
HIGH PERFORMANCE ADVANCE ENCRYPTION
STANDARD IMPLEMENTATION ON FPGA

A DISSERTATION
Submitted in partial fulfillment of the

requirements for the award of the degree
Of

MASTER OF TECHNOLOGY
in

ELECTRONICS AND COMPUTER ENGINEERING
(With Specialization in Semiconductor Devices & VLSI Technology)

By
VISHWANATH PAT EL

I 	?! * DLL)

CANDIDATE'S DECLARATION

I hereby declare that the work, which is presented in this thesis, entitled 'HIGH

PERFORMANCE ADVANCE ENCRYPTION STANDARD IMPLEMENTATION

ON FPGA", being submitted in partial fulfillment of the requirements for the award of

the degree of MASTER OF TECHNOLOGY with specialization in SEMICONDUCTOR

DEVICES AND VLSI TECHNOLOGY in department of Electronics & Computer

Engineering, Indian Institute of Technology, Roorkee is an authentic record of my won

work carried out from July 2008 to June 2009, under the guidance and supervision of

Dr. R. C. Joshi and Dr. A. K. Saxena, professors, Department of Electronics &

Computer Engineering, Indian Institute of Technology, Roorkee, INDIA.

The result embodied in this dissertation, have not submitted for the award of any other

Degree or Diploma.

Date: 043/049109

Place: Roorkee 	 (Vishwanath Patel)

CERTIFICATE

This is to certify that the statement made by the candidate is correct to best my

knowledge and belief.

(Dr. R. C. Jos i)
	

(Dr. A. K. Saxena)
Professor 	 Professor

Department of Electronics & Computer Engineering,

Indian Institute of Technology Roorkee,

Roorkee-247667, INDIA

Date: o9 !o 6 /o9
Place: Roorkee

ACKNOWLEDGEMENT

It is my privilege and pleasure to express my profound sense of respect, gratitude and

indebtedness to my guides, Dr. R. C. Joshi and Dr. A. K. Saxena, Professors,

department of electronics and computer engineering, Indian Institute of Technology

Roorkee, for their inspiration, guidance, constructive criticisms and encouragement

throughout this dissertation work. The valuable hours of discussion and suggestions that I

had with them have undoubtedly helped in supplementing my thoughts in the right

direction for attaining the desired objective. I consider myself extremely fortunate for

having got the opportunity to learn and work under their able supervision over the entire

period of my association with them.

Thanks are due to lab staff of VLSI Design and Sponsored Project Laboratory.

Department of Electronics & Computer Engineering, Indian. Institute of Technology

Roorkee for providing necessary facilities and support.

I am greatly indebted to all my friends, who have graciously applied themselves to the

task of helping me with ample moral supports and valuable suggestions. Finally, I would

like to extend my gratitude to all those persons who directly or indirectly helped me in

the process and contributed towards this work.

ABSTRACT

In today's world most of the communication is done using electronic media. Data

Security plays a vital role in such communication. In October 2000, the National Institute

of Standards and Technology (NIST) selected the Rijndael as the Advanced Encryption

Standard (AES) algorithm to replace the old Data Encryption Standard (DES).Till then

four modes has been proposed by NIST.

A fourth and recent mode of operation of AES proposed by NIST in November 2006,

SP800-38D, Galois/Counter Mode of Operation (GCM), that provide not only data

security through encryption but also massage authentication.

Before GCM, SP800-38A only provided confidentiality and SP800-38B provided

authentication. SP800-38C provided confidentiality using the counter mode and

authentication. However the authentication technique in SP800-38C was not

parallelizable and slowed down the throughput of the cipher. Hence, none of these three

recommendations were suitable for high speed network and computer system

applications.

This work includes, demonstration and analysis of FPGA architectures for, SP800-38A

(AES-ECB) and SP800-38D (AES-GCM) modes of AES algorithm with the view of

enhancing their performance. AES-GCM is a complex unit, AES-ECB (Electronic Code-

Book) is used as one of its internal component; so this thesis first presents efficient

iterative and fully pipelined based hardware architectures for AES-ECB mode and then

finally presents fully pipelined and parallelized hardware architecture for AES-GCM.

Area optimization in above stated designs has been approached through implementing

Sboxes of AES by Composite Field Arithmetic (CFA) technique and their comparison is

made with respective LUTs (Look-Up tables) based designs.

Since modular multiplier is a very important unit of AES-GCM, which not only very

crucial to determine speed of design but also covers 50% of overall area of the design,

there are two multipliers has been analyzed and used in final AES-GCM design.

In this thesis, all the designs are implemented on multi-core Xilinx's virtex-4 FPGA

platform.

CONTENTS

Title 	 Page No.

	

Candidate's Declaration .. 	i

	

Certificate.. 	i

	

Acknowledgement.. 	ii

	

Abstract... 	i i i

	

Contents.. 	iv

	

Listof Tables .. 	viii

Listof Figures 	ix

	

Chapter 1 Introduction and Statement of the Problem .. 	1

	

1.1 Introduction .. 	1

	

1.2 Statement of the problem .. 	3

	

1.4 Organization of Thesis .. 	3

	

Chapter 2 Historical Review and General Consideration 	6

	

2.1 Historical Review .. 	6

	

2.2 Mathematical Background ... 	7

	

2.2.1 Finite Fields ... 	7

	

2.2.2 Operations over Binary Finite Fields GF (2D1) 	8

	

2.2.3 Composite Field Arithmetic .. 	11

	

2.3 Field Programmable Gate Arrays (FPGA) ... 	13

	

2.3.1 Advantages of FPGA in Cryptographic Applications 	14

	

2.3.2 Virtex-4 .. 	15

	

Chapter 3 Security Standard .. 	17

	

3.1 Advanced Encryption Standard (AES) ... 	17

	

3.1.1 AES Cipher .. 	19

	

3.1.2 Byte Substitution (SubBytes) .. 	19

	

3.1.3 Shift Rows .. 	2 0

iv

3.1.4 	Mix 	Columns ... 21

3.1.5 	Key 	Schedule ... 22

3.2 Confidentiality Mode of Operation Background .. 23

3.2.1 Electronic Codebook Mode (ECB) ... 23

3.2.2 Counter Mode (CTR) .. 24

3.3 Galois/Counter Mode (GCM) ... 26

3.3.1 	Block 	Cipher .. 26

3.3.2 Input and Output Data ... 26

3.3.3 Types of Applications of GCM ... 27

3.3.4 GHASH Function .. 28

3.3.5 	GCTR Function .. 29

3.3.6 	GCM 	Specification .. 31

	

Chapter 4 Parallel Multiplier Designs for GCM ... 	35

	

4.1 Mastrovito Multiplier .. 	35

	

4.1.1 Matrix Vector Product ... 	35

	

4.1.2 Mastrovito Multiplier Design using MVP ... 	36

	

4.2 Karatsuba Algorithm Sub-quadratic Multiplier .. 	37

	

4.2.1 KA Multiplier Formulation .. 	3 8

	

4.2.2 Modulo Reduction ... 	39

	

4.2.3 KA Multiplier Design for GCM .. 	40

	

4.3 FPGA Implementation Results ... 	42

Chapter 5 FPGA Implementation of AES-ECB Architectures 43

	

5.1 Compact Single Round AES Design .. 	43

5.1.1 Single Round Compact Design ... 	43

5.1.2 Composite Field Arithmetic based SubBytes function 	46

	

5.1.3 Implementation Results ... 	47

	

5.1.4 Performance Comparison with other Designs 	47

	

5.2 High Speed Sub-pipelined Design .. 	49

	

5.2.1 The AES Algorithm And Its Subpipelined Architecture 	49

v

	

5.2.2 Detailed Hardware Implementation Architectures 	50

	

5.2.3 Implementation Result and Comparison ... 	57

	

Chapter 6 FPGA Implementation of AES-GCM Architecture 	60

	

6.1 Modules Design .. 	60

	

6.1.1 AES Module .. 	60

	

6.1.2 GHASH Module .. 	62

	

6.2 High Speed Hardware Implementation of AES-GCM 	64

	

6.2.1 Format of Data Packet of IPsec ESP ... 	64

	

6.2.2 Data Flow. in GCM .. 	65

	

6.2.3 Hardware Implementation Bidirectional GCM 	67

	

6.3 Verification of AES-GCM Functionality ... 	72

6.3.1 IPsec Signal Generator ..

6.3.2 Verifying Both AES-GCM-AE and AES-GCM-AD on FPGA............ 7 3

	

Chapter 7 Conclusion and Future Work ... 	75

	

7.1 Conclusion .. 	75

	

7.2 Future Work .. 	76

	

References... 	77

	

PapersPublished .. 	81

	

Appendices.. 	82

	

Appendix A: Test-Vectors for AES-GCM .. 	82

	

Appendix B : Simulation Result of Implemented Designs 	84

Al

LIST OF TABLES

Table No. 	 Page No.

Table 2.1 	: Resources of Virtex-4 FPGA Family Members 	15

Table 4.1 	: Area of KA Multiplier with varied ending conditions 41

Table 4.2 	: Multiplier's Place and Route Results Summary 42

Table 5.1 	: Synthesis and Place & Route results of compact ABS designs 48

Table 5.2 	: The logic and routing delay of compact AES designs 48

Table 5.3 	: Performance comparison of compact ABS designs48

Table 5.4 	Gate counts and critical paths functional blocks in the SubBytes

Transformation[17] ... 52

Table 5.5 : Comparison of FPGA implementation of the AES algorithm 58

Table 5.6 : 	Power consumed ... 58

Table 6.1 : Comparison between Iterative and Pipelined AES 61

Table 6.2 : Comparison between different GHASH architectures 63

Table 6.3 : Place and Route Results Summary of other important units of AFS-

GCM... 70

Table 6.4 : Full AES-GCM's Place and Route Results Summary 70

Table 6.5 : Power analysis of the designs ... 70

vii

LIST OF FIGURES

Figure No. 	 Page No.

Figure 2.1 : 	Simplified virtex-4 CLB 16

Figure 3.1 : (a) AES Encryption, (b) AES Decryption algorithm 18

Figure 3.2 : AES Round State Array Transformation ... 18

Figure 3.3 : (a) Visual diagram, (b) Block diagram of composite Sbox 20

Figure 3.4 : 	AES 	Shift 	Rows ... 21

Figure 3.5 : AES 	128 bit Key Schedule Round ... 22

Figure 3.6 : ECB Encryption and ECB Decryption. [1] .. 24

Figure 3.7 : CTR Encryption and CTR Decryption [I] ... 25

Figure 3.8 : GHASHH (XI 	11 X2 	... 11 Xm) = Y,,,.[4] .. 29

Figure 3.9 : GCTRK(ICB, Xi 11 X2 	... 	Xn*) = YI 11 Y2 	... 11 Yn*.[4] 30

Figure 3.10 : AES-GCM-AEK (1V, P, A) = (C, T). [4] 32

Figure 3.11 : AES-GCM-ADK (IV, C, A. T) = P or FAIL.[4] 34

Figure 4.1 : 	Mastrovito Multiplier for GCM ... 37

Figure 4.3 : (a) Abstract view, and (b) Full view of the Karatsuba Multiplier. 41

Figure 4.4 : Multiplier performance comparison .. 42

Figure 5.1 : Compact single round AES FPGA architecture 44

Figure5.2 : 	Round 	unit ... 44

Figure 5.3 : 	Key 	Scheduler Unit .. 45

Figure5.4 . 	State 	diagram ... 46

Figure 5.5 : The architecture of Subpipelining ... 50

Figure 5.6 : Implementation of the subBytes Transformation 51

Figure 5.7 : Implementations of individual blocks: (a) Multiplier in GF(24);

(b) Multiplier in GF(22); (c) Squarer in GF(24); (d) Constant

multiplier (x A); and (e) Constant multiplier (x 0) 52

Figure 5.8 : Efficient implementation of the MixColumns (red dashed rectangle

only) and InvMixColumns transformation ... _55

viii

Figure 5.9 	: Different cutest of Round and Subkey unit for sub-pipelined

architecture.. 5 6

Figure 5.10 : Scatter graphs for comparison of (a) Power, (b) Throughput, (c) No.

of slices and (d) both (b)&(c), of subpipelined AES designs............ 59

Figure 6.1 : AES CTR over ECB Mode Cipher Structure 2

Figure 6.2 : GHASH Hardware Architecture .. 63

Figure 6.3 : The Use of GCM in IPsec ESP [31] .. 65

Figure.6.4 : (a) The Data Flow of GCM Encryption (b) The Data Flow of GCM

Decryption... 66

Figure 6.5 : AES-GCM Encryption Architecture .. 67

Figure 6.6 : AES-GCM Decryption Architecture .. 69

Figure 6.7 : Comparison of various units of Full AES-GCM 71

Figure 6.8 : Area and power comparison of two type of AES-GCM 71

Figure 6.9 : Throughput and throughput per slice comparison of two type of

AES-GCM ... 71

Figure 6.10 : 	16-bit LFSR for IPsec ESP Signal Generator 72

Figure 6.11 : AES-GCM Verification System ... 73

Figure 6.12 : AES-GCM Hierarchical HDL Codes Design 74

ix

CHAPTER 1

INTRODUCTION AND STATEMENT OF THE PROBLEM

1.1 Introduction

In the past traditional communications were based on letters, payments were done using

checks or cash, and secret documents were saved in sealed boxes. Today everything is

changed, and is changing quickly. Everyday more people buy cell phones, the number of

e-mail users goes up, and more people pay their payments over the internet. Paperless

office strategies save and process documents in electronic format. These trends are going

to make the life easier but at the same time produce security risks. The rapid development

of electronic communication systems requires a secure infrastructure, too. Cryptography

is the mathematical tool which is used by security engineers to secure data against

unauthorized access or manipulation.

Like every other useful service, security will not be achieved for free. Implementing

cryptography tasks costs time, money (chip area), and energy. To meets these constraints

of upcoming modern applications, intensive work is required in this field.

Implementing cryptographic algorithms on reconfigurable hardware provides major

benefits over ASIC (application-specific integrated circuit) and software platforms, since

they offer high speed similar to ASIC and high flexibility similar to software. ASIC

implementations are fast but must be designed all the way from behavioral description to

the physical layout. They have to follow an expensive and time consuming fabrication

process. Software implementations offer high flexibility but they are not fast enough for

the applications where time factor is vital.

In nutshell, reconfigurable devices are attractive, since the time and costs of VLSI

design and fabrication can be reduced. Moreover, they offer high potential for

reprogramming and experimenting on multiple architectures or several revisions of the

same architecture, which enhance robustness of security system.

The AES algorithm is a private-key encryption algorithm. In January 1997. the National

Institute of Standards and Technology (NIST) invited proposals for new algorithms for

1

the Advanced Encryption Standard (AES) to replace the old Data Encryption Standard

(DES). After two rounds of evaluation on the 15 candidate algorithms. NIST selected the

Rijndael as the AES algorithm [I] in October 2000.

Since then, the NIST has published a total of four recommendations for Block Cipher

AES Modes of Operation, specifically SP800-38A [1], SP800-38B [2], SP800-38C [3],

and SP800-38D [4]. A block cipher mode of operation is an algorithm that uses a

symmetric key block cipher to provide confidentiality, authentication or both for

information security.

In SP800-38A, NIST recommends five confidentiality modes of operation for use with

an underlying symmetric key block cipher algorithm: Electronic Codebook (ECB) mode,

Cipher Block Chaining (CBC) mode, Cipher Feedback (CFB) mode, Output Feedback

(OFB) mode, and Counter (CTR) mode. These five modes can be separated into two

groups: one is a non-feedback mode group, including ECB and CTR; one is a feedback

mode group, including CBC, CFB and OFB. In the feedback modes, the current

computation/execution step depends on the result of the previous step. Therefore, to

implement these kinds of modes in hardware, an iterative architecture is typically adapted

for low throughput requirements rather than a pipelined architecture. In contrast, the use

of ECB or CTR mode, or non-feedback modes, supports pipelined or parallelized

architecture designs for processing high-speed data flows.

As the forth security standard of Block Cipher Mode of Operation, SP800-38D,

Galois/Counter Mode of Operation (GCM), fills the need above. GCM features the use of

an approved symmetric key block cipher with a block size of 128 bits and a universal

hash function that is defined over a binary Galois field. The most recently approved

symmetric key block cipher with a block size of 128 bits is the Advanced Encryption

Standard (AES) algorithm that is specified in Federal Information Processing Standard

(FIPS) Pub.197 [3]. The specified universal hash function in GCM is defined over a

binary Galois field (GF) and is a 128-bit polynomial multiplier over GF (2128), called

GHASH. GHASH can provide a secure, parallelizable, and efficient authentication

mechanism. For the confidentiality mechanism of GCM, the CTR mode embedded by

ECB mode, called GCTR, is adopted using an underlying block cipher. GCM, i.e. SP800-

2

38D, was officially published in November 2006. However except one or two, there are

no known high performance FPGA (field programmable gate array) architectures or

implementations of this standard.

1.2 Statement of the problem

The objective of this thesis is to demonstrate, analyze and implement FPGA architectures

for, SP800-38A (ECB) and SP800-38D (GCM) modes of AES algorithm with the view of

enhancing their performance.

In above stated two modes, GCM comparatively a big and complex design. It includes

AES engine (SP800-38A), GHASH (modular multiplier), and Key-expanded modules. So

to achieve our objectives, the problem can be subdivided as follows:

1. To implement iterative and pipelined architectures of AES-ECB (Electronic

Code-Book) mode on FPGA and investigate their performance.

2. To investigate different type of modular multipliers used in GHASH and analyze

their performance by implementing on FPGA.

3. To integrated various GCM modules together, along with control logic to

implement the highly parallel, pipelined and entire new security standard, AES-

GCM.

4. To optimize the AES designs in term of area, CFA (Composite Field Arithmetic)

technique analyzed for making Sbox (sub unit of AFS).

5. To verify the feasibility, efficiency and cost of each hardware module of AES. the

architectural designs synthesized, timing simulated, and downloaded to the FPGA

virtex-4 platform.

1.3 Organization of Thesis

This thesis is organized as follows: Chapter 2 provides historical review of different

implemented architectures in this thesis. An overview of the mathematical definitions

over GF and composite field arithmetic is provided as mathematical background.

Introduction to the FPGA device structures and its advantage in security systems also

3

provided in this chapter. Chapter 3 presents security standards, AES, other confidential

modes of AES and GCM. Chapter 4 describe two type of parallel multiplier used in

GCM and their implementation result. In chapter 5, the proposed hardware architectures

of AES are presented. The proposed hardware architectures of AES-GCM are presented

in chapter 6. The bit parallel multiplier over GF, and the pipelined AES discussed in

chapter 4 and 5 are chosen as the modules to build AES-GCM. A methodology, to verify

the AES-GCM hardware implementation is also discussed during this chapter. Finally,

chapter 7 provides conclusion and future work.

4

CHAPTER 2

HISTORICAL REVIEW AND GENERAL CONSIDRATION

This chapter provides the review and concepts necessary in order to understand

implemented architectures: Section 2.1 provides historical review. Section 2.2 introduces

to the concepts of finite fields, and Composite Field Arithmetic (CFA); an area reduction

technique. Section 2.3 gives quick overview of FPGA and describes the advantages of

FPGA technology for cryptographic system.

2.1 Historical Review

In November 2001, after a 5-year standardization process in which fifteen competing

designs were presented and evaluated, Rijndael [32] (developed by two Belgian

cryptographers, Joan Daemen and Vincent Rijmen) was selected as the most suitable for

Advance Encryption Standard. Details of [32] given in section 3.1.

Since then, the NIST has published a total of four recommendations for Block Cipher

AES Modes of Operation, specifically SP800-38A [1], SP800-38B [2], SP800-38C [3],

and SP800-38D [4].

Out of five confidentiality sub-modes of SP800-38A; Electronic Codebook (ECB)

mode is focused in this work. FPGA based architecture point of view, all important

research of this mode can be divided into two fields; small iterative design and high

speed pipelined design.

There are very few number of designs proposed for small design in literature, 1181,

[19], [20], [21] and [22] are some important one. Initially, memory (RAM) based non-

parallelization Sbox implementation is used, but it is not area efficient. Although.

parallelization of Sbox [19] helped in area reduction along with some speed improvement.

but there not any specific area reduction technique adopted. Internal pipelining of single

round is also employed in [18] which is effective for speed but not for area. In spite of that

their speed is again limited by memory based Sbox. Some efforts of area reduction are

also spoiled because of their complex control unit, since control unit can covers lots of

5

area if not properly designed. In 2005, CAF approached adopted for cryptographic

systems, which is very efficient in area reduction, but as per of author knowledge up to

now not any design based on this approach claimed in small AES design.

High speed pipelined AES architectures ([161, [171. [211, [261, 1271. 1281 and [291) is

quite famous among the researcher because of its requirement in modern application.

Initially, parallelized outer 10 stage pipelined [27] or inner sub-pipelined ([26], [29]) are

generally employed for speed improvement but their speed is limited by memory based

Sbox. This problem is solved in [17], by making highly sub-pipelined CFA based Sbox

implementation and achieved highest 21.5 Gbps throughput, but design is tested for 3 and

7 pipeline stages only.

In November 2006, fourth mode of AES proposed; SP800-38D or GCM. Research on

hardware architectures or implementations of GCM is fairly small. This is likely due to

the new mode of operation. As per knowledge of author there is not any design found on

FPGA. Although design [33] demonstrates AES-GCM ASIC based architecture. using

0.18 um CMOS standard cell library, but it can be a good design to implement on FPGA.

From the above historical review, it can be concluded that, the following major

research gaps still exist.

i. Not any particular architecture technique of area optimization has been used till

now in small (iterative) AES design. So CFA area reduction technique can be

proved efficient for area optimization by implementing Sbox of small (iterative)

AES design.

ii. In high speed pipelined architecture, maximally 7 stage pipelined has been

employed till now. But still speed improvement can be possible by further

exploration of pipelined architecture to more stages.

iii. AES-GCM being a recent mode, has been implemented only on ASIC, but not

over FPGA. So detailed analysis and implementation of GCM mode on FPGA

can be a good work to be carried out.

Thus, this dissertation work is to effectively fill above stated research gaps.

0

2.2 Mathematical Background

The fundamentals of AES and GHASH (Multiplying unit of GCM) are based on

operations over the finite field. This section provides an introduction to these operations.

The concepts and methods have been gathered from [6] and [7].

2.2.1 Finite Fields

A field can be considered as a set whose elements form a group G under two operations:

multiplication indicated by symbol "-" and addition indicated by symbol "+". These

operations obey the basic algebraic properties. The relative finite field concepts are list as

follows:

Concept 1. (F, +, •) is a field if the following properties hold:

• The elements of F form a group under addition.

• The non-zero elements of F form a group under multiplication.

• The addition and multiplication operations are commutative, i.e. x + y = y

+ x and xy = yx for all x, y E F.

• The multiplication operation can be distributed through the addition

	

operation, 	i.e. x• (y + x) = x•y + x•z for all x, y, and z E F

Concept 2. A field F with a finite number of elements is a finite field.

Concept 3. A non-zero element of a finite field F is said to be a primitive element or

generator of F if its powers cover all nonzero field elements.

Concept 4. A unique finite field exists for every prime number. These fields are

denoted GF(p) where p is prime and m is a positive integer. One kind of

field which is commonly used in cryptography applications is the binary
m

finite fields GF(2) where m is a large integer.

m
Concept 5. A basis for GF(2) over GF(2) is a set of m linearly independent elements

	

m 	 m
of GF(2). Any element of GF(2) can be represented as an algebraic

sum of the basis elements.

7

m 	m
The binary field GF(2) contains 2 elements. Each element is represented by the

selected basis. The most common representation is based on polynomial basis. With the

polynomial basis a = {1, a, a2 , ..., am), the elements of GF(2) can be represented as

polynomial of degree m-1 as follows:

GF(2m) _ {AJA = ao + a1 a + + am_i a it-1 where aj E GF(2), 0 _< j

<m-1)

where a is the root of an irreducible polynomial F(x) of degree m over GF(2).

Let

F(x) = 1+ f1 x + f2x 2 + ... + fm-iXm-1 + X m

where ft E GF(2), 0 < i < m — 1. The irreducible polynomial F(x) is often referred

to as the field polynomial. The arithmetic in AES-GCM is based on polynomial basis and

uses the polynomial F(x) = 1 + x + x z + x' + x128 as field polynomial.

2.2.2 Operations over Binary Finite Fields GF (2)

Both operations, field addition and field multiplication, map a pair of field elements A

and B onto another field element C, all A, B, and C E GF(2m). The following

introduction on field addition and multiplication is based on polynomial basis. The field

elements A, B, and C are the following polynomials, respectively:

A(a) = ao + a1 a + 	+ am_1 a m-1

B(a) = bo + b1 a + 	+ b,,,,_1 a m-1

C(a) = co + c1 a + 	+ cm_1 a m-1.

2.2.2.1 Field Addition

Over a finite field GF(2m), a field addition of two elements A and B consists of adding

the two polynomials together. Because the coefficients in A and B are over GF(2) and

each pair of coefficients are added independently, their sum C is written as

E?

m-1

C(a) = A(a) + B(a) = I (ai + bi)a1 	 (2.1)
i=o

The pair of coefficients addition ai + bi in Eq.(2. 1) is performed modulo 2 and

translated to an exclusive- OR (XOR) operation in FPGA technology. That is to say that

the field addition in Eq.(2.1) is computed by an m-bit XOR operation and does not

require a carry chain.

2.2.2.2 Field Multiplication

• Bit Serial Multiplier

Field multiplication over a finite field GF(2m), is executed by straightforward

multiplying two polynomials A(a) and B(a), then dividing the resulting 2m-bit

polynomial by F(a); the m-bit remainder is the result C(a). The product C of field

elements A and B is expressed as

m-1 	m-1 m-1

C(a) = A(a) x B(a)mod F(a) = I ci a1 = I I a1 bja`+i mod F(a) (2.2)
t =o 	i=o i=o

A simple method of computing this involves the use of a linear feedback shift register

(LFSR). The pseudo code for this multiplier given below simply loops through the

summation in Eq.(2.2) and accumulates a modulo reduced answer. The LFSR contains

one of the operands A, and depending on its most significant bit, the field polynomial is

XORed to the LFSR at each step. The result of the multiplication is generated in the

register C by the end of m iterations. This register adds the value of A at each step

depending on the coefficients of the other multiplicand 11. This design is called a serial

multiplier design, totally m iteration are needed for calculating a multiplication over

GF(2m) if A(a) can be loaded in parallel. Other multiplier designs exist such as the

parallel multiplier that is able to compute C(a) in a single iteration. More details will be

provided in next section.

E

Algorithm 2.1: GF(2m) multiplier

Input: A, H E GF(2m); F(x) Field Polynomial.
Output: C(a)
C = 0
fori = 0tomdo

if H i = 1 then
C*—CE A

end if
if A127 = 0 then

A — rightshift(A)
else

A - rightshift(A) Q+ F(a)
end if

end for
return C

• Bit Parallel Multiplier

Compared to the bit serial multiplier which needs m clock cycles to complete a

multiplication over GF(2m), a bit parallel multiplier can complete computation in only 1

clock cycle over the same GF. (Because the circuit delays are very different between the

bit serial multiplier and the bit parallel multiplier, the minimum clock period of clock for

parallel multiplier is much larger than the minimum one for serial multiplier. i.e., I clock

cycle computation time for parallel multiplier should be roughly equal to several or tens

clock cycles computation time for serial multiplier.)

A dedicated polynomial basis finite field bit parallel multiplier has been proposed in

[7], called the Mastrovito multiplier. This multiplier is adapted to a fixed field

polynomial F(a) . The implementation procedure of the Mastrovito multiplier and

Karatsuba multiplier are described in chapter 4.

10

2.2.3 Composite Field Arithmetic

The non-LUT-based implementations of the AES algorithm are able to exploit the

advantage of subpipelining further. Nevertheless, these approaches may have high

hardware complexities. Although two Galois Fields of the same order are isomorphic. the

complexity of the field operations may heavily depend on the representations of' the field

elements. Composite field arithmetic can be employed to reduce the hardware

complexity. We call two pairs {GF(21), Q(y) = yn + 	q1y`• qt E GF(2)) and

{GF((2'1)m), p(y) = xm + E~ `ol pi xi , pi E GF(2")} a composite field [12] if

• GF(2) is constructed from GF(2) by Q(y),

• GF((2n)m) is constructed from GF(2) by p(x).

Composite fields will be denoted by GF((2'1)m), and a composite field GF((2)m) is

isomorphic to the field GF(2k) for k = nm. Additionally, composite fields can be built

iteratively from lower order fields. For example, the composite field of can be built

iteratively from using the following irreducible polynomials [7]:

I

GF(2) : GF(22): 	 Po (x) = x2 + x + 1
GF(2) = GF((22)2): 	 P1 (x) = x2 + x + (p 	 (2.3)
GF((2 2)2) : GF(((22)2)2): 	PZ (x) = x 2 + x + I

where 4 = (01}2 and A = {1100}2. Meanwhile, an isomorphic mapping function

f (x) = S x x and its inverse need to be applied to map the representation of an element

in GF(2$) to its composite field and vice versa. The 8 x 8 binary matrix are decided by

the field polynomials of GF(28) and its composite fields. Such a matrix can be found by

the exhaustive-searchbased algorithm in [12]. The 8 matrix corresponding to P(x)

x8 + x4 + x3 + x + 1 and the field polynomials in Eq.(2.3) can be found as below:

11

1 1 0 0 0 0 1 0

0 1 0 0 1 0 1 0

0 1 1 1 1 0 0 1
S _ 0 1 1 0 0 0 1 1 X2 4)

0 1 1 1 0 1 0 1

0 0 1 1 0 1 0 1
0 1 1 1 1 0 1 1

0 0 0 0 0 1 0 1

Taking the isomorphic mapping into consideration, not all the transformations in the

AES algorithm are suitable to be implemented in the composite field. In order to facilitate

substructure sharing, the constant multiplications in the MixColumns/InvMixColumns

transformation are implemented by first computing {02)16S1.1, f04}16Si,~ and {08},6Si , j,

then adding those terms corresponding to the nonzero bits in the constants. For example.

the constant multiplication of {Ob}16 = (00001011)2 can be computed by adding

S~,1, {02}16S~,1 and {08}16S11. In this approach, the {02)16S, {04)16Si ,1 and {08)16S11.

can be computed once and shared by all the constant multiplications. Meanwhile, the

number of terms, which need to be added is determined by the number of nonzero bits in

the constants. Using the 8 matrix defined in (8), the constant multiplications of {02}16
and {03)16 in GF(28) in the MixColumns are mapped to constant multiplications of

(5f)16 and {5e)16 in the composite field, respectively. Although the hardware overhead

of the mapping of constants can be eliminated by computing the mapping beforehand, the

composite field representations of {02)16 and (03)16 have more nonzero bits, which

makes the constant multiplications more expensive. The same argument also holds for the

constant multiplications used in the InvMixColumns transformation, where {09)16 ,

{0b)16 and {0c}16 are mapped to {75}16, {2a)16 and {57}16 in the composite field.

respectively. The only exception is that the composite field representation of (0d}l6 .

which is {09}16, has one less nonzero bit, but this is offset by the larger number of

nonzero bits in the composite field representations of the other three constants.

Furthermore, {10}16S11, {20}16Si,1 and (40)16Sj also need to be computed as a result

of the higher-weight nonzero bits in {75)16, {2a)16 and {57)16, which adds more

complexity to the hardware implementations. Therefore, it is more efficient to implement

12

the MixColumns/InvMixColumns in the original field GF(28). The

ShiftRows/InvShiftRows is a trivial transformation, only cyclical shifting is involved, and

thus its implementation does not depend on the representation of Galois Field elements.

Meanwhile, the field addition, which is simply XOR operation, has the same complexity

in the composite field and the original field. Additionally, the affine/inverse afline

transformation can be combined with the inverse isomorphic/isomorphic mapping. Based

on the above observations, it is more efficient to carry out only the multiplicative

inversion in the SubBytes/InvSubBytes in the composite field, while keep the rest of the

transformations in the original field GF(28).

2.3 Field Programmable Gate Arrays (FPGA)

The thesis presents the architecture of FPGA implementation of AES security algorithms.

The common implementation approaches are corresponding to three different

technologies. They are:

• Application Specific Integrated Circuits (ASICs)

• Software-Programmed General Purpose CPU (SPGPC)

• Field Programmable Gate Arrays (FPGAs)

ASICs are specifically designed for a fixed solution, and are thus very efficient.

However, the circuit cannot be changed after fabrication. This requires a redesign of the

chip if any modification needs to be done.

SPGPCs are a flexible solution. CPUs execute a set of instructions to perform an

algorithm. By changing the software code, the functionality of the system is altered

without touching the hardware. But the SPCGPC's efficiency is much lower than that of

an ASIC.

FPGAs offer a compromise between the ASIC and the SPGPC, achieving higher

performance than software, while maintaining a higher level of flexibility than hardware.

13

2.3.1 Advantages of FPGA in Cryptographic Applications

The following attributes of the FPGA technology are particularly advantageous for

cryptographic applications [8].

Algorithm Agility: More and more security applications intend to be algorithm

independent and allow switching encryption algorithms on the flying. The encryption

algorithm can be chosen through the negotiation made by two communication parties.

Algorithm Upload: From a cryptographic point of view, algorithm upload can be

necessary because a current algorithm is out of date or broken; a new algorithm is

created. The security designer of the corresponding security company can upload the new

bit streams of security standard to reconfigure FPGA device through the networks.

Throughput: Although FPGA implementations are typically slower than ASIC

implementations, FPGA implementations are obviously faster than software

implementations. In a cryptosystem, if a software solution is chosen for clients, then, a

FPGA implementation should be adapted for servers in high-speed backbones.

Cost Efficiency: The production costs of an ASIC are often too high for a small number

of servers in security systems. Thus, the use of FPGAs is a common alternative.

Furthermore, this is the one of reasons why the FPGA is chosen for security research in

institutes and universities.

Therefore, it is often best to choose an FPGA to implement cipher, such as AES-GCM

standard. The CMC-FPGA-prototype-platform was chosen in this thesis for prototyping

since it represents a generalized multi-core platform, appropriate for security

applications. This FPGA platform will be discussed next.

14

2.3.2 Vertex-4

A traditional FPGA is usually an integrated circuit consisting of

• Configurable Logic Blocks (CLBs),

• Input/Output Blocks (IOBs) and

• Programmable routing resources.

More specifically, Table 2.1 shows all the main resources of the Virtex-4 xc2vp 100

targeted in this thesis.

Table 2.1: Resources of Virtex-4 FPGA Family Members.

Max. operating
Devices

No. of slices No. of 4 No. of RAM Max User
frequency

(ICLB=4 Slices) input LUTs Block (18K) 1/Os
(MHz)

XC4VLX25 10,752 21504 72 448 500

XC4VLXJ00 49,152 98,304 240 960 500

XC4VLX200 89,088 178,176 360 960 500

• Configurable Logic Blocks (CLBs)

The CLBs in the Virtex-4 are comprised of both combinational and sequential logic. The

combinational logic can be configured to become possible Boolean functions. Flip-Flops

are provided to support sequential logic and can be utilized or bypassed depending on the

configuration.

One CLB has four slices. Each slice is identical and contains:

• Two function generators F and G

• Two storage elements

• Arithmetic logic gates

• Multiplexers

• Fast carry look-ahead chain

• Horizontal cascade chain

A general slice structure of Virtex-4 is shown in Figure 2.1. The function generators F

and G can be configured as 4-input look-up tables (LUTs), as 16-bit shift registers, or as

15

BX

CE

CLK

SR

FXINA

FXINB

G
inputs

BY

F
inputs

FX

Y

YO

F5

X

XU

16-bit distributed SelectRAM+ memory. The multiplexers. MUXF5 and MUXFX can

provide any function of five, six, seven, or eight inputs when combined with Function

generators. The two storage elements can be configured either edge-triggered flip-flops or

level-sensitive latches. Each CLB has internal fast interconnect and connects to a switch

matrix to access general routing resources.

Figure 2.1: Simplified virtex-4 CLB.

16

CHAPTER 3

SECURITY STANDARD

This chapter provides the details of various modes of AES, which are implemented in this

thesis: Section 3.1 introduces to Advance Encryption Standard security algorithm,

Section 3.2 provides background of confidentiality mode of operation and Section 3.3

gives detail of GCM mode of AES.

3.1 Advanced Encryption Standard (AES)

The Advanced Encryption standard is a 128 bit block cipher that has been widely used

since its acceptance in 2001 [5]. The design of AES was intended to be a more secure

replacement of DES (Data Encryption Standard). Many efficient hardware and software

designs have been documented, taking into consideration various tradeoffs of speed and

area resources. The following sections will provide a general functional description of

AES with an increased focus on the hardware design of AES components.

3.1.1 AES Cipher

Figure 3.1 showing schematic of AES encryption and decryption. Different hardware

datapaths can be created from these modular round structures. An iterative design can be

made by simply adding a 128 bit data register at the end of the round structure. After a

maximum of 14 cycles the AES encryption result can be obtained. This iterative design

can be unrolled to create a pipelined implementation that has registers placed between

round blocks. This is an outer pipelined AES design and a 128 bit output can be

generated at each clock cycle with a full pipeline. There is enough flexibility, however, in

choosing locations of the pipelined registers. Within each of the round components,

additional pipelined stages can be added within the Sub-bytes operation which will be

described in Section 3.1.2. This is labeled as an inner pipelined AES design, and although

a higher latency and area is present, higher throughputs are possible.

17

fori= 1toN,.—

Ciphertext 	RoundKeys
(128 bits) 	 (128 bits,

roundKey(Nr)

AES Round

)nvSubBytes

InvShiftRows

A? 	 mixroundKey(i)
AddRoundKey

for i=N,.-1to1\4/

AES Last Round / roundKey(0)

Plaintext

(128 bits)

(a) (b)

Figure 3.1: (a) AES Encryption, (b) AES Decryption algorithm.

The 128 bit plain text input is mapped into a state array which is a 4x4 block of 8 bit

words that is manipulated in each round. For the following sections the state array block

will be used to describe the different round operations so it is important to understand

how the input is transformed into the state array. Figure 3.2 shows this transformation, by

filling bytes of data into the state array by columns. After the AES encryption round, the

last state array outputted is transformed back into a 128 bit stream.

LSB 	 128 bit Input (8 bit per block) 	 MSB
"'~ ~~~ ~~•~~t 	soy ,u,

A1,1 A21 A3,1 A0,2 A1,2 A2,2 A3,2 A0,3 A1,3 A2,3 A3,3

J11 A01 A0,2 A0,3

A1 is A1,2 A1,3
r

iII: 2l
A2,2 A2,3

A $J A3,2 A3,3

AES State Array

Figure 3.2: AES Round State Array Transformation.

18

3.1.2 Byte Substitution (Subbytes)

The subbytes operation uses multiple substitution box components (Sbox) each of which

performs an 8 bit substitution. Each 8-bit word of data in the state array, is substituted

using the Sbox. This results in 16 Sbox components used for each round block, and is the

most hardware area consuming part of an AES round. The Sbox computation is

essentially a multiplicative inverse in GF(28) followed by an affine transformation which

is a linear mapping from one vector space to another [9]. A lookup table of 28 values can

be used to implement the Sbox component, but it can also be mathematically computed

using logic gates.

• Sbox Designs

Rijimen, one of the creators of AES showed in [10] a method of computing the Sbox by

breaking operations in GF(28) down to a composite field GF((24)2) resulting in

significant hardware area savings which would otherwise not be possible using look-up

table implementations. The inverse formula for the Sbox is given in its reduced version,

in Eq.(3.1), where A is (1100)2. The addition, multiplication, and inverse operations are

computed in GF((24)2), and can be further broken down to the smaller composite fields,

GF((22)2) and GF(22), using the divide and conquer method.

a'x + b' = (ax + b)-1 = a(a2A+ b(a + b))-lx + (b + a)(a22 + b(a + b))-' (3.1)

Figure 3.3 shows a visual diagram of the composite Sbox. The isomorphic mapping to the

composite field, (GF(28) -~ GF((24)2) can be implemented using a matrix vector

multiplication. The affine transformation consists of a linear transformation followed by a

translation which can be achieved by a matrix vector multiplication and vector addition

respectively. The isomorphic mapping and affine transformation both use fixed matrices

that are sparse so the computation costs of these operations are minimal [9].

19

Composite SBox Stages

Isomorphic Mapping
GF(28) GF((24)2)

Inverse Operation

(Divide and 	GF((24)2)

Conquer) 	GF((22)2)
GF(22)

Inverse Isomorphic Mapping
GF((24)2) = GF(28)

Affine Transformation

(a)

d 	 Multiolicative inversion

(b)

Figure 3.3: (a) Visual diagram, (b) Block diagram of composite Sbox.

3.1.3 Shift Rows

The Shift Rows operations consists of cyclically moving elements around in all but the

first row of the 128 bit input block. The rows are left shifted by I, 2, and 3 times

respectively for rows 2, 3 and 4. The following mapping illustrates this process. In

20

hardware no logic is required for this step and simple wire connections are used for this

step to route the input to the output.

A0;1" A0,2 A0,3

All A1,2 A13 A10

A2,2 A2,3 A2,0 A2,1

A3,3 A3,0 A3,1 A3,2

Aobzr A0,2 A0,3

lilA1,1 A1,2 A1,3
r % 4

1

A2 A2,2 A2,3

1 	£i„

A3,1 A3,2 A33

Figure 3.4: AES Shift Rows

3.1.4 Mix Columns

The mix columns operation consists of a multiplication and reduction operation over

GF(28). Each column of the state array is multiplied by the polynomial 3x3 + x2 + x +

2 and reduced modulo the field generating polynomial x4 + 1. This operation is generally

optimized into a single matrix vector product. The four column blocks are used as the

vectors, while a constant 4x4 matrix is used that combines the modulo operation. The

result vector is stored in the next state array at the same location as the original column

vector. All elements are 8 bits in width and the multiplication and addition operations are

performed over GF(28).

2 3 1 1 a0
1 2 3 1 a1
1 1 2 3 ' a2

3 1 1 2 a3

Since the elements of the matrix are of low degree the multiplications are simplified. A

multiplication with 2 in GF(28) consists of a shift operation along with a modulo

reduction if an overflow occurs. This operation can be reused with multiplying by 3, but

an extra addition is required since 3 • ai = (2 • a~) O+ a~.

(3.2)

21

3.1.5 Key Schedule

Round keys are XORed at the end of every round and are generated using a Key

Schedule. These keys can be pre-computed or generated at each round. The Sbox

components used in the subbytes section are also used here for the round key generation.

For each inputted key length, the method of generating keys is slightly different, but they

contain similar logic components.

The 128 bit key has a Sbox operation done on the last column of the cipher key state

array after the column bytes are rotated. This is followed by a rcon value XOR addition.

The rcon value is generated based on the exponentiation formula rcon(i) =
x254+1 mod x8 + x4 + x3 + x + 1 performed over GF(28). These values are usually

pre-computed and once the rcon value is added, there is an XOR chain on the columns of

the state array that creates the next 128 bit round key. Figure 3.5 shows a single round

key computation. This process is repeated by using the round key as a cipher for

generating the next 128 bits of key material. The rcon i value starts at I and increments

for each round key.

A'

A

A20r

A

11 	 4 	 ft

A0,0 	 A3,3 	 B0,0

A1,0 Sbox A1,3 	~+ rcon = 	B''e
A2,0 	 A2,3 	 B2,0

A3,0 	 A0,3 	 B3,0
Rotated

Figure 3.5: AES 128 bit Key Schedule Round.

22

In order to compute the key schedule operation in hardware, most designs generally

pre-compute roundkeys before starting data encryption or decryption. Computing the key

schedule on the fly, while rounds are being computed is possible for encryption, and has

been implemented for iterative AES [II]. There is added complexity when supporting all

keys primarily because of the overlap occurring in operations. In this thesis, 128 bit key

employed for various design, so there is no need to explain 192 and 256 hit key

schedules.

3.2 Confidentiality Mode of Operation Background

Two modes of operation for Symmetric Key Block Ciphers, ECB and CTR, are selected

to create the confidentiality in AES-GCM because they can admit pipelined, parallelized

implementations and have minimal computational latency for high data rates. These

modes are introduced below and more details can be obtained from [I].

3.2.1 Electronic Codebook Mode (ECB)

The ECB mode is defined as follows and shown in Figure 3.6:

ECB Encryption: 	C] = CI PHK (PJ) f or j = 1, ... , n.

ECB Decryption: 	P1 = CIPHK 1(ç)for j = 1,...,n.

where, CIPHK(P~) is the forward cipher function of the block cipher algorithm, such as

AES, under the key K applied to the plaintext P1; CIPH-'K(C~) is the inverse cipher

function of the block cipher algorithm under the key K applied to the ciphertext C1 .

In ECB encryption and ECB decryption, multiple forward cipher functions and inverse

cipher functions can be computed in parallel or pipeline. In the GCTR module of AES-

GCM, ECB encryption block is embedded into a CTR block (see Figure 6.1).

23

ECB Encryption

Plaintext

Input Block

CIPHK

Output Block

Ciphertext

ECB Decryption

Ciphertext

Input Block

CIPHK

Output Block

Plaintext

Figure 3.6: ECB Encryption and ECB Decryption. [I]

3.2.2 Counter Mode (CTR)

The CTR mode is a confidentiality mode also that features the application of the block

cipher to a set of input data groups, called counters, to produce a set of keystreams that

are XORed with the plaintext to produce the ciphertext, and vice versa. The CTR mode is

defined as follows and shown in Figure 3.7.

CTR Encryption:

of = CIPH K (Tj)for] = 1,...,n,

C~ =PP XOR01 forj = 1,...,n-1,

Cn = Pn XOR MSBu(On)•

CTR Decryption:

of = CIPH K (Tj)for j = 1,...,n,

P. = Cj XOR 01 f or j = 1, ... , n — 1,

Pri = CC XOR MSBu(0n).

The symbols used in the CTR encryption and decryption are :

the counters for the jth input data group,

O : the key stream for the jth input data group,

24

PP : the jth plaintext group,

C : the jth ciphertext group.

C*„ : the last group of the ciphertext, which may be a partial group.

P*„ : the last group of the plaintext, which may be a partial group.

MSB„(On) : the bit string consisting of the u most significant bits of the bit string On.

In CTR encryption and CTR decryption, only the forward cipher function is invoked

on each counter group, no inverse cipher function. The resulting key streams are XORed

with the corresponding plaintext or ciphertext blocks to produce the ciphertext or

plaintext blocks. For the last group, which may be a partial group of u bits, the most

significant u bits of the last output group are used for the XOR operation; the remaining

bits of the last output group are discarded. The forward cipher functions can be

performed in parallel and pipelined.

	

Counter: l 	 Counter 2 	 Counter n

	

1 	 1
E 	 Input Block I 	Input Block 2 	 Input Block n

N 	CIPHK 	 CIPHK 	CIPHK C
R 	 Output Block I 	Output Block 2 	 Output Block n

P
T 	Plaintext I —*® 	Plaintext 2— B 	Plaintext n --►®

	

Ciphertext 	 Ciphertext I 	 Ciphertext

Counter I 	 Counter 2 	 Counter n

1 	1 	 1
D 	 Input Block I 	Input Block 2 	 Input Block n
E
C 	 CIPHK 	 CIPH K 	••• ••• •.. 	CIPHK

R 	 Output Block I 	Output Block 2 	 Output Block n Y
P
T 	 Plaintext 	 Plaintext 2 —►® 	 Plaintext n —►®

l 	 4, 	 4,
Ciphertext 	 Ciphertext 	 Ciphertext

Figure 3.7: CTR Encryption and CTR Decryption [I].

25

Both CTR encryption and CTR decryption are invoked in AES-GCM encryption and

AES-GCM decryption, respectively.

3.3 Galois/Counter Mode (GCM)

The elements of GCM and the associated notation and requirements are introduced in the

three sections below. The block cipher and key are discussed in Sec. 3.3.1. The data

elements of the authenticated encryption and authenticated decryption functions of GCM

are discussed in Sec. 3.3.2. The types of application of GCM supposed in [4] are

summarized in Sec. 3.3.3. The GHASH function, GCTR function and GCM specification

are described in section 3.3.4, 3.3.5 and 3.3.6, respectively.

3.3.1 Block Cipher

The AES-GCM standard depends on the symmetric key block cipher AES. The AES-

GCM key is the block cipher key. The key shall be generated uniformly at random, or

close to uniformly at random. The key should be established secretly among the parties to

communicate. AES-GCM designates the encryption function of the block cipher AI.S as

the forward cipher function denoted CIPHK which actually is AES in ECB mode (see

Figure 3.1). GCM does not employ the inverse cipher function.

3.3.2 Input and Output Data

GCM consists of the two functions that are called authenticated encryption and

authenticated decryption. The requirements and notation for the input and output data of

these functions are introduced in Section 3.2.2.1 and 3.2.2.2.

3.3.2.1 Authenticated Encryption

There are three input bit streams to the authenticated encryption operation:

• A plaintext, denoted as P that can have up to239 bits,

• Additional authenticated data (AAD), denoted as A that can have up to 261 bits;

P3:

• An initialization vector denoted, as IV that can have up to 264 bits.

In this thesis, a 96-bit IV is adopted for efficiency following the suggestion in [13].

GCM verifies the authenticity of both P and AAD; GCM also protects the confidentiality

of P, while the AAD is transmitted in the clear. The IV is a nonce that is associated with

the data to be against related attack.

The following two bit strings comprise the output data of the authenticated encryption

function:

• A ciphertext, denoted by C, with the same bit length as that of the plaintext.

• An authentication tag, denoted T that have up to 128 bits. The T's bit length is

denoted as t.

3.3.2.2 Authenticated Decryption

The inputs to the authenticated decryption function are values for IV, A, C, and T, as

described in Sec. 3.2.2.1 above. The output is one of the following:

• The plaintext P that corresponds to the ciphertext C, or

• An indication that the inputs are not authentic, denoted as FAIL.

GCM authenticated decryption computes the authentication tag T' based on received

data, and compares it with the received authentication tag T. If the two tags T and T' are

equal, then P will be the output of the authenticated decryption function. Otherwise.

FAIL will be the output.

3.3.3 Types of Applications of GCM

There are four types of applications of GCM that are recommended in SP800-380D. They

Fria

a. GCM with an arbitrary length IV,

b. GCM with the default IV, i.e. the length of the IV is restricted to exactly 96 bits.

c. GMAC, i.e. the algorithm generates a stand-alone authentication tag T on the

AAD with the arbitrary length IV. The plaintext P is the empty string.

27

d. GMAC with the default IV.

In the thesis, GCM with the default IV is chosen with size shown in Appendix A.

3.3.4 GHASH Function

The authentication mechanism within GCM is based on the hash function, GHASH, that

features multiplication by a fixed hash subkey, over a binary Galois field GF(2128). The

hash subkey, denoted as H, is generated by applying the block cipher to the 128-bit "0"

string. GHASH is a keyed hash function. Algorithm 3 below specifies the function that

will be invoked within the AES-GCM authenticated encryption and authenticated

decryption functions:

Algorithm 3.1: GHASH(X)

Input: 1. Bit string X with length len(X) = 128 • m for some integer m.

2.The hash subkey H.

Output: Block Ym.

Steps:

1. Let X1, X 2 ,. . . , X,.11,_1, X represents the unique sequence of blocks such

that X= X1 I I X2I I ... I I Xm-i I IXm •

2. Let Yo be the "zero block," which means Yo is a bit string comprised by
128 binary 0.

3. For i = 1,...,m,letY j = (Y —11 X) H.

where "
" indicates multiplication over finite field as discussed in chapter 2.

4. Return Ym.

The GHASH function is illustrated in Figure 3.8 below.

28

Figure 3.8: GHASHH(X I 11 X2 ...11 X.) = Ym.[41

3.3.5 GCTR Function

The mechanism for the confidentiality of GCM is a variation of the CTR mode (see

section 3.2.2.), called GCTR, with a particular incrementing function, denoted inc. for

generating the necessary sequence of counter blocks. The first counter block for the

plaintext encryption is generated by incrementing a block that is derived from IV.

Algorithm 3.2 below specifies the GCTR function that will be invoked within the

algorithms for the GCM authenticated encryption and authenticated decryption functions:

Algorithm 3.2: GCTRK (ICB, X)

Input: 1. Bit string X, of arbitrary length;

2. Initial counter block ICB, i. e. IV or some value generated from IV;

3. Approved block cipher CIPH (such as AES) with a 128 — bit block size;

4. Key K;

Output: Bit string Y of bit length len(X).

Steps:

1. Let n = [Len(X)/1281

2. Let X1, X2 , ... , Xn_1 , Xn represents the unique sequence of blocks such

that X= X1 I I X2 I I ... I I Xn-1 I IXn

29

3. Let CB, = 1CB.

4. For i = 2 to n, let CB S = inc(CB L — 1).

5. For i = 1 ton — 1, let Y = 	+Q CIPK K (Ct33.

6. Let Yri = Xn Q+ MSB [en(X * n)(CIPH K (CB j)).

7.LetY =Y1JJl2JJ...11Y 111Yri

8. Return Y.

Note:
1. Len(X) indicates the bit length of the bit string X.

2. Xi X;+1 indicates the concatenation of two bit strings Xi and Xi+1.

3. LSBs (X) indicates the bit string consisting of the s right-most bits of the bit

string X.

4. MSBs (X) indicates the bit string consisting of the s left-most bits of the bit

string X.

5. Int(X) indicates the integer for which the bit string X is a binary representation.

6. lnc(X) indicates the output of the GCM incrementing function applied to the

block X, the more specifically, inc(X)=MSB96(X) j][(int(LSB32(X))+ l) mod

232 32•

Figure 3.9 below illustrates the GCTR function.

ICB 	[inc 	GB2

1 	1
[cirñ]K 	 CIPHK

1
Xl . —► 	X2 I H (~

1 	1
Y,

... 	—► 	CB,, _ — inn 	—' 	CBn

1
[ciñ]K

1
[CIPH]K

Xn4 H
l

1
Yn_i

1
Y;,*

Figure 3.9: GCTR K (ICB, X1 I X2 II •.. li X~,*) - Yi II Y li ... II

30

3.3.6 GCM Specification

Algorithms for the authenticated encryption and authenticated decryption functions of

GCM are specified in Section 3.2.6.1, and 3.2.6.2 below. The block cipher is AES (see

section 3.1).

3.3.6.1 Authenticated Encryption

Algorithm 3.3 below performs the authenticated encryption function.

Algorithm 3.3: AES-GCM-AEK (IV, P, A)

Input: 1. Block cipher CIPH (i. e. AES) with a 128 — bit block size;

2. Key K;

3. Tag length t.

4. Initialization vector IV;

5. Plaintext P;

6. Additional authenticated data A.

Output: 1. Cipher text C;

2. Authentication tag T.

Steps:

1. Let H = CIPHK(01211)

2. Define a block,J0 , as follows: Jo = IV 1 10311, i. e.Jo is a 128 — bit string

consisted of 96 — bit IV, 31 `0' bits, andl `1' bit.

3. Let C = GCTRK (inc(Jo), P).

4. Let u = 128 • Ilen(C)/128 — len(C), and let v = 128 - (len(A)/1281 —

len(A)

5. Define a block, S, as follows:

31

S = GHASH H (AI1O1'I ICIIO"II [len(A)]64 I 1[len(C)]64)•

6.LetT = MSBt(GCTRK(lo,S))•

7. Return (C, T)

Note:
1. [x]5 indicates the binary representation of the non-negative integer x as a string

of s bits, where x < 2s.

2. Os denotes the string that consists of s `0' bits, e.g. 05 = B00000.

The authenticated encryption function is illustrated in Figure 3.10 below.

lv 	 P;
4,

— 0 — Inc —► GCTRK

4,

4,

GHASHH

4,

[_GCTRK IJ
4,

MSB,

4'
TJ

Figure 3.10: AES-GCM-AEK (IV, P. A) = (C, T).[4]

32

3.3.6.2 Authenticated Decryption

Algorithm 3.4 below performs the authenticated decryption function.

Algorithm 3.4: AES-GCM-ADK (IV, C, A, T)

Input: 1. Block cipher CIPH (i. e. AES) with a 128 — bit block size;

2. Key K;

3. Tag length t.

4. Initialization vector IV;

5. Cipher text C;

6. Additional authenticated data A.

7. Authentication tag T.

Output: Plaintext P or indication of inauthenticity FAIL;

Steps:

1. Let H = CIPHK(0128)

2. Def ine a block,Jo, as f ollows: J0 = 1V110311. i. e.J o is a 128 — bit string

consisted of 96 — bit IV, 31 '0' bits, andl `1' bit.

3. Let P = GCTRK (inc(J o), C).

4. Let u = 128 • [len(C)/128 — len(C), and let v = 128 •
[Cen(A)1 -
l2s

len(A)

5. Define a block, S, as follows:

S = GHASH H (AI~O"~ICIIOU11[len(A)]64 ~1[len(C)]64)-

6.Let T' = MSBt(GCTRK (Jo , S))•

7. If T = T', then return P; else return FAIL.

The authenticated decryption function is illustrated in Figure 3.11 below.

33

t„ 	,<

v 	P
t

.Io --► Inc 	—% GCTRK

t
A<, 	p" 	C 	p" [len(A)]ha flen(C)7o4

4,
GHASH„

4,
GCTRK

MSB,

I TI 	 1f~j 4 	a

jr

FAIL

4,
CIPH;

4,

HI

Figure 3.11: AES-GCM-ADK (IV, C, A, T) = P or FAIL.[4]

34

CHAPTER 4

PARALLEL MULTIPLIER DESIGNS FOR GCM

Due to the feedback chaining present for the Galois multiplication operation in the GCM,

pipelined designs have generally chosen parallel multipliers to complete the

multiplication step in a single clock cycle. There are two type of multiplier fulfilling

these criteria. First is, Mastrovito multiplier, it has been a prime choice for its low critical

path but it unfortunately has a quadratic space complexity. Second is, A popular Sub-

quadratic multiplier based on the Karatsuba multiplication algorithm (KA).

A comparison of these parallel multipliers, with FPGA implementation results will be

provided toward the end of the chapter. The multipliers are designed specifically for the

GCM operation but may be generalized for other applications as well.

4.1 Mastrovito Multiplier

The Mastrovito multiplier uses a matrix vector product (MVP) which can compute

modulo reduced result in a single step. The matrix used in the operation is constructed

from the field defining polynomial, so this method is applicable when a field polynomial

or a set of polynomials is known ahead of time which is the case for GCM. . The MVP

approach is first described before going into Mastrovito multiplier for GCM.

4.1.1 Matrix Vector Product

The original GF multiplication operation given in Eq.(4.1) can be modified to formulate

the matrix vector product and the rearranged equation is provided below. The polynomial

matrix P is computed using the coefficients of A (a) while the vector portion is simply the

transposed coefficients of B(a). The matrix vector product shown here computes the

multiplication and reduction operations in a single step.

35

C(a) A(a) • B(a)mod F(a)

m-1

C(a) _ Y, (ai • a mod F(a)) • bi
i=o 	 (4.1)

C=P•bT

P = {a(0) , a(1) , a(Z) ,, a(m)}

In Eq.(4.1), C is the column vector corresponding to the polynomial C(a). An

expansion of the polynomial matrix P is given in Eq.(4.2). The a(') coefficients are

essentially column vectors that are modulo reduced versions of x`a mod F(a).

a - aa° mod F(a)
a(1) - aai mod F(a)
a(2) - aa2 mod F(a) - a(' a mod F(a) 	 (4.2)
a(3) = aa3 mod F(a) - a(Z)a mod F(a)

a(i) 	a(i-1)a mod F(a)

The first column of P, a(°) has the coefficients of A(a) while each subsequent column is

the previous column multiplied by a and modulo reduced by F(a). When this matrix is

multiplied by the coefficients of B (a), the result C (a) is achieved.

4.1.2 Mastrovito Multiplier Design using MVP

The Mastrovito multiplier is a widely used parallel multiplier with a quadratic space

complexity [7]. The design is essentially a brute force multiplier in the sense that the

MVP is computed like traditional matrix multiplication. It does optimize the operation

since the repeated values that are present in the polynomial matrix can be computed once

and then reused as signals in hardware for the brute force multiplication portion.

Hardware resources are saved to some extent in this way. Elements in P are in GF(2), so

36

AND and XOR gates are used for element wise multiplication and addition respectively.

Since the Mastrovito multiplier uses the brute force approach, after computing elements

in P, the Mastrovito design has a single layer of AND gates for element multiplication

followed by layers of XOR gates to compute the final result. The simplicity of the

Mastrovito design is evident in Figure 4.1 which provides an overview of the multiplier.

The design is easy to code into a low level design using any hardware description

language such as VHDL.

Figure 4.1: Mastrovito Multiplier for GCM.

The area complexity of the Mastrovito multiplier design for the brute force portion is

m2AND gates while the number of XOR gates is mz — m. The XOR gate count for the

polynomial matrix computations will vary based on the field polynomial, and is

computed using the Hamming weight of the matrix. For the GCM this is equal to 784

XOR gates,

The time complexity can be summarized as TA + ([loy2ml + [1092 0 + 1])T X ,

where TA and Tx is the AND gate and XOR gate delays respectively. The 0 constant is

the maximum Hamming weight from all the columns of the polynomial matrix.

4.2 Karatsuba Algorithm Sub-quadratic Multiplier

The Karatsuba Algorithm (KA) was originally used to compute digit multiplication [12],

and was mapped to polynomials by [14]. It has a Sub-quadratic area complexity but with

a larger delay in comparison with the Mastrovito multiplier. Sub-quadratic multipliers

such as KA generally decrease the number of multiplication operations while increasing

the number of addition computations. Since the cost of adding OF elements is low and

37

equivalent to XORing bit streams in hardware, the KA is a suitable approach for GF

multiplication. Using divide and conquer techniques the multiplication operation is

divided up into smaller and smaller operations followed by an expansion to get the final

product. This reduction and subsequent expansion is constructed by levels of XOR

operations and as a result causes the delay of the multiplier to increase.

4.2.1 KA Multiplier Formulation

The elements A(a), B(a) E GF(2m) are first each split into two polynomials of max

degree Z — 1. Ah and Bh represents the upper polynomial coefficients while A, and B1

represents the lower coefficients of the elements. The following equations show A(a)

split into two smaller polynomial elements, Ah and Ai .

A(a) = am / Z Ah + A,

Ah = (am-1, am-2...., a2+2, a?+1)
	

(4.3)

Ac = (am/z , am/2-1...., a1, ao)

The multiplication of the two elements in GF(2m) is first computed to get a

polynomial of max degree 2m — 2 (C'(a)). The Q operation represents XORing bit

streams in Eq.(4.4) and multiplication operations shown are with sub-polynomials. The

original multiplication is divided into three lower degree polynomial multiplications and

this can be further split recursively. The C' (a) element is obtained once the recursion

unrolls, and this is then modulo reduced separately to get the final C(a) element.

m
Do , D1 , D2 have max degree 2 — 1

Do = A1 B1

Di = (Ah @ B1)(A1 O+ Bh)

D2 = AhBh
m

C' (a) = at D2 a (D1 t Do Q+ D2) +Q Do

C(a) = C'(a) mod F(a)

(4.4)

38

4.2.2 Modulo Reduction

Modulo reduction of C'(a) using the field polynomial can be performed by a

multiplication with a fixed reduction matrix. Using the GCM field polynomial as an

example, the higher order coefficients of C'(a) can be modulo reduced based on the

following equations.

0-a128 +a7 +a2+a+1 mod F(a)

a128 - a7 + a2 + a + 1 mod F(a)
	

(4.5)

a129 -a8 +a3 +a2 +a mod F(a)

The reduction matrix has 2m — 2 columns and m rows. The matrix essentially maps

C'(a) to C(a) and is shown in Figure 4.2 for the GCM. The first m columns of the

matrix form an identity matrix since elements of degree 1 to m — 1 do not need to be

reduced. Using Eq.(4.5), all elements of degree m to 2m — 2 can be modulo reduced and

then used in creating the remaining m — 2 columns of the reduction matrix.

C(a) Reduction matrix C' (a)
Co 1 0 0 	... 1 	0 C0
C1 0 1 0•. 1 	1 Ci
C2 0 0 1 	... 1 1 	1 	... CZ
C3 	— 0 	1 C3
C4 I 0 	0 	... C 4

00
C126 1 	0
C127 Identity

I 	
0 	1

J. 1 1 1 	1 	1
1 al a2 a128 	a129 	... 	a254

0253

0254

Figure 4.2: Reduction matrix for GCM.

The cost of this operation in relation to the KA multiplication is small and is

dependent on the field polynomial. The Hamming weight of the reduction matrix for the

GCM shows that this operation requires 527 XOR gates. Having low order terms within

39

the field polynomial helps reduce the cost of the operation since higher order terms have

additional feedback terms which increase the cost of the operation. For a field polynomial

such as a128 + a4° + a2 + a + 1 the cost of the operation is 623 XOR gates. The delay

for the reduction operation can be computed by (ilog2O + 11)Tx , where B is the largest

Hamming weight computed by row of the reduction matrix. For the GCM reduction

matrix this delay is computed to be 3Tx .

4.2.3 KA Multiplier Design for GCM

The Karatsuba algorithm generally works best with elements of even degree since each

step in the recursion splits polynomials equally. The input element size for the GCM

Galois operation is 128 bits, a power of 2, so the KA multiplier can be easily applied

without any changes required. A high level view of the Karatsuba multiplier is provided

here with all the major components required.

The polynomial elements can be conveniently split down to single element

multiplications but this is not always desirable in terms of area efficiency. When the

ending condition of the recursion is changed and brute force multiplication per- formed

instead, this leads to some savings in terms of AND and XOR gates. The following table

shows the number of gates required for halting at different polynomial sizes. The gate

counts do not include the reduction operation which has a fixed number of gates and a

fixed delay of 3Tx . The ending condition delays are based on the brute force

multiplication delay which is TA + log2(n)Tx, where n is the halting value.

C (x)

2m2
bits

Matrix 	 C(x)
Calculations

(a)

Er

m 	 oh m

Al 	Ah I 	I B1 	Bh
Tm/2 	m/2 	m/2 	m/2

'vI I 	I , nput
stage

...

(rn/2, n) 	(m/2, n) 	(m/2, n) 	,Sub_multiplier

	

Multiplier 	Multiplier 	Multiplier 	s~tagee

	

m-1 	 m-1 	 m-1

F I 	 1

F

F

XOR 	 ~ 	 F2

C

D

(b)

Figure 4.3: (a) Abstract view, and (b) Full view of the Karatsuba Multiplier.

Table 4.1: Area of KA Multiplier with varied ending conditions.

Halt XOR gates AND gates Total gates NAND gates Delay

2 9913 2916 12829 45484 TA + 19T,

4 8455 3888 12343 41596 TA + 17T,

8 7969 5184 13153 42244 TA + 15T,

16 8455 6912 15367 47644 TA + 13Tx

32 9913 9216 19129 58084 TA + I 1 T,

64 12415 12288 24703 74236 TA + 9TX

We can see from Table 4.1 that it is worthwhile halting the KA when the polynomial

size is 4 since it provides the lowest area and delay complexity. Since the cost of XOR

gates in hardware is usually larger than that of AND gates, in order to get more accurate

area estimates for ASIC implementations, the NAND gate count is included. The area

41

cost of I XOR gate is bounded by the area of 4 NAND gates while one AND gate is
bounded by the area of 2 NAND gates. When taking the NAND gate count into

consideration the results still showed halting at 4 as the optimal choice in terms of area.

4.3 FPGA Implementation Results
Table 4.2 showing FPGA implementation results and Figure 4.4 showing performance

comparison of above discussed multipliers. On analyzing the result we find that,

Karatsuba multiplier used 58% (Approx.) less area as compared to Mastrovito because of

sub-quadratic complexity nature of former, but cost for small area of Karatsuba have to

paid in term of speed, its throughput is 32% (Approx.) less than that of Mastrovito.

The preferences of multiplier mostly depend on type of application and desired critical

parameters, otherwise in overall performance Karatsuba proof better than Mastrovito.

Table 4.2: Multiplier's Place and Route Results Summary.

Multiplier Delay
(ns)

Frequency
(MHz)

Throughput
(Gb s Slices gates Kbps/Slice Power m

Mastrovito 10.260 97.465 12.476 8,229 85,161 1516.10 990

Karatsuba 14.705 68.004 8.766 3,486 40,497 2497.42 1438

N
1120

100

.80
N

60

40

0 20

0

Multiliers Speed Comparison

Frequency
9000
8000
7000
6000

v5 5000
0 4000

3000
2000
1000

0

Multiplier Area Comparison
No. of Slices

Mastrovito 	Karatsuba 	 Mastrovito 	Karatsuba

Figure 4.4: Multiplier performance comparison.

42

CHAPTER 5

FPGA IMPLEMENTATION OF AES-ECB ARCHITECTURES

This chapter includes details of proposed architectures of AES in ECB mode and

discussion on their implementation result followed by comparison with previous claim.

Section 5.1 cover iterative compact single round AES design, which is optimize for small

area and section 5.2 describe pipeline based high speed architecture of AES.

5.1 Compact Single Round AES Design

This section presents high-performance and compact architecture for single round

Advance Encryption Standard (AES) security algorithm using feedback mode. There are

two design based on stated architecture has been implemented on virtex-4 Field

Programming Gate Array (FPGA) device. These two designs differ in method used for

sub-bytes function implementation, in first design Look-Up Tables (LUTs) and in second

design fully combinational gates using Composite Field Arithmetic (CFA) has been

employed for sub-byte function implementation.

5.1.1 Single Round AES Architecture

The working of proposed architecture is straight forward, as we can see in Figure 5.1.

There are three main units i.e. Round unit, Key Scheduler unit and control unit. We will

discuss one by one later part of this section.

The multiplexer named as MUX direct particular input by using 2bit selective line

data reg_mux_sel to the input of Data Register at proper clock cycle and that particular

128 bits data store in 128 bits register, for being used by Round unit as a input. Since

round 0 is just a XORing between 128 bits data and 128 bits original user-key, performed

externally using 128 bits 2 input XOR as shown in Figure 5.1.

43

plaintext 	roundO out

out

	

data_reg_mux _sel 	mux

load data red - r ------ --_ -'-T-'

- 	
Data Register

clock

	

reset 	 Control 	asst round m uxse 	Round

	

encryption 	 Unit 	 Unit

Iciad_kay=re
Key 	 KO dataLry

egmux_ Scheduling
rpund constant 	Unit

ciphertext

user key

Figure 5.1: Compact single round AES FPGA architecture.

5.1.1.1 Round Unit

As we have discuss earlier that round 1 to round 9 are the combination of four functions

i.e. sub SubBytes, ShiftRows, MixColumns and AddRounKey, round 10 combination of

e. in

I! J 	 M i x
Shift I 	 Colum
Row n

Last_round _mux_set 	 N mux

AddRoundKey

d out

Figure 5.2: Round unit.

44

three function except MixColumns. Figure 5.2 show round unit that also take care of

round 10 using MUX that controlled by Last_round _mux_set lbit selection line. The

concept of parallel processing has been used in this architecture for calculating the sub

bytes. Instead of calculating the sub bytes sequentially, which consumes a lot of time, the

16 sub bytes are generated simultaneously using 16 S Boxes [15] and that can be realized

by16 look-up tables with 8bit-input/output or by CFA. ShiftRows is a bit shuffling

function, requiring no hardware. For MixColumns and AddRoundKey realization general

procedure adopted as describe in [5].

5.1.1.2 Key Scheduler Unit

Figure 5.3 is a Key Scheduler (Expansion) Unit [16] used to generate round keys on the

fly in the encryption process. The hardware required to generate one set of round key is

implemented and re-used it for calculating the rest of the round keys. This results in

reduction in space used for storing the sub keys values and also improves the speed of

operation since round key is generated simultaneously while the sub bytes, shift rows and

mix columns take place.

User key

Figure 5.3: Key Scheduler Unit.

45

5.1.1.3 Control Unit

Control unit is brain of the system, which used to control and maintains proper

synchronization between different components of design. As shown in Figure 5.4,

Control unit realized using Finite State Machine (FSM) having thirteen states, one for

initiation, one for load input and remaining eleven for eleven round of AES. Each state

defined by their specific value of state variable (control signal).

ion = 0 Load Round
i /n 1

Encry.
start 	Encryption = 1

Round

Control Signal

round constsnt
Round data _reg_mux set = Round

in key_reg_mux_sel =
load data_reg
loadw key_reg =
last mux set"

Round Round
4

Round nd 1 	 (Round

Round 	 Round 	 Round

Figure 5.4: State diagram.

5.1.2 Composite Field Arithmetic based SubBytes function

The composite field approach reduces not only the hardware complexity but also exhibits

the advantages of inner round pipelining, but here we are not interested in pipelining. The

Galois field Fl: GF(2$) is mapped into composite field F2: GF((24)2) or sometimes

GF(((22)2)2) [17].

46

In this paper, we construct the isomorphic composite field by using the fields defined

in Eq.(5.1) [16]. The field conversion matrix 6 is given in Eq.(5.2).

GF(2) = GF(24) : p(x) = x4 + x + 1
GF(24) 4 GF(24)2) : 9(Y) = y4 + Y + /?,
where f3 = (0b1000)2 or x3

1 0 0 0 0 1 0 1
0 0 1 0 0 0 0 0
0 0 1 1 1 1 1 1
0 0 0 1 1 0 0 0

s 0 0 0 0 1 1 1 0
0 1 0 0 1 0 1 1
0 0 1 1 0 1 0 1
0 0 0 0 0 1 0 1

Figure 3.1.2 describes the optimized design of SubBytes transformation over composite

field.

5.1.3 Implementation Results

Based on presented architecture, two designs have been implemented on FPGA virtex-4

XC4VLX100-12ffl148 package kit, using Xilinx Foundation Series f 9.2i as synthesis

and Modelsim 6.3f as simulation tool. The design was coded using VHDL language.

On comparison, we find that LUT based design is 19.18% faster than CFA based

design and on the other hand CFA based design proved more cost effective, since it

required 35.55% smaller area than LUT based design. But as whole CFA based design is

More efficient than LUT based because it gives higher throughput to slices ratio than

LUT based design, as shown in Table 5.1.

5.1.4 Performance Comparison with other Designs

There are very few number of designs proposed for small AES design in literature. After

intensive search we encountered few single round AES designs, as shown in Table 5.3

(5.1)

(5.2)

47

Table 5.1. Synthesis and Place & Route results of compact AES designs.

LUT Slices Period Slices Blocks
RAMs Usage Period Freq. Thr. Thr./sl

(PAR)
Design (Syn.) (Syn.) (Syn.) (PAR) (PAR) (PAR) (PAR) (PAR) (PAR)

ns # % ns Mhz Mbits/s Mhces
LUT 4296 2222 5.294 2571 20 05% 10.161 98.416 1049.7 0.408
Based
CFA 3230 1668 7.285 1657 00 03% 12.110 82.576 880.81 0.532
Based

Table 5.2. The logic and routing delay of compact AES designs.

Period Logic Percent Routing Percent
Design ns ns % ns /o

LUT 10.161 7.966 78.4% 2.194 21.6%
Based
CFA 12.110 3.826 31.6% 8.283 68.4%
Based

with their performance. Wide trade-off is possible in area and speed of design. so

throughput to slices ratio has been taken as comparison parameter for various designs.

As we can see Table 5.3, throughput to slices ratio design [18] is 0.747, highest among

all design but it takes four clock cycles to complete one round and also required three

block RAMs and above all very small throughput of 166 Mbps. On the other hand, our

composite field arithmetic based design is pure memory less design having 0.532

throughputs to slices ratio, which is second highest among all and first in all design of one

clock cycles per round, in addition of that it shows a high throughput up to 880.81 Mbps.

Table 5.3. Performance comparison of compact AES designs.

Area Throughput Thr./Slices clock cycles
CLB Block Design IMbpsl lMbits/s/slices) per round
Slices RAMs

Pawel Chodowiec and 222 03 166 0.7470 4
Kris Ga' 	18

P. Chodowiec et al. 1191 —1230 18 577 0.4690
A. Dandalis et al. 1201 5673 00 353 0.0620 1
A.J. Elbirt et al. 1211 3528 00 294.2 0,0834 1

K. Gaj et al. 122] 2902 00 331.5 0.1142 _ 	1

Proposed LUT Based 2571 20 1049.7 0.4080 1
Designs CPA Based 1657 00 880.81 0.5320 1

5.2 High Speed Subpipelined AES Design

This section presents high-speed architectures for the hardware implementation of the

Advanced Encryption Standard (AES) algorithm by dividing each round unit into

substages with equal delays, named as subpiplining. Composite field Arithmetic is used

to implement the SubBytes and InvSubBytes transformations of the AES algorithm,

which makes it a fully memory less combinational logic design. Also as a direct

consequence, the unbreakable delay introduces by look-up tables in the conventional

approaches is eliminated and the advantage of subpipelining can be further explored.

5.2.1 The AES Algorithm And Its Subpipelined Architecture

5.2.1.1 The Subpipeline Architecture

The pipelined architecture is realized by inserting rows of registers between each round

unit. Similar to the pipelining, subpipelining also inserts rows of registers among

combinational logic, but registers are inserted both between and inside each round unit,

as shown in Fig. 5.5. In subpipelining, more blocks of data can processed simultaneously.

It can be observed that the more substages with equal delay each round unit can be

divided into, the larger speedup the subpipelining can achieve.

However, dividing each round unit into arbitrary number of substages does not always

bring speedup. Since the minimum clock period is determined by the indivisible

component with the longest delay, dividing the rest of the round unit into more substages

with shorter delay does not reduce the minimum clock period. Although more blocks of

data are being processed simultaneously, the average number of clock cycles to process

one block of data does not change. Therefore, the overall speed does not improve despite

increased area caused by the additional registers. In a LUT-based implementation, it can

be observed that nearly half the delay of a round unit is attributed to the LUTs, and thus,

each round unit can be divided into only two substages to achieve some speedup without

wasting any area. On the contrary, the longest unbreakable delay in the non-LUT-based

approaches is the delay of individual logic gates. Accordingly, each round unit can be

divided into multiple substages with approximately equal delay.

Plaintext(128bits)

ROUND 	}, 	ROUND Key(128 or 192 	KEY ADD ,;
or 256bits 	 3 . 	1 	Cr'"

n~

K"" 	ROUND 	Ciphertexl(I28bns)
• • 	IO

RN

Sub u' Sub R R Sub
stage 	stage 	? • • • 	stage
12 	G. aura{

Figure 5.5: The architecture of Subpipelining.

5.2.2 Detailed Hardware Implementation Architectures

In this section, we present detailed architectures for each transformation of the AES

algorithm. The implementation of each transformation is optimized to reduce area and

increase speed. Meanwhile, an efficient key expansion architecture suitable for

subpipelined round units is presented. Based on the analysis on the gate counts in the

critical path of the round units and the key expansion,, optimized subpipelining

architectures of the AES algorithm are present.

5.2.2.1 Implementations of the SubBytes/InvSubBytes Transformation

The multiplicative inversion in involved in the Sub- Bytes/InvSubBytes is a hardware

demanding operation, it takes at least 620 gates to implement by repeat multiplications in

GF(28) [23]. However, the gate count can be reduced greatly by using composite field

arithmetic. In the SubBytes transformation, using substructure sharing, the isomorphic

mapping function can be implemented by 12 XOR gates with 4 XOR gates in the critical

path. Meanwhile, the combined inverse isomorphic mapping and the affine

transformation can be implemented by 19 XOR gates, and the critical path consists of 4

XOR gates also. In the composite field GF((24)2), an element can be expressed as

50

ShX + s1 , where s, s1 E GF(24) and x is a root of P2 (x). Using Extended Euclidean

algorithm, the multiplicative inverse of ShX + s1 modulo P2 (x) can be computed as in

Eq.(5.3) JS ORAL
4 c,• C 1(4495 q ACC lo ~~

(ShX + Sl)-1 = ShOX + (Sys + S1)O 	 Dom.....,....•......... (.3)

where 0 = (Sh11 + Sh S I + si)-1. According to Eq.(5.3), the multiplicative inversion in

GF(28) can be carried out in GF((24)2) by the architecture illustrated in Figure 5.6

(chapter4). The multipliers in GF(24) can be further decomposed into multipliers in

GF(24) and then to GF(2), in which a multiplication is simply an AND operation. Figure

5.8 illustrates this decomposition, together with the other blocks used in Figure 5.6 except

the inversion in GF(24) block. As can be observed from Figure 5.7, a multiplier in

GF(24) can be implemented by 21 XOR gates and 9 AND gates.

Multiplicative inversion

Figure 5.6: Implementation of the subBytes Transformation.

51

...............

(b) (a)

(c) 	 (d) 	 (e)

Figure 5.7: Implementations of individual blocks: (a) multiplier in GF(24); (b) multiplier in GF(22); (c)

squarer in GF(24); (d) constant multiplier (x A); and (e) constant multiplier (x q5).

with 4 XOR gates and 1 AND gate in the critical path. Table 5.4 summarizes the gate

count and critical path of each block in the SubBytes except the block of inversion in

GF (24) in Figure 5.6.

Table 5.4: Gate counts and critical paths functional blocks in the SubBytes Transformation (171.

Block Total no. of gates Critical path

x cP 1 XOR I XORR

x A 3 XOR 2 XOR

x2 4 XOR 2 XOR

Multiplier in GF(22) 4 XOR+3 AND 2 XOR+I AND

Multiplier in GF(24) 21 XOR+9 AND 4 XOR+I AND

The inversion in GF(24) can be implemented by further decomposed by applying

formulas similar to Eq.(5,3) iteratively. Composite field decomposition can reduce the

hardware complexity significantly when the order of the field involved is large.

52

However, for small fields, such as GF(24), further decomposition may not be the

optimum approach. So we adopt direct implementation approach. Taking the four bits of

x E GF(24) as {x3, x2 , x1 , x0), it can be derived that each bit in

x-' = (x31, x 1, X11, xi') can be computed by the following equations:

(x-2 = x3 + X3x2x1 + x3X0 + x2
x2 1 = x3x2x1 + x3x2x0 + x3x0 + x2 + x2x1

X1 1 = X3 + X3X2x1 + X3X2X0 + X2 + X2X0 + X1 (5.4)

X0 1 = x3X2X1 + x3x2X0 + X3X1 + X3X1X0 + X3X0

+X2 + X2x1 + X2X1X0 + X1 + XO

direct implementation of the derived equation, Eq.(5.4), has the smallest gate count (14

XOR and 9 AND) and the shortest critical path (3 XOR and 2 AND) [25].

5.2.2.2 Implementations of the MixColumns/InvMixColumns Transformation

Various architectures have been proposed for the implementation of the

MixColumns/InvMixColumns transformation [9], [24], [25]. Applying substructure

sharing both to the computation of a byte and between the computation of the four bytes

in a column of the State, an efficient MixColumns implementation architecture can be

derived.

SO c = {02}16(SO,c + S1,c/ + (S2,c + S3,c) + S1,c

S1 c = {02)16(S1 ,C + S2,c) + (S3,c + SO,c) + S2c
1 	 (5S) I

S2 c = 102116(S2,c + S3,c) + (s0,C + S1,c) + S3,c

S3 c = 102J16(S3 c + SO,c) + (S1,c + S2,c) + 0,c

According to Eq.(5.5), the MixColumns transformation can be implemented by the

architecture shown in Figure 5.8. The function of the block "XTime" is to compute

constant multiplication by {02116. An element of GF(28) can be expressed in

polynomial form as S = S7x7 + S6x6 + S5x5 + S4X4 + S3x3 + S2X2 + S1X+S0, where
s1 , s2i S7 E GF(2), and x is a root of the field poly nomial p(x). then

53

{02}16S = XS = S7X 8 + S6X 7 + S5X6 + S4X5 + S3X 4 + S2X 3 + S1X 2+S0X mod p(x)

= S6X7 + S5X6 + S4X 5 + (S3 + S7)X 4 + (S2 + S7)X 3 + S1X2+(So + S7)X + S7.

Therefore, the "XTime" block can be implemented by 3 XOR gates with only one

XOR gate in the critical path. As illustrated in Figure 5.8, the total number of XOR gates

for computing one column of the State is 108, and the critical path is 3 XOR gates.

Similarly, in the InvMixColumns transformation, Eq.(5.2) can be rewritten as

Sp C = ({02}16(SO,C + S1,c) + (s2,C + S3,c) + S1,c)

+({02}16 ([04)16(50,c + S2,c) + {04}16(51,c + S3,c))

+{04}16 (S0,c + S2 ,C))
SO ,c = ([o2)16 (s0, + S1,c) + (S2,c + S3,c) +

+({02}16 (t04)16(SO,C + S2 C) + [04)16(S1 + S3 c))

+{04}16(S1,C + S3,c))
(5.6)

SZ C _ ({02}16(S2 c + s3) + (SO ,c + S1,
l

c) + s3,C)

+({02}16 ({04)16(So,c + S2,C) + (04)16(S1,c + S3,c))

+{04)16(S0, + S2 ,c))
S3 C = ({02)16(S3c + SOX) + (S1C +S2~) +SOS)

+({02}16.({04}16(S0,C +S2,c) + (04)16(S1,c +s3,C))

+{04}16(S1 + S3 c))

Using substructure sharing, Eq.(5.6) can be implemented by the architecture illustrated

in Figure 5.9. The "X4Time" block, which computes the constant multiplication of

(04)16, can be, implemented by two serially concatenated "XTime" block. Alternatively.

it can also be implemented according to the equation derived below

(04)16S = X ZS = S7X 9 + S6X $ + S5X 7 + S4X 6 + S3X5 + S2X4 + S1X3+S0x2 mod p(x)

= S5X 7 + S4X6 + (S3 + S7)X 5 +(S2 + (S6 + S7))X 4 + (S1 + S6)X 3

+(SO + S7)X 2+(S6 + S7)X + S6.

54

Sharing s6 + s7, the "X4Time" block can be implemented by 5 XOR gates with 2

XOR gates in the critical path. It follows that the architecture in Figure 5.9 can be

implemented by 193 XOR gates with 7 XOR gates in the critical path. Meanwhile, the

upper half in Figure 5.9 work as architecture for the implementation of the MixColumns.

Therefore in a joint encryptor/decryptor implementation, only the architecture in Figure

5.9 needs to be implemented for both the MixColumns and the InvMixColumns

transformations.

Figure 5.8: Efficient implementation of the MixColumns (red dashed rectangle only) and InvMixColumns
transformation.

5.2.2.3 Implementation of Round And Key Expansion unit

Figure 5.9 showing one round unit along with corresponding roundkey generating unit.

Both unit working in parallel way, so in subpipline based architecture proper

synchronization has to be maintain between data and key within whole unit. Roundkeys

can be either generated beforehand and stored in memory or generated on the fly. In the

former approach, roundkeys can be read out from memory using appropriate addresses,

and there is no extra delay for decryption.

55

MIXIANIM

:III I !j p I~
III j

1. it 111 I

	

1 1 	 i I 	 11

	

'III 	 I 	 jl 	I 	it 	 111

	ri

~

	

:Ill 	 it 	I 	I 	I 	 111 	I 	j

	

Iii 	 I~ 	 I I 	i 	!i 	 I

	

IIlI 	 I 	 jl 	I 	!j 	~X 	N 	111 	 I Dataout

	

j i 	 i 	 ! I 	 i! pansfalmrl o 	;a 	p' ! 	 128
I. I p cn 	611 I~

	

I.I B 	 I 	 I I 	I 	i I 	 011 	 I6x 	 1 I. 	i p 	oii

. 	 i

	

:III 	 I 	 it 	I 	'I 	 791 	 I ~ 	 I

;III I it 1 !i eii

	

j ill 	 I 	 if 	1 	~i 	 oii 	 I

III I I I 11 Gil ~9L

	

IIII II 	 II 	 I
I ill 	 I jj 	j II 	 I

1 I~ 	I~ j 	I 	1 i i 	V 	X 	Ro®dakts w

6_..ILS_X_I f

I 	I11 	 I
I 	III 	 I

11 	i
IB 	1

I 	I ~ I 	 1
IIIL 	pJ '! 	~ 	 I

128
ilt 	 I I jl 	I !! 	 I
IIF I I II 	 1

I=2 _._._._._ r=4

i i 	i 	 i
II 	I
i 	i 	j i 	i 	 I j Ro191d [fl]It

I 	I II 	I I 	
1 E

Ijl1. 	 I
1 nl 	 I ji 	i

ji 	 1
I! 	 I

r-----
ylmt

1;----------1-------------- I-----I-------- I ~r --- --- ------,

Figure 5.9: Different cutest of Round and Subkey unit for subpipelined architecture.

However, this approach is not suitable for the applications where the key changes

constantly. Meanwhile, the delay of memory access is unbreakable, which may offset the

speedup achieved by subpipelining the round units. Therefore it is more advantageous to

generate roundkeys on the fly in a subpipelined architecture. The subpipelined

architecture can achieve maximum speedup if each round unit can be divided into

substages with equal delay. Based on the analysis of the gate count in the critical path of

each component, cutsets as illustrated in Figure 5.9 can be added to divide the encryption

round unit into r = 2, 4 and 8 substages with approximately equal delay. Since the

roundkeys are generated on the fly, we need to divide the key expansion unit into the

same number of substages with the same maximum delay as in the round unit to avoid

extra buffers and delay. Assuming the same subpipelined SubBytestransformation is
used in the key expansion unit.

56

5.2.3 Implementation Result and Comparison

Based on above presented subpipelining concept, we have implemented six designs, in

first two design sbox is implemented with LUI' and each round having 2 and 3 stage.

respectively and in other four design sbox is implemented with composite field arithmetic

with each round having 2, 3, 4 and 8 stage. Post-placement timing report shows a fully

subpipelined encryptors of 128-bit key with respective substages in each round unit can

operate at a throughput of 16.542 Gbps, 13.561 Gbps, 15.564 Gbps, 12.971 Gbps , 26.479

Gbps and 31.449 Gbps respectively, on a Xilinx XCV xc4vlxlOO-12 ff1513 device in

non-feedback modes with Xilinx ISE9.1 i is used to synthesize the design and provide

post-placement timing results. Detail of each design shown in Table 5.5. We have given

each unit a specific name, i.e. (8,CFA,4) showing that each round of design have 8

substages and sbox is implemented with Composite Field Arithmetic concept instead of

LUT and there are 4 out of 8 substages present in sbox. The main motto of six designs

implementation is to analysis Area-Throughput trade-offs and finally getting highly

efficient subpipelined design.

As can be. observed Figure 5.10. (2,CFA,O) has high speed as compared to (3.CFA.0)

because in both design sbox is in critical path, so increasing substages in remaining round

unit shows no improvement in speed, rather reduction of speed due to large area

placement complexity. Same reason for high speed of (2,LUT) than (3,LUT),If we

compared (2,CFA,O) and (2,LUT) or (3,CFA,O) and (3,LUT), we find that design having

sbox implemented using LUT showing 50% more area and 22% speed enhancement than

design having CFA based sbox. But, the unbreakable delay introduces by look-up tables

restrict substages to r = 2 and so speed.

As can be observed from Table 5.5, our architecture can achieve higher speed than all

prior FPGA implementations known to the authors, and more efficient than the previous

fastest design [17] in terms of equivalent throughput/slice. In the computation of

throughput/slice, one BlockRAM (BRAM) is equivalent to 128 slices [261. Further

speedup can be achieved by dividing each round unit into more substages with equal

delay. In this aspect, it has advantages over the designs utilizing BRAMs on Xilinx

57

FPGAs to implement SubBytes/InvSubBytes. Since the minimum clock period is decided

by the unbreakable delay of BRAMs, a fully subpipelined implementation using BRAMs

can not achieve higher speed even if larger FPGA devices are available.

Table 5.5: Comparison of FPGA implementation of the AES algorithm.

Design Device Frequency
(Mhz)

Throughput
(Gbps)

Slices BRAMs Mbps

Slice

Elbirt el al 1211 XCV 1000-4 31.8 1.938 10992 0 0.176

Mcloone el. al. [27]
(pre-placement time)

XCV812e-8 93.9 12.020 2000 244 0.367

Jarvinen el al [161 XCV 1000e-8 129.2 16.500 11719 0 1.408

Saggese el al [26] XCV2000e-8 158 20.300 5810 100 1.091

Standaert el [28] XCV3200e-8 145 18.500 15112 0 1.228

K. Gaj, P. Chodowiec
29

XCV 1000e-8 131 12.20 12600 80 0.97

X. Zhang,
K.K.

(r=3) XCV812e-6 93.5 16.032 9406 0 1.272

Parhi [171 (r=7) XCV 1000e-8 168.4 21.556 11022 0 1.956

Proposed (2,LUT) XCV 1000-12 129.232 16.542 16800 200 0.9846
design

(3,LUT) XCV 1000-12 121.595 15.564 21571 200 _ 0.7215 	1
s

(2,CFA,O) XCV1000-12 105.932 13.561 11128 0 1.2186

(3,CFA,O) XCV 1000-12 101.338 12.971 11871 0 t 	10926

(4,CFA,2) XCV 1000-12 206.868 26.479 12726 0 2.08

(8,CFA,4) XCV 1000-12 245.700 31.449 16478 0 19086

Table 5.6: Power consumed.

Design Slices BRAMs Mbps

Slice
Power Consumed

(mW)

Proposed (2,LUT) 16800 200 0.9846 1080
design

(3,LUT) 21571 200 0.7215 1150

(2,CFA,O) 11128 0 1.2186 1058

(3,CFA,O) 11871 0 1.0926 1101

(4,CFA,2) 12726 0 2.08 1136

(8,CFA,4) 16478 0 1.9086 1 189

58

1200
	(a) Power Scatter Diagram

1150

U
1100

1050

40

30

o, 20
on

10

0

(b) Throughput Scatter Diagram

25000

20000

15000

10000

5000

0

(c) Area Scatter Diagram

Area-Throughput Trade-Offs for Subpipelined AES Algorithm

32
3O-
28
26 .-* (4,CFA,2)i

24 _
22
20
18
16 - 	--- 	---------__-_c2 	rfl
14 - - -- - - - -* (Z.CFAA,o) 	p 1

12 r* (3,~FA,O)

100
12 	114 	16 	18 20— 22

No. of Slices
(x1000)

Figure 5.10: Scatter graphs for comparison of (a) power, (b) Throughput, (c) No. of slices, (d) both(b)&(c),
of subpipelined AES designs.

59

CHAPTER 6

FPGA IMPLEMENTATION OF AES-GCM ARCHITECTURE

This chapter describes the AES-GCM implementation on the FPGA Platform. Section 6.1

discusses the architectures of the modules of AES and GIIASLI, section 6.2 discusses the

architectures of the AES-GCM, including IPsec data packet, and GCM data flow. Section

6.3 discusses how to verify the AES-GCM functionality.

6.1 Modules Design

In AES-GCM encryption and AES-GCM decryption, AES and GHASH are the basic

modules which are responsible for confidentiality and authentication, respectively. In

section 6.1.1, an iterative AES and fully pipelined AES are presented; in section 6.1.2, a

bit serial GHASH and a bit parallel GHASH are presented. The pipelined AES and

parallel-bit GHASH modules are selected for designing a high speed AES-GCM

architecture discussed in section 6.2.

6.1.1 AES Module

For the 128-bit key size, the AES algorithm requires calculating 10 round

transformations, and each round contains four phases: SubBytes, ShiftRows,

MixColumns, and AddRoundKey (see section 3.1). This allows implementing AES

algorithm in either iterative method (see section 5. 1) or pipelined method (see section

5.2). In an iterative AES design, the round transformation is instantiated only once. This

round transformation block of hardware is used 10 times in 10 computation clock cycles

while the intermediate value is stored in a Data register and used as input for the next

time. A pipelined AES design can calculate all 10 rounds transformations in one clock

cycle by duplicated a single round 10 times (see Figure 6.1). A pipelined AES

architecture can be achieved by placing 128-bit registers between each round as we

already achieved in section 5.2. In large FPGAs, registers are almost free; a pipelined

structure can take advantage of this feature of FPGAs.

,i7

The control logic of both the iterative and pipelined AES architectures is implemented

by using a finite state machine (FSM). Table 6.1 shows a rough comparison between

these two approaches on throughput and cost.

Table 6.1: Comparison between Iterative and Pipelined AES.

Num of
Num of Cost in Virtex-4

unroll
ciphertext

No. of Throughput
Throug h ut/

p Power
Architectures

round in
per 10

hardware
clock

slices (Gbps)
no. of slices

(m W) c cle Y (Mbps/slices)

LUT 1 1 2571 1.04977 0.408 1019
Iterative

AES CFA 1 1 1452 0.80736 0.556 1438

LUT 10 10 19013 11.94701 0.628 11I2
Pipelined

AES CFA 10 10 10686 10.61004 0.993 1Q45

In AES-GCM algorithm, the AES block is implemented in a pipelined architecture.

This AES block works as a core in a hybrid from ECB and CTR mode. This hybrid

actually is GCTR (see section 3.2.5). Figure 6.1 shows the structure how the AES block

is embedded into an ECB module and how the ECB module is embedded into a CTR

module. In ECB module, AES block encrypts an input which actually is a continuously

increasing counter value in CTR module, and produces the output as keystream. In CTR

module, the keystream XORs a plaintext to produce output, i.e. ciphertext. After the first

10 clock cycles, the pipeline is fully filled so that the AES module can output a new 128-

bit keystream every clock cycle.

The iterative AES can also be adopted in the AES-GCM algorithm, specifically for

generating the hash subkey H. This calculation can be done in advance if the 128-bit key

is known because H is nothing but the output of the iterative AES module. Therefore, it

needs 10 clock cycles to generate H after inputting 128 bits '0' string into the iterative

ABS module.

61

Iv

Counter inc~

AES round l

AES round 2

ECB

CTR

AES round 9

AES round

itream

Plaintext

Ciphertext

Figure 6.1: AES CTR over ECt3 Mode Cipher Structure.

As briefly mentioned in section 3.1.1, except for the SubBytes operation in round

transformation, the ShiftRows, MixColumns, and AddRoundKey are all directly designed,

using CLBs in FPGA. SubByte which actually is a LUT operation can be designed either

using CLBs or signal-port block select RAM (see section 3.1.2). Table 6.4 in section

6.2.3 shows the differences in performance and cost between AES-GCM

implementations which are purely using CLBs (CFA) and those using both CLBs and

Block RAMs (LUT).

6.1.2 GHASH Module

A 128-bit multiplier over GF(2128) is the core of the GHASH architecture. In AES-GCM.

the GF(2'21) multiplier multiplies two 128-bit operands modulo the field polynomial F(x)

= I +x + x2 + x7+ x128 to generate a 128-bit output. The G1-1AS1.l architecture is shown in

Figure 6.2. One operand of the GF multiplier is the hash subkey 1-1 which can be treated

as a fixed 128-bit constant for it will not change if the 128-bit key does not change. The

Register Y whose initial value is zero holds the intermediate hash value for next step

authentication computation.

A_C_Len(A)I ILen(C)

Figure 6.2: GHASH Hardware Architecture.

The architecture shown in Figure 6.2 is based on an iteration operation. Suppose all

input data and output data are satisfied with the definitions in section 3.3. In the first m

clock cycles, the 128-bit additional authenticated data block sequence (AAD) A i , A2, ...,

A„ are hashed to the GHASH through one of two inputs of XOR gates as described by

algorithm 3.1. In the next n clock cycles, the 128-bit ciphertext block sequence C1, C2,

..., C1, C„ are hashed to the same input of XOR gates following AAD. In the last clock

cycle, 128-bit word length (A)Illength(C) is hashed. Meanwhile, the intermediate hash

value Y; (see Figure 3.8) is fed back to another input of XOR gates to generate the

another operand for the GF multiplier.

It takes m + n + 1 cycles to compute the hash value for bit parallel multiplier, and

128*(m + n + 1) cycles for Bit Serial multiplier. There is a rough comparison listed in

Table 6.2 between GHASH architectures using these two kinds of multipliers.

Table 6.2: Comparison between different GIIASH architectures.

GHASH architecture Latency (clock cycle) Hardware
corncomplexity(k = 128)

Using Bit
Serial Multiplier 128*(m+n+l) O(k)

Using Parallel m+n+l O(k2) Multiplier

63

In order to match pipelined AES module, the GHASH module is implemented using a

Bit Parallel GF multiplier (Mastrovito and Karatsuba multiplier). From a whole

Mastrovito Bit Parallel GF(2'28) multiplier point of view, 1282 two-input ANI) gates and

0(1282) two-input XOR gates were used for implementation. The delay from this

architecture is one AND gate and 7 XOR gates. This is the critical path in the entire Al S-

GCM circuit design. Although a Bit Parallel multiplier over GF can be pipelined for high

data rate [30], this is not the case for GNASH because the GHASH is a kind of feedback

mode as mentioned in section 3.3.4.

6.2 High Speed Hardware Implementation of AES-GCM

This section describes the AES-GCM implementation. It begins by a brief introduction

on the data packet structure of IPsec ESP [31] in section 6.2.1, then follows with a top

level data flow description of the pipelined AES and bit parallel GHASH modules in

section 6.2.2. Finally the details of the AES-GCM implementation are presented in

section 6.2.3.

6.2.1 Format of Data Packet of IPsec ESP

The IPsec Encapsulating Security Payload (ESP) Packet Format is to arrange input/output

data in proper format as shown in Figure 6.3.

The document in [31] clearly explains how to use AES-GCM as an IPsec ESP

mechanism to provide confidentiality and data origin authentication.

Information with respect to the format of data packet of IPsec ESP is provided in

RFC4106[31]. The Use of Galois-Counter Mode in IPsec ESP is shown in Figure 6.3.

J 	Header 	J 	Sequence 	I 	Packet Data Unit

IV —~ Plaintext

AAD

Ciphertex 	Authentication Tag

I 	[-leader f Sequence I 	Packet Data Unit 	I ICV

Figure 6.3: The Use of GCM in IPsec ESP [313.

6.2.2 Data Flow in GCM

If the AES module is implemented in the pipelined architecture, the G1lASH module is

implemented by choosing a parallel-bit multiplier as its core, and the hash subkey I i can

be calculated out ahead in an iterative AES module based on a known key by each

communication party. The data flow in GCM Encryption is shown in Figure 6.4(a); and

the data flow in GCM Decryption is shown in Figure 6.4(b). For GCM encryption, AES-

GCM starts to compute intermediate hash value Y; when it receives additional

authenticated data. It takes m clock cycles to generate Y,,,. Then the GHASH has to be

idle for 11 clock cycles until the first ciphertext block C1 is generated by the GCTR

which is created by using a pipelined AES module. For GCM with default IV, the IV is

always 96 bits long, and Jo can be created instantly by concatenation of bit strings.

The key streams for GCM encryption are created after the 10th clock cycle when Jo is

input into the pipeline of GCTR. At the 11th clock cycle, cipher block C i is generated and

input to GHASH. GHASH begins to hash data again. At the m+l l+n+l clock cycle.

Y,,,+„+l is generated and XORed with KO (i.e. CIPHK(Jo)) to create authentication tag T.

65

Encryption 	 Decryption

II' H 	A. IV ' C

m cycles
Yin Ym

0 cycle

E) Jo

10 cycles
Ko Ym lo Ko

1 cycle
K~ Ym+k k K k

1 cycle
I'm+l Kz Cz I'm+12_ .._..Kz... Pz

• • Ko 	Ym+n l .
n-2 cycles

Ym+n

1 cycle
Ym+n (en

I cycle

Ym+n+k Kp

1 cycle 	 (:k)
T

(a) (b)

Figure 6.4: (a) The Data Flow of GCM Encryption (b) The Data Flow of GCM Decryption.

For GCM decryption, GHASH can directly compute the authentication tag T' based on

AAD and ciphertext C from the input of GCM Decryption. Therefore, the max 11 clock

cycles are saved compared with data flow in GCM Encryption.

6.2.3 Hardware Implementation Bidirectional GCM

Based on the data flow analysis in section 6.2.2, a bidirectional AES-GCM hardware

module is built. The "bidirectional" means: the AES-GCM module can work not only as

GCM encryption but also as GCM decryption depending on the logic value of the control

signal Encryption. If the Encryption signal is high, then AES-GCM works in 0CM

encryption mode, otherwise, it works in GCM decryption mode. The schematic of both

designs are same as shown in Figure 6.5 and 6.6, except tag comparison circuit in

decryption mode.

If Encryption signal is high, then AES-GCM works in GCM encryption mode i.e.

AES-GCM-AE (see section 3.3.6.1). In Figure 6.5, the data paths are 128-bit wide. The

control signals do not show up except signal Encryption. They all are driven by a finite

sate machine (FSM) module which is designed according to IPsec ESP packet format.

Figure 6.5: AES-GCM Encryption Architecture.

[A

The 44 32-bit round-key words are stored in a look up table instead of generated in real

time. The hash subkey H is generated by an iterative AES module from the key K in

advance.

A 3-to-1 multiplexer MUX-I is used whose output connects to one of the input ports of

XOR gates in GNASH module. The three inputs of MUX-I are additional authenticated

data AAD, ciphertext C and length information length (A)Jjlength(P). As discussed in

section 3.3, in the first m clock cycles, the output of MUX-I is the additional

authenticated data A. After 11 clock cycles, in the next n clock cycles, the output of

MUX-I switches to the ciphertext C. The Final output of MUX-I is length (A)Ijlength(P).

The first 128-bit key stream which is produced by GCTR, from the initial value IV of

GCM, is stored in the AESK(JO) Register. This AESK(JO) Register is later used to generate

the authentication tag T. Since the IV of GCM is followed by plaintext P. and the first

128-bit keystream is generated by GCTR after a delay of 10 clock cycles. Therefore, the

plaintext P is delayed by 11 clock cycles in order to be encrypted by the corresponding

key streams. A 11* 128-bit FIFO meets this requirement. In the first II clock cycles, the

data flow AAD, IV and payload data P are input to the FIFO. From the 12th clock cycle

onwards, the FIFO remains in a dynamic full status by reading data out and writing new

data in simultaneously until reaching the end of theIPsec ESP packet. Suffering 11 clock

cycles delay through the FIFO, AAD and IV connect directly to one of the inputs of the

3-to-1 MUX-II; delayed payload data P exclusive-ORs with GCTR output, key stream, to

produce ciphertext which is connected to one input of MUX-I and MUX-II. The left input

of MUX-II is the authentication tag T which is the result of GHASH final output Y,,,+n+i

XORing value in AESK(JO) Register. MUX-Il output connects to register Output. The

final output of AES-GCM-AE from register Output is data flow A_IV_C_T

corresponding to the input data flow A__IV_P.

As mentioned in section 6.1.2, the critical path of this design is determined by the

GHASH module. The delay of all other paths in Figure 6.5 is smaller than the delay

produced by GHASH module.

If Encryption is low, then AES-GCM works as GCM decryption as shown in Figure

6.6 i.e. AES-GCM-AD (see section 3.2.6.2). AES-GCM-AD is similar to AES-GCM-AE.

d

Compared with Figure 6.5, one difference is that two 2-to-1 multiplexers, also named

MUX-I and MUX-II are used instead of two 3-to-1 multiplexers in the Figure 6.5. The

reason that 2-to-1 multiplexers are used is that the authentication tag T' is computed

directly from A and C of the original input A_IV_C_T and it does not need to be input

into register Output either. Another difference is that a 128-bit comparator is used to

generate the FAIL signal depending on the comparison between T and T'. The delay of

the comparator is 1 XOR gate plus 7 OR gates which is still smaller than the delay of the

128-bit bit parallel multiplier over GF(2128) which is 1 AND gate plus 7 XOR gates.

Figure 6.6: AES-GCM Decryption Architecture.

Like the S-box of AES module in section 6.1.1, the 11 * l 28-bit FIFO can also be

implemented by using dual-port Block SelectRAM+ or dual-port Distributed

SelectRAM+. Therefore, AES-GCM can be implemented either by purely using CLBs

(named as CFA) or using CLBs and block RAM (named as LUT). Table 6.3 and 6.4 lists

the performance and cost comparison of these designs. Table 6.3 shows resources

*

utilization by AES datapath and Key expansion unit. Table 6.4 shows full AF-S-GCM

unit's resources utilization in Virtex-4 xc4vlx200-11-ff1513. For the LUT based scheme

(1), 58.3% ((130*128+12039)/49152=0.583) slices & 54% (130/240=0.369) BRAM

Table 6.3: Place and Route Results Summary of other important units of AES-GCM.

AES-GCM
Design Units Delay

(ns)
Frequency

(MHz)
Throughput

(Gbps)
No. of

 Slices
 Kbps

Slices

LUT
Based

Key Expansion 3.722 268.670 34.389 3465 9924.67

AES Data Path 9.878 101.232 12.957 8564 1513.04

CFA Key Expansion 9.137 109.445 14.008 2750 5093.81
Based AES Data Path 11.637 85.932 10.999 7625 1442.49

blocks are used to implement AES-GCM with Mastrovito multiplier and 48.7%

((130*128+7304)/49152=0.487) slices & 54% (130/240=0.369) BRAM blocks are used

with Karatsuba multiplier; for the CFA based scheme (2), 40.6% (19957/49l520.406)

slices are used to implement AES-GCM with Mastrovito multiplier and 41.3%

(20320/49152=0.413) slices are used with Karatsuba multiplier.

Table 6.4: Full AES-GCM's Place and Route Results Summary.

AES- With Delay Frequency Throughput RAM Kbps
GCM Multiplier p (ns) (MHz)) (Gbps) p) Blocks No. of 	Slices

Slices Design
128* 130+12039

Mastrovito 9.613 104.026 13.315 130 464.28
LUT =28679

Based 128* 160+7,304
Karatsuba 12.785 78.217 10.012 160 360.35 =27784

Mastrovito 10.442 95.767 12.258 0 19957 614.22 CFA
Based

Karatsuba 11.575 86.393 11.058 0 20320 544.21

Table 6.5: Power analysis of the designs.

AES-GCM Design With Multiplier No. of gates Power (mW)

Mastrovito 8,735,739 1284
LUT Based

Karatsuba 10,610,177 1804

Mastrovito 299,411 1136
CFA Based

Karatsuba 301,131 1594

70

14%
(Key

Expan
on)

380,
(AE

Datal
h)

CFA based AES-GCM
7%

41%
,Matrov

ito
Kultipli

er)

13%
(Key

Expaint
ion)

34%
(AES

Datapat
h)

2000

0

1500

J1000

 500

35000

30000

25000

U, 20000

o. 15000
0

10000

5000

0

Mastrovito Karatsuba

14

0

600

-0 500

v 400

300

200

100

0

i 700
U

Figure 6.7: Area comparison of various units of Full AES-GCM.

Full AES-GCM Design 	 Full AES-GCM Design Mastrovito 	AES Datapath 	 g

LUT 	 CFA 	 LUT
	

CFA

Figure 6.8: Area and power comparison of two type of AES-GCM.

Full AES-GCM Design 	 Full AES-GCM Design
Mastrovito Karatsuba 	 Mastrovito Karatsuba

LUT 	 CFA 	 LUT 	 CFA

Figure 6.9: Throughput and throughput per slice comparison of two type of AES-GCM.

71

Figure 6.7, 6.8, 6.9 providing various important comparison columns bar diagrams.

made by using information given in above tables, which make their interpretation easy.

6.3 Verification of AES-GCM Functionality

This section describes how the modules were verified in the realistic environment CMC-

prototype-platform. All of them including AES, GNASH, AES-GCM-AE, and AES-

GCM-AD were verified on this platform. They were also although designed in VHDL

and timing simulated using Modelsim, respectively. The results are compared with other

researches on hardware implementations of AES-GCM.

6.3.1 IPsee Signal Generator

In order to perform verification, an IPsec ESP signal Generator had to be built based on

the IPsec ESP data packet format discussed in section 6.2.1. Figure 6.10 shows a 16-bit

LFSR which generates 216-1 bit stream sequence periodically based on a primitive

polynomial f(x)= I+x+x3+x12+X16 for building the IPsec signal generator which consisted

of 8 16-bit LFSRs. The primitive polynomial with degree 16 was chosen since the

maximum length of payload data of IPsec data packet is 216 bit long. At the beginning,

the control signal start_LFSR asserts for m clock cycles, the signal generator generates m

blocks of parallel 128-bit data as AAD; at the next clock cycle, start LFSR desserts for

generating IV-GCM; sequentially, start_LFSR asserts again for n clock cycles in order to

generate n blocks of parallel 128-bit data as payload data P. The values of m and n are

controlled by one input of the signal generator, in other words, it is adjustable to meet the

test requirement.

Xis I X14I X13 I X121 Xii I xio I X9 I Xs I X7 I x6 I Xc I X4 I xa I Xz I Xi I Xn

4-
	 Start LFSR

Figure 6.10: 16-bit LFSR for IPsec ESP Signal Generator.

6.3.2 Verifying Both AES-GCM-AE and AES-GCM-AD on FPGA

In Figure 6.11, two AES-GCM modules are used, one working as AES-GCM-AE by

connecting Encryption to the power, one working as AES-GCM-AD by connecting

Encryption to the ground. The mimic IPsec data packets A_IV_P from the signal

generator go through the AES-GCM-AE and the AES-GCM-AD consecutively, and then

go to the comparison module in which there is another identical IPsec signal generator for

checking the recovered data P validity. If each node in Figure 6.8 works correctly, then

the plaintext P will be recovered from the AES-GCM-AD without any bit-errors, the

signal Verifying_GCM will go to high to indicate the AES-GCM-AE and the AES-GCM-

AD have been verified successfully. The comparison between T and T' is handled in the

AES-GCM-AD module. If T is not equal to T', then the signal TVerification

(corresponding the output Fail in algorithm 3.4) will be set to high to indicate that the

inputs are not authentic. The signal Verifying_GCM and T_Verification physically are

connected to two LEDs on the FPGA-platform in order to observe the verification results.

After choosing 40MHz clock input as the global clock of FPGA, downloading the

bitstream of the described architecture in Figure 6.7 to the Virtex-4 xc4vlx200-1 1-ff1513,

the LED Verifying_GCM turns on and LED T_Verification remains off. Hence the

module with AES-GCM functionality is implemented successfully on FPGA platform.

)n

Figure 6.11: AES-GCM Verification System.

73

In addition, in the appendix A of [l3], the designers of GCM provides several cases at'

test vectors for testing AES-GCM implementation designs with different AES key sizes.

The Test Case 3 and Test Case 4 are chosen to verify the work in this thesis. More

specifically, first, using the 128-bit secret key K provided in Test Case 3 or Test Case 4

generates not only 44 32-bit expanded key words for AES round-transformations but also

hash subkey H for GHASH hash operations; second, using the additional authentication

data A, the initial vector IV, and the plaintext data P provided in Test Case 3 or Test Case

4 as parameters builds a test-bench which works as a stimulus to output data flow

A_IV P into AES-GCM module for timing simulation; Finally, comparing the results

A_IV_C_T of the timing simulation of AES-GCM with the A'_IV'_C'_T' provided in

Test Case 3 and Test Case 4 and make sure they are identical (see the dash-line part of

Figure 6.11).

All the VHDL codes for generating AES-GCM, test benches, and test vectors arc

printed out and listed in Appendixes. The hierarchical 1-1DI, code designs are shown in

Figure 6.12.

GCM—Verification

IPsec Signal
Bidirection GCM 	 Comparisio

Generator 	
n

GF 128-bit
16-Bit LFSR 	11*128 bit FIFO 	Pipelined AES 	

Multiplier
16-Bit LFSR

Ito 9 Round 	Last Round
Extended Key

Transformation 	I 	I 	Transformation

Figure 6.12: AES-GCM Hierarchical IIDL Codes Design.

74

CHAPTER 7

CONCLUSION AND FUTURE WORK

7.1 Conclusion

In this dissertation, the development of a complete architecture for two mode of the AES

security standard has been presented and implemented on modern Xilinx virtex-4 FPGA

platform.

Initially, two architecture of AES-ECB mode; compact single round (iterative) and

pipelined architecture presented, and implemented on FPGA for both CAF and LUT

based schemes.

Then, using above design, a highly pipelined and parallelized architecture of AES-

GCM mode integrated and implemented on FPGA for both CFA and LUT based

schemes, while GHASH implementation scheme is discussed in bit-parallel methods, and

two well known parallel modular multipliers; Mastrovito and Karatsuba multiplier has

been implemented on FPGA. Finally, feasibility of the AES-GCM architecture has been

verified through verifying circuit.

On compared with previous researches, presented FPGA architectures of AES modes

are robust and achieve a good throughput.

The Contributions achieved by this work are as follows:

• Presented compact single round (iterative) architecture based on AES-ECB mode

for FPGA.

• Detail study of pipelining and subpipelining architectures based on AES-ECB

made and implemented on FPGA.

• Implementation of the AES-GCM security standard has been performed in a

FPGA platform.

• AES-GCM module can work in bidirectional, either GCM encryption or GCM

decryption, mode.

75

• All the above designs are implemented both for LUT and CAF, and performance

comparison performed for each design.

• Power used by various design has been also analyzed along with throughput and

area.

7.2 Future Work

As in this work, all the design discussed and implemented based on 128 bit key. So all

these design can be explore for 192 and 256 bit key.

Speed and area optimization is main focus during this work, although power has been

calculated but there is not any specific method used for its optimization, so it could be

good area to work.

Dynamic reconfigurable system for specific application and its real time

implementation can be made using one of the designs implemented in the work.

A new public-key cryptographic scheme; Elliptical curve cryptography is recently

quite famous for their high security features as compared to presented AES scheme. But

its limited speed is big obstacle for their commercialization in modern high speed

application. So finding solution of this problem can be a good future research field.

76

REFERENCES

[1] NIST Special Publication 800-38A, "Recommendation for Block Cipher Modes of

Operation—Methods 	and 	Techniques", 	December 	2001.

http://csrc.nist. gov/publications/nistpubs/800-3 8 a/sp800-3 8a.pdf

[2] NIST Special Publication 800-38B, "Recommendation for Block Cipher Modes of

Operation: the CMAC Authentication Mode", U.S. DoC/NIST, October 2003.

http://csrc.nist.gov/publications/nistpubs/800-38B/SP 800-38B.pdf

[3] NIST Special Publication 800-38C, "Recommendation for Block Cipher Modes of

Operation: The CCM Mode for Authentication and Confidentiality", U.S. DoC/NIST,

May 2004. http://csre.nist. ogv/publications/nistpubs/800-38C/SP800-38C.pdf

[4] NIST Special Publication 800-38D Draft, "Recommendation for Block Cipher Modes

of Operation - Galois/Counter Mode (GCM) for Confidentiality and Autheniicaiion'".

April 2006. http://csrc.nist.gov/publications/nistpubs/800-38D/SP-800-38D.pdf

[5] FIPS Publication 197, "The Advanced Encryption Standard (AES)", U.S. DoC/NIST,

November, 2001.

http://www.securitylechnet.com/resource/crypto/standard/fips/fips-197.pdf

[6] Alfred J. Menezes, Paul C. van Oorschot, and Scott A. Vanstone, "Handbook of

Applied Cryptography", CRC Press LLC, 1997.

[7] Leilei Song; Parhi, K.K., "Low-complexity modified Mastrovito multipliers over finite

fields GF(2M)", Circuits and Systems, 1999. ISCAS '99. Proceedings of the 1999

IEEE International Symposium on ,vol.!, no., pp.508-512 vol.1, Jul 1999

[8] T. Wollinger and C. Paar., "How secure are FPGAs in cryptographic applications?",

In Proc. of the 13th Int'l Conference on Field-Programmable Logic and its

Applications (FPL), pages 91-100, 2003.

[9] A. Satoh, S. Morioka, K. Takano, and S. Munetoh., "A Compact Rijndael Hardware

Architecture with S-Box Optimization", Advances in Cryptology- ASIACRYPT,

pages 239-254, 2001. http://www.springerlink.com/index/bc7dvd7ymadu3j8l.pdf

77

[10] V. 	Rijmen., 	"Efficient 	Implementation 	of 	the 	Rifndael 	S-hox".

http://www.comms.scitech.susx.ac.uk/fft/crypto/rij ndael-sbox.pddf

[11] M. Alam, S. Ghosh, D. RoyChowdhury, and I. Sengupta., Single ('hip

Encryptor/Decryptor Core Implementation of AES Algorithm", 21 st International

Conference on VLSI Design, 2008. VLSID 2208., pages 693-698, 2008.

[12] M.Machhout, M.Zeghid, W.El hadj youssef, B.Bouallegue, A.Baganne, R.Tourki,

"Efficient Large Numbers Karatsuba-Ofman Multiplier Designs for Embedded

Systems", International Journal of Electronics, Circuits and Systems, 2009.

[13] D. McGrew, J. Viega, "The Galois/Counter Mode of Operation (GCM)", May 31,

2005. http://csrc.nist.gov/CryptoToolkit/modes/proposedmodes

[14] C. Paar., "A new architecture for a parallel finite field multiplier with low complexity

based on composite fields", IEEE Transactions on Computers, 45(7):856-861, 1996.

[15] Henry Kuo and Ingrid Verbauwhede, "Architectural Optimization for a 1.82Gbitssec

VLSI Implementation of the AES Rijindael Algorithm", in 3rd international workshop

cryptographic Hardware and embedded systems (CI-IES 2001), LNC 52162. Paris.

May 2001,pp 51-64.

[16] Kimmo U. Jarvinen, Matti T. Tommiska, and Jorma O. Skytta., "A fully pipelined

memoryless 17.8 Gbps AES-128 encryptor", In Proceedings of the 11th ACM

International Symposium on Field-Programmable Gate Arrays, FPGA 2003, pages

f►ASYQ4IiI

[17] X. Zhang, K.K. Parhi, "High-speed VLSI architectures for the AES algorithm", IEEE

Transactions on Very Large Scale Integration (VLSI) Systems 12 (9) (2004) 957-

967.

[18] P. Chodowiec and K. Gaj., "Very Compact FPGA Implementation of the AES

Algorithm", In Cryptographic Hardware and Embedded Systems, C111 S 2003, pages

319-333. Springer, Sept. 2003.

[19] Chodowiec P., Gaj K., Bellows P., Schott B., "Experimental Testing of the Gigabit

IPSec Compliant Implementations of Rijndael and Triple DES Using SLAAC-I

78

VFPGA Accelerator Board", Information Security Conference (ISC 2001), Malaga,

Spain, 2001.

[20] Dandalis A., Prasanna V.K., Rolim J.D., "A Comparative Study of Performance of

AES Final Candidates Using FPGAs ", Cryptographic Hardware and Embedded

Systems Workshop (CHES 2000), Worcester, Massachusetts, 2000.

[21] Elbirt A.J., Yip W., Chetwynd B., Paar C., "An FPGA-based performance evaluation

of the AES block cipher candidate algorithm finalists ", IEEE Transactions on Very

Large Scale Integration (VLSI) Systems, Volume: 9 Issue: 4, August 2001.

[22] Gaj K. and Chodowiec P., "Comparison of the hardware performance of the AL'S

candidates using reconfigurable hardware ", Third Advanced l ncryption Standard

(AES3) Candidate Conference, New York, 2000.

[23] M. H. Jing, Y. H. Chen, Y. T. Chang, and C. 1-1. Hsu, "The design of a fast inverse

module in AES", in Proc. Int. Conf. Info-Tech and Info-Net, vol. 3, Beijing, China,

Nov. 2001, pp. 298-303.

[24] C. C. Lu and S. Y. Tseng, "Integrated design of AES (advanced encryption standard)

encrypter and decrypter", in Proc. IEEE Int. Conf. Application Specific Systems,

Architectures Processors, 2002, pp. 277-285.

[25] X. Zhang and K. K. Parhi, "Implementation approaches for the advanced encryption

standard algorithm", IEEE Circuits Syst. Mag., vol. 2, no. 4, pp. 24-46, 2002.

[26] G. P. Saggese, A. Mazzeo, N. Mazocca, and A. G. M. Strollo, "An FPGA based

performance analysis of the unrolling, tiling and pipelining of the AES algorithm"', in

Proc. FPL 2003, Portugal, Sept. 2003.

[27] M. McLoone and J. V. McCanny, "Rijndael FPGA implementation utilizing look-up

tables", in IEEE Workshop on Signal Processing Systems, Sept. 2001, pp. 349-360.

[28] F. Standaert, G. Rouvroy, J. Quisquater, and J. Legat, "Efficient implementation of

Rijndael encryption in reconfigurable hardware: Improvements & design tradeoffs",

in Proc. CHES 2003, Cologne, Germany, Sept. 2003.

79

[29] K. Gaj, P. Chodowiec, "Fast implementation and fair comparison of the final

candidates for advanced encryption standard using field programmable gate arrays",

CT-RSA 2001, LNCS 2020, 2001, pp. 84-99.

[30] G. Ahlquist, B. Nelson, and M. Rice, "Optimal Finite Field Multipliers for FPGAs,

International Workshop on Field Programmable Logic and Applications", pp. 51-60,

August, 1999.

[31] J. Viega, D. McGrew, "The Use of Galois/Counter Mode (G('M) in IP'.cec

Encapsulating Security Payload (ESP) ". Internet proposed standard RFC 4106, June

2005.http://tools.ietf.org/html/rfc4106

[32] Joan Daemen, Vincent Rijmen, "AES Proposal: RUndael", September 2000.

http://esrc.nist. og v/encryption/aes/round2/AESAI sg /Rijndael/Riindael.pdf

[33] Bo Yang, Sambit Mishra, and Ramesh Karri., "High Speed Architecture for

Galois/Counter Mode of Operation (GCM) ", Cryptology ePrint Archive, Report

2005-156, May 2005. http://eprint.iacr.org/2005/146

PAPERS PUBLISHED

1. Vishwanath Patel, R. C. Joshi, A. K. Saxena, "FPGA Implementation of DES Using

Pipeline Concept with Skew Core Key Scheduling" Journal of Theoretical and

Applied Information Technology, Vol 5. No3. March-2009.

2. Vishwanath Patel, R. C. Joshi, A. K. Saxena, "High-Performance FPGA

Implementation of Compact Single Round AES Design", International Conference on

Computer and Network Technology (ICCNT 2009). (in press)

3. Vishwanath Patel, R. C. Joshi, A. K. Saxena, "Efficient Composite Field Arithmetic

Based Subpipelined VLSI Architectures for the AES Algorithm", International Journal

of Educational Technology (IJET), Inderscience Publishers. (under review)

4. Vishwanath Patel, R. C. Joshi, A. K. Saxena, "FPGA Implementation of Advance

Encryption Standard-Galois Counter Mode". (under writing)

81

APPENDIX A

TEST-VECTORS FOR AES-GCM 113]

GCM Test Case #03 (AES-128)

Variable Value

K feffe9928665731c6d6a8f9467308308

P : 	d9313225f88406e5a55909c5aff5269a

86a7a9531534f7da2e4c303d8a318a72

1c3c0c95956809532fcf0e2449a6b525

bl6aedf5aa0de657ba637b391aafd255

IV : cafebabefacedbaddecaf888

H b83b533708bf535d0aa6e52980d53b78

Y0 cafebabefacedbaddecaf88800000001

E(K,Y 	0) : 	3247184b3c4f69a44dbcd22887bbb418

Y 1 cafebabefacedbaddecaf88800000002

E(K,Y 	1) : 	9bb22ce7d9f372clee2b28722b25f206

Y_2 : 	cafebabefacedbaddecaf88800000003

E(K,Y 2) : 	650d887c3936533alb8d4elea39d2b5c

Y3 cafebabefacedbaddecaf88800000004

E(K,Y 	3) : 	3de91827c10e9a4f5240647ee5221f20

Y4 cafebabefacedbaddecaf88800000005

E(K,Y 4) : 	aac9e6ccc0074acO873b9ba85d908bdO

X 1 59ed3f2bbla0aaaO7c9f56c6aSO4647b

X2 : 	b714c9048389afd9f9bc5c1d4378e052

X3 : 	47400c6577b1ee8d8f40b2721e86ff10

X4 : 	4796cf49464704b5dd91f159bb1b7f95

len(A)Illen(C) 00000000000000000000000000000200

GHASH(H,A,C) 7flb32b8lb82OdO2614f8895acid4eac

C 42831ec2217774244b7221b784d0d49c

e3aa212f2c02a4e035c17e2329aca12e

21d514b25466931c7d8f6a5aac84aa05

1ba30b396a0aac973d58e091473f5985

T 4d5c2af327cd64a62cf35abd2ba6fab4

82

GCM Test Case #04 (AES-128)

Variable Value

K 	: feffe9928665731c6d6a8f9467308308

P 	: d9313225f88406e5a55909c5aff5269a

86a7a9531534f7da2e4c303d8a318a72

1c3c0c95956809532fcf0e2449a6b525

bl6aedf5aaOde657ba637b39

A 	: feedfacedeadbeeffeedfacedeadbeef

abaddad2

IV 	: cafebabefacedbaddecaf888

H : b83b533708bf535d0aa6e52980d53b78

Y 0 : cafebabefacedbaddecaf88800000001

E(K,Y 0) : 	3247184b3c4f69a44dbcd22887bbb418

X 1 : 	ed56aaf8a72d67049fdb9228edba1322

X_2 : 	cd47221ccef0554ee4bb044c88150352

Y 1 : 	cafebabefacedbaddecaf68800000002

E(K,Y 1) : 	9bb22ce7d9f372clee2b28722b25f206

Y2 : cafebabefacedbaddecaf88800000003

E(K,Y 2) 650d887c3936533a1b8d4e1ea39d2b5c

Y3 : 	cafebabefacedbaddecaf88800000004

E(K,Y 3) : 	3de91827c10e9a4f5240647ee5221f20

Y4 : cafebabefacedbaddecaf88800000005

E(K,Y 4) : aac9e6ccc0074acO873b9ba85d908bd0

X3 : 	54f5e1b2b5a8f9525c23924751a3ca51

X4 : 	324f585c6ffcl359ab371565d6c45f93

X5 ca7dd446af4aa70cc3cOcd5abba6aalc

X6 : 	1590df9b2eb6768289e57d56274c8570

len(A)IIlen(C) 00000000000000a00000000000000leO

GHASH(H,A,C) 698e57f70e6ecc7fd9463b7260a9ae5f

C 42831ec2217774244b7221b784d0d49c

e3aa212f2c02a4e035c17e2329aca12e

2ld5l4b2546693lc7d8f6a5aac84aa05

lba30b396aOaac973d58eO9l

T 5bc94fbc3221a5db94fae95ae7121a47

83

APPENDIX B

SIMULATION RESULTS OF IMPLEMENTED DESIGNS

1. AES-GCM Designs:-

clk 	LFSR 16bit out_prime(0:15) -----

P_16bit_out(0:15)

cik out

data valid

floating

Sec_LED

T Verification

Reset_n 	 Verifyi ng_G CM

(a)

(b)

84

1.1 LUT based AES-GCM with Mastrovito Multiplier

Timing summary:

Timing errors: 0 Score: 0
Constraints cover 369867 paths, 0 nets, and 109174 connections
Design statistics:
Minimum period: 9.613ns (Maximum frequency: 	104.026MHz)
Minimum input required time before clock: 	10.362ns
Minimum output required time after clock: 	10.550ns
Analysis completed Sun May 24 04:26:36 2009

+ 	},, ~~~~ 	a
rc~P~ 	I 	~. 	... 	~', 	iR~ NI 	r 	:. t~iY~., 	As 	k. 	.pia 	5b;,4 'n1 ~~ 	fit, 	isG

Logic Utilization
Dev cke UUlizati~n

\Sz..; 	r.',46=.(~~„o{ 	4., 	tt#r} 	„~ 	,,s

Used
ttuL~ 	:.i~ 	,FU 	

,,, Sitmrrtary
Available 	Utilization

Number of Slice Flip Flops 3,174 98,304 3%
Number of 4 input LUTs 22,237 98,304 22%
Logic Distribution
Number of occupied Slices 12,039 49,152 24%

Number of Slices containing only related logic 12,039 12,039 100%
Number of Slices containing unrelated logic 0 12,039 0%

Total Number of 4 input LUTs 22,730 98,304 23%
Number used as logic 22,237
Number used as a route-thru 77
Number used as Shift registers 416
Number of bonded IOBs 40 960 4%
Number of BUFG/BUFGCTRLs 1 32 3%

Number used as BUFGs 1
Number used as BUFGCTRLs 0

Number of FIFO16/RAMB16s 130 240 54%
Number used as FIFO16s 0
Number used as RAMB16s 130

Total equivalent gate count for design 8,735,739
Additional JTAG gate count for IOBs 1,920

Power summary: I(mA) P(mW)

Total estimated power consumption: 1284

Vccint 1.20V: 572 687
Vccaux 2.50V: 234 585
Vcco25 2.50V: 5 13

Clocks: 51 61
Inputs: 3 3
Logic: 166 199
Outputs:
Vcco25 5 13
Signals: 0 0

Quiescent Vccint 1.20V: 353 424
Quiescent Vccaux 2.50V:

234 584

85

1.2 LUT based AES-GCM with Karatsuba Multiplier

Timing summary:

Timing errors: 0 Score: 0
Constraints cover 860812 paths, 0 nets, and 50973 connections
Design statistics:
Minimum period: 12.785ns (Maximum frequency: 	78.217MHz)
Minimum input required time before clock: 	12.573ns
Minimum output required time after clock: 	12.305ns
Analysis completed Sat May 23 23:29:32 2009

Logic Utilization

r ',9'.'~'~ hb HdYs'ar"

Used

`ze 4`~lCN hffiAR M' l~ iwn7i k~k~s'N~ Uz i'i~i2

Available

'2 ifi ~ P. S k

Utilization

Number of Slice Flip Flops 2,788 178,176 1%

Number of 4 input LUTs 12,280 178,176 6%

Logic Distribution
Number of occupied Slices 7,304 89,088 8%

Number of Slices containing only related logic 7,304 7,304 100%

Number of Slices containing unrelated logic 0 7,304 0%

Total Number of 4 input LUTs 12,773 178,176 7%

Number used as logic 12,280

Number used as a route-thru 77

Number used as Shift registers 416

Number of bonded IOBs 40 960 4%

Number of BUFG/BUFGCTRLs 1 32 3°

Number used as BUFGs 1

Number used as BUFGCTRLs 0

Number of FIFO16/RAMB16s 160 336 47%

Number used as FIFO16s 0

Number used as RAMB16s 160

Total equivalent gate count for design 10,610,177

Additional JTAG gate count for IOBs 1,920

Power summary:

I(mA) P(mW)

Total estimated power consumption: 1804

Vccint 1.20V: 891 1069
Vccaux 2.50V: 289 722
Vcco25.2.50V: 5 13

Clocks: 49 58
Inputs: 3 3
Logic: 211 253
Outputs:
Vcco25 5 13
Signals: 0 0

Quiescent Vccint 1.20V: 628 754
Quiescent Vccaux 2.50V: 289 722

1.3 CAF based AES-GCM with Mastrovito Multiplier

Timing summary:

Timing errors: 0 Score: 0
Constraints cover 55489067 paths, 0 nets, and 144085 connections
Design statistics:
Minimum period: 10.227ns (Maximum frequency: 	97.780MHz)
Minimum input required time before clock: 	12.936ns
Minimum output required time after clock: 	9.952ns
Analysis completed Sun May 24 03:32:59 2009

Device Utilization ''a L
T 	j

5.rS Summary
e'

Logic Utilization Used Available Utilization

Number of Slice Flip Flops 5,100 98,304 5%

Number of 4 input LUTs 37,587 98,304 38%

Logic Distribution

Number of occupied Slices 19,957 49,152 40%

Number of Slices containing only related logic 19,957 19,957 100%

Number of Slices containing unrelated logic 0 19,957 0%

Total Number of 4 input LUTs 38,080 98,304 38%

Number used as logic 37,587

Number used as a route-thru 77

Number used as Shift registers 416

Number of bonded IOBs 40 960 40%0

Number of BUFGIBUFGCTRLs 1 32 3%

Number used as BUFGs 1

Number used as BUFGCTRLs 0

Total equivalent gate count for design 299,411

Additional JTAG gate count for IOBs 1,920

Power summary: I(mA) P (mW)

Total estimated power consumption: 1136

Vccint 1.20V: 449 538
Vccaux 2.50V: 234 585
Vcco25 2.50V: 5 13

Clocks: 71 85
Inputs: 3 3
Logic: 30 36
Outputs:
Vcco25 5 13
Signals: 0 0

Quiescent Vccint 1.20V: 345 415
Quiescent Vccaux 2.50V: 234 584

87

1.4 CAF based AES-GCM with Karatsuba Multiplier

Timing summary:

Timing errors: 0 Score: 0
Constraints cover 54831791 paths, 0 nets, and 144977 connections
Design statistics:
Minimum period: 11.575ns (Maximum frequency: 86.393MHz)
Minimum input required time before clock: 16.767ns
Minimum output required time after clock: 12.759ns
Analysis completed Sun May 24 01:13:31 2009

Device Utilization Summary`

Logic Utilization Used Available Utilization

Number of Slice Flip Flops 5,105 178.176 2%

Number of 4 input LUTs 38,190 178.176 21°/a

Logic Distribution

Number of occupied Slices 20,320 89.088 22%

Number of Slices containing only related logic 20,320 20.320 100°h,

Number of Slices containing unrelated logic 0 20,320 0%

Total Number of 4 input LUTs 38,684 178,176 21%

Number used as logic 38,190

Number used as a route-thru 78

Number used as Shift registers 416

Number of bonded IOBs 40 960 4%

Number of BUFG/BUFGCTRLs 1 32 3%

Number used as BUFGs 1

Number used as BUFGCTRLs 0

Total equivalent gate count for design 301,131

Additional JTAG gate count for IOBs 1,920

Power summary:

I(mA) P(mW)

Total estimated power consumption: 1594

Vccint 1.20V: 715 859

Vccaux 2.50V: 289 722

Vcco25 2.50V: 5 13

Clocks: 73 88
Inputs: 3 3
Logic: 30 36
Outputs:
Vcco25 5 13
Signals: 0 0

Quiescent Vccint 1.20V: 610 732
Quiescent Vccaux 2.50V:

289 722

M

2. Multipliers:-

AC(0:127) 	X(0:127)

H(0:127)

c!k

reset

2.1 Mastrovito Multiplier

Timing Summary:

Speed Grade: -12
Minimum period: No path found
Minimum input arrival time before clock: No path found
Maximum output required time after clock: No path found
Maximum combinational path delay: 	10.260ns

P1 •1U 	psi 	.,, , _, 	~ 	 ~euice Utilisation Sn~hmary
Logic Utilization 	 Used 	Available 	Utilization
Number of 4 input LUTs 14,193 98,304 14%

Logic Distribution
Number of occupied Slices 8,229 49,152 16 i

Number of Slices containing only related logic 8,229 8,229 100%

Number of Slices containing unrelated logic 0 8.229 0°%~

Total Number of 4 input LUTs 14,193 98,304 14%

Number of bonded lOBs 384 960 40%

Total equivalent gate count for design 85,161
Additional JTAG gate count for IOBs 18,432

Power summary:

I(mA) P(mW)

Total estimated power consumption: 990

Vccint 1.20V: 338 406
Vccaux 2.50V: 234 584
Vcco25 2.50V: 0 0

Inputs; 0 0
Logic: 0 0
Outputs:
Vcco25 0 0
Signals: 0 0

Quiescent Vccint 1.20V: 338 406
Quiescent Vccaux 2.50V: 234 584

2.2 Kratsuba Multiplier

Timing Summary:

Speed Grade: -11
Minimum period: No path found
Minimum input arrival time before clock: No path found
Maximum output required time after clock: No path found
Maximum combinational path delay: 	15.397ns

Device. Utilization Summary

Logic Utilization Used Available Utilization

Number of 4 input LUTs 7,542 178,176 4%

Logic Distribution

Number of occupied Slices 3,890 89,088 4%

Number of Slices containing only related logic 3,890 3,890 100%

Number of Slices containing unrelated logic 0 3,890 0%

Total Number of 4 input LUTs 7,542 178,176 4%

Number of bonded lOBs 384 960 40%

Total equivalent gate count for design 46,290

Additional JTAG gate count for lOBs 18,432

Power summary:

I (mA) P (mW)

Total estimated power consumption: 1438

Vccint 1.20V: 597 717
Vccaux 2.50V: 289 722
Vcco25 2.50V: 0 0

Inputs: 0 0
Logic: 0 0
Outputs:
Vcco25 0 0
Signals: 0 0

Quiescent Vccint 1.20V: 597 717
Quiescent Vccaux 2.SOV:

289 722

91

............................

3. Compact Single Round AES-ECB Design:-

plaintext(127:0) 	ciphertext(127:0)

user_key(127:0)

clk

encrypt

reset

3.1 LUT based Compact Single Round AES-ECB Design

Timing summary:

Timing errors: 0 Score: 0
Constraints cover 728546 paths, 0 nets, and 23466 connections
Design statistics:
Minimum period: 10.161ns (Maximum frequency: 	98.416MHz)
Minimum input required time before clock: 	0.870ns
Minimum output required time after clock: 	13.623ns
Analysis completed Wed Dec 31 12:18:29 2008

Device Utilization Summary. .

LogicUtilization Used Available Utilization

Number of Slice Flip Flops 625 98,304 1

Number of 4 input LUTs 4,297 98,304 4%

Logic Distribution

Number of occupied Slices 2,571 49,152 5%

Number of Slices containing only related logic 2,571 2,571 100%

Number of Slices containing unrelated logic 0 2,571 0%

Total Number of 4 input LUTs 4,297 98,304 4%

Number of bonded IOBs 387 768 50%

Number of BUFG/BUFGCTRLs 1 32 3%

Number used as BUFGs 1

Number used as BUFGCTRLs 0

Total equivalent gate count for design 39,005

Additional JTAG gate count for IOBs 18,576

Power summary:

I(mA), P(mW)

Total estimated power consumption: 1019

Vccint 1.20V: 362 434
Vccaux 2.50V: 234 584
Vcco25 2.56V: 0 0

Clocks: 17 21
Inputs: 3 3
Logic: 0 0
Outputs:
Vcco25 0 0
Signals: 0 0

Quiescent Vccint 1.20V: 342 410
Quiescent Vccaux 2.50V:

234 584

92

3.2 CFA based Compact Single Round AES-ECB Design

Timing summary:

Timing errors: 0 Score: 0
Constraints cover 3073369 paths, 0 nets, and 11089 connections
Design statistics:
Minimum period: 13.177ns (Maximum frequency: 	75.890MHz)
Minimum output required time after clock: 	14.706ns
Analysis completed Thu May 21 03:24:36 2009

~' 	 bovice,01 ilizatron•Summary

Logic Utilization Used Available Utilization

Number of Slice Flip Flops 260 178,176 1

Number of 4 input LUTs 2,819 178,176 1%

Logic Distribution

Number of occupied Slices 1,452 89,088 1%

Number of Slices containing only related logic 1,452 1,452 100%

Number of Slices containing unrelated logic 0 1,452 0%

Total Number of 4 input LUTs 2,819 178,176 1%

Number of bonded IOBs 387 960 40%

Numberof BUFG/BUFGCTRLs 1 32 3%

Number used as BUFGs 1

Number used as BUFGCTRLs 0

Total equivalent gate count for design 19,306

Additional JTAG gate count for IOBs 18,576

Power summary:

I(mA) P(mw)

Total estimated power consumption: 1438

Vccint 1.20V: 597 717
Vccaux 2.50V: 289 722
Vcco25 2.50V: 0 0

Clocks: 0 0

Inputs: 0 0
Logic: 0 0
Outputs:
Vcco25 0 0
Signals: 0 0

Quiescent Vccint 1.20V: 597 717
Quiescent Vccaux 2.50V: 289 722

93

	Title
	Abstract

	Chapter 1

	Chapter 2

	Chapter 3

	Chapter 4

	Chapter 5

	Chapter 6

	Chapter 7

	References

	Appendix

