
FASTER IMPLEMENTATION OF PROTEIN
FOLDING ALGORITHM AND EXTENDED

BURROWS WHEELER TRANSFORM

A DISSERTATION
Submitted in partial fulfillment of the

requirements for the award of the degree
of

MASTER OF TECHNOLOGY
in

COMPUTER SCIENCE AND ENGINEERING

KHALIL SAWANT
G~NTRAL ~~e

ACCNo
~3/6ll0 Date

DEPARTMENT OF ELECTRONICS AND COMPUTER ENGINEERING
INDIAN INSTITUTE OF TECHNOLOGY ROORKEE

ROORKEE -247 $67 (INDIA)
JUNE, 2009

Candidate Declaration

I hereby declare that the work being presented in the dissertation report titled '`Faster

Implementation of Protein Folding Algorithm and Extended Burrows Wheeler

Transform" in partial fulfillment of the requirement for the award of the degree of

Master of Technology in Computer Science and Engineering, submitted in the

Department of Electronics and Computer Engineering, Indian Institute of Technology

Roorkee, is an authentic record of my own work carried out under the guidance of Dr

Ankush Mittal and Dr Rajdeep Niyogi, in the Department of Electronics and Computer

Engineering, Indian Institute of Technology Roorkee. I have not submitted the matter

embodied in this dissertation report for the award of any other degree.

Dated: (8 	UN 	2130-9

Place: IIT Roorkee. 	 Khalil BashirAhmed Sawant

Certificate

This is to certify that above statements made by the candidate are correct to the best of

our knowledge and belief.

Dated: I 	 TJ N ZOD 9

Place: IIT Roorkee.

Dr. Ankush Mittal,

Associate Professor,

Department of Electronics

and Computer Engineering.

VA
Dr Rajdeep Niyogi

Assistant Professor,

Department of Electronics

and Computer Engineering.

Acknowledgements

First of all and foremost, I would like to express my deep sense of gratitude and

indebtedness to my guide Dr. Ankush Mittal, for his invaluable guidance and constant

encouragement throughout the dissertation. His zeal for getting the best out of his

students helped me to perform above my par.

I am also grateful to my co-guide Dr Rajdeep Niyogi, for his help with the algorithmic

aspects of my dissertation, especially with the formalization and validation of my

proposed algorithm.

I would want to express thanks to my colleagues, Salil Sahasrabudhe, Tarun Kumar

Gautam, Kshitiz Gupta, Nityam Parakh, Payas Goyal and Binay Kumar Pandey, for their

"taken for granted" help with trivial matters, without which I am sure my work might

have hit a dead end.

I would like to thank Matthias Schubert and Dominik Buchetmann for developing the

uni-processor implementation of the original Protein Folding algorithm that I have

modified and parallelized in this work. I would also like to thank Peter Clote and Rolf

Backofen for making available the code online.

I also acknowledge Georgia Institute of Technology, its Sony-Toshiba-IBM Center, of

Competence, and the National Science Foundation, for the use of Cell Broadband Engine

resources that have contributed to this research.

Khalil BashirAhmed Sawant

N

Abstract

Over the recent years, there has been an extensive development in the field of

bioinformatics. A couple amongst the various works done under this field includes

Protein Folding and Genome based Phylogenetic Studies. Protein folding is the physical

process by which a polypeptide folds into its characteristic and functional three-

dimensional structure. The problem is inherently intractable and hence, non-analytical

alternatives for solving the problem exist. Even such alternatives are computationally

intensive due to the inherent vastness of the search space. Genome based Phylogenetic

studies include the process of matching Mitochondrial DNA of different species to

establish their phylogenetic relation. One novel algorithm to achieve this is the Extended

Burrows Wheeler Transform. This algorithm also is very compute intensive due to size of

mitochondrial genomes used as data. All this necessitates the optimization of such

algorithms by parallelization or other means.

The Sony-Toshiba-IBM Cell Broadband Engine is heterogeneous multi core architecture,

consisting of a traditional PowerPC based master core meant to run the operating system,

and 8 delegate slave processors built for compute intensive processing. Exposure of

system level optimization features allows programmer to use algorithm specific tweaks to

achieve order of magnitude improvements using Cell-BE. CUDA is a parallel computing

architecture developed by NVIDIA. It is a middle-ware compute engine which exposes

the power of NVIDIA Graphics Processing Units to software developers through industry

standard programming language.

This work introduces a modification on the traditional Protein Folding Algorithm. It

describes the implementation of the modified algorithm on Cell-BE and CUDA. Lastly

the work describes the implementation of Extended Burrows Wheeler Transform on

CUDA and issues involved.

3

Table of Contents

CandidateDeclaration ..1

Certificate ...1

Acknowledgements.. 2

Abstract.. 3

Listof Figures .. 7

List of Tables .. 8

Listof Publications .. 9

Chapter1: Introduction .. 10

	

1.1 	Protein Folding .. 10

	

1.2 	Phylogenetic Analysis 10

	

1.3 	Multi-Core Architecture ... 11

	

1.4 	Problem Statement .. 12

	

1.5 	Organization of the Report 12 ..

Chapter 2: Parallel Processing Architectures13

	

2.1 	Cell-BE History and Motivation ... 13

	

2.2 	Challenges for the Cell — BE ... 13

	

2.3 	Hardware Architecture ... 14

2.3.1 PowerPC Processor Element (PPE) ... 15

2.3.2 Synergistic Processor Elements (SPEs) .. 15

2.3.3 Memory Flow Controller (MFC) ... 16

2.4 Programming Features of Cell-BE ... 16

2.4.1 SIMD Vectorization :... 16

2.4.2 	DMA and Double Buffering:. 17

2.5 	General Programming on GPU (GPGPU) .. 18

2

2.6 	CUDA:... 19

2.7 	General Architecture of GPUs ... 19

2.8 . 	Programming Constructs and Thread Hierarchy .. 20

2.9 	Memory Hierarchy .. 23

2.10 	Architecture ... 24

Chapter3: Protein Folding Algorithm .. 25

3.1 	Protein Folding .. 25

3.2 	2D HP Model .. 26

3.3 	Genetic Algorithms .. 27

3.4 	Protein Folding using Genetic Algorithms .. 29

3.5 	Search Space Pruning ... 31

3.6 	Algorithm Soundness .. 34

3.7 	Algorithm Completeness ... 34

3.8 	Parallelization on Cell-BE ... 35

3.9 	Parallelization on CUDA ... 36

3.10 	Results for Modified Protein Folding on Cell-BE ... 37

3.11 	Results for Modified Protein Folding on CUDA ... 39

Chapter4: Extended Burrows Wheelers Transform ... 40

4.1 	Introduction to Burrows Wheeler Transform .. 40

4.2 	Burrows Wheeler Transform ... 40

4.3 	Extended Burrows Wheeler Transform (EBWT) ... 42

44 	Distance Measure in EBWT ... 43

4.5 	Parallelization of EBWT on CUDA ... 44

4.6 	Uni-Processor Implementation ... 44

4.7 	GPU Implementation .. 45

4.8 	Odd Even Sorting .. 46

5

4.9 	Results ... 49

Chapter 5: Conclusion and Future Work ... 50

	

5.1 	Search Space Pruned Protein Folding ... 50

	

5.2 	EBWT on CUDA ... 50

0

List of Figures

2.1 The hardware architecture of Cell Broadband Engine 14

2.2. SIMD in Cell 17

2.3 Double Buffering 18

2.4 General architecture difference between CPU and GPU 20

2.5 Thread Hierarchy in CUDA 22

3.1 2D HP Model of Protein Folding 26

4.1 Comparator Schematic 47

4.2 Odd Even Sorting 48

7

List of Tables

3.1 Protein Sequences Data Used 37

3.2 Timing Comparisons for both Algorithms on Cell-BE 38

3.3 Part-Wise and Total Speed Up for Cell-BE 38

3.4 Timing Comparisons for both Algorithms on CUDA 39

3.5 Part-Wise and Total Speed Up for CUDA 39

4.1 Timing comparison for EBWT 49

8

List of Publications

• K. Sawant, A. Mittal and R. Niyogi, "Search Space Pruning in Protein Folding
Simulation of 2D HP Model using Genetic Algorithms", Third International
Conference on Information Processing, Bangalore, Aug 2009.

~7

Chapter 1: Introduction

1.1 Protein Folding
Proteins [1] [2] are the functional work-horses of our bodies. They carry out a varied

number of tasks in our body ranging from moving muscles, to carrying oxygen in blood,

to fighting infection. The proper functioning of the protein is related to its structure,

which in turn in related to its constituent chemical molecules. Since proteins are made up

varied combination of only twenty different such chemical molecules (amino acids), the

structure is related to the combination sequence of these twenty amino acids. This

sequence determines the structure of the protein by means of a process called Protein

Folding.

Recent discoveries [1] have shown that if protein gets into an improper structure, it could

cause a non-functional protein or worse toxic protein that could poison the cell and cause

disease like Alzheimer. All this necessitates the understanding of the relation between the

structure and constituent sequence of a protein. Simple analysis of protein folding has

shown that it is a very compute intensive process. Hence the need to find means of

reducing the runtime of the process. Many variations exist in the computational models

for protein folding. We try to focus on one such model, which can give us near correct

answers for acceptable running times.

1.2 Phylogenetic Analysis
Every living organism is made up DNA and proteins as constituents of its cells which

form the organism basic building block [3]. In addition to these molecular constituents

defining the organism's outward appearance and biological functions, they also help

biologist ascertain the related-ness and non-related-ness of two organisms. It was

observed that organism of different species that closely relate show a great deal of

similarity in the molecular structure or, sequence of chemical components of these

biological constituents of the cell.

One such cell constituents is the mitochondrial DNA (mtDNA) which undergoes

mutation over generations. The mtDNA is passed only from maternal side, with no

10

change except mutation any difference between such mtDNA for two species denotes

only the mutations accumulated over the time. Such a comparative analysis of mtDNA,

help biologist to arrange various species in a tree format with related species represented

as more closer branches. The simplistic means of such analysis would be simple string

comparison between the two DNA sequences. Such algorithms generally depend upon

the product of length of both sequences for their runtime.

However there exists a novel method of having multiple strings to be compared for

similarity together, called the Extended Burrows Wheeler Transform (EBWT). This

would take less time than having all combination of simple sequence comparison

between each of pair of species. The EBWT however still requires long processing time

due to the fact that general mtDNA sequences run in the sizes of thousands. This

necessitates the reduction in runtime of the EBWT algorithm.

1.3 Multi-Core Architecture
Moore's law had predicted that the chip manufacturing technology would be able to

double the transistors on chip roughly every two years, and the prediction had stood good

so far. Microprocessors technology had been using this prediction to improve its

frequency by various techniques. However in the recent past micro-processors have hit a

frequency wall, and'not been able to take advantage of the predicted exponential growth.

The outcome is the emergence of multi-core processors, which offer the performance

benefits of multi-processors on single chip. The presence of such architectures as

common desktop processors has made it possible for hitherto time-consuming algorithms

to be solved on simple desktop. machines.

Another emerging trend has been the use of Graphics Processing Units (GPUs) for

general purpose computing. The GPUs model themselves as multi-core processing and

expect programs to take advantage of them as raw parallel number-crunchers. The multi-

core processors allow program to leverage their computing power by various means like

independent threads per core, or allow user to manipulate efficient data flow between

cores, or provide a layer of software which manages the scalability of the cores. With the

future micro-processor trends likely to increase number of cores as the only means of

11

their increasing computing power, it becomes necessary to ensure that important

algorithms be parallelized to run on next generation of micro-processors.

Thus multi-core processors provide the perfect means of increasing the runtimes of our

protein folding simulation and EBWT.

1.4 Problem Statement
In this dissertation, a variation of the protein folding algorithm was studied and profiled

for performance bottlenecks. Since the problem portion of the algorithm caused the

runtime of the algorithm to go into hours, it was required to find alternatives to be able to

speed up the algorithm. This could include parallelization and/or modifying the algorithm

completely. Also the extended Burrows Wheeler Transform gave considerable run times

due to length of the input data. The objective was to parallelize the algorithms to achieve

running time speedup.

1.5 Organization of the Report
The organization of this dissertation report is as follows:

Chapter 2 covers a detailed explanation of the architecture of Cell Broadband Engine and

CUDA programming environment, which have been used in this dissertation.

Chapter 3 starts with the explanation of concepts of protein folding, 2D HP model and

genetic algorithms. The chapter then discusses the existing algorithm applying genetic

algorithms to 2D HP model, and explains in detail our proposed changes to the algorithm.

The chapter then discusses parallelization of the modified algorithm as done on Cell-BE

and CUDA and the issues faced therein. The results are also discussed.

Chapter 4. starts with the concepts of Burrows Wheeler Transform and its extended

version. The chapter then discusses the implementation of the extended Burrows Wheeler

transform on CUDA, and the issues faced therein. The results are also discussed.

Chapter 5 concludes the dissertation report and gives suggestion for future work.

12

Chapter 2: Parallel Processing Architectures

2.1 Cell-BE History and Motivation
The Cell Broadband Engine [4] (henceforth called Cell-BE) is an output of the

collaboration between Sony Computer Entertainment Incorporated (SCEI), Toshiba and

IBM, which was started in around the summer of 2000. The idea took root as it was

determined by SCEI that the then existing traditional architectural organization would not

deliver computational power that SCEI sought for its future interactive needs. The

collaboration meant that SCSI would be the content provider, IBM to be the

microprocessor developer, and Toshiba would be the high-volume manufacturing partner.

By the end of the year, an architectural concept was agreed upon, combining the existing

64-bit Power architecture of IBM, along with memory flow control and synergistic slave

processors.

The objectives for the new processor were the following

• Outstanding performance, especially on game / multimedia applications

• Real-time responsiveness to the user and the network

• Applicability to a wide range of platforms

2.2 Challenges for the Cell — BE

The objectives for Cell-BE were likely to be challenged by limitation in performance

imposed by three major factors namely memory latency and bandwidth, power

dissipation and pipeline throughput.

• Memory Latency or "Memory Wall" refers to the fact that the memory (DRAM)

speeds have not improved at the same pace as microprocessor speeds, hence

memory access has been the processing bottleneck and the gap is widening. Also

since large number of multiple memory access is not possible concurrently in

current microprocessors, this latency has not been successfully hidden.

• Power dissipation for semiconductors is increasing with increasing density of

transistors on chip. The need to keep this power dissipation under control (or

"Power Wall") is a major design consideration for microprocessors.

13

• "Frequency Wall" or the limit onto increasing clock frequency is caused by

diminishing returns from pipelined processors. Simply increasing clock frequency

causes reduction in pipeline cycle time and causes difficulty in designing

substantial work for each stage.

2.3 Hardware Architecture
The Cell-BE[5] consists of nine processors on a single chip, one master processor called

PPE and eight slave processors called SPEs. all connected to each other and to external

devices by a high-bandwidth, memory-coherent bus. Figure 2.1 shows a block diagram of

Cell-BE.

SPE
SPU 	SPU t sxu
 IS

68 cycl

SXU !IHI SXU I 	SXU 	SXU I I SXU 	SXI
i

LS 	LS 	LS 	LS 	LS 	LS

.M ..

EIB fun to 96Blcvcle)

PPE
	16Brcycle 	 16&'cycle

	
168rcyde (2x)

PPU

L1} XU
16 q:ycie

I 	L

rs 	BIC

Dual XDRTM 	FIeXIOTM

Figure 2.1: The hardware architecture of Cell Broadband Engine[5]

14

The main components of the architecture are

2.3.1 PowerPC Processor Element (PPE)
The PPE is the main processor. It contains a 64-bit PowerPC architecture based reduced

instruction set computer (RISC) core with a traditional virtual-memory subsystem. It runs

an operating system, manages system resources, and is intended primarily for control

processing, including the allocation and management of SPE threads. It can run legacy

PowerPC Architecture software and performs well executing system-control code. It also

includes a vector multimedia extension unit, called Single Instruction, Multiple Data

(SIMD), so that it can do multiple operations simultaneously with a single instruction.

The PPE consists of two main units Power Processor Unit (PPU) and PowerPC Processor

Storage Subsystem (PPSS).

The PPU performs instruction execution, and it has level 1 (Li) instruction cache, data

cache of 32KB each, and six execution units. The PPU supports two simultaneous threads

of execution and can be viewed as a 2-way multiprocessor with shared data-flow. This

appears to software as two independent processing units. The PPSS handles memory

requests from PPU and external requests to the PPE from SPEs or I/O devices. It has a

unified level 2 (L2) instruction and data cache of 512KB.

The primary function of the PPEs is the management and allocation of tasks for the SPEs

in a system. When data enters the PPE, this element then distributes it among SPEs,

schedules them to be processed on one or more of the SPEs, controls and synchronizes

them.

2.3.2 Synergistic Processor Elements (SPEs)
Each of the eight Synergistic Processor Elements (SPEs) is a 128-bit RISC processor

specialized for data-rich, compute-intensive SIMD applications. It consists of two main

units, the Synergistic Processor Unit (SPU) and the Memory Flow Controller (MFC).

The SPU deals with instruction control and execution. It includes a single register file

with 128 registers (each one 128 bits wide), a unified (instructions and data) 256-KB

local store (LS), an instruction-control unit, a load and store unit, two fixed-point units, a

15

floating-point unit, and a channel-and-DMA interface. The SPU implements a new SIMD

instruction set, the SPU Instruction Set Architecture, which is specific to the Broadband

Processor Architecture.

Each SPU is an independent processor with its own program counter and is optimized to

run SPE threads spawned by the PPE. The SPU fetches instructions from its own LS, and

it loads and stores data from and to its own LS. With respect to accesses by its SPU, the

LS is unprotected and un-translated storage,

2.3.3 Memory Flow Controller (MFC)
The MFC contains a DMA controller that supports DMA transfers. Programs running on

the SPU, the PPE, or another SPU, use the MFC's DMA transfers to move instructions

and data between the SPU's LS and main storage. (Main storage is the effective-address

space as seen by the PPE.) The MFC interfaces the SPU to the EIB, implements bus

bandwidth-reservation features, and synchronizes operations between the SPU and all

other processors in the system.

To support DMA transfers, the MFC maintains and processes queues of DMA

commands. After a DMA command has been queued to the MFC, the SPU can continue

to execute instructions while the MFC processes the DMA command autonomously and

asynchronously. The MFC also can autonomously execute a sequence of DMA transfers,

such as scatter-gather lists, in response to a DMA-list command. This autonomous

execution of MFC DMA commands and SPU instructions allows DMA transfers to be

conveniently scheduled to hide memory latency. Each DMA transfer can be up to 16 KB

in size. Memory-mapped mailboxes or atomic MFC synchronization commands can be

used for synchronization and mutual exclusion.

2.4 Programming Features of Cell-BE

2.4.1 SIMD Vectorization:

A vector is an instruction operand containing a set of data elements packed into a one

dimensional array. The elements can be integer or floating-point values. Most

Vector/SIMD Multimedia Extension and SPU instructions operate on vector operands.

Vectors are also called SIMD operands or packed operands. SIMD processing exploits

16

data-level parallelism. Data-level parallelism means that the operations required to

transform a set of vector elements can be performed on all elements of the vector at the

same time. That is, a single instruction can be applied to multiple data elements in

parallel.

Support for SIMD operations is pervasive in the Cell Broadband Engine. In the PPE, they

are supported by the Vector/SIMD Multimedia Extension instruction set. In the SPEs,

they are supported by the SPU instruction set. In both the PPE and SPEs, vector registers

hold multiple data elements as a single vector. The data paths and registers supporting

SIMD operations are 128 bits wide, corresponding to four full 32-bit words. This means

that four 32-bit words can be loaded into a single register, and, for example, added to four

other words in a different register in a single operation. Similar operations can be

performed on vector operands containing 16 bytes, 8 half-words, or 2 double-words. The

following figure 2.2 shows such an operation.

add VC,VA,VB

VA 	 A.2 	 A.3

VB 	 B.2 	 B.3

VC 	 C.2 	 C.3

Figure 2.2: SIMD in Cell[5]

2.4.2 DMA and Double Buffering:

MFC supports a set of DMA commands which provide the main mechanism that enables

data transfer between the LS and main storage. It also supports a set of synchronization

commands which used to control the order in which storage accesses are performed and

maintaining synchronization with other processors and devices in the system.

17

SPE programs use DMA transfers to move data and instructions between main storage

and the local store (LS) in the SPE. Consider an SPE program that requires large amounts

of data from main storage. The following is a simple scheme to achieve that data transfer:

1 Start a DMA data transfer from main storage to buffer B in the LS.

2 Wait for the transfer to complete.

3 Use the data in buffer B.

4 Repeat.•

This method wastes a great deal of time waiting for DMA transfers to complete. We can

speed up the process significantly by allocating two buffers, BO and B 1, and overlapping

computation on one buffer with data transfer in the other. This technique is called double

buffering. The below figure 2.3 shows a flow diagram for this double buffering scheme.

Double buffering is a form of multi-buffering, which is the method of using multiple

buffers in a circular queue to overlap processing and data transfer.

Initiate DMA transfer
to buffer So

W

Initiate DMA transfer
to buffer B1

Use data in
buffer B1

Waft for DMA transfer
to buffer B0 to complete

Wait for DMA transfer
to buffer B1 to complete

Use data in
buffer Bp

Initiate DMA transfer
to buffer B0

Figure 2.3: Double Buffering [5]

2.5 General Programming on GPU (GPGPU)
The GPU [6] refers to the commodity off-the-shelf 3D Graphics Processing Units, which

are specifically designed to be extremely fast at processing large graphics data sets for

rendering tasks. GPU designers traditionally have expressed its image-synthesis process

as a hardware pipeline of specialized stages which necessarily involve Vector/Matrix

Operations. The need for efficient hardware to perform floating-point vector arithmetic

18

for millions of vertices each second has helped drive the GPU parallel-computing

revolution.

GPUs have evolved from a hard-wired implementation of the graphics pipeline to a more

programmable one. Fixed-function units for transforming vertices and texturing pixels

have been replaced by programmable shaders. These shaders provide units that the

programmer can use for performing matrix-vector multiplication, exponentiation, and

square root calculations etc. This however necessitates that there should be some means

by which general purpose software could be translated into GPU specific primitives.

2.6 CUDA
CUDA (or Compute Unified Device Architecture) is a parallel programming model and

software environment developed by Nvidia[7]. It was designed as .a middle-ware to allow

application software that transparently scales its parallelism on GPU. The core concepts

involved with CUDA are a hierarchy of thread groups, shared memories, and barrier

synchronization. The thread hierarchy allows user to divide his task in a similar

hierarchy, where coarse sub-problems can be solved independently and finer pieces that

can be solved cooperatively in parallel using shared memory. CUDA achieves all this

using a minimal extension to C thus maintaining a low learning curve for programmers

already familiar with the standard programming language.

2.7 General Architecture of GPUs

Whereas CPUs are optimized for low latency, GPUs are optimized for high throughput.

Thus applications that do not have requirement for low latency can be ported to GPUs to

take advantage of their superior performance. The programmable GPU has evolved into a

highly parallel, multi-threaded, many-core processor with tremendous computational

horsepower and very high memory bandwidth. There is a widening gap between the raw

performance capability of CPUs and GPUs, which is because the GPU is specialized for

compute-intensive, highly parallel computation, exactly what graphics rendering is about,

and therefore designed such that more transistors are devoted to data processing rather

than data caching and flow control. The general architectural difference between CPUs

and GPUs is schematically illustrated below in figure 2.4

19

Control 	ALU ALU

ALU ALU

Cache

CPU

bpI:Ti'Tu

GPU

Figure 2.4: General architecture difference between CPU and GPU [8]

More specifically, the GPU is especially well-suited to address problems that can be

expressed as data-parallel computations; the same program is executed on many data

elements in parallel, with high ratio of arithmetic operations to memory operations.

Because the same program is executed for each data element, there is a lower

requirement for sophisticated flow control, and because it is executed on many data

elements and has high arithmetic intensity, the memory access latency can be hidden with

calculations instead of big data caches. The CUDA programming model is very well

suited to expose the parallel capabilities of GPUs.

2.8 Programming Constructs and Thread Hierarchy

CUDA extends C[8] by allowing the programmer to define C functions, called kernels,

that, when called, are executed N times in parallel by N different CUDA threads, as

opposed to only once like regular C functions.

A kernel is defined using the _global_ declaration specifier and the number of CODA

threads for each call is specified using a new <<<...>>> syntax

// Kernel definition
global void vecAdd(float* A, float* B, float* C) {
// Kernel code
}

int main() {

// Kernel invocation

20

vecAdd<<<l, N>>> (A, B, C) ;

}

Each of the threads that execute a kernel is given a unique thread ID that is accessible

within the kernel through the built-in threadldx variable. This threadldx values gives the

index of the current thread within its block. In the above code, if the kernel were to add

the two vectors A and B of size N and stores the result into vector C, the kernel code

would be

_global void vecAdd(float* A, float* B, float* C) {
int i = threadIdx.x;
C [i] 	A [i] + B [i] ;

} 	 V

The logical organization of the thread hierarchy is thus, with the entire set of threads

arranged as a two dimensional grid of blocks, with each block containing a three

dimensional set of threads, as shown in figure 2.5

21

Grid

Block (0, 0)

JIJiJIJiJJJ1
Block (1, 0)

1JJ1JJiI1JIJ
Block (2, 0)

J$JJ1J1JJf5J
Block (0, ly"

JJ!JJJ
Block (1, 1)

JJJJJJJJJJ
"Block (2, 1)

JJJff!JJ

Block (1, 1)

Thread(1, 0)

a
Thread (2, 0)

a
Ivead (0, 1)

Thread (1, 1)

I
Thread (2, 1)

I
Thread (3, 1)

'S
ad (0, 2)

•1
Thread (1, 2)

.1'
Thread (2, 2)

'S
Thread (3. 2)

'S
Figure 2.5: Thread Hierarchy in CUDA [8]

Threads within a block can cooperate among themselves by sharing data through some

shared memory and synchronizing their execution to coordinate memory accesses. Such

synchronization is possible by means of a programming primitive 	syncthreadsO as

exposed by CUDA API. This serves as barrier synchronization. The number of threads
per block is restricted by the limited memory resources of a processor core. On NVIDIA

Tesla architecture, a thread block may contain up to 512 threads.

In addition to the variable threadldx. CUDA threads also have a few other built-in

variables namely blockldx and blockDim. The blockldx variable gives the index of the
thread's parent block within the grid, and blockDim which gives the number of threads

per block, with the blockDim being supplied in the call to the kernel as the second

parameter to the <<<>>> syntax. Since grids are two-dimensional, blockldx has a x

component and y component and since blocks are three-dimensional, blockDim and

threadldx have x, y and z components. If the above code was to be a matrix addition
instead of vector addition and was to be processes by a hierarchical arrangement of

22

threads as shown in the above figure 2.5, with each thread processing one element of the

matrix, the code becomes

int i = blockIdx.x * blockDim.x + threadIdx.x;
int j = blockIdx.y * blockDim.y + threadIdx.y;
if (i < N && j < N)

C [i] [j] = All] [j] + B [i] [j] ;
}

int main()
{

// Kernel invocation
dim3 dimBlock(16, 16);
matAdd<<<1, dimBlock>>>(A, B, C) ;

2.9 Memory Hierarchy
CUDA threads may access data from multiple memory spaces during their execution.

Each thread has a private local memory, which is akin to local variable declaration for

any normal CPU code. Each thread block has a shared memory visible to all threads of

the block and with the same lifetime as the block. Finally, all threads have access to the

same global memory. CUDA assumes that both the host and the device maintain their

own DRAM, referred to as host memory and device memory respectively. The global

memory is persistent across kernel launches by the same application and is allocated in

the device memory.

Memory management at runtime on the GPU RAM is done using CUDA API

equivalents. The general procedure is to allocate memory on both host and device RAM,

using cudaMalloc function call for the device memory. The data contents are copied from

host memory to device memory using cudaMemcpy function. Writing data directly onto

device memory from CPU code is not possible. The kernel calls are then made to do

appropriate processing on the data. The processed data contents are copied back from the

device to the host using cudaMemcpy function.

23

2.10 Architecture
The Tesla architecture is one of the architectures of Nvidia which support CUDA. It is

built around a scalable array of multi-threaded Streaming Multiprocessors (SMs). When a

CUDA program on the host CPU invokes a kernel grid, the blocks of the grid are

enumerated and distributed to multiprocessors with available execution capacity. The

threads of a thread block execute concurrently on one multiprocessor. As thread blocks

terminate, new blocks are launched on the vacated multiprocessors.

A multiprocessor consists of eight Scalar Processor (SP) cores, two special function units

for transcendentals, a multithreaded instruction unit, and on-chip shared memory. To

manage hundreds of threads running several different programs, the multiprocessor

employs a new architecture we call SIMT (single-instruction, multiple-thread). The

multiprocessor maps each thread to one scalar processor core, and each scalar thread

executes independently with its own instruction address and register state. The

multiprocessor SIMT unit creates, manages, schedules, and executes threads in groups of

32 parallel threads called warps. Individual threads composing a SIMT warp start

together at the same program address but are otherwise free to branch and execute

independently.

When a multiprocessor is given one or more thread blocks to execute, it splits them into

warps that get scheduled by the SIMT unit. Every instruction issue time, the SIMT unit

selects a warp that is ready to execute and issues the next instruction to the active threads

of the warp. A warp executes one common instruction at a time, so full efficiency is

realized when all 32 threads of a warp agree on their execution path. If threads of a warp

diverge via a data-dependent conditional branch, the warp serially executes each branch

path taken; disabling threads that are not on that path, and when all paths complete, the

threads converge back to the same execution path. Thus the efficiency of CUDA is

enhanced if the different threads of a block (particularly of a warp) are executing the

same code path but only on different data, thus containing little branching.

24

Chapter 3: Protein Folding Algorithm

3.1 Protein Folding

Proteins or poly-peptides are organic compounds made of amino acids, arranged in linear

chain, joined together by peptide bonds [9]. They support life function by carrying out

important biological functions, which are primarily determined by their structures. Each

protein exists as an unfolded poly-peptide when translated from a sequence of mRNA to

a linear chain of amino acids. Protein folding is the physical process by which these poly-

peptides fold into their characteristic and functional three-dimensional structure (called

conformation) from an initial unfolded or random structure.

Despite the fact that the theoretical number of possible conformations is astronomical, the

actual time to fold is very small, which suggest that proteins use some sort of directed

mechanisms to fold. These mechanisms are however not completely understood until

now. Yet a few things are certain. These well define conformations are maintained so by

a delicate balance of various forces like inter-protein, intra-protein, and hydrogen-bonds

with the solvent. Current studies of protein folding involve the interaction and

contribution of these various forces to the folding process.

One of the findings of research [1] in the field has been that there exist partially folded

structures which form the intermediaries in the process. The protein goes into the final

folded state through stages of such intermediaries. Also these intermediary stages have

their stability dependent upon temperature. Now if these intermediary stages were

subjected to de-stabilizing temperatures, could result in the inability of the protein to pass

through these stages as desired and could end in improperly folded proteins. Such

improperly folds give rise to dysfunctional proteins like the ones which cause

Alzheimer's disease or Mad Cow Disease, or could give rise to desirable phenomenon

like boiled eggs (caused by mis-folds of proteins in egg-white during boiling).

25

3.2 2D HP Model
Various models have been suggested to study the concept of protein folding [10], at

various levels of abstraction, from "All Atom Model" to "Lattice Model". The "AIl Atom

Model" works with molecular representation of both the amino-acids and the solvent.

This method however works better for smaller sized proteins.

The "Lattice Models" treat the amino-acid of the protein as a unit and study the protein

folding process as a function of interaction betweens these amino-acids as a unit. The

protein chains have their constituent amino-acids bound together by peptide bonds. These

participating atoms form what is called the back-bone of the protein. The bonds within

this back-bone provide some degree of flexibility to the entire structure, and determine

the extent to which the back-bone and hence the entire structure can be bend at various

points.

A simplification of the above idea is to limit the degree of freedom for the back-bone to

keep it confined to two-dimensions. The Two-Dimensional Hydrophobic Polar Model

(henceforth 2D HP model) was such an idea proposed by Dill [11]. The 2D HP model

classifies the constituent amino-acids of the protein into two groups, namely hydrophobic

(no affinity for solvent) and polar (having electrostatic affinity for solvent). The protein is

thus modeled as a string of H and P. The model thus goes out to place the string on a two

dimensional lattice as shown in the figure 3.1 below.

Figure 3.1: 2D HP Model of Protein Folding

26

The fundamental principle underlying the model is that the tendency of the protein will

be to fold in such a manner that the Hydrophobic (H) nodes have minimum contact with

external solvent and are surrounded by the Polar (P) nodes which maintain contact with

the solvent. Hence the Hydrophobic (H) nodes tend to remain attached to each other and

form a core within the center. This can be seen in the figure 3.1 with the black points

representing the Hydrophobic (H) nodes and white nodes representing the Polar (P)

nodes. This tendency of sticking together of Hydrophobic (H) nodes is used as a criteria

for evaluating the energy or fitness of the conformation. The energy of the conformation

is calculated by checking the number of Hydrophobic (H) nodes which are not adjacent

on the protein chain but occupy adjacent position in the lattice. Such pairs of H nodes are

an indication of the tendency of H nodes to stick together. For the above figure the

energy is calculated to be 9.

3.3 Genetic Algorithms
Genetic Algorithms (GAs) [12] are a searching paradigm used in computing to find exact

or approximate solutions to optimization and search problems. Genetic algorithms are

categorized as global search heuristics. Genetic algorithms are a particular class of

algorithms called evolutionary computation, that use techniques inspired by evolutionary

biology such as inheritance, mutation, selection, and pairing (also called recombination or

cross-over).

There are many algorithmic problems which, if they are to be solved by traditional

analytical methods, are intractable, i.e. their runtime is an exponential function of the

input size. However these same problems are verifiable (check-able whether a given

solution is correct/optimal) in polynomial time. Also for some such problems, for

practical purposes less than optimal solution are acceptable if they bring about a drastic

decrease in running time of algorithm. For such cases we can use genetic algorithms to

obtain solution for the problem.

Genetic algorithms are used in computer simulations, wherein the candidate solutions for

the problem are encoded in format of a string over a certain alphabet (usually { 0,1 }) e.g.

for Traveling Salesman Problem (TSP) over a graph with n cities, we can encode the

27

candidate solutions as a number string of length n, giving the order in which the salesman

visits the cities.

The general procedure as adapted by genetic algorithm would be to first generate an

initial set of random candidate solutions for the problem (e.g. for the TSP example above

we generate a set of random permutations of orders in which to visit cities). The solution

set can be tested for correctness and then for optimality. The next generation of candidate

solutions is generated from the previous generation using a set of simple operators called

genetic operators. Only those solutions which are more optimal than the previous

generation are retained and the process is continued.

Some of the basic genetic operations are

Elitism: In this operation, the optimal solution obtained for any generation is

carried forward into 'next generation without any changes. Thus it can be

guaranteed that any generation of solution contains one at-least solution which is

at-least as good as the best of the last generation, thus ensuring that the

subsequent solutions only get better.

•' -Mutation: In this procedure, the solution of the current generation will be

modified slightly to produce the next generation solution. In the TSP example

above, we can select two numbers at random in the candidate solution, and

exchange them, creating a new permutation. In the actual TSP scenario, this will

change the order of visiting the cities.

• Pairing: In this procedure, any two random solutions of the current generation are

combined together. In the TSP example, we randomly choose to take cities

visiting order from one parent for first k cities and from second parent for the

remaining cities.

With each iteration/generation of the genetic algorithm, the fitness of the conformation is

checked. The genetic algorithms are repeated till the calculated fitness does not equal the

theoretical expected fitness.

28

3.4 Protein Folding using Genetic Algorithms

Unger and Moult [15] proposed the application of GAs to the 2D HP Model. They have

shown the performance improvement using their technique visa-a-vis existing parallel

simulation techniques for 2D HP Model using Monte Carlo methods. The methodology

as proposed by Unger and Moult consisted of running T independent instances of protein

folding simulations, (called as a population of T instances in GA parlance). The process

for each instance consists of two phases, namely the Initial Set Generation (ISG) and

application of Genetic Operators (GO). We used a public domain implementation of the

algorithm done by Schubert, Buchetmann, Clote and Backofen [16].

The algorithm can be formally summed up as follows

T : Number of independent simulation instances
N : Number of amino-acids in the protein (Size of the protein)
M : Number of mutations
optimum : Theoretical optimum energy value
direction[N-2] : Array of bends
bestConf: Best conformation at each stage of GO

1. for simno 1 to T do
1.1 for each bend current in the protein chain do

1.1.1. Generate a random bend direction, i.e. one value out of 1, r ands (left,
right and straight), say p, i.e. direction[current] = p

1.2. al = (0,0)
1.3. a2 = (1,0)
1.4. for each further bend current in the protein chain do

1.4.1. calculate xcuRent and ycunent from xcunent_1, Ycurrent-1 and direction[current- 1]
1.4.2. if acurrent = (xcurrent, Ycurrent) && some a n = (xm, ym) such that xcuttent = Xm

and Ycurrent = Ym, i.e. bend is not possible then
1.4.2.1 .reject the conformation, goto step 1.1

2. while bestConf.fitness o optimum do 	// Genetic Operators
2.1. for mtns no = 1 to M do

2.1.1. bestConf := best conformation among T instances // elitism
2.1.2. for simno = l to T do

	

2.1.2.1. 	apply mutation on conformation sim_no
2.1.3. bestConf := best conformation among T instances // elitism
2.1.4. for simno = 1 to T do

	

2.1.4.1. 	apply mutation on conformation sim_no
2.2. bestConf := best conformation among T instances // elitism
2.3. for sim no = 1 to T do

2.3.1. apply cross-over on conformation sim no

2.4. bestConf := best conformation among T instances II elitism
2.5. for sim no = 1 to T do

2.5.1. annly cross-over on conformation sim no

The ISG part (as shown in step 1 in the above algorithm), involved generating an initial

set of random conformations, one conformation for each instance. This was done by

generating a set of random bends (N-2 bends for a protein of length N), where each bend

could either be left, right or straight. The protein conformation was then laid out on a 2D

grid in accordance with the generated bends to check for overlap. If an overlap was

detected, the conformation was rejected in totality and the entire process of generating a

conformation was repeated, regenerating all bends again, the process being continued

until a non-overlapping conformation was obtained.

The GO part involved multiple iterations of application of genetic operators to the

conformation generated in the ISG. Each iteration of GO consisted of M (M=20 in the

implementation [16]) rounds of elitism and mutations followed by 2 rounds of elitism and

cross-over. The iterations were continued indefinite till the optimum energy for entire

population equaled the theoretical optimum. The independent T instances were taken as a

single logical population at each stage of mutation, cross-over and elitism. Thus the

conformations for any stage were obtained by applying GO to the population of previous

stage only (and not current stage).

The mutation stage consisted of randomly selecting one amino acid out of the entire

length of the protein and changing the bend direction of the protein around that amino

acid. The transformed (mutated) conformation was checked for overlap. If an overlap

occurred, the process of random selection of mutation node and change of bend direction

for it was repeated. If no overlap was found for the transformed conformation, the energy

value of the protein was calculated. The non-overlapping transformed conformation was

accepted if its energy value is greater than average energy of the T conformations. If the

energy value non-overlapping transformed conformation was less than the average

energy, the conformation was accepted with some probability.

30

For generating a cross-over conformation, two conformations were randomly selected

from the population of the previous stage to act as parent conformations. A random

amino acid would be selected in the cross-over conformation which acts as the cross-over

node. The cross-over conformation would contain the bend pattern from one parent

before the cross-over node and the other parent after the cross-over node. The cross-over

node was also mutated. The cross-over conformation was checked for overlap. Like in

the mutation stage, the resultant conformation was rejected if it resulted in an overlap. If

conformation was rejected, new set of parent conformation and cross-over node were

randomly selected for next trial. As with the mutation stage, the non-overlapping cross-

over conformation was accepted only if its energy was better than average, or with some

probability.

The elitism stage propagated the value of the best and average conformation energy of

entire population of T conformations at each stage (mutation/cross-over) to the next

stage.

3.5 Search Space Pruning
We observed during the process of profiling the algorithm that the bottleneck for the

algorithm was the ISG part. As the size of protein grew, the probability of getting an

overlapping conformation increased and hence increased the probability of rejection of

conformation and need for regeneration. This caused the increase in run-time of the

algorithm.

Our idea was to reduce the run-time of this algorithm-part, by eliminating the possibility

of generating an overlapping conformation. We do not generate the entire conformation

and check the overlap. Instead we generate the conformations partially, one amino acid

(hence on bend at a time) at a time and check overlap in partial conformations. If placing

an amino acid is causing overlap, the step is back-tracked, and only the last bend is

regenerated. If all three possible bends for a given amino acid placement cause an

overlap, we back-track one more step.

We now formally put forth our algorithm and further prove its soundness and

completeness.

31

T : Number of independent simulation instances
N : Number of amino-acids in the protein (Size of the protein)
M : Number of mutations
allowed[N-2][3] : boolean(yes/no) array of length N-2

1. for sim_no = 1 to T do
1.1 .Conformation string C =
1.2.a1 (0,0)
1.3.a2 = (1,0)
1.4.for each further bend current in the protein chain do

1.4.1 if allowed[current][O] = no && allowed[current][l] = no &&
allowed[current][2] =.no i.e. all bends are disallowed then
1.4.1.1.Mark last bend direction (say p) for node current-1 as disallowed.

i.e. allowed[current-1][p] = no
1.4.1.2.allowed[i][j] := yes, i = current to N, j = 0 to 2
1.4.1.3.current = current-1 	If back-track

1.4.2.else
1.4.2.1. Generate a random bend direction, i.e. one value out of 1, r and s

(left, right and straight), say p
1.4.2.2.if allowed[current][p] = no then

1.4.2.2.1. repeat step 1.4.2
1.4.2.3.else

1.4.2.3.1. if act,rrent = (xcurrenr, Ycurrent) && some a,,, = (x,n, ym) such that
Xcurrent = xm and ycurrent = y,,, i.e. bend is not possible then

	

1.4.2.3.1.1. 	reject the bend, allowed[current][p] := no
1.4.2.3.2. else

	

1.4.2.3.2.1. 	C= C.p

	

1.4.2.3.2.2. 	current : = current +1
2. Apply genetic operators as in old algorithm.

Like with the original algorithm, in our modified algorithm, the laying out of the

conformation starts with placing the first two amino acid nodes at default positions on the

grid. We keep track of the entire grid as a matrix data structure, with the occupied nodes

in the grid marked out clearly. A square grid matrix of same dimensions as the protein

length suffices. We also keep track of the current direction of the partially laid out

conformation. With the first two nodes at (0,0) and (1,0), the initial direction of the

partial conformation is east. As with the existing algorithm, we also keep track of the

bends taken so far.

32

While placing a new amino acid node on the grid, we first generate a random bend. Using

the co-ordinates of the last placed amino-acid node on the grid, the current direction of

partial conformation and the generated bend, we calculate the would-be co-ordinates for

the next amino acid on the grid. From the grid data available to us we can check if the

grid co-ordinate is already occupied or empty. If the grid co-ordinate is empty, we go

ahead with placing the amino-acid node on the grid and update our grid data structure.

We also update the current direction of partial conformation, as this would change for a

left or right bend.

We keep track of the set of bends allowed at any given node by means of a boolean

matrix, "allowed" with three entries per node, one entry for each of the possible bends.

When a random bend is generated, we first check if this bend allowed in this "allowed"

matrix, saving the need for calculating the would-be co-ordinates and checking the grid.

Also if after calculating the would-be co-ordinates, we find that the grid is occupied at

that position, we update the "allowed" matrix, specifying that the specific bend for the

node under consideration is not allowed.

If all three bends possibilities for a given amino acid node are closed, means that we have

hit a dead end. In this case we need to correct our placement of just-previous amino-acid

node. This is done marking the taken bend direction of the previous placed node as now

not allowed. Since we have kept track of the co-ordinates of the last placed amino-acid,

and also all bend directions taken so far, we would be able to calculate the co-ordinates of

previous-to-previous amino-acid, and back-track one step. We would also change the

current direction accordingly.

33

3.6 Algorithm Soundness
We now establish the soundness of our algorithm modification. We specify the loop-

invariant and show using it that the modified algorithm does not produce any self-

overlapping conformations.

Loop Invariant

The partial conformation string C does not overlap

Initial Case

At start of loop, C= ", hence IC1 = 0, hence does not overlap

Maintenance

For any bend p in the-current iteration only if C.p does not overlap, as in step 1.5.2.3.2.1,

we go ahead with the bend. Else (as in step 1.5.2.3.1 and step 1.5.1), the conformation C

is not appended with any bend

Termination

At termination, ic = N-2, and as C does not result in any overlap (as shown in

Maintenance), the entire conformation C (now of length N-2) is non-overlapping

As we have taken care to see that a new accepted bend is appended to the partial

conformation string of bends only if an overlap is not generated, it is not possible for

overlap to occur in the final conformation.

3.7 Algorithm Completeness
We now prove that the algorithm modification does not cause a loss in reach-ability for

any part of the search space.

1. The T conformations generated are all non-overlapping, let S be the set of these T

conformations

2. Genetic algorithm methods are applied to the set S. in second part of algorithm.

3. Even if some bias is present in the conformation strings generated, the mutations and

pairing process as applied on these strings can remove the bias, as follows.

a. Assume all T instances of initial conformations start with its first character as "1",

the solution set S is thus biased, as it does not include part of search space which

34

starts with "r" or "s"

b. The probability that the character selected for mutation is not the first character =

(N-2)-1/(N-2) = (N-3)/(N-2)

c. The probability of not mutating the first character in any of the T instance = [(N-

3)/(N-2)]^T

d. The probability of mutating the first character in at-least of the T instance and

thus un-setting of the bias = 1 —. [(N-3)/(N-2)]^T which is > 0

3.8 Parallelization on Cell-BE
The parallelization of the Protein Folding simulation continued from our work done on

the original algorithm. Since the algorithm involved independent simulation of T

instances of protein folding, it was amenable to straight forward parallelization. The T

instances of parallel simulations were divided among the 8 SPEs giving T/8 instances to

each SPE. Further improvements were obtained, using double buffering. For every

simulation instance i running on an SPE, undergoing one stage(mutation or cross-over) of

GO, the processed data for i-1 instance is transferred from SPE to PPE, thus causing

overlap of computation on SPE with data transfer from SPE to PPE.

Also the algorithm consisted of intermittent stages of elitism which needed to share data

between the T simulation instances, i.e. the best conformation data and the total

population fitness calculated in each elitism stage had to be passed to each SPE. For the

elitism stage, each SPE undertook the elitism operation for its set of T/8 conformations,

and the consolidated output for these 8 SPEs was then calculated by the PPE and passed

onto each of the SPE for next stage of GO.

A few issues were come across during parallelization of the algorithm. Since the

algorithm did not involve any array/matrix calculation on floating point numbers, but

rather a complicated logic flow dictated by randomized input, application of SIMD

within one simulation instance was not feasible. Also since operations on different

simulation instances were not same (due to random nature of simulation), clubbing

together of n instance to do n-way SIMD was not possible.

35

3.9 Parallelization on CUDA
The parallelization of the search-space-pruned version of the protein folding simulation

algorithm was . similar to that on Cell-BE, as the implementation was amenable for

straight forward parallelization. The parallel simulations of T instances of protein folding

were distributed among T threads that would run on CUDA.

Since there was no need for much co-operation amongst the parallel instances, it was

preferred that their corresponding threads be distributed sparsely over different blocks,

with each block containing few threads, rather than a single block with multiple threads.

The other major reason for such a division was that the logic for the simulation involved

complication flow of control, which depended on randomized inputs. Consequently it

was not possible for the different parallel simulations and hence their threads to have

similar code paths, thus negating the use of threads from the same block. Since each

block is to be scheduled over a single multi-processor containing 8 cores, we distributed

the threads as 8 threads per block.

The implementation of the search-space-pruned protein folding algorithm consisted of

two stages, namely data allocation and processing. The data allocation stage involved

allocating memory for the conformation on the device. The creation of conformation data

(ISG) and processing (GO) are all done on the device by parallel threads. The elitism

stage is also carried out on the device, but using only a single CUDA thread. This was

because the elitism stage consisted of finding the best value in an array of conformations

and did not offer any possibility of parallelization. Also the stage was very likely not a

bottle-neck for performance.

An obstacle encountered in the implementation of the algorithm in CUDA was the

absence of libraries to generate random values on the device. This necessitated the

creation of a linear congruential method based random number generator with the device

code, with its accuracy comparable to the rand() function as available on normal Unix

based system. It was ensured that the random number generated would be independent

for each simulation instance/thread.

36

3.10 Results for Modified Protein Folding on Cell-BE
The timings were calculated for the existing algorithm as run on a Core-2 Duo HP Laptop

(2*1.67 GHz). Each set of timings are compared with running the modified algorithm on

IBM Cell BE Simulator/Blade Server. The algorithms were run for protein sequences of

length 20-64, for standard protein data as obtained from [15].

The algorithm mainly consisted of two parts, namely generation of initial set of

conformations (ISG), and then applying genetic operators (GO) on them, which are

elitism, mutation and pairing. The timings were calculated separately for both parts and

percentage contribution of the ISG was calculated.

The GO stage consisted of a number of iterations of elitism, mutation and pairing, where

the iteration count depended upon the speed with which the GO stage converged.

Table 3.1: Protein Sequences Data Used

Sequence Optimal 	 Sequence

Length Energy

X20 9 hphpphhphpphphhpphph

X24 9 hhpphpphpphpphpphpphpphh

X25 8 - pphpphhpppphhpppphhpppphh

36 14 ppphhpphhppppphhhhhhhpphhpppphhpphpp

~48 22 pphpphhpphhppppphhhhhhhhhhpppppphhpphhpphpphhhhh .

50 21 hhphphphphhhhphppphppphpppphppphppphphhhhphphphphh

37

Table 3.2: Timing Comparisons for both AIgorithms (time in milliseconds)

Sequence
Length

Old Algorithm (Uni-Prot) New Algorithm (Cell-BE)

Energy Initial Set Genetic Energy Initial Set Genetic
Obtained Generation Operations Obtained Generation Operations

(ISG) (GO) (ISG) (GO)

20 9 133 651 8 14.66 579.86

24 9 409 743 8 14.72 586.47

25 8 509 759 6 14.58 578.89

36 13 10461 1403 8 11.80 626.46

48 22 292224 2581 13 15.00 748.47

50 20 759731 2959 13 14.66 738.53

Table 3.3 Part-Wise and Total Speed Up for Cell-BE

Sequence Part-wise Speed-Up Iteration Count for GO Percentage Speed Up
Length contribution

Initial Set Genetic Old New of ISG*
Generation Operations Algorithm Algorithm

(ISG) (GO)
(Uni-Proc) (Cell-BE)

20 9.07 1.12 72 182 0.11 1.12

24 27.78 1.27 13 656 0.08 1.29

25 34.91 1.31 126 833 0.08 1.33

36 886.52 2.24 1208 660 0.61 7.63

48 19481.6 3.45 718 546 13.62 2656.37

50 51823.39 4 1130 531 18.51 9595.76

*Percentage contribution of ISG = Old Time for ISG / (Old Time for ISG + Old Time for

GO* Worst Count of GO Iterations (Old/New)) expressed as percentage.

38

3.11 Results for Modified Protein Folding on CUDA
The timings were calculated for the new algorithm as run on a Core-2 Duo HP Laptop

(2* 1.67 GHz), and then on a CUDA based machine having Intel Xeon CPU (2*3.2 Ghz)

and NVIDIA Geforce GTX-280, having 240 cores. The algorithms were run for protein

sequences of length 20-36, for standard protein data as obtained from [15], same as those

used for Cell-BE performance evaluation.

Table 3.4 Timing Comparisons for Algorithms on Uni-Proc and CUDA

Sequence (Uni-Proc) (CUDA)
Length

Energy Initial Set Genetic Energy Initial Set Genetic
Obtained Generation Operations Obtained Generation Operations

(ISG) (GO) (ISG) (GO)

20 8 9.460 308.650 8 2.723 122.401

24 9 13.458 405.869 8 3.302 201.626

25 7 12.099 435.486 7 3.716 206.033

36 10 15.820 921.587 10 5.575 828.261

Table 3.5 Part-Wise and Total Speed Up

Sequence
Length

Part-wise Speed-Up Iteration Count for GO Speed Up

Initial Set Genetic (Uni-Proc) (CUDA)
Generation (ISG) Operations (GO)

20 3.474 2.521 15 7 2.521

24 4.075 2.012 13 69 2.012

25 3.255 2.113 9 16 2.113

36 2.837 1.112 21 72 1.112

*Percentage contribution of ISG = Old Time for ISG / (Old Time for ISG + Old Time for
GO* Worst Count of GO Iterations (Old/New)) expressed as percentage.

39

Chapter 4: Extended Burrows Wheelers Transform

4.1 Introduction to Burrows Wheeler Transform

The Burrows Wheeler Transform [13] is a block-sorting,. lossless data compression

algorithm, which is used in applications like bzip2. It was developed by Michael Burrows

and David Wheeler. A variation of the algorithm was developed by Mantici which

extended the concept to a multi-set of words, unlike the original algorithm that worked on

single block of text at a time treating it as a single word. A key realization by Mantici

et.al. was the applicability of their_ extended algorithm to the domain of bio-informatics,

namely for matching genomic data of species to establish their phylogenetic proximity or

non-relatedness.

4.2 Burrows Wheeler Transform
The key idea behind the Burrows Wheeler Transform is to apply a reversible

transformation on a block of text so as to convert it into another block of text, by a re-

arrangement of characters, a block that is easier to compress. The characters are re-

arranged such that the output contains runs of same characters together. Such transformed

blocks are then amenable to other compression techniques which take advantage of such

runs, like run length encoding or move to front encoding. Such encoding may then be

followed by compression encoding like Huffman Encoding. The algorithm produces N

conjugates words of the input block text (called primitive word) each of length N, by

cyclic shifting the input, one character at a time. These conjugates are then sorted out

lexicographically and the last character of each conjugate string is taken. This last column

and the position of the original input text in the sorted list form the output of the

transform.

It is generally observed in normal language text that certain di-grams or tri-grams occur

more frequently than others. Now when texts containing such di-grams or tri-grams are

cyclic shifted and sorted lexicographically, closely sorted conjugates are very likely to

end in same character, e.g. the trigram "the" is a very common tri-gram, hence all text

starting with "he" are very likely to end in a "t". Thus, when such text is sorted, then in

the last column, the "t"s are likely to be clubbed together and hence gives runs of the

same character.

Word = "abraca"

Conjugates are
abraca, bracaa, racaab, acaabr, caabra, aabrac
Sorted Conjugates are

1. aabrac
2. abraca
3. acaabr
4. bracaa
5. caabra
6. racaab

Output is last column = caraab and index of original word = 2

Now with the input text and its conjugates sorted, since each of the conjugate string is a

cyclic rotation of the original string, hence each character of the original string appears in

any given position only once, in any one particular conjugate. Thus for all the sorted

conjugates, any column contains all the characters of the original string, each exactly

once. Thus the first and the last column both contain all characters of the original stiring.

Since the conjugates are all lexicographically sorted, the first column for the sorted

matrix, is effectively a sorted list of all characters of the input string. Thus the first

column is a sorted form of the last column. Since the conjugates are all cyclic variations

of each other, thus for any given conjugate string the character in the first column follows

the character in the last column.

We now see the reverse transform, or how we can obtain the original string from the last

column and the index of the original word. Since we have the last column as our output

from the original transformation, and we can sort it to obtain the first column, we now

have both first and last column. And since the first column cyclically follows the last

column, we get the relation as to which character follows whom in the original string.

Thus this mapping that "character x follows character y" can be used to reconstruct the

entire original string. However there is one caveat in this. Since a character may be

repeated in the original string and hence in the last and first column, how do we ascertain

41

which mapping corresponds to which occurrence of the character. It was shown in the

original paper that the order in which multiple instance occur in the last column is

preserved in the first column and hence any ambiguity regarding this mapping is thus

removed.

4.3 Extended Burrows Wheeler Transform (EBWT)
Mantici [14] produced a variation of the Burrows Wheeler Transform and extended it to

apply it to a multi-set of words instead of a single block of text. In this case too cyclic

conjugates for all the words are produced and the entire lot is sorted. The sorting however

is not lexicographic. The paper introduced another form of sorting called co sorting.

w sorting
In normal lexicographic sorting, if we encounter two words of different lengths such that

one is the prefix of another then, the smaller word is considered lexicographically smaller

than the other, and hence is sorted above. However in co sorting, a word is expanded by

repeating the same word over again, creating an infinitely (theoretical) long repeated

sequence of original word (called repeat-formation). These repeat-formations of all the

words are then sorted lexicographically.

Consider the two words ab and aba

The conjugates of the word will be
ab and ba
aba, baa, and aab

Sorting them lexicographically gives
1. aab
2. ab
3. aba
4. ba
5. baa
6.

Creating repeats of the words we get
ab: abababababab...
ba: babababababa...
aba: abaabaabaaba...
baa: baabaabaabaa...
aab: aabaabaabaab...

42

Now sorting this repeated string lexicographically, we get the sorted sequence for the
original words is

1. aab
2. aba
3. ab
4. baa
5. ba

Notice that aba occurs before ab and baa occurs before ba in cw sorting, in contrast to the
normal lexicographic sorting.

It was argued by Mantici that the repetitions need to go on to a length of only

nl + n2 — gcd(nl, n2) where nl and n2 are the length of the two words involved. Similar

to the Burrows Wheeler Transform, the output here too would be the last column, but of

the conjugates of the original set of words and not the repeat-formations. Also since the

length of the conjugates would be different for each original word, we would take the last

character in each. Also like in the Burrows Wheeler Transform, the indices of the original

set of words are also part of output.

4.4 Distance Measure in EBWT
Although the primary motivation for the Extended Burrows Wheeler Transform is data

compression, which it achieves better than the original algorithm, Mantici found that the

algorithm could be used to process of phylogenetic analysis. It is obvious that the sorting

process causes interleaving of the conjugates originating from different original words,

but it was observed that if two original words are more similar, the interleaving of their

conjugates was more pronounced. However if the words were more dissimilar, then

conjugates of one word were more likely to occur together in the sorted list. This fact was

formalized by a concept called distance as introduced by Mantici.

For each pair of original words, we run through the sorted list and find runs of

consecutive conjugates of single word. N consecutive conjugates of same word contribute

to.a distance of N-1. During comparison of two words in this manner, the other words in

the set are ignored. So now if two words are more similar, their pronounced interleaving

causes a small distance, whereas if the two words are dissimilar, their conjugates occur

together giving a large distance.

43

Consider EBWT as applied to a multi-set of two words u = bcaa and v = ccbab

After sorting the conjugates' repeat formations, we get

aabc, abca, abccb, babcc, bcaa, bccba, caab, cbabc, ccbab

If we list the original words to which each sorted repeat-formation belongs, we get

U 	 U 	 V 	 V 	 U 	 V 	 U 	 V 	 V

The distance for the above case would be 3 as there is one run of u of length greater than

1 and two such runs of v.

This concept is applied to the process of phylogenetic analysis wherein, the original

words are mitochondrial DNA of species. Phylogenetically related species give a small

distance and unrelated species give a large distance. The paper verified the results of the

algorithm with standard data and results from other known algorithms.

4.5 Parallelization of EBWT on CUDA
The implementation of EBWT was done firstly on a uni-processor and then on CUDA

and their timings compared. The primary time consuming process within the EBWT was

the sorting of the conjugate-repetitions.

4.6 Uni-Processor Implementation

The implementation first reads the gene sequences from a file, one for each species and

stores them into a local buffer. This set of gene strings is what we call the set of primitive

words. The set of primitive words are used to generate the conjugates for each element in

the set. The conjugates are then used to generate repeat-formations of themselves. The

maximum width of the repeat formation for successful working of the algorithm is

H = max { j u; I + I uj I —gcd(ui 1, J uj 1)1 i,j =1..k} (Equation 1)

We use the maximum and second maximum length of the genes that we have. However

we skip the process of finding the gcd as this is an unnecessary overhead does not affect

44

the accuracy of the algorithm. Having done this we obtain an array of repeat-formation

strings, which we need to now sort.

The sorting of the repeat-formations is done using column wise counting sort as the range

of the possible values of the string contents is restricted to four values, namely 'a', 'c', 'g'

and 't'. Also since we use one value of max width from. above equation, we have all the

strings of same width. Thus we sort the string using counting sort on each column,

starting from last column up-to the first column (much like radix sort for integers). The

approximate algorithmic complexity of the sorting process is O(k*n*n), where n is the

length of the gene and k is the number of species. This is so because there are around 2*n

columns, calculated from the equation above, and each column has k*n characters to be

sorted by counting sort.

We now need to find the distance measure between each pair of species. We run through

the sorted list for each pair of species. We consider only those repeat formations in the

list which belong to the species-pair under consideration. Using a flag counter, we

calculate the runs of repeat formation belonging to only one species in the pair, and we

do so for both the species. The total run gives an approximate measure of the

phylogenetic distance between the two species. These values were calculated and found

to be tallying with results as published by Mantici.

4.7 GPU Implementation
The GPU implementation primarily consists of two main phases, namely data

construction and data sorting. The data construction phase consists of allocating memory

on the GPU and transferring data onto it from the CPU. The data as required by the

algorithms was to be generated and processed on the GPU, with the CPU doing the initial

work of reading the gene sequences from a file and have them transferred to the GPU.

One of the problems problem encountered in use of CUDA was the absence of string

processing libraries on GPUs (since the device is primarily math-intensive), which

required that they be written from scratch as device-level user functions.

Another main problem encountered in porting the algorithm onto CUDA was the absence

of simple means of allocation multi-dimensional arrays on GPUs. This problem was more

45

pronounced if the dimension of the multi-dimensional array were not known until

runtime. We -went ahead with simulating two dimensional arrays of characters (or to be

correct, an array of strings, as required for our conjugate and repeat-formations data)

using one dimensional array, by setting a practical maximum limit on the length of each

row of the logical two-dimensional array (this practical maximum limit was already

known to us as max-width using equation). The two dimensional arrays of characters (or

array of strings at logical level of abstraction) allocated were of for the primitive words,

conjugates and repeat-formations.

Once the allocation of memory on device is done, the process of generation of conjugates

and repeat-formations are divided between the thread on the device. Since there are

approximately k*n such conjugates/repeat-formations to be generated, that amount to

k* 16K strings for our practical gene data, the process can be highly parallelized. The

repeat-formations are then sorted as in the uni-processor implementation, but using a

parallelized form on sorting as discussed in the next section.

4.8 Odd Even Sorting
Cormen et.al. [17] discuss various methods of parallel sorting, or sorting on parallel

architectures, clubbed together as a concept called sorting networks. The fundamental

means of sorting in parallel can be carried out by means of a sorting network based on

primitive blocks like merger or bitonic sorting networks. These methodologies carry out

parallel sorting in time of order O(log n). We did not use the methods for primarily two

reasons. The methodologies logically involve recursion defining sorting of n numbers as

combination of sorting two list of n/2 numbers and then merging them, and recursion was

not possible on CUDA device, at-least a recursion that requires co-operation between

threads. Secondly since the uni-processor implementation involved an algorithm sort

component that runs in O(k*n*n), it would be correct that the parallel implementation for

comparison runs in approximately the same time complexity. We chose a similar Odd-

Even sorting network, which we explain in context of our work.

The fundamental component of a sorting network is a comparator, which is a two input,

two output, logical entity that sorts. The comparator is a basic building block used to

construct larger sorting networks. The below figure 4.1 shows the schematic equivalent

used to show a comparator as part of large network.

x 	 min(x,y)

max(x,y)
y

Figure 4.1: Comparator Schematic

The odd-even sorting network is constructed using comparators as shown in the figure

4.2 below. In context of our problem, the inputs of the sorting network are the repeat

formations that need to be sorted. Each vertical line in the below figure corresponds to a

comparator and each vertical column corresponds to one iteration of parallel sorting. The

entire sorting process consists of alternate iteration of odd and even sort. The odd and

even sort correspond to respectively comparison of

Odd Sort: a[2*i] and a[2i-1]

Even Sort: a[2*i] and a[2i+1]

This corresponds to simple, string comparisons on our code. The number of such stages

required as same as the number to be sorted, i.e. —k*n for EBWT. Cormen[17] argued

that the sorting network sorts correctly.

47

Cl'

(15

(17

618

b1

h,3

h4

be

/17

I~

Figure 4.2: Odd Even Sorting [17]

The distance measure was to be carried between each pair of species. This was done by

creating k2 threads, one for each pair.

48

4.9 Results

The algorithm was used to compare varied number of species together, 2-8 at a time, with

data obtained from [18][19]. The timings are as follows.

The machines involved are a Core-2 Duo HP Laptop (2* 1.67 GHz), as a uni-processor

and a CUDA based machine having Intel Xeon CPU (2*3.2 Ghz) and NVIDIA Geforce

GTX-280, having 240 cores.

Table 4.1 Timing comparison* for EBWT

Number of
Species

(Uni-Prot) (CUDA) Speedup

Compared Data Data Data Data
Generation Processing Generation 	Processing

2 0.296 6.693 0.484 0.516 6.98

3 0.432 10.578 0.703 1.234 5.68

4 0.564 15.819 0.921 3.016 4.16

5 0.721 22.410 1.171 4.969 3.76

6 0.878 31.819 1.500 8.109 3.40

7 1.687 46.637 I.906 14.265 2.98

8 1.213 54.168 2.171 20.516 2.44

` Time values in seconds

G~tITRAL

Chapter 5: Conclusion and Future Work

5.1 Search Space Pruned Protein Folding
The relative proportion of time spent in the ISG part of the algorithm increases with

increase in size of the protein to be folded. Thus the importance of optimizing this part

and speed-up achieved will be more significant for large sized of proteins. For protein

larger than 60 amino-acids, the running time of original algorithm on uni-processor

implementation was extrapolated to be more than 10 hours. For such large protein the

algorithm modification makes it possible to have the process run in acceptable times.

The approach we used can also be applied to other problems involving use of genetic

algorithms (e.g. GA for Travelling Salesman Problem). The conditions for rejection of

solution and back-tracking would however be specific to the domain of the problem.

The convergence for the GO depended upon the goodness of the random number

generation, and the effect of the algorithm modification on the convergence rate of the

GO needs to be studied. Also the GO parameters like the number of mutations and cross-

over per generation can be varied and their effect can be studied both on the runtime of

the algorithm and the convergence rate of the algorithm to the optimum value.

5.2 EBWT on CUDA
The major bottle neck for performance in the EBWT algorithm was the process of sorting

the intermediate data. The performance improvement of EBWT on CUDA was majorly

due to the possibility of parallel sorting which took bulk of the runtime in the sequential

implementation. The running time of the algorithm can be improved if the sorting part of

the algorithm is implemented using O(log n) techniques of parallel sorting. However this

would require that such a technique is implemented without recursion.

50

References

1 Thomasson WA, Unraveling the Mystery of Protein Folding. FASEB's Public Policy,

http://www.faseb.org/opa/protfold.pdf (Last Accessed 12 June 2009)

2 http://www.nature.com/horizon/proteinfolding/background/importance.html (Last

Accessed 12 June 2009)

3 http://en.wikipedia.org/wikilMo1ecu1ar_phylogenetics (Last Accessed 12 June 2009)

4 J. Kahle, M. Day, H. Hofstee, C. Johns, T. Maeurer, D. Shippy, Introduction to the

cell multiprocessor, IBM Journal of Research and Development, Vol-49 n.4/5, p.589-

604, July 2005

5 Cell Broadband Engine Programming Tutorial, Version 2.0, IBM, Dec 2006

6 D. Luebke and G. Humphreys, How GPUs Work, IEEE Computer, Feb 2007, pp 126-

130

7 http://www.nvidia.com/object/cuda_home.html (Last Accessed 12 June 2009)

8 CUDA Programming Guide, Version 2.0, NVIDIA, June 2008

9 http://en.wikipedia.org/wiki/Protein_folding (Last Accessed 12 June 2009)

10 Y. Duan and P. A. Kollman, Computational protein folding: From lattice to all-atom,

IBM Systems Journal, Vol 40, 2001

l 1 K. Dill, Theory for Folding and Stability of Globular Protein, Journal Bio-Chemistry,

Vol-24, pp 1501-1509, 1985

12 http://www.obitko.com/tutorials/genetic-algorithms/ (Last Accessed 12 June 2009)

13 M. Burrows, D. Wheeler, A block sorting data compression algorithm, Technical

report, DIGITAL System Research Center, 1994

51

14 S. Mantaci, A. Restivo, G. Rosone and M. Sciortino, An extension of the Burrows—

Wheeler Transform, Journal of Theoretical Computer Science, pp 298-312, 2007

15 Ron Unger and John Moult, "Genetic Algorithms for Protein Folding Simulations",

Journal of Molecular Biology, Vol-23 1, pp 75-81, 1993

16 Peter Clote and Rolf Backofen,

http://www.cs.bc.edu/—clote/ComputationalMolecularBiology/ungerMoult.c (Last

Accessed 12 June 2009)

17 T. Cormen, C. Leiserson, R. Rivest, C. Stein, Introduction To Algorithms, 2nd

Edition, MIT Press and McGraw-Hill, 2001

18 http://www.nebi.nlm.nih.gov/ (Last Accessed 12 June 2009)

19 Y. Cao, A. Janke, P.J. Waddell, M. Westerman, O. Takenaka, S. Murata, N. Okada,

S. Paabo, M. Hasegawa, "Conflict among individual mitochondrial proteins in

resolving the phylogeny of eutherian orders", Journal Molecular Evolution, Vol-47,

pp 307---322, 1998

52

	Title
	Abstract
	Chapter 1
	Chapter 2
	Chapter 3
	Chapter 4
	Conclusion
	References

