heuristic19

4. Proposed QoS Guided Independent Task Scheduling
Heuristics 	 21

4.1 QoS Guided Weighted Mean Time-Min Heuristic21
4.2 QoS Guided Weighted Mean Time Min-Min Max-Min Selective

Heuristic..24
4.3 Priority based QoS Guided Weighted Mean Time Min-Min Max-Min

Selective Heuristic ..26
4.4 Multiple QoS Guided Weighted Mean Time Min-Min Max-Min

Selective Heuristic........ 	...28

5. Simulation Tool and Performance Metrics 	 32
5.1 GridSim ...32
5.2 GridSim Entities ...33
5.3 Simulation Environment Data ...34
5.4 Performance Metrics ..34

6. Results and Discussions 	 36
6:1 Results of Segmented Weighted Time-Min Heuristic36
6.2 Results of Segmented Weighted Time-Max Heuristic38
6.3 Results of QoS Guided Weighted Mean Time-Min Heuristic39
6.4 Results of QoS Guided Weighted Mean Time

Min-Min Max-Min Selective Heuristic ...41
6.5 Results of Priority based QoS Guided Weighted Mean Time

Min-Min Max-Min Selective Heuristic ...43
6.6 Results of Multiple QoS Guided Weighted Mean Time

Min-Min Max-Min Selective Heuristic ...45

7. Conclusions and Scope for Future Work 	 47
7.1 Conclusions ..47
7.2 Scope for Future Work ..4 8

REFERENCES ... 49

LIST OF PUBLICATIONS 52

vi

LIST OF FIGURES

Figure 2.1 	Grid Systems 	... 	5

Figure 2.2 	A Logical Grid Task Scheduling Architecture 	7

Figure 2.3 	Task Scheduling Phases ...9

Figure 2.4 	Layered Structure of Grid QoS 	13

Figure 3.1 	Segmented Weighted Time-Min Heuristic 	19

Figure 3.2 	Segmented Weighted Time-Max Heuristic 	20

Figure 4.1 	QoS Guided Weighted Mean Time - Min Heuristic 	23

Figure 4.2 	QoS Guided Weighted Mean Time Min-Min Max-Min
Selective Heuristic 	.. 	25

Figure 4.3 	Priority based QoS Guided Weighted Mean Time Min-Min
Max-Min Selective Heuristic .. 	27

Figure 4.4 	Multiple QoS Guided Weighted Mean Time Min-Min Max-Min
Selective Heuristic .. 	3 0

Figure 6.1 	Makespan of SWT-Min, Min-Min and Max-Min Heuristics 37

Figure 6.2 	Load Balance Degree of SWT-Min, Min-Min and Max-Min
Heuristics... 	3 7

Figure 6.3 	Makespan of SWT-Max, Min-Min and Max-Min Heuristics 38

Figure 6.4 	Load Balance Degree of SWT-Max, Min-Min and Max-Min
Heuristics... 	3 9

Figure 6.5 	Makespan of QWMTM, QMinMin, WMT-M, Min-Min and
Max-Min Heuristics 	40

vii

Figure 6.6 	Load Balance Degree of QWMTM, QMinMin, WMT-M,
Min-Min and Max-Min Heuristics 	40

Figure 6.7 	Makespan of QWMTS, QMinMin, WMTS, Min-Min and
Max-Min Heuristics ... 	42

Figure 6.8 	Load Balance Degree of QWMTS, QMinMin, WMTS,
Min-Min and Max-Min Heuristics 	43

Figure 6.9 	Makespan of PQWMTS, QMinMin, WMTS, Min-Min and
Max-Min Heuristics .. 	43

Figure 6.10 Load Balance Degree of PQWMTS, QMinMin, WMTS,
Min-Min and Max-Min Heuristics 	45

Figure 6.11 Makespan of MQWMTS, QMinMin and WMTS Heuristics 45

Figure 6.12 Load Balance Degree of MQWMTS, QMinMin and WMTS
Heuristics... 	46

viii

LIST OF TABLES

Table 6.1 	Makespan Comparison of SWT-Min, Min-Min and Max-Min
Heuristics.. 	3 6

Table 6.2 	Makespan Comparison of SWT-Max, Min-Min and Max-Min
Heuristics... 	3 8

Table 6.3 	Makespan Comparison of QWMTM, QMinMin and WMT-M
Heuristics... 4 1

Table 6.4 Makespan Comparison of QWMTM, Min-Min and Max-Min
Heuristics... 4 1

Table 6.5 Makespan Comparison of QWMTS, QMinMin and WMTS
Heuristics... 42

Table 6.6 Makespan Comparison of QWMTS, Min-Min and Max-Min
Heuristics... 42

Table 6.7 Makespan Comparison of PQWMTS, QMinMin and WMTS
Heuristics.. 44

Table 6.8 Makespan Comparison of PQWMTS, Min-Min and Max-Min
Heuristics.. 44

Table 6.9 Makespan Comparison of MQWMTS, QMinMin and WMTS
Heuristics.. 46

ix

Chapter 1

Introduction and Problem Statement

1.1 Introduction

The rapid development of Internet technologies, advances in wide-area network
technologies and low cost computing have given birth to a new computing era known

as Grid computing. Grid is a collection of wide variety of resources such as computer

systems, storage spaces, specialized devices, software applications etc. 	A

computational grid is a hardware and software infrastructure that provides

dependable, consistent, pervasive and inexpensive access to high end computational

capabilities[1J. The grid resources together create tremendous processing power.

Efficient and effective scheduling algorithms are needed to fully . utilize the

computational power of grid resources.

Task scheduling is one of the integral components of grid computing. It is a process

of mapping a set of tasks on a set of machines. Effective task scheduling is the key

for high performance in grid computing. It is a challenging problem because of

heterogeneity and dynamic nature of grid resources. The grid resources are owned by

multiple organizations and governed by various user and system access policies. The
access policies decide who will access what, how and when. It has been proved that

task scheduling in heterogeneous environment like grid is a NP-hard[2] problem.

Many heuristic algorithms such as Min-Min[3], Max-Min[3], Sufferage[3], X-

Sufferage[4] are proposed to find the optimal solution. These algorithms, depending

on goals, assign tasks to the best machine which produces better quality of service.

QoS is one of the crucial means to satisfy the various demands from resource users
and resource providers. It is a very extensive concept and it varies from application to

application. It can be network bandwidth, execution cost, reliability, availability, trust

etc. The classical scheduling algorithms such as Min-Min, Max-Min, Sufferage, etc.

do not consider influence brought by QoS. Many heuristics such as QoS guided Min-
Min[5], QoS priority grouping[6], etc. have been proposed for QoS based task

1

scheduling. Results given by these QoS based scheduling algorithms are far better
than that of classical scheduling algorithms.

Makespan is the standard metric for performance measure of a scheduling algorithm

in grid. Makespan for a schedule can be defined as the maximum time taken by a task

to complete its execution. The shorter the makespan, the better the scheduling
algorithm is. Both user and system want to complete the task as soon as possible. So,

one of the primary goals of any scheduling algorithm should be to reduce the

makespan. Load balancing is a vital problem in grid computing. The factors such as

dynamicity, heterogeneity, multiple administrative policies etc., affect to balance the
load across resources. The resources are loaded with their own internal loads, so the

response time cannot be guaranteed.

1.2 Motivation

Grid provides a platform for sharing, selection, and aggregation of geographically

distributed heterogeneous resources. Users can submit their applications from

anywhere to grid. The applications are of different types and they require different
types of resources to execute them. The applications demand various types of QoS to

complete their execution as fast as possible. The various QoS demands can be

network bandwidth, execution cost, reliability, availability, trust, etc. Users wish to
get the results as early as possible. So, one of the problems of scheduling algorithms

is how to reduce makespan. Every user tries to get the best resources for his
application. This creates the resource load unbalancing. So, another problem of

scheduling algorithm is how to balance the load across resources. To reduce the

makespan and balance the load across resources have motivated to design and propose
new scheduling heuristics.

1.3 Problem Statement

The main objective of this dissertation work is to propose resource performance and

QoS guided independent task scheduling algorithms for grid computing.

To achieve the main objective, it is further divided in following sub-objectives:

2

i) To propose heuristics based on the performance of resources.
ii) To propose heuristics for single QoS constraint based scheduling.
iii) To propose heuristics for multiple QoS constraint based scheduling.

iv) To validate the proposed heuristics.

1.4 Organization of Report

The dissertation report is organized in 7 chapters including this chapter. This chapter

gives introduction and states the problem. The rest of report is organized as follows.

Chapter 2, overview of grid computing, task scheduling in grid and QoS in grid in

discussed. The research gaps and literature review is also given in the chapter.

Resource performance based independent task scheduling heuristics are presented in

chapter 3. Two heuristics, namely, Segmented Weighted Time-Min and Segmented
Weighted Time-Max are proposed for resource performance based task scheduling.

Both heuristics, first, find the performance metric of each resource. This performance
metric is used to assign a weight value to each resource. The segmentation of tasks is

done to allow the long tasks to be executed first.

QoS guided independent task scheduling heuristics are presented in chapter 4. Total

four heuristics are presented, three are for single QoS constraint based scheduling and
one is for. multiple QoS constraints based scheduling.

In Chapter 5 simulation tool, simulation environment and the performance metrics are

discussed. The gridsim simulation toolkit is used for simulation purpose. The
performance metrics, makespan and load balance degree are used to validate the

proposed heuristics.

Results are discussed in chapter 6. Chapter 7 concludes the dissertation and discusses

the scope for future work:

3

Chapter 2

Background and Literature Review

2.1 Grid Computing - Overview

The rapid development of Internet technologies, advances in wide-area network

technologies and low cost computing have given birth to a new era known as Grid
computing. Grid is a collection of wide variety of resources including computer

systems, . storage spaces, specialized devices, software applications which are

geographically distributed and owned by multiple organizations. The access of these

resources is governed by organizations' individual administrative policies. Grids

enable sharing, selection and aggregation of resources for solving large-scale

computational and data intensive problems in science, engineering, and commerce. In

Grid computing,. computing becomes pervasive and individual users or client

applications gain access of computing resources as needed with little or no knowledge

of where those resources are located or what the underlying technologies, hardware,
operating system, and so on are. Grid is "A type ofparallel and distributed system that
enables the sharing, selection, and aggregation of geographically distributed

autonomous and heterogeneous resources dynamically at runtime depending on their
availability, capability, performance, cost and users' quality-of-service
requirements" [7].

2.1.1 Grid Systems

The business problems and applications have diverse need of computational

resources. Some applications need high computational power, some needs specific

service and so on. Based on the business problem or application requirements, the

type of a grid is selected. According to the distinct targeted applications domains, a

grid can be classified in to three categories[8]: computational grid, data grid and

service grid, as shown in figure 2.1. Real grid can be a combination of two or more of

these types. Development of truly general-purpose grid that can support multiple or
all of these categories is a hard problem.

0

'Grid Systems

Computational Grid

Distributed 	 High
Supercomputing: 	 Throughput

Data Grid 	Service Grid

Demand Grid 	Collaborative
Grid

Multimedia Grid

Figure 2.1 Grid Systems

i) Computational Grid: -A computational grid is a hardware and software

infrastructure that provides dependable, consistent, pervasive and inexpensive

access to high end computational capabilities[1]. A computational grid

aggregates the processing power of geographically distributed heterogeneous

systems. These distributed systems, together, have a higher aggregate

computational capacity than the capacity of any constituent machine in the
system.. According to how the computational power is utilized, computational

grid can be further classified into distributed supercomputing and high

throughput. A distributed supercomputing grid executes the applications in

parallel on multiple machines to reduce the completion time of a job. A high

throughput grid aims to increase the completion rate of a stream of jobs

through utilizing available idle computing cycles as many as possible.

ii) Data Grid: - A grid providing an integrated view of data storage is called a

"data Grid"[81. A data grid is responsible for housing and providing access to

data across multiple organizations. Users are not concerned where data are

located as far as they have access to the data.

iii) Service Grid: - A service grid[8] provides the services those are not provided

by any single machine. This type of grid is further classified as on demand,

collaborative and multimedia grid. An on demand grid dynamically
aggregates different resources to provide new services. Collaborative grid

provides real time interaction between users and applications via a virtual
workspace by connecting users and applications into collaborative

G

environment. A multimedia grid provides an infrastructure for real time

multimedia applications.

2.2 Task Scheduling in Grid

Task scheduling is a process of mapping a set of tasks on a set of machines. Effective

task scheduling is the key for high performance in grid computing. A generalized
grid scheduling system is shown in figure 2.2. There are mainly four modules
namely, grid scheduler, grid information service, launching and monitoring and local

resource manager. The broken lines in figure show resource or application

information flows and solid lines show task or task scheduling information flows.

i) Grid Scheduler: - The grid users submit their jobs or applications to grid

scheduler. The grid scheduler collects information about resources from grid

information service and generates application and resource mapping based on

some objective specified by the user or predicted resource performance.

ii) Grid Information Service: - The grid information service (GIS) collects

information of available resources, continuously. The GIS at equal time

interval gathers this information. GIS is responsible for collecting and

predicting the resource state information such as CPU capacities, memory

size, network bandwidth, software availabilities and load of a site at particular

period. Application properties and performance of a resource for various

applications are necessary for feasible application and resource mapping. The

performance model such as cost estimation helps the scheduler to choose the

best match to optimize the objective functions.

iii) Launching and Monitoring Module: - The launching and monitoring

module implements the finally determined schedule by submitting the

application to selected resources and monitors the execution of applications.

iv) Local Resource Manager: - The local resource manager is mainly

responsible for two jobs: local scheduling and reporting resource information

to GIS. Local scheduling deals with scheduling of jobs of both exterior grid

users and local users. There may be one or more than one local scheduler. It

depends on the size, number and types of resources, and number and types of
applications submitted. The local resource manager also collects information

regarding resource load, availability of resources, etc. and submits this

information to GIS.

Grid
Applications

I 	Grid Scheduler

Cost Estimation 	i

Grid Information
Service

Job Launching &
Monitoring

Internet

F--------
I Logical Application Local

—

R

—

es

-

-

ou

r

—

rce

L— — —

—M 	

--

-

-

II
Local Resource 	ogical Applications

TManeser
..........

Resource `---------------I

Domain I 	 	 Domain N

Figure 2.2 A Logical Grid Task Scheduling Architecture[9]

2.2.1 Task Scheduling Phases

The task scheduling in grid comprises three phases.

i) 	Resource Discovery: - In resource discovery[10] phase, a list of potential

resources is generated. These resources are investigated in more detail in

phase two. The resource discovery involves three sub stages, authorization

filtering, application definition and minimal requirement filtering. In

authorization filtering, the resources are discovered and determined whether

they are accessible or not. In grid, resources are monitored by multiple

administrative domains and the scheduler has to follow all administrative

policies to have the access of resources from different domains. At the end of

authorization filtering, user have a set of resources on which access have been
granted. In application definition, the user should be able to specify some

minimal set of job requirements. This will help in further filtering of

resources. The set of possible job requirements may vary from user to user

7

and application to application. Some requirements may be static like
operating system and some may be dynamic such as RAM requirements,

bandwidth, or connectivity. In minimal requirement filtering stage, the
resources are filtered which do not fulfill the minimal job requirements. As

the grid resources are distributed and dynamic in nature, this step uses static
data to evaluate whether a resource meets the minimal requirements. The

resources are dropped which do not satisfy the need for job requirement. At

the end of this stage, a set of resources is available for further investigation.

ii) Resource Selection: - In resource selection[1O] phase the given a set of

resources, generated in first phase, are further investigated and a resource or a

set of resources is selected for job execution. In information gathering stage,

detailed information about the resources is collected. This may include the

availability duration, reliability, access rights, etc. 	This information is
gathered dynamically. The gathered information will be consist or not, it is

hard to tell, because resources are dynamic in nature and governed by multiple
administrative policies. Many system gather information periodically. In

system selection stage, a resource or set of resources is selected for job
execution. This selection can be the best resource from the set of resources or

based on other issues like availability, reliability etc.

iii) Job Execution: - The-last phase is job execution[10]. This may involve many

sub stages. First sub-stage is to do advance reservation. Advance reservation

of resources is good because it guarantees that resources will be available at

the time of job execution. Once resources are chosen, the next stage is to

submit the job. It can be very simple to run just one command or very

complicated as to run series of commands. The preparation stage may involve

setup, staging, claiming a reservation or other actions needed to prepare the

resource to run job. Next stage is monitoring the progress. It depends on the

type of application. User can decide how to monitor the progress. It can send
a query at regular time interval to the resource for status of application. When

job finishes the user is notified and the results are given. The last stage is clean

up tasks; it involves the retrieving of files from the resources and to do

analysis on results. It also involves removing temporary settings.

8

Phase One — Resource Discovery

Phase Three —Job Execution

6. Advance Reservation ,1

7. Job" Submission

8. Preparation- Tasks:

9. Monitoring Progress ;3

Phase Two — System Selection 	
10. Job Completion

4. Information ,Gathering
11. Clean-up Tasks

5 System Selection

Figure 2.3 Task Scheduling Phases[10]

2.2.2 Challenges of Task Scheduling in Grid

Grid is having some unique characteristics, explained below. These characteristics

make the task scheduling a challenging problem.

i) Heterogeneity: - In grid, resources are distributed in multiple administrative
domains. The resources are of wide variety and are having varying

characteristics. The computational, storage and underlying connecting

networks are heterogeneous. The heterogeneity results in different capabilities

for job processing and data access.

ii) Autonomy: - In grid resources are owned by various organizations. They are

having different access and security policies. Grid does not have full control

over the resources. Schedulers have to work with the local policies of

resources, which makes it hard to estimate the exact cost of executing a task

on different sites. The autonomy results in the diversity in local resource
management and access control policies. A grid scheduler is required to be

adaptive to different local policies_

iii) Performance Dynamism: - Grid is dynamic and service providers leave and

join it based on their feasibility. Because of the dynamic nature of grid
resources, the performance is constantly changing and creates performance

dynamism[9]. This makes the grid schedulers to work in dynamic

environment. Because of local autonomy of resources, they are not dedicated

to grid applications. For example, a grid job submitted remotely to a computer
cluster might be interrupted by a cluster's internal job which has a higher

priority. The network bandwidth is heavily affected by Internet traffic that is
not relevant to grid applications. This type of contention leads to performance

fluctuation to the grid applications. It makes a hard job to evaluate the grid

scheduling performance under classical performance model. A feasible

scheduling algorithm should be able to adapt such dynamic behaviors.

iv) Resource Selection:- A grid is having a large number of computational and

storage resources, distributed in multiple administrative domains. Grid
scheduler selects computational nodes based on resource model and

performance criteria. The communication bandwidth in grid is shared by

background loads, so inter-domain communication cost should be considered.

Many grid applications are data intensive, so data staging cost is also

considerable. These all factors make, difficult to select a resource for
computation because if one resource is providing low computational cost may

require high access cost to storage site.

2.2.3 Mapping Modes

Tasks can be divided into two groups: Independent and Dependent[11]. Dependent

task depends on the results of its predecessors while independent task do not require

communication with other tasks in same metatask. [12]. Metatask is a collection of

independent tasks with no inter-task data dependencies. Mapping of tasks can be done

in two modes: On line mode and batch mode.

10

i) 	On line mode: - Task is mapped to a resource as soon as it arrives to the

scheduler. Task is considered only once for mapping and the mapping does

not change once it is done. This mode of mapping is useful when task arrival

rate is low.
ii) 	Batch mode: - In this mode, first, tasks are collected into a set. This set is

called metatask. Mapping of metatask is performed at prescheduled time
called mapping events. Mapping of each task is performed at every mapping

event until it begins its execution. This mode can make better decisions

because heuristics have the resource requirement information of the metatask

and the actual execution time of a larger number of tasks is also known in

advance.

2.3 QoS in Grid

In grid, the quality of services (QoS) is a big concern for many applications. It is an

extensive concept which varies from application to application. It could be the

requirement of CPU speed, network bandwidth, deadline, execution cost etc. QoS is a

set of conditions to run an application. Providing nontrivial QoS is one of the primary

goals of grid computing. Based on the grid infrastructure two types of QoS attributes

can be distinguished: Qualitative and Quantitative. The qualitative QoS attributes

refers to user satisfaction and service reliability while the quantitative QoS attributes

refers to network latency, CPU performance, storage capacity, etc. For example,

parameters for network QoS can be bandwidth, delay, throughput, parameters for
CPU computing can be specified based on how the CPU is used. CPU can be used

either in shared mode or in exclusive mode. In shared mode the user application
shares the CPU processing power with other user applications while in exclusive

mode user application has complete access of the CPU. Parameters for storage QoS

are bandwidth and storage capacity. Users can have many types of QoS requirements

for their applications. It can be single or multiple QoS. Some possible user

requirements are:

i) 	Timelineness: - Timelineness[13] defines the requirement of time associated

with a task or application. It can be total execution time, deadline or response

time etc.

11

ii) 	Execution Cost: - Execution cost refers to the cost paid by the user to the
service provider to execute the application.

iii) Priority: - Each user can assign priority[13] to his tasks. The higher priority

tasks can be schedule by scheduler with higher importance.

iv) Reliability: - The task that runs for a long time can experience failure during

execution. The reliability of a task is defined to be the probability that task
can be completed successfully[14]. Each user may specify a degree of

reliability for its tasks.

2.3.1 Layered Structure of Grid QoS

The layered structure of grid QoS[15] is shown in figure 2.4. The top layer represents

QoS demands from the user. User can have single or multiple QoS demands for his

application. The second layer represents the grid service QoS. In this layer, the

service providers define the specific descriptive QoS parameters such as service

security QoS, reliability QoS, and accounting QoS. The service providers also define

the simplified QoS level such as bad, general, good, better, best. This can help to

meet the user's possible simple QoS demands. The third layer is for system and

logical resource QoS. To meet user's demands on functional QoS parameter, the

service provider should define the different specific system QoS parameters and

logical resource QoS parameters. This layer's QoS parameters refer to the mapped

parameters of upper layer QoS. To descriptive QoS parameters, each sub. service can

translate them into their own security QoS, reliability QoS and accounting QoS based
on their semantic. To functional QoS parameters, the service provider should define

each sub service different specific system QoS parameters and logical resource QoS

parameters, which corresponds to different simplified QoS levels in upper layer. The

bottom layer is for physical parameter such as network QoS, device QoS, and

physical resource QoS. The QoS parameters in this layer are translated QoS

parameters from the upper layers. System. QoS is translated into device and network

QoS, logical resource QoS is translated into physical resource QoS.

The bottom layer consists of network QoS, device QoS and physical resource QoS is

transparent to user. So, the user can put its demand either in grid service layer or

system or logical resource layer. In grid service layer user can put demands for QoS

12

like good, best etc. In system or logical resource QoS layer the user can put specific

demands like system response time <=120 seconds or transmission speed should be

>= 128 Kbps. Because the relationship of QoS parameters between different layers is

defined by the service provider, the provider should define the specific QoS

parameters in each layer.

User's QoS Demands

Grid -Service ,QoS . Level

System QoS -Level 	 Logical Resource QoS
Level-

Network QoS Level- 	Device QoS Level" 	 Physical Resource QoS
Level

Figure 2.4 Layered Structure of Grid QoS[15]

2.4 Literature Review

In this section, two types, batch mode and QoS based batch mode scheduling

heuristics for independent task is discussed.

2.4.1 Batch Mode Heuristics

i) 	Min-Min: - The Min-Min[2] heuristic is a simple algorithm which runs fast

and delivers the satisfactory performance. Min-Min begins with the set MT of

all unassigned tasks. It has two phases. In the first phase, the set of minimum

expected completion time for each task in MT is found. In the second phase,
the task with the overall minimum expected completion time from MT is

chosen and assigned to the corresponding resource. Then this mapped task is

13

removed from MT and the process is repeated until all tasks in the MT are
mapped. Min-Min maps the tasks in the order that changes the machine

availability status by the least amount that any assignment could. Let t; be the

first task mapped by min-min onto an empty system. The machine that

finishes t; the earliest, say mj, is also the machine that executes t; the fastest.

For every task that min-min maps after t;, it changes the availability status of
m~ by the least possible amount for every assignment. In most situations, it

maps as many tasks as possible to their first choice of service resources. In

min-min, it is expected that a smaller makespan can be obtained if more tasks

are assigned to the machines that completes them the earliest and also executes

them fastest. However, the Min-Min algorithm is unable to balance the load

well since it usually schedules small tasks first.

ii) Max-Min: - Max-Min[2] heuristic is very similar to Min-Min, except in

second phase. Max-Min assigns task with maximum expected completion

time to the corresponding resource in second phase. The Max-Min algorithm

may give a mapping with more balanced loads across the service resources in

some environments. Max-Min attempts to minimize the penalties incurred

from performing tasks with longer execution times. For example, let there are
many tasks with shorter execution times and one task with larger execution

time. Mapping the task with larger execution time to its best machine allows
this task to be executed concurrently with the remaining tasks, having shorter

execution time. In this case the max-min will give better mapping than min-

min by executing larger task with parallel shorter tasks. In cases similar to

this example, the max-min heuristic may give more balanced load and better

makespan.

iii) Weighted Mean Time-Min: - Weighted Mean Time-min heuristic[16]

employs weighted mean execution time as heuristic and then assigns the tasks
which is having maximum weighted mean execution time to the machine with

minimum earliest completion time. The heuristic finds the performance

metric of each resource, called the weight of the resource. This weight is used

to find the weighted mean time of each task.

14

iv) Segmented Min-Min: - In Segmented Min-Min heuristic described in

[17] tasks are first ordered by their expected completion times. Then the
ordered sequence is segmented and finally it applies Min-Min to these

segments. This heuristic works better than Min-Min when length of tasks are

dramatically different by giving a chance to longer tasks to be executed earlier

than where the original Min-Min is adopted.

v) Sufferage: - The Sufferage[3] - heuristic is based on the idea that better

mapping can be generated by assigning a machine to a task that would suffer

most in terms of expected completion time if that particular machine is not

assigned to it. For each task, its sufferage value is defined as the difference

between its best minimum completion time and its second best minimum

completion time. Tasks with high sufferage value take. precedence. But when

there is input and output data for the tasks, and resources are clustered,

sufferage heuristic may have problems. In this case, intuitively, tasks should

be assigned to the resources as near as possible to the data source to reduce the
makespan. But if the resources are clustered and nodes in the same cluster are

with near identical performance, then the best and second best minimum are

also nearly identical which makes sufferage value close to zero and gives the

tasks low priority.

vi) XSufferage: - XSufferage[4] heuristic is proposed to solve the problem of

conventional sufferage heuristic. It gives cluster level sufferage value in place

of total resource level as given by sufferage heuristic. Experiments show that

XSufferge heuristic outperforms the conventional sufferage heuristic.

2.4.2 QoS Based Heuristics
i) 	QoS Guided Min-Min: - QoS Guided Min-Min heuristic[5] is based on the

Min-Min heuristic. It considers network bandwidth as QoS parameter. It

divides the tasks in two groups: high and low QoS. The idea behind this
division is that the tasks requiring high QoS can only run on high QoS

providing hosts. The low QoS task can run on any hosts and if they are

allocated to high QoS resources, then it leads large makespan, wastage of

resources and unbalancing the load. At last, this reduces the overall

performance of grid systems. The QoS guided Min-Min heuristic first

15

schedules the tasks from high QoS group on resources that can provide high

QoS as required. Later it schedules the tasks from low QoS group

ii)

	

	Priority Grouping Heuristic: - The priority grouping[6] algorithm creates

priority groups. These groups are created on the basis of the QoS services

provided by the resources. If there are n resources and each one can provide

different QoS services, then n groups can be created. Each group is assigned a
priority level. The task is assigned to one of these groups based on the QoS

requirement of it. In the descendent order from high to low priority, the tasks

from different groups are scheduled.

2.5 Research Gaps

There are many heuristics such as given in section 2.4.1 and 2.4.2 for batch mode and

'QoS based independent task scheduling. There is scope to improve the existing

heuristics as well as propose new heuristics. Combination of more than two heuristics

gives better results than single heuristic. There are no such heuristic that should

consider resource performance as well as QoS requirements of tasks for mapping.

The heuristic based on resource performance and QoS demands can be proposed.

2.6 Terminology

The following terminology, give in [5], is used throughout the report.

i) Expected Execution Time: - The expected execution time ETij of task ti on

resource rj is defined as the time taken by resource r to execute the task ti,

when there is no load assigned to resource r~.
ii) Expected Completion Time: - The expected completion time CT of task t; is

defined as the time taken by resource rj to complete the execution of task t;,

after finishing the previously assigned load. Hence,

CT1 = ET11 +rte 	 (2.1)

Here, rte is the ready time or time needed to complete the previous assigned

load. The above mentioned terminology can be obtained though predication

model.

16

Chapter 3

Proposed Resource Performance Guided Independent Task
Scheduling Heuristics

Resource performance refers to the performance metric of a resource in a mapping

schedule. The performance metric of each resource is computed and a weight value is
assigned to each resource based on the performance metric. This weight value is used

to compute the weighted expected execution time. Two heuristics, namely,

segmented weighted time — min and segmented weighted time — max are based on this

performance metric. Both heuristics divides the tasks in number of segments on the

basis of minimum weighted expected execution time. Each segment is assigned a

priority. In descending order of priority of segments, the tasks from segments are

mapped. In both heuristics total number of tasks in metatask is referred with n and

total number of resources is referred with m. The heuristics segmented weighted time
— min and segmented weighted time — max are described in section 3.1 and section
3.2, respectively.

3.1 Segmented Weighted Time-Min Heuristic

The segmented weighted time-min (SWT-Min) heuristic is shown in figure 3.1. It is

assumed that the expected execution time of all tasks on each resource is known in

advance. The steps are elaborated in detail below.

a) 	Find the performance metric of each resource: - The method given in [16],

is used to find the performance metric of each resource. First average

execution time of all tasks on each resource is found. It can be computed
using the equation (3.1).

Zn 1 ETT~ avg j =
n

(3.1)

Here, ET ;j is the expected execution time of task t; on resource rr. This average

execution time can be used to represent the performance of resource. If avgj <
avgj, the performance of resource ri is better than resource r~. The average

17

execution time values can be used to find the weight, the performance metric,

of each resource. It can be computed using equation (3.2).

avgi
u'L E`_1 avg1 	 (3.2)

The smaller the value of w~, the better the resource is and

wi = 1 (3.3)

i=1

b) Find weighted expected execution time of each task: - The weighted
expected execution time of each task is computed using equation (3.4).

W ETt1 = wl X ETi j 	 (3.4)

c) Create Segments: - The minimum weighted expected execution time of each

task is found. The tasks are sorted on the basis of minimum weighted time.

Depending of the number of tasks and number of resources, segments of tasks
is created. Each segment is assigned equal number of tasks. A priority value

is assigned to each segment. The segment having tasks with smaller weighted

expected execution time is assigned lowest priority and the segment having

tasks with larger weighted time is assigned highest priority. It is difficult to

decide, how many segments should be created. It all depends on the number

of tasks in the batch and number of resources available at the time of
scheduling. The segmentation helps to schedule the tasks having larger

execution time first. It finally results in better resource load balancing.

d) Scheduling Process: - In the descending order, of priority of segments, the

tasks from segments are mapped. For each segment, the heuristic performs the

following steps. The heuristic finds the task with minimum weighted time and

maps it on the resource that is giving earliest completion time. If there are
more than one resource which are giving earliest completion time then the

resource with least load is selected. This helps in balancing the resource load.
The mapped task is deleted from the metatask and ready time of the resource

is updated. This process continues until all tasks from the segments are

mapped.

18

(1) Find the performance metric of each resource

(2) Find weighted expected execution time of each task

(3) Create N segments

(4) In descending order of priority of segments, the

tasks are mapped

(5) While (i < N)

(6) Do until all tasks from the ith segment are

mapped

(7) Find the task ti with minimum weighted expected

execution time

(8) Find the resource r that gives earliest

completion time

(9) If there are more than one resource which are

giving earliest completion time then select the

resource with least load

(10) Map the task tj on the resource r~

(11) Remove the task t. from the meta-task

(12) Update the ready time of resource r1

(13) End Do

(14) End While

Figure 3.1 Segmented Weighted Time-Min (SWT-Min) Heuristic

3.2 Segmented Weighted Time-Max

The Segmented Weighted Time-Max Heuristic is very similar to segmented weighted

time-min heuristic. The heuristic is shown in figure 3.2. The working of the heuristic

is very similar to segmented weighted time-min heuristic; it differs only in the

scheduling process. Other process like finding the performance metric of each

resource, finding weighted time and creating segments are similar to segmented

weighted time-min heuristic.

a) 	Scheduling Process: - In the descending order of priority of segments, the

tasks from segments are mapped. For each segment, the heuristic performs the

19

following steps. The heuristic finds the task with maximum weighted time

and maps it on the resource that is giving earliest completion time. If there are

more than one resource which are giving earliest time then the resource with

least load is selected. This helps in balancing the resource load. The mapped

task is deleted from the metatask and ready time of the resource is updated.

This process continues until all tasks from the segments are mapped.

(1) Find the performance metric of each resource

(2) Find weighted expected execution time of each task

(3) Create N segments

(4) In descending order of priority of segments, the

tasks are mapped

(5) While (i < N)

(6) Do until all tasks from the ith segment are

mapped

(7) Find the task ti with maximum weighted expected

execution time

(8) Find the resource r that gives earliest

completion time

(9) If there are more than one resource which are

giving earliest completion time then select the

resource with least load

(10) Map the task ti on the resource r~

(11) Remove the task ti from the meta-task

(12) Update the ready time of resource r3

(13) End Do

(14) End While

Figure 3.2 Segmented Weighted Time—Max Heuristic
G c1TRAL t/e

(ACCNo.. °~O O 7~ do T ~•
Date.................... /

ROOc

20

Chapter 4

Proposed QoS Guided Independent Task Scheduling
Heuristics

QoS imposes constraints on scheduler to schedule the tasks under given conditions.
The QoS demand can be for single such as network bandwidth or multiple such as

cost, trust, availability, priority etc. One example can be taken to justify why QoS

based task scheduling in necessary. Let there are two tasks ti and t2 and two resources
r, and r2. Task t1 can only be executed on resource rl and task t2 can be executed on
any of two resources. If task t2 is first mapped on resource ri, then task ti will wait till

ri becomes free and at the same time resource r2 will also be idle. This mapping will

create larger makespan and resource load unbalancing. Now, if task t1 is first mapped
on resource ri then task t2 can also be mapped on resource r2 at the same time. Now

no task is waiting for any resource to become free as well as all resources are
engaged. This mapping reduces the makespan and balances the load across resources

well. In this chapter, four QoS based heuristics are proposed. The QoS guided
weighted mean time-min, QoS guided weighted mean time min-min max-min
selective, and priority based QoS guided weighted mean time min-min max-min
selective heuristics are proposed for single QoS constraints based scheduling.
Multiple QoS guided weighted mean time min-min max-min selective heuristic is
proposed for multiple QoS constraints based scheduling.

4.1 QoS Guided Weighted Mean Time-Min Heuristic

The QoS guided weighted mean time-min (QWMTM) heuristic is proposed for QoS

based independent task scheduling. The weighted mean time-min heuristic is
modified and a QoS parameter is introduced in it. Network bandwidth is taken as

QoS parameter. The heuristic is given in figure 4.1. It is assumed that the expected

execution time of all tasks on each resource is known in advance. The steps are
described in detail below.

i) 	Divide the tasks in two QoS groups: - The tasks are divided in two QoS
groups: high and low. In high group task with high QoS demand are taken and

21

in low group task with low or no QoS demand are taken. The high QoS tasks

can only be executed on high QoS providing resources. But the low QoS tasks

can be executed on any resource. This division of tasks helps to schedule the

high QoS tasks first and low QoS tasks afterward. This will also help to

satisfy the QoS demands of tasks first.
ii) Find the performance metric of resource: - The resources are divided on the

basis of their services. Two groups are created: high and low. The
performance metric of resource of each group is computed. The method given

in section 3.1 of chapter 3 is used to compute the resource performance metric.

iii) Find the weighted mean time of each task: - The equation (4.1) is used to

find the weighted mean time of a task. The weighted mean time shows the

overall execution time of a task on all resources. If wmt; < wmtj then, task t;

requires less time to execute than task t~.

m wET
wmt; = j-1 	ij 	 (4.1)

m

iv) Scheduling Process: - First the tasks from high QoS group are mapped. The

following steps are performed. The heuristic finds the task t; with maximum
weighted mean time. It finds the resource rr from QoS qualified resources

which gives the earliest completion for task ti. It maps the task t; on resource rj.

The mapped task t; is deleted from the metatask. The ready time of resource r~

is updated. This process continues until all tasks with high QoS are mapped.
After mapping all high QoS tasks, the tasks from low QoS group are mapped.

From all tasks it finds task ti with maximum weighted mean time and resource
rj which gives earliest completion time for task t;. The task t; is mapped on

resource r~. After mapping the task t; is deleted from metatask. The ready time

of resource rr is updated and this process continues until all tasks are mapped.

22

(1) Divide the tasks in two QoS groups : High and Low

(2) Find the performance metric of each resource

(3) Find weighted mean time of each task

(4) While there are tasks in metatask

(5) Do until all tasks with high QoS are mapped

(6) Find task ti with maximum weighted mean time

For the task ti, find the resource r from QoS
(7) qualified resources that gives minimum

completion time

(8) Assign task ti to resource r1

(9) Update ready time of resource r~

(10) Delete task ti from metatask

(11) End Do

(12) Do until all tasks with low QoS are mapped

(13) Find task ti with maximum weighted mean time

(14) For the task ti find the resource r that
gives the earliest completion time

(15) Assign task ti to resource r3

(16) Update ready time of resource r~

(17) Delete the task ti from meatatask

(18) End Do

(19) End While

Figure 4.1 QoS Guided Weighted Mean Time-Min Heuristic

23

4.2 QoS Guided Weighted Mean Time Min-Min Max-Min
Selective Heuristic

The QoS guided weighted mean time min-min max-min selective (QWMTS) heuristic

is the modified heuristic of weighted mean time min-min max-min selective (WMTS)
heuristic[181. The WMTS uses the merits and demerits of min-min and max-min

heuristics for scheduling. A QoS parameter, network bandwidth is introduced in

WMTS and new QWMTS heuristic is proposed. The QWMTS heuristic is shown in

figure 4.2. It is assumed that the expected execution time of all tasks on each resource

is known in advance. The steps are described in detail below.

i) Divide the tasks in two QoS groups: - The tasks are divided in two QoS

groups: high and low. In high group task with high QoS demand are taken and

in low group task with low or no QoS demand are taken. The high QoS tasks

can only be executed on high QoS providing resources. But the low QoS tasks

can be executed on any resource. This division of tasks helps to schedule the
high QoS tasks first and low QoS tasks afterward. This will also help to

satisfy the QoS demands of tasks first.
ii) Find the performance metric of resource: - The resources are divided on the

basis of their QoS services. The two groups are created, in first group

resources are taken which can satisfy the QoS demands of tasks and in second
group the resources are taken which can not satisfy- the QoS demand of tasks.

The method given in section 3.1 of chapter 3 is used to compute the
performance metric of resource of each group separately.

iii) Scheduling Process: - The tasks from high QoS group are mapped first. The

heuristic perform the following steps until all tasks from group are mapped. It

finds expected completion time of each task using equation (4.2)

CTj = ETj + rt j 	 (4.2)

It finds the weighted mean time of each task. It uses equation (4.1) to find the

weighted mean time. It finds the standard deviation (SD)[191 of expected
completion time of all unassigned tasks of metatask. It uses the equation (4.3)

to find the standard deviation.

24

(1) Divide the tasks in two QoS groups : high and low

(2) Find the performance metric of each resource

(3) While there are tasks in metatask

(4) Do until all tasks with high QoS group are mapped

(5) Find the expected completion time of each task

(6) Find weighted mean time of each task

(7) Compute the standard deviation SD

(8) Compute relative standard deviation SD'

(9) If SD' < ST then
(10) Find the task ti that is having minimum

weighted mean execution time and assign it to
the resource r~, from the QoS qualified set,
that is giving earliest completion time

Else

(11) Find the task ti that is having maximum
weighted mean execution time and assign it
to the resource r1, from the QoS qualified set,
that is giving earliest completion time

(12) Delete task t. from meatatask

(13) Update ready time of resource r~

(14) End Do

(15) Do until all tasks with low QoS group are mapped

(16) Find the expected completion time of each task

(17) Find weighted mean time of each task

(18) Compute the standard deviation (SD)

(19) Compute relative standard deviation SD'

(20) If SD' < ST then
(21) Find the task ti that is having minimum

weighted mean execution time and assign it to
the resource r~, that is giving earliest
completion time

(22) Else

(23) Find the task ti that is having maximum
weighted mean execution time and assign it to
the resource, that is giving earliest
completion time

(24) Delete task ti from metatask

(25) Update ready time of resource r~

(26) End Do
(27) End While

Figure 4.2 QoS Guided Weighted Mean Time Min-Min Max-Min Selective Heuristic

W,

SD -- 'En 1(CTij — avgCT)2 	 (4.3)
n

Here, avgCT is average execution time of all unassigned tasks of metatask. It
can be computed using equation (4.4)

avgCT =)' 1 CTIi 	 (4.4)
n

The heuristic then finds the relative standard deviation[20].

SD
SD' _

	

	 (4.5) avgCT

The relative standard deviation shows the degree of dispersion of a set of

values, here the set of values are 	If the value of the relative standard

deviation is less than the critical value of relative standard deviation(ST), then

task with minimum weighted mean time is chosen for mapping otherwise task

with maximum weighted mean time is chosen for mapping. The critical value

of relative standard deviation can be found by experiments, which come out to

be 0.64 in this case.

4.3 Priority based QoS Guided Weighted Mean Time Min-Min
Max-Min Selective Heuristic

The priority based QoS guided weighted mean time min-min max-min selective

heuristic (PQWMTS) is based on the weighted mean time min-min max-min selective

heuristic[1 S]. The PQWMTS uses the priority grouping strategy to group the similar

tasks. The heuristic creates n groups. These groups are created on the basis of

services provided by resources at the time of mapping. Each group is assigned a

priority value. The group having resource with highest QoS is assigned highest
priority value. Each task is assigned to one of the groups based on its QoS demands

or priority. The heuristic is more suitable in the environment where the resource

heterogeneity is high and the task heterogeneity is also high. The heuristic is shown

in figure (4.3). The working of PQWMTS is described in detail below.

26

(1) Compute n QoS groups

(2) Find the performance metric of each resource

(3) While (i < n)

(4) For each QoS group

(5) Find the expected completion time of each task

(6) Find the weighted mean time of each task

(7) Compute the standard deviation SD

(8) Compute relative standard deviation SD'

(9) If SD' < ST then

(10) Find task t. having minimum weighted mean
execution time and assign it to the resource,
from 	the 	QoS qualified set, 	that 	is
giving minimum completion time

Else

(11) Find task ti having maximum .weighted mean
execution time and assign it to the resource,
from the QoS qualified set, that is giving
minimum completion time

(12) Delete task ti from the metatask

(13) Update ready time of resource r~

(14) End For

(15) End while

Figure 4.3 Priority based QoS Guided Weighted Mean Time Min-Min Max-Min
Selective Heuristic

i) Compute n QoS groups: - If there are n resources and each one is providing

different QoS services, then n groups can be created. The grouping helps in

satisfying users QoS demands. Each group is assigned a priority. The group
having tasks with high utility value is assigned highest priority. Each task,

based on its QoS demand, is assigned to one of the groups.
ii) Find the performance metric of resource: - The performance metric of each

resource is computed as given in section 3.1 of chapter 3. Performance metric

27

is computed group wise. The metric shows the performance of resource in a

group.
iii)

	

	Scheduling Process: - In the descending order of priority of groups, the tasks

from groups are mapped. For each group, the heuristic performs the following

steps. It computes the expected completion time of each task. The expected
completion time can be computed using equation (4.2). Next, it finds the

weighted mean time of each task. The weighted mean time of each task can
be computed using equation (4.1). The heuristic computes the standard

deviation of all unassigned tasks. The standard deviation can be computed

using equation (4.3). The heuristic finds the value of relative standard

deviation. The value of relative standard deviation can be computed using

equation (4.5). The relative standard deviation shows the degree of dispersion

of a set of values, here the set of values are CT;j. If the value of the relative

standard deviation is less than the critical value of relative standard

deviation(ST), then task with minimum weighted mean time is chosen for

mapping otherwise task with maximum weighted mean time is chosen for

mapping. The critical value of relative standard deviation can be found by

experiments, which come out to be 0.64 in this case.

4.4 Multiple QoS Guided Weighted Mean Time Min-Min Max-
Min Selective Heuristic

The multiple QoS guided weighted mean time min-min max-min selective

(MQWMTS) heuristic considers multiple QoS demands such as deadline, response

time, cost, priority etc. of tasks. The MQWMTS heuristic is shown in figure 4.4. The

steps are described in detail below.

i) 	Find the total utility of task: - Let each task can request total d; QoS. The

equation given in (4.6) is used to find the total utility of a task.

U(t1) = 	wjuf) X (PL/pmax) 	
(4.6)

Here ww represents the weight assigned to the utility u~. The user can assign a

weight to the utility and Y_w=1. User can give preferences to the various QoS

needs by assigning different weight values to QoS parameters. Pi is the

28

priority of the task and P.,t is the maximum priority assigned to the task. For
the testing purpose response time[21], execution cost[21] and priority are

chosen as QoS parameters. The cost parameter is modelled by following

method. First, the cost value of each task on each resource is computed using
equation (4.7).

c(i,j) = cj x ET(i,j) 	 (4.7)

Here cc is the cost of execution per unit time. Then, the average execution cost
of task t; is computed using equation (4.8).

Z j 1 c(i,l) 	 (4.8) avg.Cost(ti) _
m

Here, m is the total resources which can satisfy the QoS requirements.

Execution cost on each resource is computed and the minimum of it is chosen.

c(i,) 	 (4.9)
EC(i,J) = avgCost(ti)

For the response time QoS parameter, the following method is used. First, the
response time of task t; on every resource is computed using equation (4.10).

rt(i,j) = ft(i , j) — st(ij) 	 (4.10)

Here, rt(i,j) is the response time of task t; on resource r. $(i,j) and st(i,j) is the

finish and start time of task ti on resource rj, respectively. Next, the average
execution time of task t; is computed using equation (4.11).

avgET (ti) =)7 ;
 rt(i. j) 	 (4.11)

m

Here, m is the resources which can satisfy the QoS requirements. The

minimum value of avgET(t;) is chosen. For the priority QoS parameter, the
priority value is generated in the range from 1 to 4.

29

(1) Find the total utility of each task.

(2) Divide the tasks in n groups.

(3) Find the performance metric of each resource

(4) While (i < n)

(5) For each QoS group

(6) Find the expected completion time of each
task

(7) For each task ti, compute the weighted mean
time

(8) Compute the standard deviation (SD)

(9) Compute relative standard deviation SD

(10) If SD' < ST then

(11) Find task t. having minimum weighted mean
execution time and assign it to the
resource, from the QoS qualified set, that
is giving minimum completion time

Else

(12) Find task tl having maximum weighted
mean execution time and assign it to the
resource, from the QoS qualified set, that
is giving minimum completion time

(13) Delete task ti from the metatask

(14) Update ready time of resource r~

(15) End while

Figure 4.4 Multiple QoS Guided Weighted Mean Time Min-Min Max-Min Selective
Heuristic

ii) Divide the task in n groups: - The tasks are divided in number of groups on

the basis of their total utility value. The division helps to give priority to high

QoS demanding tasks.
iii) Find the performance metric of each resource: - The performance metric of

each resource is computed as given in section 3.1 of chapter 3. Performance

W7

metric is computed group wise. The metric shows the performance of

resource in a group.

iv)

	

	Scheduling Process: - For each group the heuristic performs the following

steps. It calculates the weight of the resources in that group. It computes the
expected completion time of each task on each resource. It computes the
standard deviation of the completion time of unassigned tasks of metatask.

The standard deviation can be found using equation(4.3). Which task, having

maximum or minimum weighted mean time, will be chosen for the mapping

that depends on the critical value of the relative standard deviation(SD'). The

relative standard deviation can be found using equation (4.5). The relative

standard deviation shows the degree of dispersion of a set of values, here the

set of values are CT1. If the value of the relative standard deviation is less

than the critical value of relative standard deviation(ST), then task with
minimum weighted mean time is chosen for mapping otherwise task with

maximum weighted mean time is chosen for mapping. The critical value of
relative standard deviation can be found by experiments, which come out to be

0.64 in this case.

31

Chapter 5

Simulation Tool and Performance Metrics

5.1 GridSim: Grid Modeling and Simulation Toolldt

The GridSim[22] toolkit provides a comprehensive facility for simulation of different

classes of heterogeneous resources, users, applications, resource brokers, and

schedulers. It can be used to simulate application schedulers for single or multiple

administrative domains distributed computing systems such as clusters and Grids.

Application schedulers in the Grid environment, called resource brokers, perform

resource discovery, selection, and aggregation of a diverse set of distributed resources
for an individual user. This means that each user has his or her own private resource

broker and hence it can be targeted to optimize for the requirements and objectives of

its owner. In contrast, schedulers, managing resources such as clusters in a single

administrative domain, have complete control over the policy used for allocation of

resources. This means that all users need to submit their] obs to the central scheduler,

which can be targeted to perform global optimization such as higher system utilization
and overall user satisfaction depending on resource allocation policy or optimize for

high priority users. GridSim is better for simulating the grid based algorithms
because

> It allows modeling of heterogeneous types of resources.

> Resources can be modeled in two modes : space shared and time shared.
➢ Resource capability can be defined in the form of MIPS (Million Instructions

Per Second) as per SPEC (Standard Performance Evaluation Corporation)
benchmark.

> Advance reservation of resources can be done.
➢ Application tasks can be heterogeneous and they can be CPU or UO intensive.

> There is no limit on the number of application jobs that can be submitted to a
resource.

➢ Multiple user entities can submit tasks for execution simultaneously in the
same resource, which may be time-shared or space-shared.

> Network speed between resources can be specified.

> It supports simulation of both static and dynamic schedulers.

32

> Statistics of all or selected operations can be recorded and they can be
analyzed using GridSim statistics analysis methods.

5.2 GridSim Entities

GridSim support various entities for simulating the heterogeneous resources that can

be configured as time or space shared systems. The various entities are given below

i) 	User: - Each user represents a grid user. Each user can create different jobs.

Each user can define its scheduling optimization policy either minimizing time
or cost or both.

ii)

	

	Broker: - Broker is the entity which schedules the jobs on resources. The
broker gathers information about available resources and schedules the jobs

submitted by users. Broker tries to optimize the scheduling policy.

iii)

	

	Resource: - The grid resources differ from each other on following

characteristics:
a. Number of processing elements

b. Cost of processing

c. Speed

d. Internal scheduling policy : time or space shared

The resource speed and the job execution time can be defined in terms of the

ratings of standard, benchmarks such as MIPS and SPEC.
iv)

	

	Grid Information Service: - Grid information service is responsible for

providing resource registration and keeping track of available resources in
'grid. 	The broker can query grid information service for resource's

configuration and status information.
v)

	

	Input and Output: - The information from one entity to another entity flows

though its input and output entities. The I/O channels or ports are used to

establish link between entity and its input and output entities. The support for

buffered input and output channels associated with every GridSim entity

provides a simple mechanism for an entity to communicate with other entities

and at the same time enables modeling of the necessary communications delay
transparently.

33

5.3 Simulation Environment and Data

The GridSim5.0 simulation toolkit is used to simulate and validate the proposed

heuristics. The proposed as well as QoS guided min-min, weighted mean time-min,
weighted mean time min-min max-min selective, min-min and max-min heuristics are

implemented in gridsim. For each experiment, the batch size of tasks is taken as 1000

tasks. 20 resources are taken for each experiment. Each resource is having a number

of machines. This number of machines is generated randomly in the range from 5 to

10. Each machine is having a number of processing elements. This number of

processing elements is generated randomly in the range from 5 to 10. The task arrival

is modelled as poison random process. For each experiment, the following task

scenarios are taken.

Scenario I: A few short tasks with many long tasks.

Scenario II: A few long tasks with many short tasks.

Scenario III: The task length is determined randomly.

5.4 Performance Metrics

Depending on what scheduling performance is desired in grid there exists various
performance metrics for evaluating scheduling algorithms. The results of the

proposed heuristics are evaluated on the basis of following performance matrices:

5.4.1 Makespan: - Makespan is a measure of throughput of the Grid. It can be

calculated using equation

makespan = max (CTI)
tiEMT (5.1)

Here, CT; is the completion time of task t;. The less the makespan the better

the algorithm is.

5.4.2 Load balance degree: - The load balance degree[23], 13, is determined
through the relative deviation of mean square deviation, d, of resource

utilization.

d
13=1-- r 	 (5.2)

34

The best load balancing level is achieved if f reaches to 1 and d is close to 0.

The mean square deviation, d, of average resource utilization(ru) is given by

equation (5.3)

d=
ri=

,(ru — rui) z
rn
 (5.3)

Here ru is the average resource utilization resources, which can be computed

using equation (5.4)

ru =
m m rui 	

(5.4)

Here rub is the resource utilization of resource r~ and can be computed using

equation (5.5)

~i where tlhas been executed on mj(tei — tSi)
ru j = 	 T 	 (5.5)

Here tei is the finish time and tsi is the start time of task ti on resource r~. T is

the total application time elapsed so far and can be computed using equation

(5.6)

T = max (tej) — min (tsi)
	

(5.6)

The load balance degree shows the resource load balancing achieved by a heuristic.

Both, makespan and load balance degree, are used to validate the proposed heuristics.

35

Chapter 6

Results and Discussions

The task scenarios given in section 5.3 of chapter 5 are used to test the all proposed

heuristics. The simulation environment as given in section 5.3 of chapter 5 is created

for every heuristics. The results of makespan and load balance degree of every
heuristic are computed. The obtained results of proposed heuristics are compared
with the results of other heuristics such as QoS guided min-min, weighted mean time-

min, weighted mean time min-min max-min selective, min-min and max-min. The
detailed results are shown below.

6.1 Results .of Segmented Weighted Time-Min Heuristic
a) 	Makespan: - The makespan results are shown in figure 6.1. The makespan

results are compared with the results of Min-Min and Max-Min heuristics.

Table 6.1 shows the comparison of Segmented Weighted Time-Min, Min-Min

and Max-Min Heuristics. The SWT-Min heuristics gives 5.45%, 9.78% and

4.03% improvement in makespan than Min-Min heuristic for the task scenario

I, II and III, respectively. The SWT-Min heuristics gives 11.72%, 4.21% and

7.55% improvements in makespan than Max-Min heuristic for the task
scenario I, II and III, respectively_ Overall, SWT-Min heuristic gives better

makespan than Min-Min and Max-Min heuristic for each task scenario.

Table 6.1 Makespan Comparison of SWT-Min, Min-Min and Max-Min Heuristics

Task

Scenario
Makespan (In Thousand Seconds) Improvement

over MinMin

Improvement

over MaxMin SWT-Min MinMin MaxMin
I 39.9 42.2 45.2 5.45% 11.72%
II 34.1 37.8 35.6 9.78% 4.21%
III 42.8 44.6 46.3 4.03% 7.55%

b) Load Balance Degree: - The load balance degree of SWT-Min is shown in
figure 6.2. The results are compared with the results of Min-Min and Max-

Min heuristics. The load balance degree shows resource load balance across

the resources. We can see from the figure that the proposed heuristic, SWT-

36

Min, has achieved maximum load balance in each task scenario 1, II and III

than Min-Min and Max-Min heuristics. We can conclude that the proposed

heuristic is better in load balancing than Min-Min and Max-Min heuristics.

■ SWTMin E MinMin U MaxMir~

50.0 y

c
u 40.0

35.0

30.0

0 	25.0

L 20.0
15.0

10.0

5.0

0.0
ScenarioI Scenario II Scenario III

SWTMin 39.9 34.1 42.8

MinMin 42.2 37.8 44.6

MaxMin 45.2 35.6 46.3

Figure 6.1 Makespan of SWT-Min, Min-Min and Max-Min Heuristics

■ SWTMin E MinMin U MaxMir

1.0000

0.9000

0.8000

0.7000

0.6000

0.5000

0.4000

0.3000

0.2000

0.1000

0.0000
Scenario) Scenario II Scenario III

SWTMin 0.5345 0.6579 0.5300

MinMin 0.5164 0.6380 0.4898

MaxMin 0.5245 0.5473 0.5213

Figure 6.2 Load Balance Degree of SWT-Min, Min-Min and Max-Min Heuristics
37

6.2 Results of Segmented Weighted Time-Max Heuristic

a) 	Makespan: - The makespan results are shown in figure 6.3. The makespan

results are compared with the results of Min-Min and Max-Min heuristics.

Table 6.2 shows the comparison of Segmented Weighted Time-Max, Min-Min

and Max-Min Heuristics. The SWT-Max heuristics gives 3.39%, 8.68% and

3.8% less makespan than Min-Min heuristic for the task scenario 1, 11 and III,

respectively. The SWT-Max heuristics gives 12.14%, 3.26% and 7.33% less

makespan than Max-Min heuristic for the task scenario I, II and III,

respectively. Overall the proposed heuristic SWT-Max gives better makespan

than Min-Min and Max-Min heuristic for each task scenario.

■ SWTMax ■ MinMin ■ MaxMin

50.0

c 	45.0
0

40.0

35.0

w 	30.0
N

25.0

20.0

= 	15.0

10.0

5.0

0.0
Scenario I Scenario II Scenario III

FMax 39.8 32.6 27.8

MinMin 41.2 35.7 28.9

MaxMin 45.3 33.7 30.0

Figure 6.3 Makespan of SWT-Max. Min-Min and Max-Min Heuristics

 n .ricnn nfcWT-Max_ Min-Min and Max-Min Heuristics

Task
Scenario

Makespan (In Thousand Seconds) Improvement
Over MinMin

Improvement
Over MaxMin SWT-Max MinMin MaxMin

I 39.8 41.2 45.3 3.39% 12.14%

II 32.6 35.7 33.7 8.68% 3.26%

I11 27.8 28.9 30.0 3.8% 7.33%

b) 	Load Balance Degree: - The load balance degree results of SWT-Max are

shown in figure 6.4. The results are compared with the results of Min-Min
38

and Max-Min heuristics. We can see from the figure that the proposed

heuristic. SWT-Max, has achieved maximum load balance in each task

scenario I, II and III than Min-Min and Max-Min heuristics. We can conclude

that the proposed heuristic is better in load balancing than Min-Min and Max-

Min heuristics.

Is SWTMax . MinMin IN MaxMir~

1.0000

0.9000

0.8000

0.7000

0.6000

0.5000

0.4000

0.3000

0.2000

0.1000

0.0000
Scenario I Scenario II Scenario III

SWTMax 0.5391 0.3948 0.5733

MinMin 0.5131 0.1092 0.5020

MaxMin 0.5249 0.3864 0.5213

Figure 6.4 Load Balance Degree of SWT-Max, Min-Min and Max-Min Heuristics

6.3 Results of QoS Guided Weighted Mean Time-Min Heuristic

a) 	Makespan: - The makespan results of QoS Guided Weighted Mean Time-Min

(QWMTM), QoS Guided Min-Min(QMinMin), Weighted Mean Time-

Min(WMT-M), Min-Min and Max-Min for the task scenario 1, I1 and III are

shown in figure 6.5. The comparison of makespan results is shown in table

6.3 and 6.4. 	The QWMTM heuristic gives 9.14%, 12.9%, 12.33%

improvements in makespan than QMinMin heuristic for the task scenario 1, II

and III, respectively. It gives 17%, 20.16%, 20% improvements in makespan

than WMT-M for the task scenario 1, II and III, respectively. It gives 18.67%,

25.5%, 23.77% improvements in makespan than Min-Min heuristic for the

task scenario 1, II and Ill, respectively. It gives 25.21%, 21.41%, 27.74%

improvements in makespan than Max-Min for the task scenario 1, II and III,

39

respectively. We can conclude that QWMTM outperforms in each task

scenario than QMinMin, WMT-M, Min-Min and Max-Min heuristics.

■ QWMTM E QMinMin E WMT-M MinMin N MaxMi

N 45.00
40.00

o 35.00
vn 30.00
= 25.00
n 20.00
0 15.00
I- 10.00

5.00 -
0.00

Scenariol Scenario 11 Scenario III

QWMTM 31.80 20.04 26.30

QMinMin 35.00 23.01 30.00

WMT-M 38.32 25.10 32.90

MinMin 39.10 26.90 34.50

MaxMin 42.52 25.50 36.40

Figure 6.5 Makespan of QWMTM, QMinMin, WMT-M, Min-Min and Max-Min

Heuristics

■ QWMTM ■ QMinMin ■ WMT-M MinMin ■ MaxMin

1.0000
0.9000
0.8000 UI- --iiii I
0.7000 -
0.6000
0.5000
0.4000
0.3000
0.2000
0.1000
0.0000

Scenario I Scenario II Scenario III

QWMTM 0.9083 0.8616 0.9741

QMinMin 0.7388 0.7638 0.7416

WMT-M 0.6666 0.7340 0.6668

MinMin 0.6653 0.4453 0.6668

MaxMin 0.6668 0.6654 0.6661

Figure 6.6 Load Balance Degree of QWMTM, QMinMin, WMT-M, Min-Min and

Max-Min Heuristics

b) 	Load Balance Degree: - The load balance degree of QWMTM, QMinMin,
WMT-M, Min-Min and Max-Min are shown in figure 6.6. We can see from

the figure that the QWMTM heuristic performs better load balancing than
WMT-M, QMinMin, Min-Min and Max-Min heuristics.

Table 6.3 Makespan Comparison of QWMTM, QMinMin and WMT-Min Heuristics

Task
Scenario

Makespan (In Thousand Seconds) Improvement
Over QMinMin

Improvement
Over WMT-M QWMTM' QMinMin WMT-M

I 31.8 35 38.32 9.14% 17%
II 20.04 23.01 25.1 12.9% 20.16%
III 26.30 30 32.9 12.33% 20%

Table 6.4 Makespan Comparison of QWMTM, Min-Min and Max-Min Heuristics

Task
Scenario

Makespan (In Thousand Seconds) Improvement
Over MinMin

Improvement
Over Max-Min QWMTM Min-Min Max-Min

I 31.8 39.1 42.52 18.67% 25.21%
II 20.04 26.9 25.5 25.5% 21.41%
III 26.30 34.5 36.4 23.77% 27.74%

6.4 Results of QoS Guided Weighted Mean Time Min-Min Max-
Min Selective Heuristic

a) 	Makespan: - The makespan results of QoS Guided Weighted Mean Time

Min-Min Max-Min Selective (QWMTS), QMinMin, Weighted Mean Time

Min-Min Max-Min Selective (WMTS), Min-Min and Max-Min heuristics are

shown in figure 6.7. Table 6.5 and 6.6 show the comparison of makespan

results. The QWMTS gives 6.46%, 19.35%, 6.99% gain in makespan than

QMinMin for the task scenario I, II and -III, respectively. It gives 13.14%,
27.88%, 20.42% gain in makespan than WMTS for the task scenario I, II, and

III, respectively. It gives 13.14%, 31.19%, 30.67% gain in makespan than

Min-Min for the task scenario I, II, and III, respectively. It gives 21.65%,

27.88%, 34.68% gain in makespan than Max-Min for the task scenario I, II,
and III, respectively. We can conclude that the proposed heuristic gives better

makespan than other heuristics for each task scenario.

41

[.QWMTS ■ QMinMin ■WMTS MinMin ■ MaxMin

45.00
40.00

c°, 35.00
vo 30.00

25.00
vii 20.00 -
o 15.00

10.00
5.00
0.00

Scenario! 	 Scenario!! Scenario III

MTS 30.40 15.00 22.60

inMin r 32.50 18.60 24.30

WMTS 35.00 20.80 28.40

MinMin 35.00 21.80 32.60

MaxMin 38.80 20.80 34.60

Fig 6.7 Makespan of QWMTS, QMinMin, WMTS, Min-Min and Max-Min Heuristics

Table 6.5 Makespan Comparison of QWMTS, QMinMin and WMTS Heuristics

Task
Scenario

Makespan (In Thousand Seconds) Improvement
Over QMinMin

Improvement
Over WMTS QWMTS QMin-Min WMTS

1 30.4 32.5 35 6.46% 13.14%

11 15 18.6 20.8 19.35% 27.88%

111 22.6 24.3 28.4 6.99% 20.42%

-r ,►,1 A A nnaL-Pci n r-mmnnricon of OWMTS. Min-Min and Max-Min Heuristics

Task
Scenario

Makespan (In Thousand Seconds) Improvement
Over MinMin

Improvement
Over MaxMin QWMTS Min-Min Max-Min

I 30.4 35 38.8 13.14% 21.65%

II 15 21.8 20.8 31.19% 27.88%

111 22.6 32.6 34.6 30.67% 34.68%

b) 	Load Balance Degree: - The load balance degree of QWMTS, QMinMin,

WMTS, Min-Min and Max-Min heuristics are given in figure 6.8. We can see

from the figure that 	the proposed heuristic QWMTS gives better load

balancing than QMinMin, WMTS, Min-Min and Max-Min heuristics. The

QWMTS achieves better load balancing in each task scenario.

42

■ QWMTSNQMinMinEWMTS MinMinEMaxMi

1.0000
0.9000
0.8000
0.7000
0.6000
0.5000
0.4000
0.3000
0.2000
0.1000
0.0000

Scenario! Scenario!! Scenario III

Figure 6.8 Load Balance Degree of dwM I S, Qm1nmin, w iv„ , lvi1n-wu1► a►lu IV.aA-

Min Heuristics

6.5 Results of Priority based QoS Guided Weighted Mean Time

Min-Min Max-Min Selective Heuristic

■ MinMin E MaxMin

y 40.00 = 35.00
5 30.00 d

25.00
20.00
15.00

0 10.00
5.00
0.00

Scenario Scenario II Scenario III

Figure 6.9 Makespan of PQWMTS, QMinMin, WMTS, Min-Min and Max-Min
Heuristics

QWMTS 0.6001 0.5758 	I 0.6392

QMinMin 0.5720 0.5548 0.6002

TS 0.5169 0.4948 0.5392

Min F 0.5164 0.4811 0.5110

xMin 0.5180 0.5250 0.5251

PQWMTS 26.36 14.65 26.41

QMinMin 28.70 15.69 28.80

WMTS 30.40 17.10 30.50

MinMin 30.40 18.50 32.50

MaxMin 33.50 17.10 35.50

43

a) Makespan: - The makespan results of priority based PQWMTS, QMinMin,

WMTS, Min-Min and Max-Min heuristics are shown in figure 6.9. Table 6.7

and 6.8 are showing the comparison of makespan results. The PQWMTS

gives 8.15%, 6.62%, 8.29% gain in makespan than QMinMin for the task

scenario I, II, and III, respectively. It gives 13.29%, 14.33%, 13.41% gain in
makespan than WMTS for the task scenario I, II and III, respectively. It gives

13.29%, 20.81%, 18.74% gain in makespan than Min-Min for the task

scenario I, II and III, respectively. It gives 21.3 1 %, 14.33%, 25.6% gain in

makespan than Max-Min for the task scenario I, II and III, respectively. We

can conclude that the proposed heuristic gives better makespan for each task

scenario than other heuristics.

b) Load Balance Degree: - The 'load balance degree of PQWMTS, QMinMin,

WMTS, Min-Min and Max-Min are shown in figure 6.10. The PQWMTS

achieves best load balance in each task scenario.

Table 6.7 Makespan Comparison of PQWMTS, QMinMin and WMTS Heuristics
Task

Scenario
Makespan (In Thousand Seconds) Improvement

Over QMinMin
Improvement

. Over WMTS PQWMTS QMinMin WMTS
I 26.36 28.7 30.4 8.15% 13.29%
II 14.65 15.69 17.01 6.62% 14.33%
III 26.41 28.8 30.5 8.29% 13.41%

Table 6.8 Makespan Comparison of PQWMTS, Min-Min and Max-Min Heuristics
Task

Scenario
Makespan (In Thousand Seconds) Improvement

Over MinMin
Improvement
Over MaxMin PQWMTS Min-Min Max-Min

I 26.36 30.4 33.5 13.29% 21.31%
II 14.65 18.5 17.1 20.81% 14.33%
III 26.41 32.5 35.5 18.74% 25.6%

44

■ QWMTS ■ QMinMin ■ WMTS MinMin ■ MaxMi

1.0000
0.9000
0.8000
0.7000
0.6000
0.5000
0.4000
0.3000
0.2000
0.1000
0.0000

ScenarioI Scenario II Scenario Ill

Figure 6.10 Load Balance Degree of I'QW M 15, QMInMln, W M I , MIn-iv►In ann
Max-Min Heuristics

6.6 Results of Multiple QoS Guided Weighted Mean Time Min-
Min Max-Min Heuristic

F-M:M~MWNI~TS ~ 1
45

40
0

35
U)
-a 	30
C
y 	25

220
c 	15

10
5
0

Scenario I Scenario II Scenario III

MQWMTS 30.4 20.1 28.4

QMinMin 38.5 24.5 32.5

WMTS 40.3 28.5 35.5

Fig. 6.11 Makespan of MQW M I 5, VMrn►vlin ano w M I rieurisucs

a) 	Makespan: - Figure 6.11 shows the makespan results of MQWMTS,

QMinMin and WMTS heuristics. Table 6.9 shows the comparison of

QWMTS 0.6203 0.6513 0.6198

QMinMin 0.6016 0.5406 0.5677

WMTS 0.6067 0.6300 	. 0.5668

MinMin 0.3105 0.5444 0.3843

MaxMin 0.5183 0.5170 0.5220

45

makespan results. We can see from the table that the MQWMTS gives

significant improvements than QMinMin and WMTS. MQWMTS gives 21%,

17.95%, 12% improvement in makespan than QMinMin for the task scenario

1, I1 and III, respectively. It gives 24.56%, 29%, 20% gain in makespan than

WMTS for task scenario I. II and 111, respectively. Overall, the MQWMTS

heuristic outperforms in each task scenario than QMinMin and WMTS

heuristics.

b) 	Load Balance Degree: - Figure 6.12 shows the load balance degree of

MQWMTS, QMinMin and WMTS heuristics for the task scenario 1, I1, and

III, respectively. We can see from the figure that MQWMTS gives better load

balancing in each task scenario.

■MQWMTS ■QMinMin ■ WMTS

1 -

0.9
0.8
0.7
0.6
0.5
0.4
0.3
0.2
0.1

0
Scenario I Scenario II Scenario III

MQWMTS 0.8 0.55 0.85

QMinMin 0.65 0.4 0.72

WMTS 0.55 0.32 0.63

Fig. 6.12 Load Balance Degree of MQWMTS, QMinMin and WMTS Heuristics

Tahle 6.9 Makesnan Comparison of MOWMTS, QMinMin and WMTS
Task

Scenario
Makespan (In Thousand Seconds) Improvement

over QMinMin
Improvement
over WMTS

MQWMTS QMinMin WMTS

1 30.4 38.5 40.3 21% 24.56%

II 20.1 24.5 28.5 17.95% 29%

III 28.4 32.5 35.5 12% 20%

Chapter 7

Conclusions and Scope for Future Work .

7.1 Conclusions

In this dissertation work, two resource performance based and four QoS based
heuristics are proposed. The segmented weighted time-min and segmented weighted

time-max heuristics are based on resource performance. The QoS guided weighted

mean time-min, QoS guided weighted mean time min-min max-min selective, priority

based QoS guided weighted mean time min-min max-min selective and multiple QoS

guided weighted mean time min-min max-min selective scheduling heuristics are

based on QoS. All heuristics are tested on the basis of makespan and load balance

degree performance metrics. The following improvements in makespan are obtained.

➢ The segmented weighted time-min gives up to 9.78% and 11.72%

improvement in makespan than min-min and max-min heuristics, respectively.

➢ The segmented weighted time-max gives up to 8.68% and 12.14%

improvement in makespan than min-min and max-min heuristics, respectively.
➢ The QWMTM heuristic gives up to 12.9%, 20.16%, 25.5% and 27.74%

improvement in makespan than QoS guided min-min, WMT-M, min-min and

max-min heuristics, respectively.

> The QWMTS heuristic gives up to 19.35%, 27.88%, 31.19% and 34.68%

improvement in makespan than QoS guided min-min, WMTS, min-min and
max-min heuristics, respectively.

> The PQWMTS heuristic gives up to 8.29%, 14.33%, 20.81% and 25.6%

improvement in makespan than QoS guided min-min, WMTS, min-min and

max-min heuristics, respectively.

> The MQWMTS heuristic gives up to 17.95% and 29% improvement in

makespan than QoS guided min-min and WMTS heuristics, respectively.

All the heuristics are also tested for resource load balancing. From the results given

in chapter 6, we can conclude that all proposed heuristics do better load balancing
across the resources.

47

7.2 Scope for Future Work

In this dissertation work, two resource performance based and four QoS based

scheduling heuristics are proposed. 	The proposed heuristics are tested for

independent tasks batch mode scheduling in static environment. The following

domains can be considered for future work.

i) The heuristics can be investigated in dynamic environment.
ii) The heuristics can be implemented and tested in actual grid environment.

iii) More QoS parameters like availability, trust, etc. can be considered to test the

MQWMTS heuristic.

48

REFERENCES

[1] Ian Foster, Carl Kesselman, "THE GRID 2: BLUEPRINT FOR A NEW
COMPUTING INFRASTRUCTURE", Second Edition, Margan Kaufmann,

Published, 2004.
[2] D. Fernandez-Baca, "Allocating Modules to Processors in a Distributed

System," IEEE Transactions on Software Engineering, pp. 1427-1436,
November 1989

[3] Maheswaran M, Ali S, Siegel H J, et al, "Dynamic Mapping of a Class of

Independent tasks onto Heterogeneous Computing Systems", 8th IEEE

Heterogeneous Computing Workshop (HCW '99), pp.30-44, Apr. 1999.
[4] H. Casanova, A. Legrand, D. Zagorodnov and F. Berman, "Heuristics for

Scheduling Parameter Sweep Applications in Grid Environments," Proceeding

of the 9th heterogeneous Computing Workshop (HCW'00), pp. 349-363, May
2000.

[5] Xiao-Shan He, Xian-He Sun, "QoS Guided Min-Min Heuristic for Grid Task

Scheduling", Jouranal of Computer Science & Technology, 2003, (5): 442-
451, 2003

[6] Fang Dong, Junzhou Luo, Lisha Gao and Liang Ge, "A Grid Task Scheduling

Algorithm Based on QoS Priority Grouping", Fifth International Conference

of Grid and Cooperative Computing, pages 58-61,2006.
[7] M. Baker, R. Buyya and D. Laforenza, "Grids and Grid Technologies for

Wide-area Distributed Computing", Journal of Software-Practice &

Experience, Vol. 32, No.15, , pp:1437-1466, December 2002.

[8] Klaus Krauter, Rajkumar Buyya, and Muthucumaru Maheswaran, "A

Taxonomy and Survey of Grid Resource Management Systems for Distributed

Computing", Software: Practice and Experience (SPE) Journal, ISSN: 0038-

0644, Volume 32, Issue 2, 2002, Wiley Press, USA, February 2002.
[9] F. Dong, S.G. Akl, Scheduling algorithms for grid computing: state of the art

and open problems, Technical Report No. 2006-504, School of Computing,

Queen's University, Kingston, Ontario, January 2006.
[10] J. M. Schopf, "A General Architecture for Scheduling in the Grid", Journal of

parallel and distributed computing, special issue of Grid Computing, 2002

[11] T.D. Braun, H.J. Siegel, N. Beck, L. Boloni, M. Maheswaran, A.I. Reuther,

J.P. Robertson, M.D. Theys, B. Yao, A taxonomy for describing matching and

scheduling heuristics for mixed-machine heterogeneous computing systems,
in: Proceedings of the IEEE Workshop on Advances in Parallel and

Distributed Systems, pp. 330-335, October 1998.

[12] Barun TD, Siegel H J and Beck N. "A comparison of Eleven static heuristics

for mapping a class of independent tasks onto Heterogeneous Distributed
computing systems" Journal of Parallel and Distributed Computing Vol. 61,

No. 1. pp. 810-837, 2001.

[13] B. Sabata, S. Chatterjee, M. Davis, J. Sydir, and T. Lawrence, "Taxonomy for

QoS Specifications. In Proceedings of WORDS, Newport Beach, CA, pp.

100-107, Feb. 1997.

[14] Golconda, K.S.; Ozguner, F.; Dogan, A., "A comparison of static QoS-based

scheduling heuristics for. a meta-task with multiple QoS dimensions in

heterogeneous computing," Proceedings, 18th International Parallel and

Distributed Processing Symposium, 2004, pp. 106,26-30 April 2004.

[15] Xiaozhi Wang, Junshou Luo, "Architecture of Grid Allocation Management

Based on QoS", Grid and Cooperative Computing, Springer LNCS, vol. 3033,

pp. 81-88, 2004.

[16] Zhang Jinquan, Lina, N., Jiang Changjun, "A heuristic scheduling strategy for

independent tasks on grid," Proceedings Eighth International Conference on

High-Performance Computing in Asia-Pacific Region, 2005, pp.6 pp.-593,

July 2005.

[17] M. Wu, W. Shu and H. Zhang, "Segmented Min-Min: A Static Mapping

Algorithm for Meta-Tasks on Heterogeneous Computing Systems,"

Proceeding of the 9th Heterogeneous Computing Workshop (HCW'00), pp.

375-385, Cancun, Mexico, May 2000.

[18] Sameer Singh Chauhan and R. C. Joshi, "A Weighted Mean Time Min-Min

Max-Min Selective Scheduling Strategy for Independent Tasks on Grid", In
proceedings of IEEE 2°d International Advance Computing Conference — 2010

(IACC 2010), pp. 4-9, 19-20, February, 2010.

[19] Etminani, K.; Naghibzadeh, M. , "A Min-Min Max-Min selective algorithm

for grid task scheduling,", 3rd IEEE/IFIP International Conference in Central

Asia on Internet 2007(ICI 2007), pp.1-7, 26-28 Sept. 2007.

50

[20] Yong Hou; Jiong Yu; Turgun; , "NDA-MM: A New Adaptive Task

Scheduling Algorithm Based on the Non-dedicated Constraint Grid," Sixth

International Conference on Grid and Cooperative Computing, 2007 (GCC
2007), pp.275-282, 16-18 Aug. 2007

[21] Saurabh Garg, Rajkumar Buyya and Howard J. Siegel, "Scheduling Parallel
Applications on Utility Grids: Time and Cost Trade-off Management",

Proceedings of the 32nd Australasian Computer Science Conference (ACSC
2009), ISBN 978-1-920682-72-9, Australian Computer Society, pp 139-147,

January 19-23, 2009.
[22] R. Buyya, M. Murshed, "GridSim: A toolkit for the modeling and simulation

of distributed resource management and scheduling for grid computing,"

Journal of Concurrency and Computation: Practice and Experience, pp. 1175-

1220, 2002.

[23] J. Cao, D. P. Spooner, S. A. Jarvis, and G. R. Nudd, "Grid Load Balancing

Using Intelligent Agents," Future Generation Computer Systems, vol. 21

Issue I ,January 2005.

51

LIST OF PUBLICATIONS

[1] Sameer Singh Chauhan and R. C. Joshi, "QoS Guided Heuristic Algorithms for
Grid Task Scheduling", International Journal of Computer Applications, vol. 2,

no. 9, pp. 24-31, June, 2010 published by Foundation of Computer Science.
DOI: 10.5120/694-975.
URI: http://www.iicaonline.org/archives/volume2/number9/694-975.

[2] Sameer Singh Chauhan and R. C. Joshi, "A Weighted Mean Time Min Min

Max Min Selective Scheduling Strategy for Independent Task Scheduling on
Grid", In Proceedings of 2' IEEE International Advance Computing

Conference - 2010, pp. 4-9, February, 2010.

DOI: 10.1 109/IADCC.2010.5423047

URL: http://ieeexplore.ieee.org/stamp/stamp.i sp?tp=&arnumber=5423 047

&isnumber=5422877

[3] Sameer Singh Chauhan and R. C. Joshi, "Resource Performance based Grid
Task Scheduling", 4"' International Conference on Information Processing -

2010, August 6-8, 2010, Bangalore, India. (Accepted)

[4] Sameer Singh Chauhan and R. C. Joshi, "A Heuristic for QoS Based
Independent Task Scheduling in Grid", IEEE International Conference on
Industrial and Information Systems — 2010 (ICIIS 2010), July 29 — August 1,

2010, NIT Karnataka, Surathkal, Karnataka, India. (Accepted)

[5] Sameer Singh Chauhan and R. C. Joshi, "Multiple QoS Guided Heuristic
Algorithm for Independent Task Scheduling in Grid", International
Conference on Advances in Information and Communication. Technologies —

2010 (ICT 2010), Kochi, India. (Accepted, proceedings will be published by
Springer LNCS-CCIS).

52

	Title
	Abstract
	Chapter 1
	Chapter 2
	Chapter 3
	Chapter 4
	Chapter 5
	Chapter 6
	Conclusions
	References

