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ABSTRACT 

In today's world most of the communication is done using electronic media. Data 

Security plays a vital role in such communication. In October 2000, the National Institute 

of Standards and Technology (NIST) selected the Rijndael as the Advanced Encryption 

Standard (AES) algorithm to replace the old Data Encryption Standard (DES).Till then 

four modes has been proposed by NIST. 

A fourth and recent mode of operation of AES proposed by NIST in November 2006, 

SP800-38D, Galois/Counter Mode of Operation (GCM), that provide not only data 

security through encryption but also massage authentication. 

Before GCM, SP800-38A only provided confidentiality and SP800-38B provided 

authentication. SP800-38C provided confidentiality using the counter mode and 

authentication. However the authentication technique in SP800-38C was not 

parallelizable and slowed down the throughput of the cipher. Hence, none of these three 

recommendations were suitable for high speed network and computer system 

applications. 

This work includes, demonstration and analysis of FPGA architectures for, SP800-38A 

(AES-ECB) and SP800-38D (AES-GCM) modes of AES algorithm with the view of 

enhancing their performance. AES-GCM is a complex unit, AES-ECB (Electronic Code-

Book) is used as one of its internal component; so this thesis first presents efficient 

iterative and fully pipelined based hardware architectures for AES-ECB mode and then 

finally presents fully pipelined and parallelized hardware architecture for AES-GCM. 

Area optimization in above stated designs has been approached through implementing 

Sboxes of AES by Composite Field Arithmetic (CFA) technique and their comparison is 

made with respective LUTs (Look-Up tables) based designs. 

Since modular multiplier is a very important unit of AES-GCM, which not only very 

crucial to determine speed of design but also covers 50% of overall area of the design, 

there are two multipliers has been analyzed and used in final AES-GCM design. 

In this thesis, all the designs are implemented on multi-core Xilinx's virtex-4 FPGA 

platform. 
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CHAPTER 1 

INTRODUCTION AND STATEMENT OF THE PROBLEM 

1.1 Introduction 

In the past traditional communications were based on letters, payments were done using 

checks or cash, and secret documents were saved in sealed boxes. Today everything is 

changed, and is changing quickly. Everyday more people buy cell phones, the number of 

e-mail users goes up, and more people pay their payments over the internet. Paperless 

office strategies save and process documents in electronic format. These trends are going 

to make the life easier but at the same time produce security risks. The rapid development 

of electronic communication systems requires a secure infrastructure, too. Cryptography 

is the mathematical tool which is used by security engineers to secure data against 

unauthorized access or manipulation. 

Like every other useful service, security will not be achieved for free. Implementing 

cryptography tasks costs time, money (chip area), and energy. To meets these constraints 

of upcoming modern applications, intensive work is required in this field. 

Implementing cryptographic algorithms on reconfigurable hardware provides major 

benefits over ASIC (application-specific integrated circuit) and software platforms, since 

they offer high speed similar to ASIC and high flexibility similar to software. ASIC 

implementations are fast but must be designed all the way from behavioral description to 

the physical layout. They have to follow an expensive and time consuming fabrication 

process. Software implementations offer high flexibility but they are not fast enough for 

the applications where time factor is vital. 

In nutshell, reconfigurable devices are attractive, since the time and costs of VLSI 

design and fabrication can be reduced. Moreover, they offer high potential for 

reprogramming and experimenting on multiple architectures or several revisions of the 

same architecture, which enhance robustness of security system. 

The AES algorithm is a private-key encryption algorithm. In January 1997. the National 

Institute of Standards and Technology (NIST) invited proposals for new algorithms for 
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the Advanced Encryption Standard (AES) to replace the old Data Encryption Standard 

(DES). After two rounds of evaluation on the 15 candidate algorithms. NIST selected the 

Rijndael as the AES algorithm [I] in October 2000. 

Since then, the NIST has published a total of four recommendations for Block Cipher 

AES Modes of Operation, specifically SP800-38A [1], SP800-38B [2], SP800-38C [3], 

and SP800-38D [4]. A block cipher mode of operation is an algorithm that uses a 

symmetric key block cipher to provide confidentiality, authentication or both for 

information security. 

In SP800-38A, NIST recommends five confidentiality modes of operation for use with 

an underlying symmetric key block cipher algorithm: Electronic Codebook (ECB) mode, 

Cipher Block Chaining (CBC) mode, Cipher Feedback (CFB) mode, Output Feedback 

(OFB) mode, and Counter (CTR) mode. These five modes can be separated into two 

groups: one is a non-feedback mode group, including ECB and CTR; one is a feedback 

mode group, including CBC, CFB and OFB. In the feedback modes, the current 

computation/execution step depends on the result of the previous step. Therefore, to 

implement these kinds of modes in hardware, an iterative architecture is typically adapted 

for low throughput requirements rather than a pipelined architecture. In contrast, the use 

of ECB or CTR mode, or non-feedback modes, supports pipelined or parallelized 

architecture designs for processing high-speed data flows. 

As the forth security standard of Block Cipher Mode of Operation, SP800-38D, 

Galois/Counter Mode of Operation (GCM), fills the need above. GCM features the use of 

an approved symmetric key block cipher with a block size of 128 bits and a universal 

hash function that is defined over a binary Galois field. The most recently approved 

symmetric key block cipher with a block size of 128 bits is the Advanced Encryption 

Standard (AES) algorithm that is specified in Federal Information Processing Standard 

(FIPS) Pub.197 [3]. The specified universal hash function in GCM is defined over a 

binary Galois field (GF) and is a 128-bit polynomial multiplier over GF (2128), called 

GHASH. GHASH can provide a secure, parallelizable, and efficient authentication 

mechanism. For the confidentiality mechanism of GCM, the CTR mode embedded by 

ECB mode, called GCTR, is adopted using an underlying block cipher. GCM, i.e. SP800- 
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38D, was officially published in November 2006. However except one or two, there are 

no known high performance FPGA (field programmable gate array) architectures or 

implementations of this standard. 

1.2 Statement of the problem 

The objective of this thesis is to demonstrate, analyze and implement FPGA architectures 

for, SP800-38A (ECB) and SP800-38D (GCM) modes of AES algorithm with the view of 

enhancing their performance. 

In above stated two modes, GCM comparatively a big and complex design. It includes 

AES engine (SP800-38A), GHASH (modular multiplier), and Key-expanded modules. So 

to achieve our objectives, the problem can be subdivided as follows: 

1. To implement iterative and pipelined architectures of AES-ECB (Electronic 

Code-Book) mode on FPGA and investigate their performance. 

2. To investigate different type of modular multipliers used in GHASH and analyze 

their performance by implementing on FPGA. 

3. To integrated various GCM modules together, along with control logic to 

implement the highly parallel, pipelined and entire new security standard, AES-

GCM. 

4. To optimize the AES designs in term of area, CFA (Composite Field Arithmetic) 

technique analyzed for making Sbox (sub unit of AFS). 

5. To verify the feasibility, efficiency and cost of each hardware module of AES. the 

architectural designs synthesized, timing simulated, and downloaded to the FPGA 

virtex-4 platform. 

1.3 Organization of Thesis 

This thesis is organized as follows: Chapter 2 provides historical review of different 

implemented architectures in this thesis. An overview of the mathematical definitions 

over GF and composite field arithmetic is provided as mathematical background. 

Introduction to the FPGA device structures and its advantage in security systems also 
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provided in this chapter. Chapter 3 presents security standards, AES, other confidential 

modes of AES and GCM. Chapter 4 describe two type of parallel multiplier used in 

GCM and their implementation result. In chapter 5, the proposed hardware architectures 

of AES are presented. The proposed hardware architectures of AES-GCM are presented 

in chapter 6. The bit parallel multiplier over GF, and the pipelined AES discussed in 

chapter 4 and 5 are chosen as the modules to build AES-GCM. A methodology, to verify 

the AES-GCM hardware implementation is also discussed during this chapter. Finally, 

chapter 7 provides conclusion and future work. 
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CHAPTER 2 

HISTORICAL REVIEW AND GENERAL CONSIDRATION 

This chapter provides the review and concepts necessary in order to understand 

implemented architectures: Section 2.1 provides historical review. Section 2.2 introduces 

to the concepts of finite fields, and Composite Field Arithmetic (CFA); an area reduction 

technique. Section 2.3 gives quick overview of FPGA and describes the advantages of 

FPGA technology for cryptographic system. 

2.1 Historical Review 

In November 2001, after a 5-year standardization process in which fifteen competing 

designs were presented and evaluated, Rijndael [32] (developed by two Belgian 

cryptographers, Joan Daemen and Vincent Rijmen) was selected as the most suitable for 

Advance Encryption Standard. Details of [32] given in section 3.1. 

Since then, the NIST has published a total of four recommendations for Block Cipher 

AES Modes of Operation, specifically SP800-38A [1], SP800-38B [2], SP800-38C [3], 

and SP800-38D [4]. 

Out of five confidentiality sub-modes of SP800-38A; Electronic Codebook (ECB) 

mode is focused in this work. FPGA based architecture point of view, all important 

research of this mode can be divided into two fields; small iterative design and high 

speed pipelined design. 

There are very few number of designs proposed for small design in literature, 1181, 

[19], [20], [21] and [22] are some important one. Initially, memory (RAM) based non-

parallelization Sbox implementation is used, but it is not area efficient. Although. 

parallelization of Sbox [19] helped in area reduction along with some speed improvement. 

but there not any specific area reduction technique adopted. Internal pipelining of single 

round is also employed in [18] which is effective for speed but not for area. In spite of that 

their speed is again limited by memory based Sbox. Some efforts of area reduction are 

also spoiled because of their complex control unit, since control unit can covers lots of 
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area if not properly designed. In 2005, CAF approached adopted for cryptographic 

systems, which is very efficient in area reduction, but as per of author knowledge up to 

now not any design based on this approach claimed in small AES design. 

High speed pipelined AES architectures ([161,  [171. [211, [261, 1271. 1281 and [291) is 

quite famous among the researcher because of its requirement in modern application. 

Initially, parallelized outer 10 stage pipelined [27] or inner sub-pipelined ([26], [29]) are 

generally employed for speed improvement but their speed is limited by memory based 

Sbox. This problem is solved in [17], by making highly sub-pipelined CFA based Sbox 

implementation and achieved highest 21.5 Gbps throughput, but design is tested for 3 and 

7 pipeline stages only. 

In November 2006, fourth mode of AES proposed; SP800-38D or GCM. Research on 

hardware architectures or implementations of GCM is fairly small. This is likely due to 

the new mode of operation. As per knowledge of author there is not any design found on 

FPGA. Although design [33] demonstrates AES-GCM ASIC based architecture. using 

0.18 um CMOS standard cell library, but it can be a good design to implement on FPGA. 

From the above historical review, it can be concluded that, the following major 

research gaps still exist. 

i. Not any particular architecture technique of area optimization has been used till 

now in small (iterative) AES design. So CFA area reduction technique can be 

proved efficient for area optimization by implementing Sbox of small (iterative) 

AES design. 

ii. In high speed pipelined architecture, maximally 7 stage pipelined has been 

employed till now. But still speed improvement can be possible by further 

exploration of pipelined architecture to more stages. 

iii. AES-GCM being a recent mode, has been implemented only on ASIC, but not 

over FPGA. So detailed analysis and implementation of GCM mode on FPGA 

can be a good work to be carried out. 

Thus, this dissertation work is to effectively fill above stated research gaps. 
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2.2 Mathematical Background 

The fundamentals of AES and GHASH (Multiplying unit of GCM) are based on 

operations over the finite field. This section provides an introduction to these operations. 

The concepts and methods have been gathered from [6] and [7]. 

2.2.1 Finite Fields 

A field can be considered as a set whose elements form a group G under two operations: 

multiplication indicated by symbol "-" and addition indicated by symbol "+". These 

operations obey the basic algebraic properties. The relative finite field concepts are list as 

follows: 

Concept 1. (F, +, •) is a field if the following properties hold: 

• The elements of F form a group under addition. 

• The non-zero elements of F form a group under multiplication. 

• The addition and multiplication operations are commutative, i.e. x + y = y 

+ x and xy = yx for all x, y E F. 

• The multiplication operation can be distributed through the addition 

	

operation, 	i.e. x• (y + x) = x•y + x•z for all x, y, and z E F 

Concept 2. A field F with a finite number of elements is a finite field. 

Concept 3. A non-zero element of a finite field F is said to be a primitive element or 

generator of F if its powers cover all nonzero field elements. 

Concept 4. A unique finite field exists for every prime number. These fields are 

denoted GF(p ) where p is prime and m is a positive integer. One kind of 

field which is commonly used in cryptography applications is the binary 
m 

finite fields GF(2 ) where m is a large integer. 

m 
Concept 5. A basis for GF(2 ) over GF(2) is a set of m linearly independent elements 

	

m 	 m 
of GF(2 ). Any element of GF(2) can be represented as an algebraic 

sum of the basis elements. 
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m 	m 
The binary field GF(2 ) contains 2 elements. Each element is represented by the 

selected basis. The most common representation is based on polynomial basis. With the 

polynomial basis a = {1, a, a2 , ..., am),  the elements of GF(2)  can be represented as 

polynomial of degree m-1 as follows: 

GF(2m ) _ {AJA = ao  + a1  a + + am_i  a it-1  where aj  E GF(2), 0 _< j 

<m-1) 

where a is the root of an irreducible polynomial F(x) of degree m over GF(2). 

Let 

F(x) = 1+ f1 x + f2x 2  + ... + fm-iXm-1 + X m 

where ft  E GF(2), 0 < i < m — 1. The irreducible polynomial F(x) is often referred 

to as the field polynomial. The arithmetic in AES-GCM is based on polynomial basis and 

uses the polynomial F(x) = 1 + x + x z  + x' + x128  as field polynomial. 

2.2.2 Operations over Binary Finite Fields GF (2 ) 

Both operations, field addition and field multiplication, map a pair of field elements A 

and B onto another field element C, all A, B, and C E GF(2m ). The following 

introduction on field addition and multiplication is based on polynomial basis. The field 

elements A, B, and C are the following polynomials, respectively: 

A(a) = ao  + a1  a + 	+ am_1 a m-1 

B(a) = bo  + b1  a + 	+ b,,,,_1  a m-1 

C(a) = co + c1 a + 	+ cm_1 a m-1. 

2.2.2.1 Field Addition 

Over a finite field GF(2m), a field addition of two elements A and B consists of adding 

the two polynomials together. Because the coefficients in A and B are over GF(2) and 

each pair of coefficients are added independently, their sum C is written as 

E? 



m-1 

C(a) = A(a) + B(a) = I (ai  + bi )a1 	 (2.1) 
i=o 

The pair of coefficients addition ai  + bi  in Eq.(2. 1) is performed modulo 2 and 

translated to an exclusive- OR (XOR) operation in FPGA technology. That is to say that 

the field addition in Eq.(2.1) is computed by an m-bit XOR operation and does not 

require a carry chain. 

2.2.2.2 Field Multiplication 

• Bit Serial Multiplier 

Field multiplication over a finite field GF(2m), is executed by straightforward 

multiplying two polynomials A(a) and B(a), then dividing the resulting 2m-bit 

polynomial by F(a); the m-bit remainder is the result C(a). The product C of field 

elements A and B is expressed as 

m-1 	m-1 m-1 

C(a) = A(a) x B(a)mod F(a) = I ci a1  = I I a1 bja`+i mod F(a) (2.2) 
t =o 	i=o i=o 

A simple method of computing this involves the use of a linear feedback shift register 

(LFSR). The pseudo code for this multiplier given below simply loops through the 

summation in Eq.(2.2) and accumulates a modulo reduced answer. The LFSR contains 

one of the operands A, and depending on its most significant bit, the field polynomial is 

XORed to the LFSR at each step. The result of the multiplication is generated in the 

register C by the end of m iterations. This register adds the value of A at each step 

depending on the coefficients of the other multiplicand 11. This design is called a serial 

multiplier design, totally m iteration are needed for calculating a multiplication over 

GF(2m) if A(a) can be loaded in parallel. Other multiplier designs exist such as the 

parallel multiplier that is able to compute C(a) in a single iteration. More details will be 

provided in next section. 
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Algorithm 2.1: GF(2m) multiplier 

Input: A, H E GF(2m); F(x) Field Polynomial. 
Output: C(a) 
C = 0 
fori = 0tomdo 

if H i  = 1 then 
C*—CE A 

end if 
if A127  = 0 then 

A — rightshift(A) 
else 

A - rightshift(A) Q+ F(a) 
end if 

end for 
return C 

• Bit Parallel Multiplier 

Compared to the bit serial multiplier which needs m clock cycles to complete a 

multiplication over GF(2m), a bit parallel multiplier can complete computation in only 1 

clock cycle over the same GF. (Because the circuit delays are very different between the 

bit serial multiplier and the bit parallel multiplier, the minimum clock period of clock for 

parallel multiplier is much larger than the minimum one for serial multiplier. i.e., I clock 

cycle computation time for parallel multiplier should be roughly equal to several or tens 

clock cycles computation time for serial multiplier.) 

A dedicated polynomial basis finite field bit parallel multiplier has been proposed in 

[7], called the Mastrovito multiplier. This multiplier is adapted to a fixed field 

polynomial F(a) . The implementation procedure of the Mastrovito multiplier and 

Karatsuba multiplier are described in chapter 4. 
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2.2.3 Composite Field Arithmetic 

The non-LUT-based implementations of the AES algorithm are able to exploit the 

advantage of subpipelining further. Nevertheless, these approaches may have high 

hardware complexities. Although two Galois Fields of the same order are isomorphic. the 

complexity of the field operations may heavily depend on the representations of' the field 

elements. Composite field arithmetic can be employed to reduce the hardware 

complexity. We call two pairs {GF(21), Q(y) = yn + 	q1y`• qt E GF(2)) and 

{GF((2'1 )m ), p(y) = xm + E~ `ol pi xi , pi E GF(2")} a composite field [ 12] if 

• GF(2) is constructed from GF(2) by Q(y), 

• GF((2n)m) is constructed from GF(2) by p(x). 

Composite fields will be denoted by GF((2'1)m), and a composite field GF((2)m ) is 

isomorphic to the field GF(2k ) for k = nm. Additionally, composite fields can be built 

iteratively from lower order fields. For example, the composite field of can be built 

iteratively from using the following irreducible polynomials [7]: 

I

GF(2) : GF(22): 	 Po (x) = x2 + x + 1 
GF(2) = GF((22 )2 ): 	 P1 (x) = x2 + x + (p 	 (2.3) 
GF((2 2 )2 ) : GF(((22)2)2): 	PZ (x) = x 2 + x + I 

where 4 = (01}2 and A = {1100}2. Meanwhile, an isomorphic mapping function 

f (x) = S x x and its inverse need to be applied to map the representation of an element 

in GF(2$ ) to its composite field and vice versa. The 8 x 8 binary matrix are decided by 

the field polynomials of GF(28) and its composite fields. Such a matrix can be found by 

the exhaustive-searchbased algorithm in [12]. The 8 matrix corresponding to P(x) 

x8 + x4 + x3 + x + 1 and the field polynomials in Eq.(2.3) can be found as below: 
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1 1 0 0 0 0 1 0 

0 1 0 0 1 0 1 0 

0 1 1 1 1 0 0 1 
S _ 0 1 1 0 0 0 1 1 X2 4) 

0 1 1 1 0 1 0 1 

0 0 1 1 0 1 0 1 
0 1 1 1 1 0 1 1 

0 0 0 0 0 1 0 1 

Taking the isomorphic mapping into consideration, not all the transformations in the 

AES algorithm are suitable to be implemented in the composite field. In order to facilitate 

substructure sharing, the constant multiplications in the MixColumns/InvMixColumns 

transformation are implemented by first computing {02)16S1.1, f04}16Si,~ and {08},6Si , j, 

then adding those terms corresponding to the nonzero bits in the constants. For example. 

the constant multiplication of {Ob}16 = (00001011)2 can be computed by adding 

S~,1, {02}16S~,1 and {08}16S11. In this approach, the {02)16S, {04)16Si ,1 and {08)16S11. 

can be computed once and shared by all the constant multiplications. Meanwhile, the 

number of terms, which need to be added is determined by the number of nonzero bits in 

the constants. Using the 8 matrix defined in (8), the constant multiplications of {02}16 
and {03)16 in GF(28) in the MixColumns are mapped to constant multiplications of 

(5f)16 and {5e)16 in the composite field, respectively. Although the hardware overhead 

of the mapping of constants can be eliminated by computing the mapping beforehand, the 

composite field representations of {02)16 and (03)16 have more nonzero bits, which 

makes the constant multiplications more expensive. The same argument also holds for the 

constant multiplications used in the InvMixColumns transformation, where {09)16 , 

{0b)16 and {0c}16 are mapped to {75}16, {2a)16 and {57}16 in the composite field. 

respectively. The only exception is that the composite field representation of (0d}l6 . 

which is {09}16, has one less nonzero bit, but this is offset by the larger number of 

nonzero bits in the composite field representations of the other three constants. 

Furthermore, {10}16S11, {20}16Si,1 and (40)16Sj also need to be computed as a result 

of the higher-weight nonzero bits in {75)16, {2a)16 and {57)16, which adds more 

complexity to the hardware implementations. Therefore, it is more efficient to implement 
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the MixColumns/InvMixColumns in the original field GF(28). The 

ShiftRows/InvShiftRows is a trivial transformation, only cyclical shifting is involved, and 

thus its implementation does not depend on the representation of Galois Field elements. 

Meanwhile, the field addition, which is simply XOR operation, has the same complexity 

in the composite field and the original field. Additionally, the affine/inverse afline 

transformation can be combined with the inverse isomorphic/isomorphic mapping. Based 

on the above observations, it is more efficient to carry out only the multiplicative 

inversion in the SubBytes/InvSubBytes in the composite field, while keep the rest of the 

transformations in the original field GF(28 ). 

2.3 Field Programmable Gate Arrays (FPGA) 

The thesis presents the architecture of FPGA implementation of AES security algorithms. 

The common implementation approaches are corresponding to three different 

technologies. They are: 

• Application Specific Integrated Circuits (ASICs) 

• Software-Programmed General Purpose CPU (SPGPC) 

• Field Programmable Gate Arrays (FPGAs) 

ASICs are specifically designed for a fixed solution, and are thus very efficient. 

However, the circuit cannot be changed after fabrication. This requires a redesign of the 

chip if any modification needs to be done. 

SPGPCs are a flexible solution. CPUs execute a set of instructions to perform an 

algorithm. By changing the software code, the functionality of the system is altered 

without touching the hardware. But the SPCGPC's efficiency is much lower than that of 

an ASIC. 

FPGAs offer a compromise between the ASIC and the SPGPC, achieving higher 

performance than software, while maintaining a higher level of flexibility than hardware. 
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2.3.1 Advantages of FPGA in Cryptographic Applications 

The following attributes of the FPGA technology are particularly advantageous for 

cryptographic applications [8]. 

Algorithm Agility: More and more security applications intend to be algorithm 

independent and allow switching encryption algorithms on the flying. The encryption 

algorithm can be chosen through the negotiation made by two communication parties. 

Algorithm Upload: From a cryptographic point of view, algorithm upload can be 

necessary because a current algorithm is out of date or broken; a new algorithm is 

created. The security designer of the corresponding security company can upload the new 

bit streams of security standard to reconfigure FPGA device through the networks. 

Throughput: Although FPGA implementations are typically slower than ASIC 

implementations, FPGA implementations are obviously faster than software 

implementations. In a cryptosystem, if a software solution is chosen for clients, then, a 

FPGA implementation should be adapted for servers in high-speed backbones. 

Cost Efficiency: The production costs of an ASIC are often too high for a small number 

of servers in security systems. Thus, the use of FPGAs is a common alternative. 

Furthermore, this is the one of reasons why the FPGA is chosen for security research in 

institutes and universities. 

Therefore, it is often best to choose an FPGA to implement cipher, such as AES-GCM 

standard. The CMC-FPGA-prototype-platform was chosen in this thesis for prototyping 

since it represents a generalized multi-core platform, appropriate for security 

applications. This FPGA platform will be discussed next. 

14 



2.3.2 Vertex-4 

A traditional FPGA is usually an integrated circuit consisting of 

• Configurable Logic Blocks (CLBs), 

• Input/Output Blocks (IOBs) and 

• Programmable routing resources. 

More specifically, Table 2.1 shows all the main resources of the Virtex-4 xc2vp 100 

targeted in this thesis. 

Table 2.1: Resources of Virtex-4 FPGA Family Members. 

Max. operating 
Devices 

No. of slices No. of 4 No. of RAM Max User 
frequency 

(ICLB=4 Slices) input LUTs Block (18K) 1/Os 
(MHz) 

XC4VLX25 10,752 21504 72 448 500 

XC4VLXJ00 49,152 98,304 240 960 500 

XC4VLX200 89,088 178,176 360 960 500 

• Configurable Logic Blocks (CLBs) 

The CLBs in the Virtex-4 are comprised of both combinational and sequential logic. The 

combinational logic can be configured to become possible Boolean functions. Flip-Flops 

are provided to support sequential logic and can be utilized or bypassed depending on the 

configuration. 

One CLB has four slices. Each slice is identical and contains: 

• Two function generators F and G 

• Two storage elements 

• Arithmetic logic gates 

• Multiplexers 

• Fast carry look-ahead chain 

• Horizontal cascade chain 

A general slice structure of Virtex-4 is shown in Figure 2.1. The function generators F 

and G can be configured as 4-input look-up tables (LUTs), as 16-bit shift registers, or as 
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16-bit distributed SelectRAM+ memory. The multiplexers. MUXF5 and MUXFX can 

provide any function of five, six, seven, or eight inputs when combined with Function 

generators. The two storage elements can be configured either edge-triggered flip-flops or 

level-sensitive latches. Each CLB has internal fast interconnect and connects to a switch 

matrix to access general routing resources. 

Figure 2.1: Simplified virtex-4 CLB. 

16 



CHAPTER 3 

SECURITY STANDARD 

This chapter provides the details of various modes of AES, which are implemented in this 

thesis: Section 3.1 introduces to Advance Encryption Standard security algorithm, 

Section 3.2 provides background of confidentiality mode of operation and Section 3.3 

gives detail of GCM mode of AES. 

3.1 Advanced Encryption Standard (AES) 

The Advanced Encryption standard is a 128 bit block cipher that has been widely used 

since its acceptance in 2001 [5]. The design of AES was intended to be a more secure 

replacement of DES (Data Encryption Standard). Many efficient hardware and software 

designs have been documented, taking into consideration various tradeoffs of speed and 

area resources. The following sections will provide a general functional description of 

AES with an increased focus on the hardware design of AES components. 

3.1.1 AES Cipher 

Figure 3.1 showing schematic of AES encryption and decryption. Different hardware 

datapaths can be created from these modular round structures. An iterative design can be 

made by simply adding a 128 bit data register at the end of the round structure. After a 

maximum of 14 cycles the AES encryption result can be obtained. This iterative design 

can be unrolled to create a pipelined implementation that has registers placed between 

round blocks. This is an outer pipelined AES design and a 128 bit output can be 

generated at each clock cycle with a full pipeline. There is enough flexibility, however, in 

choosing locations of the pipelined registers. Within each of the round components, 

additional pipelined stages can be added within the Sub-bytes operation which will be 

described in Section 3.1.2. This is labeled as an inner pipelined AES design, and although 

a higher latency and area is present, higher throughputs are possible. 
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fori= 1toN,.— 

Ciphertext  	RoundKeys 
(128 bits) 	 (128 bits, 

roundKey(Nr) 

AES Round 

)nvSubBytes 

InvShiftRows 

A? 	 mixroundKey(i) 
AddRoundKey 

for i=N,.-1to1\4/ 

AES Last Round / roundKey(0) 

Plaintext 

(128 bits) 

(a)  (b) 

Figure 3.1: (a) AES Encryption, (b) AES Decryption algorithm. 

The 128 bit plain text input is mapped into a state array which is a 4x4 block of 8 bit 

words that is manipulated in each round. For the following sections the state array block 

will be used to describe the different round operations so it is important to understand 

how the input is transformed into the state array. Figure 3.2 shows this transformation, by 

filling bytes of data into the state array by columns. After the AES encryption round, the 

last state array outputted is transformed back into a 128 bit stream. 

LSB 	 128 bit Input (8 bit per block) 	 MSB 
"'~ ~~~ ~~•~~t 	soy ,u, 

 

A1,1 A21 A3,1 A0,2 A1,2 A2,2 A3,2 A0,3 A1,3 A2,3 A3,3 

J11 A01 A0,2 A0,3 

A1 is A1,2 A1,3 
r 

iII: 2l 
A2,2 A2,3 

A $J A3,2 A3,3 

AES State Array 

Figure 3.2: AES Round State Array Transformation. 
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3.1.2 Byte Substitution (Subbytes) 

The subbytes operation uses multiple substitution box components (Sbox) each of which 

performs an 8 bit substitution. Each 8-bit word of data in the state array, is substituted 

using the Sbox. This results in 16 Sbox components used for each round block, and is the 

most hardware area consuming part of an AES round. The Sbox computation is 

essentially a multiplicative inverse in GF(28 ) followed by an affine transformation which 

is a linear mapping from one vector space to another [9]. A lookup table of 28 values can 

be used to implement the Sbox component, but it can also be mathematically computed 

using logic gates. 

• Sbox Designs 

Rijimen, one of the creators of AES showed in [ 10] a method of computing the Sbox by 

breaking operations in GF(28 ) down to a composite field GF((24 )2 ) resulting in 

significant hardware area savings which would otherwise not be possible using look-up 

table implementations. The inverse formula for the Sbox is given in its reduced version, 

in Eq.(3.1), where A is (1100)2. The addition, multiplication, and inverse operations are 

computed in GF((24)2 ), and can be further broken down to the smaller composite fields, 

GF((22 )2 ) and GF(22), using the divide and conquer method. 

a'x + b' = (ax + b)-1 = a(a2A+ b(a + b))-lx + (b + a)(a22 + b(a + b))-' (3.1) 

Figure 3.3 shows a visual diagram of the composite Sbox. The isomorphic mapping to the 

composite field, (GF(28 ) -~ GF((24 )2 ) can be implemented using a matrix vector 

multiplication. The affine transformation consists of a linear transformation followed by a 

translation which can be achieved by a matrix vector multiplication and vector addition 

respectively. The isomorphic mapping and affine transformation both use fixed matrices 

that are sparse so the computation costs of these operations are minimal [9]. 
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Composite SBox Stages 

Isomorphic Mapping 
GF(28) GF((24)2) 

Inverse Operation 

(Divide and 	GF((24)2) 

Conquer) 	GF((22)2) 
GF(22  ) 

Inverse Isomorphic Mapping 
GF((24)2 ) = GF(28 ) 

Affine Transformation 

(a)  

d 	 Multiolicative inversion 

(b)  

Figure 3.3: (a) Visual diagram, (b) Block diagram of composite Sbox. 

3.1.3 Shift Rows 

The Shift Rows operations consists of cyclically moving elements around in all but the 

first row of the 128 bit input block. The rows are left shifted by I, 2, and 3 times 

respectively for rows 2, 3 and 4. The following mapping illustrates this process. In 
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hardware no logic is required for this step and simple wire connections are used for this 

step to route the input to the output. 

A0;1" A0,2 A0,3 

All A1,2 A13 A10 

A2,2 A2,3 A2,0 A2,1 

A3,3 A3,0 A3,1 A3,2 

Aobzr A0,2 A0,3 

lilA1,1 A1,2 A1,3 
r % 4 

1 

A2 A2,2 A2,3 

1 	£i„ 

A3,1 A3,2 A33 

Figure 3.4: AES Shift Rows 

3.1.4 Mix Columns 

The mix columns operation consists of a multiplication and reduction operation over 

GF(28). Each column of the state array is multiplied by the polynomial 3x3 + x2 + x + 

2 and reduced modulo the field generating polynomial x4 + 1. This operation is generally 

optimized into a single matrix vector product. The four column blocks are used as the 

vectors, while a constant 4x4 matrix is used that combines the modulo operation. The 

result vector is stored in the next state array at the same location as the original column 

vector. All elements are 8 bits in width and the multiplication and addition operations are 

performed over GF(28). 

2 3 1 1 a0 
1 2 3 1 a1 
1 1 2 3 ' a2 

3 1 1 2 a3 

Since the elements of the matrix are of low degree the multiplications are simplified. A 

multiplication with 2 in GF(28 ) consists of a shift operation along with a modulo 

reduction if an overflow occurs. This operation can be reused with multiplying by 3, but 

an extra addition is required since 3 • ai = (2 • a~) O+ a~. 

(3.2) 
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3.1.5 Key Schedule 

Round keys are XORed at the end of every round and are generated using a Key 

Schedule. These keys can be pre-computed or generated at each round. The Sbox 

components used in the subbytes section are also used here for the round key generation. 

For each inputted key length, the method of generating keys is slightly different, but they 

contain similar logic components. 

The 128 bit key has a Sbox operation done on the last column of the cipher key state 

array after the column bytes are rotated. This is followed by a rcon value XOR addition. 

The rcon value is generated based on the exponentiation formula rcon(i) = 
x254+1 mod x8 + x4 + x3 + x + 1 performed over GF(28). These values are usually 

pre-computed and once the rcon value is added, there is an XOR chain on the columns of 

the state array that creates the next 128 bit round key. Figure 3.5 shows a single round 

key computation. This process is repeated by using the round key as a cipher for 

generating the next 128 bits of key material. The rcon i value starts at I and increments 

for each round key. 

A' 

A 

A20r   

A 

11 	 4 	 ft 

A0,0 	 A3,3 	 B0,0 

A1,0 Sbox A1,3 	~+ rcon = 	B''e 
A2,0 	 A2,3 	 B2,0 

A3,0 	 A0,3 	 B3,0 
Rotated 

Figure 3.5: AES 128 bit Key Schedule Round. 
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In order to compute the key schedule operation in hardware, most designs generally 

pre-compute roundkeys before starting data encryption or decryption. Computing the key 

schedule on the fly, while rounds are being computed is possible for encryption, and has 

been implemented for iterative AES [II]. There is added complexity when supporting all 

keys primarily because of the overlap occurring in operations. In this thesis, 128 bit key 

employed for various design, so there is no need to explain 192 and 256 hit key 

schedules. 

3.2 Confidentiality Mode of Operation Background 

Two modes of operation for Symmetric Key Block Ciphers, ECB and CTR, are selected 

to create the confidentiality in AES-GCM because they can admit pipelined, parallelized 

implementations and have minimal computational latency for high data rates. These 

modes are introduced below and more details can be obtained from [I ]. 

3.2.1 Electronic Codebook Mode (ECB) 

The ECB mode is defined as follows and shown in Figure 3.6: 

ECB Encryption: 	C] = CI PHK (PJ ) f or j = 1, ... , n. 

ECB Decryption: 	P1 = CIPHK 1(ç)for j = 1,...,n. 

where, CIPHK(P~) is the forward cipher function of the block cipher algorithm, such as 

AES, under the key K applied to the plaintext P1; CIPH-'K(C~) is the inverse cipher 

function of the block cipher algorithm under the key K applied to the ciphertext C1 . 

In ECB encryption and ECB decryption, multiple forward cipher functions and inverse 

cipher functions can be computed in parallel or pipeline. In the GCTR module of AES-

GCM, ECB encryption block is embedded into a CTR block (see Figure 6.1). 
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ECB Encryption 

Plaintext 

Input Block 

CIPHK 

Output Block 

Ciphertext 

ECB Decryption 

Ciphertext 

Input Block 

CIPHK 

Output Block 

Plaintext 

Figure 3.6: ECB Encryption and ECB Decryption. [I] 

3.2.2 Counter Mode (CTR) 

The CTR mode is a confidentiality mode also that features the application of the block 

cipher to a set of input data groups, called counters, to produce a set of keystreams that 

are XORed with the plaintext to produce the ciphertext, and vice versa. The CTR mode is 

defined as follows and shown in Figure 3.7. 

CTR Encryption: 

of = CIPH K (Tj )for] = 1,...,n, 

C~ =PP XOR01 forj = 1,...,n-1, 

Cn = Pn XOR MSBu(On)• 

CTR Decryption: 

of = CIPH K (Tj )for j = 1,...,n, 

P. = Cj XOR 01 f or j = 1, ... , n — 1, 

Pri = CC XOR MSBu(0n ). 

The symbols used in the CTR encryption and decryption are : 

the counters for the jth input data group, 

O : the key stream for the jth input data group, 
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PP : the jth plaintext group, 

C : the jth ciphertext group. 

C*„ : the last group of the ciphertext, which may be a partial group. 

P*„ : the last group of the plaintext, which may be a partial group. 

MSB„(On) : the bit string consisting of the u most significant bits of the bit string On. 

In CTR encryption and CTR decryption, only the forward cipher function is invoked 

on each counter group, no inverse cipher function. The resulting key streams are XORed 

with the corresponding plaintext or ciphertext blocks to produce the ciphertext or 

plaintext blocks. For the last group, which may be a partial group of u bits, the most 

significant u bits of the last output group are used for the XOR operation; the remaining 

bits of the last output group are discarded. The forward cipher functions can be 

performed in parallel and pipelined. 

	

Counter: l 	 Counter 2 	 Counter n 

	

1 	 1 
E 	 Input Block I 	Input Block 2 	 Input Block n 

N 	CIPHK 	 CIPHK 	......... 	CIPHK  C 
R 	 Output Block I 	Output Block 2 	 Output Block n 

P 
T 	Plaintext I —*® 	Plaintext 2— B 	Plaintext n --►® 

	

Ciphertext 	 Ciphertext I 	 Ciphertext 

Counter I 	 Counter 2 	 Counter n 

1 	1 	 1 
D 	 Input Block I 	Input Block 2 	 Input Block n 
E 
C 	 CIPHK 	 CIPH K 	••• ••• •.. 	CIPHK  

R 	 Output Block I 	Output Block 2 	 Output Block n Y 
P 
T 	 Plaintext 	 Plaintext 2 —►® 	 Plaintext n —►® 

l 	 4, 	 4, 
Ciphertext 	 Ciphertext 	 Ciphertext 

Figure 3.7: CTR Encryption and CTR Decryption [I]. 
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Both CTR encryption and CTR decryption are invoked in AES-GCM encryption and 

AES-GCM decryption, respectively. 

3.3 Galois/Counter Mode (GCM) 

The elements of GCM and the associated notation and requirements are introduced in the 

three sections below. The block cipher and key are discussed in Sec. 3.3.1. The data 

elements of the authenticated encryption and authenticated decryption functions of GCM 

are discussed in Sec. 3.3.2. The types of application of GCM supposed in [4] are 

summarized in Sec. 3.3.3. The GHASH function, GCTR function and GCM specification 

are described in section 3.3.4, 3.3.5 and 3.3.6, respectively. 

3.3.1 Block Cipher 

The AES-GCM standard depends on the symmetric key block cipher AES. The AES-

GCM key is the block cipher key. The key shall be generated uniformly at random, or 

close to uniformly at random. The key should be established secretly among the parties to 

communicate. AES-GCM designates the encryption function of the block cipher AI.S as 

the forward cipher function denoted CIPHK which actually is AES in ECB mode (see 

Figure 3.1). GCM does not employ the inverse cipher function. 

3.3.2 Input and Output Data 

GCM consists of the two functions that are called authenticated encryption and 

authenticated decryption. The requirements and notation for the input and output data of 

these functions are introduced in Section 3.2.2.1 and 3.2.2.2. 

3.3.2.1 Authenticated Encryption 

There are three input bit streams to the authenticated encryption operation: 

• A plaintext, denoted as P that can have up to239  bits, 

• Additional authenticated data (AAD), denoted as A that can have up to 261  bits; 

P3: 



• An initialization vector denoted, as IV that can have up to 264  bits. 

In this thesis, a 96-bit IV is adopted for efficiency following the suggestion in [ 13]. 

GCM verifies the authenticity of both P and AAD; GCM also protects the confidentiality 

of P, while the AAD is transmitted in the clear. The IV is a nonce that is associated with 

the data to be against related attack. 

The following two bit strings comprise the output data of the authenticated encryption 

function: 

• A ciphertext, denoted by C, with the same bit length as that of the plaintext. 

• An authentication tag, denoted T that have up to 128 bits. The T's bit length is 

denoted as t. 

3.3.2.2 Authenticated Decryption 

The inputs to the authenticated decryption function are values for IV, A, C, and T, as 

described in Sec. 3.2.2.1 above. The output is one of the following: 

• The plaintext P that corresponds to the ciphertext C, or 

• An indication that the inputs are not authentic, denoted as FAIL. 

GCM authenticated decryption computes the authentication tag T' based on received 

data, and compares it with the received authentication tag T. If the two tags T and T' are 

equal, then P will be the output of the authenticated decryption function. Otherwise. 

FAIL will be the output. 

3.3.3 Types of Applications of GCM 

There are four types of applications of GCM that are recommended in SP800-380D. They 

Fria 

a. GCM with an arbitrary length IV, 

b. GCM with the default IV, i.e. the length of the IV is restricted to exactly 96 bits. 

c. GMAC, i.e. the algorithm generates a stand-alone authentication tag T on the 

AAD with the arbitrary length IV. The plaintext P is the empty string. 
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d. GMAC with the default IV. 

In the thesis, GCM with the default IV is chosen with size shown in Appendix A. 

3.3.4 GHASH Function 

The authentication mechanism within GCM is based on the hash function, GHASH, that 

features multiplication by a fixed hash subkey, over a binary Galois field GF(2128). The 

hash subkey, denoted as H, is generated by applying the block cipher to the 128-bit "0" 

string. GHASH is a keyed hash function. Algorithm 3 below specifies the function that 

will be invoked within the AES-GCM authenticated encryption and authenticated 

decryption functions: 

Algorithm 3.1: GHASH(  X) 

Input: 1. Bit string X with length len(X) = 128 • m for some integer m. 

2.The hash subkey H. 

Output: Block Ym. 

Steps: 

1. Let X1, X 2 ,. . . , X,.11,_1, X represents the unique sequence of blocks such 

that X= X1  I I X2I I ... I I Xm-i I IXm • 

2. Let Yo  be the "zero block," which means Yo  is a bit string comprised by 
128 binary 0. 

3. For i = 1,...,m,letY j  = (Y —11 X) H. 

where " 
" indicates multiplication over finite field as discussed in chapter 2. 

4. Return Ym. 

The GHASH function is illustrated in Figure 3.8 below. 
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Figure 3.8: GHASHH(X I  11 X2  ...11 X.) = Ym.[41 

3.3.5 GCTR Function 

The mechanism for the confidentiality of GCM is a variation of the CTR mode (see 

section 3.2.2.), called GCTR, with a particular incrementing function, denoted inc. for 

generating the necessary sequence of counter blocks. The first counter block for the 

plaintext encryption is generated by incrementing a block that is derived from IV. 

Algorithm 3.2 below specifies the GCTR function that will be invoked within the 

algorithms for the GCM authenticated encryption and authenticated decryption functions: 

Algorithm 3.2: GCTRK  (ICB, X) 

Input: 1. Bit string X, of arbitrary length; 

2. Initial counter block ICB, i. e. IV or some value generated from IV; 

3. Approved block cipher CIPH (such as AES) with a 128 — bit block size; 

4. Key K; 

Output: Bit string Y of bit length len(X). 

Steps: 

1. Let n = [Len(X)/1281 

2. Let X1, X2 , ... , Xn_1 , Xn represents the unique sequence of blocks such 

that X= X1  I I X2 I I ... I I Xn-1 I IXn 
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3. Let CB, = 1CB. 

4. For i = 2 to n, let CB S = inc(CB L — 1). 

5. For i = 1 ton — 1, let Y = 	+Q CIPK K (Ct33. 

6. Let Yri = Xn Q+ MSB [en(X * n)(CIPH K (CB j )). 

7.LetY =Y1JJl2JJ...11Y 111Yri 

8. Return Y. 

Note: 
1. Len(X) indicates the bit length of the bit string X. 

2. Xi X;+1 indicates the concatenation of two bit strings Xi and Xi+1. 

3. LSBs (X) indicates the bit string consisting of the s right-most bits of the bit 

string X. 

4. MSBs (X) indicates the bit string consisting of the s left-most bits of the bit 

string X. 

5. Int(X) indicates the integer for which the bit string X is a binary representation. 

6. lnc(X) indicates the output of the GCM incrementing function applied to the 

block X, the more specifically, inc(X)=MSB96(X) j][(int(LSB32(X))+ l) mod 

232 32• 

Figure 3.9 below illustrates the GCTR function. 

ICB 	[ inc 	GB2 

1 	1 
[cirñ]K 	 CIPHK 

1 
Xl . —► 	X2 I H (~ 

1 	1 
Y,  

... 	—► 	CB,, _ —  inn 	—' 	CBn 

1 
[ciñ]K 

1 
[CIPH]K 

Xn4 H 
l 

1 
Yn_i 

1 
Y;,* 

Figure 3.9: GCTR K (ICB, X1 I X2 II •.. li X~,*) - Yi II Y li ... II 
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3.3.6 GCM Specification 

Algorithms for the authenticated encryption and authenticated decryption functions of 

GCM are specified in Section 3.2.6.1, and 3.2.6.2 below. The block cipher is AES (see 

section 3.1). 

3.3.6.1 Authenticated Encryption 

Algorithm 3.3 below performs the authenticated encryption function. 

Algorithm 3.3: AES-GCM-AEK (IV, P, A) 

Input: 1. Block cipher CIPH (i. e. AES) with a 128 — bit block size; 

2. Key K; 

3. Tag length t. 

4. Initialization vector IV; 

5. Plaintext P; 

6. Additional authenticated data A. 

Output: 1. Cipher text C; 

2. Authentication tag T. 

Steps: 

1. Let H = CIPHK(01211) 

2. Define a block,J0 , as follows: Jo  = IV 1 10311, i. e.Jo  is a 128 — bit string 

consisted of 96 — bit IV, 31 `0' bits, andl `1' bit. 

3. Let C = GCTRK (inc(Jo ), P). 

4. Let u = 128 • Ilen(C)/128 — len(C), and let v = 128 - (len(A)/1281 — 

len(A) 

5. Define a block, S, as follows: 
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S = GHASH H (AI1O1'I ICIIO"II [len(A)]64 I 1[len(C)]64)• 

6.LetT = MSBt(GCTRK(lo,S))• 

7. Return (C, T) 

Note: 
1. [x]5  indicates the binary representation of the non-negative integer x as a string 

of s bits, where x < 2s. 

2. Os denotes the string that consists of s `0' bits, e.g. 05  = B00000. 

The authenticated encryption function is illustrated in Figure 3.10 below. 

lv 	 P; 
4, 

— 0  — Inc —► GCTRK  

4, 

4, 

GHASHH 

4, 

[_GCTRK IJ  
4, 

MSB, 

4' 
TJ 

Figure 3.10: AES-GCM-AEK  (IV, P. A) = (C, T).[4] 
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3.3.6.2 Authenticated Decryption 

Algorithm 3.4 below performs the authenticated decryption function. 

Algorithm 3.4: AES-GCM-ADK (IV, C, A, T) 

Input: 1. Block cipher CIPH (i. e. AES) with a 128 — bit block size; 

2. Key K; 

3. Tag length t. 

4. Initialization vector IV; 

5. Cipher text C; 

6. Additional authenticated data A. 

7. Authentication tag T. 

Output: Plaintext P or indication of inauthenticity FAIL; 

Steps: 

1. Let H = CIPHK(0128) 

2. Def ine a block,Jo, as f ollows: J0 = 1V110311. i. e.J o is a 128 — bit string 

consisted of 96 — bit IV, 31 '0' bits, andl `1' bit. 

3. Let P = GCTRK (inc(J o ), C). 

4. Let u = 128 • [len(C)/128 — len(C), and let v = 128 • 
[Cen(A)1 - 
l2s 

len(A) 

5. Define a block, S, as follows: 

S = GHASH H (AI~O"~ICIIOU11[len(A)]64 ~1[len(C)]64 )- 

6.Let T' = MSBt(GCTRK (Jo , S))• 

7. If T = T', then return P; else return FAIL. 

The authenticated decryption function is illustrated in Figure 3.11 below. 
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Figure 3.11: AES-GCM-ADK (IV, C, A, T) = P or FAIL.[4] 
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CHAPTER 4 

PARALLEL MULTIPLIER DESIGNS FOR GCM 

Due to the feedback chaining present for the Galois multiplication operation in the GCM, 

pipelined designs have generally chosen parallel multipliers to complete the 

multiplication step in a single clock cycle. There are two type of multiplier fulfilling 

these criteria. First is, Mastrovito multiplier, it has been a prime choice for its low critical 

path but it unfortunately has a quadratic space complexity. Second is, A popular Sub-

quadratic multiplier based on the Karatsuba multiplication algorithm (KA). 

A comparison of these parallel multipliers, with FPGA implementation results will be 

provided toward the end of the chapter. The multipliers are designed specifically for the 

GCM operation but may be generalized for other applications as well. 

4.1 Mastrovito Multiplier 

The Mastrovito multiplier uses a matrix vector product (MVP) which can compute 

modulo reduced result in a single step. The matrix used in the operation is constructed 

from the field defining polynomial, so this method is applicable when a field polynomial 

or a set of polynomials is known ahead of time which is the case for GCM. . The MVP 

approach is first described before going into Mastrovito multiplier for GCM. 

4.1.1 Matrix Vector Product 

The original GF multiplication operation given in Eq.(4.1) can be modified to formulate 

the matrix vector product and the rearranged equation is provided below. The polynomial 

matrix P is computed using the coefficients of A (a) while the vector portion is simply the 

transposed coefficients of B(a). The matrix vector product shown here computes the 

multiplication and reduction operations in a single step. 
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C(a) A(a) • B(a)mod F(a) 

m-1 

C(a) _ Y, (ai  • a mod F(a)) • bi  
i=o 	 (4.1) 

C=P•bT  

P = {a(0) , a(1) , a(Z) , ......, a(m)} 

In Eq.(4.1), C is the column vector corresponding to the polynomial C(a). An 

expansion of the polynomial matrix P is given in Eq.(4.2). The a(')  coefficients are 

essentially column vectors that are modulo reduced versions of x`a mod F(a). 

a - aa°  mod F(a) 
a(1) - aai  mod F(a) 
a(2) - aa2  mod F(a) - a(' a mod F(a) 	 (4.2) 
a(3) = aa3  mod F(a) - a(Z)a mod F(a) 

a(i) 	a(i-1)a mod F(a) 

The first column of P, a(°)  has the coefficients of A(a) while each subsequent column is 

the previous column multiplied by a and modulo reduced by F(a). When this matrix is 

multiplied by the coefficients of B (a), the result C (a) is achieved. 

4.1.2 Mastrovito Multiplier Design using MVP 

The Mastrovito multiplier is a widely used parallel multiplier with a quadratic space 

complexity [7]. The design is essentially a brute force multiplier in the sense that the 

MVP is computed like traditional matrix multiplication. It does optimize the operation 

since the repeated values that are present in the polynomial matrix can be computed once 

and then reused as signals in hardware for the brute force multiplication portion. 

Hardware resources are saved to some extent in this way. Elements in P are in GF(2), so 
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AND and XOR gates are used for element wise multiplication and addition respectively. 

Since the Mastrovito multiplier uses the brute force approach, after computing elements 

in P, the Mastrovito design has a single layer of AND gates for element multiplication 

followed by layers of XOR gates to compute the final result. The simplicity of the 

Mastrovito design is evident in Figure 4.1 which provides an overview of the multiplier. 

The design is easy to code into a low level design using any hardware description 

language such as VHDL. 

Figure 4.1: Mastrovito Multiplier for GCM. 

The area complexity of the Mastrovito multiplier design for the brute force portion is 

m2AND gates while the number of XOR gates is mz  — m. The XOR gate count for the 

polynomial matrix computations will vary based on the field polynomial, and is 

computed using the Hamming weight of the matrix. For the GCM this is equal to 784 

XOR gates, 

The time complexity can be summarized as TA  + ([loy2ml + [1092 0 + 1])T X , 

where TA  and Tx  is the AND gate and XOR gate delays respectively. The 0 constant is 

the maximum Hamming weight from all the columns of the polynomial matrix. 

4.2 Karatsuba Algorithm Sub-quadratic Multiplier 

The Karatsuba Algorithm (KA) was originally used to compute digit multiplication [ 12], 

and was mapped to polynomials by [14]. It has a Sub-quadratic area complexity but with 

a larger delay in comparison with the Mastrovito multiplier. Sub-quadratic multipliers 

such as KA generally decrease the number of multiplication operations while increasing 

the number of addition computations. Since the cost of adding OF elements is low and 
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equivalent to XORing bit streams in hardware, the KA is a suitable approach for GF 

multiplication. Using divide and conquer techniques the multiplication operation is 

divided up into smaller and smaller operations followed by an expansion to get the final 

product. This reduction and subsequent expansion is constructed by levels of XOR 

operations and as a result causes the delay of the multiplier to increase. 

4.2.1 KA Multiplier Formulation 

The elements A(a), B(a) E GF(2m) are first each split into two polynomials of max 

degree Z — 1. Ah  and Bh  represents the upper polynomial coefficients while A, and B1  

represents the lower coefficients of the elements. The following equations show A(a) 

split into two smaller polynomial elements, Ah  and Ai . 

A(a) = am / Z Ah + A, 

Ah = (am-1, am-2...., a2+2,  a?+1) 
	

(4.3) 

Ac = (am/z ,  am/2-1...., a1, ao) 

The multiplication of the two elements in GF(2m) is first computed to get a 

polynomial of max degree 2m — 2 (C'(a)). The Q operation represents XORing bit 

streams in Eq.(4.4) and multiplication operations shown are with sub-polynomials. The 

original multiplication is divided into three lower degree polynomial multiplications and 

this can be further split recursively. The C' (a) element is obtained once the recursion 

unrolls, and this is then modulo reduced separately to get the final C(a) element. 

m 
Do , D1 , D2  have max degree 2 — 1 

Do  = A1 B1  

Di = (Ah @ B1)(A1 O+ Bh) 

D2  = AhBh  
m 

C' (a) = at D2  a (D1  t Do  Q+ D2 ) +Q Do  

C(a) = C'(a) mod F(a) 

(4.4) 
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4.2.2 Modulo Reduction 

Modulo reduction of C'(a) using the field polynomial can be performed by a 

multiplication with a fixed reduction matrix. Using the GCM field polynomial as an 

example, the higher order coefficients of C'(a) can be modulo reduced based on the 

following equations. 

0-a128 +a7 +a2+a+1 mod F(a) 

a128  - a7  + a2  + a + 1 mod F(a) 
	

(4.5) 

a129 -a8 +a3 +a2 +a mod F(a) 

The reduction matrix has 2m — 2 columns and m rows. The matrix essentially maps 

C'(a) to C(a) and is shown in Figure 4.2 for the GCM. The first m columns of the 

matrix form an identity matrix since elements of degree 1 to m — 1 do not need to be 

reduced. Using Eq.(4.5), all elements of degree m to 2m — 2 can be modulo reduced and 

then used in creating the remaining m — 2 columns of the reduction matrix. 

C(a) Reduction matrix C' (a) 
Co  1 0 0 	... 1 	0 C0 
C1  0 1 0•. 1 	1 Ci 
C2  0 0 1 	... 1 1 	1 	... CZ 
C3 	— 0 	1 C3 
C4  I  0 	0 	... C 4 

00 
C126 1 	0  
C127  Identity 

I 	
0 	1 

J. 1 1 1 	1 	1 
1 al a2 a128 	a129 	... 	a254 

0253 

0254 

Figure 4.2: Reduction matrix for GCM. 

The cost of this operation in relation to the KA multiplication is small and is 

dependent on the field polynomial. The Hamming weight of the reduction matrix for the 

GCM shows that this operation requires 527 XOR gates. Having low order terms within 
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the field polynomial helps reduce the cost of the operation since higher order terms have 

additional feedback terms which increase the cost of the operation. For a field polynomial 

such as a128  + a4° + a2  + a + 1 the cost of the operation is 623 XOR gates. The delay 

for the reduction operation can be computed by (ilog2O + 11)Tx , where B is the largest 

Hamming weight computed by row of the reduction matrix. For the GCM reduction 

matrix this delay is computed to be 3Tx . 

4.2.3 KA Multiplier Design for GCM 

The Karatsuba algorithm generally works best with elements of even degree since each 

step in the recursion splits polynomials equally. The input element size for the GCM 

Galois operation is 128 bits, a power of 2, so the KA multiplier can be easily applied 

without any changes required. A high level view of the Karatsuba multiplier is provided 

here with all the major components required. 

The polynomial elements can be conveniently split down to single element 

multiplications but this is not always desirable in terms of area efficiency. When the 

ending condition of the recursion is changed and brute force multiplication per- formed 

instead, this leads to some savings in terms of AND and XOR gates. The following table 

shows the number of gates required for halting at different polynomial sizes. The gate 

counts do not include the reduction operation which has a fixed number of gates and a 

fixed delay of 3Tx . The ending condition delays are based on the brute force 

multiplication delay which is TA  + log2(n)Tx, where n is the halting value. 
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2m2 
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Calculations 

(a) 
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Figure 4.3: (a) Abstract view, and (b) Full view of the Karatsuba Multiplier. 

Table 4.1: Area of KA Multiplier with varied ending conditions. 

Halt XOR gates AND gates Total gates NAND gates Delay 

2 9913 2916 12829 45484 TA + 19T, 

4 8455 3888 12343 41596 TA + 17T, 

8 7969 5184 13153 42244 TA + 15T, 

16 8455 6912 15367 47644 TA + 13Tx 

32 9913 9216 19129 58084 TA + I 1 T, 

64 12415 12288 24703 74236 TA + 9TX 

We can see from Table 4.1 that it is worthwhile halting the KA when the polynomial 

size is 4 since it provides the lowest area and delay complexity. Since the cost of XOR 

gates in hardware is usually larger than that of AND gates, in order to get more accurate 

area estimates for ASIC implementations, the NAND gate count is included. The area 
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cost of I XOR gate is bounded by the area of 4 NAND gates while one AND gate is 
bounded by the area of 2 NAND gates. When taking the NAND gate count into 

consideration the results still showed halting at 4 as the optimal choice in terms of area. 

4.3 FPGA Implementation Results 
Table 4.2 showing FPGA implementation results and Figure 4.4 showing performance 

comparison of above discussed multipliers. On analyzing the result we find that, 

Karatsuba multiplier used 58% (Approx.) less area as compared to Mastrovito because of 

sub-quadratic complexity nature of former, but cost for small area of Karatsuba have to 

paid in term of speed, its throughput is 32% (Approx.) less than that of Mastrovito. 

The preferences of multiplier mostly depend on type of application and desired critical 

parameters, otherwise in overall performance Karatsuba proof better than Mastrovito. 

Table 4.2: Multiplier's Place and Route Results Summary. 

Multiplier Delay 
(ns) 

Frequency 
(MHz) 

Throughput 
(Gb s Slices gates Kbps/Slice Power m  

Mastrovito 10.260 97.465 12.476 8,229 85,161 1516.10 990 

Karatsuba 14.705 68.004 8.766 3,486 40,497 2497.42 1438 
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0  4000 
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0 
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Mastrovito 	Karatsuba 	 Mastrovito 	Karatsuba 

Figure 4.4: Multiplier performance comparison. 
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CHAPTER 5 

FPGA IMPLEMENTATION OF AES-ECB ARCHITECTURES 

This chapter includes details of proposed architectures of AES in ECB mode and 

discussion on their implementation result followed by comparison with previous claim. 

Section 5.1 cover iterative compact single round AES design, which is optimize for small 

area and section 5.2 describe pipeline based high speed architecture of AES. 

5.1 Compact Single Round AES Design 

This section presents high-performance and compact architecture for single round 

Advance Encryption Standard (AES) security algorithm using feedback mode. There are 

two design based on stated architecture has been implemented on virtex-4 Field 

Programming Gate Array (FPGA) device. These two designs differ in method used for 

sub-bytes function implementation, in first design Look-Up Tables (LUTs) and in second 

design fully combinational gates using Composite Field Arithmetic (CFA) has been 

employed for sub-byte function implementation. 

5.1.1 Single Round AES Architecture 

The working of proposed architecture is straight forward, as we can see in Figure 5.1. 

There are three main units i.e. Round unit, Key Scheduler unit and control unit. We will 

discuss one by one later part of this section. 

The multiplexer named as MUX direct particular input by using 2bit selective line 

data reg_mux_sel to the input of Data Register at proper clock cycle and that particular 

128 bits data store in 128 bits register, for being used by Round unit as a input. Since 

round 0 is just a XORing between 128 bits data and 128 bits original user-key, performed 

externally using 128 bits 2 input XOR as shown in Figure 5.1. 
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Figure 5.1: Compact single round AES FPGA architecture. 

5.1.1.1 Round Unit 

As we have discuss earlier that round 1 to round 9 are the combination of four functions 

i.e. sub SubBytes, ShiftRows, MixColumns and AddRounKey, round 10 combination of 

e. in 

I! J 	 M i x 
Shift I 	 Colum 
Row n 

Last_round _mux_set 	 N mux 

AddRoundKey 

d out 

Figure 5.2: Round unit. 
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three function except MixColumns. Figure 5.2 show round unit that also take care of 

round 10 using MUX that controlled by Last_round _mux_set lbit selection line. The 

concept of parallel processing has been used in this architecture for calculating the sub 

bytes. Instead of calculating the sub bytes sequentially, which consumes a lot of time, the 

16 sub bytes are generated simultaneously using 16 S Boxes [ 15] and that can be realized 

by16 look-up tables with 8bit-input/output or by CFA. ShiftRows is a bit shuffling 

function, requiring no hardware. For MixColumns and AddRoundKey realization general 

procedure adopted as describe in [5]. 

5.1.1.2 Key Scheduler Unit 

Figure 5.3 is a Key Scheduler (Expansion) Unit [16] used to generate round keys on the 

fly in the encryption process. The hardware required to generate one set of round key is 

implemented and re-used it for calculating the rest of the round keys. This results in 

reduction in space used for storing the sub keys values and also improves the speed of 

operation since round key is generated simultaneously while the sub bytes, shift rows and 

mix columns take place. 

User key 

Figure 5.3: Key Scheduler Unit. 
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5.1.1.3 Control Unit 

Control unit is brain of the system, which used to control and maintains proper 

synchronization between different components of design. As shown in Figure 5.4, 

Control unit realized using Finite State Machine (FSM) having thirteen states, one for 

initiation, one for load input and remaining eleven for eleven round of AES. Each state 

defined by their specific value of state variable (control signal). 

ion = 0 Load Round 
i /n 1 

Encry. 
start 	Encryption = 1 

Round 

Control Signal 

round constsnt 
Round data _reg_mux set = Round 

in key_reg_mux_sel = 
load data_reg 
loadw  key_reg = 
last mux set"  

Round Round 
4 

Round nd 1 	 (Round 

Round 	 Round 	 Round 

Figure 5.4: State diagram. 

5.1.2 Composite Field Arithmetic based SubBytes function 

The composite field approach reduces not only the hardware complexity but also exhibits 

the advantages of inner round pipelining, but here we are not interested in pipelining. The 

Galois field Fl: GF(2$) is mapped into composite field F2: GF((24)2) or sometimes 

GF(((22)2)2) [17]. 
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In this paper, we construct the isomorphic composite field by using the fields defined 

in Eq.(5.1) [16]. The field conversion matrix 6 is given in Eq.(5.2). 

GF(2) = GF(24 ) : p(x) = x4  + x + 1 
GF(24 ) 4 GF( 24 )2 ) : 9(Y) = y4  + Y + /?, 
where f3 = (0b1000)2  or x3  

1 0 0 0 0 1 0 1 
0 0 1 0 0 0 0 0 
0 0 1 1 1 1 1 1 
0 0 0 1 1 0 0 0 

s  0 0 0 0 1 1 1 0 
0 1 0 0 1 0 1 1 
0 0 1 1 0 1 0 1 
0 0 0 0 0 1 0 1 

Figure 3.1.2 describes the optimized design of SubBytes transformation over composite 

field. 

5.1.3 Implementation Results 

Based on presented architecture, two designs have been implemented on FPGA virtex-4 

XC4VLX100-12ffl148 package kit, using Xilinx Foundation Series f 9.2i as synthesis 

and Modelsim 6.3f as simulation tool. The design was coded using VHDL language. 

On comparison, we find that LUT based design is 19.18% faster than CFA based 

design and on the other hand CFA based design proved more cost effective, since it 

required 35.55% smaller area than LUT based design. But as whole CFA based design is 

More efficient than LUT based because it gives higher throughput to slices ratio than 

LUT based design, as shown in Table 5.1. 

5.1.4 Performance Comparison with other Designs 

There are very few number of designs proposed for small AES design in literature. After 

intensive search we encountered few single round AES designs, as shown in Table 5.3 

(5.1) 

(5.2) 
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Table 5.1. Synthesis and Place & Route results of compact AES designs. 

LUT Slices Period Slices Blocks 
RAMs Usage Period Freq. Thr. Thr./sl 

(PAR) 
Design (Syn.) (Syn.) (Syn.) (PAR) (PAR) (PAR) (PAR) (PAR) (PAR) 

# # ns # % ns Mhz Mbits/s Mhces 
LUT 4296 2222 5.294 2571 20 05% 10.161 98.416 1049.7 0.408 
Based 
CFA 3230 1668 7.285 1657 00 03% 12.110 82.576 880.81 0.532 
Based 

Table 5.2. The logic and routing delay of compact AES designs. 

Period Logic Percent Routing Percent 
Design ns ns % ns /o 

LUT 10.161 7.966 78.4% 2.194 21.6% 
Based 
CFA 12.110 3.826 31.6% 8.283 68.4% 
Based 

with their performance. Wide trade-off is possible in area and speed of design. so 

throughput to slices ratio has been taken as comparison parameter for various designs. 

As we can see Table 5.3, throughput to slices ratio design [18] is 0.747, highest among 

all design but it takes four clock cycles to complete one round and also required three 

block RAMs and above all very small throughput of 166 Mbps. On the other hand, our 

composite field arithmetic based design is pure memory less design having 0.532 

throughputs to slices ratio, which is second highest among all and first in all design of one 

clock cycles per round, in addition of that it shows a high throughput up to 880.81 Mbps. 

Table 5.3. Performance comparison of compact AES designs. 

Area Throughput Thr./Slices clock cycles 
CLB Block Design IMbpsl lMbits/s/slices) per round 
Slices RAMs 

Pawel Chodowiec and 222 03 166 0.7470 4 
Kris Ga' 	18 

P. Chodowiec et al. 1191 —1230 18 577 0.4690  
A. Dandalis et al. 1201 5673 00 353 0.0620 1 
A.J. Elbirt et al. 1211 3528 00 294.2 0,0834 1 

K. Gaj et al. 122] 2902 00 331.5 0.1142 _ 	1 

Proposed LUT Based 2571 20 1049.7 0.4080 1 
Designs CPA Based 1657 00 880.81 0.5320 1 



5.2 High Speed Subpipelined AES Design 

This section presents high-speed architectures for the hardware implementation of the 

Advanced Encryption Standard (AES) algorithm by dividing each round unit into 

substages with equal delays, named as subpiplining. Composite field Arithmetic is used 

to implement the SubBytes and InvSubBytes transformations of the AES algorithm, 

which makes it a fully memory less combinational logic design. Also as a direct 

consequence, the unbreakable delay introduces by look-up tables in the conventional 

approaches is eliminated and the advantage of subpipelining can be further explored. 

5.2.1 The AES Algorithm And Its Subpipelined Architecture 

5.2.1.1 The Subpipeline Architecture 

The pipelined architecture is realized by inserting rows of registers between each round 

unit. Similar to the pipelining, subpipelining also inserts rows of registers among 

combinational logic, but registers are inserted both between and inside each round unit, 

as shown in Fig. 5.5. In subpipelining, more blocks of data can processed simultaneously. 

It can be observed that the more substages with equal delay each round unit can be 

divided into, the larger speedup the subpipelining can achieve. 

However, dividing each round unit into arbitrary number of substages does not always 

bring speedup. Since the minimum clock period is determined by the indivisible 

component with the longest delay, dividing the rest of the round unit into more substages 

with shorter delay does not reduce the minimum clock period. Although more blocks of 

data are being processed simultaneously, the average number of clock cycles to process 

one block of data does not change. Therefore, the overall speed does not improve despite 

increased area caused by the additional registers. In a LUT-based implementation, it can 

be observed that nearly half the delay of a round unit is attributed to the LUTs, and thus, 

each round unit can be divided into only two substages to achieve some speedup without 

wasting any area. On the contrary, the longest unbreakable delay in the non-LUT-based 

approaches is the delay of individual logic gates. Accordingly, each round unit can be 

divided into multiple substages with approximately equal delay. 
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Figure 5.5: The architecture of Subpipelining. 

5.2.2 Detailed Hardware Implementation Architectures 

In this section, we present detailed architectures for each transformation of the AES 

algorithm. The implementation of each transformation is optimized to reduce area and 

increase speed. Meanwhile, an efficient key expansion architecture suitable for 

subpipelined round units is presented. Based on the analysis on the gate counts in the 

critical path of the round units and the key expansion,, optimized subpipelining 

architectures of the AES algorithm are present. 

5.2.2.1 Implementations of the SubBytes/InvSubBytes Transformation 

The multiplicative inversion in involved in the Sub- Bytes/InvSubBytes is a hardware 

demanding operation, it takes at least 620 gates to implement by repeat multiplications in 

GF(28) [23]. However, the gate count can be reduced greatly by using composite field 

arithmetic. In the SubBytes transformation, using substructure sharing, the isomorphic 

mapping function can be implemented by 12 XOR gates with 4 XOR gates in the critical 

path. Meanwhile, the combined inverse isomorphic mapping and the affine 

transformation can be implemented by 19 XOR gates, and the critical path consists of 4 

XOR gates also. In the composite field GF((24 )2 ), an element can be expressed as 
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ShX + s1 , where s, s1 E GF(24 ) and x is a root of P2 (x). Using Extended Euclidean 

algorithm, the multiplicative inverse of ShX + s1 modulo P2 (x) can be computed as in 

Eq.(5.3) JS ORAL 
4 c,• C 1(4495 q ACC lo ................. ~~ 

(ShX + Sl)-1 = ShOX + (Sys + S1)O 	 Dom.....,....•......... ( .3) 

where 0 = (Sh11 + Sh S I + si)-1. According to Eq.(5.3), the multiplicative inversion in 

GF(28 ) can be carried out in GF((24 )2 ) by the architecture illustrated in Figure 5.6 

(chapter4). The multipliers in GF(24) can be further decomposed into multipliers in 

GF(24 ) and then to GF(2), in which a multiplication is simply an AND operation. Figure 

5.8 illustrates this decomposition, together with the other blocks used in Figure 5.6 except 

the inversion in GF(24 ) block. As can be observed from Figure 5.7, a multiplier in 

GF(24 ) can be implemented by 21 XOR gates and 9 AND gates. 

Multiplicative inversion 

Figure 5.6: Implementation of the subBytes Transformation. 
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............... ....................................... 

(b) (a) 

(c) 	 (d) 	 (e) 

Figure 5.7: Implementations of individual blocks: (a) multiplier in GF(24  ); (b) multiplier in GF(22 ); (c) 

squarer in GF(24  ); (d) constant multiplier (x A); and (e) constant multiplier (x q5). 

with 4 XOR gates and 1 AND gate in the critical path. Table 5.4 summarizes the gate 

count and critical path of each block in the SubBytes except the block of inversion in 

GF (24) in Figure 5.6. 

Table 5.4: Gate counts and critical paths functional blocks in the SubBytes Transformation (171. 

Block Total no. of gates Critical path 

x cP 1 XOR I XORR 

x A 3 XOR 2 XOR 

x2  4 XOR 2 XOR 

Multiplier in GF(22 ) 4 XOR+3 AND 2 XOR+I AND 

Multiplier in GF(24) 21 XOR+9 AND 4 XOR+I AND 

The inversion in GF(24) can be implemented by further decomposed by applying 

formulas similar to Eq.(5,3) iteratively. Composite field decomposition can reduce the 

hardware complexity significantly when the order of the field involved is large. 

52 



However, for small fields, such as GF(24 ), further decomposition may not be the 

optimum approach. So we adopt direct implementation approach. Taking the four bits of 

x E GF(24 ) as {x3, x2 , x1 , x0), it can be derived that each bit in 

x-' = (x31, x 1, X11, xi') can be computed by the following equations: 

(x-2  = x3 + X3x2x1 + x3X0 + x2 
x2 1  = x3x2x1 + x3x2x0 + x3x0 + x2 + x2x1 

X1 1  = X3 + X3X2x1 + X3X2X0 + X2 + X2X0 + X1  (5.4) 

X0 1  = x3X2X1 + x3x2X0 + X3X1 + X3X1X0 + X3X0 

+X2 + X2x1 + X2X1X0 + X1 + XO 

direct implementation of the derived equation, Eq.(5.4), has the smallest gate count (14 

XOR and 9 AND) and the shortest critical path (3 XOR and 2 AND) [25]. 

5.2.2.2 Implementations of the MixColumns/InvMixColumns Transformation 

Various architectures have been proposed for the implementation of the 

MixColumns/InvMixColumns transformation [9], [24], [25]. Applying substructure 

sharing both to the computation of a byte and between the computation of the four bytes 

in a column of the State, an efficient MixColumns implementation architecture can be 

derived. 

SO c  = {02}16(SO,c + S1,c/ + (S2,c + S3,c) + S1,c 

S1 c = {02)16(S1  ,C  + S2,c) + (S3,c + SO,c) + S2c 
1 	 (5S) I  

S2 c = 102116(S2,c + S3,c) + (s0,C + S1,c) + S3,c 

S3 c = 102J16(S3 c + SO,c) + (S1,c + S2,c) + 0,c 

According to Eq.(5.5), the MixColumns transformation can be implemented by the 

architecture shown in Figure 5.8. The function of the block "XTime" is to compute 

constant multiplication by {02116. An element of GF(28 ) can be expressed in 

polynomial form as S = S7x7  + S6x6  + S5x5  + S4X4  + S3x3  + S2X2  + S1X+S0, where 
s1 , s2i  ...... S7  E GF(2), and x is a root of the field poly nomial p(x). then 
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{02}16S = XS = S7X 8 + S6X 7 + S5X6 + S4X5 + S3X 4 + S2X 3 + S1X 2+S0X mod p(x) 

= S6X7 + S5X6 + S4X 5 + (S3 + S7)X 4 + (S2 + S7)X 3 + S1X2+(So + S7)X + S7. 

Therefore, the "XTime" block can be implemented by 3 XOR gates with only one 

XOR gate in the critical path. As illustrated in Figure 5.8, the total number of XOR gates 

for computing one column of the State is 108, and the critical path is 3 XOR gates. 

Similarly, in the InvMixColumns transformation, Eq.(5.2) can be rewritten as 

Sp C = ({02}16(SO,C + S1,c) + (s2,C + S3,c) + S1,c) 

+({02}16 ([04)16(50,c + S2,c) + {04}16(51,c + S3,c)) 

+{04}16 (S0,c + S2 ,C )) 
SO ,c = ([o2)16 (s0, + S1,c) + (S2,c + S3,c) + 

+({02}16 (t04)16(SO,C  + S2 C ) + [04)16(S1 + S3 c )) 

+{04}16(S1,C + S3,c)) 
(5.6) 

SZ C _ ({02}16(S2 c + s3) + (SO ,c + S1,
l

c) + s3,C) 

+({02}16 ({04)16(So,c + S2,C ) + (04)16(S1,c + S3,c)) 

+{04)16(S0, + S2 ,c )) 
S3 C = ({02)16(S3c + SOX) + (S1C +S2~) +SOS ) 

+({02}16.({04}16(S0,C +S2,c ) + (04)16(S1,c +s3,C)) 

+{04}16(S1 + S3 c)) 

Using substructure sharing, Eq.(5.6) can be implemented by the architecture illustrated 

in Figure 5.9. The "X4Time" block, which computes the constant multiplication of 

(04)16, can be, implemented by two serially concatenated "XTime" block. Alternatively. 

it can also be implemented according to the equation derived below 

(04)16S = X ZS = S7X 9 + S6X $ + S5X 7 + S4X 6 + S3X5 + S2X4 + S1X3+S0x2 mod p(x) 

= S5X 7 + S4X6 + (S3 + S7)X 5 +(S2 + (S6 + S7))X 4 + (S1 + S6)X 3 

+(SO + S7)X 2+(S6 + S7)X + S6. 
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Sharing s6  + s7, the "X4Time" block can be implemented by 5 XOR gates with 2 

XOR gates in the critical path. It follows that the architecture in Figure 5.9 can be 

implemented by 193 XOR gates with 7 XOR gates in the critical path. Meanwhile, the 

upper half in Figure 5.9 work as architecture for the implementation of the MixColumns. 

Therefore in a joint encryptor/decryptor implementation, only the architecture in Figure 

5.9 needs to be implemented for both the MixColumns and the InvMixColumns 

transformations. 

Figure 5.8: Efficient implementation of the MixColumns (red dashed rectangle only) and InvMixColumns 
transformation. 

5.2.2.3 Implementation of Round And Key Expansion unit 

Figure 5.9 showing one round unit along with corresponding roundkey generating unit. 

Both unit working in parallel way, so in subpipline based architecture proper 

synchronization has to be maintain between data and key within whole unit. Roundkeys 

can be either generated beforehand and stored in memory or generated on the fly. In the 

former approach, roundkeys can be read out from memory using appropriate addresses, 

and there is no extra delay for decryption. 
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Figure 5.9: Different cutest of Round and Subkey unit for subpipelined architecture. 

However, this approach is not suitable for the applications where the key changes 

constantly. Meanwhile, the delay of memory access is unbreakable, which may offset the 

speedup achieved by subpipelining the round units. Therefore it is more advantageous to 

generate roundkeys on the fly in a subpipelined architecture. The subpipelined 

architecture can achieve maximum speedup if each round unit can be divided into 

substages with equal delay. Based on the analysis of the gate count in the critical path of 

each component, cutsets as illustrated in Figure 5.9 can be added to divide the encryption 

round unit into r = 2, 4 and 8 substages with approximately equal delay. Since the 

roundkeys are generated on the fly, we need to divide the key expansion unit into the 

same number of substages with the same maximum delay as in the round unit to avoid 

extra buffers and delay. Assuming the same subpipelined SubBytestransformation is 
used in the key expansion unit. 
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5.2.3 Implementation Result and Comparison 

Based on above presented subpipelining concept, we have implemented six designs, in 

first two design sbox is implemented with LUI' and each round having 2 and 3 stage. 

respectively and in other four design sbox is implemented with composite field arithmetic 

with each round having 2, 3, 4 and 8 stage. Post-placement timing report shows a fully 

subpipelined encryptors of 128-bit key with respective substages in each round unit can 

operate at a throughput of 16.542 Gbps, 13.561 Gbps, 15.564 Gbps, 12.971 Gbps , 26.479 

Gbps and 31.449 Gbps respectively, on a Xilinx XCV xc4vlxlOO-12 ff1513 device in 

non-feedback modes with Xilinx ISE9.1 i is used to synthesize the design and provide 

post-placement timing results. Detail of each design shown in Table 5.5. We have given 

each unit a specific name, i.e. (8,CFA,4) showing that each round of design have 8 

substages and sbox is implemented with Composite Field Arithmetic concept instead of 

LUT and there are 4 out of 8 substages present in sbox. The main motto of six designs 

implementation is to analysis Area-Throughput trade-offs and finally getting highly 

efficient subpipelined design. 

As can be. observed Figure 5.10. (2,CFA,O) has high speed as compared to (3.CFA.0) 

because in both design sbox is in critical path, so increasing substages in remaining round 

unit shows no improvement in speed, rather reduction of speed due to large area 

placement complexity. Same reason for high speed of (2,LUT) than (3,LUT),If we 

compared (2,CFA,O) and (2,LUT) or (3,CFA,O) and (3,LUT), we find that design having 

sbox implemented using LUT showing 50% more area and 22% speed enhancement than 

design having CFA based sbox. But, the unbreakable delay introduces by look-up tables 

restrict substages to r = 2 and so speed. 

As can be observed from Table 5.5, our architecture can achieve higher speed than all 

prior FPGA implementations known to the authors, and more efficient than the previous 

fastest design [17] in terms of equivalent throughput/slice. In the computation of 

throughput/slice, one BlockRAM (BRAM) is equivalent to 128 slices [261. Further 

speedup can be achieved by dividing each round unit into more substages with equal 

delay. In this aspect, it has advantages over the designs utilizing BRAMs on Xilinx 
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FPGAs to implement SubBytes/InvSubBytes. Since the minimum clock period is decided 

by the unbreakable delay of BRAMs, a fully subpipelined implementation using BRAMs 

can not achieve higher speed even if larger FPGA devices are available. 

Table 5.5: Comparison of FPGA implementation of the AES algorithm. 

Design Device Frequency 
(Mhz) 

Throughput 
(Gbps) 

Slices BRAMs Mbps 

Slice 

Elbirt el al 1211 XCV 1000-4 31.8 1.938 10992  0 0.176 

Mcloone el. al. [27] 
(pre-placement time) 

XCV812e-8 93.9 12.020 2000 244 0.367 

Jarvinen el al [161 XCV 1000e-8 129.2 16.500 11719 0 1.408 

Saggese el al [26] XCV2000e-8 158 20.300 5810 100 1.091 

Standaert el [28] XCV3200e-8 145 18.500 15112 0 1.228 

K. Gaj, P. Chodowiec 
29 

XCV 1000e-8 131 12.20 12600 80 0.97 

X. Zhang, 
K.K. 

(r=3) XCV812e-6 93.5 16.032 9406 0 1.272 

Parhi [171 (r=7) XCV 1000e-8 168.4 21.556 11022 0 1.956 

Proposed (2,LUT) XCV 1000-12 129.232 16.542 16800 200 0.9846 
design 

(3,LUT) XCV 1000-12 121.595 15.564 21571 200 _ 0.7215 	1  
s 

(2,CFA,O) XCV1000-12 105.932 13.561 11128  0 1.2186 

(3,CFA,O) XCV 1000-12 101.338 12.971 11871 0 t 	10926 

(4,CFA,2) XCV 1000-12 206.868 26.479 12726 0 2.08 

(8,CFA,4) XCV 1000-12 245.700 31.449 16478 0 19086 

Table 5.6: Power consumed. 

Design Slices BRAMs Mbps 

Slice 
Power Consumed 

(mW)  

Proposed (2,LUT) 16800 200 0.9846 1080 
design 

(3,LUT) 21571 200 0.7215 1150 

(2,CFA,O) 11128 0 1.2186 1058 

(3,CFA,O) 11871 0 1.0926 1101 

(4,CFA,2) 12726 0 2.08 1136 

(8,CFA,4) 16478 0 1.9086 1 189 
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of subpipelined AES designs. 
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CHAPTER 6 

FPGA IMPLEMENTATION OF AES-GCM ARCHITECTURE 

This chapter describes the AES-GCM implementation on the FPGA Platform. Section 6.1 

discusses the architectures of the modules of AES and GIIASLI, section 6.2 discusses the 

architectures of the AES-GCM, including IPsec data packet, and GCM data flow. Section 

6.3 discusses how to verify the AES-GCM functionality. 

6.1 Modules Design 

In AES-GCM encryption and AES-GCM decryption, AES and GHASH are the basic 

modules which are responsible for confidentiality and authentication, respectively. In 

section 6.1.1, an iterative AES and fully pipelined AES are presented; in section 6.1.2, a 

bit serial GHASH and a bit parallel GHASH are presented. The pipelined AES and 

parallel-bit GHASH modules are selected for designing a high speed AES-GCM 

architecture discussed in section 6.2. 

6.1.1 AES Module 

For the 128-bit key size, the AES algorithm requires calculating 10 round 

transformations, and each round contains four phases: SubBytes, ShiftRows, 

MixColumns, and AddRoundKey (see section 3.1). This allows implementing AES 

algorithm in either iterative method (see section 5. 1) or pipelined method (see section 

5.2). In an iterative AES design, the round transformation is instantiated only once. This 

round transformation block of hardware is used 10 times in 10 computation clock cycles 

while the intermediate value is stored in a Data register and used as input for the next 

time. A pipelined AES design can calculate all 10 rounds transformations in one clock 

cycle by duplicated a single round 10 times (see Figure 6.1). A pipelined AES 

architecture can be achieved by placing 128-bit registers between each round as we 

already achieved in section 5.2. In large FPGAs, registers are almost free; a pipelined 

structure can take advantage of this feature of FPGAs. 
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The control logic of both the iterative and pipelined AES architectures is implemented 

by using a finite state machine (FSM). Table 6.1 shows a rough comparison between 

these two approaches on throughput and cost. 

Table 6.1: Comparison between Iterative and Pipelined AES. 

Num of 
Num of Cost in Virtex-4 

unroll 
ciphertext 

No. of Throughput 
Throug h ut/ 

p  Power 
Architectures 

round in 
per 10 

hardware 
clock 

slices (Gbps) 
no. of slices 

(m W) c cle Y (Mbps/slices) 

LUT 1 1 2571 1.04977 0.408 1019 
Iterative 

AES CFA 1 1 1452 0.80736 0.556 1438 

LUT 10 10 19013 11.94701 0.628 11I2  
Pipelined 

AES CFA 10 10 10686 10.61004 0.993 1Q45 

In AES-GCM algorithm, the AES block is implemented in a pipelined architecture. 

This AES block works as a core in a hybrid from ECB and CTR mode. This hybrid 

actually is GCTR (see section 3.2.5). Figure 6.1 shows the structure how the AES block 

is embedded into an ECB module and how the ECB module is embedded into a CTR 

module. In ECB module, AES block encrypts an input which actually is a continuously 

increasing counter value in CTR module, and produces the output as keystream. In CTR 

module, the keystream XORs a plaintext to produce output, i.e. ciphertext. After the first 

10 clock cycles, the pipeline is fully filled so that the AES module can output a new 128-

bit keystream every clock cycle. 

The iterative AES can also be adopted in the AES-GCM algorithm, specifically for 

generating the hash subkey H. This calculation can be done in advance if the 128-bit key 

is known because H is nothing but the output of the iterative AES module. Therefore, it 

needs 10 clock cycles to generate H after inputting 128 bits '0' string into the iterative 

ABS module. 
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Figure 6.1: AES CTR over ECt3 Mode Cipher Structure. 

As briefly mentioned in section 3.1.1, except for the SubBytes operation in round 

transformation, the ShiftRows, MixColumns, and AddRoundKey are all directly designed, 

using CLBs in FPGA. SubByte which actually is a LUT operation can be designed either 

using CLBs or signal-port block select RAM (see section 3.1.2). Table 6.4 in section 

6.2.3 shows the differences in performance and cost between AES-GCM 

implementations which are purely using CLBs (CFA) and those using both CLBs and 

Block RAMs (LUT). 

6.1.2 GHASH Module 

A 128-bit multiplier over GF(2128) is the core of the GHASH architecture. In AES-GCM. 

the GF(2'21) multiplier multiplies two 128-bit operands modulo the field polynomial F(x) 

= I +x + x2 + x7+ x128 to generate a 128-bit output. The G1-1AS1.l architecture is shown in 

Figure 6.2. One operand of the GF multiplier is the hash subkey 1-1 which can be treated 

as a fixed 128-bit constant for it will not change if the 128-bit key does not change. The 

Register Y whose initial value is zero holds the intermediate hash value for next step 

authentication computation. 



A_C_Len(A)I ILen(C) 

Figure 6.2: GHASH Hardware Architecture. 

The architecture shown in Figure 6.2 is based on an iteration operation. Suppose all 

input data and output data are satisfied with the definitions in section 3.3. In the first m 

clock cycles, the 128-bit additional authenticated data block sequence (AAD) A i , A2, ..., 

A„ are hashed to the GHASH through one of two inputs of XOR gates as described by 

algorithm 3.1. In the next n clock cycles, the 128-bit ciphertext block sequence C1, C2, 

..., C1, C„ are hashed to the same input of XOR gates following AAD. In the last clock 

cycle, 128-bit word length (A)Illength(C) is hashed. Meanwhile, the intermediate hash 

value Y; (see Figure 3.8) is fed back to another input of XOR gates to generate the 

another operand for the GF multiplier. 

It takes m + n + 1 cycles to compute the hash value for bit parallel multiplier, and 

128*(m + n + 1) cycles for Bit Serial multiplier. There is a rough comparison listed in 

Table 6.2 between GHASH architectures using these two kinds of multipliers. 

Table 6.2: Comparison between different GIIASH architectures. 

GHASH architecture Latency (clock cycle) Hardware 
corncomplexity(k = 128) 

Using Bit 
Serial Multiplier 128*(m+n+l) O(k) 

Using Parallel m+n+l O(k2) Multiplier 
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In order to match pipelined AES module, the GHASH module is implemented using a 

Bit Parallel GF multiplier (Mastrovito and Karatsuba multiplier). From a whole 

Mastrovito Bit Parallel GF(2'28) multiplier point of view, 1282  two-input ANI) gates and 

0(1282) two-input XOR gates were used for implementation. The delay from this 

architecture is one AND gate and 7 XOR gates. This is the critical path in the entire Al S-

GCM circuit design. Although a Bit Parallel multiplier over GF can be pipelined for high 

data rate [30], this is not the case for GNASH because the GHASH is a kind of feedback 

mode as mentioned in section 3.3.4. 

6.2 High Speed Hardware Implementation of AES-GCM 

This section describes the AES-GCM implementation. It begins by a brief introduction 

on the data packet structure of IPsec ESP [31 ] in section 6.2.1, then follows with a top 

level data flow description of the pipelined AES and bit parallel GHASH modules in 

section 6.2.2. Finally the details of the AES-GCM implementation are presented in 

section 6.2.3. 

6.2.1 Format of Data Packet of IPsec ESP 

The IPsec Encapsulating Security Payload (ESP) Packet Format is to arrange input/output 

data in proper format as shown in Figure 6.3. 

The document in [31] clearly explains how to use AES-GCM as an IPsec ESP 

mechanism to provide confidentiality and data origin authentication. 

Information with respect to the format of data packet of IPsec ESP is provided in 

RFC4106[31]. The Use of Galois-Counter Mode in IPsec ESP is shown in Figure 6.3. 



J 	Header 	J 	Sequence 	I 	Packet Data Unit 

IV —~  Plaintext 

AAD 

Ciphertex 	Authentication Tag 

I 	[-leader f Sequence I 	Packet Data Unit 	I ICV 

Figure 6.3: The Use of GCM in IPsec ESP [313. 

6.2.2 Data Flow in GCM 

If the AES module is implemented in the pipelined architecture, the G1lASH module is 

implemented by choosing a parallel-bit multiplier as its core, and the hash subkey I i can 

be calculated out ahead in an iterative AES module based on a known key by each 

communication party. The data flow in GCM Encryption is shown in Figure 6.4(a); and 

the data flow in GCM Decryption is shown in Figure 6.4(b). For GCM encryption, AES-

GCM starts to compute intermediate hash value Y; when it receives additional 

authenticated data. It takes m clock cycles to generate Y,,,. Then the GHASH has to be 

idle for 11 clock cycles until the first ciphertext block C1 is generated by the GCTR 

which is created by using a pipelined AES module. For GCM with default IV, the IV is 

always 96 bits long, and Jo can be created instantly by concatenation of bit strings. 

The key streams for GCM encryption are created after the 10th clock cycle when Jo is 

input into the pipeline of GCTR. At the 11th clock cycle, cipher block C i is generated and 

input to GHASH. GHASH begins to hash data again. At the m+l l+n+l clock cycle. 

Y,,,+„+l is generated and XORed with KO (i.e. CIPHK(Jo)) to create authentication tag T. 
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Figure 6.4: (a) The Data Flow of GCM Encryption (b) The Data Flow of GCM Decryption. 

For GCM decryption, GHASH can directly compute the authentication tag T' based on 

AAD and ciphertext C from the input of GCM Decryption. Therefore, the max 11 clock 

cycles are saved compared with data flow in GCM Encryption. 



6.2.3 Hardware Implementation Bidirectional GCM 

Based on the data flow analysis in section 6.2.2, a bidirectional AES-GCM hardware 

module is built. The "bidirectional" means: the AES-GCM module can work not only as 

GCM encryption but also as GCM decryption depending on the logic value of the control 

signal Encryption. If the Encryption signal is high, then AES-GCM works in 0CM 

encryption mode, otherwise, it works in GCM decryption mode. The schematic of both 

designs are same as shown in Figure 6.5 and 6.6, except tag comparison circuit in 

decryption mode. 

If Encryption signal is high, then AES-GCM works in GCM encryption mode i.e. 

AES-GCM-AE (see section 3.3.6.1). In Figure 6.5, the data paths are 128-bit wide. The 

control signals do not show up except signal Encryption. They all are driven by a finite 

sate machine (FSM) module which is designed according to IPsec ESP packet format. 

Figure 6.5: AES-GCM Encryption Architecture. 
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The 44 32-bit round-key words are stored in a look up table instead of generated in real 

time. The hash subkey H is generated by an iterative AES module from the key K in 

advance. 

A 3-to-1 multiplexer MUX-I is used whose output connects to one of the input ports of 

XOR gates in GNASH module. The three inputs of MUX-I are additional authenticated 

data AAD, ciphertext C and length information length (A)Jjlength(P). As discussed in 

section 3.3, in the first m clock cycles, the output of MUX-I is the additional 

authenticated data A. After 11 clock cycles, in the next n clock cycles, the output of 

MUX-I switches to the ciphertext C. The Final output of MUX-I is length (A)Ijlength(P). 

The first 128-bit key stream which is produced by GCTR, from the initial value IV of 

GCM, is stored in the AESK(JO) Register. This AESK(JO) Register is later used to generate 

the authentication tag T. Since the IV of GCM is followed by plaintext P. and the first 

128-bit keystream is generated by GCTR after a delay of 10 clock cycles. Therefore, the 

plaintext P is delayed by 11 clock cycles in order to be encrypted by the corresponding 

key streams. A 11*  128-bit FIFO meets this requirement. In the first II clock cycles, the 

data flow AAD, IV and payload data P are input to the FIFO. From the 12th clock cycle 

onwards, the FIFO remains in a dynamic full status by reading data out and writing new 

data in simultaneously until reaching the end of theIPsec ESP packet. Suffering 11 clock 

cycles delay through the FIFO, AAD and IV connect directly to one of the inputs of the 

3-to-1 MUX-II; delayed payload data P exclusive-ORs with GCTR output, key stream, to 

produce ciphertext which is connected to one input of MUX-I and MUX-II. The left input 

of MUX-II is the authentication tag T which is the result of GHASH final output Y,,,+n+i 

XORing value in AESK(JO) Register. MUX-Il output connects to register Output. The 

final output of AES-GCM-AE from register Output is data flow A_IV_C_T 

corresponding to the input data flow A__IV_P. 

As mentioned in section 6.1.2, the critical path of this design is determined by the 

GHASH module. The delay of all other paths in Figure 6.5 is smaller than the delay 

produced by GHASH module. 

If Encryption is low, then AES-GCM works as GCM decryption as shown in Figure 

6.6 i.e. AES-GCM-AD (see section 3.2.6.2). AES-GCM-AD is similar to AES-GCM-AE. 
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Compared with Figure 6.5, one difference is that two 2-to-1 multiplexers, also named 

MUX-I and MUX-II are used instead of two 3-to-1 multiplexers in the Figure 6.5. The 

reason that 2-to-1 multiplexers are used is that the authentication tag T' is computed 

directly from A and C of the original input A_IV_C_T and it does not need to be input 

into register Output either. Another difference is that a 128-bit comparator is used to 

generate the FAIL signal depending on the comparison between T and T'. The delay of 

the comparator is 1 XOR gate plus 7 OR gates which is still smaller than the delay of the 

128-bit bit parallel multiplier over GF(2128) which is 1 AND gate plus 7 XOR gates. 

Figure 6.6: AES-GCM Decryption Architecture. 

Like the S-box of AES module in section 6.1.1, the 11 * l 28-bit FIFO can also be 

implemented by using dual-port Block SelectRAM+ or dual-port Distributed 

SelectRAM+. Therefore, AES-GCM can be implemented either by purely using CLBs 

(named as CFA) or using CLBs and block RAM (named as LUT). Table 6.3 and 6.4 lists 

the performance and cost comparison of these designs. Table 6.3 shows resources 

* 



utilization by AES datapath and Key expansion unit. Table 6.4 shows full AF-S-GCM 

unit's resources utilization in Virtex-4 xc4vlx200-11-ff1513. For the LUT based scheme 

(1), 58.3% ((130*128+12039)/49152=0.583) slices & 54% (130/240=0.369) BRAM 

Table 6.3: Place and Route Results Summary of other important units of AES-GCM. 

AES-GCM 
Design Units Delay 

(ns) 
Frequency 

(MHz) 
Throughput 

(Gbps) 
No. of 

 Slices 
  Kbps 

Slices 

LUT 
Based 

Key Expansion 3.722 268.670 34.389 3465 9924.67 

AES Data Path 9.878 101.232 12.957 8564 1513.04 

CFA Key Expansion 9.137 109.445 14.008 2750 5093.81 
Based AES Data Path 11.637 85.932 10.999 7625 1442.49 

blocks are used to implement AES-GCM with Mastrovito multiplier and 48.7% 

((130*128+7304)/49152=0.487) slices & 54% (130/240=0.369) BRAM blocks are used 

with Karatsuba multiplier; for the CFA based scheme (2), 40.6% (19957/49l520.406) 

slices are used to implement AES-GCM with Mastrovito multiplier and 41.3% 

(20320/49152=0.413) slices are used with Karatsuba multiplier. 

Table 6.4: Full AES-GCM's Place and Route Results Summary. 

AES- With Delay Frequency Throughput RAM Kbps 
GCM Multiplier p (ns) (MHz) ) (Gbps) p) Blocks No. of 	Slices 

Slices Design 
128* 130+12039 

Mastrovito 9.613 104.026 13.315 130 464.28 
LUT =28679 

Based 128* 160+7,304 
Karatsuba 12.785 78.217 10.012 160 360.35 =27784 

Mastrovito 10.442 95.767 12.258 0 19957 614.22 CFA 
Based 

Karatsuba 11.575 86.393 11.058 0 20320 544.21 

Table 6.5: Power analysis of the designs. 

AES-GCM Design With Multiplier No. of gates Power (mW) 

Mastrovito 8,735,739 1284 
LUT Based 

Karatsuba 10,610,177 1804 

Mastrovito 299,411 1136 
CFA Based 

Karatsuba 301,131 1594 

70 



14% 
(Key 

Expan 
on) 

380, 
(AE 

Datal 
h) 

CFA based AES-GCM 
7% 

41% 
,Matrov 

ito 
Kultipli 

er) 

13% 
(Key 

Expaint 
ion) 

34% 
(AES 

Datapat 
h) 

2000 

0 

1500 

J1000 

 500 

35000 

30000 

25000 

U, 20000 

o. 15000 
0 

10000 

5000 

0 

Mastrovito Karatsuba 

14 

0 

600 

-0 500 

v 400 

300 

200 

100 

0 

i 700 
U 

Figure 6.7: Area comparison of various units of Full AES-GCM. 
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Figure 6.8: Area and power comparison of two type of AES-GCM. 
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Figure 6.9: Throughput and throughput per slice comparison of two type of AES-GCM. 

71 



Figure 6.7, 6.8, 6.9 providing various important comparison columns bar diagrams. 

made by using information given in above tables, which make their interpretation easy. 

6.3 Verification of AES-GCM Functionality 

This section describes how the modules were verified in the realistic environment CMC-

prototype-platform. All of them including AES, GNASH, AES-GCM-AE, and AES-

GCM-AD were verified on this platform. They were also although designed in VHDL 

and timing simulated using Modelsim, respectively. The results are compared with other 

researches on hardware implementations of AES-GCM. 

6.3.1 IPsee Signal Generator 

In order to perform verification, an IPsec ESP signal Generator had to be built based on 

the IPsec ESP data packet format discussed in section 6.2.1. Figure 6.10 shows a 16-bit 

LFSR which generates 216-1 bit stream sequence periodically based on a primitive 

polynomial f(x)= I+x+x3+x12+X16  for building the IPsec signal generator which consisted 

of 8 16-bit LFSRs. The primitive polynomial with degree 16 was chosen since the 

maximum length of payload data of IPsec data packet is 216  bit long. At the beginning, 

the control signal start_LFSR asserts for m clock cycles, the signal generator generates m 

blocks of parallel 128-bit data as AAD; at the next clock cycle, start LFSR desserts for 

generating IV-GCM; sequentially, start_LFSR asserts again for n clock cycles in order to 

generate n blocks of parallel 128-bit data as payload data P. The values of m and n are 

controlled by one input of the signal generator, in other words, it is adjustable to meet the 

test requirement. 

Xis I X14I X13  I X121 Xii I xio I X9 I Xs I X7 I x6 I Xc I X4 I xa I Xz I Xi I Xn 

4- 
	 Start LFSR 

Figure 6.10: 16-bit LFSR for IPsec ESP Signal Generator. 



6.3.2 Verifying Both AES-GCM-AE and AES-GCM-AD on FPGA 

In Figure 6.11, two AES-GCM modules are used, one working as AES-GCM-AE by 

connecting Encryption to the power, one working as AES-GCM-AD by connecting 

Encryption to the ground. The mimic IPsec data packets A_IV_P from the signal 

generator go through the AES-GCM-AE and the AES-GCM-AD consecutively, and then 

go to the comparison module in which there is another identical IPsec signal generator for 

checking the recovered data P validity. If each node in Figure 6.8 works correctly, then 

the plaintext P will be recovered from the AES-GCM-AD without any bit-errors, the 

signal Verifying_GCM will go to high to indicate the AES-GCM-AE and the AES-GCM-

AD have been verified successfully. The comparison between T and T' is handled in the 

AES-GCM-AD module. If T is not equal to T', then the signal TVerification 

(corresponding the output Fail in algorithm 3.4) will be set to high to indicate that the 

inputs are not authentic. The signal Verifying_GCM and T_Verification physically are 

connected to two LEDs on the FPGA-platform in order to observe the verification results. 

After choosing 40MHz clock input as the global clock of FPGA, downloading the 

bitstream of the described architecture in Figure 6.7 to the Virtex-4 xc4vlx200-1 1-ff1513, 

the LED Verifying_GCM turns on and LED T_Verification remains off. Hence the 

module with AES-GCM functionality is implemented successfully on FPGA platform. 

)n 

Figure 6.11: AES-GCM Verification System. 
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In addition, in the appendix A of [l3], the designers of GCM provides several cases at' 

test vectors for testing AES-GCM implementation designs with different AES key sizes. 

The Test Case 3 and Test Case 4 are chosen to verify the work in this thesis. More 

specifically, first, using the 128-bit secret key K provided in Test Case 3 or Test Case 4 

generates not only 44 32-bit expanded key words for AES round-transformations but also 

hash subkey H for GHASH hash operations; second, using the additional authentication 

data A, the initial vector IV, and the plaintext data P provided in Test Case 3 or Test Case 

4 as parameters builds a test-bench which works as a stimulus to output data flow 

A_IV P into AES-GCM module for timing simulation; Finally, comparing the results 

A_IV_C_T of the timing simulation of AES-GCM with the A'_IV'_C'_T' provided in 

Test Case 3 and Test Case 4 and make sure they are identical (see the dash-line part of 

Figure 6.11). 

All the VHDL codes for generating AES-GCM, test benches, and test vectors arc 

printed out and listed in Appendixes. The hierarchical 1-1DI, code designs are shown in 

Figure 6.12. 

GCM—Verification 

IPsec Signal 
Bidirection GCM 	 Comparisio 

Generator 	
n 

GF 128-bit 
16-Bit LFSR 	11*128 bit FIFO 	Pipelined AES 	

Multiplier 
16-Bit LFSR 

Ito 9 Round 	Last Round 
Extended Key 

Transformation 	I 	I 	Transformation 

Figure 6.12: AES-GCM Hierarchical IIDL Codes Design. 
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CHAPTER 7 

CONCLUSION AND FUTURE WORK 

7.1 Conclusion 

In this dissertation, the development of a complete architecture for two mode of the AES 

security standard has been presented and implemented on modern Xilinx virtex-4 FPGA 

platform. 

Initially, two architecture of AES-ECB mode; compact single round (iterative) and 

pipelined architecture presented, and implemented on FPGA for both CAF and LUT 

based schemes. 

Then, using above design, a highly pipelined and parallelized architecture of AES-

GCM mode integrated and implemented on FPGA for both CFA and LUT based 

schemes, while GHASH implementation scheme is discussed in bit-parallel methods, and 

two well known parallel modular multipliers; Mastrovito and Karatsuba multiplier has 

been implemented on FPGA. Finally, feasibility of the AES-GCM architecture has been 

verified through verifying circuit. 

On compared with previous researches, presented FPGA architectures of AES modes 

are robust and achieve a good throughput. 

The Contributions achieved by this work are as follows: 

• Presented compact single round (iterative) architecture based on AES-ECB mode 

for FPGA. 

• Detail study of pipelining and subpipelining architectures based on AES-ECB 

made and implemented on FPGA. 

• Implementation of the AES-GCM security standard has been performed in a 

FPGA platform. 

• AES-GCM module can work in bidirectional, either GCM encryption or GCM 

decryption, mode. 
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• All the above designs are implemented both for LUT and CAF, and performance 

comparison performed for each design. 

• Power used by various design has been also analyzed along with throughput and 

area. 

7.2 Future Work 

As in this work, all the design discussed and implemented based on 128 bit key. So all 

these design can be explore for 192 and 256 bit key. 

Speed and area optimization is main focus during this work, although power has been 

calculated but there is not any specific method used for its optimization, so it could be 

good area to work. 

Dynamic reconfigurable system for specific application and its real time 

implementation can be made using one of the designs implemented in the work. 

A new public-key cryptographic scheme; Elliptical curve cryptography is recently 

quite famous for their high security features as compared to presented AES scheme. But 

its limited speed is big obstacle for their commercialization in modern high speed 

application. So finding solution of this problem can be a good future research field. 
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APPENDIX A 

TEST-VECTORS FOR AES-GCM 113] 

GCM Test Case #03 (AES-128) 

Variable Value 

K feffe9928665731c6d6a8f9467308308 

P : 	d9313225f88406e5a55909c5aff5269a 

86a7a9531534f7da2e4c303d8a318a72 

1c3c0c95956809532fcf0e2449a6b525 

bl6aedf5aa0de657ba637b391aafd255 

IV : cafebabefacedbaddecaf888 

H b83b533708bf535d0aa6e52980d53b78 

Y0 cafebabefacedbaddecaf88800000001 

E(K,Y 	0) : 	3247184b3c4f69a44dbcd22887bbb418 

Y 1 cafebabefacedbaddecaf88800000002 

E(K,Y 	1) : 	9bb22ce7d9f372clee2b28722b25f206 

Y_2 : 	cafebabefacedbaddecaf88800000003 

E(K,Y 2) : 	650d887c3936533alb8d4elea39d2b5c 

Y3 cafebabefacedbaddecaf88800000004 

E(K,Y 	3) : 	3de91827c10e9a4f5240647ee5221f20 

Y4 cafebabefacedbaddecaf88800000005 

E(K,Y 4) : 	aac9e6ccc0074acO873b9ba85d908bdO 

X 1 59ed3f2bbla0aaaO7c9f56c6aSO4647b 

X2 : 	b714c9048389afd9f9bc5c1d4378e052 

X3 : 	47400c6577b1ee8d8f40b2721e86ff10 

X4 : 	4796cf49464704b5dd91f159bb1b7f95 

len(A)Illen(C) 00000000000000000000000000000200 

GHASH(H,A,C) 7flb32b8lb82OdO2614f8895acid4eac 

C 42831ec2217774244b7221b784d0d49c 

e3aa212f2c02a4e035c17e2329aca12e 

21d514b25466931c7d8f6a5aac84aa05 

1ba30b396a0aac973d58e091473f5985 

T 4d5c2af327cd64a62cf35abd2ba6fab4 
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GCM Test Case #04 (AES-128) 

Variable Value 

K 	: feffe9928665731c6d6a8f9467308308 

P 	: d9313225f88406e5a55909c5aff5269a 

86a7a9531534f7da2e4c303d8a318a72 

1c3c0c95956809532fcf0e2449a6b525 

bl6aedf5aaOde657ba637b39 

A 	: feedfacedeadbeeffeedfacedeadbeef 

abaddad2 

IV 	: cafebabefacedbaddecaf888 

H : b83b533708bf535d0aa6e52980d53b78 

Y 0 : cafebabefacedbaddecaf88800000001 

E(K,Y 0) : 	3247184b3c4f69a44dbcd22887bbb418 

X 1 : 	ed56aaf8a72d67049fdb9228edba1322 

X_2 : 	cd47221ccef0554ee4bb044c88150352 

Y 1 : 	cafebabefacedbaddecaf68800000002 

E(K,Y 1) : 	9bb22ce7d9f372clee2b28722b25f206 

Y2 : cafebabefacedbaddecaf88800000003 

E(K,Y 2) 650d887c3936533a1b8d4e1ea39d2b5c 

Y3 : 	cafebabefacedbaddecaf88800000004 

E(K,Y 3) : 	3de91827c10e9a4f5240647ee5221f20 

Y4 : cafebabefacedbaddecaf88800000005 

E(K,Y 4) : aac9e6ccc0074acO873b9ba85d908bd0 

X3 : 	54f5e1b2b5a8f9525c23924751a3ca51 

X4 : 	324f585c6ffcl359ab371565d6c45f93 

X5 ca7dd446af4aa70cc3cOcd5abba6aalc 

X6 : 	1590df9b2eb6768289e57d56274c8570 

len(A)IIlen(C) 00000000000000a00000000000000leO 

GHASH(H,A,C) 698e57f70e6ecc7fd9463b7260a9ae5f 

C 42831ec2217774244b7221b784d0d49c 

e3aa212f2c02a4e035c17e2329aca12e 

2ld5l4b2546693lc7d8f6a5aac84aa05 

lba30b396aOaac973d58eO9l 

T 5bc94fbc3221a5db94fae95ae7121a47 
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APPENDIX B 

SIMULATION RESULTS OF IMPLEMENTED DESIGNS 

1. AES-GCM Designs:- 

clk 	LFSR 16bit out_prime(0:15) ----- 

P_16bit_out(0:15) 

cik out 

data valid 

floating 

Sec_LED 

T Verification 

Reset_n 	 Verifyi ng_G CM 

(a)  

(b)  
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1.1 LUT based AES-GCM with Mastrovito Multiplier 

Timing summary: 

Timing errors: 0 Score: 0 
Constraints cover 369867 paths, 0 nets, and 109174 connections 
Design statistics: 
Minimum period: 9.613ns (Maximum frequency: 	104.026MHz) 
Minimum input required time before clock: 	10.362ns 
Minimum output required time after clock: 	10.550ns 
Analysis completed Sun May 24 04:26:36 2009 
----------------------------------------------------------------------- 

+ 	},, ~~~~ 	a 
rc~P~ 	I 	~. 	... 	~', 	iR~ 	....... NI 	r 	:. t~iY~., 	As 	k. 	.pia 	5b;,4 'n1 ~~ 	fit, 	isG 

Logic Utilization 
Dev cke UUlizati~n 

\Sz..; 	r.',46=.(~~„o{ 	4., 	tt#r} 	„~ 	,,s 

Used 
ttuL~ 	:.i~ 	,FU 	

,,, Sitmrrtary 
Available 	Utilization 

Number of Slice Flip Flops 3,174 98,304 3% 
Number of 4 input LUTs 22,237 98,304 22% 
Logic Distribution 
Number of occupied Slices 12,039 49,152 24% 

Number of Slices containing only related logic 12,039 12,039 100% 
Number of Slices containing unrelated logic 0 12,039 0% 

Total Number of 4 input LUTs 22,730 98,304 23% 
Number used as logic 22,237 
Number used as a route-thru 77 
Number used as Shift registers 416 
Number of bonded IOBs 40 960 4% 
Number of BUFG/BUFGCTRLs 1 32 3% 

Number used as BUFGs 1 
Number used as BUFGCTRLs 0 

Number of FIFO16/RAMB16s 130 240 54% 
Number used as FIFO16s 0 
Number used as RAMB16s 130 

Total equivalent gate count for design 8,735,739 
Additional JTAG gate count for IOBs 1,920 

Power summary: I(mA) P(mW) 

Total estimated power consumption: 1284 

Vccint 1.20V: 572 687 
Vccaux 2.50V: 234 585 
Vcco25 2.50V: 5 13 

Clocks: 51 61 
Inputs: 3 3 
Logic: 166 199 
Outputs: 
Vcco25 5 13 
Signals: 0 0 

Quiescent Vccint 1.20V: 353 424 
Quiescent Vccaux 2.50V: 
----------------------------------------------------------------- 

234 584 
------ 
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1.2 LUT based AES-GCM with Karatsuba Multiplier 

Timing summary: 

Timing errors: 0 Score: 0 
Constraints cover 860812 paths, 0 nets, and 50973 connections 
Design statistics: 
Minimum period: 12.785ns (Maximum frequency: 	78.217MHz) 
Minimum input required time before clock: 	12.573ns 
Minimum output required time after clock: 	12.305ns 
Analysis completed Sat May 23 23:29:32 2009 
----------------------------------------------------------------------- 

Logic Utilization 

r  ',9'.'~'~  hb  HdYs'ar" 

Used 

`ze 4`~lCN hffiAR M'  l~  iwn7i k~k~s'N~ Uz i'i~i2 

Available 

'2 ifi  ~  P.  S  k 

Utilization 

Number of Slice Flip Flops 2,788 178,176 1% 

Number of 4 input LUTs 12,280 178,176 6% 

Logic Distribution 
Number of occupied Slices 7,304 89,088 8% 

Number of Slices containing only related logic 7,304 7,304 100% 

Number of Slices containing unrelated logic 0 7,304 0% 

Total Number of 4 input LUTs 12,773 178,176 7% 

Number used as logic 12,280 

Number used as a route-thru 77 

Number used as Shift registers 416 

Number of bonded IOBs 40 960 4% 

Number of BUFG/BUFGCTRLs 1 32 3° 

Number used as BUFGs 1 

Number used as BUFGCTRLs 0 

Number of FIFO16/RAMB16s 160 336 47% 

Number used as FIFO16s 0 

Number used as RAMB16s 160 

Total equivalent gate count for design 10,610,177 

Additional JTAG gate count for IOBs 1,920 

Power summary: 
----------------------------------------------------------------------- 

I(mA) P(mW) 

Total estimated power consumption: 1804 

Vccint 1.20V: 891 1069 
Vccaux 2.50V: 289 722 
Vcco25.2.50V: 5 13 

Clocks: 49 58 
Inputs: 3 3 
Logic: 211 253 
Outputs: 
Vcco25 5 13 
Signals: 0 0 

Quiescent Vccint 1.20V: 628 754 
Quiescent Vccaux 2.50V: 289 722 



1.3 CAF based AES-GCM with Mastrovito Multiplier 

Timing summary: 

Timing errors: 0 Score: 0 
Constraints cover 55489067 paths, 0 nets, and 144085 connections 
Design statistics: 
Minimum period: 10.227ns (Maximum frequency: 	97.780MHz) 
Minimum input required time before clock: 	12.936ns 
Minimum output required time after clock: 	9.952ns 
Analysis completed Sun May 24 03:32:59 2009 
----------------------------------------------------------------------- 

Device Utilization  ''a L 
T 	j 

5.rS Summary 
e' 

Logic Utilization Used Available Utilization 

Number of Slice Flip Flops 5,100 98,304 5% 

Number of 4 input LUTs 37,587 98,304 38% 

Logic Distribution 

Number of occupied Slices 19,957 49,152 40% 

Number of Slices containing only related logic 19,957 19,957 100%  

Number of Slices containing unrelated logic 0 19,957 0% 

Total Number of 4 input LUTs 38,080 98,304 38% 

Number used as logic 37,587 

Number used as a route-thru 77 

Number used as Shift registers 416 

Number of bonded IOBs 40 960 40%0 

Number of BUFGIBUFGCTRLs 1 32 3% 

Number used as BUFGs 1 

Number used as BUFGCTRLs 0 

Total equivalent gate count for design 299,411 

Additional JTAG gate count for IOBs 1,920 

Power summary: I(mA) P (mW) 

Total estimated power consumption: 1136 

Vccint 1.20V: 449 538 
Vccaux 2.50V: 234 585 
Vcco25 2.50V: 5 13 

Clocks: 71 85 
Inputs: 3 3 
Logic: 30 36 
Outputs: 
Vcco25 5 13 
Signals: 0 0 

Quiescent Vccint 1.20V: 345 415 
Quiescent Vccaux 2.50V: 234 584 

87 



1.4  CAF based AES-GCM with Karatsuba Multiplier 

Timing summary: 

Timing errors: 0 Score: 0 
Constraints cover 54831791 paths, 0 nets, and 144977 connections 
Design statistics: 
Minimum period: 11.575ns (Maximum frequency: 86.393MHz) 
Minimum input required time before clock: 16.767ns 
Minimum output required time after clock: 12.759ns 
Analysis completed Sun May 24 01:13:31 2009 
----------------------------------------------------------------------- 

Device Utilization Summary` 

Logic Utilization Used Available Utilization 

Number of Slice Flip Flops 5,105 178.176 2% 

Number of 4 input LUTs 38,190 178.176 21°/a 

Logic Distribution 

Number of occupied Slices 20,320 89.088 22% 

Number of Slices containing only related logic 20,320 20.320 100°h, 

Number of Slices containing unrelated logic 0 20,320 0% 

Total Number of 4 input LUTs 38,684 178,176 21% 

Number used as logic 38,190 

Number used as a route-thru 78 

Number used as Shift registers 416 

Number of bonded IOBs 40 960 4% 

Number of BUFG/BUFGCTRLs 1 32 3% 

Number used as BUFGs 1 

Number used as BUFGCTRLs 0 

Total equivalent gate count for design 301,131 

Additional JTAG gate count for IOBs 1,920 

Power summary: 
----------------------------------------------------------------------- 

I(mA) P(mW) 

Total estimated power consumption: 1594 

Vccint 1.20V: 715 859 

Vccaux 2.50V: 289 722 

Vcco25 2.50V: 5 13 

Clocks: 73 88 
Inputs: 3 3 
Logic: 30 36 
Outputs: 
Vcco25 5 13 
Signals: 0 0 

Quiescent Vccint 1.20V: 610 732 
Quiescent Vccaux 2.50V: 
----------------------------------------------------------------- 

289 722 
------ 
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2. Multipliers:- 

AC(0:127) 	X(0:127) 

H(0:127) 

c!k 

reset 

2.1 Mastrovito Multiplier 

Timing Summary: 

Speed Grade: -12 
Minimum period: No path found 
Minimum input arrival time before clock: No path found 
Maximum output required time after clock: No path found 
Maximum combinational path delay: 	10.260ns 
----------------------------------------------------------------------- 

P1 •1U 	psi 	.,, , _, 	~ 	 ~euice Utilisation Sn~hmary
Logic Utilization 	 Used 	Available 	Utilization 
Number of 4 input LUTs 14,193 98,304 14% 

Logic Distribution 
Number of occupied Slices 8,229 49,152 16 i 

Number of Slices containing only related logic 8,229 8,229 100% 

Number of Slices containing unrelated logic 0 8.229 0°%~ 

Total Number of 4 input LUTs 14,193 98,304 14% 

Number of bonded lOBs 384 960 40% 

Total equivalent gate count for design 85,161 
Additional JTAG gate count for IOBs 18,432 

Power summary: 
----------------------------------------------------------------------- 

I(mA) P(mW) 

Total estimated power consumption: 990 

Vccint 1.20V: 338 406 
Vccaux 2.50V: 234 584 
Vcco25 2.50V: 0 0 

Inputs; 0 0 
Logic: 0 0 
Outputs: 
Vcco25 0 0 
Signals: 0 0 

Quiescent Vccint 1.20V: 338 406 
Quiescent Vccaux 2.50V: 234 584 



2.2 Kratsuba Multiplier 

Timing Summary: 

Speed Grade: -11 
Minimum period: No path found 
Minimum input arrival time before clock: No path found 
Maximum output required time after clock: No path found 
Maximum combinational path delay: 	15.397ns 
----------------------------------------------------------------------- 

Device. Utilization Summary 

Logic Utilization Used Available Utilization 

Number of 4 input LUTs 7,542 178,176 4% 

Logic Distribution 

Number of occupied Slices 3,890 89,088 4% 

Number of Slices containing only related logic 3,890 3,890 100% 

Number of Slices containing unrelated logic 0 3,890 0% 

Total Number of 4 input LUTs 7,542 178,176 4% 

Number of bonded lOBs 384 960 40% 

Total equivalent gate count for design 46,290 

Additional JTAG gate count for lOBs 18,432 

Power summary: 
----------------------------------------------------------------------- 

I (mA) P (mW) 

Total estimated power consumption: 1438 

Vccint 1.20V: 597 717 
Vccaux 2.50V: 289 722 
Vcco25 2.50V: 0 0 

Inputs: 0 0 
Logic: 0 0 
Outputs: 
Vcco25 0 0 
Signals: 0 0 

Quiescent Vccint 1.20V: 597 717 
Quiescent Vccaux 2.SOV: 
----------------------------------------------------------------- 

289 722 
------ 
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3. Compact Single Round AES-ECB Design:- 

plaintext(127:0) 	ciphertext( 127:0) 

user_key(127:0) 

clk 

encrypt 

reset 



3.1 LUT based Compact Single Round AES-ECB Design 

Timing summary: 

Timing errors: 0 Score: 0 
Constraints cover 728546 paths, 0 nets, and 23466 connections 
Design statistics: 
Minimum period: 10.161ns (Maximum frequency: 	98.416MHz) 
Minimum input required time before clock: 	0.870ns 
Minimum output required time after clock: 	13.623ns 
Analysis completed Wed Dec 31 12:18:29 2008 

Device Utilization Summary. . 

LogicUtilization Used Available Utilization 

Number of Slice Flip Flops 625 98,304 1 

Number of 4 input LUTs 4,297 98,304 4% 

Logic Distribution 

Number of occupied Slices 2,571 49,152 5% 

Number of Slices containing only related logic 2,571 2,571 100% 

Number of Slices containing unrelated logic 0 2,571 0% 

Total Number of 4 input LUTs 4,297 98,304 4% 

Number of bonded IOBs 387 768 50% 

Number of BUFG/BUFGCTRLs 1 32 3% 

Number used as BUFGs 1 

Number used as BUFGCTRLs 0 

Total equivalent gate count for design 39,005 

Additional JTAG gate count for IOBs 18,576 

Power summary: 
----------------------------------------------------------------------- 

I(mA), P(mW) 

Total estimated power consumption: 1019 

Vccint 1.20V: 362 434 
Vccaux 2.50V: 234 584 
Vcco25 2.56V: 0 0 

Clocks: 17 21 
Inputs: 3 3 
Logic: 0 0 
Outputs: 
Vcco25 0 0 
Signals: 0 0 

Quiescent Vccint 1.20V: 342 410 
Quiescent Vccaux 2.50V: 
----------------------------------------------------------------- 

234 584 
------ 
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3.2 CFA based Compact Single Round AES-ECB Design 

Timing summary: 

Timing errors: 0 Score: 0 
Constraints cover 3073369 paths, 0 nets, and 11089 connections 
Design statistics: 
Minimum period: 13.177ns (Maximum frequency: 	75.890MHz) 
Minimum output required time after clock: 	14.706ns 
Analysis completed Thu May 21 03:24:36 2009 
----------------------------------------------------------------------- 

~' 	 bovice,01 ilizatron•Summary 

Logic Utilization Used Available Utilization 

Number of Slice Flip Flops 260 178,176 1 

Number of 4 input LUTs 2,819 178,176 1% 

Logic Distribution 

Number of occupied Slices 1,452 89,088 1% 

Number of Slices containing only related logic 1,452 1,452 100% 

Number of Slices containing unrelated logic 0 1,452 0% 

Total Number of 4 input LUTs 2,819 178,176 1% 

Number of bonded IOBs 387 960 40% 

Numberof BUFG/BUFGCTRLs 1 32 3% 

Number used as BUFGs 1 

Number used as BUFGCTRLs 0 

Total equivalent gate count for design 19,306 

Additional JTAG gate count for IOBs 18,576 

Power summary: 
----------------------------------------------------------------------- 

I(mA) P(mw) 

Total estimated power consumption: 1438 

Vccint 1.20V: 597 717 
Vccaux 2.50V: 289 722 
Vcco25 2.50V: 0 0 

Clocks: 0 0 

Inputs: 0 0 
Logic: 0 0 
Outputs: 
Vcco25 0 0 
Signals: 0 0 

Quiescent Vccint 1.20V: 597 717 
Quiescent Vccaux 2.50V: 289 722 
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