
DESIGN AND SIMULATION OF 32 BIT ALU BASED 
ON FEEDBACK SWITCH LOGIC 

A DISSERTATION 

Submitted in partial fulfillment of the 
requirements for the award of the degree 

of 
MASTER OF TECHNOLOGY 

in 
ELECTRONICS AND COMMUNICATION ENGINEERING 

(With Specialization in Semiconductor Devices & VLSI Technology) 

By 

PATANJALI PRAKASH 
zut 
-4;9' \ 44*  

DEPARTMENT OF ELECTRONICS AND COMPUTER ENGINEERING 
INDIAN INSTITUTE OF TECHNOLOGY ROORKEE 

ROORKEE -247 667 (INDIA) 
JUNE, 2009 



CANDIDATE'S DECLARATION 

I hereby declare that the work, which is being reported in this dissertation report, entitled 

"Design and Simulation of 32 bit ALU based on Feedback Switch Logic", is being 
submitted in partial fulfillment of the requirements for the award of the degree of Master 
of Technology in Semiconductor Devices and VLSI Technology, in the Department of 

Electronics and Computer Engineering, Indian Institute of Technology, Roorkee is an 

authentic record of my own work, carried out from June 2008 to June 2009, under the 
guidance and supervision of Dr. A. K. Saxena, Professor, Department of Electronics and 

Computer Engineering, Indian Institute of Technology, Roorkee. 

The results embodied in this dissertation have not submitted for the award of any other 

Degree or Diploma. 

Date : 24 - 06 -2o©g 

Place : Roorkee Patanjali Prakash 

 

CERTIFICATE 

This is to certify that the statement made by the candidate is correct to best of my 
knowledge and belief. 

Dr. A. K. Saxena 

Professor 



ACKNOWLEDGEMENT 

At the outset, I express my heartfelt gratitude to Dr. A.K Saxena, Professor, Department 

of Electronics and Computer Engineering at Indian Institute of Technology Roorkee, for 

his valuable guidance, support, encouragement and immense help. I consider myself 

extremely fortunate for getting the opportunity to learn and work under his able 

supervision. I have deep sense of admiration for his innate goodness and inexhaustible 

enthusiasm. It helped me to work in right direction to attain desired objectives. Working 

under his guidance will always remain a cherished experience in my memory and I will 

adore it throughout my life. 

My sincere thanks are also due to rest of the faculty in the Department of Electronics and 

Computer Engineering at Indian Institute of Technology Roorkee, for the technical 

knowhow and analytical abilities they have imbibed in us which have helped me in 

dealing with the problems I encountered during the project. I also extend my sincere 

thanks to all the technical and non-technical staff of VLSI Design Lab for providing me 

various tools and encouraging me through out my work. 

I am greatly indebted to all my friends, who have graciously applied themselves to the 

task of helping me with ample morale support and valuable suggestions. Finally, I would 

like to extend my gratitude to all those persons who directly or indirectly helped me in the 
process and contributed towards this work. 

Patanjali Prakash 

M. Tech. (SDVT) 

ii 



ABSTRACT 

This thesis presents the employment of Feedback Switch Logic (FSL) in the development 

of a 32-bit ALU unit. For the design of ALU, we have chosen Feedback Switch Logic 

(FSL) because it offers reduced capacitance, fast switching and input-switching 

dependent activity factor without the need of clock connection. 

The Arithmetic Logic Unit is a digital circuit that performs an arithmetic operation 

(addition, subtraction, etc.) and logic operations (Exclusive-OR, AND, etc.) between two 

numbers. Demand for performance at low power consumption in today's general purpose 

processor has put severe limitations on ALU design. ALU are also one of the most power 

consumed blocks in the processor and are often the possible location of hot-spots. Hence 

this thesis aims to reduce power consumption and improve performance using FSL. 

Three types of adders, two types of shifter structures and one logical unit have been 

designed in FSL and static CMOS logic styles. Comparisons are drawn among the various 

designed units and the best one in terms of high speed and low power is chosen. Finally 

we have done the proper organization of adders, shifter and logic unit to make complete 

ALU. 

Simulations have been performed in CADENCE Virtuoso Front to Back Design 

Environment on 90nm technology node. Simulation results show that 14% increase in 

speed has been achieved with FSL trading-off with an 8% increase in power consumption 

when compared to static CMOS logic. 
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Chapter 1 

Introduction 

1.1 Background 

Much of the research effort of the past years in the area of digital electronics has been 

directed towards increasing the speed of digital systems. But due to the demand and 

popularity of portable electronics, designers are striving to achieve smaller silicon area, 

higher speeds, longer battery life and more reliability. Power is one of the premium 

resources to which a designer tries to save when designing a system. However, the 

advancement of digital computer technology requires higher circuit speed also. 

The three most widely accepted parameters to measure the quality of a circuit or to 

compare various circuit styles are area, delay and power dissipation. Portability imposes a 

strict limitation on power dissipation while still demanding high computational speeds. 

Hence, in recent VLSI systems, the power delay product becomes the most essential 

metric of performance. The reduction of power dissipation and the improvement of speed 

requires optimization at all levels of the design procedure. 

Arithmetic Logic Units (or ALUs) are important components in many moderns IC such as 

processors and re-configurable cores. Demand for performance at low power 

consumption in today's general purpose processors has put severe limitations on ALU 

design. ALUs are also one of the most power hungry sections in the processor and are 

often the possible location of hot-spots. The presence of multiple ALUs in superscalar 

pipelines further deteriorates the power and thermal issues. Technology scaling has 

resulted in faster devices but at the same time, the die-to-die delay variations have 

increased due to different lithographic subtleties. Therefore, low power ALU design 

while maintaining high yield under tighter delay constraint turns out to be a 
multidimensional problem [1]. 

ALU is the heart of a microprocessor and the adder cell is the elementary unit of an ALU. 

It is basically a combinational circuit that performs a number of arithmetic and logic 

functions. Hence, its performance is crucial for the design of high performance digital 

computer system. The basic structure of the ALU is shown in Fig. 1.1. It consists of input 
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multiplexers, adder core and an output multiplexer. The adder takes operands from 

register file, data cache or ALU write-back bus. The input multiplexers select the proper 

operands among these and provide the ALU inputs. The adder output is multiplexed with 

the logical output through an output multiplexer. 

Fig. 1.1: Basic ALU Structure [1]. 

Since multiplication is a less frequent operation than addition/subtraction/shift operation, 

the multipliers are usually isolated from the ALU. This also ensures high speed operations 

of the more frequent instructions in processors. However, for signal processing 

applications (e.g., filters, DCT), multipliers can be an integral part of the ALU. 

1.2 Thesis Contribution 

The aim of this thesis is to design a 32-bit low power, high speed logic ALU based on 

Feedback Switch Logic (FSL) [2]. FSL offers low power consumption and high speed 

because of fast switching, reduced capacitance and input-switching dependent activity 

factor without the need of clock connection. The objectives of the thesis are following: 

• Study the concept of low power high speed logic, which is Feedback Switch Logic 

(FSL). 

• Design different adders using static CMOS logic and FSL. 

• Estimation and comparison of power consumption and delay of different adders 

with static CMOS logic and FSL logic. 

• Design of various shifters using static CMOS and FSL logics. 
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• Extraction and comparison of power consumption and delay of shifter with both 

the logics. 

• Design of 32-bit ALU by taking best adders and shifters from comparisons in 

terms of speed and power consumption using static CMOS and FSL logics. 

• Finally, power consumption and delay of 32-bit ALU using static CMOS and FSL 

logics are calculated and compared. 

1.3 Thesis Organization 

The thesis organization is as follows: 

Chapter 2 gives an overview of FSL. This chapter presents the overview of our new logic 

Feedback Switch Logic. A comparative study between various logics is done, followed by 

various simulation results and discussions. 

In chapter 3, designs of different adders using static CMOS and FSL are presented. It also 

discusses about comparison results of different adders using both the logics. 

Chapter 4 presents design, of different shifter units. These, shifters are capable of 

bidirectional and cyclic shifting up to 31-bits and it also presents simulation results and 

comparison of these shifters using static CMOS logic and FSL in terms of speed and 

power consumption. 

In chapter 5, implementation details of 32-bit ALU have been discussed and simulation 

results are also presented. 

Chapter 6 concludes the thesis and discusses future scope of work. 
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Chapter 2 

Feedback Switch Logic (FSL) 

2.1 Introduction 

Since the invention of CMOS, speed improvement has been the main goal in the research 

of both circuit design and device design. Designing high speed low power circuits with 

CMOS technology has been a major research problem for many years. Several logic 

families have been proposed to improve circuit performance beyond static CMOS family 

[3]• 

In deep submicron technologies, the performance benefits obtained from process scaling 

decreases as feature size decreases, hence fast circuit families become more attractive 

now a days. Static CMOS logic is widely used due to its features like low power 

dissipation, ease of design and higher stability. Static CMOS logic gate is built up by pull 

up (PUN or PMOS network) and pull down network (PDN or NMOS network). The 

advantage of having both pull up and pull down networks is that except for the very brief 

period when the output or the inputs are making transitions, no current flows and no 

power is consumed. The problem with this fully complementary approach is that for 

complex gates, substantial amounts of area can be wasted. As a result of the extra area 

and extra transistors, the capacitive loads on gates of a fully complementary circuit are 

very high. Each output goes to both a PMOS and NMOS transistors in every gate it 

drives. PMOS transistor are generally twice the size of NMOS transistor to obtain more 

balanced rise and fall times. As a result, the total gate load on each output will be three 

times higher. Hence even though static CMOS consumes less power and gives good noise 

margin but it slows down the circuit speed. 

In order to remove the above problems, many dynamic circuit schemes have been 

described [4], but they all show some basic features as a common one. Basically, they 

involve pre charging the output node to a particular level (usually high for NMOS), while 

the current path to the other level (ground for NMOS) is turned off. Any charging of 

inputs to the gate must occur during the pre charge phase. At the completion of pre 

charge, the path to the high level is turned off by a clock and the path to ground is turned 
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on. Then depending on the state of the inputs, the output will either float at the high level 

or will be pulled down. The advantage of dynamic circuit is that it has lesser load 

capacitance on gates than static CMOS logic. In addition, there is no static current path, 

so power would be much closer to CMOS. However, there are serious problems involved 

in realizing these apparent speed advantages in real circuits. This happens because useful 

circuits generally have several logic gates in series and in the dynamic approach, no gate 

can be activated until its inputs have been stabilized. In practice, considerably more than 

one gate delay would be needed between successive edges to assure a full gate delay in 

worst case. Overall then, in a circuit of reasonable complexity, the dynamic approach 

would not be any faster than conventional CMOS logic [4]. 

A Domino logic consists of an n-type dynamic logic block followed by a static inverter, 

so only noninverting logic can be implemented. In domino logic, during precharge, the 

output of the n-type dynamic gate is charged up to Vdd, and the output of the inverter is 

set to 0. During evaluation, the dynamic gate conditionally discharges and the output of 

the inverter makes a conditional transition from 0 	1. Due to static inverter, it has 

additional advantage that the fan-out of the gate is driven by a static inverter with a low-

impedance output which increases noise immunity [5]. 

Domino logic allows high-speed circuit design due to the low switching threshold of 

dynamic gates and their reduced load capacitance and also the ability to implement 

complex functions in a single gate. On the other hand, domino logic suffers from high 

switching activity since the activity factor of a dynamic gate is input-state dependent and 

the gate switches twice a cycle. However, unlike static logic, domino logic does not allow 

false outputs before a gate settles down to its correct output which helps in reducing the 

activity overhead of domino circuit. One of the drawbacks of domino logic is the inability 

to recover after noise upsets. Noise tolerant pre charge solves this problem at the price of 

increased gate capacitance [6]. Another major disadvantage of domino logic is the 

increased clock loading and the need to deliver the clock signal to every gate, which in 

turn increases power, routing area and design complexity. 

However, the inability of inversion in domino logic poses another major limitation on 

widely using this high speed circuit family. Dual rail domino, which is a derivative of the 

differential Cascode Voltage Switch Logic (CVSL) family [7], solves this problem by 

implementing the logical function and its complement. 
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The static version of Differential Cascode voltage switch (DCVSL) is a differential style 
of logic that provides the complementary outputs with true and complementary inputs to 
the gate. When the input switches, output of the DCVSL gate and its complement are 
pulled either high or low. This static version slowly transits and highly consumes current 
since the PMOS pull-up fights the NMOS pull-down trees during the switching period. 
To increase the performance and reduce the power consumption, many clocked versions 
of the DCVSL gate have been introduced [7]. 

One of clocked CVSL is a dual-rail domino logic which combines both domino and 
CSVL logic in order to solve the problems of both families. Dual-rail domino does not 
suffer from contention problems, which makes it as fast as standard domino. Also, dual 
rail domino logic provides both inverting and non-inverting functions, which makes it 
easy to use in digital logic design. The main disadvantage of dual rail domino gate is its 
unity activity factor since an evaluate/precharge transition is guaranteed at every cycle 
regardless of the input activity or input states. Therefore, dual-rail domino logic suffers 
from high power consumption due to the extra clocking power. Also, dual-rail domino 
can not recover from noise upsets similar to standard domino logic. 

Feed back switch logic [2] is an improved design among all these logic families. This is a 

dynamic like static circuit family suitable for high speed and low power circuit designs. It 
is free from contention problem of clocked CVSL. The major advantage of FSL is fast 
switching speed, reduced capacitance, and input-switching dependent activity factor 
without the need of clock connection. 

FSL is a clock less differential circuit family that provides the output and its complement 
from a single side of the gate. Fig. 2.1(a) and (b) present two possible structures of FSL 
gates. In this work, FSL structure shown in Fig. 2.1(a) has been considered. However, the 
structure in Fig. 2.1(b) can be useful for FSL tree implementations since it allows 
transistor sharing between complementary networks. Similar to CVSL, the logic function 

and its complement in FSL are implemented using NMOS networks. Also, two cross 
coupled PMOS pull-ups are employed. However, one of these pull-ups is a weak keeper 
and the other one is a strong output driver. The latter provides high drive current during a 
low-to-high OUT transition, while it does not affect the high-to-low transition due to the 
output feedback that turns it off when it is not needed. The feedback acts as a switch that 

(6) 



OUT 

OUT Y 

decides which of the two pull-down networks should be used to provide the functionality 
of the gate based on the current output state. 

OUT 

	 OUT 

Fig 2.1(a): A Possible Structure 1 of FSL Logic [2]. 

Fig 2.1(b): A Possible Structure 2 of FSL Logic [2]. 

FSL takes the advantage of the fact that low-to-high transitions are the speed-critical 
transitions for all CVSL circuit families since only NMOS networks are used, while high-
to-low transitions are less important in terms of speed. Therefore, the high-to-low 
transition can follow its complementary low-to-high transition, while the speed is 
effectively based on the earlier low to-high transition. Thus, even though a signal in an 

FSL gate can pass through three serial stages in the worst case, which are OUT, OUT, and 

the output inverter stage, the effective FSL gate delay is always based on two stages. FSL 
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	 A.B 

	Y— A.B 

offers the switching speed of dynamic logic, while providing activity-dependent 

switching behavior similar to static logic without the need of a clock connection. 

However, FSL is slower than dynamic logic since the load of a gate is driven from a 

single side. 

2.2 Operation and Analysis: 

There are two possible FSL structures for any basic logic gate. In Fig 2.2 (a-d) two-inputs 

NOR/OR and NAND/AND gates based on FSL are shown. To understand the operation 

of FSL based gate, consider figure 2.2(a). 

IT= A.B 
	 = A.B 

Fig 2.2(a): A NAND/AND gate based on Structure 1 of FSL Logic. 

Fig 2.2(b): A NAND/AND gate based on Structure 2 of FSL Logic. 
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A--I 

-r_ 

Y=A+B 
Y—A+B A 

Y= A+B 
Y=A+B 

Fig 2.2(c): A NOR/OR gate based on Structure 1 of FSL Logic. 

Fig 2.2(d): A NOR/OR gate based on Structure 2 of FSL Logic. 

In Fig.2.2 (a), when Y is on and Y is off, the NAND node is at state "0" and the AND 

node is at state ' 1 ', the feedback-driven NMOS and PMOS are on and off, respectively, 

and node P is high. When Y turns off and Y turns on, node P discharges since it is held 

high by weak transistor. While the strong PMOS pulls, the NAND node is high which 

inturn discharges the AND node causing node P to charge again turning off the strong 

PMOS driver. Now the state of the gate is held at node V by a weak feedback keeper and 

is ready to evaluate and so on. The simulation waveforms of 2-input NAND/AND gate 

is shown in Fig. 2.3 
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From the simulation waveforms, node P is high all the time except when V turns on where 
a fast and short high low high pulse appears. This gives FSL gate an extra advantage by 
making a strong speed critical PMOS device tolerant against aging and Negative Bias 
Temperature Instability (NBTI) effects. Similarly for NOR/OR operation in FSL, 
simulated waveform is shown in Fig. 2.4. 

Transient Response 

1.25 

g 

	

0.0 	 

	

X1.25 	 

	

0.0 	 

	

21.25- 	L8s1 	 

~1.2511netuiin 

.75 
.2 .25 

81.25 	 
.75 

o 
.25 

10 

	f 	f 	 f 	 
os~ 1 

 

4 1 0  
time Ms) 

Fig 2.3: FSL NAND/AND operation 
Transient Response 

	

1.25-r7")" 	 

< 0.0 

21.25 

°' 0.0 

Q. Ai
„ 

_1.2 

.4 
0 	 

--4.25 mr,Li L 

a.7-   
.2 

7M-1.25 

E. 7 
.2 

a -.25 	 

	

1.24 fnetu75 	 

	

01.0 	 

	

.8 	  
5.0 	 7.5 	 10.0 " 	 12.5 

time Ins) 

Fig 2.4: FSL NOR/OR operation 

(10) 



1200 

loon 

800 

600 

400 

AND2 AND3 AND4 OR2 OR3 OR4 XOR2 

Power 
Consumption 
(in nW) CMOS 

Power 
Consumption 
(in nW) FSL 

200 

2.3 Simulation Results 

The following are the comparison results of various logic gates using static CMOS and 
FSL logics. 

The power consumption and delay of various logic gates using FSL and static CMOS are 
tabulated in Table 2.1. 

Table 2.1: Summary of simulation results for various logical gates 

Logical Gates 
Power Consumption 

(in nW) 
Delay 
(in ps) 

CMOS FSL CMOS FSL 
AND2 839.3 914.8 21.595 17.805 
AND3 860 927.1 28.45 22.988 
AND4 871.2 932.2 33.205 29.552 
OR2 947.9 1036.1 20.275 17.213 
OR3 981.8 1061.3 25.725 22.021 
OR4 1040.8 1116.8 31.185 27.786 

XOR2 892.5 981.75 27.215 23.786 

The power consumption comparison of different logic gates using FSL and static CMOS 
logic is shown in Fig.2.4. 

Fig 2.4: Comparisons of power consumption of different logic gates in static CMOS and 
FSL logics. 
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Since FSL is a combination of static and dynamic logic, the power consumption of logic 
gates using FSL is very much close to the power consumption of static CMOS gates. 

The delay comparison of various logic gates using FSL and static CMOS is shown in 
Fig.2.5. 

Fig 2.5: Comparisons of delays of different logic gates in static CMOS and FSL logics. 

From the simulation results logic gates using FSL having lesser delay compared to static 

CMOS logic because FSL offers reduced capacitance and fast switching. 



Chapter 3 

Design of an Adder 

3.1 Introduction 

Addition is one of the fundamental arithmetic operations. It is extensively used in many 

VLSI systems such as application-specific DSP architectures and microprocessors. In 

addition to its main task, that is the adding of two binary numbers, it is the nucleus of 

many other useful operations such as subtraction, multiplication, division, address 

calculation, etc [8]. In most of these systems, the adder is the part of the critical path that 

determines the overall performance of the system. That is why enhancing the 

performance of the adder is a significant goal. It often referred as the speed-limiting 

element as well [5]. 

Addition is most often is one of the critical paths of modern day microprocessor. Adder is 

also the "hot spot" among all other execution units in a processor core. Thus, a fast and 

energy-efficient adder is essential to a high-performance microprocessor. Implementing 

fast addition has been an important subject since the 1950s. Ripple carry adder is the first 

and the most fundamental adder that is capable of performing binary number additions. 

Since its delay is proportional to the length of its input operands, it is not very useful. 

Weinberger and Smith [9] have made the first major break-through in speeding-up 

additions by proposing the well-known scheme, Carry Look-ahead adder [10]. Rather 

than rippling carries throughout the adder, it uses parallelism to propagate carries much 

quickly. 

There are several levels of hierarchy which can improve addition operations. First, it can 

be improved at architecture level. By using an algorithm that incorporates a faster carry 

propagation method such as prefix tree adder schemes, addition time can be reduced. By 

adding clock gating and sleep mode, power can be saved when the adder is not in use. 

Multiple-power supplies can also be used to supply lower voltage to less critical paths in 

order to reduce power. For mobile applications, dynamic voltage scaling is a widely used 

technique to reduce power consumption. It automatically optimizes the supply voltage 

and the operation frequency for a given workload. 

(13) 



To reduce the adder delay and power, one can also improve it at circuit level. For 

example, selecting dynamic instead of static CMOS logic would improve the speed of 

operation. Transistor sizing can be used to improve speed and power. A transistor sizing 

tool parameterizes the sizes of transistors in a circuit based on circuit characteristics such 

as driver size, load, supply voltage, operating temperature etc. After completing a 

transistor level design, the customized cell placement can be used, which may produce a 

better layout than automatic place and route tool. With today's advanced technology, a 

careful planning of wires and cells before placement is often necessary in achieving a 

better timing and power. 

Finally, speed can be improved at process level. A more advanced process technology can 

be used. This could be scaling the transistor's feature size, using copper interconnects 

rather than aluminum interconnects, using SOI (Silicon on Insulator) CMOS technology 

rather than Bulk CMOS technology, using thinner and higher K dielectric insulator as 

gate oxide, etc. 

3.1. Adders 

Adders are basic components of microprocessors and any arithmetic circuit and are 

frequently on the critical path. Fast adders speed up the addition calculation through a 

rearrangement of the adder equations or through some intelligent observations about the 

addition process. While adder speed is essential, adder area is also important, especially 

for arithmetic circuits that may require many adders. The next few sections would discuss 

about different adder designs and their comparisons. 

3.1.1 Basics of Adder 

A multi-bit addition operation can be decomposed into half adder and full adder 

structures, with fast adders containing some additional circuitry. Half adders and full 

adders compute the well-known logic functions given as follows: 

Half adder: Sum =A OB, 	 Cout  =AB 

Full adder: Sum = A C) B C) C , 	Cout  = AB+BC+CA 

(14) 



3.1.2 Ripple Carry Adder 

This is the simplest adder circuit. An N-bit ripple carry adder [11] consists of N full 

adders with the carry signal propagating from one full-adder stage to the next from LSB 

to MSB. A 4-bit ripple carry adder structure is shown in Fig. 3.1. It consists of four 

cascaded full adder which takes input A, B and Cin and generates sum and carry out 

(Cout). 

A3 83 

cout 4_ 

Fig. 3.1: 4-bit Ripple Carry Adder 

The ripple carry adder is a good baseline design for comparison with other adders. It has 

many advantages which include low power, low area and a simple layout. The drawback 

of the ripple carry adder, though, is its slow speed. The delay of the adder is linearly 

dependent on the bit-width (N) of the adder. The critical path of the ripple carry adder 

consists of the carry chain from the first full adder to the last. Therefore, during circuit-

level design, the carry signal is frequently assigned to the transistor closest to the gate 

output for the carry computation. 

Circuits are optimized to produce fast carries because it constitutes a large fraction of the 

critical path. The delay of a ripple carry adder is given by the following equation [5]: 

T (RCA) = (N —1)xT (Carry) +T (Sum) 

For designing a single bit of full adder for a RCA, we can use different types of full adder 

as reported by Alioto and Palumbo [12]. For our design of RCA, we used Mirror Full 

adder [13] as shown in Fig. 3.2. Mirror Full adder CMOS Full adder is a simple 

implementation of following equations. 

Sum = A C) B C) C = ABC + Cout (A+B+C)  
and 	 Carry (Cout) = AB + BC + AC = AB + (B + A)C 

A2 B2 
	

Al B1 
	

AO BO 
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Fig. 3.2: A Single-Bit Mirror Full Adder [12]. 

3.1.3 Carry Look-ahead Adder 

The Carry Look-ahead Adder (CLA) is theoretically one of the fastest methods for 

addition. Weinberger and Smith invented the CLA in 1958 [9]. The CLA uses 

intermediate information to determine in advance if there will be a carry out of a given bit 

position. Table 3.1 shows the truth table for a full adder, including this extra carry 

information. For the delete condition, there will be no carry out of the bit position. For the 

propagate condition, there will only be a carry out if there is a carry in. For the 

generate/propagate condition, there will always be a carry out at that position. 

Table 3.1: Generate and propagate information for a CLA 

A B C Sum Cola Condition 
0 0 0 0 0 Delete 
0 0 1 1 0 Delete 
0 1 0 1 0 Propagate 
0 1 1 0 1 Propagate 
1 0 0 1 0 Propagate 
1 0 1 0 1 Propagate 
1 1 0 0 1 Generate/Propagate 
1 1 1 1 1 Generate/Propagate 

Fig. 3.3 shows the block diagram for a 4-bit section of a CLA. In CLA, Reduced Adders 

(RA) are used as they are no longer required to compute the output carry. The CLA block 

at the top of the diagram is a set of circuitry that creates, generates and propagates signals 

(16) 



for a group of full adders, as well as the carry-out from that group. The, following 
equations compute each position's generate and propagate signals [141: 

Carry Look-ahead Block Gout 

Cin 

GZ P2 

RA 

S3 	S2 

Gl, P1 

RA 1- RA 
Cl 

Si 	SO 

03,P3 

4- 
C3  C2 

Fig. 3.3: 4-bit Carry Look-ahead Adder 

Generate: Gi Ai -Bi 

Propagate: Pi —Ai +Bi 

In some books, they define the propagate signal as the Exclusive-OR of the A and B 
signals, but this does not change the result of addition. The above defmition generally 

chosen because the implementation of the OR operation is more efficient than that of 

Exclusive-OR in most technologies. The equations for the carries in a CLA are given by: 

Cl = GO + PO•Cin 

C2 = GI + GO-131 + PO-P1 -Cin 

C3 = G2 + GI ,P2 + GO•P 1 •P2 + PO•P I •P2•Cin 

For example, computing C3 requires the use of a 4 input AND gate and a 4 input OR 
gate. Hence, usually the size of the look-ahead logic is limited to 3 carries. AND Gates 

with 5/6 inputs would be needed for the next 2 carry signals, which makes their 
implementation in CMOS very slow due to the stacked transistors in the pull-up or pull-
down paths. 

As the carry calculation is performed by the carry look-ahead block, the one-bit adder 

equations for a CLA are the reduced full-adder equations because carry calculation is no 
longer needed. The reduced full adder performs the operation given by equation below: 

Sum = A C) B 0 C ARC + ABC + ARC + ABC 

(17) 



3.2 Prefix Adders 

Among the various binary adder architectures, prefix adders [15] are particularly 
attractive because they have the minimum possible logic depth. These adders are also 
termed logarithmic adders because their critical path is 0 (log2N). Examples of prefix 
adders are Kogge-Stone [16], Brent-Kung [17] and Han-Carlson adders [18]. 

The addition of two binary numbers can be formulated as a prefix problem. In a prefix 
problem, outputs {y(n-1), y(n-2)... y(0)} are computed from n inputs {(x(n-1), x(n-2)... 
x(0))} using an arbitrary associative operator (*) as follows: 

y(0) = x(0) 
y(1) = x(1) * x(0) 

y(n-1) = x(n-1) * x(n-2) * 	* x(0) 

he problem can be formulated recursively as 

y(0) = x(0) 
y(i) = x(i) * y(i-1) where i = 1, 2... ,n-1 

In other words, in a prefix problem every output depends on all inputs of equal and lower 
magnitude and every input influences all outputs of equal or higher magnitude. Due to the 

associativity of the prefix-operator, the individual operations can be carried out in any 
order. This is a fundamental property which explains why there are various tree structures 
for addition. 

Let us define the * operator to be the carry-merge operator which combines generate and 
propagate signals using the following equations: 

(Gout, Pout) = (G2, P2) * (G1,P1)= (G2 + P2•G1, P2•P 1) 

We need to calculate the Generate and Propagate signals for each bit to perform the carry-
merge operation from the equation above at each junction in the carry merge tree for the 
desired logarithmic adder, Brent-Kung, Kogge-Stone, or Han-Carlson. The underlying 
carry-merge operation is the same for all logarithmic adders but the connections in the 

tree are different. After log2N stages, where N is the bit-width of the adder, the carry 
signals will be fully generated. As with the CLA, a reduced full-adder is used to find the 
sum using the carry, generate and propagate signals. 

(18) 
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3.2.1 Kogge-Stone Adder 

Kogge and Stone proposed a general recurrence scheme for parallel computation in 1973 

[16]. The Kogge-Stone adder is a parallel prefix form carry look-ahead adder. Time 

needed to generate the carry signals is equal to the number of level and it is equal to 0 

(log2 N). It is widely considered the fastest adder design possible. And the cost is n2  

because of the large no. of vertical tracks required to embed wires in the upper stage. It 

takes more area to implement but it has a lower fan-out at each stage, which increases 

performance. A 32-bit Kogge-Stone adder is shown in Fig.3.4. 

Fig. 3.4: Diagram of Kogge-Stone Adder 

3.2.2 Brent-Kung Adder 

The replicated Kogge Stone structure to generate intermediate carries shown in Fig. 3.5 is 

very attractive to high-performance applications. However, it comes at the cost of area 

and power. A simpler tree structure could be formed if only the carry at every power of 

two positions is computed as proposed by Brent and Kung [17]. It is based on divide and 

conquer approach. The inputs are first combined pairwise to obtain the sequence of length 

n/2 and the even-indexed prefix are then computed by odd-prefix. The Schematic diagram 

of 32-bit Brent-Kung adder is shown in Fig.3.5. 
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Fig. 3.5: Diagram of Brent-Kung Adder 

The Brent-Kung adder has the lowest area and the slowest speed of all the logarithmic 
adders. 

3.2.3 Han-Carlson Adder 

Similar to Brent and Kung's scheme, Han and Carlson also proposed a scheme to reduce 
the complexity of prefix tree [18]. It combines both Brent-Kung and Kogge-Stone adders. 
It is different from Kogge-Stone scheme. This scheme performs carry-merge operations 
on even bits only. Generate and propagate signals of odd bits are transmitted down the 
prefix tree. They recombine with even bits carry signals at the end to produce the true 
carry bits. Thus, the reduced complexity is at the cost of adding an additional stage to its 
carry-merge path. The time to compute is only one stage more than Kogge-Stone adder. 
The schematic of a 32-bit Han-Carlson Adder is shown in Fig.3.6. 

The Han-Carlson adder combines the Brent-Kung and Kogge-Stone carry merge trees to 
achieve a balance both with respect to speed and area. 
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Fig. 3.6: Diagram of Han-Carlson Adder 

In all of the above parallel prefix adders, black block, grey block, propagation and 

generate block are implemented as follows: 

Gik Par C88 P19 

Black 
G P 

..11•■■■ Ai  

PmPrtgata 

Generate 

i Pi 
G 

    

[A] 
	

[B] 	 [C] 

Fig. 3.7: Different blocks in prefix adders, (A) Black block, (B) Grey block, (C) 
Propagate and Generate block 

where Pki and GI; are propagate and generate lines from present lines while Pkj  and Gki are 
propagate and generate are due to just previous bits. 
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3.3 Adder Comparisons 

This section describes about comparison results of different adders in terms of power and 
delay. 

The power consumption and delay of Ripple Carry adder, Kogge-Stone adder and Han-
Carlson adder using FSL and static CMOS are evaluated and tabulated in Table 3.2. 

Table 3.2: Summary of simulation results for various Adders 

Adder Architecture 
Power Consumption 

(in i.t.W) 
Delay 
(in ps) 

CMOS FSL CMOS FSL 

Ripple Carry Adder(RCA) 220.34 240.55 270.7 239.6 

Kogge-Stone Adder 328.19 360.25 210.7 178.4 
Han-Carlson Adder 273.01 292.45 264.5 223.4 

The power consumption comparison of various adders using FSL and static CMOS is 
shown in Fig.3.7. 

▪ Power 
Consumption 
(in gW) CMOS 

▪ Power 
Consumption 
(in ON) FSL 

Ripple Carry 	Kogge-Stone 	Han-Carlson 
Adder(RCA) 	Adder 	Adder 
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Fig 3.7: Comparisons of power consumption of different adders in static CMOS and FSL 
logics. 

From simulation results ripple carry adder consumes less power compared to Kogge-
Stone and Han-Carlson adders in both the logics. 
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Delay comparison of different adders using static CMOS and FSL is shown in Fig.3.8. 

Fig 3.8: Comparisons of delays of different adders in static CMOS and FSL logics. 

From the simulation results, it shown that the delay of Kogge-Stone adder is lower than 
ripple carry adder and Han-Carlson adder in both the logic. But quantitatively delay of 
Kogge-Stone adder using FSL is less than the delay of Kogge-Stone adder using static 

CMOS. 



Chapter 4 

Shifter Design 

Data shifting is required in many key computer operations from address decoding to 

computer arithmetic. Binary shifters, similar to adders and multipliers, are essential in 

high performance microprocessors, especially in those applications that support floating-

point operations. A cyclic shifter is a crucial component for communication applications 

such as encryption and error control coding where we require rotation operations. Yet the 

importance of shifter logic is underestimated in circuit design due to its simplistic nature. 

Literature on shifter design is relatively scarce compared to that of adders and multipliers 

and textbooks typically cover shifter in just one or two pages. The main reason is that the 

complexity of shifters comes from the internal wire connections which do not fit into the 

traditional logic-centric design methodology [19]. 

In terms of design style, there are three types of shifters for circuit designers, which are: 

1. Array Shifter 

2. Barrel Shifter 

3. Logarithmic Shifter 

4.1 Array Shifter 

An array shifter decodes the shift value into individual shift bit lines that mesh across all 

input data values. At each crossing point, a NMOS transistor will either allow or not 

allow the input data value to pass to the output line controlled by a shift bit line. The 

advantage of this design is that there is always only one NMOS transistor between the 

input data lines and the output data lines, hence, it is fast. The basic structure of an array 

shifter is shown in Fig.4.1. 

The disadvantages of this design are: firstly, the requirement of a decoder, and secondly, 

the fact that each input data line sees a load for every shift bit line [21]. A simple one bit 

bidirectional array shifter is shown in Fig.4.2. According to the control signals, the input 

word is either shifted left or right or else it remains unchanged. Multi bit shifters can be 
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built by cascading a number of the units. Array shifter becomes complex and too slow for 
higher shift values. 

5- 17 'lift 
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Fig.4.1: Structure of an Array shifter [20] 
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Fig. 4.2: A simple one Bit Bidirectional Array shifter [5]. 
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4.2 Barrel Shifter 

A Barrel shifter consists of an array of transistors, in which the number of rows and 
columns are equal to the word length of the data and the maximum shift width 

respectively. The control wires are routed diagonally through the array. A major 
advantage of barrel shifter is that the signal has to pass through at the most one 
transmission gate. The propagation delay is constant and independent of the shift value. 
However, this is not always true, because the capacitance at the input of the buffers rises 

linearly with the maximum shift width. 

A 4-bit barrel shifter shown in Fig.4.3, needs four control signals to shift over three bits. 
The signals, Sh3, She, Shi and Sho  take on the value 1000. Only one of the signals is high. 
For instance, the encoded control word needs only two control signals and is represented 

as 11 for a shift over three bits. To translate this shift bit, an extra module known as the 
decoder is required. 

The barrel shifter is primarily used in floating-point arithmetic hardware. For a floating-

point add or subtract operation, the fractions of the numbers must be aligned, which 
require shifting the smaller number (in magnitude) to the right and increasing its exponent 

until it matches the exponent of the larger number. This is done by subtracting the 
exponents and using the barrel shifter to shift the smaller number to the right by the 
difference in one cycle. If a simple shifter was used, shifting by n bit positions would 

require n clock cycles. 

Fig.4.3: A 4-bit Barrel Shifter [5] 
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4.3 Logarithmic Shifter 

A Logarithmic shifter is based on stage approach. The total shift value is decomposed 
into shifts over powers of two. No. of total stages for a maximum shift width M is log2M 
stages, where the ith stage either shifts over 2' or passes the data unchanged. 

A Logarithmic shifter for a maximum right shift width of 7 bits is shown in Fig.4.4. To 

shift over 5 bits, the first stage is set to shift mode, second stage to pass mode and the last 

stage again to shift mode. The control word of this shifter is already encoded and no 

separate decoder is required. 

Al  

A 

Fig. 4.4: A 4-Bit Right Shift Logarithmic Shifter [5]. 

In a logarithmic shifter, the shifter is divided into log2  M stages, where M is the input data 
length. Thus, the speed of the logarithmic shifter depends on the shift width in a 

logarithmic way. Each bit of the encoded shift value is sent to a different stage of the 

shifter. Each stage handles a single power of- two shifts. The input data will be shifted or 

not shifted by each of the stages in sequence depending on the shift value. Five stages 

would be required when considering 32 bit data as shown in Fig.5.5. The advantage of a 

logarithmic shifter is that it occupies small area and does not require a decoder, but the 

disadvantage is that there are five levels of gates separating the input data from the output 
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data. Furthermore, the series connection of pass transistor slows the shifter down for 
larger shift values. 
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Fig. 4.5: Structure of a Logarithmic Shifter [20] 

From this analysis, we can observe that use of array shifter is limited to lower shift bits. 
As the number of shift bits increase, the number of stages of the shifter also increases 
finally leading to higher delay and complexity of design. In the case of Barrel shifter, we 
can conclude that it is appropriate only for smaller shift values. For larger shift values, the 
logarithmic shifter becomes more effective both in terms of area and speed [20-21]. 

4.4 Design of Cyclic Shifter 

Circular shift is a permutation of the entries in a tuple where the last element becomes the 
first element and all the other elements are shifted, or where the first element becomes the 
last element and all the other are shifted. Equivalently, a circular shift is a permutation 
with only one cycle. The cyclic shift of a binary operand is a basic operation which is 
required at many different places in circuit design. For communication applications such 

as encryption and error control coding, the cyclic shifter is a critical component because 
rotation operations are enormously needed. Circular shifts are also used often in 
cryptography as part of the permutation of bit sequences. 

(28) 
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A design of cyclic shift enabled array shifter and logarithmic shifter is as follows: 

4.4.1 Cyclic Array Shifter 

For designing cyclic enable array shifter, we need a single bit array shifter capable of 

shifting 1-bit at a time as shown in Fig.4.6. By using this single bit shifter we designed 

array shifter which is capable of shifting upto 31 bits at a time as shown in Fig.4.7. We 

need two 5x32 decoder for decoding shift values Shy, Sh4, Sh3, She  and Sh1. For enabling 

the cyclic shifter we have used two gates in which one is AND gate takes cyclic enable 

input (CirLeft or CirRight) and output of it is given to OR gate which generates the 

shifting value for LShift or RShift. The schematic of final cyclic shifter is shown in 

Fig.4.8. 

4.4.2 Cyclic Logarithmic Shifter 

For designing cyclic enable logarithmic shifter, we need a 32 bit logarithmic shifter 

without circular shifting as shown in Fig. 4.9. By using this shifter we designed a cyclic 

logarithmic shifter by adding different multiplexers as shown in Fig. 4.10. These 

multiplexers provide shifting values to various shift positions such as RA0  to RA30 for 

right direction or LA] to LA31 for Left direction. The schematic of final cyclic shifter is 

shown in Fig.4.8. 

Fig. 4.6: Single bit array shifter. 
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Fig. 4.8: 32 Bit Logarithmic Shifter without circular shifting. 
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Fig. 4.8: 32 Bit Cyclic enable Logarithmic Shifter. 
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4.5 Simulation Results 

The simulation results of various shifters using FSL and static CMOS are follows. 

The power consumption and delay of different shifters using static CMOS logic and FSL 
are calculated and tabulated in Table 4.1. 

Table 4.1: Summary of simulation results for Shifters. 

Shifting Operation Shifter 
Architecture 

Power Consumption 
(in 11W) 

Delay 
(in ps) 

CMOS FSL CMOS FSL 

Logical Left Shift 
Array 201.6 214.7 260.4 254.3 

Logarithmic 204.5 216.9 220.1 213.4 

Logical Right Shift Array 238.1 255 251.7 247.3 
Logarithmic 250.3 267.3 218.7 213.1 

Circular Left Shift Array 397.3 431.9 421.3 417.1 
Logarithmic 410.7 447.3 415.2 411.3 

Circular Right Shift Array 423.6 461.3 445.2 439.1 
Logarithmic 430.4 469.6 427.3 421.5 

The power consumption of comparison of various shifters among FSL and static CMOS 
logics is shown in Fig.4.6. 

Fig 4.6: Comparisons of power consumption of different shifters in static CMOS and FSL 
logics. 
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Simulation results shows that power consumption of array shifter is less compared with 
power consumption of other shifters in both the logics. 

Comparison results of delay using FSL and static CMOS among various shifters is shown 
in Fig.4.7. 

Fig 4.7: Comparisons of delays of different shifter in static CMOS and FSL logics. 

Simulation results shows that delay of logarithmic shifter is lower than other shifters in 
FSL as well as in static CMOS logic. But quantitatively delay of logarithmic shifter is less 
using FSL compared with delay of logarithmic shifter using static. CMOS. 

O 
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Chapter 5 

ALU Design 

5.1 Introduction 

The Arithmetic Logic Unit is a digital circuit that performs an arithmetic operation 
(addition, subtraction, etc.) and logic operations (Exclusive-OR, AND, etc.) between two 
numbers. Demand for performance at low power consumption in today's general purpose 
processor has put severe limitations on ALU design [23]. 

ALU are also one of the most power consumed blocks in the processor and are often the 
possible location of hot-spots. The presence of multiple ALUs in pipelined processors 
further deteriorates the power and thermal issues [24]. Technology scaling has resulted in 

faster devices but at the same time, the die-to-die delay variations have increased due to 
different lithographic subtleties. Therefore, low power ALU design while maintaining 

high yield under tighter delay constraint turns out to be a multi-dimensional problem. 

The core unit of ALU is an adder which takes operand from register file, data cache or 
ALU write back bus. 

5.2 ALU Architecture 

The design of the ALU can be divided into four parts as Control Unit, Arithmetic Unit, 
Logical Unit and Shifter Unit. An implemented design of ALU is shown in Fig. 5.1. A 

2x4 decoder is used as control unit to select the different unit for desired operation using 
control signals S3 and S2. A functional table of the designed ALU is shown in Table 5.1. 

The Arithmetic unit consists of Adder unit and 4x1 Multiplexer unit. Adder Unit is used 
for addition of two operands while multiplexer unit is responsible for selecting 

appropriate input operand for adder unit according to the control signal S2 and SI. 
Different logical and shifting operations are selected by another 2x4 decoder having Si 
and So control signals. Shifting Values for shifter unit are adjusted by Shy, Sha, Sh3, She  
and Sh1. These control signals for shifter unit are binary weighted. Hence the maximum 
value of shift is 31 (25  — 1). Finally, all the outputs of different units of ALU are 
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combined with output OR array in which 3 input OR gates are followed by buffer to 
provides output as 'Y'. 

A brief discussion about all components of ALU is followed in subsequent subsections. 
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Fig. 5.1: Implemented Design of ALU. 

Table 5.1.: Functional Table of the designed ALU 

Operation Select 
S3 	S2 	S 1 	Si; 

Operation 

Addition 

Function 

F --= A+B 
0  0 0 1 Addition with carry F= A+B+1 
0  0 1 0 Subtraction with barrow F= A+ 13 
0  0 1 1 Subtraction F= A+ B+ 1 
0  1 0 0 Decrement F=A-1 
0  1 0 1 Transfer F=A 
0  1 1 0 Transfer F=A 
0  1 1 1 Increment F= A+1 
1  0 0 0 A AND B F=A•B 
1  0 0 1 A OR B F=A+B 
1  0 1 0 A XOR B F=AOB 
1  0 1 1 Complement A F= A 
1  1 0 0 Logical Left Shift 
1  1 0 1 Circular Left Shift 
1  1 1 0 Logical Right Shift 
1 1 1 1 Circular Right Shift 

II I 

—s, —so  
• ■■■••■■1 

	  2 X 4 —Si 
	(::•—•'"'"" DECODER 	se  

1  

(36) 



Operation select Function 
S3 	S2 

Enab e Arithmetic nit Only 
Enable Arithmetic Unit Only 

1 
	

Enable Lo:.ical Unit Onl 
1 	 Enable Shifter Unit Only 

5.2.1 Control Unit 

A Control Unit in the ALU is responsible to select the desired operation as in functional 

table (Table 5.1). A control unit is just a 2x4 decoder which can decode the control signal 

S3 and S2. A Decoder is a combinational circuit that converts binary information from n 
input lines to a maximum of 2" unique output lines. A Functional table of Control Unit 
shown in Fig. 5.2, is given in Table 5.2. The main idea of controlling different units of 
ALU using control unit is to control the power supply of different units of ALU. At any 

instant, the power supply is only given to the unique part of ALU which needs 
appropriate operation according to control signals and enables that part only to save 
power. 

         

         

        

To select Adder 

To Logical Unit 
To Shifter Unit 

2x 4 

	

DecoderD2 	 

	

D3 	 

     

     

     

     

     

     

         

Fig. 5.2: Control Unit of ALU. 

Table 5.2: Functional Table of the Control Unit 

5.2.2 Arithmetic Unit 

In a designed ALU, arithmetic unit gives a choice to select seven different operations 
such as addition, subtraction, increment, decrement and transfer of data. It is enabled by 

selecting selection line S3 = 0 and S2 = 1 or 0 in control unit. An arithmetic unit is shown 

in Fig. 5.3 .It consists of heart of the ALU i.e. Adder Unit and a Multiplexer Unit. An 

Adder Unit is mainly dedicated to perform arithmetic operation in ALU. One of the input 

operand as "A" is always is given directly to Adder while the other operand is given to 
adder by the 4x1 MUX (Multiplexer) unit. 
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Fig. 5.3: An Arithmetic Unit of ALU. 

A Multiplexer is a combinational circuit that selects binary information from one of many 
input lines and directs it to a single output lines. The selection of particular input line is 
controlled by a set of selection lines. There are 2' input lines and n selection lines whose 
bit combinations determine which input is selected. A 4x1 MUX unit as shown in Fig. 5.4 
gives a single output Wi which is directly cascaded to second operands of Adder and this 
output is selected among 13i, B, , High Value '1' as `Vdd' and Low Value '0' as 'grid' 
using selection lines S2 and Si . A functional table of 4x1 MUX is shown in Table 5.3. A 
4x1 MUX array is used to provide 32-bit operands as a input to 32-bit Adder. A 4x1 

MUX array is consists of 32 4x1 MUX, each MUX unit provides one bit of data as an 
output. 

'in 

ydd gild 	Y31 Y30 

Bi 

gild 

S2 Si 

Fig. 5.4: a symbol of 4x1 Mux. 
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Table 5.3: Functional Table of the 4x1 Multiplexer (MUX) 

Operation Select 
S, 	S, 

Operation Function 

Select Input Bi  as output B 
0 Select Input iT, as output F = B, 

0 Select Input Wm' as output F =1 
1 1 Select Input `gnd' as output F = 0 

A functional table of arithmetic unit is shown in Table 5.4. A selection line So  is used as 
input carry for the adder. For performing subtraction operation 	A-B) using adder unit, 
we need a 2's complement of input operand '13' as a second input which can be obtained 
as a combination of l's complement of `B' and Carry input Cin  = 1 or So  =1'. 
Complemented input ' B' is provided by 4x1 MUX array by selecting S2 = 0 and S1  = 1. 
Similarly an increment and decrement operation is done by selecting S2  = 1 and S1 =1 & 
S2  = I and S1  = 0 respectively. A transfer operation refers to a directly transmitting input 
operand 'A' without any change. 

Table 5.4: Functional Table of the Arithmetic Operation. 

Operation Select 
S, 	S 	SPI Operation 

Addition 

Function 

F - A+ B 
0 1 Addition with carry F= A+ B +1 
1 0 Subtraction with barrow F= A+ ii 

0 1 1 Subtraction F= A+ B+ 1 
Decrement F= A — 

1 0 1 Transfer F= A 
1 1 0 Transfer F= A 
1 1 1 Increment F= A+ 1 

5.2.3 Logical Unit 

A Logical Unit of the ALU is responsible for logical operations such as AND, OR, XOR 

and NOT. Several times, we need complement signal, NOT operation helps to get 
complement signal. it is very important component of ALU and consumes very less 

power and area in compared to other parts of ALU. It is very simple to implement as 

shown is Fig. 5.4. It is enabled by selecting selection line S3  =1 and S2  = 0 in control unit. 
A functional table of Logical unit is shown in Table 5.5 
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Function Operation Operation Select 
S I  

A XOR B 	F=A   C) B 
Complement A 	F = A 

Ao 
I  

Single Bit S1 
Logical 

Unit 	So 

 

Single Bit Si. 
Logical 

Unit 	SO 

 

        

 

Y31 

      

       

Fig. 5.4: The Logical Unit of ALU. 

A single bit Logical unit is shown in Fig. 5.5. A specific logical operation is selected by 
using selection lines Si and So. 

Ai  
Bi  

Fig. 5.5: A Single Bit Logical Unit for Logical Unit of ALU. 

Table 5.5: Functional Table of the Logical Unit. 

5.2.4 Shifter Unit 

A Shifter Unit of the ALU is responsible for bidirectional logical and cyclic or circular 
shift operations. It is enabled by selecting selection line S3  = 1 and S2 = 1 in a control unit. 
As a result, the power supply Vdd of shifter will be HIGH and shifting operation will 

occur. A simple shifter unit is shown in Fig. 5.5. A functional table of shifter unit is 
shown in Table 5.6. 
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Operation Select 
Si 	So Operation 

Lo g ical Left Shift 
Circular Left Shift 

0 	Logical Right Shift 
1 
	

Circular Right Shift 

Table 5.6: Functional Table of the Shifter Unit. 

A Logical Shift operation refers to shifting of operands bit in particular direction while a 

shifted position '0' bit is inserted. In a logical left shift, the bits that are shifted out are 

discarded and zeros are shifted in (on either end). While in the logical right shift, insert 

bits with value 0 instead of copies of the sign bit. So, the logical shift is suitable for 

unsigned binary numbers only. A Logical Shift operation is shown below. 

Left Shift 

7 6 5 4 3 2 1 0 
X6 X5  X4  X3 X2 X1 X0 0 

Right Shift 

7 6 5 4 3 2 1 0 
0 X7 X6 X5 X4 X3  X2  X1  

A Circular Shift operation is also referred as a bit rotation. This operation is useful where 

it is necessary to retain all the existing bits. It is frequently used in digital cryptography 

and error control coding. In this shifting, at a shifted position instead of inserting '0' bit, a 

discarded bit is inserted. It can be easily explained by the following example. 

Left Shift 

7 6 5 4 3 2 1 0 
X6  X5  X4  X3 X2 X1  X0 X7  

Right Shift 

7 6 5 4 3 2 1 0 
X0 X7 X6 X5 X4 X3  X2  X1 

A31 _4,30 	 Al A0 
III  	III 

Vii  
gnd 
Left 

SHIFTER eirL eft 

Shy 
S114  

2 X 4 
DECODER 

5113  — 51 
Sh2  Right 
5111  Ci rRight 	  

III 	 
Y31 130 

Fig. 5.5: A Shifter Unit of ALU. 
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5.3 Performance and Results 

The following results are reported during simulation for different operations. 

(A) Arithmetic Operation 

The power consumption and delay in arithmetic operation for different adders using static 

CMOS logic and FSL are calculated and tabulated in Table 5.7. 

Table 5.7: Summary of simulation results for arithmetic operation in designed ALU. 

Adder Architecture 
Power Consumption 

(in RW) 
Delay 
(in ps) 

CMOS FSL CMOS FSL 

Ripple Carry Adder(RCA) 510.7 555.1 550.3 480.2 

Kogge-Stone Adder 612.05 658.57 410.7 349.5 

Han-Carlson Adder 590.6 638.44 505.2 436.4 

A comparison of the power consumption in various ALU based on different adder 

architecture during arithmetic operation among FSL and static CMOS logics is shown in 

Fig. 5.9. 

Fig 5.9: Comparisons of power consumption in arithmetic operations in 
static CMOS and FSL logics. 
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A comparison of the delay in various ALU based on different adder architecture during 
arithmetic operation among FSL and static CMOS logics is shown in Fig. 5.10. 

Fig 5.10: Comparisons of delay in arithmetic operations in static CMOS and FSL logics. 

From the above results, we can conclude that Kogge-Stone adder architecture gives 
highest performance in terms of speed in both CMOS and FSL Logics. In terms of power 
ripple carry adder consumes least among other architecture. 

(B) Logical operation 

The power consumption and delay in logical operation in ALU using static CMOS logic 
and FSL are calculated and tabulated in Table 5.8. 

Table 5.8: Summary of simulation results for Logical operation in designed ALU. 

Logical Operation 
Power Consumption 

(in p,W) 
Delay 
(in ps) 

CMOS FSL CMOS FSL 
AND 434.3 461.2 340.7 284.4 
OR 471.9 495.9 397.6 339.3 

XOR 504.8 539.3 403 357.1 
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Fig 5.11: Comparisons of power consumption in logical operations in 
static CMOS and FSL logics. 

A comparison of the power consumption and delay in logical operation among FSL and 
static CMOS logics is shown in Fig. 5.11 and Fig. 5.12 respectively. 

Fig 5.12: Comparisons of delay in logical operations in static CMOS and FSL logics. 

From the above results, we can conclude that in FSL Logic about 14 % delay reduces in 
compared to delay in CMOS logic. But about 6% increases in power consumption is 
found in FSL. 
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(C) Shifter Operation 

The power consumption and delay in various shifting operation for different shifters using 
static CMOS logic and FSL are calculated and tabulated in Table 5.9. 

Table 5.9: Summary of simulation results for shifting operation in designed ALU. 

Shifting Operation Shifter 
Architecture 

Power Consumption 
(in liW) 

Delay 
(in ps) 

CMOS FSL CMOS FSL 

Logical Left Shift 
Array 229.4 245.7 390.7 381.3 

Logarithmic 237.3 252 360.7 358.2 

Logical Right Shift Array 268.4 288.5 385.9 383.1 
Logarithmic 300.4 314.9 365.6 361.7 

Circular Left Shift Array 415.9 453.3 510.3 507.4 
Logarithmic 436.3 478.2 495.6 483.5 

Circular Right Shift Array 483.6 530 515.2 509.5 
Logarithmic 512.7 562.9 501.1 497.4 

A comparison of the power consumption and delay in various shifting operation for 
different shifters among FSL and static CMOS logics is shown in Fig. 5.13 and Fig. 5.14 
respectively. 

Fig 5.13: Comparisons of delay in shifting operations in static CMOS and FSL logics. 
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Fig 5.14: Comparisons of power consumption in shifting operations in 
static CMOS and FSL logics. 

From the above results, we can conclude that FSL and CMOS lo gics both show nearly 
equal performance in terms of speed. CMOS logic consumes less power in compared to 
FSL logic. 
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Chapter 6 

Conclusion 

6.1 Conclusion 

In this thesis, a 32-Bit FSL based Arithmetic Logic Unit has been designed. The 

advantage of using the scheme of Feedback Switch Logic has been compared to that of 

the existing static CMOS technology. The primary focus was on the point of exploring 

and evaluating the performance of FSL in a High Speed Low power design environment. 

In Chapter 2, a brief discussion on the need of high speed low power designs in building 

the architecture of an ALU has been presented. The main operation and functioning of 

FSL was explained in this chapter. Simulations were performed and comparisons were 

drawn with static CMOS logic for basic gates which perform the logical operation of the 

ALU. 

Chapter 3 dealt with the design of adder circuits. Adders of different kinds based on 

architecture were studied and three of them were implemented in FSL and static CMOS 

logics. Their performances on the basis of power and delay were compared. 

In Chapter 4, three types of shifter designs have been discussed. Also, a cyclic shift 

operation was introduced in Array and Logarithmic shifters which find application in the 

field of error control coding. The designs were developed in FSL and static CMOS logic 

structures and the results were compared. 

Finally, in Chapter 5, the design of the Arithmetic Logic Unit which combines the Adder 

and Shifter circuits was presented. Also, a logical unit was designed which consisted of 

AND, OR, XOR and NOT operations. Once again, the design was developed in both FSL 

and static CMOS logics. The overall performance analysis was done for the combined 

arithmetic, logical and shifting operations. Kogge-Stone adder based ALU was found to 

be a suitable candidate for high speed operation. For low power operation, Ripple-carry 

adder based ALU was found to be more suitable. This was the same for both logic styles. 

The performance of shifter units for both logics was found to be almost similar in terms 
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of both power and delay. For the logical unit, FSL showed a clear advantage in terms of 
speed with a slight increase in power consumption. 

A final comparison between the logic styles is drawn, it has been observed that there was 
a 14% decrease in delay when we used FSL at the cost of 8% increase in power 
consumption when compared to static CMOS logic. We can thus recommend the use of 
Kogge-Stone based FSL adder and FSL based logical unit for achieving high speed, and 
static CMOS based shifter for maintaining low power. This completes our aim of 
designing a 32-bit High speed Low power Arithmetic Logic Unit. 

6.2 Future Scope 

An area minimization is one of the challenging tasks in design of ALUs. Further work 

could be extended to determine the area and make the layout more area efficient. We can 
further work to determine interconnect capacitances and to reduce them. Realizing ALUs 

with some other high speed low power logic can be one of the future works. 

Finally, Future work could also include extending the current design for more number of 
input bits to increase the functionality of ALU. 
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