
DESIGN AND SIMULATION OF 32 BIT ALU BASED
ON FEEDBACK SWITCH LOGIC

A DISSERTATION

Submitted in partial fulfillment of the
requirements for the award of the degree

of
MASTER OF TECHNOLOGY

in
ELECTRONICS AND COMMUNICATION ENGINEERING

(With Specialization in Semiconductor Devices & VLSI Technology)

By

PATANJALI PRAKASH
zut
-4;9' \ 44*

DEPARTMENT OF ELECTRONICS AND COMPUTER ENGINEERING
INDIAN INSTITUTE OF TECHNOLOGY ROORKEE

ROORKEE -247 667 (INDIA)
JUNE, 2009

CANDIDATE'S DECLARATION

I hereby declare that the work, which is being reported in this dissertation report, entitled

"Design and Simulation of 32 bit ALU based on Feedback Switch Logic", is being
submitted in partial fulfillment of the requirements for the award of the degree of Master
of Technology in Semiconductor Devices and VLSI Technology, in the Department of

Electronics and Computer Engineering, Indian Institute of Technology, Roorkee is an

authentic record of my own work, carried out from June 2008 to June 2009, under the
guidance and supervision of Dr. A. K. Saxena, Professor, Department of Electronics and

Computer Engineering, Indian Institute of Technology, Roorkee.

The results embodied in this dissertation have not submitted for the award of any other

Degree or Diploma.

Date : 24 - 06 -2o©g

Place : Roorkee Patanjali Prakash

CERTIFICATE

This is to certify that the statement made by the candidate is correct to best of my
knowledge and belief.

Dr. A. K. Saxena

Professor

ACKNOWLEDGEMENT

At the outset, I express my heartfelt gratitude to Dr. A.K Saxena, Professor, Department

of Electronics and Computer Engineering at Indian Institute of Technology Roorkee, for

his valuable guidance, support, encouragement and immense help. I consider myself

extremely fortunate for getting the opportunity to learn and work under his able

supervision. I have deep sense of admiration for his innate goodness and inexhaustible

enthusiasm. It helped me to work in right direction to attain desired objectives. Working

under his guidance will always remain a cherished experience in my memory and I will

adore it throughout my life.

My sincere thanks are also due to rest of the faculty in the Department of Electronics and

Computer Engineering at Indian Institute of Technology Roorkee, for the technical

knowhow and analytical abilities they have imbibed in us which have helped me in

dealing with the problems I encountered during the project. I also extend my sincere

thanks to all the technical and non-technical staff of VLSI Design Lab for providing me

various tools and encouraging me through out my work.

I am greatly indebted to all my friends, who have graciously applied themselves to the

task of helping me with ample morale support and valuable suggestions. Finally, I would

like to extend my gratitude to all those persons who directly or indirectly helped me in the
process and contributed towards this work.

Patanjali Prakash

M. Tech. (SDVT)

ii

ABSTRACT

This thesis presents the employment of Feedback Switch Logic (FSL) in the development

of a 32-bit ALU unit. For the design of ALU, we have chosen Feedback Switch Logic

(FSL) because it offers reduced capacitance, fast switching and input-switching

dependent activity factor without the need of clock connection.

The Arithmetic Logic Unit is a digital circuit that performs an arithmetic operation

(addition, subtraction, etc.) and logic operations (Exclusive-OR, AND, etc.) between two

numbers. Demand for performance at low power consumption in today's general purpose

processor has put severe limitations on ALU design. ALU are also one of the most power

consumed blocks in the processor and are often the possible location of hot-spots. Hence

this thesis aims to reduce power consumption and improve performance using FSL.

Three types of adders, two types of shifter structures and one logical unit have been

designed in FSL and static CMOS logic styles. Comparisons are drawn among the various

designed units and the best one in terms of high speed and low power is chosen. Finally

we have done the proper organization of adders, shifter and logic unit to make complete

ALU.

Simulations have been performed in CADENCE Virtuoso Front to Back Design

Environment on 90nm technology node. Simulation results show that 14% increase in

speed has been achieved with FSL trading-off with an 8% increase in power consumption

when compared to static CMOS logic.

iii

CONTENTS

Candidate's declaration and certificate

Acknowledgement 	 ii

Abstract 	 iii

List of Figures 	 vi
List of Tables 	 vii

List of Abbreviations 	 viii

Chapter 1: Introduction 	 1
1.1 Background

1.2 	Thesis Contribution 	 2

1.3 	Thesis Organization 	 3

Chapter 2: Feedback Switch Logic (FSL) 	 . 4
2.1 	Introduction 	 4

2.2 	Operation and Analysis 	 8

2.3 	Simulation Results 	 11

Chapter 3: Design of an Adder 	 13
3.1 Adders 	 14

3.1.1 Basics of Adder 	 14

3.1.2 Ripple Carry Adder 	 15

3.1.3 Carry Look-ahead Adder 	 16

3.2 	Prefix Adder 	 18

3.2.1 Kogge-Stone Adder 	 19
3.2.2 Brent-Kung Adder 	 19
3.2.3 Han-Carlson Adder 	 20

3.3 	Adder Comparisons 	 22

Chapter 4: Shifter Design 	 24
4.1 	Array Shifter 	 24
4.2 	Barrel Shifter 	 26
4.3 	Logarithmic Shifter 	 27
4.4 	Design of Cyclic Shifter 	 28

iv

4.4.1 Cyclic Array Shifter 	 29
4.4.2 Cyclic Logarithmic Shifter 	 29

4.5 	Simulation Results 	 33

Chapter 5: ALU Design 	 35
5.1 	Introduction 	 35
5.2 	ALU Architecture 	 35

5.2.1 Control Unit 	 37
5.2.2 Arithmetic Unit 	 37
5.2.3 Logical Unit 	 39
5.2.4 Shifter Unit 	 40

5.3 	Performance and Results 	 42

Chapter 6: Conclusions 	 47

6.1 Conclusion 	 47
6.2 	Future Scope 	 48

References 	 49

List of Figures

Fig. No. 	Title of Fig. 	 Page No.

Fig. 1.1 	Basic ALU Structure [1] 	 2
Fig. 2.1(a) 	A Possible Structure 1 of FSL Logic [2] 	 7
Fig. 2.1(b) 	A Possible Structure 2 of FSL Logic [2] 	 7
Fig. 2.2(a) 	A NAND/AND gate based on Structure 1 of FSL Logic 	 8
Fig. 2.2(b) 	A NAND/AND gate based on Structure 2 of FSL Logic 	 8
Fig. 2.2(c) 	A NOR/OR gate based on Structure I of FSL Logic 	 9
Fig. 2.2(d) 	A NOR/OR gate based on Structure 2 of FSL Logic 	 9
Fig. 2.3 	FSL NAND/AND operation 	 10
Fig. 2.4 	FSL NOR/OR operation 	 10
Fig. 2.5 	Comparisons of power consumption of different logic gates in

static CMOS and FSL logics 	 11
Fig. 2.6 	Comparisons of power consumption of different logic gates

in static CMOS and FSL logics 	 12
Fig. 3.1 	4-bit Ripple Carry Adder 	 15
Fig. 3.2 	A Single-Bit Mirror Full Adder [12] 	 16
Fig. 3.3 	4-bit Carry Look-ahead Adder 	 17
Fig. 3.4 	Diagram of Kogge-Stone Adder 	 19
Fig. 3.5 	Diagram of Brent-Kung Adder 	 20
Fig. 3.6 	Diagram of Han-Carlson Adder 	 21
Fig. 3.7 	Different blocks in prefix adders, (A) Black block, (B) Grey block

(C) Propagate and Generate block 	 21
Fig. 3.8 	Comparisons of power consumption of different adders in

static CMOS and FSL logics 	 22
Fig. 3.9 	Comparisons of delays of different adders in static CMOS

and FSL logics 	 23
Fig. 4.1 	Structure of an Array Shifter [20] 	 25
Fig. 4.2 	A simple one Bit Bidirectional Array Shifter [5] 	 25
Fig. 4.3 	A 4-Bit Barrel Shifter [5] 	 26
Fig. 4.4 	A 4-Bit Right Shift Logarithmic Shifter [5] 	 27
Fig. 4.5 	A Structure of Logarithmic Shifter [5] 	 28

vi

Fig. 4.6 	Single Bit Array Shifter 	 29
Fig. 4.7 	Cyclic Array Shifter 	 30
Fig. 4.8 	Final schematic of cyclic enable shifter 	 30
Fig. 4.9 	32 Bit Logarithmic Shifter without circular shifting 	 31
Fig. 4.10 	32 Bit Cyclic Enable Logarithmic Shifter 	 32
Fig. 4.11 	Comparisons of power consumption of different shifters in

static CMOS and FSL logics 	 33
Fig. 4.12 	Comparisons of delay of different shifters in static CMOS

and FSL logics 	 34
Fig. 5.1 	Implemented Design of ALU 	 36
Fig. 5.2 	Control Unit of ALU 	 37
Fig. 5.3 	An Arithmetic Unit of ALU 	 38
Fig. 5.4 	A Symbol of 4x1 Mux 	 38
Fig. 5.5 	The Logical Unit of ALU 	 40
Fig. 5.6 	A Single Bit Logical Unit for Logical Unit of ALU 	 40
Fig. 5.7 	A Shifter Unit of ALU 	 41
Fig. 5.8 	Comparisons of power consumption in arithmetic operations in

static CMOS and FSL logics 	 42
Fig. 5.9 	Comparisons of delay in arithmetic operations in static

CMOS and FSL logics 	 43
Fig. 5.10 	Comparisons of power consumption in logical operations in

static CMOS and FSL logics 	 44
Fig. 5.11 	Comparisons of delay in logical operations in static CMOS

and FSL logics 	 44
Fig. 5.12 	Comparisons of delay in shifting operations in static CMOS

and FSL logics 	 45
Fig. 5.13 	Comparisons of power consumption in shifting operations in

static CMOS and FSL logics 	 46

vii

List of Tables

Table No. 	Title of table 	 Page No.

Table 2.1 	Summary of simulation results for various logical gates 	11

Table 3.1 	Generate and propagate information for a CLA 	 16

Table 3.2 	 Summary of simulation results for various adders 	 22

Table 4.1 	 Summary of simulation results for shifters 	 33

Table 5.1 	 Functional table of the designed ALU 	 36

Table 5.2 	 Functional table of the control unit 	 37

Table 5.3 	 Functional table of the 4x1 multiplexer (MUX) 	 39

Table 5.4 	 Functional table of the arithmetic Operation 	 39

Table 5.5 	 Functional table of the logical unit 	 40

Table 5.6 	Functional table of the shifter unit 	 41

Table 5.7 	 Summary of simulation results for arithmetic operation

in designed ALU 	 42

Table 5.8 	 Summary of simulation results for logical operation in

designed ALU 	 43

Table 5.9 	 Summary of simulation results for shifting operation in

designed ALU 	 45

viii

List of Abbreviations

Abbreviation 	 Meaning

ALU 	 Arithmetic Logic Unit

VLSI 	 Very Large Scale Integration

IC 	 Integrated Circuit

DCT 	 Discrete Cosine Transform

FSL 	 Feedback Switch Logic

CMOS 	 Complementary Metal Oxide Semiconductor

CVSL 	 Cascode Voltage Switch Logic

DCVSL 	 Differential Cascode Voltage Switch Logic

RCA 	 Ripple Carry Adder

LSB 	 Least Significant Bit

MSB 	 Most Significant Bit

CLA 	 Carry Look-ahead Adder

DSP 	 Digital Signal Processing

MUX 	 Multiplexer

ix

Chapter 1

Introduction

1.1 Background

Much of the research effort of the past years in the area of digital electronics has been

directed towards increasing the speed of digital systems. But due to the demand and

popularity of portable electronics, designers are striving to achieve smaller silicon area,

higher speeds, longer battery life and more reliability. Power is one of the premium

resources to which a designer tries to save when designing a system. However, the

advancement of digital computer technology requires higher circuit speed also.

The three most widely accepted parameters to measure the quality of a circuit or to

compare various circuit styles are area, delay and power dissipation. Portability imposes a

strict limitation on power dissipation while still demanding high computational speeds.

Hence, in recent VLSI systems, the power delay product becomes the most essential

metric of performance. The reduction of power dissipation and the improvement of speed

requires optimization at all levels of the design procedure.

Arithmetic Logic Units (or ALUs) are important components in many moderns IC such as

processors and re-configurable cores. Demand for performance at low power

consumption in today's general purpose processors has put severe limitations on ALU

design. ALUs are also one of the most power hungry sections in the processor and are

often the possible location of hot-spots. The presence of multiple ALUs in superscalar

pipelines further deteriorates the power and thermal issues. Technology scaling has

resulted in faster devices but at the same time, the die-to-die delay variations have

increased due to different lithographic subtleties. Therefore, low power ALU design

while maintaining high yield under tighter delay constraint turns out to be a
multidimensional problem [1].

ALU is the heart of a microprocessor and the adder cell is the elementary unit of an ALU.

It is basically a combinational circuit that performs a number of arithmetic and logic

functions. Hence, its performance is crucial for the design of high performance digital

computer system. The basic structure of the ALU is shown in Fig. 1.1. It consists of input

(1)

External
Operands

External
Operands Logical

Output

multiplexers, adder core and an output multiplexer. The adder takes operands from

register file, data cache or ALU write-back bus. The input multiplexers select the proper

operands among these and provide the ALU inputs. The adder output is multiplexed with

the logical output through an output multiplexer.

Fig. 1.1: Basic ALU Structure [1].

Since multiplication is a less frequent operation than addition/subtraction/shift operation,

the multipliers are usually isolated from the ALU. This also ensures high speed operations

of the more frequent instructions in processors. However, for signal processing

applications (e.g., filters, DCT), multipliers can be an integral part of the ALU.

1.2 Thesis Contribution

The aim of this thesis is to design a 32-bit low power, high speed logic ALU based on

Feedback Switch Logic (FSL) [2]. FSL offers low power consumption and high speed

because of fast switching, reduced capacitance and input-switching dependent activity

factor without the need of clock connection. The objectives of the thesis are following:

• Study the concept of low power high speed logic, which is Feedback Switch Logic

(FSL).

• Design different adders using static CMOS logic and FSL.

• Estimation and comparison of power consumption and delay of different adders

with static CMOS logic and FSL logic.

• Design of various shifters using static CMOS and FSL logics.

(2)

• Extraction and comparison of power consumption and delay of shifter with both

the logics.

• Design of 32-bit ALU by taking best adders and shifters from comparisons in

terms of speed and power consumption using static CMOS and FSL logics.

• Finally, power consumption and delay of 32-bit ALU using static CMOS and FSL

logics are calculated and compared.

1.3 Thesis Organization

The thesis organization is as follows:

Chapter 2 gives an overview of FSL. This chapter presents the overview of our new logic

Feedback Switch Logic. A comparative study between various logics is done, followed by

various simulation results and discussions.

In chapter 3, designs of different adders using static CMOS and FSL are presented. It also

discusses about comparison results of different adders using both the logics.

Chapter 4 presents design, of different shifter units. These, shifters are capable of

bidirectional and cyclic shifting up to 31-bits and it also presents simulation results and

comparison of these shifters using static CMOS logic and FSL in terms of speed and

power consumption.

In chapter 5, implementation details of 32-bit ALU have been discussed and simulation

results are also presented.

Chapter 6 concludes the thesis and discusses future scope of work.

(3)

Chapter 2

Feedback Switch Logic (FSL)

2.1 Introduction

Since the invention of CMOS, speed improvement has been the main goal in the research

of both circuit design and device design. Designing high speed low power circuits with

CMOS technology has been a major research problem for many years. Several logic

families have been proposed to improve circuit performance beyond static CMOS family

[3]•

In deep submicron technologies, the performance benefits obtained from process scaling

decreases as feature size decreases, hence fast circuit families become more attractive

now a days. Static CMOS logic is widely used due to its features like low power

dissipation, ease of design and higher stability. Static CMOS logic gate is built up by pull

up (PUN or PMOS network) and pull down network (PDN or NMOS network). The

advantage of having both pull up and pull down networks is that except for the very brief

period when the output or the inputs are making transitions, no current flows and no

power is consumed. The problem with this fully complementary approach is that for

complex gates, substantial amounts of area can be wasted. As a result of the extra area

and extra transistors, the capacitive loads on gates of a fully complementary circuit are

very high. Each output goes to both a PMOS and NMOS transistors in every gate it

drives. PMOS transistor are generally twice the size of NMOS transistor to obtain more

balanced rise and fall times. As a result, the total gate load on each output will be three

times higher. Hence even though static CMOS consumes less power and gives good noise

margin but it slows down the circuit speed.

In order to remove the above problems, many dynamic circuit schemes have been

described [4], but they all show some basic features as a common one. Basically, they

involve pre charging the output node to a particular level (usually high for NMOS), while

the current path to the other level (ground for NMOS) is turned off. Any charging of

inputs to the gate must occur during the pre charge phase. At the completion of pre

charge, the path to the high level is turned off by a clock and the path to ground is turned

(4)

on. Then depending on the state of the inputs, the output will either float at the high level

or will be pulled down. The advantage of dynamic circuit is that it has lesser load

capacitance on gates than static CMOS logic. In addition, there is no static current path,

so power would be much closer to CMOS. However, there are serious problems involved

in realizing these apparent speed advantages in real circuits. This happens because useful

circuits generally have several logic gates in series and in the dynamic approach, no gate

can be activated until its inputs have been stabilized. In practice, considerably more than

one gate delay would be needed between successive edges to assure a full gate delay in

worst case. Overall then, in a circuit of reasonable complexity, the dynamic approach

would not be any faster than conventional CMOS logic [4].

A Domino logic consists of an n-type dynamic logic block followed by a static inverter,

so only noninverting logic can be implemented. In domino logic, during precharge, the

output of the n-type dynamic gate is charged up to Vdd, and the output of the inverter is

set to 0. During evaluation, the dynamic gate conditionally discharges and the output of

the inverter makes a conditional transition from 0 	1. Due to static inverter, it has

additional advantage that the fan-out of the gate is driven by a static inverter with a low-

impedance output which increases noise immunity [5].

Domino logic allows high-speed circuit design due to the low switching threshold of

dynamic gates and their reduced load capacitance and also the ability to implement

complex functions in a single gate. On the other hand, domino logic suffers from high

switching activity since the activity factor of a dynamic gate is input-state dependent and

the gate switches twice a cycle. However, unlike static logic, domino logic does not allow

false outputs before a gate settles down to its correct output which helps in reducing the

activity overhead of domino circuit. One of the drawbacks of domino logic is the inability

to recover after noise upsets. Noise tolerant pre charge solves this problem at the price of

increased gate capacitance [6]. Another major disadvantage of domino logic is the

increased clock loading and the need to deliver the clock signal to every gate, which in

turn increases power, routing area and design complexity.

However, the inability of inversion in domino logic poses another major limitation on

widely using this high speed circuit family. Dual rail domino, which is a derivative of the

differential Cascode Voltage Switch Logic (CVSL) family [7], solves this problem by

implementing the logical function and its complement.

(5)

The static version of Differential Cascode voltage switch (DCVSL) is a differential style
of logic that provides the complementary outputs with true and complementary inputs to
the gate. When the input switches, output of the DCVSL gate and its complement are
pulled either high or low. This static version slowly transits and highly consumes current
since the PMOS pull-up fights the NMOS pull-down trees during the switching period.
To increase the performance and reduce the power consumption, many clocked versions
of the DCVSL gate have been introduced [7].

One of clocked CVSL is a dual-rail domino logic which combines both domino and
CSVL logic in order to solve the problems of both families. Dual-rail domino does not
suffer from contention problems, which makes it as fast as standard domino. Also, dual
rail domino logic provides both inverting and non-inverting functions, which makes it
easy to use in digital logic design. The main disadvantage of dual rail domino gate is its
unity activity factor since an evaluate/precharge transition is guaranteed at every cycle
regardless of the input activity or input states. Therefore, dual-rail domino logic suffers
from high power consumption due to the extra clocking power. Also, dual-rail domino
can not recover from noise upsets similar to standard domino logic.

Feed back switch logic [2] is an improved design among all these logic families. This is a

dynamic like static circuit family suitable for high speed and low power circuit designs. It
is free from contention problem of clocked CVSL. The major advantage of FSL is fast
switching speed, reduced capacitance, and input-switching dependent activity factor
without the need of clock connection.

FSL is a clock less differential circuit family that provides the output and its complement
from a single side of the gate. Fig. 2.1(a) and (b) present two possible structures of FSL
gates. In this work, FSL structure shown in Fig. 2.1(a) has been considered. However, the
structure in Fig. 2.1(b) can be useful for FSL tree implementations since it allows
transistor sharing between complementary networks. Similar to CVSL, the logic function

and its complement in FSL are implemented using NMOS networks. Also, two cross
coupled PMOS pull-ups are employed. However, one of these pull-ups is a weak keeper
and the other one is a strong output driver. The latter provides high drive current during a
low-to-high OUT transition, while it does not affect the high-to-low transition due to the
output feedback that turns it off when it is not needed. The feedback acts as a switch that

(6)

OUT

OUT Y

decides which of the two pull-down networks should be used to provide the functionality
of the gate based on the current output state.

OUT

	 OUT

Fig 2.1(a): A Possible Structure 1 of FSL Logic [2].

Fig 2.1(b): A Possible Structure 2 of FSL Logic [2].

FSL takes the advantage of the fact that low-to-high transitions are the speed-critical
transitions for all CVSL circuit families since only NMOS networks are used, while high-
to-low transitions are less important in terms of speed. Therefore, the high-to-low
transition can follow its complementary low-to-high transition, while the speed is
effectively based on the earlier low to-high transition. Thus, even though a signal in an

FSL gate can pass through three serial stages in the worst case, which are OUT, OUT, and

the output inverter stage, the effective FSL gate delay is always based on two stages. FSL

(7)

	 A.B

	Y— A.B

offers the switching speed of dynamic logic, while providing activity-dependent

switching behavior similar to static logic without the need of a clock connection.

However, FSL is slower than dynamic logic since the load of a gate is driven from a

single side.

2.2 Operation and Analysis:

There are two possible FSL structures for any basic logic gate. In Fig 2.2 (a-d) two-inputs

NOR/OR and NAND/AND gates based on FSL are shown. To understand the operation

of FSL based gate, consider figure 2.2(a).

IT= A.B
	 = A.B

Fig 2.2(a): A NAND/AND gate based on Structure 1 of FSL Logic.

Fig 2.2(b): A NAND/AND gate based on Structure 2 of FSL Logic.

(8)

A--I

-r_

Y=A+B
Y—A+B A

Y= A+B
Y=A+B

Fig 2.2(c): A NOR/OR gate based on Structure 1 of FSL Logic.

Fig 2.2(d): A NOR/OR gate based on Structure 2 of FSL Logic.

In Fig.2.2 (a), when Y is on and Y is off, the NAND node is at state "0" and the AND

node is at state ' 1 ', the feedback-driven NMOS and PMOS are on and off, respectively,

and node P is high. When Y turns off and Y turns on, node P discharges since it is held

high by weak transistor. While the strong PMOS pulls, the NAND node is high which

inturn discharges the AND node causing node P to charge again turning off the strong

PMOS driver. Now the state of the gate is held at node V by a weak feedback keeper and

is ready to evaluate and so on. The simulation waveforms of 2-input NAND/AND gate

is shown in Fig. 2.3

(9)

From the simulation waveforms, node P is high all the time except when V turns on where
a fast and short high low high pulse appears. This gives FSL gate an extra advantage by
making a strong speed critical PMOS device tolerant against aging and Negative Bias
Temperature Instability (NBTI) effects. Similarly for NOR/OR operation in FSL,
simulated waveform is shown in Fig. 2.4.

Transient Response

1.25

g

	

0.0 	

	

X1.25 	

	

0.0 	

	

21.25- 	L8s1 	

~1.2511netuiin

.75
.2 .25

81.25 	
.75

o
.25

10

	f 	f 	 f 	
os~ 1

4 1 0
time Ms)

Fig 2.3: FSL NAND/AND operation
Transient Response

	

1.25-r7")" 	

< 0.0

21.25

°' 0.0

Q. Ai
„

_1.2

.4
0 	

--4.25 mr,Li L

a.7-
.2

7M-1.25

E. 7
.2

a -.25 	

	

1.24 fnetu75 	

	

01.0 	

	

.8 	
5.0 	 7.5 	 10.0 " 	 12.5

time Ins)

Fig 2.4: FSL NOR/OR operation

(10)

1200

loon

800

600

400

AND2 AND3 AND4 OR2 OR3 OR4 XOR2

Power
Consumption
(in nW) CMOS

Power
Consumption
(in nW) FSL

200

2.3 Simulation Results

The following are the comparison results of various logic gates using static CMOS and
FSL logics.

The power consumption and delay of various logic gates using FSL and static CMOS are
tabulated in Table 2.1.

Table 2.1: Summary of simulation results for various logical gates

Logical Gates
Power Consumption

(in nW)
Delay
(in ps)

CMOS FSL CMOS FSL
AND2 839.3 914.8 21.595 17.805
AND3 860 927.1 28.45 22.988
AND4 871.2 932.2 33.205 29.552
OR2 947.9 1036.1 20.275 17.213
OR3 981.8 1061.3 25.725 22.021
OR4 1040.8 1116.8 31.185 27.786

XOR2 892.5 981.75 27.215 23.786

The power consumption comparison of different logic gates using FSL and static CMOS
logic is shown in Fig.2.4.

Fig 2.4: Comparisons of power consumption of different logic gates in static CMOS and
FSL logics.

tip

AND2 AND3 AND4 0R2 OR3 OR4 XOR2

Delay (in ps)
CMOS

Delay (in ps)
FSL

Since FSL is a combination of static and dynamic logic, the power consumption of logic
gates using FSL is very much close to the power consumption of static CMOS gates.

The delay comparison of various logic gates using FSL and static CMOS is shown in
Fig.2.5.

Fig 2.5: Comparisons of delays of different logic gates in static CMOS and FSL logics.

From the simulation results logic gates using FSL having lesser delay compared to static

CMOS logic because FSL offers reduced capacitance and fast switching.

Chapter 3

Design of an Adder

3.1 Introduction

Addition is one of the fundamental arithmetic operations. It is extensively used in many

VLSI systems such as application-specific DSP architectures and microprocessors. In

addition to its main task, that is the adding of two binary numbers, it is the nucleus of

many other useful operations such as subtraction, multiplication, division, address

calculation, etc [8]. In most of these systems, the adder is the part of the critical path that

determines the overall performance of the system. That is why enhancing the

performance of the adder is a significant goal. It often referred as the speed-limiting

element as well [5].

Addition is most often is one of the critical paths of modern day microprocessor. Adder is

also the "hot spot" among all other execution units in a processor core. Thus, a fast and

energy-efficient adder is essential to a high-performance microprocessor. Implementing

fast addition has been an important subject since the 1950s. Ripple carry adder is the first

and the most fundamental adder that is capable of performing binary number additions.

Since its delay is proportional to the length of its input operands, it is not very useful.

Weinberger and Smith [9] have made the first major break-through in speeding-up

additions by proposing the well-known scheme, Carry Look-ahead adder [10]. Rather

than rippling carries throughout the adder, it uses parallelism to propagate carries much

quickly.

There are several levels of hierarchy which can improve addition operations. First, it can

be improved at architecture level. By using an algorithm that incorporates a faster carry

propagation method such as prefix tree adder schemes, addition time can be reduced. By

adding clock gating and sleep mode, power can be saved when the adder is not in use.

Multiple-power supplies can also be used to supply lower voltage to less critical paths in

order to reduce power. For mobile applications, dynamic voltage scaling is a widely used

technique to reduce power consumption. It automatically optimizes the supply voltage

and the operation frequency for a given workload.

(13)

To reduce the adder delay and power, one can also improve it at circuit level. For

example, selecting dynamic instead of static CMOS logic would improve the speed of

operation. Transistor sizing can be used to improve speed and power. A transistor sizing

tool parameterizes the sizes of transistors in a circuit based on circuit characteristics such

as driver size, load, supply voltage, operating temperature etc. After completing a

transistor level design, the customized cell placement can be used, which may produce a

better layout than automatic place and route tool. With today's advanced technology, a

careful planning of wires and cells before placement is often necessary in achieving a

better timing and power.

Finally, speed can be improved at process level. A more advanced process technology can

be used. This could be scaling the transistor's feature size, using copper interconnects

rather than aluminum interconnects, using SOI (Silicon on Insulator) CMOS technology

rather than Bulk CMOS technology, using thinner and higher K dielectric insulator as

gate oxide, etc.

3.1. Adders

Adders are basic components of microprocessors and any arithmetic circuit and are

frequently on the critical path. Fast adders speed up the addition calculation through a

rearrangement of the adder equations or through some intelligent observations about the

addition process. While adder speed is essential, adder area is also important, especially

for arithmetic circuits that may require many adders. The next few sections would discuss

about different adder designs and their comparisons.

3.1.1 Basics of Adder

A multi-bit addition operation can be decomposed into half adder and full adder

structures, with fast adders containing some additional circuitry. Half adders and full

adders compute the well-known logic functions given as follows:

Half adder: Sum =A OB, 	 Cout =AB

Full adder: Sum = A C) B C) C , 	Cout = AB+BC+CA

(14)

3.1.2 Ripple Carry Adder

This is the simplest adder circuit. An N-bit ripple carry adder [11] consists of N full

adders with the carry signal propagating from one full-adder stage to the next from LSB

to MSB. A 4-bit ripple carry adder structure is shown in Fig. 3.1. It consists of four

cascaded full adder which takes input A, B and Cin and generates sum and carry out

(Cout).

A3 83

cout 4_

Fig. 3.1: 4-bit Ripple Carry Adder

The ripple carry adder is a good baseline design for comparison with other adders. It has

many advantages which include low power, low area and a simple layout. The drawback

of the ripple carry adder, though, is its slow speed. The delay of the adder is linearly

dependent on the bit-width (N) of the adder. The critical path of the ripple carry adder

consists of the carry chain from the first full adder to the last. Therefore, during circuit-

level design, the carry signal is frequently assigned to the transistor closest to the gate

output for the carry computation.

Circuits are optimized to produce fast carries because it constitutes a large fraction of the

critical path. The delay of a ripple carry adder is given by the following equation [5]:

T (RCA) = (N —1)xT (Carry) +T (Sum)

For designing a single bit of full adder for a RCA, we can use different types of full adder

as reported by Alioto and Palumbo [12]. For our design of RCA, we used Mirror Full

adder [13] as shown in Fig. 3.2. Mirror Full adder CMOS Full adder is a simple

implementation of following equations.

Sum = A C) B C) C = ABC + Cout (A+B+C)
and 	 Carry (Cout) = AB + BC + AC = AB + (B + A)C

A2 B2
	

Al B1
	

AO BO

(15)

77=

Fig. 3.2: A Single-Bit Mirror Full Adder [12].

3.1.3 Carry Look-ahead Adder

The Carry Look-ahead Adder (CLA) is theoretically one of the fastest methods for

addition. Weinberger and Smith invented the CLA in 1958 [9]. The CLA uses

intermediate information to determine in advance if there will be a carry out of a given bit

position. Table 3.1 shows the truth table for a full adder, including this extra carry

information. For the delete condition, there will be no carry out of the bit position. For the

propagate condition, there will only be a carry out if there is a carry in. For the

generate/propagate condition, there will always be a carry out at that position.

Table 3.1: Generate and propagate information for a CLA

A B C Sum Cola Condition
0 0 0 0 0 Delete
0 0 1 1 0 Delete
0 1 0 1 0 Propagate
0 1 1 0 1 Propagate
1 0 0 1 0 Propagate
1 0 1 0 1 Propagate
1 1 0 0 1 Generate/Propagate
1 1 1 1 1 Generate/Propagate

Fig. 3.3 shows the block diagram for a 4-bit section of a CLA. In CLA, Reduced Adders

(RA) are used as they are no longer required to compute the output carry. The CLA block

at the top of the diagram is a set of circuitry that creates, generates and propagates signals

(16)

for a group of full adders, as well as the carry-out from that group. The, following
equations compute each position's generate and propagate signals [141:

Carry Look-ahead Block Gout

Cin

GZ P2

RA

S3 	S2

Gl, P1

RA 1- RA
Cl

Si 	SO

03,P3

4-
C3 C2

Fig. 3.3: 4-bit Carry Look-ahead Adder

Generate: Gi Ai -Bi

Propagate: Pi —Ai +Bi

In some books, they define the propagate signal as the Exclusive-OR of the A and B
signals, but this does not change the result of addition. The above defmition generally

chosen because the implementation of the OR operation is more efficient than that of

Exclusive-OR in most technologies. The equations for the carries in a CLA are given by:

Cl = GO + PO•Cin

C2 = GI + GO-131 + PO-P1 -Cin

C3 = G2 + GI ,P2 + GO•P 1 •P2 + PO•P I •P2•Cin

For example, computing C3 requires the use of a 4 input AND gate and a 4 input OR
gate. Hence, usually the size of the look-ahead logic is limited to 3 carries. AND Gates

with 5/6 inputs would be needed for the next 2 carry signals, which makes their
implementation in CMOS very slow due to the stacked transistors in the pull-up or pull-
down paths.

As the carry calculation is performed by the carry look-ahead block, the one-bit adder

equations for a CLA are the reduced full-adder equations because carry calculation is no
longer needed. The reduced full adder performs the operation given by equation below:

Sum = A C) B 0 C ARC + ABC + ARC + ABC

(17)

3.2 Prefix Adders

Among the various binary adder architectures, prefix adders [15] are particularly
attractive because they have the minimum possible logic depth. These adders are also
termed logarithmic adders because their critical path is 0 (log2N). Examples of prefix
adders are Kogge-Stone [16], Brent-Kung [17] and Han-Carlson adders [18].

The addition of two binary numbers can be formulated as a prefix problem. In a prefix
problem, outputs {y(n-1), y(n-2)... y(0)} are computed from n inputs {(x(n-1), x(n-2)...
x(0))} using an arbitrary associative operator (*) as follows:

y(0) = x(0)
y(1) = x(1) * x(0)

y(n-1) = x(n-1) * x(n-2) * 	* x(0)

he problem can be formulated recursively as

y(0) = x(0)
y(i) = x(i) * y(i-1) where i = 1, 2... ,n-1

In other words, in a prefix problem every output depends on all inputs of equal and lower
magnitude and every input influences all outputs of equal or higher magnitude. Due to the

associativity of the prefix-operator, the individual operations can be carried out in any
order. This is a fundamental property which explains why there are various tree structures
for addition.

Let us define the * operator to be the carry-merge operator which combines generate and
propagate signals using the following equations:

(Gout, Pout) = (G2, P2) * (G1,P1)= (G2 + P2•G1, P2•P 1)

We need to calculate the Generate and Propagate signals for each bit to perform the carry-
merge operation from the equation above at each junction in the carry merge tree for the
desired logarithmic adder, Brent-Kung, Kogge-Stone, or Han-Carlson. The underlying
carry-merge operation is the same for all logarithmic adders but the connections in the

tree are different. After log2N stages, where N is the bit-width of the adder, the carry
signals will be fully generated. As with the CLA, a reduced full-adder is used to find the
sum using the carry, generate and propagate signals.

(18)

1 30 29 28 2, 26 25 24 23 22 21 20 19 18 	16 13 14 13 12 11 10 9 8

Cnm CM C, 	Cs. C2, C26 C25 72.1 CIS '22 CU. C20 .19 CAL 711 C14 Cu C14 en Cs, Cu CIA C g C1 C5 C6 C, Cl Cy C2 Ci C1

VVVVVV \7\7\7\7V

3.2.1 Kogge-Stone Adder

Kogge and Stone proposed a general recurrence scheme for parallel computation in 1973

[16]. The Kogge-Stone adder is a parallel prefix form carry look-ahead adder. Time

needed to generate the carry signals is equal to the number of level and it is equal to 0

(log2 N). It is widely considered the fastest adder design possible. And the cost is n2

because of the large no. of vertical tracks required to embed wires in the upper stage. It

takes more area to implement but it has a lower fan-out at each stage, which increases

performance. A 32-bit Kogge-Stone adder is shown in Fig.3.4.

Fig. 3.4: Diagram of Kogge-Stone Adder

3.2.2 Brent-Kung Adder

The replicated Kogge Stone structure to generate intermediate carries shown in Fig. 3.5 is

very attractive to high-performance applications. However, it comes at the cost of area

and power. A simpler tree structure could be formed if only the carry at every power of

two positions is computed as proposed by Brent and Kung [17]. It is based on divide and

conquer approach. The inputs are first combined pairwise to obtain the sequence of length

n/2 and the even-indexed prefix are then computed by odd-prefix. The Schematic diagram

of 32-bit Brent-Kung adder is shown in Fig.3.5.

(19)

1 30 29 28 2 26 24 23 	21 20 19 18 17 16 15 14 13 	I 10 9 8 7 6 5 4 	 0

111 y 	■FTv' II 'K7 in v"
r--

■ v

I V

I
V n vyyyy 	V V V V' V V V V/ V V V'

(Celli C31 Cie CV C34 C2* C26 C25 C24 C.3 021 €21 7M 419 ell C17 C-16 .13 C14 C12

V

C11

V
cs (27 cd €. C., €3 C.,

'V" V' '7 'V' V'

C.)

I

Fig. 3.5: Diagram of Brent-Kung Adder

The Brent-Kung adder has the lowest area and the slowest speed of all the logarithmic
adders.

3.2.3 Han-Carlson Adder

Similar to Brent and Kung's scheme, Han and Carlson also proposed a scheme to reduce
the complexity of prefix tree [18]. It combines both Brent-Kung and Kogge-Stone adders.
It is different from Kogge-Stone scheme. This scheme performs carry-merge operations
on even bits only. Generate and propagate signals of odd bits are transmitted down the
prefix tree. They recombine with even bits carry signals at the end to produce the true
carry bits. Thus, the reduced complexity is at the cost of adding an additional stage to its
carry-merge path. The time to compute is only one stage more than Kogge-Stone adder.
The schematic of a 32-bit Han-Carlson Adder is shown in Fig.3.6.

The Han-Carlson adder combines the Brent-Kung and Kogge-Stone carry merge trees to
achieve a balance both with respect to speed and area.

(20)

1 30 	 26 25 2-I 23 22 21 20 9 18 1 16 15 14 13 12 11 10 9 8 7 6 5 4 	 0

111111111)91)110111111,1111F Igo g til mum No
i ir Vilisminsmall 1.,......................
11111111111iiiirrnilli

C31 C30 C29 C. 	C17 424 C25 C21 C23 C22 C21 Ca C19 C111 C17 C16 C1. C12 C13 C12

V V V
■■

Ci

Fig. 3.6: Diagram of Han-Carlson Adder

In all of the above parallel prefix adders, black block, grey block, propagation and

generate block are implemented as follows:

Gik Par C88 P19

Black
G P

..11•■■■ Ai

PmPrtgata

Generate

i Pi
G

[A]
	

[B] 	 [C]

Fig. 3.7: Different blocks in prefix adders, (A) Black block, (B) Grey block, (C)
Propagate and Generate block

where Pki and GI; are propagate and generate lines from present lines while Pkj and Gki are
propagate and generate are due to just previous bits.

(21)

3.3 Adder Comparisons

This section describes about comparison results of different adders in terms of power and
delay.

The power consumption and delay of Ripple Carry adder, Kogge-Stone adder and Han-
Carlson adder using FSL and static CMOS are evaluated and tabulated in Table 3.2.

Table 3.2: Summary of simulation results for various Adders

Adder Architecture
Power Consumption

(in i.t.W)
Delay
(in ps)

CMOS FSL CMOS FSL

Ripple Carry Adder(RCA) 220.34 240.55 270.7 239.6

Kogge-Stone Adder 328.19 360.25 210.7 178.4
Han-Carlson Adder 273.01 292.45 264.5 223.4

The power consumption comparison of various adders using FSL and static CMOS is
shown in Fig.3.7.

▪ Power
Consumption
(in gW) CMOS

▪ Power
Consumption
(in ON) FSL

Ripple Carry 	Kogge-Stone 	Han-Carlson
Adder(RCA) 	Adder 	Adder

ti

400

350

300

250

200

150

100

50

0

Fig 3.7: Comparisons of power consumption of different adders in static CMOS and FSL
logics.

From simulation results ripple carry adder consumes less power compared to Kogge-
Stone and Han-Carlson adders in both the logics.

Oa)

300

250

200

150

100

50

0

Delay (in ps)
CMOS

Delay (in ps)
FSL

Ripple Carry 	Kogge-Stone 	Han-Carlson
Adder(RCA) 	Adder 	Adder

Delay comparison of different adders using static CMOS and FSL is shown in Fig.3.8.

Fig 3.8: Comparisons of delays of different adders in static CMOS and FSL logics.

From the simulation results, it shown that the delay of Kogge-Stone adder is lower than
ripple carry adder and Han-Carlson adder in both the logic. But quantitatively delay of
Kogge-Stone adder using FSL is less than the delay of Kogge-Stone adder using static

CMOS.

Chapter 4

Shifter Design

Data shifting is required in many key computer operations from address decoding to

computer arithmetic. Binary shifters, similar to adders and multipliers, are essential in

high performance microprocessors, especially in those applications that support floating-

point operations. A cyclic shifter is a crucial component for communication applications

such as encryption and error control coding where we require rotation operations. Yet the

importance of shifter logic is underestimated in circuit design due to its simplistic nature.

Literature on shifter design is relatively scarce compared to that of adders and multipliers

and textbooks typically cover shifter in just one or two pages. The main reason is that the

complexity of shifters comes from the internal wire connections which do not fit into the

traditional logic-centric design methodology [19].

In terms of design style, there are three types of shifters for circuit designers, which are:

1. Array Shifter

2. Barrel Shifter

3. Logarithmic Shifter

4.1 Array Shifter

An array shifter decodes the shift value into individual shift bit lines that mesh across all

input data values. At each crossing point, a NMOS transistor will either allow or not

allow the input data value to pass to the output line controlled by a shift bit line. The

advantage of this design is that there is always only one NMOS transistor between the

input data lines and the output data lines, hence, it is fast. The basic structure of an array

shifter is shown in Fig.4.1.

The disadvantages of this design are: firstly, the requirement of a decoder, and secondly,

the fact that each input data line sees a load for every shift bit line [21]. A simple one bit

bidirectional array shifter is shown in Fig.4.2. According to the control signals, the input

word is either shifted left or right or else it remains unchanged. Multi bit shifters can be

(24)

built by cascading a number of the units. Array shifter becomes complex and too slow for
higher shift values.

5- 17 'lift

-"<"

en')

Im4
immo

Output Data (O... 	31)

Fig.4.1: Structure of an Array shifter [20]

Al + 1

Left

Nola
	 IC
	

11
Right

Yi + 	 7

Fig. 4.2: A simple one Bit Bidirectional Array shifter [5].

(25)

13 173

Sh, T

Sh,

i 	

sill

Y,

5113
Ao

Yl

T
Sh3

I
sho

4.2 Barrel Shifter

A Barrel shifter consists of an array of transistors, in which the number of rows and
columns are equal to the word length of the data and the maximum shift width

respectively. The control wires are routed diagonally through the array. A major
advantage of barrel shifter is that the signal has to pass through at the most one
transmission gate. The propagation delay is constant and independent of the shift value.
However, this is not always true, because the capacitance at the input of the buffers rises

linearly with the maximum shift width.

A 4-bit barrel shifter shown in Fig.4.3, needs four control signals to shift over three bits.
The signals, Sh3, She, Shi and Sho take on the value 1000. Only one of the signals is high.
For instance, the encoded control word needs only two control signals and is represented

as 11 for a shift over three bits. To translate this shift bit, an extra module known as the
decoder is required.

The barrel shifter is primarily used in floating-point arithmetic hardware. For a floating-

point add or subtract operation, the fractions of the numbers must be aligned, which
require shifting the smaller number (in magnitude) to the right and increasing its exponent

until it matches the exponent of the larger number. This is done by subtracting the
exponents and using the barrel shifter to shift the smaller number to the right by the
difference in one cycle. If a simple shifter was used, shifting by n bit positions would

require n clock cycles.

Fig.4.3: A 4-bit Barrel Shifter [5]

(26)

4.3 Logarithmic Shifter

A Logarithmic shifter is based on stage approach. The total shift value is decomposed
into shifts over powers of two. No. of total stages for a maximum shift width M is log2M
stages, where the ith stage either shifts over 2' or passes the data unchanged.

A Logarithmic shifter for a maximum right shift width of 7 bits is shown in Fig.4.4. To

shift over 5 bits, the first stage is set to shift mode, second stage to pass mode and the last

stage again to shift mode. The control word of this shifter is already encoded and no

separate decoder is required.

Al

A

Fig. 4.4: A 4-Bit Right Shift Logarithmic Shifter [5].

In a logarithmic shifter, the shifter is divided into log2 M stages, where M is the input data
length. Thus, the speed of the logarithmic shifter depends on the shift width in a

logarithmic way. Each bit of the encoded shift value is sent to a different stage of the

shifter. Each stage handles a single power of- two shifts. The input data will be shifted or

not shifted by each of the stages in sequence depending on the shift value. Five stages

would be required when considering 32 bit data as shown in Fig.5.5. The advantage of a

logarithmic shifter is that it occupies small area and does not require a decoder, but the

disadvantage is that there are five levels of gates separating the input data from the output

(27)

2 Bit Shift

8 Bit Shift

"Vt

0

era

data. Furthermore, the series connection of pass transistor slows the shifter down for
larger shift values.

Input Data (0 	31)

I
1 Bit Shift.

16 Bit Shift

Output Data (0 	31)

Fig. 4.5: Structure of a Logarithmic Shifter [20]

From this analysis, we can observe that use of array shifter is limited to lower shift bits.
As the number of shift bits increase, the number of stages of the shifter also increases
finally leading to higher delay and complexity of design. In the case of Barrel shifter, we
can conclude that it is appropriate only for smaller shift values. For larger shift values, the
logarithmic shifter becomes more effective both in terms of area and speed [20-21].

4.4 Design of Cyclic Shifter

Circular shift is a permutation of the entries in a tuple where the last element becomes the
first element and all the other elements are shifted, or where the first element becomes the
last element and all the other are shifted. Equivalently, a circular shift is a permutation
with only one cycle. The cyclic shift of a binary operand is a basic operation which is
required at many different places in circuit design. For communication applications such

as encryption and error control coding, the cyclic shifter is a critical component because
rotation operations are enormously needed. Circular shifts are also used often in
cryptography as part of the permutation of bit sequences.

(28)

A31

Sitilt

Rig*

Riga
Left

1.1.00***** OO OOOOOO * OOOOOOOOOOOOOOOOOO OOO **********

Laift

Left

Wo

A design of cyclic shift enabled array shifter and logarithmic shifter is as follows:

4.4.1 Cyclic Array Shifter

For designing cyclic enable array shifter, we need a single bit array shifter capable of

shifting 1-bit at a time as shown in Fig.4.6. By using this single bit shifter we designed

array shifter which is capable of shifting upto 31 bits at a time as shown in Fig.4.7. We

need two 5x32 decoder for decoding shift values Shy, Sh4, Sh3, She and Sh1. For enabling

the cyclic shifter we have used two gates in which one is AND gate takes cyclic enable

input (CirLeft or CirRight) and output of it is given to OR gate which generates the

shifting value for LShift or RShift. The schematic of final cyclic shifter is shown in

Fig.4.8.

4.4.2 Cyclic Logarithmic Shifter

For designing cyclic enable logarithmic shifter, we need a 32 bit logarithmic shifter

without circular shifting as shown in Fig. 4.9. By using this shifter we designed a cyclic

logarithmic shifter by adding different multiplexers as shown in Fig. 4.10. These

multiplexers provide shifting values to various shift positions such as RA0 to RA30 for

right direction or LA] to LA31 for Left direction. The schematic of final cyclic shifter is

shown in Fig.4.8.

Fig. 4.6: Single bit array shifter.

(29)

stn — LShift 	1.
An

— Shigle
Bit

:Dray
Shifter

0) —
Ao — R.311111 	Right

ShR4

SliR3

STIR,

SIiR1

11 11 	
Y3i.Y3oYYn 	

I11
Y2 Y1 .0

AM

Ciadt 	

Cans

Ao

V Ad Sh1.5 Sr, 	SitLi

T
A,- A18

Sigle
Bit

Single
Bit 	 Bit

le

A, Ala

13 	D14 D15

5 x 32 DECODER

A30

LSlalt Left

Single
Bit

Array
Shifter

(2)

L ft

Single
Bit

Array
Shifter

(3)
14Staft 	Ri

Single
Bit

Array
Shifter
(14)

5 x 32 DECODER
	 D12 	E124 Dis

	

Array 	Amy 	Array

	

Shifter 	Shifter 	Shifter
(29) 	(30) 	(31)

x1_y1u— R39Yt RI 	 --- 	--- Rani 	— Mkt 11101 	13.1114 Rip

,_Matt Lef

Single
Bit

Array
Shifter
(15)

D31

1
shit, shR4 sta, sk

I
k sh,

Fig. 4.7 Cyclic Array Shifter

A3 A1, A1 A6 	' 	grid

rd 	Right
CirRight 	sh5

Shits 	 ks. —to

SHIFTER

Fig. 4.8: Final schematic of cyclic enable shifter

(30)

-4.31A3aAv

111
Ars

1 Left
CirLeft

ShL4

ShL4

ShL3

ShL-2

SliL1

w30

Fig. 4.8: 32 Bit Logarithmic Shifter without circular shifting.

(31)

1 1 141Ek.

1 1 MUX

An
An_

A3

A22—

A3I

A;L
Ay4 —

A24—

An—
A„—

4x1

MUX

1 	1

4 I 1
MUX

8:1
14.11E

1 1 I
x 1

11111

.11
Chien

Pd

R.

RA16

RA

RA

RA3

RA

1

11Ao

Right
S115

Sh4

Sh3

►:

OrRight

ShR2
ShR
ShRI

I

16
1101

I II

8x1
/MIX

	FA.
—AT

L;i3

i 1 I
8:1
klUX

4x1
BIUX

1 	1
4x1
141111

- A1

A

-

i

11130.1113 	 A I

.

	

I 	

1 dd gild

32 BIT
LOGARITHMIC

SHIFTER
WITHOUT
CIRCULAR
SHIFTING

1.322C30.XN1721 Ch Rigid

16 x 1
MT(

.—A32
III

Left-
Chleft-

Siii

LAN

LA17

16

LA1

SE;
ShLs
ShL4
Sill4
SliL3
ShL3
ShL,
ShL2
L1

ShLi

LA31

LA30

LA29

LA28

•

1.

16:1
Miff

Fig. 4.8: 32 Bit Cyclic enable Logarithmic Shifter.

(32)

All

Circular Left
Shift

Circular Right
Shift

Logical Left 	Logical Right
Shift 	Shift

Power
Consumption
(in RW) CMOS

Power
Consumption
(in liW) FSL

-
E
_a

01)
0

E

A

bS)
0

4.5 Simulation Results

The simulation results of various shifters using FSL and static CMOS are follows.

The power consumption and delay of different shifters using static CMOS logic and FSL
are calculated and tabulated in Table 4.1.

Table 4.1: Summary of simulation results for Shifters.

Shifting Operation Shifter
Architecture

Power Consumption
(in 11W)

Delay
(in ps)

CMOS FSL CMOS FSL

Logical Left Shift
Array 201.6 214.7 260.4 254.3

Logarithmic 204.5 216.9 220.1 213.4

Logical Right Shift Array 238.1 255 251.7 247.3
Logarithmic 250.3 267.3 218.7 213.1

Circular Left Shift Array 397.3 431.9 421.3 417.1
Logarithmic 410.7 447.3 415.2 411.3

Circular Right Shift Array 423.6 461.3 445.2 439.1
Logarithmic 430.4 469.6 427.3 421.5

The power consumption of comparison of various shifters among FSL and static CMOS
logics is shown in Fig.4.6.

Fig 4.6: Comparisons of power consumption of different shifters in static CMOS and FSL
logics.

C3S)

E Delay (in ps)
CMOS

Delay (in ps)
FSL

Logical Left Shift Circular Left Shift Logical Right
Shift

Circular Right
Shift

U E

_c
CO CO

Q

U E

co
DO
0

U E

co
0

450

400

350

300

250

200

150

100

50

0

Simulation results shows that power consumption of array shifter is less compared with
power consumption of other shifters in both the logics.

Comparison results of delay using FSL and static CMOS among various shifters is shown
in Fig.4.7.

Fig 4.7: Comparisons of delays of different shifter in static CMOS and FSL logics.

Simulation results shows that delay of logarithmic shifter is lower than other shifters in
FSL as well as in static CMOS logic. But quantitatively delay of logarithmic shifter is less
using FSL compared with delay of logarithmic shifter using static. CMOS.

O

t34)

Chapter 5

ALU Design

5.1 Introduction

The Arithmetic Logic Unit is a digital circuit that performs an arithmetic operation
(addition, subtraction, etc.) and logic operations (Exclusive-OR, AND, etc.) between two
numbers. Demand for performance at low power consumption in today's general purpose
processor has put severe limitations on ALU design [23].

ALU are also one of the most power consumed blocks in the processor and are often the
possible location of hot-spots. The presence of multiple ALUs in pipelined processors
further deteriorates the power and thermal issues [24]. Technology scaling has resulted in

faster devices but at the same time, the die-to-die delay variations have increased due to
different lithographic subtleties. Therefore, low power ALU design while maintaining

high yield under tighter delay constraint turns out to be a multi-dimensional problem.

The core unit of ALU is an adder which takes operand from register file, data cache or
ALU write back bus.

5.2 ALU Architecture

The design of the ALU can be divided into four parts as Control Unit, Arithmetic Unit,
Logical Unit and Shifter Unit. An implemented design of ALU is shown in Fig. 5.1. A

2x4 decoder is used as control unit to select the different unit for desired operation using
control signals S3 and S2. A functional table of the designed ALU is shown in Table 5.1.

The Arithmetic unit consists of Adder unit and 4x1 Multiplexer unit. Adder Unit is used
for addition of two operands while multiplexer unit is responsible for selecting

appropriate input operand for adder unit according to the control signal S2 and SI.
Different logical and shifting operations are selected by another 2x4 decoder having Si
and So control signals. Shifting Values for shifter unit are adjusted by Shy, Sha, Sh3, She
and Sh1. These control signals for shifter unit are binary weighted. Hence the maximum
value of shift is 31 (25 — 1). Finally, all the outputs of different units of ALU are

(35)

	

An Ago 	 Am

	

11111 	milli
833■■

LOGICAL
—Ss

UNIT

Do—

111111---111111

combined with output OR array in which 3 input OR gates are followed by buffer to
provides output as 'Y'.

A brief discussion about all components of ALU is followed in subsequent subsections.

2 X 4
DECODER

	Si 	s,
S2 Si 	Aza Aso 	
I 	I 	111111 	 1111 111 111111- '....1111111

ADDER SUR. Ith

B„ —

= 4 1 =
MUX
Array

B ••••••
Ito ----

I 	111111— .1111)11
Output OR Array

111111 	
s, 	1111111 VaoY Yo

Fig. 5.1: Implemented Design of ALU.

Table 5.1.: Functional Table of the designed ALU

Operation Select
S3 	S2 	S 1 	Si;

Operation

Addition

Function

F --= A+B
0 0 0 1 Addition with carry F= A+B+1
0 0 1 0 Subtraction with barrow F= A+ 13
0 0 1 1 Subtraction F= A+ B+ 1
0 1 0 0 Decrement F=A-1
0 1 0 1 Transfer F=A
0 1 1 0 Transfer F=A
0 1 1 1 Increment F= A+1
1 0 0 0 A AND B F=A•B
1 0 0 1 A OR B F=A+B
1 0 1 0 A XOR B F=AOB
1 0 1 1 Complement A F= A
1 1 0 0 Logical Left Shift
1 1 0 1 Circular Left Shift
1 1 1 0 Logical Right Shift
1 1 1 1 Circular Right Shift

II I

—s, —so
• ■■■••■■1

	 2 X 4 —Si
	(::•—•'"'"" DECODER 	se

1

(36)

Operation select Function
S3 	S2

Enab e Arithmetic nit Only
Enable Arithmetic Unit Only

1
	

Enable Lo:.ical Unit Onl
1 	 Enable Shifter Unit Only

5.2.1 Control Unit

A Control Unit in the ALU is responsible to select the desired operation as in functional

table (Table 5.1). A control unit is just a 2x4 decoder which can decode the control signal

S3 and S2. A Decoder is a combinational circuit that converts binary information from n
input lines to a maximum of 2" unique output lines. A Functional table of Control Unit
shown in Fig. 5.2, is given in Table 5.2. The main idea of controlling different units of
ALU using control unit is to control the power supply of different units of ALU. At any

instant, the power supply is only given to the unique part of ALU which needs
appropriate operation according to control signals and enables that part only to save
power.

To select Adder

To Logical Unit
To Shifter Unit

2x 4

	

DecoderD2 	

	

D3 	

Fig. 5.2: Control Unit of ALU.

Table 5.2: Functional Table of the Control Unit

5.2.2 Arithmetic Unit

In a designed ALU, arithmetic unit gives a choice to select seven different operations
such as addition, subtraction, increment, decrement and transfer of data. It is enabled by

selecting selection line S3 = 0 and S2 = 1 or 0 in control unit. An arithmetic unit is shown

in Fig. 5.3 .It consists of heart of the ALU i.e. Adder Unit and a Multiplexer Unit. An

Adder Unit is mainly dedicated to perform arithmetic operation in ALU. One of the input

operand as "A" is always is given directly to Adder while the other operand is given to
adder by the 4x1 MUX (Multiplexer) unit.

(37)

S2 Si 	A31 A30
••••. * * .. .

B31 -
B30
B29

•

dd
gnd

ADDER
• UNIT

B2 •41'
B1 —
B0 	 —

	Y1 YO

Fig. 5.3: An Arithmetic Unit of ALU.

A Multiplexer is a combinational circuit that selects binary information from one of many
input lines and directs it to a single output lines. The selection of particular input line is
controlled by a set of selection lines. There are 2' input lines and n selection lines whose
bit combinations determine which input is selected. A 4x1 MUX unit as shown in Fig. 5.4
gives a single output Wi which is directly cascaded to second operands of Adder and this
output is selected among 13i, B, , High Value '1' as `Vdd' and Low Value '0' as 'grid'
using selection lines S2 and Si . A functional table of 4x1 MUX is shown in Table 5.3. A
4x1 MUX array is used to provide 32-bit operands as a input to 32-bit Adder. A 4x1

MUX array is consists of 32 4x1 MUX, each MUX unit provides one bit of data as an
output.

'in

ydd gild 	Y31 Y30

Bi

gild

S2 Si

Fig. 5.4: a symbol of 4x1 Mux.

(38)

Table 5.3: Functional Table of the 4x1 Multiplexer (MUX)

Operation Select
S, 	S,

Operation Function

Select Input Bi as output B
0 Select Input iT, as output F = B,

0 Select Input Wm' as output F =1
1 1 Select Input `gnd' as output F = 0

A functional table of arithmetic unit is shown in Table 5.4. A selection line So is used as
input carry for the adder. For performing subtraction operation 	A-B) using adder unit,
we need a 2's complement of input operand '13' as a second input which can be obtained
as a combination of l's complement of `B' and Carry input Cin = 1 or So =1'.
Complemented input ' B' is provided by 4x1 MUX array by selecting S2 = 0 and S1 = 1.
Similarly an increment and decrement operation is done by selecting S2 = 1 and S1 =1 &
S2 = I and S1 = 0 respectively. A transfer operation refers to a directly transmitting input
operand 'A' without any change.

Table 5.4: Functional Table of the Arithmetic Operation.

Operation Select
S, 	S 	SPI Operation

Addition

Function

F - A+ B
0 1 Addition with carry F= A+ B +1
1 0 Subtraction with barrow F= A+ ii

0 1 1 Subtraction F= A+ B+ 1
Decrement F= A —

1 0 1 Transfer F= A
1 1 0 Transfer F= A
1 1 1 Increment F= A+ 1

5.2.3 Logical Unit

A Logical Unit of the ALU is responsible for logical operations such as AND, OR, XOR

and NOT. Several times, we need complement signal, NOT operation helps to get
complement signal. it is very important component of ALU and consumes very less

power and area in compared to other parts of ALU. It is very simple to implement as

shown is Fig. 5.4. It is enabled by selecting selection line S3 =1 and S2 = 0 in control unit.
A functional table of Logical unit is shown in Table 5.5

(39)

Function Operation Operation Select
S I

A XOR B 	F=A C) B
Complement A 	F = A

Ao
I

Single Bit S1
Logical

Unit 	So

Single Bit Si.
Logical

Unit 	SO

Y31

Fig. 5.4: The Logical Unit of ALU.

A single bit Logical unit is shown in Fig. 5.5. A specific logical operation is selected by
using selection lines Si and So.

Ai
Bi

Fig. 5.5: A Single Bit Logical Unit for Logical Unit of ALU.

Table 5.5: Functional Table of the Logical Unit.

5.2.4 Shifter Unit

A Shifter Unit of the ALU is responsible for bidirectional logical and cyclic or circular
shift operations. It is enabled by selecting selection line S3 = 1 and S2 = 1 in a control unit.
As a result, the power supply Vdd of shifter will be HIGH and shifting operation will

occur. A simple shifter unit is shown in Fig. 5.5. A functional table of shifter unit is
shown in Table 5.6.

(40)

Operation Select
Si 	So Operation

Lo g ical Left Shift
Circular Left Shift

0 	Logical Right Shift
1
	

Circular Right Shift

Table 5.6: Functional Table of the Shifter Unit.

A Logical Shift operation refers to shifting of operands bit in particular direction while a

shifted position '0' bit is inserted. In a logical left shift, the bits that are shifted out are

discarded and zeros are shifted in (on either end). While in the logical right shift, insert

bits with value 0 instead of copies of the sign bit. So, the logical shift is suitable for

unsigned binary numbers only. A Logical Shift operation is shown below.

Left Shift

7 6 5 4 3 2 1 0
X6 X5 X4 X3 X2 X1 X0 0

Right Shift

7 6 5 4 3 2 1 0
0 X7 X6 X5 X4 X3 X2 X1

A Circular Shift operation is also referred as a bit rotation. This operation is useful where

it is necessary to retain all the existing bits. It is frequently used in digital cryptography

and error control coding. In this shifting, at a shifted position instead of inserting '0' bit, a

discarded bit is inserted. It can be easily explained by the following example.

Left Shift

7 6 5 4 3 2 1 0
X6 X5 X4 X3 X2 X1 X0 X7

Right Shift

7 6 5 4 3 2 1 0
X0 X7 X6 X5 X4 X3 X2 X1

A31 _4,30 	 Al A0
III 	III

Vii
gnd
Left

SHIFTER eirL eft

Shy
S114

2 X 4
DECODER

5113 — 51
Sh2 Right
5111 Ci rRight 	

III 	
Y31 130

Fig. 5.5: A Shifter Unit of ALU.

(41)

700

600

— 500
0

1r, 400
E

300

200

100

0

Power
Consumption
(in p.W) CMOS

Power
Consumption
(in p.W) FSL

Ripple Carry
	

Kogge-Stone 	Han-Carlson
Adder(RCA)
	

Adder 	Adder

5.3 Performance and Results

The following results are reported during simulation for different operations.

(A) Arithmetic Operation

The power consumption and delay in arithmetic operation for different adders using static

CMOS logic and FSL are calculated and tabulated in Table 5.7.

Table 5.7: Summary of simulation results for arithmetic operation in designed ALU.

Adder Architecture
Power Consumption

(in RW)
Delay
(in ps)

CMOS FSL CMOS FSL

Ripple Carry Adder(RCA) 510.7 555.1 550.3 480.2

Kogge-Stone Adder 612.05 658.57 410.7 349.5

Han-Carlson Adder 590.6 638.44 505.2 436.4

A comparison of the power consumption in various ALU based on different adder

architecture during arithmetic operation among FSL and static CMOS logics is shown in

Fig. 5.9.

Fig 5.9: Comparisons of power consumption in arithmetic operations in
static CMOS and FSL logics.

t4z)

'7 400 a.

300
co
o 200

600

500

100

Delay (in ps)
CM OS

Delay (in ps)
FSL

Han-Carlson
Adder

Ripple Carry
Adder(RCA)

Kogge-Stone
Adder

A comparison of the delay in various ALU based on different adder architecture during
arithmetic operation among FSL and static CMOS logics is shown in Fig. 5.10.

Fig 5.10: Comparisons of delay in arithmetic operations in static CMOS and FSL logics.

From the above results, we can conclude that Kogge-Stone adder architecture gives
highest performance in terms of speed in both CMOS and FSL Logics. In terms of power
ripple carry adder consumes least among other architecture.

(B) Logical operation

The power consumption and delay in logical operation in ALU using static CMOS logic
and FSL are calculated and tabulated in Table 5.8.

Table 5.8: Summary of simulation results for Logical operation in designed ALU.

Logical Operation
Power Consumption

(in p,W)
Delay
(in ps)

CMOS FSL CMOS FSL
AND 434.3 461.2 340.7 284.4
OR 471.9 495.9 397.6 339.3

XOR 504.8 539.3 403 357.1

t43)

P
ow

er
 C

on
su

m
pt

io
n

 (
 in

 p
W

600

500

400

300

200

100

0

Power
Consumption
(in RW) CMOS

Power
Consumption
(in pW) FSL

AND
	

OR
	

XOR

450

400

350

300

250

200

150

100

50

0

Delay (in ps)
CMOS

Delay (in ps)
FSL

AND
	

OR
	

XOR

Fig 5.11: Comparisons of power consumption in logical operations in
static CMOS and FSL logics.

A comparison of the power consumption and delay in logical operation among FSL and
static CMOS logics is shown in Fig. 5.11 and Fig. 5.12 respectively.

Fig 5.12: Comparisons of delay in logical operations in static CMOS and FSL logics.

From the above results, we can conclude that in FSL Logic about 14 % delay reduces in
compared to delay in CMOS logic. But about 6% increases in power consumption is
found in FSL.

(449

300

Cc

200

100

0

600

500

400

Power
Consumption
(in i.t.W) CMOS

Power
Consumption
(in 1..tW) FSL E

to

0

Logical Left
Shift

Logical Right
Shift

Circular Left
Shift

Circular Right
Shift

(C) Shifter Operation

The power consumption and delay in various shifting operation for different shifters using
static CMOS logic and FSL are calculated and tabulated in Table 5.9.

Table 5.9: Summary of simulation results for shifting operation in designed ALU.

Shifting Operation Shifter
Architecture

Power Consumption
(in liW)

Delay
(in ps)

CMOS FSL CMOS FSL

Logical Left Shift
Array 229.4 245.7 390.7 381.3

Logarithmic 237.3 252 360.7 358.2

Logical Right Shift Array 268.4 288.5 385.9 383.1
Logarithmic 300.4 314.9 365.6 361.7

Circular Left Shift Array 415.9 453.3 510.3 507.4
Logarithmic 436.3 478.2 495.6 483.5

Circular Right Shift Array 483.6 530 515.2 509.5
Logarithmic 512.7 562.9 501.1 497.4

A comparison of the power consumption and delay in various shifting operation for
different shifters among FSL and static CMOS logics is shown in Fig. 5.13 and Fig. 5.14
respectively.

Fig 5.13: Comparisons of delay in shifting operations in static CMOS and FSL logics.

145)

Logical Left Logical Right Circular Left Circular Right
Shift Shift Shift Shift

Delay (in ps)
CMOS

Delay (in ps)
FSL

Fig 5.14: Comparisons of power consumption in shifting operations in
static CMOS and FSL logics.

From the above results, we can conclude that FSL and CMOS lo gics both show nearly
equal performance in terms of speed. CMOS logic consumes less power in compared to
FSL logic.

C46)

Chapter 6

Conclusion

6.1 Conclusion

In this thesis, a 32-Bit FSL based Arithmetic Logic Unit has been designed. The

advantage of using the scheme of Feedback Switch Logic has been compared to that of

the existing static CMOS technology. The primary focus was on the point of exploring

and evaluating the performance of FSL in a High Speed Low power design environment.

In Chapter 2, a brief discussion on the need of high speed low power designs in building

the architecture of an ALU has been presented. The main operation and functioning of

FSL was explained in this chapter. Simulations were performed and comparisons were

drawn with static CMOS logic for basic gates which perform the logical operation of the

ALU.

Chapter 3 dealt with the design of adder circuits. Adders of different kinds based on

architecture were studied and three of them were implemented in FSL and static CMOS

logics. Their performances on the basis of power and delay were compared.

In Chapter 4, three types of shifter designs have been discussed. Also, a cyclic shift

operation was introduced in Array and Logarithmic shifters which find application in the

field of error control coding. The designs were developed in FSL and static CMOS logic

structures and the results were compared.

Finally, in Chapter 5, the design of the Arithmetic Logic Unit which combines the Adder

and Shifter circuits was presented. Also, a logical unit was designed which consisted of

AND, OR, XOR and NOT operations. Once again, the design was developed in both FSL

and static CMOS logics. The overall performance analysis was done for the combined

arithmetic, logical and shifting operations. Kogge-Stone adder based ALU was found to

be a suitable candidate for high speed operation. For low power operation, Ripple-carry

adder based ALU was found to be more suitable. This was the same for both logic styles.

The performance of shifter units for both logics was found to be almost similar in terms

(47)

of both power and delay. For the logical unit, FSL showed a clear advantage in terms of
speed with a slight increase in power consumption.

A final comparison between the logic styles is drawn, it has been observed that there was
a 14% decrease in delay when we used FSL at the cost of 8% increase in power
consumption when compared to static CMOS logic. We can thus recommend the use of
Kogge-Stone based FSL adder and FSL based logical unit for achieving high speed, and
static CMOS based shifter for maintaining low power. This completes our aim of
designing a 32-bit High speed Low power Arithmetic Logic Unit.

6.2 Future Scope

An area minimization is one of the challenging tasks in design of ALUs. Further work

could be extended to determine the area and make the layout more area efficient. We can
further work to determine interconnect capacitances and to reduce them. Realizing ALUs

with some other high speed low power logic can be one of the future works.

Finally, Future work could also include extending the current design for more number of
input bits to increase the functionality of ALU.

(48)

References

[1] Swaroop Ghosh and Kaushik Roy, "Exploring high-speed low-power hybrid
arithmetic units at scaled supply and adaptive clock-stretching," Asia and South
Pacific Design Automation Conference, 2008 (ASPDAC 2008), pp.635-640, 21-24
March 2008.

[2] C.J. Akl and M.A. Bayoumi, "Feedback-Switch Logic (FSL): A High-Speed Low-
Power Differential Dynamic-Like Static CMOS Circuit Family," 9th International
Symposium on Quality Electronic Design, 2008(ISQED 2008), pp.385-390, 17-19
March 2008.

[3] A. P. Chandrakasan, S. Sheng and R. W. Brodersen, " Low-power CMOS digital
design," IEEE J. Solid-State Circuits, vol.27, no.4, pp.473-484, Apr 1992.

[4] V. Friedman and S. Liu," Dynamic logic CMOS circuits," IEEE J. Solid-State
Circuits, vol.19, no.2, pp. 263-266, April 1984.

[5] Jam M. Rabaey, Anantha Chandrakasan and Borivoje Nikolic, Digital Integrated
Circuits-A Design Perspective, 2nd ed., Prentice Hall of India Pvt Ltd, New Delhi,
2006.

[6] F. Murabayashi, T. Yamauchi, H. Yamada, T. Nishiyama, K. Shimamura, S.
Tanaka, T. Hotta, T. Shimizu and H. Sawamoto, " 2.5 V CMOS circuit techniques
for a 200 MHz superscalar RISC processor, "IEEE J. Solid-State Circuits, vol.31,
no.7, pp.972-980, Jul 1996.

[7] K.M. Chu and D.L.Pulfrey, "A comparison of CMOS circuit techniques:
differential cascade voltage switch logic versus conventional logic," IEEE J. Solid
State Circuits, vol. 22, no.4, pp.528-532, Aug.1987.

[8] Ahmed M. Shams, Tarek K. Darwish, and Magdy A. Bayourni, "Performance
Analysis of Low-Power 1-Bit CMOS Full Adder Cells" IEEE Trans. Very Large
Scale Integration (VLSI) system, vol. 10, no. 1, pp 20-29, February 2002.

[9] A. Weinberger and J. L. Smith, "A logic for high-speed addition," National
Bureau of Standards Circular, vol. 591, pp. 3-12, 1958

[10] R. W. Doran," Variants of an improved carry look-ahead adder, "IEEE Trans. on
Computers, vol. 37, no. 9, pp. 1110-1113, Sep.1988.

(49)

[11] Neil H E Weste and Kamran Eshraghian, Principles of CMOS VLSI Design A
systems Perspective, 2' Edition, Addison-Wesley Publication 1992.

[12] Massimo Alioto and Gaetano Palumbo, "Analysis and Comparison on Full Adder
Block in Submicron Technology" IEEE Trans. Very Large Scale Integration
(VLSI) system, vol. 10, no. 6, pp 806-823, December 2002.

[13] John P. Uyemurya, "Introduction to VLSI Circuits and Systems", John Wiley &
Son Publication, 2002.

[14] Behrooz Parhami, "Computer Arithmetic: Algorithms and Hardware Design",
Oxford University Press, Oxford, 1999.

[15] Y. Choi and Jr. E. E. Swartzlander, "Parallel prefix adder design with matrix
representation," 17th IEEE Symposium on Computer Arithmetic, 2005 (ARITH-17
2005), pp. 90-98, 27-29 June 2005.

[16] P. M. Kogge and H. S. Stone. "A parallel algorithm for the efficient solution of a
general class of recurrence equations". IEEE Trans. on Computers, vol. 22,
pp.786-793, Aug. 1973.

[17] R. P. Brent and H. T. Kung, "A regular layout for parallel adders," IEEE Trans.
on Computers, vol. 31, no.3, pp.260-264, March 1982.

[18] T. Han and D. A. Carlson. "Fast area-efficient VLSI adders." Proc. 8th IEEE
Symposium on Computer Arithmetic, pages 49-56, May 1987.

[19] Haikun Zhu, Yi Zhu, Chung-Kuan Cheng and D.M. Harris, "An interconnect-
centric approach to cyclic shifter design using fanout splitting and cell order
optimization," Asia and South Pacific Design Automation Conference, 2007. ASP-
DAC '07., pp.616-621, 23-26 Jan. 2007.

[20] K.P. Acken, M.J. Irwin and R.M. Owens, "Power comparisons for barrel
shifters," International Symposium on Low Power Electronics and Design, 1996,
pp.209-212, 12-14 Aug 1996

[21] R. Ramadoss, "A new breed of power-aware hybrid shifters," IEEE
International Conference on SOC, 2005. pp.143-146, 19-23 Sept. 2005

[22] Matthew R. Pillmeier, Michael J. Schulte and E. George Walters III, "Design
alternatives for barrel shifters", Advanced Signal Processing Algorithms,
Architectures, and Implementations XII, Franklin T. Proceedings of the SPIE,
Volume 4791, pp. 436-447 (2002).
available at http://wwvv.egwalters.com/publications/c2002_SPIE2.pdf

(50)

[23] Chandra Srinivasan, "Arithmetic Logic Unit (ALU) Design using Reconfigurable
CMOS Logic", M.S. thesis, Louisiana State University, December 2003.

[24] S. K. Mathew, M.A. Anders, B. Bloechel, Nguyen Trang, R. K. Krishnamurthy,
and S. 13orkar, "A 4-GHz 300-mW 64-bit integer execution ALU with dual supply
voltages in 90-nm CMOS," IEEE I Solid-State Circuits, vol.40, no.1, pp. 44-51,
Jan. 2005.

(51)

	Title

	Abstract

	
Chapter 1
	Chapter 2

	Chapter 3

	Chapter 4

	Chapter 5
	Chapter 6

	References

