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ABSTRACT 

The face detection problem is to identify the presence of a human face in an image. The 

problem has important applications to automated security systems, lip readers, indexing 

and retrieval of video images, videoconferencing with improved visual sensation, and 

artificial intelligence. 

In this dissertation, Color based Neural Network and Appearance based techniques are 

examined and implemented for detecting frontal view human faces in color and gray 

scale images respectively. 

In Neural Network based systems for detecting human faces in color images two 

approaches are used that vary in type of input i.e. RGB and YES color space; fed into the 

network. It is a color-based technique combined with unsupervised learning, or training, 

used to set the weights of the network. The idea for the network is to learn a chroma chart 

from a training set. Each system is trained on the same image set using the Levenberg-

Marquad method. Same training images and test images are used to compare the results 

obtained from two different color spaces as input. 

In appearance-based technique, face detection problem is divided into two parts; the first 

one feature extraction and other as classification. For feature extraction, EM algorithm of 

PCA (principle component analysis) is used for training and K-NN (K nearest neighbor) 

method is used for classification purpose where K is typically taken as 1. This is the 

advanced pattern classification based technique but it is typically used only for gray scale 

images with better performance. 

These two techniques are implemented in MATLAB Version 6.5 and results are 

presented in chapter 4. In NN based technique 20 training images were taken and they 

take 1 minute for training. For classification based technique 4000 training images for 

face and 4000 nonface training images were taken and they take only 2-3 seconds. 

Comparison of these two .techniques was carried out on the basis of complexity, 

computational cost, training time, application areas, dependence on color space etc. The 

study finally reveals that appearance based technique is superior for most of the 

applications. 
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INTRODUCTION 

CHAPTER 1 

INTRODUCTION 

The purpose of this dissertation is to detect faces in various images. There are many different 

applications in which a face detection program could be used. The querying of image 

databases is one possible application that would use face detection. For example, if someone 

wanted to search a database that consisted of many images, the user could simply instruct the 

program to find images with people, which would be determined by detecting faces of people 

in each image. Also, face detection is the first step in the process of face recognition. Many 

surveillance companies could make use of programs that can reliably scan a surveillance 

photo, and recognize certain individuals. In order to recognize a person in an image, it is first 

necessary to find the face of each person in that image. This type of program is especially 

useful in places such as airports to find criminals. 

Content-based methods try to identify features in a human face. Most Content-based 

methods were developed for grayscale images to avoid the complexity of combining the 

features detected in the RGB color space. ' -Yow and Cipolla developed a method that 

elongates the image in the horizontal direction and identifies thin.  horizontal features, such as 

the eyes and mouth, using second-derivative Gaussian filters [1]. A technique developed by 

Cootes and Taylor matches features to a model face using statistical methods [2]. Leung, 

Burl, and Perona presented a similar method that matches features to a model face, except 

they used a graph-matching algorithm to compare detected features to the model [3]. 

Rowley, Bluja, and Kanade developed a front-view face detection system that uses neural 

networks to pick out features [4]. A new content-based technique considered face detection. 

problem as classification problem and considered face detection problem as Feature 

extraction and classification problem [15], [16]. Various feature extraction schemes are there 

like PCA [13], LDA [17], ICA[18] etc and various classification schemes exist like K-NN, 

SVM, HMM etc. combination of any two can be used;for Face detection: 

Color-based techniques [8] calculate histograms of the color values and then develop a 

chroma chart to identify the probability that a particular range of pixel values represent 
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INTRODUCTION 

human flesh. It has been found that the effectiveness of the method depends highly on the 

color space used. Chroma charts have been developed for the standard RGB color space, the 

YIQ color space, and the LUV space. 

1.1 Statement of Problem 

A survey of content-based techniques for general image f  retrieval can be found in [9]. 
Unfortunately, content-based techniques are very complex and expensive computationally. 

Also, if the face is rotated or partially obscured, the technique has to incorporate other 

techniques to solve the image registration and occlusion problems. In addition, it is often 

difficult to adapt the methods to color images. 

The implementation of color-based techniques is fairly simple and, after the system has 

learned a chroma chart, the processing is very efficient. Also, the methods handle color 

images in •a more straightforward manner than the content-based methods. However, as [7] 

describes, color-based techniques have several drawbacks. These disadvantages include 

information loss due to quantization, the strong dependence on the color space, and 

"erroneous retrieval in the presence of gamma nonlinearity." The most significant drawback, 

however, is that a technique based solely on a color histogram ignores all spatial information 

in the image. That is, color histograms catalog the global distribution of colors, but do not 

tell how the colors are arranged to form shapes and features. Despite these disadvantages, 

color histograms are very popular due to their simplicity and ease of calculation. 

In this dissertation, method is to solve the face detection problem in a manner akin to how the 

human brain learns classification. Systems "learn" how to differentiate human faces from 

non-faces[8]. A neural network based system is presented. Color histogram in the RGB and 

YES color space were constructed. The idea was for the network to learn a chroma chart 

from a training set. 

Despite of complexity in classification-based technique here a simple PCA technique [ 13] for 

feature extraction and 1-NN classification technique and training algorithm is presented for'  

face detection to see the performance of Appearance based technique. Appearance based 

technique is very efficient learning algorithm stated face detection problem as classification 

procedure given by two examples: faces and non-faces. Classification process determines 

whether the given pattern is face or not [5]. To .identify faces first EM algorithm of PCA is 
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INTRODUCTION 

used for feature extraction and then 1-NN classifier was trained with pictures of face, and not 

face and for this empca toolbox is used [13]. This technique is limited up to gray scale 

images due to increase in complexity but it has number of advantages it can handle faces 

over a wide range of scales and works under different lightning conditions, even with 

moderately strong shadows. 

1.2 Organization of Dissertation 

The work presented in this dissertation has been organized into seven chapters 

Chapter 1 provides an overview of the face detection techniques and formulation of the 

problem. 

Chapter 2 provides the fundamental concepts and theory of neural network. Its 

application in face detection problem. 

Chapter 3 provides fundamental theory of PCA technique and I-NN classifier for face 

detection. 

Chapter 4 provides a detailed description of methodology and implementation 

Chapter 5 presents results obtained from two techniques and their interpretation, and 

comparative performance evaluations of the two system. 

Chapter 6 finally conclusion and future scope has been reported. 

t 



FACE DETECTION TECHNIQUES 

CHAPTER 2 

FACE DETECTION TECHNIQUES 

2.1 Color Based Technique Using Neural Network 

Artificial neural systems, or neural networks, are massively parallel distributed processors 

made up of simple processing units, which can acquire, store, and utilize experiential 

knowledge [9]. Knowledge is acquired from its environment through a learning process. This 

knowledge is stored in the form of stable states or mappings, embedded in networks in terms 

of synaptic weights. Artificial neural systems are good at tasks such as pattern matching and 

classification, function approximation, optimization, vector quantization and data clustering 

[10]. 

The block diagram in figure 2.1 shows the model of a neuron, which forms the basis for 

designing neural_ networks. In mathematical terms, a neuron can describe in the following 

pair of equations: 

m 
Uk = Ewkjx j 	 (2.1a) 

J=1  

Yk = cP (uk `f" bk) 	 (2. l b) 

The activation function may be a threshold function, Piecewise-linear function, or sigmoid 
function [9]. 

Models of the neural networks are specified by three entities: models of the neurons 

themselves, models of synaptic interconnections and structures (architectures), and training 

(learning) rules for updating the connecting weights. Basically, there are three types of 
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Figure 2.1: Model of a Neuron 
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FACE DETECTION TECHNIQUES 

Each vertex of the network can be thought of as a neuron, while each edge is a nerve fiber. 

An input vector X as shown in Fig. 2.2 is fed into a set of nodes. An input at a specific node, 

is passed along a weighted edge, multiplied by the weight, to a neuron in the so-called hidden 

layer. If the passed value exceeds a threshold function, the information is then passed along 

another weighted edge to an output node, where it must also pass a threshold function. The; 

sum of all such information from all input nodes gives the output vector T. Note that this 

network can be generalized to any number of hidden layers. 

A training data set consists of a set of input vectors X with corresponding output vectors T. 

The actual training consists of setting the weights so that, for each input X, the output vector; 

TNET  computed by the network closely matches the desired output TACTUAL • Phrased as 

optimization problem, we wish to find the collection of weights that minimizes 

IITNCT - TACTUALI I , where the norm is understood to be taken over all input-output pairs in the 

training set. 

If the training set is chosen carefully to represent the entire space of possible inputs, then any 

input similar to one in the training set should result in a similar output. Note that training is 

very expensive computationally, since the determination of the weights must be done, in 

some sense, simultaneously for all data in the training set. However, after training is 

complete, the computation of an output T for a given input X is very efficient. 

2.1.1 Neural Network for Face Detection 

For our face detection problem, our input vector X will consist of information derived from a; 

color image. [8]. The output vector T will be a single number (node) that represents the 

probability that the image contains a human face. That is, if we let pattern co be a human 

face and observation x a color image, then we are trying to determine P(r.Ix), or P for 

simplicity. We should note that the interpretation of P as a probability may not hold for 

actual network output, since there is no guarantee that every input will give rise to an output 

P such that 0 <_ P <_ 1. So we interpret the output P for a given input image X as: 
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FACE DETECTION TECHNIQUES 

> 0.5 = X contains a human face 
<0.5 	X does not contain a face 	 2.1.1(a) 

L= 0.5 = unclear if X contains a face 

We chose a network with one hidden layer consisting of 20 nodes. So the number of weights 

to set is 

20(]X1+1) 	 2.1.1(b) 

We chose the sigmoid function Q(t) as our threshold function: 

Q(t)  l+e"̀  	 2.1.1(c) 

The training algorithm used was the Levenberg-Marquad algorithm, which essentially 

minimizes the error II TNET - TACTUALII by multi-dimensional steepest descent [14]. 

2.2 Appearance Based Technique for Gray Scale Images 

This is a classification-based technique used for efficient face detection in gray scale images 

[13]. Basically, face detection algorithms consist of at least two parts: feature extraction & 

classification. The purpose of feature extraction is preprocessing the image data to get better 

representation of data, as to facilitate better classification results. Also, many classification 

schemes exist; each has its peculiar strength & weakness. Various Feature extraction (FE) 

methods are, 

• Principle Component Analysis (PCA), a frenquently used statistical technique for 

optimal lossy compression of data under least squre sense, provide orthogonal basis 

vector-space to represent original data. 

• Linear Discriminant Analysis (LDA), which maximize the (between-class 

variance)/(within-class variance) 

• Independant Component Analysis (ICA), an emerging method which provide 

independant (but not-necessarily orthogonal) sourses to represent original data. 
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FACE DETECTION TECHNIQUES 

.• Other feature extraction methods, i.e., No-negative matrix factorization(NMF), 

Locally Linear Embedding method (LLE), etc. 

Some Classification methods are, 

• K Nearest Neighbor (K-NN) method [20], and typically 1-NN while K=1 
• Support Vector Machine (SVM), a novel method for classification while minimizing 

the "structure risk". 

• Neural Network methods. 

• Statistical Clustering + Iikelihood score, as one kind of statistical parametric 
classification method 

• Other statistical methods, i.e., Hidden Markov Model (HMM) or Mixture Factor 

Analyzers (MFA), etc. 

Basically, any combination of FE+Cl can be used: for example, PCA + LDA + K-NN. For 

easy understanding and implementation combination of PCA +K-NN method is used for face 

detection. 

2.2.1 EM algorithm of PCA for feature extraction 

The algorithm allows, a few eigenvectors and eigenvalues to be extracted from large 

collections of high dimensional data. It is computationally very efficient in space and time. It 

also naturally accommodates missing information. Results on synthetic and real data showing 

that these EM algorithm correctly and efficiently find the leading eigenvectors of the 

covariance of datasets in a few iterations using up to hundreds of thousands of data points in 

thousands of dimensions [13]. 

2.2.2 Applications and Advantages 

Principal component analysis (PCA) is a widely used dimensionality reduction technique in 

data analysis. Its popularity comes from three important properties. First, it is the optimal (in 

terms of mean squared error) linear scheme for compressing' a set of high dimensional 

vectors into a set of lower dimensional vectors and then reconstructing. Second, the model 
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FACE DETECTION TECHNIQUES 

parameters can be computed directly from the data — for example by diagonalizing the. 

sample covariance. Third, compression and decompression are easy operations to perform 

given the model parameters — they require only matrix multiplications. Despite these 

attractive features however, PCA models have several shortcomings. One is that naive 

methods for finding the principal component directions have trouble with high dimensional 

data or large numbers of datapoints. Consider attempting to diagonalize the sample 

covariance matrix of it n vectors in a space of p p dimensions when it n and p p are several 

hundred or several thousand. Difficulties can arise both in the form of computational 

complexity and also data scarcity. Even computing the sample covariance itself is very costly, 

requiring O(icp2) operations. In general it is best to avoid altogether computing the sample 

covariance explicitly. Methods such as the snap-shot algorithm [21] do this by assuming that 

the eigenvectors being searched for are linear combinations of the data points; their 

complexity is O((itp2). In this Thesis, presented a version of the expectation-maximization 

(EM) algorithm [22] for learning the principal components of a dataset. The algorithm does 

not require computing the sample covariance and has a complexity limited by O(knp) 

operations where k is the number of leading eigenvectors to be learned. 

Another shortcoming of standard approaches to PCA is that it is not obvious how to deal 

properly with missing data. Most of the methods discussed above cannot accommodate 

missing values and so incomplete points must either be discarded or completed using a 

variety of ad-hoc interpolation methods. On the other hand, the EM algorithm for PCA 

enjoys all the benefits [23] of other EM algorithms in terms of estimating the maximum 

likelihood values for missing information directly at each iteration. Finally, the PCA model 

itself suffers from a critical flaw that is independent of the technique used to compute its 

parameters: it does not define a proper probability model in the space of inputs. This is 

because the density is not normalized within the principal subspace. In other words, if we 

perform PCA on some data and then ask how well the model fits new data, the only criterion 

used is the squared distance of the new data from their projections into the principal subspace. 
A data point far away from the training data but nonetheless near the principal subspace will 

be assigned a high "pseudo-likelihood" or low error. Similarly, it is not possible to generate 

"fantasy" data from a PCA model. 

In summary, the methods developed in this paper provide three advantages. 

10 



FACE DETECTION TECHNIQUES 

• They allow simple and efficient computation of a few eigenvectors and eigenvalues 

when working with many data points in . high dimensions. They permit this 
computation even in the presence of missing data. 

• On a real vision problem with missing information, the 10 leading eigenvectors and 
eigenvalues of 2117  points in 212  dimensions in a few hours using MATLAB on a 

modest workstation. 

• Through a small variation, this method allow the computation not only of the 

principal subspace but of a complete Gaussian probabilistic model which allows one 

to generate data and compute true likelihood's. 

2.2.3 Theory of External Maximization 

Principal component analysis can be viewed as a limiting case of a particular class, of linear-

Gaussian models. The goal of such models is to capture the covariance structure of an 

observed p dimensional variable y using fewer than the p(p+l)/2 free parameters required in 

a full covariance matrix. Linear-Gaussian models do this by assuming that 'y as produced as a 

linear transformation. of some k dimensional latent variable x plus additive Gaussian noise. 

Denoting the transformation by the pxk matrix C, and the (p dimensional) noise by v (with 

covariance matrix R) the generative model can be written as 

y = Cx + v 	x — N(0,I) 	v — N(0,R) 	 2.2.3(a). 

The latent or cause variables x are assumed to be independent and identically distributed 

according to a unit variance spherical Gaussian. Since v are also independent and normal 

distributed (and assumed independent of x), the model reduces to a single Gaussian model 

for y which we can write explicitly: 

y — N(O,CCT  + R) 	 2.2.3(b) 

In order to save parameters over the direct covariance representation in p-space, it is 

necessary to choose k <p  and also to restrict the covariance structure of the Gaussian noise v 

by constraining the matrix R.3 For example, if the shape of the noise distribution is restricted 

to be axis aligned (its covariance matrix is diagonal) the model is known as factor analysis. 

11 



FACE DETECTION TECHNIQUES 

2.2.4 Inference and Learning 

There are two central problems of interest when working with the linear-Gaussian models 

described above. The first problem is that of state inference or compression which asks: 

given fixed model parameters C and R, what can be said about the unknown hidden states x 

given some observations y? Since the datapoints are independent, we are interested iri the 

posterior probability P (xly) over a single hidden . state given the corresponding single 

observation. This can be easily computed by linear matrix projection and the resulting 

density is itself Gaussian: 

	

P(x 7 y) = R(y / x)P(y)  = N(C x , R)I  y N(O, I  )I 	 2.2.4(a) 2.2.4 

	

P(x) 	N(0, CCT  + R)I y  

	

P(xl y) = N(13y, I — PC) X, 	 fi = C(  CC" + R)-' 	2.2.4(b) 

from which we obtain not only the expected value (3y of the unknown state but also an 

estimate of the uncertainty in this value in the form of the covariance I -CPC. Computing y 

from x (reconstruction) is also straightforward: P (yjx) = N (Cx;R) jy. Finally, computing the 

likelihood of any data point y is merely an evaluation under (2.2.4(a)). The second problem is 

that of learning, or parameters fitting which consists of identifying the matrices C and R that 

make the model assign the highest likelihood to the observed data. There are a family of EM 

algorithms to do this for the various cases of restrictions to R but all follow a similar 

structure: they use the inference formula (2.2.4(b)) above in the e-step to estimate the 

unknown state and then choose C and the restricted R in the m-step so as to maximize the 

expected joint likelihood of the estimated x and the observed y. 

2.3 EM Algorithm 

The key observation of this note is that even though the principal components can be 

computed explicitly, there is still an EM algorithm for learning them. The algorithm is: 

• c-step : X = (CTC)-1CTY 

12 
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• m-step: C = YXT(XXT)-I  

whereY is a pxn matrix of all the observed data and X is a kxn matrix of the unknown states. 

The columns of C will span the space of the first k principal components. (To compute the 

corresponding eigenvectors and eigenvalues explicitly, the data can be projected into this k-

dimensional subspace and an ordered orthogonal basis for the covariance in the subspace can 

be constructed.) Notice that the algorithm can be performed online using only a single 

datapoint at a time and so its storage requirements are only 0(kp) + 0(k2). The workings of 

the algorithm are illustrated graphically in figure 2.3. 

The left panel shows the learning of the first principal component of data, drawn from a 

Gaussian distribution, while the right panel shows learning on data from a non-Gaussian 

distribution. The dashed lines indicate the direction of the leading eigenvector of the sample 

covariance. The dashed ellipse is the one standard deviation contour of the sample covariance. 

The solid lines whose directions indicate the guess of the eigenvector and whose lengths 

indicate the guess of the eigenvalue at each iteration indicate the progress of the algorithm. 

The iterations are numbered; number 0 is the initial condition. 

The intuition behind the algorithm is as follows: guess an orientation for the principal 

subspace. Fix the guessed subspace and project the data y into it to give the values of the 

hidden states x. Now fix the values of the hidden states and chooses the subspace orientation, 

which minimizes the squared reconstruction errors of the data points. For the simple two-

dimensional example above, I can give a physical analogy. Imagine that we have a rod 

pinned at the origin, which is free to rotate. Pick an orientation for the rod. Holding the rod 

still, project every data point onto the rod, and attach each projected point to, its original point 

with a spring. Now release the rod. Repeat. The direction of the rod represents our guess of 

the principal component of the dataset. The energy stored in the springs is the reconstruction 

error we are trying to minimize. 

13 
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Figure 2.3 : Examples of iterations of the algorithm. 
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2.3.1 Convergence and Complexity 

The EM learning algorithm for PCA amounts to an iterative procedure for finding the 

subspace spanned by the k leading eigenvectors without explicit computation of the sample 

covariance. It is attractive for small k because its complexity is limited by O(knp) per 

iteration and so depends only linearly on both the dimensionality of the data and the number 

of points. Methods that explicitly compute the sample covariance matrix have complexities 

limited by O(np2), while methods like the snap-shot method that form linear combinations of 

the data must compute and diagonalize a matrix of all possible inner products between points 

and thus are limited by 0(n2p) complexity. The complexity scaling of the algorithm 

compared to these methods is shown in figure 2.4 below. For each dimensionality, a random 

covariance matrix — was generated5 and then IOp points were drawn from N (0;E). The 

number of floating point operations required to find the first principal component was 

recorded using MATLAB's flops function. As expected, the EM algorithm scales more 

favorably in cases where k is small and both •p and n are large. If k p n (we want all the 

eigenvectors) then all methods are 0(p3). The standard convergence proofs for EM [I] apply 

to this algorithm as well, so we can be sure that it will always reach a local maximum of 

likelihood. Furthermore, Tipping and Bishop .have shown [8, 9] that the only stable local 

extremum is the global maximum at which the true principal subspace is found; so it 

converges to the correct result. Another possible concern is that the number of iterations 

required for convergence may scale with p or n. To investigate this question, the leading 

eigenvector for synthetic datasets (as above, with n = lop) of varying dimension is explicitly 

computed and recorded the number of iterations of the EM .algorithm required for the inner 

product of the eigendirection with the current guess of the algorithm to be 0:999 or greater. 

Up to 450 dimensions (4500 datapoints), the number of iterations remains roughly constant 

with a mean of 3:6. The ratios of the first k eigenvalues seem to be the critical parameters 

controlling the number of iterations until convergence. 
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FACE DETECTION TECHNIQUES 

In all cases, the number of data points n is 10 times the dimensionality p. For the left panel, 

the number of floating point operations to find the leading eigenvector and eigenvalue were 

recorded. The EM algorithm was always run for exactly 20 iterations. The cost shown for 

diagonalization of the sample covariance uses the MATLAB functions coy and eigs. The 

snapshot method is show to indicate scaling only; one would not normally use it when n>  p. 
In the right hand panel, explicitly computing the leading eigenvector and then running the 

EM algorithm until the dot product of its guess investigated convergence and the true 

eigendirection was 0.999 or more. The error bars show ± one standard deviation across many 

runs. The dashed line shows the number of iterations used to produce the EM algorithm 

curve ('+') in the left panel. 

2.3.2 Missing data 

In the complete data setting, the values of the projections or hidden states x are viewed as the 

"missing information" for EM. During the e-step these values were computed by projecting 

the observed data into the current subspace. This minimizes the model error given the 

observed data and the model parameters. However, if some of the input points are missing 

certain coordinate values, we can easily estimate those values in the same fashion. Instead of 

estimating only x as the value that minimizes the squared distance between the point and its 

reconstruction we can generalize the e-step to: 

Generalized e step : For each (possibly incomplete) point y find the unique pair of points x*  

and y*  (such that x` lies in the current principal subspace and y*  lies in the subspace defined 

by the known information about y) which minimize the norm I ICx` - y*  I I Set the 

corresponding column of X to x*  and the corresponding column of Y to y*. 

If y is complete, then y*  = y and x is found exactly as before. If not, then x* and y` are the 

solution to a least squares problem and can be found by, for example, QR factorization of a 

particular constraint matrix. Using this generalized e-step It is found that the leading 

principal components for datasets in which every point is missing some coordinates. 
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2.4 K-NN method for Classification 

K-Nearest Neighbor (KNN) classification is a very simple, yet powerful classification 

method[19], [20]. The key idea behind KNN classification is that similar observations belong 

to similar classes. Thus, one simply has to look for the class designators of a certain number 

of the nearest neighbors and weigh their class numbers to assign a class number to the 

unknown. 

The weighing scheme of the class numbers is .often a majority rule, but other schemes are 

conceivable. The number of. the nearest neighbors, k, should be odd in order to avoid ties, 

and it should be kept small, since a large k -tends to create misclassifications unless the 

individual classes are well-separated. For face detection purpose to make misclassification 

least K is chosen as 1. So the classifier is 1-NN method. 

It can be shown that the performance of a KNN classifier is always at least half of the' best 

possible classifier for a given problem. One of the major drawbacks of KNN classifiers is 

that the classifier needs all available data. This may lead to considerable' overhead, if the 

training data set is large. 
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METHODOLOGY AND IMPLEMENTATION 

CHAPTER 3 

METHODOLOGY AND IMPLEMENTATION* 

3.1 Color Based Technique Using Neural Network 

For simplicity, tried only to detect the presence of a mug shot that is a full front-view human 

face that is not obscured with little background noise. Our training data set consisted of 20 

color images: 10 human faces and 10 non-faces as shown in Fig 3.1 and fig. 3.2. The ten 

faces were, chosen to represent a variety of ages, genders, and skin tones. The other ten 

images were random objects taken from the Internet [24]. Some of the non-face images were 

chosen to "fool" the network. Each face would have a corresponding output P =1, while 

images 11 — 20 would have output P = 0. 

Next, a group of 13 color images for a test data set are selected. An odd number of images is 

chosen to see if the system was above or below 50% accurate. That is, I wanted to check that 

the system was better than guessing. The network would not be trained on these images, so 

the performance on this data set would indicate the effectiveness of our system . in face 

detection. A correct identification would result in a value P > 0.5 for all faces (images 1-8 

of Fig.3.3) and a value P < 0.5 for all non-faces (images 9-13 of Fig. 33). 
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Fig. 3.3 Test image set 
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The only detail of the neural network that remains to be determined is the specific type of 

input that will be fed into the network. Since the matrix of weights for the training set will 

have size 20 x 204X1 + 1) = 4004X1 + 1), we wish to keep the input vector size I as small 

as possible to keep the computational costs minimal. System was tested for two types of 

inputs: RGB histograms, and YES histograms. The two training and a test image sets above 

were used for both the systems to allow comparison. 

3.1.1 RGB Histogram Approach 

It is required to choose the input vector X that would represent the image globally. RGB 

values of each pixel in the image is cataloged in relative frequency histograms, where each 

component of the color space (R,G,B) was represented by N bins. The three histograms were 

then appended as one vector, so the input vector would have size IxJ = 3N. It was hoped that 

the neural network would "learn" which bins correspond to flesh tones and develop an 

internal chroma chart. 

N=20 bins were chosen for each component of the RGB color space. So this input vector 

has size JxI =60.  The Levenberg-Marquad algorithm was run on the two training data set for 

110 iterations. The network outputs for the training were very favorable since each image 

was correctly classified. That is, the images containing faces (1-10) resulted in outputs 

P> 0.5 while the non-face images gave rise to outputs P <0.5. 

3.1.1.1 Performance Evaluation 

The results on test data set were impressive. This approach correctly classified 12 of 13 test 

images for training set 1, or 92.3% and for training set 2 13 out of 13, i.e. 100%. From this 

two things can be concluded: 

o Performance is depend upon training set 

• RGB approach is an efficient method for face detection 
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Fig. 3.4 Network outputs for Training sett after 110 iterations of LM algorithm. The inputs 

were under ROB histogram approach 
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A common measurement of performance of classification system is the false positive and 

false negative rates [15]. Given by 

Number of incorrectly detected faces 
False Positive = 	 3.1.1.1(a) 

Total number of actual faces 

Number of missed faces 
False' Negative = 	 3.1.1.1(b) 

Total nuber of Actual faces 

For. training set 1 

FP = g = 0 (test data set) and . P6. = 0 (training set) 

FN = 8 = 0.125 (test dataset) and O = 0 (training set) 

For training set 2 

FP = g = 0 (test data set) and 10 = 0.1 (training set) 

FN = 0  = 0.125 (test dataset) and 1  O = 0 (training set) 

Note that the errors were primarily from missed faces. This may be due to the fact that the 

training resulted in network outputs very close to 0.5 That is, even though the system 

correctly identified all 10 faces in the training set, all P values for images 1 through 10 were 

only slightly above 0.5 (see Fig. 3.4). Overall, taking the training and test data together, this 

approach correctly- identified 32 of the 33 images (96.9%). 

3.1.2 YES Histogram Approach 

Although the RGB histogram approach yielded very good and positive results it is required 

tried and compare its performance with other histograms in color space. For this at the 

suggestion of Dr. Fadil Santosa, we implemented a color histogram approach in the YES 

color space. The transformation from the standard RGB space to the YES space is given by. 

the equations below: 
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Fig. 3.5 Network outputs for Training set 2 after 110 iterations of LM algorithm. The inputs 

were under RGB histogram approach 
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Y = 0.253R+ 0.6846+ 0.063B 
E= 0.5R-0.5G 	 3.1.2(a) 

S = 0.258+0.25G-0.513 

In a sense, the Y matrix picks out the edges of the image while the E and S matrices encode 

the color intensities. The Y histogram may, in some sense, provide the neural network with 

spatial information, rather than just color intensities. As for the RGB histogram, we cataloged 

the pixel values in the image in three YES relative frequency histograms, each with N 

equally spaced bins. The histograms were appended to form one input vector X. Again, we 

chose N=20. 

3.1.2.1 Performance Evaluation 

The LM algorithm was run for 110 iterations with the inputs for the 20 training images 

determined by this YES histogram approach. After 110 iterations, the system had correctly 

classified 19 of the 20 training set 1 images (see Fig. 3.7). One image containing a face 

(image 9) had a P value just under 0.5. This mis-classification may have been due to the fact 

that images 15 and 16 contained flesh tones matching colors, while the face in image 3 had 

the darkest skin tone in the training set. It is probable that the neural network would be able 

to correctly classify the training set images if the training was run for more iteration. The 

detection rates for the training set were 

For training set 1 

FP = 0  = 0 (test data set) and 10 = 0.1(training set) 

FN = 3  = 0.375 (test dataset) and 1  = 0:1 (training set) 
8 	 10 

For training set 2 

FP = 0  = 0 (test data set) and O = 0.2 (training set) 

FN = 8 = 0.25 (test dataset) and O = 0 (training set) 
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Fig 3.6 Network outputs for Training set t after 110 iterations of LM algorithm. The inputs 

were under YES histogram approach 
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The results for the test data set were less encouraging. The system correctly classified 10 out 

of 13 (76.9%) of the test images for training set 1 and 11 out of 13 (84.3%) of test images for 

training set 2. So overall, this system correctly classified 28 out of 33 (84.8%) of the images 

for training set 1 and 26 out of 33 (80.8%) of the images for training set 2. So ROB 

histogram approach shows the better results in comparison with YES histogram approach. 

3.2 Appearance Based Technique 

In Appearance based technique face detection algorithms consist of two parts: 

• Feature extraction 

• Classification. 

The purpose of feature extraction is preprocessing the image data to get better representation 

of data, as to facilitate better classification results. Also, many classification schemes exist; 

each has its peculiar strength & weakness. Here PCA based feature extraction technique is 

used. Principal Component Analysis (PCA), a frequently used statistical technique for 

optimal lossy compression of data under least square sense; provide orthogonal basis vector 

space to represent original data. 

Purpose of Classification is to classify the given dimensional space into two output spaces 

whether it is face like structure or not based on information derived from learning process. 

Here for Classification, K Nearest Neighbor (K-NN) method is used, and typically 1-NN 

while K=1. 

Basically, any combination of FE+CI can be used like in this face detection problem PCA + 

K-NN method is used. Based on experience & assumption it is easier to 

understand/implement PCA + I -NN method. 

Implementation is carried out using MATLAB 6.1 in windows environment. Various 

properties are: 

• The codes includes basic image 1/0, Also codes for simple PCA analysis and 

probablistic clustering algorithm are written in MATLAB and it gives out results of 

efficient face detector. 
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Fig. 3.7 Network outputs for Training set 2 after 110 iterations of LM algorithm. The inputs 

were under YES histogram approach 
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• The training data is composed of two parts: face data and non-face data. Program 

could learn offline from the training data, and you can get a feeling of its performance 

by running on the testing data provided. 

• Due to limited amount of disk/memory space and to remove the complexity, only 

limited training data is used. But the training Data is for real face detection 

application, so it can be of very big in size. 

• The training data is cropped face images with fixed size (19x 19 pixels). Currently 

only front view is used. 

• Currently only several simple test images are used for easy of comparison. To test the 

performance of program other type of test image set used. 

3.2.1 Implementation Steps 

Following steps are involved during implementation of face detection task: 

1. Image Utilities 

• Image vector is build from a rectangular image array. 

• Result vector is build to match the image vector. 

• Builds a rectangular binary mask array for face images. 

• Subtracting a linear lighting plane and then resealing the grayscale distribution 

histogram normalize image: 

• Image set is augmented with the left right flipped versions of image. 

• Rebuilding of before mask data. 

• Simple I-NN classifier used to classify the face and non-face portion. 

• Simple post processing to reduce the amount of detected faces. 

2. Image Loading and Image Display 

• A set of image according to given pattern set is loaded 

• A set of image is also loaded via bootstrapping. 

• Subplot of set of images in an image array. 
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• Pgm format images are read by different function. 

3.2.2 Training 

Training is a very important step in face detection problem and here PCA method is used for 

training. Training images are first preprocessed i.e. they are cropped (to left face pixels only) 

and scaled to appropriate size (19* 19) and then load in the images and make up the training 

data matrix. Using approx. 4000 images of pgm format training is done. Most attractive 

feature of this training algorithm is that it takes only few seconds to train 4000 images. 
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CHAPTER 4 

RESULTS AND INTERPRETATIONS 

In this chapter Results of two techniques on various test images is presented and then 

results are interpreted. 

4.1 Color Based Technique Using Neural Network 

In Color based technique two inputs for NN is taken ROB and YES histogram and both 

are tested for same test images and two training sets. In the result picture histogram of 

image and network output is shown, if the network output is greater than 0.5 then it 

represents face and if it is less than 0.5 it is non face image. In face image as shown in fig 

4.1 (a), network output P, is 0.600248. Similarly histogram and network outputs for all 

other test images are clearly shown in Fig.4.1 (a-m), Fig 4.2(a-m), Fig4.3 (a-m) and Fig 

4.4(a-m). These network outputs for two training sets and various test images is also 

tabulated. 

Of' the two approaches ROB histogram shows the better results over YES histogram 

approach but they are very close to each other on performance basis. All of these results 

are based on rather-  small training and test data sets. To better judge the effectiveness of 

these approaches, we need to test the systems on a larger data set. 

Two training data set give different network output. It is concluded that output and 

performance of detection process is very much depended upon: 

• Number of training images, current training set of 20 images is rather small 

increasing the size of training set while being careful to represent different 

possible faces, would allow the training algorithm to set the weights more 

accurately. 

• Types of training image set, brightness, noise, and intensity level will change the 

network output as they provide different information to the network. 
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• Number of iterations of LM algorithm, the results obtained in the present system 

is after 110 iteration of LM algorithm. Increasing the number of iterations can 

increase detection efficiency. 

• Type of input X fed to the NN, it contains information. 

• Number of hidden nodes, increasing the number of hidden nodes might also 

improve the performance. 

• Value of N, bins, increasing the value of N would provide the neural network with 

more input information. 

However, all these changes would increase the training costs, complexity, and training 

time and reduce the ease of obtaining results. 
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Fig 4.1 RGB histogram with N=20 for training set 1 
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Fig 4.2 ROB histogram with N=20 for training set 2 
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Fig 4.3 YES histogram with N=20 for training set 1 
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Fig. 4.4 YES Histogram approach with N=20 for training set 2 
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4.1.1 Network outputs 

Table 4.1 Network outputs for training set 1 

Ima 

ge 

inde 

x 

Actua 

1 	P 

(outp 

ut) 

RGB 

Approach 

Output P 

YES 

Approach 

Output P 

1 1 0.619 0.593 

2 1 0.558 0.792 

3 1 0.605 0.937 

4 1 0.635 0.753 

5 1 0.580 0.755 

6 1 0.569 0.680 

7 1 0.612 0.905 

8 1 0.643 0.800 

9 1 0.621 0.490 

10 1 0.491 0.682 

11 0 0.383 -0.081 

12 0 0.219 0.499 

13 0 0.352 0.301 

14 0 0.388 -0.083 

15 0 0.356 -0.280 

16 0 0.345 0.207 

17 0 0.360 0.441 

18 0 0.598 0.135 

19 0 0.570 -0.095 

.20 0 0.613 0.031 



Table 4.2 Network outputs for training set 2 

Image 

index 

Actual P (output) RGB Approach 

Output P 

YES Approach 

Output P 

1 1 0.615 0.555 

2 1 0.616 0.563 

3 1 0.564 0.595 

4 1 0.541 0.542 

5 1 0.614 0.569 

6 1 0.612 0.596 

7 1 0.591 0.585 

8 1 0.268 0.566 

9 1 0.395 0.599 

10 1 0.336 0.565 

11 0 0.415 0.536 

12 0 0.225 0.515 

13 0 0.395 0.556 

14 0 0.415 0.568 

15 0 0.226 0.566 

16 0 0.441 0.317 

17 0 0.356 0.458 

18 0 0.425 0.456 

19 0 0.312 0.298 

20 0 0.381 0.299 
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Table 4.3 Network outputs for test images 

Training 

set 1 

Training 

set 2 

Training 

set 1 

Training 

set 2 

1 1 0.600 0.568 0.610 0.611 

2 1 0.576 0.538 0.335 0.440 

3 1 0.587 0.511 0.608 0.604 

4 1 0.727 0.634 0.733 0.733 

5 1 0.602 0.565 0.501 0.501 

6 1 0.422 0.573 0.221 0.182 

7 1 0.537 0.537 0.447 0.536 

8 1 0.635 0.635 0.542 0.542 

9 <0.5 -2.262 -2.141 -2.094 -0.347 

10 <0.5 -2.451 -2.422 -2.264 -0.437 

11 <0.5 -1.006 -0.927 -1.303 -0.054 

12 <0.5 -2.207 -2.095 -1.851 -0.190 

13 <0.5 -2.320 -2.249 -2.348 -0.189 
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4.2 Appearance Based Technique for Face Detection 

In Appearance based technique gray scale test images with frontal view faces is taken for 

face detection purpose, as shown in Fig. 4.5 first bounding boxes are formed around the 

images and then clear output is output is obtained in form of box placed around the face 

(Fig.4.6). The output is obtained by training of 4000 face images and 4000 non face 

images and training time is very less. Various interpretations drawn from the result output 

images are 

• 4000 face and 4000 non-face images are taken for training purpose and time taken 

to complete the training process for 4000 images is only few seconds. 

• Very good results is obtained by putting box around face in a gray scale frontal 

view face photograph, shows that training process is very efficient. 

• It is applicable to only gray scale images and frontal view faces. 

• Results obtained shows that give better result only for single face in an image and 

not for more than one face in an image. 

• Results are tried on two types of test images, shows good results for gray scale 

jpeg format image and inaccurate result for png format image. 

r 
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Fig. 4.5 Bounding boxes in test image 1 

Fig. 4.6 Output of Test image l 



lit;. 4,7 Uouuding Boxes around Test Image 2 

Fig.4.8 Output of Test Image2 
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Fig. 4.9 Bounding boxes in test image3 

Fig. 4.10 Output of Test image 3 



Fig. 4.11 Bounding boxes in Test Image 4 

Fig. 4.12 Output of Test Image 4 
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4.3 Performance Parameters  

• Time for training images. 

• Complexity in terms of programming and implementation. 

• Type of test images. 

• Types of training images. 

• Accuracy of result for same test images. 

4.4 Comparison of Two Techniques 

• Time for training is less in case of PCA training, it takes few seconds for 4000 

face and 4000 non-face images. While in case of LM training it takes 1 min for 10 

face and 10 non-face images. 

• Complexity is large in case of appearance based technique as compared to NN 

color based technique and it increases as type of test image changes and number 

of training images increases. 

• Appearance based technique is applicable only to gray scale images as it is based 

on feature extraction and classification, while NN technique is color based and 

trained for skin tone detection. 

• Both technique give good results for frontal view and single faces in an image as 

number of faces increases and pose changes complexity of system increases 

rapidly. 

• In color based technique, true color, jpeg format images are used for training 

while in appearance based technique gray scale image with any format can be 

used for training. 

• For single and frontal view faces in an image accuracy of appearance based 

technique is more than color based technique. 

• Output obtained in case of appearance based technique is simply a box placed 

around face but in case of color based technique output is obtained in form data 

and large calculation is required for-performance evaluation. 
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CHAPTER 5 

CONCLUSION AND FUTURE SCOPE 

5.1 Conclusions: 

In this dissertation color based technique using neural network [8] has been modified and 

implemented with new inputs and training sets using MATLAB 6.5. Further a new 

combination of PCA for FE and K-NN for classification has been used in appearance 

based technique. It is found that the result with this combination gives better face 

detection as compared to other combinations [ 16]. Other important conclusions regarding 

the two techniques implemented are as follows: 

• The color based technique using NN is successful in detecting almost 80% of 

faces in color test images calculated by performance evaluation measurement. 

• The color-based technique is applicable to colored, real images with frontal view 

faces. 

• It is observed that PCA algorithm takes very less time to train thousands of face 

and non-face images and give very good result for gray scale, frontal view face 

images. 

• In terms of time and accuracy appearance based technique gives very good results 

but in terms of complexity in implementation and variation in test images color 

based technique is better. 

5.2 Future Scope 

Since the effectiveness of the color based technique appears to be dependent on the color 

space, one area for further research would be to test other color spaces like HSV, LIQ etc 

Also, it would be interesting to explore the systems' dependence on variable parameters. 

Increasing the value of N, number of hidden nodes and training set would provide the 

neural network with more input information and and this will improve the performance of 

detection. 



In appearance based technique, in place of PCA + K-NN combination any other 

combination like PCA + SVM, LDA + SVM can be used to increase the performance of 

face detection system at the expense of increase in complexity of implementation. 
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APPENDIX A 

Program Listing of Neural Network Based Technique 

Training 

The following m-files were used to train the neural network. The Levenberg-Marquad code and the related 
files eone.m, etot.m were written by Dr. Fadil Santosa. The trainall routine takes about 5 minutes to run, 
but it only runs 10 iterations at a time. 

Levenberg-Marquad Code: 

1. levmar 

function [w, res] = levmar (X, T, p, wO, lam, itMAX) 
levmar -- Levenberg-Marquad Algorithm 
Input 
(X,T) are nodes to go through 
p is number of nodes in hidden layer 
wO is. initialization for weights 
lam is initizialization for learning rate lambda 
itMAX is number of iterations 

% Output 
w is the final weights matrix 
res is the list of error at each iteration 

% Compute number of unknowns: nunk. 
[m, nex] = size(X); 
[n, nex] = size(T); 
nunk = p*(m+1) + n*(p+l); 

if w00 
w = 3 *rand(nunk, l ); % Random weights. 

else 
w=w0; 

end; 

% Levenberg-Marquad Algorithm 
for it = 1;itMAX 

[Etot, Gtot, Jtot, R] = etot (X,T,p,w, 1); 
An = Jtof * Jtot + lam * eye (nunk, nunk); 

dw = An \ (Jtot' * reshape(R, n*nex, 1) ); 
wtst = w - dw; 
[Etst, Gtot, Junk, R] = etot(X,T,p,wtst,0); 

if Etst <= Etot 
w = wtst; lam = Iam / 10; 

else 
lam = lam * 10; 

end 

res(it) = Etot; 
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end 

2. etot 
function [Etot,Gtot,Jtot,R]=etot(X,T,p,w,toggle) 
% compute total misfit 
% Etot total misfit 
% Gtot gradient of total misfit wrt weight w 
% R residual matrix, each column is residual vector 
% Jtot jacobian of R wrt w 
% toggle == 1 compute jacobian 

[m,nex]=size(X); 
[n,nex]=size(T); 

% choose number of nodes in hidden layer 
Etot=O; Gtot=zeros(size(w)); Jtot=[]; 
for k=1:nex 

x=X(:,k); t=T(:,k); 
[E,G,y,J]=eone(x,t,p,w,toggle); 
Etot=Etot+E; 
Gtot=Gtot+G; 
Jtot=[Jtot;J]; 

end 
3. econe 
function [E,G,y,J] = eone(x,t,p,w,toggle) 
% program to generate misfit and gradient of misfit given an 
% input-output pair 
% x(1:m) vector corresponding to given input 
% t(1:n) vector corresponding to target output 
% p number of nodes in hidden layer 
% w(1:P) vector corresponding to weights -- P=p*(m+1)+n*(p+1) 
% y(l:n) vector corresponding to network output 
% E scalar for norm of (t-y) . 
% G(1:P) gradient of E with respect to w 
% 3(1:n,I:P) Jacobian of y with respect to w 
% toggle 1 -> compute Jacobian, 0 otherwise 

m=length(x); 
n=length(t); 
xP=Ix;1  ]; 
tem=w(1:p*(m+1)); 
W 1=reshape(tem,p,m+l ); 
tem=w(p*(m+1)+l :p*(m+ 1)+n*(p+1)); 
W2=reshape(tem,n,p+l ); 
a=W I *xp; 
z=sigmoid(a); 
z=[z; I]; 
y=W2*zp; 
E=0.5 *norm(t-y)^2; 

% gradient with respect to W2 
del=y-t; 
tem=del*zp; 
g2=reshape(tem,n*(p+ 1), 1); 

% gradient with respect to W 1 

w 



q=W2(:, 1 :p)'*del;  
tem=(sigmoid(a). * q) *xp ; 
gl=reshape(tem,p*(m+1),1); 
G=[gl;g21; 
J=[]; 
if toggle =1 

%jacobian with respect to W2 
J2=[]; 
for 1=1:p+1 

J2=[J2 zp(l)*eye(n,n)]; 
end 

% jacobian with respect to W 1 

for 1=1:m+1 
J1=[JI W2(:,1:p).*(ones(n,1)*sigmoid(a'))*xp(l)]; 

end 
J=[J1 J2]; 

end 

4. Sigmoid. 

function s=sigmoid(t) 
s=1./(1+exp(-t)); 

Alternative 
s=(exp(t)-exp(-t))./(exp(t)+exp(-t)); 

RGB HISTOGRAN APPROACH 

1. rgb trainalll 

function [x, outputs] = rgb_trainallI(N,p, toggle) 

Trains all images in directory images. 
We give file names of all jpg images. 
Plots fmal residual of each image at end. 
Given # bins N and # hidden nodes p. 
If toggle = 0, then we start with random initial weights. 
Otherwise assumes inital weights w- given in file rgb_weights unless toggle=0. 

warning off; 

%Training rate lambda. 
lam = 0.1; 

% # iterations. 
itMAX = 10; 

% Human faces: y=1 
x(:,1) = image2rgbhist ('1.jpg', N); 
y(1,1) = 1.0; 

x(:,2) = image2rgbhist ('2.jpg', N); 
y(1,2) = 1.0; 
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x(:,3) = image2rgbhist ('3.jpg', N); 
y(1,3)=1.0; 

x(:,4) = image2rgbhist ('4.jpg', N); 
y(1,4) = 1.0; 

x(:,5) = image2rgbhist ('5.jpg', N); 
y(1,5)=1.0; 

x(:,6) = image2rgbhist ('6.jpg', N); 
y(1,6) = 1.0; 

x(:,7) = 

	

	 ('7.jpg', N); image2rgbhist (7.' , N g 	 ) 
y(1,7)=1.0; 

x(:,8) = image2rgbhist ('8.jpg', N); 
y(1,8) = 1.0; 

x(:,9) = image2rgbhist ('9 jpg', N); 
y(1,9) = 1.0; 

x(:,10) = image2rgbhist (' 10 jpg', N); 
y(1,10) = 1.0; 

% Not human faces: y=0 
x(:,11) = image2rgbhist ('1 l.jpg', N); 
y(1,11)=0.0; 

. 	 I 
x(:,12) = image2rgbhist ('12 jpg', N); 
y(1,12) = 0.0; 

x(:,13) = image2rgbhist (' 13 jpg', N); 
y(1,13) = 0.0; 

x(:,14) = image2rgbhist ('14 jpg', N); 
y(1,14) = 0.0; 

x(:,15) = image2rgbhist ('15.jpg', N); 
y(1,15) = 0.0; 

x(:,16) = image2rgbhist ('16 jpg', N); 
y(1,16) = 0.0; 

x(:,17) = image2rgbhist ('17.jpg', N); 
y(1,17) = 0.0; 

x(:,18) = image2rgbhist ('18.jpg', N); 
y(1,18)=0.0; 

x(:,19) _ image2rgbhist (' 19 jpg', N); 
y(1,19) = 0.0; 

x(:,20) = image2rgbhist ('20 jpg', N); 
y(1,20) = 0.0; 
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% Run through Levenberg-Marquad algorithm. 
if toggle = 0 
w=0; 

else 
load rgb_weights w; 

end; 

[w,res] =levmar (x, y, p, w, lam, itMAX); 
save rgb_weights w; 

% Output overall residual on final weights w. 
% Residual = Network Output - Desired Output. 

for i=1:20 
outputs(i) = forward(x(:,i), l,p,w); 
overall_res(i) = outputs(i) -.y(l,i); 

end; 

plot(outputs); 
xlabel('INDEX'); 
ylabel('P'); 
title('Network outputs'); 

2. image2rgbhist 

function [x] = image2rgbhist (file name, N) 

% Writes an image at file name (i.e. jpg) into 3 histograms. 
% Each histogram has N bins. 
% The vector is the appended R, G, then B histograms. 
% We scale x at the end so all entries are between 0 and 1. 
% This is a necessary condition for feeding into the neural network. 
% The resize matrix operation assumes each image is at least 50x50 pixels. 

% Get bin centers. 
for i=1:N 

Bins(i,1) = i/N - 1/(2*N); 
end; 

%Interpolation factor I 
I=50; 

A = double(imread(file_name)); 
B = resize matrix(A,I,I); 
B = B/260; 
[total_rows total columns three] = size(B); 

for row = l:total_rows 
for column = I :total columns 

v(column+(row- 1)*total_columns,  1) = B(row, column, 1); 	% R 
v(column+(row-1)*total_columns,2) = B(row,column,2); 	% G 
v(column+(row-1)*total columns,3) = B(row,column,3); 	% B 
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end; 
end; 

total hist = hist(v,Bins); 

hist_R = total_hist(:,1); 
hist_G = total_hist(:,2); 
hiss B = total hist(:,3); 

x=[hist_R;hist_G;hist_B]; 
x=x/(I^2); 

3. rgb_forward 

function [y] = rgb_forward (file name) 

% rgb_forward.m 

Uses RGB histogram approach for identifying image. 
Given an image file (i.e. jpeg), returns value y 

%y =1 for face, y = 0 for not face 
% Assumes weights are stored as w in rgb_  weights .mat 

Plots results 

x = image2rgbhist (file_name, 20); 
load rgb_weights w; 
y = forward (x, 1, 20 , w); 

subplot (3,1,1); 
imshow(file_name); 
subplot(3,1,2); 
bar(x); 
xlabel('R:1-20 G:21-40 B:41-60'); 
axis([ 1, 60,0,max(x)+0.01 ]); 
ylabel('Color frequency') 
title('RGB histogram') 
subplot(3,1,3); 
plot(y, '+'); 
axis([0.5, 1.5, 0, 1]); 
xlabel(y); 

YES HISTOGRAN APPROACH 

1. yes_trainalll 

function [x, outputs] = yes_trainallI(N,p, toggle) 

% Trains all images in directory images. 
% We'give file names of all jpg images. 
% Plots final residual of each image at end. 
% Given # bins N and # hidden nodes p. 
% If toggle = 0, then we start with random initial weights. 
% Otherwise assumes inital weights w given in file yes weights unless toggle=0. 

warning off; 

ii  
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%Training rate lambda. 
lam = 0.1; 

% # iterations. 
itMAX =10; 

% Human faces: y=1 
x(:,1) = image2yeshist. (' 1 jpg', N); 
y(1,1) = 1.0; 

x(:,2) = image2yeshist ('2.jpg', N); 
y(1,2) =1.0; 

x(:,3) = image2yeshist ('3.jpg', N); 
y(1,3) = 1.0; 

x(:,4) = image2yeshist ('4 jpg', N); 
y(1,4) = 1.0; 

x(:,5) = image2yeshist ('5.jpg', N); 
y(1,5) = 1.0; 

x(:,6) = image2yeshist ('6.jpg', N); 
y(1,6) = 1.0; 

x(:,7) = image2yeshist ('7.jpg', N); 
y(1,7) = 1.0; 

x(:,8) = image2yeshist ('8 jpg', N); 
y(1,8) = 1.0; 

x(:,9) = image2yeshist ('9 jpg', N); 
y(1,9) = 1.0; 

x(:,10) = image2yeshist ('10.jpg', N); 
y(1,10) = 1.0; 

% Not human faces: y=0 
x(:,11) = image2yeshist ('11.jpg', N); 
y(1,11) = 0.0; 

x(:, 12) = image2yeshist ('I2 j pg', N); 
y(1,12) = 0.0; 

x(:,13) = image2yeshist ('13.jpg', N); 
y(l,13) = 0.0; 

x(:,14) = image2yeshist ('14.jpg', N); 
y(l,14)=0.0; 

x(:,15) = image2yeshist ('15 jpg', N); 
y(1,15) = 0.0; 

x(:,16) = image2yeshist ('16 jpg', N); 
y(1,16) = 0.0; 
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x(:,17) = image2yeshist ('17 jpg', N); 
y(l,17) = 0.0; 

x(:,18) = image2yeshist ('I8 jpg', N); 
y(l,18) = 0.0; 

x(:,19) = image2yeshist ('19 jpg', N); 
y(1,19) = 0.0; 

x(:,20) = image2yeshist ('20 jpg', N); 
y(1,20) = 0.0; 

% Run through Levenberg-Marquad algorithm. 
if toggle = 0 
w=0; 

else 
load yes_weights w; 

end; 

[w,res] = levmar (x, y, p, w, lam, itMAX); 
save yes_weights w; 

Output overall residual on fmal weights w. 
Residual = Network Output - Desired Output. 

for i=1:20 
outputs(i) = forward(x(:,i), 1 ,p,w); 
overall res(i) = outputs(i) - y(l,i); 

end; 

plot(outputs); 
xlabel('INDEX'); 
ylabel('P'); 
title('Network outputs'); 

2. image2yeshist 

function [x] = image2yeshist (file name, N) 

Writes an image at filename (i.e. jpg) into 3 histograms. 
Each histogram has N bins. 
The vector is the appended Y, E, then S histograms. 
We scale x at the end so all entries are between 0 and 1. 
This is a necessary condition for feeding into the neural network. 
The resize matrix operation assumes each image is at least 50x50 pixels. 

% Get bin centers. 
for i=1:N 

Bins(i,1) = i/N - 1/(2*N); 
end; 

%Interpolation factor I 

82 - 



I= 50; 

A = double(imread(file_name)); 
B = resize matrix(A,I,I); 
B = B/260; 
[total_rows total columns three] = size(B); 

Y = 0.253 *B(:,:,1)+0.684* B (:,:,2)+0.063 *B(:,:,3); 
E = 0.500*B(:,:,1)-0.500*B(:,:,2); 
S = 0.250*B(:,:,1)+0.250*B(:,:,2)-0.500*B(:,:,3); 

% Change each YES matrix into a vector. 
for row= I :total rows 
for column = I :total columns  
v(column+(row-1)*total_columns,1) = Y(row,column); 	% Y 
•v(column+(row-1)*total_columns,2) = E(row,column); 	% E 
v(column+(row-1)*total_columns,3) = S(row,column); 	% S 

end; 
end; 

total hist = hist(v,Bins); 

hist_Y = total_hist(:,1); 
hist_E = total_hist(:,2); 
hist S = total hist(:,3); 

x=[hist_Y ; hist_E ; hist_S]; 
x = x / (I^2); 

3. yes_forward 
function [y] = yes_forward (file name) 

yes_forward.m 

Uses YES histogram approach for identifying image. 
Given an image file (i.e. jpeg), returns value y 

%y= 1 forface,y=0 for not face 
Assumes weights are stored as w in yes_weights.mat 
Plots results 

x = image2yeshist (file_name, 20); 
load yes weights w; 
y = forward (x, 1, 20 , w); 

subplot (3,1,1); 
imshow(file_name); 
subplot(3,1,2); 
bar(x); 
xlabel('Y:1-20 E:21-40 S:41-60'); 
axis([ 1,60,0,max(x)+0.01 ]); 
ylabel('Color frequency')' 
title('YES histogram') 
subplot(3,1,3); 
plot(y, '+'); 
axis([0.5, 1.5, 0, 1]); 
xlabel(y); 
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COMMON FUNCTION 

1. forward 

function [y] = forward (x, n, p ,w) 

% forward.m 
% . Calculates forward output of given input x with weights w. 
% x(l:m) vector corresponding to given input 
% n is # of nodes in output (T) 
% p number of nodes in hidden layer 
% w(1 :P) vector corresponding to weights -- P=p*(m+l)+n*(p+l) 
% y(l:n) vector corresponding to network output 

m=length(x) 
xp=[x;1 ]; 
tem=w(l:p*(m+l)); 
W l=reshape(tem,p,m+l ); 
tem=w(p*(m+l)+1:p*(m+l)+n*(p+1)); 
W2=reshape(tem,n,p+ 1); 
a=W1*xp; 
z=sigmoid(a); 
zp=[z;l]; 
WW2*zp; 

2. resize matrix 

function [B] = resize_matrix (A, r, c) 

% To use type "[B] = resize_matrix (A, #, #)". 
% Resizes image matrix A by picking out pixels. 
% Resulting matrix B will have r rows by c columns. 
% Each pixel has three values: RGB. 

[rows columns three] = size(A); 

row_sample = floor (rows/r); 
column sample = floor (columns/c); 

for i=1:r 
for j=1:c 

B(ij,:) = A(i*row_sample, j*column_sample, :); 
end; 
end; 

J 
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APPENDIX B 

Program Listing of Appearance Based Technique for face Detection 

Main M-files for Face Detection and training 

1. Test 

IM the input test image 
IM = double(imread('test2.png')); 
Num.Face = 1; 

load model 

% START can be 1, but use to ignore smaller rectangles (level to start at) 
% STEP is good at 2 
% SCALEFACT is good at 1.2 
START=7; 
STEP=2; 
LEVELS=7; 
SCALEFACT=1.2; 

% Setup 
PYR MAX = LEVELS; 
MROWS = size(MASK,1); 
MCOLS = size(MASK,2); 
IROWS = size(IM, 1); 
ICOLS = size(IM, 2); 
RECT = []; 

% Build the image pyramid 
SCALE = SCALEFACT; %A good choice is 1.2 
PYR{ l } = IM; 
XRANGE{ 1 } = 1:1:ICOLS; 
YRANGE{1} = 1:l:IROWS; 
[MX { 1 },MY { 1 } ] = meshgrid(XRANGE { 1 }, YRANGE { 1 } ); 
for i=2:PYR_MAX, 

XRANGE{i} = I:SCALE.^(i-1):ICOLS; 
YRANGE{i} = 1:SCALE.^(i-1):IROWS; 
[MX{i},MY{i}] = meshgrid(XRANGE{i}, YRANGE{i}); 
PYR{i} = interp2(MX{ 1 }, MY{ 1}, PYR{ 1 }, MX{i}, MY{i}); 

end 

% View pyramid 
%figure; 
%colonnap(gray); 
%showimages(PYR, 2, 3, 1, 6, 1); 
%drawnow; 
%pause; 

% Scan the pyramid 
for im_num = START:PYR_MAX, 

fprintf(1, M\nImage Scale: %din', im_num); 
for im_row = I:STEP:size(PYR{im_num},1)-MROWS+1, 
fprintf(l , '\n Row: %d', im row); 



for im_col = 1:STEP:size(PYR{im_num},2)-MCOLS+1, 
TEST = 0; 
if bPCA=1 

TEST = classify 1NN(PYR{im_num}, MASK, im_row, im_col,mean_ALL, U 1, Si, data_proj, 
cFACEV, cNFACEV); 

elseif bPCA LDA==1 
TEST =J  classify_1NN_new(PYR{im_num},  MASK, im_row, im_col, mean_ALL, meanF, 

meanNF, U1, Si, U2, S2, dataFj roj, dataNF_proj); 
elseif bSVM==1 

TEST = classify_SVM(PYR{im_num}, MASK, im_row, im_col); 
elseif bPCA .SVM=1 

TEST =classify_PCA_ SVM(PYR{im_num}, MASK, im_row, im_col, mean_ALL, UI, SI); 
end 
if (TEST = 1) 

fprintf(1,'\n ---(#SCALE,R,C): [%d] (%d%d) ',im_num, im_row, im_col); 
RECT = [RECT; (im_row/size(YRANGE{im_num},2))*size(YRANGE{ 1 },2), ... 	% top 

(im coUsize(XRANGE{im_num},2))*size(XRANGE{ 1 },2), ... 	% left 
((im_row+MROWS-I)/size(YRANGE{im_num},2))*size(YRANGE{1},2), ... 

bottom 
((im_col+MCOLS-1)/size(XRANGE{im_num},2))*size(XRANGE{1},2), ... 	% right 
TEST]; 	 % TEST value 

end 
end 

end 
end 

% Plot the bounding boxes in an image 
IMR = IM; 
drawbox(IMR, RECT, 1); 

% post-process to eliminate these false detections 
RECT = postprocess(IM, RECT, NumFace); 

% plot again 
IMtmp = IM; 
drawbox(IMtmp, RECT, 1); 

2. Train PCA 

[eMin:eMax] range eigen_value & eigen_vectors we will keep 
eMin = 3; 
eMax = 23; 

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
%%% 	 Image Loading 
%%% 
%%% 

assume training images are already preprocessed: 
i.e. cropped (to left face pixels only) and scaled to appropriate size (18*27 i.e.) 

now load in the images and make up the training data mtx 

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 

% Load the image oval mask 
MASK = buildmask; . 



NI = size(find(MASK), 1); 

% load face images, normalize, and set training vectors 
% temp: only for current test query here!!!! 

need to change back if not use current query images 
FACES =loadimages('./trainset/train/face/', ",'pgm'); 
%FACES = loadimages_bootstrap(FACES, './bootstrap/face/',",'PNG'); 
%FACES = augmentlr(FACES); 
[NORM_FACES, SHADING] = normalize(FACES, MASK); 

clear FACES SHADING 

FACEV ° buildimvector(NORM_FACES, MASK); 
%FACER = buildresvector(NORMFACES, FACET); 

clear NORM FACES 

load non-face images, normalize, and set training vectors 

NFACES = loaditnages('./trainset/train/non-faceP, ", 'pgm'); 
%NFACES = loadimages_bootstrap(NFACES,'./bootstrap/non-face/', ",'PNG'); 
%NFACES = augmentlr(NFACES); 
[NORM NFACES, NSHADING] = normalize(NFACES, MASK); 

clear NFACES NSHADING 

NFACEV = buildimvector(NORM_NFACES, MASK); 
%NFACER = buildresvector(NORM NFACES, FACE F); 

clear NORM NFACES 

cFACEV = size(FACEV, 2); 
cNFACEV = size(NFACEV, 2); 

% optional --- Display images 
if 0, 
disp('original image data'); 
showimages(NORM_FACES, 5, 10, 1, 50, 1); 
% showimages(NORM_NFACES, 5, 5, 1, 25, 2); 
% pause; 
end 

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%ó/%%%%%%%%%%%%%%%          
%%%%%%% %%%%%%%%%%%%%%%%%%%%%%%% 
%%% 	Build the sub-space with eigen- vectors & values 
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 

FACESV & NFACESV: each face is a column vector 

collect face & non face data together 
% : each (non-)face is a column vector 
ALL = [FACEV NFACEV]; 

clear FACEV NFACEV 
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mean ALL = sum(ALL, 2)/size(ALL,2); 

% mean subtracted: 
data = ALL - mean ALL *ones(1, size( ALL,2)); 

% get U and S from data 
as you may try&found; when using large dataset, eig() or svd() fail to reach a converged solution 

% while snap-shot method (as used by Pentland et. al.) or em-pca methods can still have a good solution 

%SVD 
%[U 1, S 1, VI]  = svd(data); 

%eig 
%[U1, Si] = eig(data*data'); S1=sgrt(S1); 

snap shot method (not implement yet, you are encouraged to implement one here!) 

EM-PCA 
% iter: default is 20 

iter = 20; 
% for em-pca, needn't mean-subtraction here 

[U1, S1] = empca(ALL,eMax,iter); 
S 1 = diag(S 1); 	% Si is a mtx now 

% chop U&S to preserve only the [eMin:eMax] range of eigen- vectors & values 
UI = U1 (:, eMin:eMax); 
Si = S1 (eMin:eMax, eMin:eMax); 

% project training data into sub-space 
data_proj = (U 1 *inv(S 1))' * data; 

% optional --- eigen-spectra plots 
if 0, 
tmp l =diag(S 1); 
subplot(1,2,1),plot(l :length(tmp 1), tmp 1); 
end 

% optional --- now we can re-construct face by the remaining eigen data 
if0, 
FACEV_recon = U1 *U 1' *data(:,  1 :cFACEV) + mean_ALL *ones(I, cFACEV); 
NORM_FACE_recon = buildface(FACEV_recon, MASK); 
disp('the reconstruction result'); 
showimagevecs(NORMFACE recon, size(MASK, 1), size(MASK,2), 5, 10, 1, 50, 2); 

end 

save model 

bPCA=1; 
bPCA_LDA=O; 
bSVM=O; 
bPCA_SVM=O; 

3. Truepca 
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function [evects,evals] = truepca(dataset) 
% [evects,evals] = truepca(dataset) 

% USUAL WAY TO DO PCA -- find sample covariance and diagonalize 

% input: dataset 
% note, in dataset, each COLUMN is a datapoint 
% the data mean will be subtracted and discarded 

% output: evects holds the eigenvectors, one per column 
% 	evals holds the corresponding eigenvalues 

% History: 
% Feb. 21, 2002 Modified by Li to use SVD instead of eig 
% Feb. 23, 2002 Modified by Li to use JDQR instead of eig 

[d,N] = size(dataset); 

mm = mean(dataset'); 
dataset = dataset - mm*ones(1,N); 

cc = cov(dataset',1); 
% original code 
[cw,cdd] = eig(cc); 
% Li: use SVD alternative 
%[cw,cdd,dummy] = svd(cc,0); 
% Li: use JDQR alternative 
%[cvv,cdd] = JDQR(cc); 

[zz,ii] = sort(diag(cdd)); 
ii = flipud(ii); 
evects = cvv(:,ii); 
cdd = diag(cdd); 
evals = cdd(ii); 

4. Assert 
function [] = assert(condition,message) 

if nargin = l,message = ";end 
if isempty(message),message ='Assert Failure.'; end 
if(—condition) fprintf( 1,'!!!•%s ! ! !\n',message); end 

5. empca 

function [evec,eval] = empca(data,k,iter,Cinit) 
%[evec,eval] = empca(data,k,iter,Cinit) 

% EMPCA 

finds the first k principal components of a dataset 
• and their associated eigenvales using the EM-PCA algorithm 
oho  
% Inputs: data is a matrix holding the input data 
% 	each COLUMN of data is one data vector 
% 	NB: mean will be subtracted and discarded 
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% 	k is # of principal components to find 

optional: 
iters is the number of iterations of EM to run (default 20) 
Cinit is the initial (current) guess for C (default random) 

% Outputs: evec holds the eigenvectors (one per column) 
eval holds the eigenvalues 

[d,N] = size(data); 
data = data mean(data,2)*ones(1,N); 

if(nargin<4) Cinit'[]; end 
if(nargin<3) iter=20; end 

[evec,eval] = empca_orth(data,empca_iter(data,Cinit,k,iter)); 

function [C] = empca_iter(data,Cinit,k,iter) 
%[C] = empca_iter(data,Cinit,k,iter) 

% EMPCA ITER 

% (re)fits the model 

% data = Cx + gaussian noise 

% with EM using x of dimension k 

% Inputs: data is a matrix holding the input data 
each COLUMN of data is one data vector 
NB: DATA SHOULD BE ZERO MEAN! 

% 	k is dimension of latent variable space 
% 	(# of principal components) 
% 	Cinit is the initial (current) guess for C 
% 	iters is the number of iterations of EM to run 

% Outputs: C is a (re)estimate of the matrix C 
whose columns span the principal subspace 

% check sizes and stuff 
[p,N] = size(data); 
assert(k<=p); 
if(isempty(Cinit)) 
C = rand(p,k); 

else 
assert(k==size(Cinit,2)); 
assert(p=size(Cinit,1)); 
C = Cinit; 

end 

% business part of the code -- looks just like the math! 



for i=l:iter 
% e step -- estimate unknown x by random projection 

x = inv(C'*C)*C'*data; 
m step -- maximize likelihood wrt C given these x values 

C = data*x'*inv(x*x'); 
end 

function [evec,eval] = empca orth(data,C) 
%[evec,eval] = empca orth(data,Cfinal) 

% EMPCA ORTH 

% Finds eigenvectors and eigenvalues given a matrix C whose columns span the 
% principal subspace. 

% Inputs: data is a matrix holding the input data 
% 	each COLUMN of data is one data vector 

NB: DATA SHOULD BE ZERO MEAN! 
% 	Cfinal is the final C matrix from empca.m 

Outputs: evec,eval are the eigenvectors and eigenvalues found 
. by projecting the data into C's column space and finding and 

ordered orthogonal basis using a vanilla pca method 

C = orth(C); 
[xevec,eval] = truepca(C'*data); 
evec = C*xevec; 

6. empcaol 

function [evec,eval] = empcaol(k,iter,Cinit) 
%[evec,eval] = empcaol(k,iter,Cinit) 

% EMPCAOL (ONLINE VERSION OF EMPCA) 

% finds the first k principal components of a dataset 
% and their associated eigenvales using the EM-PCA algorithm 

% Inputs: k is # of principal components to find 
% 

optional: 
iters is the number of iterations of EM to run (default 20) 
Cinit is the initial (current) guess for C (default random) 

the data is provided by the function nextpoint 
nextpoint(1) re-initializes the data providing function 
nextpoint(0) to get successive datavectors 
nextpoint(0) should return 0 when it is out of data 
NB: nextpoint should return data with the mean already subtracted out 

Outputs: evec holds the eigenvectors (one per column) 
eval holds the eigenvalues 
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if(nargin<3) Cinit[]; end 
if(nargin<2) iter=20; end 

[evec,eval] = empcaol_orth(empcaol_iter(Cinit,k,iter)); 

function [C] = empcaol_iter(Cinit,k,iter) 
%[C] = empcaol_iter(Cinit,k,iter) 

% EMPCA ONLINE ITERATIONS 

% (re)fits the model 

% data = Cx + gaussian noise 

% with EM using x of dimension k 
% Gets points one at a time ONLINE. Uses the function nextpoint.m. 

Inputs: k is dimension of latent variable space 
(# of principal components) 

Cinit is the initial (current) guess for C 
iters is the number of iterations of EM to run 

% Outputs: C is a (re)estimate of the matrix C 
% 	whose columns span the principal subspace 

% uses nextpoint(1); to reinitialize nextpoint each pass through the data 
% uses nextpoint(0) to get successive datavectors 
% NB: nextpoint should return data with the mean already subtracted out 
% 

% check sizes and stuff 

p = nextpoint(1); 

if(isempty(Cinit)) 
C = rand(p,k); 

else 
assert(k=size(Cinit,2)); 
assert(p=size(Cinit, 1)); 
C = Cinit; 

end 

% loop for iterations 
for ii=1: iter 

nextpoint(1); 	% reset nextpoint 
C = empcaoll(C); % let's do it 

end 

function [Cnew] = empcaoll(C) 
%[Cnew] = empcaol 1(C) 
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% 
%does one complete E AND M step of empca by calling nextpoint(0) 
%to get successive datapoints 

% NB: nextpoint should return data with the mean already subtracted out 

[p,k] = size(C); 
CC ° inv(C'*C)*C; 
W = zeros(k,k); 
Q = zeros(p,k); 

[yi,status] = nextpoint(0); 

while(status>O) 
% fprintf(1,`Now processing datapoint %d\r',status); 

xi = CC*yi; 
wi = xi*xi; W = W+wi; 
qi = yi*xi';  Q = Q+qi; 
[yi,status] = nextpoint(0); 

end 

Cnew = Q*inv(W); 

function [evec,eval] = empcaol_orth(C) 
%[evec,eval] = empcaol_orth(Cfmal) 

% fmds ordered orthogonal basis for subspace identified in Cfinal 

% online method 
% uses nextpohit(1) to initialize data generator 
% uses nextpoint(0) to provide successive data vectors 
% NB: nextpoint should return data with the mean already subtracted out 

[p,k] = size(C); 
W = zeros(k,k); 

C = orth(C); 

nextpoint(1); 
[yi,status] = nextpoint(0); 
while(status>O) 
% fprintf(1,'Now processing datapoint %d\r',status); 

of = status; 
xi = C'*yi; 
W = W+xi*xi'; 
[yi,status] = nextpoint(0); 

end 

[cvv,cdd] = eig(W/nf); 
[zz,ii] = sort(diag(cdd)); 
ii = flipud(ii); 
xevec = cw(:,ii); 
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cdd = diag(cdd); 
eval cdd(ii); 

evec = C*xevec; 

7. nextpoint 

function [datapoint,status] = nextpoint(reset) 
% [datapoint,status] = nextpoint(reset) 
% 
% NEXTPOINT - skeleton function 
% 
% this function returns the next datapoint for online methods. 

% nextpoint(1) should return the dimensionality of the data 
% 	and reset to the beginning of the dataset 
% 
% nextpoint(0) should return the next datapoint and a status flag 

status=l if we still have more data 
status=O if we are out of data 

% 

global dat; 
global thisn; 
[p,N] = size(dat); 

if(reset) 
% go back to beginning of dataset and return dimensionality 
datapoint = p; status=p; 
thisn=l; 

elseif(thisn<=N) 
% return next datapoint and status= 1 or status=O if at end 
datapoint=dat(:,thisn); 
thisn=thisn+l; 
if(thisn>N) status=0; else status=l; end 

else 
datapoint = NaN; 
status = 0; 

end 

Image Utilities Function 

1. augmentlr 

function IM = augmentlr(IM) 

num = size(IM,2); 
nrows =. size(IM { 1 },1); 
ncols = size(IM { 1 },2); 

for i=l:num, 
IM{i+num} =IM{i}(l:l:nrows,ncols:-1:1); 

end 

2. buildface 

94 



function res = buildface(DATA, MASK) 

DATA is the the masked data (the non-zero portion of the MASK) 
MASK is a mtx containing 0&1. 

imgs = size(DATA,2); 
INDICES = find(MASK); 

res = zeros(size(MASK(:), 1),imgs); 
for i=I:imgs 

tmp = MASK(:); 
tmp(INDICES)=DATA(:,i); 
res(:,i) = tmp; 

end 

3. buildmvector 

function IMVECTOR = buildimvector(IM, MASK) 

pics = size(IM,2); 
INDICES = fmd(MASK); 

IMVECTOR = zeros(size(find(MASK), 1 ),pics); 
for i=l:pics, 
IMVECTOR(:,i) = IM{i}(INDICES); 

end 

4. buildmask 

function MASK = buildmask() 

% An 19x19 mask 
MASK = ... 

[1111111111111111111;... 
1111111111111111111;... 
1111111111111111111;... 
1111111111111111111;... 
1111111111111111111;... 
1111111111111111111;... 
1111111111111111111;... 
1111111111111111111;... 
1111111111111111111;... 
1.111111111111111111;... 
1111111111111111111;... 
111i11111111111.1111;... 
1111111111111111111;... 
1111111111111I11111;... 
0111111111111111110;... 
011.1111111111111110;... 
0011111111111111100;... 
000 1 1 1 1 1 1 1 1 1 1 1 1 1 000;... 
0001111111111111000 	1; 

if0, 
% An 18x27 mask 
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MASK=... 
[000000000000000000; ... 
0000000 1 1 1 1 0000000;... 
00000 1 1 1 1 1 1 1 1 00000;... 
000 1 1 1 1 1 1 1 1 1 1 1 1000;... 
000 1 1 1 1 1 1 1 1.1 1 1 1 000;... 
00111111111.1111100;... 
001111111111111100;... 
001111111111111100;... 
011111111111111110;... 
011111111111111110;... 
011111111111111110;... 
01111111-1111111110;... 
011I11I111I1111I10;... 
011111111111111110;... 
011111111111111110;... 
011111111111111110;... 
011111111111111110;... 

.011111111111111110;... 
011111111111111110;... 
001111111111111100;... 
001111111111111100;... 
001111111111111100;... 
0001 1 1 1 1 1 1 1 1 1 1 1 000;... 
000 1 1 1 1 1 1 1 1 1 1 1 1 000;... 
000001 1 1 1 1 1 1 1 00000;... 
0000000 1 1 1 1 0000000; ... 
000000000000000000 1; 

end 

MASKW = size(MASK, 2); 
MASKH = size(MASK, 1); 

5. classify_1NN 

function res = classify_INN(IM, MASK, srow, scot, mean ALL, U1, S1, data_proj, cFACEV, cNFACEV) 

1-NN classfication scalar factor for face & non-face 
res = 1: IS a face 
res —= 1: NOT a face 

MASKH = size(MASK, 1); 
MASKW = size(MASK, 2); 

0/O%°/0 	 1-NN Classification 
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%        
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 

% given a query data vector, decide if it is face by 1-NN 
QUERY{1} = IM(srow:srow+MASKH-I,scol:scol+MASKW-1); 	% the fixed moving-window 
size 
[NORM_QUERYS, SHADING] = normalize(QUERY, MASK); 
QUERYV = buildimvector(NORM_QUERYS, MASK); 



% project into the PCA sub-space 
% QUERYV = QUERYV - mean_ALL; needn't do the mean-subtraction here!! to retain the discrimination 
power 
Q_proj 1 = (U1 *inv(S 1))' * QUERYV; 

Q_F = Q_proj 1 * ones(I, cFACEV); 
Q_NF= Q_proj 1 * ones(1, cNFACEV); 

dataF_proj = data_proj(:,1:cFACEV); 
dataNF_proj = data_proj(:,cFACEV+I:size(data_proj,2)); 

clear data_proj; 

% two dist. measurement, we now choose the euclidean one.. 
% euclidean dist. 

tmp_F=sum((dataF_proj-Q_F).^2, 1); 
tmp NF=sum((dataNF_proj-Q_NF).^2,.1); 

% cosin dist. (similarity dist.) 
%tmp_F = abs(Q_F_proj'*dataF_proj)/(norm(Q_F_proj)*nonm(dataF_proj,'fro')); 
%tmp_NF= abs(Q_NF_proj'*dataNF_proj)/(norm(Q_NF_proj)*norm(dataNF_proj,'fro')); 

mintmpF = min(tmp_F); 
mintmpNF= min(tmp NF); 

% find which face/non-face is the closest 
% idx F = fmd(tmp_F = meantmpF ); 
% idx NF= fmd(tmp_NF= meantmpNF); 

% because non-face data tend to be scattered compared to face data, 
% so here we need a scalar factor to balance them 

if mintmpF < mintmpNF 
%fprintf('\n the query image IS a face image');  
res 	1; 

else 
res = 0; 
%fprintf('1n the query image is NOT a face image'); 

end 

6. normalize 

function [OUT, SHADING] = normalize(IN, MASK) 

% Retrieve the indices for the given mask 
IND = find(MASK); 

Set up matrices for planar projection calculation 
%ie.Ax=B so x = (A'*A)'' 1 * A'*B 
x= 1:1:size(IN{ 1 },2); 
y =1:1:size(IN{1},1); 
[mx,my] = meshgrid(x,y); 
mxc = mx(IND); 
myc = my(IND); 
mcc = ones(size(myc)); 
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A = [mxc, myc, mcc]; 

Cycle through each image removing shading plane 
and adjusting histogram 

for i=l:size(IN,2), 

% Calculate plane: z = ax + by + c 
B = IN{i}(IND); 
x = inv(A'*A)*A'*B; 
a = x(1); b = x(2); c = x(3); 

%This is the color plane itself 
SHADING { i} = mx. *a + my. *b + c; 

%This is the image minus the color plane 
%(the constant will be normalized out in histogram.recentering) 
OUT{i} = IN{i} - (mx.*a + my.*b + c); 

% Now, recenter the histogram 
maximum = max(max(OUT{i}.*MASK)); 
minimum = min(min(OUT{i}.*MASK)); %minimum = min(min(OUT{i})) 
diff = maximum - minimum; 

% original one 
%OUT{i} _ ((OUT{i}-minimum)./diff).*MASK; 
% Li's modification to fix divided by zero bug 
if diff==0, 

diff= 1e10; % a positive infinite value 
else 

OUT{i} = ((OUT{i}-minimum)./diff).*MASK; 
end; 	 0 

end 

7. postprocess 

function res = postprocess(IM, RECT, NumFace) 

[h,w] = size(IM); 
NUMRect= size(RECT, 1); 

% hC : hit count 
% currR: current RECT 
% i,j : current col @ row position 
% currR(l), currR(3): top, bottom 
% currR(2), currR(4): left, right 
% currR(5): -1 :false detection, 

0: not decided, 
% 	1:NUMFace : the detection box for specific face 

myRECT = (RECT); 
myRECT(:,5) = zeros(NUMRect, 1); 

for index = I :NumFace 
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% find current max hit position 

MaxHit = 0; posH =0; posW = 0; 
for i=1:h 
for j=1:w 

hC=O; 
for k=1:NUMRect 

currR = myRECT(k,:); 
if (i>cur R(1) & i<currR(3) & ... 

j>currR(2) & j<currR(4) & currR(5)=0) 
hC=hC+1; 

end 
end . 

if hC > MaxHit 
MaxHit = hC; 
posH = i; posW =j; 

end 

end 
end 

% compute the overlapped area out of these overlapped boxes 
for k=1:NUMRect 

currR = myRECT(k,:); 
if (poses>currR(1) & poses<currR(3) & ... 

posW>currR(2) & posW<currR(4) & currR(5)=0) 
myRECT(k,5) = index; 

end 
end 

area = [1,1, size(IM, 1), size(IM,2)]; 
for k=1:NUMRect 

if myRECT(k,5) = index 
area = myrectint(area, myRECT(k, 1:4)); 

end 
end 

center = [(area(l)+area(3))/2, (area(2)+area(4))/2]; 

% find the center of area (center), then elect only ONE box which's center closest to center, and 
eleminate others 

closest = 1e5; ind_closest=0; 
for k=1:NUMRect 

if myRECT(k,5) = index 
centerR = [(myRECT(k,l)+myRECT(k,3))/2, (myRECT(k,2)+myRECT(k,4))/2]; 
if norm(centerR-center) < closest 

closest"= norm(centerR-center); 
ind_closest = k; 

end 
end 

end 

for k=1:NUMRect 
if myRECT(k,5) = index & ind_closest k 

myRECT(k,5) =-1; 



end 
end 

end 

res = []; 
for k=1:NUMRect 

if myRECT(k,5)>O 
res = [res; RECT(k,:)]; 

end 
end 

% sub routines 

function res = myrectint(areaI, areal) 
res = zeros(size(areal)); 

if (areal (1)>area2(l )) 
res(l)=areal(l); 

else 
res(l)=area2(1); 

end; 

if (areal (2)>area2(2)) 
res(2)=area 1(2); 

else 
res(2)=area2(2); 

end; 

if (areal (3)<area2(3)) 
res(3)=area1(3); 

else 
res(3)=area2(3); 

end; 

if (areal (4)<area2(4)) 
res(4)=areal(4); 

else 
res(4)=area2(4); 

end;- 

Image Loading and Display Files 	
I 

1. loadimages 

function IM =loadimages(directory, prefix, suffix) 

% cd IM this directory 
old_dir=pwd; 
cd(directory); 

% flMd all matched filenames 
dirinfo = dir([prefix; *',suffix]); 
found = {dirinfo.name}; 
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% Load the image set 
for i = 1:size(found,2), 

if suffix='pgm' 
IM{i} = double(pgmRead(found{i})); 

else 
IM{i} = double(imread(found{i})); 

end 
end 

res = IM; 

clear found 

%'cd out 
cd(old_dir); 

2. loadimages_bootstrap 

function res = loadimages_bootstrap(IM, directory, prefix, suffix) 

% #imgs already exists IM FACES 
numlmgs=size(IM, 2); 

% cd IM this directory 
old_dir=pwd; 
cd(directory); 

% flMd all matched filenames 
dirinfo = dir([prefix,'*',suffix]); 
found = {dirinfo.name}; 

% Load the image set 
for i = 1:size(found,2), 

if suffix='pgm' 
IM{i} = double(pgmRead(found{i})); 

else 
IM{numlmgs+i} = double(imread(found{i})); 

end 
end 

res = IM; 

clear found 

% cd out 
cd(old_dir); 

3. scaleImg 

function res = scaleImg(imname, cscale, rscale, imgsavename) 

if(nargin<4) imgsavename='out.PNG'; end 
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IM = double(imread(imname));  
IROWS = size(IM, 1); 
ICOLS = size(IM, 2); 

PYR{ 1 } = IM; 
XRANGE{ 1 } =1:1:ICOLS; 
YRANGE{1} = 1:1:IROWS; 
[MX { 1 },MY { 1 }] = meshgrid(XRANGE{ I }, YRANGE{ 1 }); 

XRANGE{2} = 1:cscale:ICOLS; 
YRANGE{2} = I:rscale:IROWS; 
[MX {2},MY{2}]_= meshgrid(XRANGE{2}, YRANGE {2}); 
PYR{2} =interp2(MX{1}, MY{1}, PYR{l}, MX{2}, MY{2)); 

imwrite(PYR{2}/255, imgsavename) 
imshow(PYR{2}/255) 

4. showImages 

function showimages(IM, xdim, ydim, start,'endl, fign) 

%o Show the image set if fign is valid 
if (fign>O) 

figure(fign); 
for i=start:endI, 

subplot(xdim,ydim,i-start+l); 
imagesc(IM{i}); 
colormap gray; 

end 
end 

5. showimagevecs 

function showimagevecs(IM, imH, imW, xdim, ydim, start, end!,_ fign) 

% Show the image set if fign is valid 
if (fign>O) 

figure(fign); 
for i=start:endl, 

subplot(xdim,ydim,i-start+ I); 
imagesc(reshape(IM(:,i), imH, imW)); 
colormap gray; 

end 
end 

END 
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