
FACE DETECTION IN IMAGES USING COLOR
AND APPEARANCE BASED TECHNIQUES

A DISSERTATION

Submitted in partial fulfillment of the
requirements for the award of the degree

of
MASTER OF TECHNOLOGY

in
ELECTRONICS AND COMMUNICATION ENGINEERING

(With Specialization in Control and Guidance)
G -NTRAL ~R _

ACC N

gy
Date

/!~ r ROO K
KIRAN BHASKA

DEPARTMENT OF ELECTRONICS & COMPUTER ENGINEERING
INDIAN INSTITUTE OF TECHNOLOGY ROORKEE

ROORKEE -247667 (INDIA)
JUNE, 2005

CANDIDATE'S DECLARATION

I hereby declare that the work, which is being presented in this dissertation entitled,

FACE DETECTION IN IMAGES USING COLOR AND APPEARANCE BASED

TECHNIQUES, in partial fulfillment of the requirement for the award of the degree of

Master of Technology in Electronics and Communication Engineering with specialization

in Control and Guidance, submitted in Electronics and Computer Engineering

Department, Indian Institute of Technology, Roorkee, is an authentic record of my own

work carried out under the supervision of Dr. M. J. Nigam, Associate Professor,

Electronics & Computer Engineering Department, Indian Institute of Technology,

Roorkee.

I have not submitted the matter embodied in this dissertation for the award of any

other degree.

Date: 3k1b~ Io
Dr

(KIRAN BHASKAR)

This is to certify that the above statement made, by the student is correct to the

best of my knowledge.

: 3I_s" pS (Dr. M. J. Nigam)
Associate Professor
E&CE Department
IIT Roorkee
Roorkee-247 667

N

ACKNOWLEDGEMENT

With great pleasure, I avail this opportunity to express my deep sense of gratitude and

indebtedness Dr. M. J. Nigam, Associate 'Professor, Department of Electronics and

Computer Engineering, Indian Institute of Technology, Roorkee for his spirited guidance

and inspiration in completing this dissertation.

Next, I feel indebted to all those endless researchers all over the world whose work I have

used in my dissertation. Their sincerity and devotion motivates me the most.

I would also like to thank all my friends for their encouragement and help.

The blessings of my Parents and other family members contributed significantly in

keeping me motivated throughout this work.

KIRAN BHASKAR
M.Tech. 2'd Yr.

Control & Guidance
E & C Deptt.

ii

ABSTRACT

The face detection problem is to identify the presence of a human face in an image. The

problem has important applications to automated security systems, lip readers, indexing

and retrieval of video images, videoconferencing with improved visual sensation, and

artificial intelligence.

In this dissertation, Color based Neural Network and Appearance based techniques are

examined and implemented for detecting frontal view human faces in color and gray

scale images respectively.

In Neural Network based systems for detecting human faces in color images two

approaches are used that vary in type of input i.e. RGB and YES color space; fed into the

network. It is a color-based technique combined with unsupervised learning, or training,

used to set the weights of the network. The idea for the network is to learn a chroma chart

from a training set. Each system is trained on the same image set using the Levenberg-

Marquad method. Same training images and test images are used to compare the results

obtained from two different color spaces as input.

In appearance-based technique, face detection problem is divided into two parts; the first

one feature extraction and other as classification. For feature extraction, EM algorithm of

PCA (principle component analysis) is used for training and K-NN (K nearest neighbor)

method is used for classification purpose where K is typically taken as 1. This is the

advanced pattern classification based technique but it is typically used only for gray scale

images with better performance.

These two techniques are implemented in MATLAB Version 6.5 and results are

presented in chapter 4. In NN based technique 20 training images were taken and they

take 1 minute for training. For classification based technique 4000 training images for

face and 4000 nonface training images were taken and they take only 2-3 seconds.

Comparison of these two .techniques was carried out on the basis of complexity,

computational cost, training time, application areas, dependence on color space etc. The

study finally reveals that appearance based technique is superior for most of the

applications.

111

TABLE OF CONTENTS

Page
No.

CANDIDATE'S DECLARATION

ACKNOWLEDGEMENT 	 ii
ABSTRACT 	 iii
TABLP; OF CONTENTS 	 iv
LIST OF ABBREVIATIONS 	 vi
LIST OF FIGURES 	 vii

CHAPTER 1: INTRODUCTION 	 l

1.1 Statement of the Problem 	 2

1.2 Organization of the Dissertation 	 3

CHAPTER 2: FACE DETECTION TECHNIQUES 	 4

2.1 Color Based Technique using Neural Network 	 4

2.1.1 Neural Network for face Detection 	 7

2.2 Appearance based Technique for Gray Scale Images 	 8

2.2.1 EM Algorithm of PCA for Feature Extraction 	 9

2.2.2 Applications and Advantages 	 9

2.2.3 Theory of External Maximization 	 11

2.2.4 Inference and Learning 	 12

2.3 EM Algorithm 	 12

2.3.1 Convergence and Complexity 	 15

2.3.2 Missing Data 	 17

2.4 K-NN method for Classification 	 18

CHAPTER 3: METHODOLOGY AND IMPLEMENTATION 	 19

iv

3.1 Color Based Technique using Neural network 	 19

3.1.1 RGB Histogram Approach 	 23

3.1.1.1 Performance evaluation 	 23

3.1.2 YES Histogram Approach 	 25
3.1.2.2 Performance evaluation 	 27

3.2 Appearance based Technique for Gray Scale Images 	 29

3.2.1 Implementation steps 	 31

3.2.2 Training 	 32

CHAPTER 4: RESULTS AND INTERPRETATIONS 	 33

4.1 Color based Technique using Neural Network. 	 33

5.1.1 Network Outputs 	 60

4.2 Appearance Based Technique for face Detection 	 63

4.3 Performance Parameters 	 68

4.4 Comparison of Two Techniques 	 68

CHAPTER 6: CONCLUSION AND FUTURE SCOPE OF THE WORK 	 69

6.1 Conclusions 	 69

6.2 Future Scope 	 69

REFERENCES 	 71

APPENDICES 	 74

APPENDIX A: Program Listing of Neural Network Based Technique 	 75

APPENDIX B: Program Listing of Appearance Based Technique for Face 	 85

Detection

v

r

LIST OF ABBREVIATIONS

PCA Principal Component Analysis

SVM Support Vector Machine

K-NN K Nearest Neighbor

EM External Maximization

LM Levenberg-Marquad

LDA Linear Discriminant Analysis

ICA Independent Component Analysis

HMM Hidden Markov Model

FE Feature extraction

CL Classification

vi

LIST OF FIGURES

Figure No. Title Page
No.

2.1 Model of Neuron 5

2.2 Diagram of a generalized neural network with hidden layer. 6

2.3 Examples of iterations of the algorithm 14

2.4 Time complexity and convergence behavior of the algorithm. 16

3.1 Training image set 1 20

3.2 Training image set 2 21

3.3 Test image set 22

3.4 Network outputs for Training setl after 110 iterations of LM algorithm. 24

The inputs were under RGB histogram approach

3.5 Network outputs for Training set 2 after .110 iterations of LM algorithm. 26

The inputs were under RGB histogram approach

3.6 Network outputs for Training set 2 after 110 iterations of LM algorithm. 28

The inputs were under YES histogram approach

3.7 Network outputs for Training set 2 after 110 iterations of LM algorithm. 30

The inputs were under YES histogram approach

4.1 RGB histogram with N = 20 for training set 1 40

4.2 RGB histogram with N = 20 for training set 2 46

4.3 YES histogram with N = 20 for training set 1 53

4.4 YES histogram with N = 20 for training set 2 59

4.5 Bounding boxes in test image 1 64

4.6 Output of Test image1 64

4.7 Bounding boxes in test image 2 65

4.8 Output of test image2 65

4.9 Bounding boxes in test image 3 66

4.10 Output of test image 3 66

4.11 Bounding boxes in test image 4 	. 67

4.12 Output in test image 4 67

vii

INTRODUCTION

CHAPTER 1

INTRODUCTION

The purpose of this dissertation is to detect faces in various images. There are many different

applications in which a face detection program could be used. The querying of image

databases is one possible application that would use face detection. For example, if someone

wanted to search a database that consisted of many images, the user could simply instruct the

program to find images with people, which would be determined by detecting faces of people

in each image. Also, face detection is the first step in the process of face recognition. Many

surveillance companies could make use of programs that can reliably scan a surveillance

photo, and recognize certain individuals. In order to recognize a person in an image, it is first

necessary to find the face of each person in that image. This type of program is especially

useful in places such as airports to find criminals.

Content-based methods try to identify features in a human face. Most Content-based

methods were developed for grayscale images to avoid the complexity of combining the

features detected in the RGB color space. ' -Yow and Cipolla developed a method that

elongates the image in the horizontal direction and identifies thin. horizontal features, such as

the eyes and mouth, using second-derivative Gaussian filters [1]. A technique developed by

Cootes and Taylor matches features to a model face using statistical methods [2]. Leung,

Burl, and Perona presented a similar method that matches features to a model face, except

they used a graph-matching algorithm to compare detected features to the model [3].

Rowley, Bluja, and Kanade developed a front-view face detection system that uses neural

networks to pick out features [4]. A new content-based technique considered face detection.

problem as classification problem and considered face detection problem as Feature

extraction and classification problem [15], [16]. Various feature extraction schemes are there

like PCA [13], LDA [17], ICA[18] etc and various classification schemes exist like K-NN,

SVM, HMM etc. combination of any two can be used;for Face detection:

Color-based techniques [8] calculate histograms of the color values and then develop a

chroma chart to identify the probability that a particular range of pixel values represent

1

INTRODUCTION

human flesh. It has been found that the effectiveness of the method depends highly on the

color space used. Chroma charts have been developed for the standard RGB color space, the

YIQ color space, and the LUV space.

1.1 Statement of Problem

A survey of content-based techniques for general image f retrieval can be found in [9].
Unfortunately, content-based techniques are very complex and expensive computationally.

Also, if the face is rotated or partially obscured, the technique has to incorporate other

techniques to solve the image registration and occlusion problems. In addition, it is often

difficult to adapt the methods to color images.

The implementation of color-based techniques is fairly simple and, after the system has

learned a chroma chart, the processing is very efficient. Also, the methods handle color

images in •a more straightforward manner than the content-based methods. However, as [7]

describes, color-based techniques have several drawbacks. These disadvantages include

information loss due to quantization, the strong dependence on the color space, and

"erroneous retrieval in the presence of gamma nonlinearity." The most significant drawback,

however, is that a technique based solely on a color histogram ignores all spatial information

in the image. That is, color histograms catalog the global distribution of colors, but do not

tell how the colors are arranged to form shapes and features. Despite these disadvantages,

color histograms are very popular due to their simplicity and ease of calculation.

In this dissertation, method is to solve the face detection problem in a manner akin to how the

human brain learns classification. Systems "learn" how to differentiate human faces from

non-faces[8]. A neural network based system is presented. Color histogram in the RGB and

YES color space were constructed. The idea was for the network to learn a chroma chart

from a training set.

Despite of complexity in classification-based technique here a simple PCA technique [13] for

feature extraction and 1-NN classification technique and training algorithm is presented for'

face detection to see the performance of Appearance based technique. Appearance based

technique is very efficient learning algorithm stated face detection problem as classification

procedure given by two examples: faces and non-faces. Classification process determines

whether the given pattern is face or not [5]. To .identify faces first EM algorithm of PCA is

2.

INTRODUCTION

used for feature extraction and then 1-NN classifier was trained with pictures of face, and not

face and for this empca toolbox is used [13]. This technique is limited up to gray scale

images due to increase in complexity but it has number of advantages it can handle faces

over a wide range of scales and works under different lightning conditions, even with

moderately strong shadows.

1.2 Organization of Dissertation

The work presented in this dissertation has been organized into seven chapters

Chapter 1 provides an overview of the face detection techniques and formulation of the

problem.

Chapter 2 provides the fundamental concepts and theory of neural network. Its

application in face detection problem.

Chapter 3 provides fundamental theory of PCA technique and I-NN classifier for face

detection.

Chapter 4 provides a detailed description of methodology and implementation

Chapter 5 presents results obtained from two techniques and their interpretation, and

comparative performance evaluations of the two system.

Chapter 6 finally conclusion and future scope has been reported.

t

FACE DETECTION TECHNIQUES

CHAPTER 2

FACE DETECTION TECHNIQUES

2.1 Color Based Technique Using Neural Network

Artificial neural systems, or neural networks, are massively parallel distributed processors

made up of simple processing units, which can acquire, store, and utilize experiential

knowledge [9]. Knowledge is acquired from its environment through a learning process. This

knowledge is stored in the form of stable states or mappings, embedded in networks in terms

of synaptic weights. Artificial neural systems are good at tasks such as pattern matching and

classification, function approximation, optimization, vector quantization and data clustering

[10].

The block diagram in figure 2.1 shows the model of a neuron, which forms the basis for

designing neural_ networks. In mathematical terms, a neuron can describe in the following

pair of equations:

m
Uk = Ewkjx j 	 (2.1a)

J=1

Yk = cP (uk `f" bk) 	 (2. l b)

The activation function may be a threshold function, Piecewise-linear function, or sigmoid
function [9].

Models of the neural networks are specified by three entities: models of the neurons

themselves, models of synaptic interconnections and structures (architectures), and training

(learning) rules for updating the connecting weights. Basically, there are three types of

4

4

FACE DETECTION TECHNIQUES

x2 	wk2
Input
signals 	• 	•

•

Xm

Jk

Summing
junction

Activation
function

Output
► Yk

Synaptic
weights

Figure 2.1: Model of a Neuron

5 	 1

s T~C~~LQU~s

QutpuJ' -Lae

ix
L

T

_ 	 ~e~ latex
etV'iark

ex~ l~Z̀ea eual eta 2• p~aga 0'~ag

A

FACE DETECTION TECHNIQUES

Each vertex of the network can be thought of as a neuron, while each edge is a nerve fiber.

An input vector X as shown in Fig. 2.2 is fed into a set of nodes. An input at a specific node,

is passed along a weighted edge, multiplied by the weight, to a neuron in the so-called hidden

layer. If the passed value exceeds a threshold function, the information is then passed along

another weighted edge to an output node, where it must also pass a threshold function. The;

sum of all such information from all input nodes gives the output vector T. Note that this

network can be generalized to any number of hidden layers.

A training data set consists of a set of input vectors X with corresponding output vectors T.

The actual training consists of setting the weights so that, for each input X, the output vector;

TNET computed by the network closely matches the desired output TACTUAL • Phrased as

optimization problem, we wish to find the collection of weights that minimizes

IITNCT - TACTUALI I , where the norm is understood to be taken over all input-output pairs in the

training set.

If the training set is chosen carefully to represent the entire space of possible inputs, then any

input similar to one in the training set should result in a similar output. Note that training is

very expensive computationally, since the determination of the weights must be done, in

some sense, simultaneously for all data in the training set. However, after training is

complete, the computation of an output T for a given input X is very efficient.

2.1.1 Neural Network for Face Detection

For our face detection problem, our input vector X will consist of information derived from a;

color image. [8]. The output vector T will be a single number (node) that represents the

probability that the image contains a human face. That is, if we let pattern co be a human

face and observation x a color image, then we are trying to determine P(r.Ix), or P for

simplicity. We should note that the interpretation of P as a probability may not hold for

actual network output, since there is no guarantee that every input will give rise to an output

P such that 0 <_ P <_ 1. So we interpret the output P for a given input image X as:

7

FACE DETECTION TECHNIQUES

> 0.5 = X contains a human face
<0.5 	X does not contain a face 	 2.1.1(a)

L= 0.5 = unclear if X contains a face

We chose a network with one hidden layer consisting of 20 nodes. So the number of weights

to set is

20(]X1+1) 	 2.1.1(b)

We chose the sigmoid function Q(t) as our threshold function:

Q(t) l+e"̀ 	 2.1.1(c)

The training algorithm used was the Levenberg-Marquad algorithm, which essentially

minimizes the error II TNET - TACTUALII by multi-dimensional steepest descent [14].

2.2 Appearance Based Technique for Gray Scale Images

This is a classification-based technique used for efficient face detection in gray scale images

[13]. Basically, face detection algorithms consist of at least two parts: feature extraction &

classification. The purpose of feature extraction is preprocessing the image data to get better

representation of data, as to facilitate better classification results. Also, many classification

schemes exist; each has its peculiar strength & weakness. Various Feature extraction (FE)

methods are,

• Principle Component Analysis (PCA), a frenquently used statistical technique for

optimal lossy compression of data under least squre sense, provide orthogonal basis

vector-space to represent original data.

• Linear Discriminant Analysis (LDA), which maximize the (between-class

variance)/(within-class variance)

• Independant Component Analysis (ICA), an emerging method which provide

independant (but not-necessarily orthogonal) sourses to represent original data.

8

FACE DETECTION TECHNIQUES

.• Other feature extraction methods, i.e., No-negative matrix factorization(NMF),

Locally Linear Embedding method (LLE), etc.

Some Classification methods are,

• K Nearest Neighbor (K-NN) method [20], and typically 1-NN while K=1
• Support Vector Machine (SVM), a novel method for classification while minimizing

the "structure risk".

• Neural Network methods.

• Statistical Clustering + Iikelihood score, as one kind of statistical parametric
classification method

• Other statistical methods, i.e., Hidden Markov Model (HMM) or Mixture Factor

Analyzers (MFA), etc.

Basically, any combination of FE+Cl can be used: for example, PCA + LDA + K-NN. For

easy understanding and implementation combination of PCA +K-NN method is used for face

detection.

2.2.1 EM algorithm of PCA for feature extraction

The algorithm allows, a few eigenvectors and eigenvalues to be extracted from large

collections of high dimensional data. It is computationally very efficient in space and time. It

also naturally accommodates missing information. Results on synthetic and real data showing

that these EM algorithm correctly and efficiently find the leading eigenvectors of the

covariance of datasets in a few iterations using up to hundreds of thousands of data points in

thousands of dimensions [13].

2.2.2 Applications and Advantages

Principal component analysis (PCA) is a widely used dimensionality reduction technique in

data analysis. Its popularity comes from three important properties. First, it is the optimal (in

terms of mean squared error) linear scheme for compressing' a set of high dimensional

vectors into a set of lower dimensional vectors and then reconstructing. Second, the model

E

FACE DETECTION TECHNIQUES

parameters can be computed directly from the data — for example by diagonalizing the.

sample covariance. Third, compression and decompression are easy operations to perform

given the model parameters — they require only matrix multiplications. Despite these

attractive features however, PCA models have several shortcomings. One is that naive

methods for finding the principal component directions have trouble with high dimensional

data or large numbers of datapoints. Consider attempting to diagonalize the sample

covariance matrix of it n vectors in a space of p p dimensions when it n and p p are several

hundred or several thousand. Difficulties can arise both in the form of computational

complexity and also data scarcity. Even computing the sample covariance itself is very costly,

requiring O(icp2) operations. In general it is best to avoid altogether computing the sample

covariance explicitly. Methods such as the snap-shot algorithm [21] do this by assuming that

the eigenvectors being searched for are linear combinations of the data points; their

complexity is O((itp2). In this Thesis, presented a version of the expectation-maximization

(EM) algorithm [22] for learning the principal components of a dataset. The algorithm does

not require computing the sample covariance and has a complexity limited by O(knp)

operations where k is the number of leading eigenvectors to be learned.

Another shortcoming of standard approaches to PCA is that it is not obvious how to deal

properly with missing data. Most of the methods discussed above cannot accommodate

missing values and so incomplete points must either be discarded or completed using a

variety of ad-hoc interpolation methods. On the other hand, the EM algorithm for PCA

enjoys all the benefits [23] of other EM algorithms in terms of estimating the maximum

likelihood values for missing information directly at each iteration. Finally, the PCA model

itself suffers from a critical flaw that is independent of the technique used to compute its

parameters: it does not define a proper probability model in the space of inputs. This is

because the density is not normalized within the principal subspace. In other words, if we

perform PCA on some data and then ask how well the model fits new data, the only criterion

used is the squared distance of the new data from their projections into the principal subspace.
A data point far away from the training data but nonetheless near the principal subspace will

be assigned a high "pseudo-likelihood" or low error. Similarly, it is not possible to generate

"fantasy" data from a PCA model.

In summary, the methods developed in this paper provide three advantages.

10

FACE DETECTION TECHNIQUES

• They allow simple and efficient computation of a few eigenvectors and eigenvalues

when working with many data points in . high dimensions. They permit this
computation even in the presence of missing data.

• On a real vision problem with missing information, the 10 leading eigenvectors and
eigenvalues of 2117 points in 212 dimensions in a few hours using MATLAB on a

modest workstation.

• Through a small variation, this method allow the computation not only of the

principal subspace but of a complete Gaussian probabilistic model which allows one

to generate data and compute true likelihood's.

2.2.3 Theory of External Maximization

Principal component analysis can be viewed as a limiting case of a particular class, of linear-

Gaussian models. The goal of such models is to capture the covariance structure of an

observed p dimensional variable y using fewer than the p(p+l)/2 free parameters required in

a full covariance matrix. Linear-Gaussian models do this by assuming that 'y as produced as a

linear transformation. of some k dimensional latent variable x plus additive Gaussian noise.

Denoting the transformation by the pxk matrix C, and the (p dimensional) noise by v (with

covariance matrix R) the generative model can be written as

y = Cx + v 	x — N(0,I) 	v — N(0,R) 	 2.2.3(a).

The latent or cause variables x are assumed to be independent and identically distributed

according to a unit variance spherical Gaussian. Since v are also independent and normal

distributed (and assumed independent of x), the model reduces to a single Gaussian model

for y which we can write explicitly:

y — N(O,CCT + R) 	 2.2.3(b)

In order to save parameters over the direct covariance representation in p-space, it is

necessary to choose k <p and also to restrict the covariance structure of the Gaussian noise v

by constraining the matrix R.3 For example, if the shape of the noise distribution is restricted

to be axis aligned (its covariance matrix is diagonal) the model is known as factor analysis.

11

FACE DETECTION TECHNIQUES

2.2.4 Inference and Learning

There are two central problems of interest when working with the linear-Gaussian models

described above. The first problem is that of state inference or compression which asks:

given fixed model parameters C and R, what can be said about the unknown hidden states x

given some observations y? Since the datapoints are independent, we are interested iri the

posterior probability P (xly) over a single hidden . state given the corresponding single

observation. This can be easily computed by linear matrix projection and the resulting

density is itself Gaussian:

	

P(x 7 y) = R(y / x)P(y) = N(C x , R)I y N(O, I)I 	 2.2.4(a) 2.2.4

	

P(x) 	N(0, CCT + R)I y

	

P(xl y) = N(13y, I — PC) X, 	 fi = C(CC" + R)-' 	2.2.4(b)

from which we obtain not only the expected value (3y of the unknown state but also an

estimate of the uncertainty in this value in the form of the covariance I -CPC. Computing y

from x (reconstruction) is also straightforward: P (yjx) = N (Cx;R) jy. Finally, computing the

likelihood of any data point y is merely an evaluation under (2.2.4(a)). The second problem is

that of learning, or parameters fitting which consists of identifying the matrices C and R that

make the model assign the highest likelihood to the observed data. There are a family of EM

algorithms to do this for the various cases of restrictions to R but all follow a similar

structure: they use the inference formula (2.2.4(b)) above in the e-step to estimate the

unknown state and then choose C and the restricted R in the m-step so as to maximize the

expected joint likelihood of the estimated x and the observed y.

2.3 EM Algorithm

The key observation of this note is that even though the principal components can be

computed explicitly, there is still an EM algorithm for learning them. The algorithm is:

• c-step : X = (CTC)-1CTY

12

FACE DETECTION TECHNIQUES

• m-step: C = YXT(XXT)-I

whereY is a pxn matrix of all the observed data and X is a kxn matrix of the unknown states.

The columns of C will span the space of the first k principal components. (To compute the

corresponding eigenvectors and eigenvalues explicitly, the data can be projected into this k-

dimensional subspace and an ordered orthogonal basis for the covariance in the subspace can

be constructed.) Notice that the algorithm can be performed online using only a single

datapoint at a time and so its storage requirements are only 0(kp) + 0(k2). The workings of

the algorithm are illustrated graphically in figure 2.3.

The left panel shows the learning of the first principal component of data, drawn from a

Gaussian distribution, while the right panel shows learning on data from a non-Gaussian

distribution. The dashed lines indicate the direction of the leading eigenvector of the sample

covariance. The dashed ellipse is the one standard deviation contour of the sample covariance.

The solid lines whose directions indicate the guess of the eigenvector and whose lengths

indicate the guess of the eigenvalue at each iteration indicate the progress of the algorithm.

The iterations are numbered; number 0 is the initial condition.

The intuition behind the algorithm is as follows: guess an orientation for the principal

subspace. Fix the guessed subspace and project the data y into it to give the values of the

hidden states x. Now fix the values of the hidden states and chooses the subspace orientation,

which minimizes the squared reconstruction errors of the data points. For the simple two-

dimensional example above, I can give a physical analogy. Imagine that we have a rod

pinned at the origin, which is free to rotate. Pick an orientation for the rod. Holding the rod

still, project every data point onto the rod, and attach each projected point to, its original point

with a spring. Now release the rod. Repeat. The direction of the rod represents our guess of

the principal component of the dataset. The energy stored in the springs is the reconstruction

error we are trying to minimize.

13

FACE DETECTION TECHNIQUES

I 	:11
i

o

-1 	-2 	 -1 D 	3

xl

(a)
	

(b)

Gaussian input data 	 Non Gaussian input data

Figure 2.3 : Examples of iterations of the algorithm.

14

FACE DETECTION TECHNIQUES

2.3.1 Convergence and Complexity

The EM learning algorithm for PCA amounts to an iterative procedure for finding the

subspace spanned by the k leading eigenvectors without explicit computation of the sample

covariance. It is attractive for small k because its complexity is limited by O(knp) per

iteration and so depends only linearly on both the dimensionality of the data and the number

of points. Methods that explicitly compute the sample covariance matrix have complexities

limited by O(np2), while methods like the snap-shot method that form linear combinations of

the data must compute and diagonalize a matrix of all possible inner products between points

and thus are limited by 0(n2p) complexity. The complexity scaling of the algorithm

compared to these methods is shown in figure 2.4 below. For each dimensionality, a random

covariance matrix — was generated5 and then IOp points were drawn from N (0;E). The

number of floating point operations required to find the first principal component was

recorded using MATLAB's flops function. As expected, the EM algorithm scales more

favorably in cases where k is small and both •p and n are large. If k p n (we want all the

eigenvectors) then all methods are 0(p3). The standard convergence proofs for EM [I] apply

to this algorithm as well, so we can be sure that it will always reach a local maximum of

likelihood. Furthermore, Tipping and Bishop .have shown [8, 9] that the only stable local

extremum is the global maximum at which the true principal subspace is found; so it

converges to the correct result. Another possible concern is that the number of iterations

required for convergence may scale with p or n. To investigate this question, the leading

eigenvector for synthetic datasets (as above, with n = lop) of varying dimension is explicitly

computed and recorded the number of iterations of the EM .algorithm required for the inner

product of the eigendirection with the current guess of the algorithm to be 0:999 or greater.

Up to 450 dimensions (4500 datapoints), the number of iterations remains roughly constant

with a mean of 3:6. The ratios of the first k eigenvalues seem to be the critical parameters

controlling the number of iterations until convergence.

15

FACE DETECTION TECHNIQUES

0 IDe

_I
I . I III1111

1 	1111111
1 	I 	IIIIIII

_I 	I 	I
• •1 	•1 	•

~ 	~I,
I

1
I 	11liii

11111
11111, •I •I ~I 1111 III •I

I 	1 	111111

1111111

I 	III

III

I 11111

IIIII

ii 1i
1111111

Ilii .I

r 1
I 	I

1111111
I 	IIIII

_ t ff1TI1T'—T T'nh"'
• J--

I 	IIIII
I~Jdlll

~ ~ 	,~,t„q,
-. ~-rtn:

I—a
+~—# 	mcH 7̀

II

1111111 iiI

ID' 	IG 	Id 	101
Ditn flimwialln1ity

Cantieram, Th Ii tiatr : :i: :L: = ::
.

.rJ WJ lw 'M LU JIM .0 iw 49J
]JnIndinnsiannlity

Fig. 2.4 Time complexity and convergence behavior of the algorithm.

FACE DETECTION TECHNIQUES

In all cases, the number of data points n is 10 times the dimensionality p. For the left panel,

the number of floating point operations to find the leading eigenvector and eigenvalue were

recorded. The EM algorithm was always run for exactly 20 iterations. The cost shown for

diagonalization of the sample covariance uses the MATLAB functions coy and eigs. The

snapshot method is show to indicate scaling only; one would not normally use it when n> p.
In the right hand panel, explicitly computing the leading eigenvector and then running the

EM algorithm until the dot product of its guess investigated convergence and the true

eigendirection was 0.999 or more. The error bars show ± one standard deviation across many

runs. The dashed line shows the number of iterations used to produce the EM algorithm

curve ('+') in the left panel.

2.3.2 Missing data

In the complete data setting, the values of the projections or hidden states x are viewed as the

"missing information" for EM. During the e-step these values were computed by projecting

the observed data into the current subspace. This minimizes the model error given the

observed data and the model parameters. However, if some of the input points are missing

certain coordinate values, we can easily estimate those values in the same fashion. Instead of

estimating only x as the value that minimizes the squared distance between the point and its

reconstruction we can generalize the e-step to:

Generalized e step : For each (possibly incomplete) point y find the unique pair of points x*

and y* (such that x` lies in the current principal subspace and y* lies in the subspace defined

by the known information about y) which minimize the norm I ICx` - y* I I Set the

corresponding column of X to x* and the corresponding column of Y to y*.

If y is complete, then y* = y and x is found exactly as before. If not, then x* and y` are the

solution to a least squares problem and can be found by, for example, QR factorization of a

particular constraint matrix. Using this generalized e-step It is found that the leading

principal components for datasets in which every point is missing some coordinates.

17

FACE DETECTION TECHNIQUES

2.4 K-NN method for Classification

K-Nearest Neighbor (KNN) classification is a very simple, yet powerful classification

method[19], [20]. The key idea behind KNN classification is that similar observations belong

to similar classes. Thus, one simply has to look for the class designators of a certain number

of the nearest neighbors and weigh their class numbers to assign a class number to the

unknown.

The weighing scheme of the class numbers is .often a majority rule, but other schemes are

conceivable. The number of. the nearest neighbors, k, should be odd in order to avoid ties,

and it should be kept small, since a large k -tends to create misclassifications unless the

individual classes are well-separated. For face detection purpose to make misclassification

least K is chosen as 1. So the classifier is 1-NN method.

It can be shown that the performance of a KNN classifier is always at least half of the' best

possible classifier for a given problem. One of the major drawbacks of KNN classifiers is

that the classifier needs all available data. This may lead to considerable' overhead, if the

training data set is large.

18

METHODOLOGY AND IMPLEMENTATION

CHAPTER 3

METHODOLOGY AND IMPLEMENTATION*

3.1 Color Based Technique Using Neural Network

For simplicity, tried only to detect the presence of a mug shot that is a full front-view human

face that is not obscured with little background noise. Our training data set consisted of 20

color images: 10 human faces and 10 non-faces as shown in Fig 3.1 and fig. 3.2. The ten

faces were, chosen to represent a variety of ages, genders, and skin tones. The other ten

images were random objects taken from the Internet [24]. Some of the non-face images were

chosen to "fool" the network. Each face would have a corresponding output P =1, while

images 11 — 20 would have output P = 0.

Next, a group of 13 color images for a test data set are selected. An odd number of images is

chosen to see if the system was above or below 50% accurate. That is, I wanted to check that

the system was better than guessing. The network would not be trained on these images, so

the performance on this data set would indicate the effectiveness of our system . in face

detection. A correct identification would result in a value P > 0.5 for all faces (images 1-8

of Fig.3.3) and a value P < 0.5 for all non-faces (images 9-13 of Fig. 33).

19

METHODOLOGY AND IMPLEMENTATION

E:ii;LJ A

	

v w 	 Y `"~ r ___ 	I
~ ~'• 3Y6 	 e~~~

 Ii

Fig 3.1 Training image set 1

20

0
10-4 ZX

-IIi

0

p

METHODOLOGY AND IMPLEMENTATION

1
	

2
	

3
	

0

6 	 7 	 8
	

9

I

10 	 11 	 12
	

13

Fig. 3.3 Test image set

22

METHODOLOGY AND IMPLEMENTATION

The only detail of the neural network that remains to be determined is the specific type of

input that will be fed into the network. Since the matrix of weights for the training set will

have size 20 x 204X1 + 1) = 4004X1 + 1), we wish to keep the input vector size I as small

as possible to keep the computational costs minimal. System was tested for two types of

inputs: RGB histograms, and YES histograms. The two training and a test image sets above

were used for both the systems to allow comparison.

3.1.1 RGB Histogram Approach

It is required to choose the input vector X that would represent the image globally. RGB

values of each pixel in the image is cataloged in relative frequency histograms, where each

component of the color space (R,G,B) was represented by N bins. The three histograms were

then appended as one vector, so the input vector would have size IxJ = 3N. It was hoped that

the neural network would "learn" which bins correspond to flesh tones and develop an

internal chroma chart.

N=20 bins were chosen for each component of the RGB color space. So this input vector

has size JxI =60. The Levenberg-Marquad algorithm was run on the two training data set for

110 iterations. The network outputs for the training were very favorable since each image

was correctly classified. That is, the images containing faces (1-10) resulted in outputs

P> 0.5 while the non-face images gave rise to outputs P <0.5.

3.1.1.1 Performance Evaluation

The results on test data set were impressive. This approach correctly classified 12 of 13 test

images for training set 1, or 92.3% and for training set 2 13 out of 13, i.e. 100%. From this

two things can be concluded:

o Performance is depend upon training set

• RGB approach is an efficient method for face detection

23

METHODOLOGY AND IMPLEMENTATION

Fig. 3.4 Network outputs for Training sett after 110 iterations of LM algorithm. The inputs

were under ROB histogram approach

►m'

METHODOLOGY AND IMPLEMENTATION

A common measurement of performance of classification system is the false positive and

false negative rates [15]. Given by

Number of incorrectly detected faces
False Positive = 	 3.1.1.1(a)

Total number of actual faces

Number of missed faces
False' Negative = 	 3.1.1.1(b)

Total nuber of Actual faces

For. training set 1

FP = g = 0 (test data set) and . P6. = 0 (training set)

FN = 8 = 0.125 (test dataset) and O = 0 (training set)

For training set 2

FP = g = 0 (test data set) and 10 = 0.1 (training set)

FN = 0 = 0.125 (test dataset) and 1 O = 0 (training set)

Note that the errors were primarily from missed faces. This may be due to the fact that the

training resulted in network outputs very close to 0.5 That is, even though the system

correctly identified all 10 faces in the training set, all P values for images 1 through 10 were

only slightly above 0.5 (see Fig. 3.4). Overall, taking the training and test data together, this

approach correctly- identified 32 of the 33 images (96.9%).

3.1.2 YES Histogram Approach

Although the RGB histogram approach yielded very good and positive results it is required

tried and compare its performance with other histograms in color space. For this at the

suggestion of Dr. Fadil Santosa, we implemented a color histogram approach in the YES

color space. The transformation from the standard RGB space to the YES space is given by.

the equations below:

25

METHODOLOGY AND IMPLEMENTATION

Fig. 3.5 Network outputs for Training set 2 after 110 iterations of LM algorithm. The inputs

were under RGB histogram approach

26

METHODOLOGY AND IMPLEMENTATION

Y = 0.253R+ 0.6846+ 0.063B
E= 0.5R-0.5G 	 3.1.2(a)

S = 0.258+0.25G-0.513

In a sense, the Y matrix picks out the edges of the image while the E and S matrices encode

the color intensities. The Y histogram may, in some sense, provide the neural network with

spatial information, rather than just color intensities. As for the RGB histogram, we cataloged

the pixel values in the image in three YES relative frequency histograms, each with N

equally spaced bins. The histograms were appended to form one input vector X. Again, we

chose N=20.

3.1.2.1 Performance Evaluation

The LM algorithm was run for 110 iterations with the inputs for the 20 training images

determined by this YES histogram approach. After 110 iterations, the system had correctly

classified 19 of the 20 training set 1 images (see Fig. 3.7). One image containing a face

(image 9) had a P value just under 0.5. This mis-classification may have been due to the fact

that images 15 and 16 contained flesh tones matching colors, while the face in image 3 had

the darkest skin tone in the training set. It is probable that the neural network would be able

to correctly classify the training set images if the training was run for more iteration. The

detection rates for the training set were

For training set 1

FP = 0 = 0 (test data set) and 10 = 0.1(training set)

FN = 3 = 0.375 (test dataset) and 1 = 0:1 (training set)
8 	 10

For training set 2

FP = 0 = 0 (test data set) and O = 0.2 (training set)

FN = 8 = 0.25 (test dataset) and O = 0 (training set)

27

METHODOLOGY AND IMPLEMENTATION

Fig 3.6 Network outputs for Training set t after 110 iterations of LM algorithm. The inputs

were under YES histogram approach

METHODOLOGY AND IMPLEMENTATION

The results for the test data set were less encouraging. The system correctly classified 10 out

of 13 (76.9%) of the test images for training set 1 and 11 out of 13 (84.3%) of test images for

training set 2. So overall, this system correctly classified 28 out of 33 (84.8%) of the images

for training set 1 and 26 out of 33 (80.8%) of the images for training set 2. So ROB

histogram approach shows the better results in comparison with YES histogram approach.

3.2 Appearance Based Technique

In Appearance based technique face detection algorithms consist of two parts:

• Feature extraction

• Classification.

The purpose of feature extraction is preprocessing the image data to get better representation

of data, as to facilitate better classification results. Also, many classification schemes exist;

each has its peculiar strength & weakness. Here PCA based feature extraction technique is

used. Principal Component Analysis (PCA), a frequently used statistical technique for

optimal lossy compression of data under least square sense; provide orthogonal basis vector

space to represent original data.

Purpose of Classification is to classify the given dimensional space into two output spaces

whether it is face like structure or not based on information derived from learning process.

Here for Classification, K Nearest Neighbor (K-NN) method is used, and typically 1-NN

while K=1.

Basically, any combination of FE+CI can be used like in this face detection problem PCA +

K-NN method is used. Based on experience & assumption it is easier to

understand/implement PCA + I -NN method.

Implementation is carried out using MATLAB 6.1 in windows environment. Various

properties are:

• The codes includes basic image 1/0, Also codes for simple PCA analysis and

probablistic clustering algorithm are written in MATLAB and it gives out results of

efficient face detector.

29

METHODOLOGY AND IMPLEMENTATION

Fig. 3.7 Network outputs for Training set 2 after 110 iterations of LM algorithm. The inputs

were under YES histogram approach

a

METHODOLOGY AND IMPLEMENTATION

• The training data is composed of two parts: face data and non-face data. Program

could learn offline from the training data, and you can get a feeling of its performance

by running on the testing data provided.

• Due to limited amount of disk/memory space and to remove the complexity, only

limited training data is used. But the training Data is for real face detection

application, so it can be of very big in size.

• The training data is cropped face images with fixed size (19x 19 pixels). Currently

only front view is used.

• Currently only several simple test images are used for easy of comparison. To test the

performance of program other type of test image set used.

3.2.1 Implementation Steps

Following steps are involved during implementation of face detection task:

1. Image Utilities

• Image vector is build from a rectangular image array.

• Result vector is build to match the image vector.

• Builds a rectangular binary mask array for face images.

• Subtracting a linear lighting plane and then resealing the grayscale distribution

histogram normalize image:

• Image set is augmented with the left right flipped versions of image.

• Rebuilding of before mask data.

• Simple I-NN classifier used to classify the face and non-face portion.

• Simple post processing to reduce the amount of detected faces.

2. Image Loading and Image Display

• A set of image according to given pattern set is loaded

• A set of image is also loaded via bootstrapping.

• Subplot of set of images in an image array.

31

METHODOLOGY AND IMPLEMENTATION

• Pgm format images are read by different function.

3.2.2 Training

Training is a very important step in face detection problem and here PCA method is used for

training. Training images are first preprocessed i.e. they are cropped (to left face pixels only)

and scaled to appropriate size (19* 19) and then load in the images and make up the training

data matrix. Using approx. 4000 images of pgm format training is done. Most attractive

feature of this training algorithm is that it takes only few seconds to train 4000 images.

32

CHAPTER 4

RESULTS AND INTERPRETATIONS

In this chapter Results of two techniques on various test images is presented and then

results are interpreted.

4.1 Color Based Technique Using Neural Network

In Color based technique two inputs for NN is taken ROB and YES histogram and both

are tested for same test images and two training sets. In the result picture histogram of

image and network output is shown, if the network output is greater than 0.5 then it

represents face and if it is less than 0.5 it is non face image. In face image as shown in fig

4.1 (a), network output P, is 0.600248. Similarly histogram and network outputs for all

other test images are clearly shown in Fig.4.1 (a-m), Fig 4.2(a-m), Fig4.3 (a-m) and Fig

4.4(a-m). These network outputs for two training sets and various test images is also

tabulated.

Of' the two approaches ROB histogram shows the better results over YES histogram

approach but they are very close to each other on performance basis. All of these results

are based on rather- small training and test data sets. To better judge the effectiveness of

these approaches, we need to test the systems on a larger data set.

Two training data set give different network output. It is concluded that output and

performance of detection process is very much depended upon:

• Number of training images, current training set of 20 images is rather small

increasing the size of training set while being careful to represent different

possible faces, would allow the training algorithm to set the weights more

accurately.

• Types of training image set, brightness, noise, and intensity level will change the

network output as they provide different information to the network.

33

• Number of iterations of LM algorithm, the results obtained in the present system

is after 110 iteration of LM algorithm. Increasing the number of iterations can

increase detection efficiency.

• Type of input X fed to the NN, it contains information.

• Number of hidden nodes, increasing the number of hidden nodes might also

improve the performance.

• Value of N, bins, increasing the value of N would provide the neural network with

more input information.

However, all these changes would increase the training costs, complexity, and training

time and reduce the ease of obtaining results.

(a)

WO

(b)

(c)

35

(d)

(e)

36

(f)

(g)

37

(h)

(i)

H

(k)

39

(1)

Fig 4.1 RGB histogram with N=20 for training set 1

(a)

(b)

(c)

41

(d)

(e)

42

(f)

(g)

43 -

(h)

(i)

G)

(k)

45

(1)

(m)

Fig 4.2 ROB histogram with N=20 for training set 2

46

(a)

(b)

47

(c)

(d)

48

(e)

(f)

• 0 02
0
o 0

5 10 15

ft 0.5 ------1------I----------------------- .L------

0
0.5 0 6 0.7 0.8 0.9 1

	

> ,, = 	k ,, 	 044719

(g)

20 25 30 35 40 45 50 55 60

1.1 1.2, 1.3 1.4 1.5

5 10 15 20 25 30 35 40 45 60 55 60

05 	06 	07 	08 	0.9 	1 	1.1 	1.2 	.1. 	1 4 	i.S

~ . 	0542317,

0.6
C
Q1

0-
a)

0 0.2
O `

0

a 0.5

n

s~ `t

UL'

>,0.8
V

c .0.6

0.4

YES histogram

(h)

4 4

'~ 	 ., ,,_ . 	 50

G~~yTRAL Clef'

. ACC NO9'~~

a

ul~ry. J~~~ iF1 f.

p
\r 	~i •.~~~h~} ~ 	t r 	 7 	v7'„

t g 	i',.

Y;

P NYC E

YES histoaram r 	.

U 0.8

0.6

r= 0.4

0.2

0
5 10 16 20 25 30 35 40 45 50 55 60

1
'.

~.5 0.6 0.7 0,8 0.9 1 1.1 1.2 1.3 1.4 1.5

-0.347426

P

YES histogram
>1 1
U

N

0.5

0
O
C) 0

5 10 15 20 25 30 35 40 45 50 55

0,6,E , 	0.7 	0.8 	0.9 	1 	1.1 	1.2 	1.3 	1.4 G
-226469

0.5

0L
0.5

60

15

(j)

51

(k)

(1)

52

(m)

Fig 4.3 YES histogram with N=20 for training set 1

(a)

53

(b)

(c)

54

(d)

(e)

55

(f)

(g)

56

(h)

(i)

57

(j)

(k)

Gt

(m)

Fig. 4.4 YES Histogram approach with N=20 for training set 2

WE

4.1.1 Network outputs

Table 4.1 Network outputs for training set 1

Ima

ge

inde

x

Actua

1 	P

(outp

ut)

RGB

Approach

Output P

YES

Approach

Output P

1 1 0.619 0.593

2 1 0.558 0.792

3 1 0.605 0.937

4 1 0.635 0.753

5 1 0.580 0.755

6 1 0.569 0.680

7 1 0.612 0.905

8 1 0.643 0.800

9 1 0.621 0.490

10 1 0.491 0.682

11 0 0.383 -0.081

12 0 0.219 0.499

13 0 0.352 0.301

14 0 0.388 -0.083

15 0 0.356 -0.280

16 0 0.345 0.207

17 0 0.360 0.441

18 0 0.598 0.135

19 0 0.570 -0.095

.20 0 0.613 0.031

Table 4.2 Network outputs for training set 2

Image

index

Actual P (output) RGB Approach

Output P

YES Approach

Output P

1 1 0.615 0.555

2 1 0.616 0.563

3 1 0.564 0.595

4 1 0.541 0.542

5 1 0.614 0.569

6 1 0.612 0.596

7 1 0.591 0.585

8 1 0.268 0.566

9 1 0.395 0.599

10 1 0.336 0.565

11 0 0.415 0.536

12 0 0.225 0.515

13 0 0.395 0.556

14 0 0.415 0.568

15 0 0.226 0.566

16 0 0.441 0.317

17 0 0.356 0.458

18 0 0.425 0.456

19 0 0.312 0.298

20 0 0.381 0.299

61

Table 4.3 Network outputs for test images

Training

set 1

Training

set 2

Training

set 1

Training

set 2

1 1 0.600 0.568 0.610 0.611

2 1 0.576 0.538 0.335 0.440

3 1 0.587 0.511 0.608 0.604

4 1 0.727 0.634 0.733 0.733

5 1 0.602 0.565 0.501 0.501

6 1 0.422 0.573 0.221 0.182

7 1 0.537 0.537 0.447 0.536

8 1 0.635 0.635 0.542 0.542

9 <0.5 -2.262 -2.141 -2.094 -0.347

10 <0.5 -2.451 -2.422 -2.264 -0.437

11 <0.5 -1.006 -0.927 -1.303 -0.054

12 <0.5 -2.207 -2.095 -1.851 -0.190

13 <0.5 -2.320 -2.249 -2.348 -0.189

62

4.2 Appearance Based Technique for Face Detection

In Appearance based technique gray scale test images with frontal view faces is taken for

face detection purpose, as shown in Fig. 4.5 first bounding boxes are formed around the

images and then clear output is output is obtained in form of box placed around the face

(Fig.4.6). The output is obtained by training of 4000 face images and 4000 non face

images and training time is very less. Various interpretations drawn from the result output

images are

• 4000 face and 4000 non-face images are taken for training purpose and time taken

to complete the training process for 4000 images is only few seconds.

• Very good results is obtained by putting box around face in a gray scale frontal

view face photograph, shows that training process is very efficient.

• It is applicable to only gray scale images and frontal view faces.

• Results obtained shows that give better result only for single face in an image and

not for more than one face in an image.

• Results are tried on two types of test images, shows good results for gray scale

jpeg format image and inaccurate result for png format image.

r

63

Fig. 4.5 Bounding boxes in test image 1

Fig. 4.6 Output of Test image l

lit;. 4,7 Uouuding Boxes around Test Image 2

Fig.4.8 Output of Test Image2

65

Fig. 4.9 Bounding boxes in test image3

Fig. 4.10 Output of Test image 3

Fig. 4.11 Bounding boxes in Test Image 4

Fig. 4.12 Output of Test Image 4

67

4.3 Performance Parameters

• Time for training images.

• Complexity in terms of programming and implementation.

• Type of test images.

• Types of training images.

• Accuracy of result for same test images.

4.4 Comparison of Two Techniques

• Time for training is less in case of PCA training, it takes few seconds for 4000

face and 4000 non-face images. While in case of LM training it takes 1 min for 10

face and 10 non-face images.

• Complexity is large in case of appearance based technique as compared to NN

color based technique and it increases as type of test image changes and number

of training images increases.

• Appearance based technique is applicable only to gray scale images as it is based

on feature extraction and classification, while NN technique is color based and

trained for skin tone detection.

• Both technique give good results for frontal view and single faces in an image as

number of faces increases and pose changes complexity of system increases

rapidly.

• In color based technique, true color, jpeg format images are used for training

while in appearance based technique gray scale image with any format can be

used for training.

• For single and frontal view faces in an image accuracy of appearance based

technique is more than color based technique.

• Output obtained in case of appearance based technique is simply a box placed

around face but in case of color based technique output is obtained in form data

and large calculation is required for-performance evaluation.

68

CHAPTER 5

CONCLUSION AND FUTURE SCOPE

5.1 Conclusions:

In this dissertation color based technique using neural network [8] has been modified and

implemented with new inputs and training sets using MATLAB 6.5. Further a new

combination of PCA for FE and K-NN for classification has been used in appearance

based technique. It is found that the result with this combination gives better face

detection as compared to other combinations [16]. Other important conclusions regarding

the two techniques implemented are as follows:

• The color based technique using NN is successful in detecting almost 80% of

faces in color test images calculated by performance evaluation measurement.

• The color-based technique is applicable to colored, real images with frontal view

faces.

• It is observed that PCA algorithm takes very less time to train thousands of face

and non-face images and give very good result for gray scale, frontal view face

images.

• In terms of time and accuracy appearance based technique gives very good results

but in terms of complexity in implementation and variation in test images color

based technique is better.

5.2 Future Scope

Since the effectiveness of the color based technique appears to be dependent on the color

space, one area for further research would be to test other color spaces like HSV, LIQ etc

Also, it would be interesting to explore the systems' dependence on variable parameters.

Increasing the value of N, number of hidden nodes and training set would provide the

neural network with more input information and and this will improve the performance of

detection.

In appearance based technique, in place of PCA + K-NN combination any other

combination like PCA + SVM, LDA + SVM can be used to increase the performance of

face detection system at the expense of increase in complexity of implementation.

70

r REFERENCES

[1] K.C. Yow and R. Cipolla. Feature-based human face detection. Image and Vision

Computing, 15 (1997), pp. 713-735.

[2] T.F. Cootes and C.J. Taylor. Locating faces using statistical feature detectors.

Proceeding of the Second International Conference on Automatic Face and Gesture

Recognition, 1996, pp. 640-645.

[3] T.K. Leung, M.C. Burl, and P. Perona. Finding faces in cluttered scenes using

random labeled graph matching. Proceedings of the Fifth International Conference

on Computer Vision, 1995, pp. 637-644.

[4] H.A. Rowley, S. Bluja, and T. Kanade. Neural network-based face detection. IEEE

Transactions on Pattern Analysis and Machine Intelligence, 20 (1) (1998), pp. 23-38.

[5] [sung94examplebased] — Example-based learning for Human Face Detection. Kah-

Kay Sung, Tomaso Poggio. MIT. IEEE Transactions on Pattern Analysis and Machine

Intelligence, volume 20, number'l, pages 39-51, January 1998.

[6] M. De Mariscoi, L. Cinque, and S. Levialdi. Indexing pictorial documents by their

content: a survey of current techniques. Image and Vision Computing, 15 (1997)

[7] D. Androutsos, K.N. Plataniotois, and A.N. Venetsanopoulos. A novel vector-

based approach to color image retrieval using a vector angular-based distance

measure. Computer Vision and Image Understanding, 75 (1/2) 1999.

[8] Todd Wittman, Face Detection and Neural Networks, Department of Mathematics,

University of Minnesota, December 2001.

[9] Haykin Simon, Neural Networks - a Comprehensive Foundation, Delhi, India:

Pearson Education, Inc., 2001.

[10] Bow Sing-Tze, Pattern Recognition and image pre-processing, New York, Basel:

Marcel Dekker, Inc., 2002.

[11] V. Rao and H. Rao. C+ + Neural Networks & Fuzzy Logic. MIS Press: New

York, 1.995.

[12] J. Cai and A. Goshtasby. Detecting human faces in color images. Image and

Vision Computing, 18 (1999), pp. 63-75.

71

[13] W. Zhao, A. Krishnaswamy, R. Chellappa, D.L. Swets, J. Weng. "Discriminant

Analysis of Principal Components for Face Recognition", in Face Recognition: From

Theory to Applications, H. Wechsler, P.J. Phillips, V. Bruce, F. Fogelman Soulie,

T.S. Huang (Eds.). Springer-Verlag, pp. 73-85, 1998

[14] Prof. Jim Rehg, "Face Detection and Recognition Using PCA and PPCA" CS 7636

Computational Perception, Georgia university of Technology.

[15] Do-Joon Jung, Chang-Woo Lee, Yeon-Chul Lee, Sang-Yong Bak, Jong-Bae

Kiml; Hyun Kang and Hang-Joon Kim, "PCA based real time face detection and

tracking" Department of Computer Engineering, Kyungpook National University

,2002.

[16] Yi-Ting Chou, "Toward Face Detection, Pose Estimation and Human Recognition

from Hyperspectral Imagery" Automated Learning Group National Center for

Supercomputing Applications, 2003.

[17] Tae-Kyun Kiml,2, Hyunwoo Kiml, Wonjun Hwangl, Seok-Cheol Keel and Josef

Kittler2, "Face description based on decomposition and combining of a facial

space with LDA", University of Surrey, U.K, 2003.

[18] Tae-Kyun Kim, Sing UK Lee, Jong Ha Lee, San -Ryong Kim, " Integrated approach

of multiple face detection for video surveillance" 16 h̀ international conference on pattern

recognition, 2002.

[19] Shou-Der Wei and Shang-Hong Lai, "Robust Face Recognition under Lighting

Variations" Department of Computer Science, National Tsing Hua University,

Hsinchu, Taiwan, 2003.

[20] Daniel nicorici, Sampsa hautaniemi, hakan oktem, olli yli-harja, jaakko astola,

"Inferring of gene regulatory networks from Expression data using knn classifier"

1tampere international center for signal processing, Tampere university of

Technology, 2002.

[21] L. Sirovich. Turbulence and the dynamics of coherent structures. Quarterly Applied.

Mathematics, 45(3):561-590, 1987

[22] A. P. Dempster, N. M. Laird, and D. B. Rubin. Maximum likelihood from

incomplete data via the EM algorithm. Journal of the Royal Statistical Society series

72

B, 39:1-38, 1977.

[23] Zoubin Ghahramani and Michael I. Jordan. Supervised learning from incomplete

data via an EM approach. In Jack D. Cowan, Gerald Tesauro, and Joshua Alspector,

editors, Advances in Neural Information Processing Systems, volume 6, pages 120-
127. Morgan Kaufmann, 1994.

[24] Computer vision test images, Website "www-2.cs.cmu.edu/-cil/v-images.html".

%x3

74

APPENDIX A

Program Listing of Neural Network Based Technique

Training

The following m-files were used to train the neural network. The Levenberg-Marquad code and the related
files eone.m, etot.m were written by Dr. Fadil Santosa. The trainall routine takes about 5 minutes to run,
but it only runs 10 iterations at a time.

Levenberg-Marquad Code:

1. levmar

function [w, res] = levmar (X, T, p, wO, lam, itMAX)
levmar -- Levenberg-Marquad Algorithm
Input
(X,T) are nodes to go through
p is number of nodes in hidden layer
wO is. initialization for weights
lam is initizialization for learning rate lambda
itMAX is number of iterations

% Output
w is the final weights matrix
res is the list of error at each iteration

% Compute number of unknowns: nunk.
[m, nex] = size(X);
[n, nex] = size(T);
nunk = p*(m+1) + n*(p+l);

if w00
w = 3 *rand(nunk, l); % Random weights.

else
w=w0;

end;

% Levenberg-Marquad Algorithm
for it = 1;itMAX

[Etot, Gtot, Jtot, R] = etot (X,T,p,w, 1);
An = Jtof * Jtot + lam * eye (nunk, nunk);

dw = An \ (Jtot' * reshape(R, n*nex, 1));
wtst = w - dw;
[Etst, Gtot, Junk, R] = etot(X,T,p,wtst,0);

if Etst <= Etot
w = wtst; lam = Iam / 10;

else
lam = lam * 10;

end

res(it) = Etot;

75.

end

2. etot
function [Etot,Gtot,Jtot,R]=etot(X,T,p,w,toggle)
% compute total misfit
% Etot total misfit
% Gtot gradient of total misfit wrt weight w
% R residual matrix, each column is residual vector
% Jtot jacobian of R wrt w
% toggle == 1 compute jacobian

[m,nex]=size(X);
[n,nex]=size(T);

% choose number of nodes in hidden layer
Etot=O; Gtot=zeros(size(w)); Jtot=[];
for k=1:nex

x=X(:,k); t=T(:,k);
[E,G,y,J]=eone(x,t,p,w,toggle);
Etot=Etot+E;
Gtot=Gtot+G;
Jtot=[Jtot;J];

end
3. econe
function [E,G,y,J] = eone(x,t,p,w,toggle)
% program to generate misfit and gradient of misfit given an
% input-output pair
% x(1:m) vector corresponding to given input
% t(1:n) vector corresponding to target output
% p number of nodes in hidden layer
% w(1:P) vector corresponding to weights -- P=p*(m+1)+n*(p+1)
% y(l:n) vector corresponding to network output
% E scalar for norm of (t-y) .
% G(1:P) gradient of E with respect to w
% 3(1:n,I:P) Jacobian of y with respect to w
% toggle 1 -> compute Jacobian, 0 otherwise

m=length(x);
n=length(t);
xP=Ix;1];
tem=w(1:p*(m+1));
W 1=reshape(tem,p,m+l);
tem=w(p*(m+1)+l :p*(m+ 1)+n*(p+1));
W2=reshape(tem,n,p+l);
a=W I *xp;
z=sigmoid(a);
z=[z; I];
y=W2*zp;
E=0.5 *norm(t-y)^2;

% gradient with respect to W2
del=y-t;
tem=del*zp;
g2=reshape(tem,n*(p+ 1), 1);

% gradient with respect to W 1

w

q=W2(:, 1 :p)'*del;
tem=(sigmoid(a). * q) *xp ;
gl=reshape(tem,p*(m+1),1);
G=[gl;g21;
J=[];
if toggle =1

%jacobian with respect to W2
J2=[];
for 1=1:p+1

J2=[J2 zp(l)*eye(n,n)];
end

% jacobian with respect to W 1

for 1=1:m+1
J1=[JI W2(:,1:p).*(ones(n,1)*sigmoid(a'))*xp(l)];

end
J=[J1 J2];

end

4. Sigmoid.

function s=sigmoid(t)
s=1./(1+exp(-t));

Alternative
s=(exp(t)-exp(-t))./(exp(t)+exp(-t));

RGB HISTOGRAN APPROACH

1. rgb trainalll

function [x, outputs] = rgb_trainallI(N,p, toggle)

Trains all images in directory images.
We give file names of all jpg images.
Plots fmal residual of each image at end.
Given # bins N and # hidden nodes p.
If toggle = 0, then we start with random initial weights.
Otherwise assumes inital weights w- given in file rgb_weights unless toggle=0.

warning off;

%Training rate lambda.
lam = 0.1;

% # iterations.
itMAX = 10;

% Human faces: y=1
x(:,1) = image2rgbhist ('1.jpg', N);
y(1,1) = 1.0;

x(:,2) = image2rgbhist ('2.jpg', N);
y(1,2) = 1.0;

77

x(:,3) = image2rgbhist ('3.jpg', N);
y(1,3)=1.0;

x(:,4) = image2rgbhist ('4.jpg', N);
y(1,4) = 1.0;

x(:,5) = image2rgbhist ('5.jpg', N);
y(1,5)=1.0;

x(:,6) = image2rgbhist ('6.jpg', N);
y(1,6) = 1.0;

x(:,7) =

	

	 ('7.jpg', N); image2rgbhist (7.' , N g)
y(1,7)=1.0;

x(:,8) = image2rgbhist ('8.jpg', N);
y(1,8) = 1.0;

x(:,9) = image2rgbhist ('9 jpg', N);
y(1,9) = 1.0;

x(:,10) = image2rgbhist (' 10 jpg', N);
y(1,10) = 1.0;

% Not human faces: y=0
x(:,11) = image2rgbhist ('1 l.jpg', N);
y(1,11)=0.0;

. 	 I
x(:,12) = image2rgbhist ('12 jpg', N);
y(1,12) = 0.0;

x(:,13) = image2rgbhist (' 13 jpg', N);
y(1,13) = 0.0;

x(:,14) = image2rgbhist ('14 jpg', N);
y(1,14) = 0.0;

x(:,15) = image2rgbhist ('15.jpg', N);
y(1,15) = 0.0;

x(:,16) = image2rgbhist ('16 jpg', N);
y(1,16) = 0.0;

x(:,17) = image2rgbhist ('17.jpg', N);
y(1,17) = 0.0;

x(:,18) = image2rgbhist ('18.jpg', N);
y(1,18)=0.0;

x(:,19) _ image2rgbhist (' 19 jpg', N);
y(1,19) = 0.0;

x(:,20) = image2rgbhist ('20 jpg', N);
y(1,20) = 0.0;

78

% Run through Levenberg-Marquad algorithm.
if toggle = 0
w=0;

else
load rgb_weights w;

end;

[w,res] =levmar (x, y, p, w, lam, itMAX);
save rgb_weights w;

% Output overall residual on final weights w.
% Residual = Network Output - Desired Output.

for i=1:20
outputs(i) = forward(x(:,i), l,p,w);
overall_res(i) = outputs(i) -.y(l,i);

end;

plot(outputs);
xlabel('INDEX');
ylabel('P');
title('Network outputs');

2. image2rgbhist

function [x] = image2rgbhist (file name, N)

% Writes an image at file name (i.e. jpg) into 3 histograms.
% Each histogram has N bins.
% The vector is the appended R, G, then B histograms.
% We scale x at the end so all entries are between 0 and 1.
% This is a necessary condition for feeding into the neural network.
% The resize matrix operation assumes each image is at least 50x50 pixels.

% Get bin centers.
for i=1:N

Bins(i,1) = i/N - 1/(2*N);
end;

%Interpolation factor I
I=50;

A = double(imread(file_name));
B = resize matrix(A,I,I);
B = B/260;
[total_rows total columns three] = size(B);

for row = l:total_rows
for column = I :total columns

v(column+(row- 1)*total_columns, 1) = B(row, column, 1); 	% R
v(column+(row-1)*total_columns,2) = B(row,column,2); 	% G
v(column+(row-1)*total columns,3) = B(row,column,3); 	% B

79

end;
end;

total hist = hist(v,Bins);

hist_R = total_hist(:,1);
hist_G = total_hist(:,2);
hiss B = total hist(:,3);

x=[hist_R;hist_G;hist_B];
x=x/(I^2);

3. rgb_forward

function [y] = rgb_forward (file name)

% rgb_forward.m

Uses RGB histogram approach for identifying image.
Given an image file (i.e. jpeg), returns value y

%y =1 for face, y = 0 for not face
% Assumes weights are stored as w in rgb_ weights .mat

Plots results

x = image2rgbhist (file_name, 20);
load rgb_weights w;
y = forward (x, 1, 20 , w);

subplot (3,1,1);
imshow(file_name);
subplot(3,1,2);
bar(x);
xlabel('R:1-20 G:21-40 B:41-60');
axis([1, 60,0,max(x)+0.01]);
ylabel('Color frequency')
title('RGB histogram')
subplot(3,1,3);
plot(y, '+');
axis([0.5, 1.5, 0, 1]);
xlabel(y);

YES HISTOGRAN APPROACH

1. yes_trainalll

function [x, outputs] = yes_trainallI(N,p, toggle)

% Trains all images in directory images.
% We'give file names of all jpg images.
% Plots final residual of each image at end.
% Given # bins N and # hidden nodes p.
% If toggle = 0, then we start with random initial weights.
% Otherwise assumes inital weights w given in file yes weights unless toggle=0.

warning off;

ii

80

%Training rate lambda.
lam = 0.1;

% # iterations.
itMAX =10;

% Human faces: y=1
x(:,1) = image2yeshist. (' 1 jpg', N);
y(1,1) = 1.0;

x(:,2) = image2yeshist ('2.jpg', N);
y(1,2) =1.0;

x(:,3) = image2yeshist ('3.jpg', N);
y(1,3) = 1.0;

x(:,4) = image2yeshist ('4 jpg', N);
y(1,4) = 1.0;

x(:,5) = image2yeshist ('5.jpg', N);
y(1,5) = 1.0;

x(:,6) = image2yeshist ('6.jpg', N);
y(1,6) = 1.0;

x(:,7) = image2yeshist ('7.jpg', N);
y(1,7) = 1.0;

x(:,8) = image2yeshist ('8 jpg', N);
y(1,8) = 1.0;

x(:,9) = image2yeshist ('9 jpg', N);
y(1,9) = 1.0;

x(:,10) = image2yeshist ('10.jpg', N);
y(1,10) = 1.0;

% Not human faces: y=0
x(:,11) = image2yeshist ('11.jpg', N);
y(1,11) = 0.0;

x(:, 12) = image2yeshist ('I2 j pg', N);
y(1,12) = 0.0;

x(:,13) = image2yeshist ('13.jpg', N);
y(l,13) = 0.0;

x(:,14) = image2yeshist ('14.jpg', N);
y(l,14)=0.0;

x(:,15) = image2yeshist ('15 jpg', N);
y(1,15) = 0.0;

x(:,16) = image2yeshist ('16 jpg', N);
y(1,16) = 0.0;

81

x(:,17) = image2yeshist ('17 jpg', N);
y(l,17) = 0.0;

x(:,18) = image2yeshist ('I8 jpg', N);
y(l,18) = 0.0;

x(:,19) = image2yeshist ('19 jpg', N);
y(1,19) = 0.0;

x(:,20) = image2yeshist ('20 jpg', N);
y(1,20) = 0.0;

% Run through Levenberg-Marquad algorithm.
if toggle = 0
w=0;

else
load yes_weights w;

end;

[w,res] = levmar (x, y, p, w, lam, itMAX);
save yes_weights w;

Output overall residual on fmal weights w.
Residual = Network Output - Desired Output.

for i=1:20
outputs(i) = forward(x(:,i), 1 ,p,w);
overall res(i) = outputs(i) - y(l,i);

end;

plot(outputs);
xlabel('INDEX');
ylabel('P');
title('Network outputs');

2. image2yeshist

function [x] = image2yeshist (file name, N)

Writes an image at filename (i.e. jpg) into 3 histograms.
Each histogram has N bins.
The vector is the appended Y, E, then S histograms.
We scale x at the end so all entries are between 0 and 1.
This is a necessary condition for feeding into the neural network.
The resize matrix operation assumes each image is at least 50x50 pixels.

% Get bin centers.
for i=1:N

Bins(i,1) = i/N - 1/(2*N);
end;

%Interpolation factor I

82 -

I= 50;

A = double(imread(file_name));
B = resize matrix(A,I,I);
B = B/260;
[total_rows total columns three] = size(B);

Y = 0.253 *B(:,:,1)+0.684* B (:,:,2)+0.063 *B(:,:,3);
E = 0.500*B(:,:,1)-0.500*B(:,:,2);
S = 0.250*B(:,:,1)+0.250*B(:,:,2)-0.500*B(:,:,3);

% Change each YES matrix into a vector.
for row= I :total rows
for column = I :total columns
v(column+(row-1)*total_columns,1) = Y(row,column); 	% Y
•v(column+(row-1)*total_columns,2) = E(row,column); 	% E
v(column+(row-1)*total_columns,3) = S(row,column); 	% S

end;
end;

total hist = hist(v,Bins);

hist_Y = total_hist(:,1);
hist_E = total_hist(:,2);
hist S = total hist(:,3);

x=[hist_Y ; hist_E ; hist_S];
x = x / (I^2);

3. yes_forward
function [y] = yes_forward (file name)

yes_forward.m

Uses YES histogram approach for identifying image.
Given an image file (i.e. jpeg), returns value y

%y= 1 forface,y=0 for not face
Assumes weights are stored as w in yes_weights.mat
Plots results

x = image2yeshist (file_name, 20);
load yes weights w;
y = forward (x, 1, 20 , w);

subplot (3,1,1);
imshow(file_name);
subplot(3,1,2);
bar(x);
xlabel('Y:1-20 E:21-40 S:41-60');
axis([1,60,0,max(x)+0.01]);
ylabel('Color frequency')'
title('YES histogram')
subplot(3,1,3);
plot(y, '+');
axis([0.5, 1.5, 0, 1]);
xlabel(y);

83

COMMON FUNCTION

1. forward

function [y] = forward (x, n, p ,w)

% forward.m
% . Calculates forward output of given input x with weights w.
% x(l:m) vector corresponding to given input
% n is # of nodes in output (T)
% p number of nodes in hidden layer
% w(1 :P) vector corresponding to weights -- P=p*(m+l)+n*(p+l)
% y(l:n) vector corresponding to network output

m=length(x)
xp=[x;1];
tem=w(l:p*(m+l));
W l=reshape(tem,p,m+l);
tem=w(p*(m+l)+1:p*(m+l)+n*(p+1));
W2=reshape(tem,n,p+ 1);
a=W1*xp;
z=sigmoid(a);
zp=[z;l];
WW2*zp;

2. resize matrix

function [B] = resize_matrix (A, r, c)

% To use type "[B] = resize_matrix (A, #, #)".
% Resizes image matrix A by picking out pixels.
% Resulting matrix B will have r rows by c columns.
% Each pixel has three values: RGB.

[rows columns three] = size(A);

row_sample = floor (rows/r);
column sample = floor (columns/c);

for i=1:r
for j=1:c

B(ij,:) = A(i*row_sample, j*column_sample, :);
end;
end;

J

84
4

APPENDIX B

Program Listing of Appearance Based Technique for face Detection

Main M-files for Face Detection and training

1. Test

IM the input test image
IM = double(imread('test2.png'));
Num.Face = 1;

load model

% START can be 1, but use to ignore smaller rectangles (level to start at)
% STEP is good at 2
% SCALEFACT is good at 1.2
START=7;
STEP=2;
LEVELS=7;
SCALEFACT=1.2;

% Setup
PYR MAX = LEVELS;
MROWS = size(MASK,1);
MCOLS = size(MASK,2);
IROWS = size(IM, 1);
ICOLS = size(IM, 2);
RECT = [];

% Build the image pyramid
SCALE = SCALEFACT; %A good choice is 1.2
PYR{ l } = IM;
XRANGE{ 1 } = 1:1:ICOLS;
YRANGE{1} = 1:l:IROWS;
[MX { 1 },MY { 1 }] = meshgrid(XRANGE { 1 }, YRANGE { 1 });
for i=2:PYR_MAX,

XRANGE{i} = I:SCALE.^(i-1):ICOLS;
YRANGE{i} = 1:SCALE.^(i-1):IROWS;
[MX{i},MY{i}] = meshgrid(XRANGE{i}, YRANGE{i});
PYR{i} = interp2(MX{ 1 }, MY{ 1}, PYR{ 1 }, MX{i}, MY{i});

end

% View pyramid
%figure;
%colonnap(gray);
%showimages(PYR, 2, 3, 1, 6, 1);
%drawnow;
%pause;

% Scan the pyramid
for im_num = START:PYR_MAX,

fprintf(1, M\nImage Scale: %din', im_num);
for im_row = I:STEP:size(PYR{im_num},1)-MROWS+1,
fprintf(l , '\n Row: %d', im row);

for im_col = 1:STEP:size(PYR{im_num},2)-MCOLS+1,
TEST = 0;
if bPCA=1

TEST = classify 1NN(PYR{im_num}, MASK, im_row, im_col,mean_ALL, U 1, Si, data_proj,
cFACEV, cNFACEV);

elseif bPCA LDA==1
TEST =J classify_1NN_new(PYR{im_num}, MASK, im_row, im_col, mean_ALL, meanF,

meanNF, U1, Si, U2, S2, dataFj roj, dataNF_proj);
elseif bSVM==1

TEST = classify_SVM(PYR{im_num}, MASK, im_row, im_col);
elseif bPCA .SVM=1

TEST =classify_PCA_ SVM(PYR{im_num}, MASK, im_row, im_col, mean_ALL, UI, SI);
end
if (TEST = 1)

fprintf(1,'\n ---(#SCALE,R,C): [%d] (%d%d) ',im_num, im_row, im_col);
RECT = [RECT; (im_row/size(YRANGE{im_num},2))*size(YRANGE{ 1 },2), ... 	% top

(im coUsize(XRANGE{im_num},2))*size(XRANGE{ 1 },2), ... 	% left
((im_row+MROWS-I)/size(YRANGE{im_num},2))*size(YRANGE{1},2), ...

bottom
((im_col+MCOLS-1)/size(XRANGE{im_num},2))*size(XRANGE{1},2), ... 	% right
TEST]; 	 % TEST value

end
end

end
end

% Plot the bounding boxes in an image
IMR = IM;
drawbox(IMR, RECT, 1);

% post-process to eliminate these false detections
RECT = postprocess(IM, RECT, NumFace);

% plot again
IMtmp = IM;
drawbox(IMtmp, RECT, 1);

2. Train PCA

[eMin:eMax] range eigen_value & eigen_vectors we will keep
eMin = 3;
eMax = 23;

%%%
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
%%% 	 Image Loading
%%%
%%%

assume training images are already preprocessed:
i.e. cropped (to left face pixels only) and scaled to appropriate size (18*27 i.e.)

now load in the images and make up the training data mtx

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

% Load the image oval mask
MASK = buildmask; .

NI = size(find(MASK), 1);

% load face images, normalize, and set training vectors
% temp: only for current test query here!!!!

need to change back if not use current query images
FACES =loadimages('./trainset/train/face/', ",'pgm');
%FACES = loadimages_bootstrap(FACES, './bootstrap/face/',",'PNG');
%FACES = augmentlr(FACES);
[NORM_FACES, SHADING] = normalize(FACES, MASK);

clear FACES SHADING

FACEV ° buildimvector(NORM_FACES, MASK);
%FACER = buildresvector(NORMFACES, FACET);

clear NORM FACES

load non-face images, normalize, and set training vectors

NFACES = loaditnages('./trainset/train/non-faceP, ", 'pgm');
%NFACES = loadimages_bootstrap(NFACES,'./bootstrap/non-face/', ",'PNG');
%NFACES = augmentlr(NFACES);
[NORM NFACES, NSHADING] = normalize(NFACES, MASK);

clear NFACES NSHADING

NFACEV = buildimvector(NORM_NFACES, MASK);
%NFACER = buildresvector(NORM NFACES, FACE F);

clear NORM NFACES

cFACEV = size(FACEV, 2);
cNFACEV = size(NFACEV, 2);

% optional --- Display images
if 0,
disp('original image data');
showimages(NORM_FACES, 5, 10, 1, 50, 1);
% showimages(NORM_NFACES, 5, 5, 1, 25, 2);
% pause;
end

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%ó/%%%%%%%%%%%%%%%
%%%%%%% %%%%%%%%%%%%%%%%%%%%%%%%
%%% 	Build the sub-space with eigen- vectors & values
%%%
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

FACESV & NFACESV: each face is a column vector

collect face & non face data together
% : each (non-)face is a column vector
ALL = [FACEV NFACEV];

clear FACEV NFACEV

87

mean ALL = sum(ALL, 2)/size(ALL,2);

% mean subtracted:
data = ALL - mean ALL *ones(1, size(ALL,2));

% get U and S from data
as you may try&found; when using large dataset, eig() or svd() fail to reach a converged solution

% while snap-shot method (as used by Pentland et. al.) or em-pca methods can still have a good solution

%SVD
%[U 1, S 1, VI] = svd(data);

%eig
%[U1, Si] = eig(data*data'); S1=sgrt(S1);

snap shot method (not implement yet, you are encouraged to implement one here!)

EM-PCA
% iter: default is 20

iter = 20;
% for em-pca, needn't mean-subtraction here

[U1, S1] = empca(ALL,eMax,iter);
S 1 = diag(S 1); 	% Si is a mtx now

% chop U&S to preserve only the [eMin:eMax] range of eigen- vectors & values
UI = U1 (:, eMin:eMax);
Si = S1 (eMin:eMax, eMin:eMax);

% project training data into sub-space
data_proj = (U 1 *inv(S 1))' * data;

% optional --- eigen-spectra plots
if 0,
tmp l =diag(S 1);
subplot(1,2,1),plot(l :length(tmp 1), tmp 1);
end

% optional --- now we can re-construct face by the remaining eigen data
if0,
FACEV_recon = U1 *U 1' *data(:, 1 :cFACEV) + mean_ALL *ones(I, cFACEV);
NORM_FACE_recon = buildface(FACEV_recon, MASK);
disp('the reconstruction result');
showimagevecs(NORMFACE recon, size(MASK, 1), size(MASK,2), 5, 10, 1, 50, 2);

end

save model

bPCA=1;
bPCA_LDA=O;
bSVM=O;
bPCA_SVM=O;

3. Truepca

88

function [evects,evals] = truepca(dataset)
% [evects,evals] = truepca(dataset)

% USUAL WAY TO DO PCA -- find sample covariance and diagonalize

% input: dataset
% note, in dataset, each COLUMN is a datapoint
% the data mean will be subtracted and discarded

% output: evects holds the eigenvectors, one per column
% 	evals holds the corresponding eigenvalues

% History:
% Feb. 21, 2002 Modified by Li to use SVD instead of eig
% Feb. 23, 2002 Modified by Li to use JDQR instead of eig

[d,N] = size(dataset);

mm = mean(dataset');
dataset = dataset - mm*ones(1,N);

cc = cov(dataset',1);
% original code
[cw,cdd] = eig(cc);
% Li: use SVD alternative
%[cw,cdd,dummy] = svd(cc,0);
% Li: use JDQR alternative
%[cvv,cdd] = JDQR(cc);

[zz,ii] = sort(diag(cdd));
ii = flipud(ii);
evects = cvv(:,ii);
cdd = diag(cdd);
evals = cdd(ii);

4. Assert
function [] = assert(condition,message)

if nargin = l,message = ";end
if isempty(message),message ='Assert Failure.'; end
if(—condition) fprintf(1,'!!!•%s ! ! !\n',message); end

5. empca

function [evec,eval] = empca(data,k,iter,Cinit)
%[evec,eval] = empca(data,k,iter,Cinit)

% EMPCA

finds the first k principal components of a dataset
• and their associated eigenvales using the EM-PCA algorithm
oho
% Inputs: data is a matrix holding the input data
% 	each COLUMN of data is one data vector
% 	NB: mean will be subtracted and discarded

89

% 	k is # of principal components to find

optional:
iters is the number of iterations of EM to run (default 20)
Cinit is the initial (current) guess for C (default random)

% Outputs: evec holds the eigenvectors (one per column)
eval holds the eigenvalues

[d,N] = size(data);
data = data mean(data,2)*ones(1,N);

if(nargin<4) Cinit'[]; end
if(nargin<3) iter=20; end

[evec,eval] = empca_orth(data,empca_iter(data,Cinit,k,iter));

function [C] = empca_iter(data,Cinit,k,iter)
%[C] = empca_iter(data,Cinit,k,iter)

% EMPCA ITER

% (re)fits the model

% data = Cx + gaussian noise

% with EM using x of dimension k

% Inputs: data is a matrix holding the input data
each COLUMN of data is one data vector
NB: DATA SHOULD BE ZERO MEAN!

% 	k is dimension of latent variable space
% 	(# of principal components)
% 	Cinit is the initial (current) guess for C
% 	iters is the number of iterations of EM to run

% Outputs: C is a (re)estimate of the matrix C
whose columns span the principal subspace

% check sizes and stuff
[p,N] = size(data);
assert(k<=p);
if(isempty(Cinit))
C = rand(p,k);

else
assert(k==size(Cinit,2));
assert(p=size(Cinit,1));
C = Cinit;

end

% business part of the code -- looks just like the math!

for i=l:iter
% e step -- estimate unknown x by random projection

x = inv(C'*C)*C'*data;
m step -- maximize likelihood wrt C given these x values

C = data*x'*inv(x*x');
end

function [evec,eval] = empca orth(data,C)
%[evec,eval] = empca orth(data,Cfinal)

% EMPCA ORTH

% Finds eigenvectors and eigenvalues given a matrix C whose columns span the
% principal subspace.

% Inputs: data is a matrix holding the input data
% 	each COLUMN of data is one data vector

NB: DATA SHOULD BE ZERO MEAN!
% 	Cfinal is the final C matrix from empca.m

Outputs: evec,eval are the eigenvectors and eigenvalues found
. by projecting the data into C's column space and finding and

ordered orthogonal basis using a vanilla pca method

C = orth(C);
[xevec,eval] = truepca(C'*data);
evec = C*xevec;

6. empcaol

function [evec,eval] = empcaol(k,iter,Cinit)
%[evec,eval] = empcaol(k,iter,Cinit)

% EMPCAOL (ONLINE VERSION OF EMPCA)

% finds the first k principal components of a dataset
% and their associated eigenvales using the EM-PCA algorithm

% Inputs: k is # of principal components to find
%

optional:
iters is the number of iterations of EM to run (default 20)
Cinit is the initial (current) guess for C (default random)

the data is provided by the function nextpoint
nextpoint(1) re-initializes the data providing function
nextpoint(0) to get successive datavectors
nextpoint(0) should return 0 when it is out of data
NB: nextpoint should return data with the mean already subtracted out

Outputs: evec holds the eigenvectors (one per column)
eval holds the eigenvalues

91

if(nargin<3) Cinit[]; end
if(nargin<2) iter=20; end

[evec,eval] = empcaol_orth(empcaol_iter(Cinit,k,iter));

function [C] = empcaol_iter(Cinit,k,iter)
%[C] = empcaol_iter(Cinit,k,iter)

% EMPCA ONLINE ITERATIONS

% (re)fits the model

% data = Cx + gaussian noise

% with EM using x of dimension k
% Gets points one at a time ONLINE. Uses the function nextpoint.m.

Inputs: k is dimension of latent variable space
(# of principal components)

Cinit is the initial (current) guess for C
iters is the number of iterations of EM to run

% Outputs: C is a (re)estimate of the matrix C
% 	whose columns span the principal subspace

% uses nextpoint(1); to reinitialize nextpoint each pass through the data
% uses nextpoint(0) to get successive datavectors
% NB: nextpoint should return data with the mean already subtracted out
%

% check sizes and stuff

p = nextpoint(1);

if(isempty(Cinit))
C = rand(p,k);

else
assert(k=size(Cinit,2));
assert(p=size(Cinit, 1));
C = Cinit;

end

% loop for iterations
for ii=1: iter

nextpoint(1); 	% reset nextpoint
C = empcaoll(C); % let's do it

end

function [Cnew] = empcaoll(C)
%[Cnew] = empcaol 1(C)

92

%
%does one complete E AND M step of empca by calling nextpoint(0)
%to get successive datapoints

% NB: nextpoint should return data with the mean already subtracted out

[p,k] = size(C);
CC ° inv(C'*C)*C;
W = zeros(k,k);
Q = zeros(p,k);

[yi,status] = nextpoint(0);

while(status>O)
% fprintf(1,`Now processing datapoint %d\r',status);

xi = CC*yi;
wi = xi*xi; W = W+wi;
qi = yi*xi'; Q = Q+qi;
[yi,status] = nextpoint(0);

end

Cnew = Q*inv(W);

function [evec,eval] = empcaol_orth(C)
%[evec,eval] = empcaol_orth(Cfmal)

% fmds ordered orthogonal basis for subspace identified in Cfinal

% online method
% uses nextpohit(1) to initialize data generator
% uses nextpoint(0) to provide successive data vectors
% NB: nextpoint should return data with the mean already subtracted out

[p,k] = size(C);
W = zeros(k,k);

C = orth(C);

nextpoint(1);
[yi,status] = nextpoint(0);
while(status>O)
% fprintf(1,'Now processing datapoint %d\r',status);

of = status;
xi = C'*yi;
W = W+xi*xi';
[yi,status] = nextpoint(0);

end

[cvv,cdd] = eig(W/nf);
[zz,ii] = sort(diag(cdd));
ii = flipud(ii);
xevec = cw(:,ii);

a

cdd = diag(cdd);
eval cdd(ii);

evec = C*xevec;

7. nextpoint

function [datapoint,status] = nextpoint(reset)
% [datapoint,status] = nextpoint(reset)
%
% NEXTPOINT - skeleton function
%
% this function returns the next datapoint for online methods.

% nextpoint(1) should return the dimensionality of the data
% 	and reset to the beginning of the dataset
%
% nextpoint(0) should return the next datapoint and a status flag

status=l if we still have more data
status=O if we are out of data

%

global dat;
global thisn;
[p,N] = size(dat);

if(reset)
% go back to beginning of dataset and return dimensionality
datapoint = p; status=p;
thisn=l;

elseif(thisn<=N)
% return next datapoint and status= 1 or status=O if at end
datapoint=dat(:,thisn);
thisn=thisn+l;
if(thisn>N) status=0; else status=l; end

else
datapoint = NaN;
status = 0;

end

Image Utilities Function

1. augmentlr

function IM = augmentlr(IM)

num = size(IM,2);
nrows =. size(IM { 1 },1);
ncols = size(IM { 1 },2);

for i=l:num,
IM{i+num} =IM{i}(l:l:nrows,ncols:-1:1);

end

2. buildface

94

function res = buildface(DATA, MASK)

DATA is the the masked data (the non-zero portion of the MASK)
MASK is a mtx containing 0&1.

imgs = size(DATA,2);
INDICES = find(MASK);

res = zeros(size(MASK(:), 1),imgs);
for i=I:imgs

tmp = MASK(:);
tmp(INDICES)=DATA(:,i);
res(:,i) = tmp;

end

3. buildmvector

function IMVECTOR = buildimvector(IM, MASK)

pics = size(IM,2);
INDICES = fmd(MASK);

IMVECTOR = zeros(size(find(MASK), 1),pics);
for i=l:pics,
IMVECTOR(:,i) = IM{i}(INDICES);

end

4. buildmask

function MASK = buildmask()

% An 19x19 mask
MASK = ...

[1111111111111111111;...
1111111111111111111;...
1111111111111111111;...
1111111111111111111;...
1111111111111111111;...
1111111111111111111;...
1111111111111111111;...
1111111111111111111;...
1111111111111111111;...
1.111111111111111111;...
1111111111111111111;...
111i11111111111.1111;...
1111111111111111111;...
1111111111111I11111;...
0111111111111111110;...
011.1111111111111110;...
0011111111111111100;...
000 1 1 1 1 1 1 1 1 1 1 1 1 1 000;...
0001111111111111000 	1;

if0,
% An 18x27 mask

95

MASK=...
[000000000000000000; ...
0000000 1 1 1 1 0000000;...
00000 1 1 1 1 1 1 1 1 00000;...
000 1 1 1 1 1 1 1 1 1 1 1 1000;...
000 1 1 1 1 1 1 1 1.1 1 1 1 000;...
00111111111.1111100;...
001111111111111100;...
001111111111111100;...
011111111111111110;...
011111111111111110;...
011111111111111110;...
01111111-1111111110;...
011I11I111I1111I10;...
011111111111111110;...
011111111111111110;...
011111111111111110;...
011111111111111110;...

.011111111111111110;...
011111111111111110;...
001111111111111100;...
001111111111111100;...
001111111111111100;...
0001 1 1 1 1 1 1 1 1 1 1 1 000;...
000 1 1 1 1 1 1 1 1 1 1 1 1 000;...
000001 1 1 1 1 1 1 1 00000;...
0000000 1 1 1 1 0000000; ...
000000000000000000 1;

end

MASKW = size(MASK, 2);
MASKH = size(MASK, 1);

5. classify_1NN

function res = classify_INN(IM, MASK, srow, scot, mean ALL, U1, S1, data_proj, cFACEV, cNFACEV)

1-NN classfication scalar factor for face & non-face
res = 1: IS a face
res —= 1: NOT a face

MASKH = size(MASK, 1);
MASKW = size(MASK, 2);

0/O%°/0 	 1-NN Classification
%%%
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

% given a query data vector, decide if it is face by 1-NN
QUERY{1} = IM(srow:srow+MASKH-I,scol:scol+MASKW-1); 	% the fixed moving-window
size
[NORM_QUERYS, SHADING] = normalize(QUERY, MASK);
QUERYV = buildimvector(NORM_QUERYS, MASK);

% project into the PCA sub-space
% QUERYV = QUERYV - mean_ALL; needn't do the mean-subtraction here!! to retain the discrimination
power
Q_proj 1 = (U1 *inv(S 1))' * QUERYV;

Q_F = Q_proj 1 * ones(I, cFACEV);
Q_NF= Q_proj 1 * ones(1, cNFACEV);

dataF_proj = data_proj(:,1:cFACEV);
dataNF_proj = data_proj(:,cFACEV+I:size(data_proj,2));

clear data_proj;

% two dist. measurement, we now choose the euclidean one..
% euclidean dist.

tmp_F=sum((dataF_proj-Q_F).^2, 1);
tmp NF=sum((dataNF_proj-Q_NF).^2,.1);

% cosin dist. (similarity dist.)
%tmp_F = abs(Q_F_proj'*dataF_proj)/(norm(Q_F_proj)*nonm(dataF_proj,'fro'));
%tmp_NF= abs(Q_NF_proj'*dataNF_proj)/(norm(Q_NF_proj)*norm(dataNF_proj,'fro'));

mintmpF = min(tmp_F);
mintmpNF= min(tmp NF);

% find which face/non-face is the closest
% idx F = fmd(tmp_F = meantmpF);
% idx NF= fmd(tmp_NF= meantmpNF);

% because non-face data tend to be scattered compared to face data,
% so here we need a scalar factor to balance them

if mintmpF < mintmpNF
%fprintf('\n the query image IS a face image');
res 	1;

else
res = 0;
%fprintf('1n the query image is NOT a face image');

end

6. normalize

function [OUT, SHADING] = normalize(IN, MASK)

% Retrieve the indices for the given mask
IND = find(MASK);

Set up matrices for planar projection calculation
%ie.Ax=B so x = (A'*A)'' 1 * A'*B
x= 1:1:size(IN{ 1 },2);
y =1:1:size(IN{1},1);
[mx,my] = meshgrid(x,y);
mxc = mx(IND);
myc = my(IND);
mcc = ones(size(myc));

97

A = [mxc, myc, mcc];

Cycle through each image removing shading plane
and adjusting histogram

for i=l:size(IN,2),

% Calculate plane: z = ax + by + c
B = IN{i}(IND);
x = inv(A'*A)*A'*B;
a = x(1); b = x(2); c = x(3);

%This is the color plane itself
SHADING { i} = mx. *a + my. *b + c;

%This is the image minus the color plane
%(the constant will be normalized out in histogram.recentering)
OUT{i} = IN{i} - (mx.*a + my.*b + c);

% Now, recenter the histogram
maximum = max(max(OUT{i}.*MASK));
minimum = min(min(OUT{i}.*MASK)); %minimum = min(min(OUT{i}))
diff = maximum - minimum;

% original one
%OUT{i} _ ((OUT{i}-minimum)./diff).*MASK;
% Li's modification to fix divided by zero bug
if diff==0,

diff= 1e10; % a positive infinite value
else

OUT{i} = ((OUT{i}-minimum)./diff).*MASK;
end; 	 0

end

7. postprocess

function res = postprocess(IM, RECT, NumFace)

[h,w] = size(IM);
NUMRect= size(RECT, 1);

% hC : hit count
% currR: current RECT
% i,j : current col @ row position
% currR(l), currR(3): top, bottom
% currR(2), currR(4): left, right
% currR(5): -1 :false detection,

0: not decided,
% 	1:NUMFace : the detection box for specific face

myRECT = (RECT);
myRECT(:,5) = zeros(NUMRect, 1);

for index = I :NumFace

98

% find current max hit position

MaxHit = 0; posH =0; posW = 0;
for i=1:h
for j=1:w

hC=O;
for k=1:NUMRect

currR = myRECT(k,:);
if (i>cur R(1) & i<currR(3) & ...

j>currR(2) & j<currR(4) & currR(5)=0)
hC=hC+1;

end
end .

if hC > MaxHit
MaxHit = hC;
posH = i; posW =j;

end

end
end

% compute the overlapped area out of these overlapped boxes
for k=1:NUMRect

currR = myRECT(k,:);
if (poses>currR(1) & poses<currR(3) & ...

posW>currR(2) & posW<currR(4) & currR(5)=0)
myRECT(k,5) = index;

end
end

area = [1,1, size(IM, 1), size(IM,2)];
for k=1:NUMRect

if myRECT(k,5) = index
area = myrectint(area, myRECT(k, 1:4));

end
end

center = [(area(l)+area(3))/2, (area(2)+area(4))/2];

% find the center of area (center), then elect only ONE box which's center closest to center, and
eleminate others

closest = 1e5; ind_closest=0;
for k=1:NUMRect

if myRECT(k,5) = index
centerR = [(myRECT(k,l)+myRECT(k,3))/2, (myRECT(k,2)+myRECT(k,4))/2];
if norm(centerR-center) < closest

closest"= norm(centerR-center);
ind_closest = k;

end
end

end

for k=1:NUMRect
if myRECT(k,5) = index & ind_closest k

myRECT(k,5) =-1;

end
end

end

res = [];
for k=1:NUMRect

if myRECT(k,5)>O
res = [res; RECT(k,:)];

end
end

% sub routines

function res = myrectint(areaI, areal)
res = zeros(size(areal));

if (areal (1)>area2(l))
res(l)=areal(l);

else
res(l)=area2(1);

end;

if (areal (2)>area2(2))
res(2)=area 1(2);

else
res(2)=area2(2);

end;

if (areal (3)<area2(3))
res(3)=area1(3);

else
res(3)=area2(3);

end;

if (areal (4)<area2(4))
res(4)=areal(4);

else
res(4)=area2(4);

end;-

Image Loading and Display Files 	
I

1. loadimages

function IM =loadimages(directory, prefix, suffix)

% cd IM this directory
old_dir=pwd;
cd(directory);

% flMd all matched filenames
dirinfo = dir([prefix; *',suffix]);
found = {dirinfo.name};

100

% Load the image set
for i = 1:size(found,2),

if suffix='pgm'
IM{i} = double(pgmRead(found{i}));

else
IM{i} = double(imread(found{i}));

end
end

res = IM;

clear found

%'cd out
cd(old_dir);

2. loadimages_bootstrap

function res = loadimages_bootstrap(IM, directory, prefix, suffix)

% #imgs already exists IM FACES
numlmgs=size(IM, 2);

% cd IM this directory
old_dir=pwd;
cd(directory);

% flMd all matched filenames
dirinfo = dir([prefix,'*',suffix]);
found = {dirinfo.name};

% Load the image set
for i = 1:size(found,2),

if suffix='pgm'
IM{i} = double(pgmRead(found{i}));

else
IM{numlmgs+i} = double(imread(found{i}));

end
end

res = IM;

clear found

% cd out
cd(old_dir);

3. scaleImg

function res = scaleImg(imname, cscale, rscale, imgsavename)

if(nargin<4) imgsavename='out.PNG'; end

101

IM = double(imread(imname));
IROWS = size(IM, 1);
ICOLS = size(IM, 2);

PYR{ 1 } = IM;
XRANGE{ 1 } =1:1:ICOLS;
YRANGE{1} = 1:1:IROWS;
[MX { 1 },MY { 1 }] = meshgrid(XRANGE{ I }, YRANGE{ 1 });

XRANGE{2} = 1:cscale:ICOLS;
YRANGE{2} = I:rscale:IROWS;
[MX {2},MY{2}]_= meshgrid(XRANGE{2}, YRANGE {2});
PYR{2} =interp2(MX{1}, MY{1}, PYR{l}, MX{2}, MY{2));

imwrite(PYR{2}/255, imgsavename)
imshow(PYR{2}/255)

4. showImages

function showimages(IM, xdim, ydim, start,'endl, fign)

%o Show the image set if fign is valid
if (fign>O)

figure(fign);
for i=start:endI,

subplot(xdim,ydim,i-start+l);
imagesc(IM{i});
colormap gray;

end
end

5. showimagevecs

function showimagevecs(IM, imH, imW, xdim, ydim, start, end!,_ fign)

% Show the image set if fign is valid
if (fign>O)

figure(fign);
for i=start:endl,

subplot(xdim,ydim,i-start+ I);
imagesc(reshape(IM(:,i), imH, imW));
colormap gray;

end
end

END

102

	Title
	Abstract
	Chapter 1
	Chapter 2
	Chapter 3
	Chapter 4
	Chapter 5
	References
	Untitled

