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Abstract 

Over the recent years, there has been an extensive development in the field of 

bioinformatics. A couple amongst the various works done under this field includes 

Protein Folding and Genome based Phylogenetic Studies. Protein folding is the physical 

process by which a polypeptide folds into its characteristic and functional three-

dimensional structure. The problem is inherently intractable and hence, non-analytical 

alternatives for solving the problem exist. Even such alternatives are computationally 

intensive due to the inherent vastness of the search space. Genome based Phylogenetic 

studies include the process of matching Mitochondrial DNA of different species to 

establish their phylogenetic relation. One novel algorithm to achieve this is the Extended 

Burrows Wheeler Transform. This algorithm also is very compute intensive due to size of 

mitochondrial genomes used as data. All this necessitates the optimization of such 

algorithms by parallelization or other means. 

The Sony-Toshiba-IBM Cell Broadband Engine is heterogeneous multi core architecture, 

consisting of a traditional PowerPC based master core meant to run the operating system, 

and 8 delegate slave processors built for compute intensive processing. Exposure of 

system level optimization features allows programmer to use algorithm specific tweaks to 

achieve order of magnitude improvements using Cell-BE. CUDA is a parallel computing 

architecture developed by NVIDIA. It is a middle-ware compute engine which exposes 

the power of NVIDIA Graphics Processing Units to software developers through industry 

standard programming language. 

This work introduces a modification on the traditional Protein Folding Algorithm. It 

describes the implementation of the modified algorithm on Cell-BE and CUDA. Lastly 

the work describes the implementation of Extended Burrows Wheeler Transform on 

CUDA and issues involved. 
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Chapter 1: Introduction 

1.1 Protein Folding 
Proteins [1] [2] are the functional work-horses of our bodies. They carry out a varied 

number of tasks in our body ranging from moving muscles, to carrying oxygen in blood, 

to fighting infection. The proper functioning of the protein is related to its structure, 

which in turn in related to its constituent chemical molecules. Since proteins are made up 

varied combination of only twenty different such chemical molecules (amino acids), the 

structure is related to the combination sequence of these twenty amino acids. This 

sequence determines the structure of the protein by means of a process called Protein 

Folding. 

Recent discoveries [1] have shown that if protein gets into an improper structure, it could 

cause a non-functional protein or worse toxic protein that could poison the cell and cause 

disease like Alzheimer. All this necessitates the understanding of the relation between the 

structure and constituent sequence of a protein. Simple analysis of protein folding has 

shown that it is a very compute intensive process. Hence the need to find means of 

reducing the runtime of the process. Many variations exist in the computational models 

for protein folding. We try to focus on one such model, which can give us near correct 

answers for acceptable running times. 

1.2 Phylogenetic Analysis 
Every living organism is made up DNA and proteins as constituents of its cells which 

form the organism basic building block [3]. In addition to these molecular constituents 

defining the organism's outward appearance and biological functions, they also help 

biologist ascertain the related-ness and non-related-ness of two organisms. It was 

observed that organism of different species that closely relate show a great deal of 

similarity in the molecular structure or, sequence of chemical components of these 

biological constituents of the cell. 

One such cell constituents is the mitochondrial DNA (mtDNA) which undergoes 

mutation over generations. The mtDNA is passed only from maternal side, with no 
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change except mutation any difference between such mtDNA for two species denotes 

only the mutations accumulated over the time. Such a comparative analysis of mtDNA, 

help biologist to arrange various species in a tree format with related species represented 

as more closer branches. The simplistic means of such analysis would be simple string 

comparison between the two DNA sequences. Such algorithms generally depend upon 

the product of length of both sequences for their runtime. 

However there exists a novel method of having multiple strings to be compared for 

similarity together, called the Extended Burrows Wheeler Transform (EBWT). This 

would take less time than having all combination of simple sequence comparison 

between each of pair of species. The EBWT however still requires long processing time 

due to the fact that general mtDNA sequences run in the sizes of thousands. This 

necessitates the reduction in runtime of the EBWT algorithm. 

1.3 Multi-Core Architecture 
Moore's law had predicted that the chip manufacturing technology would be able to 

double the transistors on chip roughly every two years, and the prediction had stood good 

so far. Microprocessors technology had been using this prediction to improve its 

frequency by various techniques. However in the recent past micro-processors have hit a 

frequency wall, and'not been able to take advantage of the predicted exponential growth. 

The outcome is the emergence of multi-core processors, which offer the performance 

benefits of multi-processors on single chip. The presence of such architectures as 

common desktop processors has made it possible for hitherto time-consuming algorithms 

to be solved on simple desktop. machines. 

Another emerging trend has been the use of Graphics Processing Units (GPUs) for 

general purpose computing. The GPUs model themselves as multi-core processing and 

expect programs to take advantage of them as raw parallel number-crunchers. The multi-

core processors allow program to leverage their computing power by various means like 

independent threads per core, or allow user to manipulate efficient data flow between 

cores, or provide a layer of software which manages the scalability of the cores. With the 

future micro-processor trends likely to increase number of cores as the only means of 

11 



their increasing computing power, it becomes necessary to ensure that important 

algorithms be parallelized to run on next generation of micro-processors. 

Thus multi-core processors provide the perfect means of increasing the runtimes of our 

protein folding simulation and EBWT. 

1.4 Problem Statement 
In this dissertation, a variation of the protein folding algorithm was studied and profiled 

for performance bottlenecks. Since the problem portion of the algorithm caused the 

runtime of the algorithm to go into hours, it was required to find alternatives to be able to 

speed up the algorithm. This could include parallelization and/or modifying the algorithm 

completely. Also the extended Burrows Wheeler Transform gave considerable run times 

due to length of the input data. The objective was to parallelize the algorithms to achieve 

running time speedup. 

1.5 Organization of the Report 
The organization of this dissertation report is as follows: 

Chapter 2 covers a detailed explanation of the architecture of Cell Broadband Engine and 

CUDA programming environment, which have been used in this dissertation. 

Chapter 3 starts with the explanation of concepts of protein folding, 2D HP model and 

genetic algorithms. The chapter then discusses the existing algorithm applying genetic 

algorithms to 2D HP model, and explains in detail our proposed changes to the algorithm. 

The chapter then discusses parallelization of the modified algorithm as done on Cell-BE 

and CUDA and the issues faced therein. The results are also discussed. 

Chapter 4. starts with the concepts of Burrows Wheeler Transform and its extended 

version. The chapter then discusses the implementation of the extended Burrows Wheeler 

transform on CUDA, and the issues faced therein. The results are also discussed. 

Chapter 5 concludes the dissertation report and gives suggestion for future work. 
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Chapter 2: Parallel Processing Architectures 

2.1 Cell-BE History and Motivation 
The Cell Broadband Engine [4] (henceforth called Cell-BE) is an output of the 

collaboration between Sony Computer Entertainment Incorporated (SCEI), Toshiba and 

IBM, which was started in around the summer of 2000. The idea took root as it was 

determined by SCEI that the then existing traditional architectural organization would not 

deliver computational power that SCEI sought for its future interactive needs. The 

collaboration meant that SCSI would be the content provider, IBM to be the 

microprocessor developer, and Toshiba would be the high-volume manufacturing partner. 

By the end of the year, an architectural concept was agreed upon, combining the existing 

64-bit Power architecture of IBM, along with memory flow control and synergistic slave 

processors. 

The objectives for the new processor were the following 

• Outstanding performance, especially on game / multimedia applications 

• Real-time responsiveness to the user and the network 

• Applicability to a wide range of platforms 

2.2 Challenges for the Cell — BE 

The objectives for Cell-BE were likely to be challenged by limitation in performance 

imposed by three major factors namely memory latency and bandwidth, power 

dissipation and pipeline throughput. 

• Memory Latency or "Memory Wall" refers to the fact that the memory (DRAM) 

speeds have not improved at the same pace as microprocessor speeds, hence 

memory access has been the processing bottleneck and the gap is widening. Also 

since large number of multiple memory access is not possible concurrently in 

current microprocessors, this latency has not been successfully hidden. 

• Power dissipation for semiconductors is increasing with increasing density of 

transistors on chip. The need to keep this power dissipation under control (or 

"Power Wall") is a major design consideration for microprocessors. 
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• "Frequency Wall" or the limit onto increasing clock frequency is caused by 

diminishing returns from pipelined processors. Simply increasing clock frequency 

causes reduction in pipeline cycle time and causes difficulty in designing 

substantial work for each stage. 

2.3 Hardware Architecture 
The Cell-BE[5] consists of nine processors on a single chip, one master processor called 

PPE and eight slave processors called SPEs. all connected to each other and to external 

devices by a high-bandwidth, memory-coherent bus. Figure 2.1 shows a block diagram of 

Cell-BE. 
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Figure 2.1: The hardware architecture of Cell Broadband Engine[5] 
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The main components of the architecture are 

2.3.1 PowerPC Processor Element (PPE) 
The PPE is the main processor. It contains a 64-bit PowerPC architecture based reduced 

instruction set computer (RISC) core with a traditional virtual-memory subsystem. It runs 

an operating system, manages system resources, and is intended primarily for control 

processing, including the allocation and management of SPE threads. It can run legacy 

PowerPC Architecture software and performs well executing system-control code. It also 

includes a vector multimedia extension unit, called Single Instruction, Multiple Data 

(SIMD), so that it can do multiple operations simultaneously with a single instruction. 

The PPE consists of two main units Power Processor Unit (PPU) and PowerPC Processor 

Storage Subsystem (PPSS). 

The PPU performs instruction execution, and it has level 1 (Li) instruction cache, data 

cache of 32KB each, and six execution units. The PPU supports two simultaneous threads 

of execution and can be viewed as a 2-way multiprocessor with shared data-flow. This 

appears to software as two independent processing units. The PPSS handles memory 

requests from PPU and external requests to the PPE from SPEs or I/O devices. It has a 

unified level 2 (L2) instruction and data cache of 512KB. 

The primary function of the PPEs is the management and allocation of tasks for the SPEs 

in a system. When data enters the PPE, this element then distributes it among SPEs, 

schedules them to be processed on one or more of the SPEs, controls and synchronizes 

them. 

2.3.2 Synergistic Processor Elements (SPEs) 
Each of the eight Synergistic Processor Elements (SPEs) is a 128-bit RISC processor 

specialized for data-rich, compute-intensive SIMD applications. It consists of two main 

units, the Synergistic Processor Unit (SPU) and the Memory Flow Controller (MFC). 

The SPU deals with instruction control and execution. It includes a single register file 

with 128 registers (each one 128 bits wide), a unified (instructions and data) 256-KB 

local store (LS), an instruction-control unit, a load and store unit, two fixed-point units, a 
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floating-point unit, and a channel-and-DMA interface. The SPU implements a new SIMD 

instruction set, the SPU Instruction Set Architecture, which is specific to the Broadband 

Processor Architecture. 

Each SPU is an independent processor with its own program counter and is optimized to 

run SPE threads spawned by the PPE. The SPU fetches instructions from its own LS, and 

it loads and stores data from and to its own LS. With respect to accesses by its SPU, the 

LS is unprotected and un-translated storage, 

2.3.3 Memory Flow Controller (MFC) 
The MFC contains a DMA controller that supports DMA transfers. Programs running on 

the SPU, the PPE, or another SPU, use the MFC's DMA transfers to move instructions 

and data between the SPU's LS and main storage. (Main storage is the effective-address 

space as seen by the PPE.) The MFC interfaces the SPU to the EIB, implements bus 

bandwidth-reservation features, and synchronizes operations between the SPU and all 

other processors in the system. 

To support DMA transfers, the MFC maintains and processes queues of DMA 

commands. After a DMA command has been queued to the MFC, the SPU can continue 

to execute instructions while the MFC processes the DMA command autonomously and 

asynchronously. The MFC also can autonomously execute a sequence of DMA transfers, 

such as scatter-gather lists, in response to a DMA-list command. This autonomous 

execution of MFC DMA commands and SPU instructions allows DMA transfers to be 

conveniently scheduled to hide memory latency. Each DMA transfer can be up to 16 KB 

in size. Memory-mapped mailboxes or atomic MFC synchronization commands can be 

used for synchronization and mutual exclusion. 

2.4 Programming Features of Cell-BE 

2.4.1 SIMD Vectorization: 

A vector is an instruction operand containing a set of data elements packed into a one 

dimensional array. The elements can be integer or floating-point values. Most 

Vector/SIMD Multimedia Extension and SPU instructions operate on vector operands. 

Vectors are also called SIMD operands or packed operands. SIMD processing exploits 
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data-level parallelism. Data-level parallelism means that the operations required to 

transform a set of vector elements can be performed on all elements of the vector at the 

same time. That is, a single instruction can be applied to multiple data elements in 

parallel. 

Support for SIMD operations is pervasive in the Cell Broadband Engine. In the PPE, they 

are supported by the Vector/SIMD Multimedia Extension instruction set. In the SPEs, 

they are supported by the SPU instruction set. In both the PPE and SPEs, vector registers 

hold multiple data elements as a single vector. The data paths and registers supporting 

SIMD operations are 128 bits wide, corresponding to four full 32-bit words. This means 

that four 32-bit words can be loaded into a single register, and, for example, added to four 

other words in a different register in a single operation. Similar operations can be 

performed on vector operands containing 16 bytes, 8 half-words, or 2 double-words. The 

following figure 2.2 shows such an operation. 

add VC,VA,VB 

VA 	 A.2 	 A.3 

VB 	 B.2 	 B.3 

VC 	 C.2 	 C.3 

Figure 2.2: SIMD in Cell[5] 

2.4.2 DMA and Double Buffering: 

MFC supports a set of DMA commands which provide the main mechanism that enables 

data transfer between the LS and main storage. It also supports a set of synchronization 

commands which used to control the order in which storage accesses are performed and 

maintaining synchronization with other processors and devices in the system. 
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SPE programs use DMA transfers to move data and instructions between main storage 

and the local store (LS) in the SPE. Consider an SPE program that requires large amounts 

of data from main storage. The following is a simple scheme to achieve that data transfer: 

1 Start a DMA data transfer from main storage to buffer B in the LS. 

2 Wait for the transfer to complete. 

3 Use the data in buffer B. 

4 Repeat.• 

This method wastes a great deal of time waiting for DMA transfers to complete. We can 

speed up the process significantly by allocating two buffers, BO and B 1, and overlapping 

computation on one buffer with data transfer in the other. This technique is called double 

buffering. The below figure 2.3 shows a flow diagram for this double buffering scheme. 

Double buffering is a form of multi-buffering, which is the method of using multiple 

buffers in a circular queue to overlap processing and data transfer. 

Initiate DMA transfer 
to buffer So 

W 

Initiate DMA transfer 
to buffer B1 

Use data in 
buffer B1 

Waft for DMA transfer 
to buffer B0 to complete 

Wait for DMA transfer 
to buffer B1 to complete 

Use data in 
buffer Bp 

Initiate DMA transfer 
to buffer B0 

Figure 2.3: Double Buffering [5] 

2.5 General Programming on GPU (GPGPU) 
The GPU [6] refers to the commodity off-the-shelf 3D Graphics Processing Units, which 

are specifically designed to be extremely fast at processing large graphics data sets for 

rendering tasks. GPU designers traditionally have expressed its image-synthesis process 

as a hardware pipeline of specialized stages which necessarily involve Vector/Matrix 

Operations. The need for efficient hardware to perform floating-point vector arithmetic 
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for millions of vertices each second has helped drive the GPU parallel-computing 

revolution. 

GPUs have evolved from a hard-wired implementation of the graphics pipeline to a more 

programmable one. Fixed-function units for transforming vertices and texturing pixels 

have been replaced by programmable shaders. These shaders provide units that the 

programmer can use for performing matrix-vector multiplication, exponentiation, and 

square root calculations etc. This however necessitates that there should be some means 

by which general purpose software could be translated into GPU specific primitives. 

2.6 CUDA 
CUDA (or Compute Unified Device Architecture) is a parallel programming model and 

software environment developed by Nvidia[7]. It was designed as .a middle-ware to allow 

application software that transparently scales its parallelism on GPU. The core concepts 

involved with CUDA are a hierarchy of thread groups, shared memories, and barrier 

synchronization. The thread hierarchy allows user to divide his task in a similar 

hierarchy, where coarse sub-problems can be solved independently and finer pieces that 

can be solved cooperatively in parallel using shared memory. CUDA achieves all this 

using a minimal extension to C thus maintaining a low learning curve for programmers 

already familiar with the standard programming language. 

2.7 General Architecture of GPUs 

Whereas CPUs are optimized for low latency, GPUs are optimized for high throughput. 

Thus applications that do not have requirement for low latency can be ported to GPUs to 

take advantage of their superior performance. The programmable GPU has evolved into a 

highly parallel, multi-threaded, many-core processor with tremendous computational 

horsepower and very high memory bandwidth. There is a widening gap between the raw 

performance capability of CPUs and GPUs, which is because the GPU is specialized for 

compute-intensive, highly parallel computation, exactly what graphics rendering is about, 

and therefore designed such that more transistors are devoted to data processing rather 

than data caching and flow control. The general architectural difference between CPUs 

and GPUs is schematically illustrated below in figure 2.4 
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Control 	ALU ALU 

ALU ALU 

Cache 

CPU 

bpI:Ti'Tu 

GPU 

Figure 2.4: General architecture difference between CPU and GPU [8] 

More specifically, the GPU is especially well-suited to address problems that can be 

expressed as data-parallel computations; the same program is executed on many data 

elements in parallel, with high ratio of arithmetic operations to memory operations. 

Because the same program is executed for each data element, there is a lower 

requirement for sophisticated flow control, and because it is executed on many data 

elements and has high arithmetic intensity, the memory access latency can be hidden with 

calculations instead of big data caches. The CUDA programming model is very well 

suited to expose the parallel capabilities of GPUs. 

2.8 Programming Constructs and Thread Hierarchy 

CUDA extends C[8] by allowing the programmer to define C functions, called kernels, 

that, when called, are executed N times in parallel by N different CUDA threads, as 

opposed to only once like regular C functions. 

A kernel is defined using the _global_ declaration specifier and the number of CODA 

threads for each call is specified using a new <<<...>>> syntax 

// Kernel definition 
_global_ void vecAdd(float* A, float* B, float* C) { 
// Kernel code 
} 

int main() { 

// Kernel invocation 
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vecAdd<<<l, N>>> (A, B, C) ; 

} 

Each of the threads that execute a kernel is given a unique thread ID that is accessible 

within the kernel through the built-in threadldx variable. This threadldx values gives the 

index of the current thread within its block. In the above code, if the kernel were to add 

the two vectors A and B of size N and stores the result into vector C, the kernel code 

would be 

_global void vecAdd(float* A, float* B, float* C) { 
int i = threadIdx.x; 
C [i] 	A [i] + B [i] ; 

} 	 V 

The logical organization of the thread hierarchy is thus, with the entire set of threads 

arranged as a two dimensional grid of blocks, with each block containing a three 

dimensional set of threads, as shown in figure 2.5 
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Figure 2.5: Thread Hierarchy in CUDA [8] 

Threads within a block can cooperate among themselves by sharing data through some 

shared memory and synchronizing their execution to coordinate memory accesses. Such 

synchronization is possible by means of a programming primitive 	syncthreadsO as 

exposed by CUDA API. This serves as barrier synchronization. The number of threads 
per block is restricted by the limited memory resources of a processor core. On NVIDIA 

Tesla architecture, a thread block may contain up to 512 threads. 

In addition to the variable threadldx. CUDA threads also have a few other built-in 

variables namely blockldx and blockDim. The blockldx variable gives the index of the 
thread's parent block within the grid, and blockDim which gives the number of threads 

per block, with the blockDim being supplied in the call to the kernel as the second 

parameter to the <<<>>> syntax. Since grids are two-dimensional, blockldx has a x 

component and y component and since blocks are three-dimensional, blockDim and 

threadldx have x, y and z components. If the above code was to be a matrix addition 
instead of vector addition and was to be processes by a hierarchical arrangement of 
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threads as shown in the above figure 2.5, with each thread processing one element of the 

matrix, the code becomes 

int i = blockIdx.x * blockDim.x + threadIdx.x; 
int j = blockIdx.y * blockDim.y + threadIdx.y; 
if (i < N && j < N) 

C [i] [j] = All] [j ] + B [i] [j ] ; 
} 

int main() 
{ 

// Kernel invocation 
dim3 dimBlock(16, 16); 
matAdd<<<1, dimBlock>>>(A, B, C) ; 

2.9 Memory Hierarchy 
CUDA threads may access data from multiple memory spaces during their execution. 

Each thread has a private local memory, which is akin to local variable declaration for 

any normal CPU code. Each thread block has a shared memory visible to all threads of 

the block and with the same lifetime as the block. Finally, all threads have access to the 

same global memory. CUDA assumes that both the host and the device maintain their 

own DRAM, referred to as host memory and device memory respectively. The global 

memory is persistent across kernel launches by the same application and is allocated in 

the device memory. 

Memory management at runtime on the GPU RAM is done using CUDA API 

equivalents. The general procedure is to allocate memory on both host and device RAM, 

using cudaMalloc function call for the device memory. The data contents are copied from 

host memory to device memory using cudaMemcpy function. Writing data directly onto 

device memory from CPU code is not possible. The kernel calls are then made to do 

appropriate processing on the data. The processed data contents are copied back from the 

device to the host using cudaMemcpy function. 
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2.10 Architecture 
The Tesla architecture is one of the architectures of Nvidia which support CUDA. It is 

built around a scalable array of multi-threaded Streaming Multiprocessors (SMs). When a 

CUDA program on the host CPU invokes a kernel grid, the blocks of the grid are 

enumerated and distributed to multiprocessors with available execution capacity. The 

threads of a thread block execute concurrently on one multiprocessor. As thread blocks 

terminate, new blocks are launched on the vacated multiprocessors. 

A multiprocessor consists of eight Scalar Processor (SP) cores, two special function units 

for transcendentals, a multithreaded instruction unit, and on-chip shared memory. To 

manage hundreds of threads running several different programs, the multiprocessor 

employs a new architecture we call SIMT (single-instruction, multiple-thread). The 

multiprocessor maps each thread to one scalar processor core, and each scalar thread 

executes independently with its own instruction address and register state. The 

multiprocessor SIMT unit creates, manages, schedules, and executes threads in groups of 

32 parallel threads called warps. Individual threads composing a SIMT warp start 

together at the same program address but are otherwise free to branch and execute 

independently. 

When a multiprocessor is given one or more thread blocks to execute, it splits them into 

warps that get scheduled by the SIMT unit. Every instruction issue time, the SIMT unit 

selects a warp that is ready to execute and issues the next instruction to the active threads 

of the warp. A warp executes one common instruction at a time, so full efficiency is 

realized when all 32 threads of a warp agree on their execution path. If threads of a warp 

diverge via a data-dependent conditional branch, the warp serially executes each branch 

path taken; disabling threads that are not on that path, and when all paths complete, the 

threads converge back to the same execution path. Thus the efficiency of CUDA is 

enhanced if the different threads of a block (particularly of a warp) are executing the 

same code path but only on different data, thus containing little branching. 
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Chapter 3: Protein Folding Algorithm 

3.1 Protein Folding 

Proteins or poly-peptides are organic compounds made of amino acids, arranged in linear 

chain, joined together by peptide bonds [9]. They support life function by carrying out 

important biological functions, which are primarily determined by their structures. Each 

protein exists as an unfolded poly-peptide when translated from a sequence of mRNA to 

a linear chain of amino acids. Protein folding is the physical process by which these poly-

peptides fold into their characteristic and functional three-dimensional structure (called 

conformation) from an initial unfolded or random structure. 

Despite the fact that the theoretical number of possible conformations is astronomical, the 

actual time to fold is very small, which suggest that proteins use some sort of directed 

mechanisms to fold. These mechanisms are however not completely understood until 

now. Yet a few things are certain. These well define conformations are maintained so by 

a delicate balance of various forces like inter-protein, intra-protein, and hydrogen-bonds 

with the solvent. Current studies of protein folding involve the interaction and 

contribution of these various forces to the folding process. 

One of the findings of research [1] in the field has been that there exist partially folded 

structures which form the intermediaries in the process. The protein goes into the final 

folded state through stages of such intermediaries. Also these intermediary stages have 

their stability dependent upon temperature. Now if these intermediary stages were 

subjected to de-stabilizing temperatures, could result in the inability of the protein to pass 

through these stages as desired and could end in improperly folded proteins. Such 

improperly folds give rise to dysfunctional proteins like the ones which cause 

Alzheimer's disease or Mad Cow Disease, or could give rise to desirable phenomenon 

like boiled eggs (caused by mis-folds of proteins in egg-white during boiling). 
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3.2 2D HP Model 
Various models have been suggested to study the concept of protein folding [10], at 

various levels of abstraction, from "All Atom Model" to "Lattice Model". The "AIl Atom 

Model" works with molecular representation of both the amino-acids and the solvent. 

This method however works better for smaller sized proteins. 

The "Lattice Models" treat the amino-acid of the protein as a unit and study the protein 

folding process as a function of interaction betweens these amino-acids as a unit. The 

protein chains have their constituent amino-acids bound together by peptide bonds. These 

participating atoms form what is called the back-bone of the protein. The bonds within 

this back-bone provide some degree of flexibility to the entire structure, and determine 

the extent to which the back-bone and hence the entire structure can be bend at various 

points. 

A simplification of the above idea is to limit the degree of freedom for the back-bone to 

keep it confined to two-dimensions. The Two-Dimensional Hydrophobic Polar Model 

(henceforth 2D HP model) was such an idea proposed by Dill [11].  The 2D HP model 

classifies the constituent amino-acids of the protein into two groups, namely hydrophobic 

(no affinity for solvent) and polar (having electrostatic affinity for solvent). The protein is 

thus modeled as a string of H and P. The model thus goes out to place the string on a two 

dimensional lattice as shown in the figure 3.1 below. 

Figure 3.1: 2D HP Model of Protein Folding 
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The fundamental principle underlying the model is that the tendency of the protein will 

be to fold in such a manner that the Hydrophobic (H) nodes have minimum contact with 

external solvent and are surrounded by the Polar (P) nodes which maintain contact with 

the solvent. Hence the Hydrophobic (H) nodes tend to remain attached to each other and 

form a core within the center. This can be seen in the figure 3.1 with the black points 

representing the Hydrophobic (H) nodes and white nodes representing the Polar (P) 

nodes. This tendency of sticking together of Hydrophobic (H) nodes is used as a criteria 

for evaluating the energy or fitness of the conformation. The energy of the conformation 

is calculated by checking the number of Hydrophobic (H) nodes which are not adjacent 

on the protein chain but occupy adjacent position in the lattice. Such pairs of H nodes are 

an indication of the tendency of H nodes to stick together. For the above figure the 

energy is calculated to be 9. 

3.3 Genetic Algorithms 
Genetic Algorithms (GAs) [12] are a searching paradigm used in computing to find exact 

or approximate solutions to optimization and search problems. Genetic algorithms are 

categorized as global search heuristics. Genetic algorithms are a particular class of 

algorithms called evolutionary computation, that use techniques inspired by evolutionary 

biology such as inheritance, mutation, selection, and pairing (also called recombination or 

cross-over). 

There are many algorithmic problems which, if they are to be solved by traditional 

analytical methods, are intractable, i.e. their runtime is an exponential function of the 

input size. However these same problems are verifiable (check-able whether a given 

solution is correct/optimal) in polynomial time. Also for some such problems, for 

practical purposes less than optimal solution are acceptable if they bring about a drastic 

decrease in running time of algorithm. For such cases we can use genetic algorithms to 

obtain solution for the problem. 

Genetic algorithms are used in computer simulations, wherein the candidate solutions for 

the problem are encoded in format of a string over a certain alphabet (usually { 0,1 }) e.g. 

for Traveling Salesman Problem (TSP) over a graph with n cities, we can encode the 
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candidate solutions as a number string of length n, giving the order in which the salesman 

visits the cities. 

The general procedure as adapted by genetic algorithm would be to first generate an 

initial set of random candidate solutions for the problem (e.g. for the TSP example above 

we generate a set of random permutations of orders in which to visit cities). The solution 

set can be tested for correctness and then for optimality. The next generation of candidate 

solutions is generated from the previous generation using a set of simple operators called 

genetic operators. Only those solutions which are more optimal than the previous 

generation are retained and the process is continued. 

Some of the basic genetic operations are 

Elitism: In this operation, the optimal solution obtained for any generation is 

carried forward into 'next generation without any changes. Thus it can be 

guaranteed that any generation of solution contains one at-least solution which is 

at-least as good as the best of the last generation, thus ensuring that the 

subsequent solutions only get better. 

•' -Mutation: In this procedure, the solution of the current generation will be 

modified slightly to produce the next generation solution. In the TSP example 

above, we can select two numbers at random in the candidate solution, and 

exchange them, creating a new permutation. In the actual TSP scenario, this will 

change the order of visiting the cities. 

• Pairing: In this procedure, any two random solutions of the current generation are 

combined together. In the TSP example, we randomly choose to take cities 

visiting order from one parent for first k cities and from second parent for the 

remaining cities. 

With each iteration/generation of the genetic algorithm, the fitness of the conformation is 

checked. The genetic algorithms are repeated till the calculated fitness does not equal the 

theoretical expected fitness. 
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3.4 Protein Folding using Genetic Algorithms 

Unger and Moult [15] proposed the application of GAs to the 2D HP Model. They have 

shown the performance improvement using their technique visa-a-vis existing parallel 

simulation techniques for 2D HP Model using Monte Carlo methods. The methodology 

as proposed by Unger and Moult consisted of running T independent instances of protein 

folding simulations, (called as a population of T instances in GA parlance). The process 

for each instance consists of two phases, namely the Initial Set Generation (ISG) and 

application of Genetic Operators (GO). We used a public domain implementation of the 

algorithm done by Schubert, Buchetmann, Clote and Backofen [16]. 

The algorithm can be formally summed up as follows 

T : Number of independent simulation instances 
N : Number of amino-acids in the protein (Size of the protein) 
M : Number of mutations 
optimum : Theoretical optimum energy value 
direction[N-2] : Array of bends 
bestConf: Best conformation at each stage of GO 

1. for simno 1 to T do 
1.1 for each bend current in the protein chain do 

1.1.1. Generate a random bend direction, i.e. one value out of 1, r ands (left, 
right and straight), say p, i.e. direction[current] = p 

1.2. al = (0,0) 
1.3. a2 = (1,0) 
1.4. for each further bend current in the protein chain do 

1.4.1. calculate xcuRent  and  ycunent  from  xcunent_1, Ycurrent-1 and direction[current- 1] 
1.4.2. if acurrent = (xcurrent, Ycurrent) && some a n  = (xm, ym) such that xcuttent = Xm 

and Ycurrent = Ym, i.e. bend is not possible then 
1.4.2.1 .reject the conformation, goto step 1.1 

2. while bestConf.fitness o optimum do 	// Genetic Operators 
2.1. for mtns no = 1 to M do 

2.1.1. bestConf := best conformation among T instances // elitism 
2.1.2. for simno = l to T do 

	

2.1.2.1. 	apply mutation on conformation sim_no 
2.1.3. bestConf := best conformation among T instances // elitism 
2.1.4. for simno = 1 to T do 

	

2.1.4.1. 	apply mutation on conformation sim_no 
2.2. bestConf := best conformation among T instances // elitism 
2.3. for sim no = 1 to T do 

2.3.1. apply cross-over on conformation sim no 



2.4. bestConf := best conformation among T instances II elitism 
2.5. for sim no = 1 to T do 

2.5.1. annly cross-over on conformation sim no 

The ISG part (as shown in step 1 in the above algorithm), involved generating an initial 

set of random conformations, one conformation for each instance. This was done by 

generating a set of random bends (N-2 bends for a protein of length N), where each bend 

could either be left, right or straight. The protein conformation was then laid out on a 2D 

grid in accordance with the generated bends to check for overlap. If an overlap was 

detected, the conformation was rejected in totality and the entire process of generating a 

conformation was repeated, regenerating all bends again, the process being continued 

until a non-overlapping conformation was obtained. 

The GO part involved multiple iterations of application of genetic operators to the 

conformation generated in the ISG. Each iteration of GO consisted of M (M=20 in the 

implementation [16]) rounds of elitism and mutations followed by 2 rounds of elitism and 

cross-over. The iterations were continued indefinite till the optimum energy for entire 

population equaled the theoretical optimum. The independent T instances were taken as a 

single logical population at each stage of mutation, cross-over and elitism. Thus the 

conformations for any stage were obtained by applying GO to the population of previous 

stage only (and not current stage). 

The mutation stage consisted of randomly selecting one amino acid out of the entire 

length of the protein and changing the bend direction of the protein around that amino 

acid. The transformed (mutated) conformation was checked for overlap. If an overlap 

occurred, the process of random selection of mutation node and change of bend direction 

for it was repeated. If no overlap was found for the transformed conformation, the energy 

value of the protein was calculated. The non-overlapping transformed conformation was 

accepted if its energy value is greater than average energy of the T conformations. If the 

energy value non-overlapping transformed conformation was less than the average 

energy, the conformation was accepted with some probability. 
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For generating a cross-over conformation, two conformations were randomly selected 

from the population of the previous stage to act as parent conformations. A random 

amino acid would be selected in the cross-over conformation which acts as the cross-over 

node. The cross-over conformation would contain the bend pattern from one parent 

before the cross-over node and the other parent after the cross-over node. The cross-over 

node was also mutated. The cross-over conformation was checked for overlap. Like in 

the mutation stage, the resultant conformation was rejected if it resulted in an overlap. If 

conformation was rejected, new set of parent conformation and cross-over node were 

randomly selected for next trial. As with the mutation stage, the non-overlapping cross-

over conformation was accepted only if its energy was better than average, or with some 

probability. 

The elitism stage propagated the value of the best and average conformation energy of 

entire population of T conformations at each stage (mutation/cross-over) to the next 

stage. 

3.5 Search Space Pruning 
We observed during the process of profiling the algorithm that the bottleneck for the 

algorithm was the ISG part. As the size of protein grew, the probability of getting an 

overlapping conformation increased and hence increased the probability of rejection of 

conformation and need for regeneration. This caused the increase in run-time of the 

algorithm. 

Our idea was to reduce the run-time of this algorithm-part, by eliminating the possibility 

of generating an overlapping conformation. We do not generate the entire conformation 

and check the overlap. Instead we generate the conformations partially, one amino acid 

(hence on bend at a time) at a time and check overlap in partial conformations. If placing 

an amino acid is causing overlap, the step is back-tracked, and only the last bend is 

regenerated. If all three possible bends for a given amino acid placement cause an 

overlap, we back-track one more step. 

We now formally put forth our algorithm and further prove its soundness and 

completeness. 
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T : Number of independent simulation instances 
N : Number of amino-acids in the protein (Size of the protein) 
M : Number of mutations 
allowed[N-2][3] : boolean(yes/no) array of length N-2 

1. for sim_no = 1 to T do 
1.1 .Conformation string C = 
1.2.a1 (0,0) 
1.3.a2  = (1,0) 
1.4.for each further bend current in the protein chain do 

1.4.1 if allowed[current][O] = no && allowed[current][l] = no && 
allowed[current][2] =.no i.e. all bends are disallowed then 
1.4.1.1.Mark last bend direction (say p) for node current-1 as disallowed. 

i.e. allowed[current-1][p] = no 
1.4.1.2.allowed[i][j] := yes, i = current to N, j = 0 to 2 
1.4.1.3.current = current-1 	If back-track 

1.4.2.else 
1.4.2.1. Generate a random bend direction, i.e. one value out of 1, r and s 

(left, right and straight), say p 
1.4.2.2.if allowed[current][p] = no then 

1.4.2.2.1. repeat step 1.4.2 
1.4.2.3.else 

1.4.2.3.1. if act,rrent = (xcurrenr, Ycurrent) && some a,,, = (x,n, ym) such that 
Xcurrent = xm and ycurrent = y,,, i.e. bend is not possible then 

	

1.4.2.3.1.1. 	reject the bend, allowed[current][p] := no 
1.4.2.3.2. else 

	

1.4.2.3.2.1. 	C= C.p 

	

1.4.2.3.2.2. 	current : = current +1 
2. Apply genetic operators as in old algorithm. 

Like with the original algorithm, in our modified algorithm, the laying out of the 

conformation starts with placing the first two amino acid nodes at default positions on the 

grid. We keep track of the entire grid as a matrix data structure, with the occupied nodes 

in the grid marked out clearly. A square grid matrix of same dimensions as the protein 

length suffices. We also keep track of the current direction of the partially laid out 

conformation. With the first two nodes at (0,0) and (1,0), the initial direction of the 

partial conformation is east. As with the existing algorithm, we also keep track of the 

bends taken so far. 
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While placing a new amino acid node on the grid, we first generate a random bend. Using 

the co-ordinates of the last placed amino-acid node on the grid, the current direction of 

partial conformation and the generated bend, we calculate the would-be co-ordinates for 

the next amino acid on the grid. From the grid data available to us we can check if the 

grid co-ordinate is already occupied or empty. If the grid co-ordinate is empty, we go 

ahead with placing the amino-acid node on the grid and update our grid data structure. 

We also update the current direction of partial conformation, as this would change for a 

left or right bend. 

We keep track of the set of bends allowed at any given node by means of a boolean 

matrix, "allowed" with three entries per node, one entry for each of the possible bends. 

When a random bend is generated, we first check if this bend allowed in this "allowed" 

matrix, saving the need for calculating the would-be co-ordinates and checking the grid. 

Also if after calculating the would-be co-ordinates, we find that the grid is occupied at 

that position, we update the "allowed" matrix, specifying that the specific bend for the 

node under consideration is not allowed. 

If all three bends possibilities for a given amino acid node are closed, means that we have 

hit a dead end. In this case we need to correct our placement of just-previous amino-acid 

node. This is done marking the taken bend direction of the previous placed node as now 

not allowed. Since we have kept track of the co-ordinates of the last placed amino-acid, 

and also all bend directions taken so far, we would be able to calculate the co-ordinates of 

previous-to-previous amino-acid, and back-track one step. We would also change the 

current direction accordingly. 

33 



3.6 Algorithm Soundness 
We now establish the soundness of our algorithm modification. We specify the loop-

invariant and show using it that the modified algorithm does not produce any self-

overlapping conformations. 

Loop Invariant 

The partial conformation string C does not overlap 

Initial Case 

At start of loop, C= ", hence IC1 = 0, hence does not overlap 

Maintenance 

For any bend p in the-current iteration only if C.p does not overlap, as in step 1.5.2.3.2.1, 

we go ahead with the bend. Else (as in step 1.5.2.3.1 and step 1.5.1), the conformation C 

is not appended with any bend 

Termination 

At termination, ic = N-2, and as C does not result in any overlap (as shown in 

Maintenance), the entire conformation C (now of length N-2) is non-overlapping 

As we have taken care to see that a new accepted bend is appended to the partial 

conformation string of bends only if an overlap is not generated, it is not possible for 

overlap to occur in the final conformation. 

3.7 Algorithm Completeness 
We now prove that the algorithm modification does not cause a loss in reach-ability for 

any part of the search space. 

1. The T conformations generated are all non-overlapping, let S be the set of these T 

conformations 

2. Genetic algorithm methods are applied to the set S. in second part of algorithm. 

3. Even if some bias is present in the conformation strings generated, the mutations and 

pairing process as applied on these strings can remove the bias, as follows. 

a. Assume all T instances of initial conformations start with its first character as "1", 

the solution set S is thus biased, as it does not include part of search space which 
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starts with "r" or "s" 

b. The probability that the character selected for mutation is not the first character = 

(N-2)-1/(N-2) = (N-3)/(N-2) 

c. The probability of not mutating the first character in any of the T instance = [(N-

3)/(N-2)]^T 

d. The probability of mutating the first character in at-least of the T instance and 

thus un-setting of the bias = 1 —. [(N-3)/(N-2)]^T which is > 0 

3.8 Parallelization on Cell-BE 
The parallelization of the Protein Folding simulation continued from our work done on 

the original algorithm. Since the algorithm involved independent simulation of T 

instances of protein folding, it was amenable to straight forward parallelization. The T 

instances of parallel simulations were divided among the 8 SPEs giving T/8 instances to 

each SPE. Further improvements were obtained, using double buffering. For every 

simulation instance i running on an SPE, undergoing one stage(mutation or cross-over) of 

GO, the processed data for i-1 instance is transferred from SPE to PPE, thus causing 

overlap of computation on SPE with data transfer from SPE to PPE. 

Also the algorithm consisted of intermittent stages of elitism which needed to share data 

between the T simulation instances, i.e. the best conformation data and the total 

population fitness calculated in each elitism stage had to be passed to each SPE. For the 

elitism stage, each SPE undertook the elitism operation for its set of T/8 conformations, 

and the consolidated output for these 8 SPEs was then calculated by the PPE and passed 

onto each of the SPE for next stage of GO. 

A few issues were come across during parallelization of the algorithm. Since the 

algorithm did not involve any array/matrix calculation on floating point numbers, but 

rather a complicated logic flow dictated by randomized input, application of SIMD 

within one simulation instance was not feasible. Also since operations on different 

simulation instances were not same (due to random nature of simulation), clubbing 

together of n instance to do n-way SIMD was not possible. 
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3.9 Parallelization on CUDA 
The parallelization of the search-space-pruned version of the protein folding simulation 

algorithm was . similar to that on Cell-BE, as the implementation was amenable for 

straight forward parallelization. The parallel simulations of T instances of protein folding 

were distributed among T threads that would run on CUDA. 

Since there was no need for much co-operation amongst the parallel instances, it was 

preferred that their corresponding threads be distributed sparsely over different blocks, 

with each block containing few threads, rather than a single block with multiple threads. 

The other major reason for such a division was that the logic for the simulation involved 

complication flow of control, which depended on randomized inputs. Consequently it 

was not possible for the different parallel simulations and hence their threads to have 

similar code paths, thus negating the use of threads from the same block. Since each 

block is to be scheduled over a single multi-processor containing 8 cores, we distributed 

the threads as 8 threads per block. 

The implementation of the search-space-pruned protein folding algorithm consisted of 

two stages, namely data allocation and processing. The data allocation stage involved 

allocating memory for the conformation on the device. The creation of conformation data 

(ISG) and processing (GO) are all done on the device by parallel threads. The elitism 

stage is also carried out on the device, but using only a single CUDA thread. This was 

because the elitism stage consisted of finding the best value in an array of conformations 

and did not offer any possibility of parallelization. Also the stage was very likely not a 

bottle-neck for performance. 

An obstacle encountered in the implementation of the algorithm in CUDA was the 

absence of libraries to generate random values on the device. This necessitated the 

creation of a linear congruential method based random number generator with the device 

code, with its accuracy comparable to the rand() function as available on normal Unix 

based system. It was ensured that the random number generated would be independent 

for each simulation instance/thread. 
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3.10 Results for Modified Protein Folding on Cell-BE 
The timings were calculated for the existing algorithm as run on a Core-2 Duo HP Laptop 

(2*1.67 GHz). Each set of timings are compared with running the modified algorithm on 

IBM Cell BE Simulator/Blade Server. The algorithms were run for protein sequences of 

length 20-64, for standard protein data as obtained from [15]. 

The algorithm mainly consisted of two parts, namely generation of initial set of 

conformations (ISG), and then applying genetic operators (GO) on them, which are 

elitism, mutation and pairing. The timings were calculated separately for both parts and 

percentage contribution of the ISG was calculated. 

The GO stage consisted of a number of iterations of elitism, mutation and pairing, where 

the iteration count depended upon the speed with which the GO stage converged. 

Table 3.1: Protein Sequences Data Used 

Sequence Optimal 	 Sequence 

Length Energy 

 

X20  9  hphpphhphpphphhpphph 

 

X24  9  hhpphpphpphpphpphpphpphh 

 

X25  8 - pphpphhpppphhpppphhpppphh 

 

36  14  ppphhpphhppppphhhhhhhpphhpppphhpphpp 

 

~48  22  pphpphhpphhppppphhhhhhhhhhpppppphhpphhpphpphhhhh . 

 

50  21  hhphphphphhhhphppphppphpppphppphppphphhhhphphphphh 
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Table 3.2: Timing Comparisons for both AIgorithms (time in milliseconds) 

Sequence 
Length 

Old Algorithm (Uni-Prot) New Algorithm (Cell-BE) 

Energy Initial Set Genetic Energy Initial Set Genetic 
Obtained Generation Operations Obtained Generation Operations 

(ISG) (GO) (ISG) (GO) 

20 9 133 651 8 14.66 579.86 

24 9 409 743 8 14.72 586.47 

25 8 509 759 6 14.58 578.89 

36 13 10461 1403 8 11.80 626.46 

48 22 292224 2581 13 15.00 748.47 

50 20 759731 2959 13 14.66 738.53 

Table 3.3 Part-Wise and Total Speed Up for Cell-BE 

Sequence Part-wise Speed-Up Iteration Count for GO Percentage Speed Up 
Length contribution 

Initial Set Genetic Old New of ISG* 
Generation Operations Algorithm Algorithm 

(ISG) (GO) 
(Uni-Proc) (Cell-BE) 

20 9.07 1.12 72 182 0.11 1.12 

24 27.78 1.27 13 656 0.08 1.29 

25 34.91 1.31 126 833 0.08 1.33 

36 886.52 2.24 1208 660 0.61 7.63 

48 19481.6 3.45 718 546 13.62 2656.37 

50 51823.39 4 1130 531 18.51 9595.76 

*Percentage contribution of ISG = Old Time for ISG / (Old Time for ISG + Old Time for 

GO* Worst Count of GO Iterations (Old/New)) expressed as percentage. 
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3.11 Results for Modified Protein Folding on CUDA 
The timings were calculated for the new algorithm as run on a Core-2 Duo HP Laptop 

(2* 1.67 GHz), and then on a CUDA based machine having Intel Xeon CPU (2*3.2 Ghz) 

and NVIDIA Geforce GTX-280, having 240 cores. The algorithms were run for protein 

sequences of length 20-36, for standard protein data as obtained from [15], same as those 

used for Cell-BE performance evaluation. 

Table 3.4 Timing Comparisons for Algorithms on Uni-Proc and CUDA 

Sequence (Uni-Proc) (CUDA) 
Length 

Energy Initial Set Genetic Energy Initial Set Genetic 
Obtained Generation Operations Obtained Generation Operations 

(ISG) (GO) (ISG) (GO) 

20 8 9.460 308.650 8 2.723 122.401 

24 9 13.458 405.869 8 3.302 201.626 

25 7 12.099 435.486 7 3.716 206.033 

36 10 15.820 921.587 10 5.575 828.261 

Table 3.5 Part-Wise and Total Speed Up 

Sequence 
Length 

Part-wise Speed-Up Iteration Count for GO Speed Up 

Initial Set Genetic (Uni-Proc) (CUDA) 
Generation (ISG) Operations (GO) 

20 3.474 2.521 15 7 2.521 

24 4.075 2.012 13 69 2.012 

25 3.255 2.113 9 16 2.113 

36 2.837 1.112 21 72 1.112 

*Percentage contribution of ISG = Old Time for ISG / (Old Time for ISG + Old Time for 
GO* Worst Count of GO Iterations (Old/New)) expressed as percentage. 
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Chapter 4: Extended Burrows Wheelers Transform 

4.1 Introduction to Burrows Wheeler Transform 

The Burrows Wheeler Transform [13] is a block-sorting,. lossless data compression 

algorithm, which is used in applications like bzip2. It was developed by Michael Burrows 

and David Wheeler. A variation of the algorithm was developed by Mantici which 

extended the concept to a multi-set of words, unlike the original algorithm that worked on 

single block of text at a time treating it as a single word. A key realization by Mantici 

et.al. was the applicability of their_ extended algorithm to the domain of bio-informatics, 

namely for matching genomic data of species to establish their phylogenetic proximity or 

non-relatedness. 

4.2 Burrows Wheeler Transform 
The key idea behind the Burrows Wheeler Transform is to apply a reversible 

transformation on a block of text so as to convert it into another block of text, by a re-

arrangement of characters, a block that is easier to compress. The characters are re-

arranged such that the output contains runs of same characters together. Such transformed 

blocks are then amenable to other compression techniques which take advantage of such 

runs, like run length encoding or move to front encoding. Such encoding may then be 

followed by compression encoding like Huffman Encoding. The algorithm produces N 

conjugates words of the input block text (called primitive word) each of length N, by 

cyclic shifting the input, one character at a time. These conjugates are then sorted out 

lexicographically and the last character of each conjugate string is taken. This last column 

and the position of the original input text in the sorted list form the output of the 

transform. 

It is generally observed in normal language text that certain di-grams or tri-grams occur 

more frequently than others. Now when texts containing such di-grams or tri-grams are 

cyclic shifted and sorted lexicographically, closely sorted conjugates are very likely to 

end in same character, e.g. the trigram "the" is a very common tri-gram, hence all text 

starting with "he" are very likely to end in a "t". Thus, when such text is sorted, then in 



the last column, the "t"s are likely to be clubbed together and hence gives runs of the 

same character. 

Word = "abraca" 

Conjugates are 
abraca, bracaa, racaab, acaabr, caabra, aabrac 
Sorted Conjugates are 

1. aabrac 
2. abraca 
3. acaabr 
4. bracaa 
5. caabra 
6. racaab 

Output is last column = caraab and index of original word = 2 

Now with the input text and its conjugates sorted, since each of the conjugate string is a 

cyclic rotation of the original string, hence each character of the original string appears in 

any given position only once, in any one particular conjugate. Thus for all the sorted 

conjugates, any column contains all the characters of the original string, each exactly 

once. Thus the first and the last column both contain all characters of the original stiring. 

Since the conjugates are all lexicographically sorted, the first column for the sorted 

matrix, is effectively a sorted list of all characters of the input string. Thus the first 

column is a sorted form of the last column. Since the conjugates are all cyclic variations 

of each other, thus for any given conjugate string the character in the first column follows 

the character in the last column. 

We now see the reverse transform, or how we can obtain the original string from the last 

column and the index of the original word. Since we have the last column as our output 

from the original transformation, and we can sort it to obtain the first column, we now 

have both first and last column. And since the first column cyclically follows the last 

column, we get the relation as to which character follows whom in the original string. 

Thus this mapping that "character x follows character y" can be used to reconstruct the 

entire original string. However there is one caveat in this. Since a character may be 

repeated in the original string and hence in the last and first column, how do we ascertain 
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which mapping corresponds to which occurrence of the character. It was shown in the 

original paper that the order in which multiple instance occur in the last column is 

preserved in the first column and hence any ambiguity regarding this mapping is thus 

removed. 

4.3 Extended Burrows Wheeler Transform (EBWT) 
Mantici [14] produced a variation of the Burrows Wheeler Transform and extended it to 

apply it to a multi-set of words instead of a single block of text. In this case too cyclic 

conjugates for all the words are produced and the entire lot is sorted. The sorting however 

is not lexicographic. The paper introduced another form of sorting called co sorting. 

w sorting 
In normal lexicographic sorting, if we encounter two words of different lengths such that 

one is the prefix of another then, the smaller word is considered lexicographically smaller 

than the other, and hence is sorted above. However in co sorting, a word is expanded by 

repeating the same word over again, creating an infinitely (theoretical) long repeated 

sequence of original word (called repeat-formation). These repeat-formations of all the 

words are then sorted lexicographically. 

Consider the two words ab and aba 

The conjugates of the word will be 
ab and ba 
aba, baa, and aab 

Sorting them lexicographically gives 
1. aab 
2. ab 
3. aba 
4. ba 
5. baa 
6.  

Creating repeats of the words we get 
ab: abababababab... 
ba: babababababa... 
aba: abaabaabaaba... 
baa: baabaabaabaa... 
aab: aabaabaabaab... 
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Now sorting this repeated string lexicographically, we get the sorted sequence for the 
original words is 

1. aab 
2. aba 
3. ab 
4. baa 
5. ba 

Notice that aba occurs before ab and baa occurs before ba in cw sorting, in contrast to the 
normal lexicographic sorting. 

It was argued by Mantici that the repetitions need to go on to a length of only 

nl + n2 — gcd(nl, n2) where nl and n2 are the length of the two words involved. Similar 

to the Burrows Wheeler Transform, the output here too would be the last column, but of 

the conjugates of the original set of words and not the repeat-formations. Also since the 

length of the conjugates would be different for each original word, we would take the last 

character in each. Also like in the Burrows Wheeler Transform, the indices of the original 

set of words are also part of output. 

4.4 Distance Measure in EBWT 
Although the primary motivation for the Extended Burrows Wheeler Transform is data 

compression, which it achieves better than the original algorithm, Mantici found that the 

algorithm could be used to process of phylogenetic analysis. It is obvious that the sorting 

process causes interleaving of the conjugates originating from different original words, 

but it was observed that if two original words are more similar, the interleaving of their 

conjugates was more pronounced. However if the words were more dissimilar, then 

conjugates of one word were more likely to occur together in the sorted list. This fact was 

formalized by a concept called distance as introduced by Mantici. 

For each pair of original words, we run through the sorted list and find runs of 

consecutive conjugates of single word. N consecutive conjugates of same word contribute 

to.a distance of N-1. During comparison of two words in this manner, the other words in 

the set are ignored. So now if two words are more similar, their pronounced interleaving 

causes a small distance, whereas if the two words are dissimilar, their conjugates occur 

together giving a large distance. 
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Consider EBWT as applied to a multi-set of two words u = bcaa and v = ccbab 

After sorting the conjugates' repeat formations, we get 

aabc, abca, abccb, babcc, bcaa, bccba, caab, cbabc, ccbab 

If we list the original words to which each sorted repeat-formation belongs, we get 

U 	 U 	 V 	 V 	 U 	 V 	 U 	 V 	 V 

The distance for the above case would be 3 as there is one run of u of length greater than 

1 and two such runs of v. 

This concept is applied to the process of phylogenetic analysis wherein, the original 

words are mitochondrial DNA of species. Phylogenetically related species give a small 

distance and unrelated species give a large distance. The paper verified the results of the 

algorithm with standard data and results from other known algorithms. 

4.5 Parallelization of EBWT on CUDA 
The implementation of EBWT was done firstly on a uni-processor and then on CUDA 

and their timings compared. The primary time consuming process within the EBWT was 

the sorting of the conjugate-repetitions. 

4.6 Uni-Processor Implementation 

The implementation first reads the gene sequences from a file, one for each species and 

stores them into a local buffer. This set of gene strings is what we call the set of primitive 

words. The set of primitive words are used to generate the conjugates for each element in 

the set. The conjugates are then used to generate repeat-formations of themselves. The 

maximum width of the repeat formation for successful working of the algorithm is 

H = max { j u; I + I uj I —gcd( ui 1, J uj 1)1 i,j =1..k} ........ (Equation 1) 

We use the maximum and second maximum length of the genes that we have. However 

we skip the process of finding the gcd as this is an unnecessary overhead does not affect 
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the accuracy of the algorithm. Having done this we obtain an array of repeat-formation 

strings, which we need to now sort. 

The sorting of the repeat-formations is done using column wise counting sort as the range 

of the possible values of the string contents is restricted to four values, namely 'a', 'c', 'g' 

and 't'. Also since we use one value of max width from.  above equation, we have all the 

strings of same width. Thus we sort the string using counting sort on each column, 

starting from last column up-to the first column (much like radix sort for integers). The 

approximate algorithmic complexity of the sorting process is O(k*n*n), where n is the 

length of the gene and k is the number of species. This is so because there are around 2*n 

columns, calculated from the equation above, and each column has k*n characters to be 

sorted by counting sort. 

We now need to find the distance measure between each pair of species. We run through 

the sorted list for each pair of species. We consider only those repeat formations in the 

list which belong to the species-pair under consideration. Using a flag counter, we 

calculate the runs of repeat formation belonging to only one species in the pair, and we 

do so for both the species. The total run gives an approximate measure of the 

phylogenetic distance between the two species. These values were calculated and found 

to be tallying with results as published by Mantici. 

4.7 GPU Implementation 
The GPU implementation primarily consists of two main phases, namely data 

construction and data sorting. The data construction phase consists of allocating memory 

on the GPU and transferring data onto it from the CPU. The data as required by the 

algorithms was to be generated and processed on the GPU, with the CPU doing the initial 

work of reading the gene sequences from a file and have them transferred to the GPU. 

One of the problems problem encountered in use of CUDA was the absence of string 

processing libraries on GPUs (since the device is primarily math-intensive), which 

required that they be written from scratch as device-level user functions. 

Another main problem encountered in porting the algorithm onto CUDA was the absence 

of simple means of allocation multi-dimensional arrays on GPUs. This problem was more 
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pronounced if the dimension of the multi-dimensional array were not known until 

runtime. We -went ahead with simulating two dimensional arrays of characters (or to be 

correct, an array of strings, as required for our conjugate and repeat-formations data) 

using one dimensional array, by setting a practical maximum limit on the length of each 

row of the logical two-dimensional array (this practical maximum limit was already 

known to us as max-width using equation ). The two dimensional arrays of characters (or 

array of strings at logical level of abstraction) allocated were of for the primitive words, 

conjugates and repeat-formations. 

Once the allocation of memory on device is done, the process of generation of conjugates 

and repeat-formations are divided between the thread on the device. Since there are 

approximately k*n such conjugates/repeat-formations to be generated, that amount to 

k* 16K strings for our practical gene data, the process can be highly parallelized. The 

repeat-formations are then sorted as in the uni-processor implementation, but using a 

parallelized form on sorting as discussed in the next section. 

4.8 Odd Even Sorting 
Cormen et.al. [17] discuss various methods of parallel sorting, or sorting on parallel 

architectures, clubbed together as a concept called sorting networks. The fundamental 

means of sorting in parallel can be carried out by means of a sorting network based on 

primitive blocks like merger or bitonic sorting networks. These methodologies carry out 

parallel sorting in time of order O(log n). We did not use the methods for primarily two 

reasons. The methodologies logically involve recursion defining sorting of n numbers as 

combination of sorting two list of n/2 numbers and then merging them, and recursion was 

not possible on CUDA device, at-least a recursion that requires co-operation between 

threads. Secondly since the uni-processor implementation involved an algorithm sort 

component that runs in O(k*n*n), it would be correct that the parallel implementation for 

comparison runs in approximately the same time complexity. We chose a similar Odd-

Even sorting network, which we explain in context of our work. 

The fundamental component of a sorting network is a comparator, which is a two input, 

two output, logical entity that sorts. The comparator is a basic building block used to 



construct larger sorting networks. The below figure 4.1 shows the schematic equivalent 

used to show a comparator as part of large network. 

x 	 min(x,y) 

max(x,y) 
y 

Figure 4.1: Comparator Schematic 

The odd-even sorting network is constructed using comparators as shown in the figure 

4.2 below. In context of our problem, the inputs of the sorting network are the repeat 

formations that need to be sorted. Each vertical line in the below figure corresponds to a 

comparator and each vertical column corresponds to one iteration of parallel sorting. The 

entire sorting process consists of alternate iteration of odd and even sort. The odd and 

even sort correspond to respectively comparison of 

Odd Sort: a[2*i] and a[2i-1] 

Even Sort: a[2*i] and a[2i+1] 

This corresponds to simple, string comparisons on our code. The number of such stages 

required as same as the number to be sorted, i.e. —k*n for EBWT. Cormen[17] argued 

that the sorting network sorts correctly. 
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Figure 4.2: Odd Even Sorting [ 17] 

The distance measure was to be carried between each pair of species. This was done by 

creating k2 threads, one for each pair. 
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4.9 Results 

The algorithm was used to compare varied number of species together, 2-8 at a time, with 

data obtained from [18][19]. The timings are as follows. 

The machines involved are a Core-2 Duo HP Laptop (2* 1.67 GHz), as a uni-processor 

and a CUDA based machine having Intel Xeon CPU (2*3.2 Ghz) and NVIDIA Geforce 

GTX-280, having 240 cores. 

Table 4.1 Timing comparison* for EBWT 

Number of 
Species 

(Uni-Prot) (CUDA) Speedup 

Compared Data Data Data Data 
Generation Processing Generation 	Processing 

2 0.296 6.693 0.484 0.516 6.98 

3 0.432 10.578 0.703 1.234 5.68 

4 0.564 15.819 0.921 3.016 4.16 

5 0.721 22.410 1.171 4.969 3.76 

6 0.878 31.819 1.500 8.109 3.40 

7 1.687 46.637 I.906 14.265 2.98 

8 1.213 54.168 2.171 20.516 2.44 

` Time values in seconds 
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Chapter 5: Conclusion and Future Work  

5.1 Search Space Pruned Protein Folding 
The relative proportion of time spent in the ISG part of the algorithm increases with 

increase in size of the protein to be folded. Thus the importance of optimizing this part 

and speed-up achieved will be more significant for large sized of proteins. For protein 

larger than 60 amino-acids, the running time of original algorithm on uni-processor 

implementation was extrapolated to be more than 10 hours. For such large protein the 

algorithm modification makes it possible to have the process run in acceptable times. 

The approach we used can also be applied to other problems involving use of genetic 

algorithms (e.g. GA for Travelling Salesman Problem). The conditions for rejection of 

solution and back-tracking would however be specific to the domain of the problem. 

The convergence for the GO depended upon the goodness of the random number 

generation, and the effect of the algorithm modification on the convergence rate of the 

GO needs to be studied. Also the GO parameters like the number of mutations and cross-

over per generation can be varied and their effect can be studied both on the runtime of 

the algorithm and the convergence rate of the algorithm to the optimum value. 

5.2 EBWT on CUDA 
The major bottle neck for performance in the EBWT algorithm was the process of sorting 

the intermediate data. The performance improvement of EBWT on CUDA was majorly 

due to the possibility of parallel sorting which took bulk of the runtime in the sequential 

implementation. The running time of the algorithm can be improved if the sorting part of 

the algorithm is implemented using O(log n ) techniques of parallel sorting. However this 

would require that such a technique is implemented without recursion. 
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