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ABSTRACT 

Sensitivity and Robustness is the primary issue while designing the controller for non-

linear systems. One of the performance objectives for controller design is to keep the 

error between the controlled output and the set-point as small as possible. The control of 

many non-linear, inherently unstable systems using conventional methods is both 

difficult to design and marginally satisfactory in implementation. The introduction of 

optimization techniques in control engineering that makes use of evolutionary 

computation and an implicit imprecision is successful in counteracting these limitations. 

The field of computational intelligence has incorporated to such systems with an 

objective to achieve higher optimality and satisfactory performance 

The main aim of this work is to design and implement biologically inspired optimization 

algorithms based control system. The performance of Particle Swarm Optimization 

(PSO), Genetic Algorithm (GA), and Bacterial Foraging (BF) Optimization has been 

improved using hybridization. The novel algorithms developed are hybrid BF-PSO or 

adaptive BF, Genetically Bacterial Swarm Optimization (GBS0). The algorithms are first 

tested on basic mathematical functions and then implemented on various control 

engineering problems: Inverted Pendulum system, Ball and Beam System and trajectory 

tracking in robot manipulators. The proposed algorithms also played a vital role in 

eliminating the curse of dimensionality to an acceptable value. 

The knowledge base of a Fuzzy Logic Controller (FLC) encapsulates expert knowledge 

and consists of the data base (membership functions) and rule-base of the controller. 

Optimization of both of these knowledge base components is critical to the performance 

of the controller and has traditionally been achieved through a process of trial and error 

and certain classical optimization techniques. In this work, the superiority of novel hybrid 

algorithms is demonstrated through offline tuning of rule base and scaling factor over the 

experts' design of rule base and design using classical optimization techniques. 
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Light weight flexible arms will most likely constitute the next generation robots due to 

their large payload carrying capacities at high speeds and less power demand. Control 

problem of robots with flexible members is more complex compared to rigid robots due 

to vibrations during the motion. Here the trajectory control of two link rigid-flexible 

manipulator is presented in two phases. In first phase, only the scaling factors of hybrid 

fuzzy precompensated PD control are optimized using the optimization techniques. While 

in second phase, the rule base of fuzzy precompensator is optimized using characteristic 

parameters keeping the PD controller parameter constant. 
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1. INTRODUCTION 

A major thrust in the algorithmic development is the design of algorithmic models 

to solve increasingly complex problems. Enormous successes have been achieved 

through the modeling of biological and natural intelligence, resulting in so-called 

"intelligent systems" [35]. These intelligent algorithms include artificial neural networks, 

evolutionary computation, swarm intelligence, artificial immune systems, and fuzzy 

systems. Together with logic, deductive reasoning, expert systems, case-based reasoning 

and symbolic machine learning systems, these intelligent algorithms form part of the field 

of Computational Intelligence (CI). 

1.1. Evolutionary Computation 
Evolutionary Computation (EC) has its objective to mimic processes from natural 

evolution, where the main concept is survival of the fittest: the weak must die. In natural 

evolution, survival is achieved through reproduction. Offspring, reproduced from two 

parents (sometimes more than two), contain genetic material of both (or all) parents -

hopefully the best characteristics of each parent. Those individuals that inherit bad 

characteristics are weak and lose the battle to survive. This is nicely illustrated in some 

bird species where one hatchling manages to get more food, gets stronger, and at the end 

kicks out all its siblings from the nest to die. 

Evolutionary algorithms use a population of individuals, where an individual is 

referred to as a chromosome. A chromosome defines the characteristics of individuals in 

the population. Each characteristic is referred to as a gene. The value of a gene is referred 

to as an allele. For each generation, individuals compete to reproduce offspring. Those 

individuals with the best survival capabilities have the best chance to reproduce. 

Offspring are generated by combining parts of the parents, a process referred to as 

crossover. Each individual in the population can also undergo mutation which alters some 

of the allele of the chromosome. The survival strength of an individual is measured using 

a fitness function which reflects the objective and constraints of the problem to be solved. 

After each generation, individuals may undergo culling, or individuals may survive to the 

next generation (referred to as elitism). Additionally, behavioral characteristics (as 
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encapsulated in phenotypes) can be used to influence the evolutionary process in two 

ways: phenotypes may influence genetic changes, and/or behavioral characteristics 

evolve separately. 

Evolutionary computation has been used successfully in real-world applications, 

for example, data mining, combinatorial optimization, fault diagnosis, classification, 

clustering, scheduling, and time series approximation. 

1.2. Swarm Intelligence 
Swarm intelligence (SI) originated from the study of colonies, or swarms of social 

organisms. Studies of the social behavior of organisms (individuals) in swarms prompted 

the design of very efficient optimization and clustering algorithms. For example, 

simulation studies of the graceful, but unpredictable, choreography of bird flocks led to 

the design of the particle swarm optimization algorithm, and studies of the foraging 

behavior of E. coli bacteria resulted in bacterial foraging optimization algorithms. 

Particle swarm optimization (PSO) is a stochastic optimization approach, modeled 

on the social behavior of bird flocks. PSO is a population-based search procedure where 

the individuals, referred to as particles, are grouped into a swarm. Each particle in the 

swarm represents a candidate solution to the optimization problem. In a PSO system, 

each particle is "flown" through the multidimensional search space, adjusting its position 

in search space according to its own experience and that of neighboring particles. A 

particle therefore makes use of the best position encountered by it and the best position of 

its neighbors to position itself toward an optimum solution. The effect is that particles 

"fly" toward an optimum, while still searching a wide area around the current best 

solution. The performance of each particle (i.e. the "closeness" of a particle to the global 

minimum) is measured according to a predefined fitness function which is related to the 

problem being solved. Applications of PSO include function approximation, clustering, 

optimization of mechanical structures, and solving systems of equations. 

Studies of bacterial foraging have contributed in abundance to the set of 

intelligent algorithms. The modeling of running, tumbling, and swimming by bacteria in 

their search for the shortest paths to food sources resulted in the development of shortest 

path optimization algorithms. Other applications of bacterial foraging optimization 
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include routing optimization in telecommunication networks, graph coloring, scheduling 

and solving the quadratic assignment problem. 

1.3. Fuzzy Systems 

Traditional set theory requires elements to be either part of a set or not. Similarly, 

binary-valued logic requires the value of parameters to be either 0 or 1, with similar 

constraints on the outcome of an inference process. Human reasoning is, however, almost 

always not this exact. The observations and reasoning usually include a measure of 

uncertainty. 

Fuzzy sets and fuzzy logic allow what is referred to as approximate reasoning. 

With fuzzy sets, an element belongs to a set to a certain degree of certainty. Fuzzy logic 

allows reasoning with these uncertain facts to infer new facts. In a sense, fuzzy sets and 

logic allow the modeling of common sense. 

The uncertainty in fuzzy systems is referred to as nonstatistical uncertainty, and 

should not be confused with statistical uncertainty. Statistical uncertainty is based on the 

laws of probability, whereas nonstatistical uncertainty is based on vagueness, imprecision 

and/or ambiguity. Statistical uncertainty is resolved through observations. For example. 

when a coin is tossed we are certain what the outcome is, while before tossing the coin, 

we know that the probability of each outcome is 50%. Nonstatistical uncertainty, or 

fuzziness, is an inherent property of a system and cannot be altered or resolved by 

observations. 

Fuzzy systems have been applied successfully to control systems, gear 

transmission and braking systems in vehicles, controlling lifts, home appliances, 

controlling traffic signals, and many others. 

1.4. Problem Statement 

In light of the discussion, the prime objectives of the research work will focus on 

the developing simple but commercially attractive and viable methods for the purpose of 

designing optimal control systems. The objectives of the thesis can be summarized as 

follows: 



1. Develop particular Evolutionary Algorithms and Swarm Intelligence Techniques 

that can enable automation to provide optimal control system. 

2. Develop a novel approach using hybridization of basic optimization techniques by 

which their performance can be enhanced in terms of convergence of fitness 

function in less generation. 

3. Implement the developed hybrid algorithms over various control engineering 

problems, for example, Inverted Pendulum, two link rigid flexible robot 

manipulator, ball and beam system. 

4. Provide a comparison of the developed hybrid algorithms adopted to achieve the 

optimal control. 

1.5. Literature Review 
The era of evolutionary computation started with genetic algorithms in the past 

three decades. Amounts of applications have benefited from the utilization of GA [ 1 ]. 

Potter and De Jong [2] have demonstrated the use of co-operative co-evaluation GA in 

multivariable functional optimization. Breeder genetic algorithm (BGA) [3] is first 

introduced by Muhlenbein et al. The major difference lies in the method of selection in 

comparison to simple GA. A typical task of GA is to find the best values of a predefined 

set of free parameters associated with either a process model or a control vector. The GA 

uses the basic reproduction operators such as crossover and mutation to produce the 

genetic composition of a population. Efforts are being made in the enhancement of 

conventional algorithm [4-7]. GA with neural network and fuzzy control [8] has also 

been used extensively to optimize nonlinear and multivariable systems. In the past, 

researches have been carried out in using hybrid genetic algorithm approaches for 

optimization problems. Buczak and Uhrig proposed a novel hierarchal fuzzy-genetic [9] 

information fusion technique. Constraint handling is one of the major concern for solving 

the optimization problems using GA. Chootinan and Chen proposed a gradient 

information [10], derived from the constraint set, to systematically repair infeasible 

solutions. 

Though the GA methods have been successful to solve complex optimization 

problems, recent search has identified some deficiencies in GA performance [11]. This 
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degradation in efficiency is apparent in applications with highly epistatic objective 

functions (i.e. where the parameters being optimized are highly correlated), the genetic 

operators alone cannot ensure better fitness of offspring because chromosomes in the 

population have similar structure and their average fitness are high toward the end of 

evolutionary process. Researches are being done to increase the efficiency of GA by 

hybridization [12]. Yang et al [13] proposes a hybrid immigrants scheme that combines 

the concept of elitism, dualism and random immigrants to address dynamic optimization 

problems. 

Particle Swarm Optimization (PSO) was originally introduced by J. Kennedy et al 

in 1995, which is an evolutionary algorithm based on the swarm intelligence [14-16], and 

motivated from the simulation of social behavior. The PSO technique can generate a 

high-quality solution within shorter calculation time and stable convergence 

characteristic than other stochastic methods. Many researchers are working in the 

direction of improving the search phenomena of PSO technique. A novel PSO algorithm 

based on immunity-clonal strategies, called clonal particle swarm optimization (CPSO) 

[17] is proposed by Y. Tan et al with applications and comparison analysis with standard 

PSO. Teng-Bo Chen modifies the classical PSO technique in four phases [18]: first, a 

contractive factor is introduced to the position update equation, and the particles are 

limited in search region. A new strategy for updating velocity is then adopted, in which 

the velocity is weakened linearly. Thirdly, two modified PSO algorithms are intersected. 

Finally, adding an item of integral control in the modified algorithm improves its global 

search ability. The particle swarm optimizer is also used for solving constrained 

optimization problems [19] which adopt a very small population size. PSO is hybridized 

with differential evolution [20] and GA [21-23] to increase the effectiveness in finding 

the optimal solution. 

Natural selection tends to eliminate animals with poor foraging strategies through 

methods for locating, handling, and ingesting food and favors the propagation of genes of 

those animals that have successful foraging strategies, since they are more likely to obtain 

reproductive success [24, 25]. After many generations, poor foraging strategies are either 

eliminated or shaped into good ones. Since a foraging organism takes actions to 

maximize the energy utilized per unit time spent foraging, considering constraints 
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presented by its own physiology (e.g., sensing and cognitive capabilities) and 

environment (e.g., density of prey, risks from predators, physical characteristics of the 

search area). It is essentially this idea that could be applied to complex optimization 

problems. In 2007, Kim et al. proposed a hybrid approach involving GA and BF for 

function optimization [26, 27]. PSO-BF [28] hybridized algorithm is discussed in Arijit et 

al. work where the mutation is added using PSO in the classical BF optimization. 

1.6 	Organization of the thesis 

The report has been organized into seven chapters. Chapter 1 gives an 

impression of the subject, basics, literature survey and objective of the study. Chapter 

2 briefly discussed the basic optimization techniques. Chapter 3 describes algorithms 

developed using hybridization of basic optimization techniques. Chapter 4 contains the 

introduction of fuzzy logic systems and its optimization. Chapter 5 gives an overview 

of the applications used. Chapter 6 presents the simulation results for controller 

designed using hybridized algorithms for the applications. Chapter 7 presents the 

conclusion of the study and suggestions are given for further study of this subject. 
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string position based on the mutation probability. An example of the operator 

is shown in Table-2.1.3. 

Table-2.1.2 An example of the crossover of GA's 

Old Chromosome Fitness value New Chromosome 

[101010] 

S 	t 
[010101] 

[110110] 

[011011] 

0.3 

0.5 

0.1 

0.9 

[111011] 

[000100] 

Table-2.1.3 An example of the mutation of GA's 

Old Chromosome Fitness value New Chromosome 

[101010] 0.3 

[010101] 0.5 

[110110] 0.1 [110011] 

11 
0 1 

5. Elite Method: Due to random process, GA's could loss the best chromosome in a 

population, so the Elite method is adopted. The best individual in each generation is 

selected without the three basic operations, and make it as a member of the new 

generation. Until the other better string is found in the new population, the elite string is 

superseded. Thus the superior individual in each population is always preserved. So the 

fitness of the generation is gradually increased generation to generation. 

6. Reinforced Search Method: As above, the individual with higher fitness is 

selected to copy to a new population. On the contrary, inferior string can be selected to 

operate. But it has some differences from the Elite method. The worst individual should 

be mutated with higher mutation rate. We will select the N inferior strings to mutate but 

the size of N should be small enough. This method has some advantages: 1) using the 

higher mutation rate makes the search space widely, 2) the probability in searching the 

global optimum is higher, 3) the method can avoid the population rarefied. Therefore, it 
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can avoid that the solutions premature convergence to form a wrong local-optimum. The 

full search flowchart is shown in Figure-2.1.1. All elements in a population will be 

divided into three groups. The left path in Figure-2.1.1 implements the Elite method. The 

middle ones achieve the Reinforced search method, and the right executes simple GA's 

with three basic operations. 

Generate the initial 
population, Gen = 0 

Calculate the fitness of each 
individual 

Reproduction 

Hole the best chromosome 

Generate the new population 
Gen = Gen + 

End 

Higher mutated rate 
mutation 

Crossover 

Low mutated rate 
mutation 

Figure-2.1.1 Flowchart of genetic algorithm 
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a random term, with separate random numbers being generated for acceleration toward 

pbest and gbest locations. 

For example, the jth particle is represented as x j  = ()cid, x j;2, 	x j, g ) in the g- 

dimensional space. The best previous position of the jth particle is recorded and 

represented as pbestj  = (pbestp, pbestj,2, 	pbestj). The index of the best particle among 

all of the particles in the group is represented by the gbestg. The rate of the position 

change (velocity) for particle j is represented as v.;  = (vi,/, v j,2,..., vi , g ). the modified 

velocity and position of each particle can be calculated using the current velocity and the 

distance from pbestig  to gbesti,g  as shown in the following formulas: 

v" )  = w -v(1)g  +c1  * rand()* (pbest Ig  — x(I)  )+ c 2  * rand()* (gbest g  — 
/

) ) j 	1,g  

X = X ± V 
(r+1) 	(t) 	(r+1) 
J,g 	J , g 	J,K 

= 1, 2, ..., n 

g = 1,2, ...,m 

where 

n 	number of particle in'a group; 

m 	number of members in a particle; 

t 	 pointer of iterations (generations); 

v(0 	velocity of particle j at iteration t, V7" < vY,g) 	; 

w 	inertia weight factor; 

CI, C2 	 acceleration constant; 

rand() 	random number 0 and 1; 

x(
`g current position of particle/ at iteration t; 

pbest 	pbest of particle/.  

gbest 	gbest of the group. 

(2.2.1) 

(2.2.2) 

In the above procedures, the parameter V"' determined the resolution, or fitness, with 

which regions be searched between the present position and the target position. If rax is 

too high, particles might fly past good solutions. If Jini' is too small, particles may not 
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explore sufficiently beyond local solutions. In many experiences with PSO, rax  was 
often set at 10-20% of the dynamic range of the variable on each dimension. 

The constants c1 and c2  represent the weighting of the stochastic acceleration 

terms that pull each particle toward pbest and gbest positions. Low values allow particles 

to roam far from the target regions before being tugged back. On the other hand, high 

values result in abrupt movement toward, or past, target regions. Hence, the acceleration 

constants ci and c2 were often set to be 2.0 according to past experiences. 

Suitable selection of inertia weight w in (eq no. 2.2.3) provides a balance between 

global and local explorations, thus requiring less iteration on average to find a sufficiently 

optimal solution. As originally developed, w often decreases linearly from about 0.9 to 

0.4 during a run. In. general, the inertia weight w is set according to the following 

equation: 

w 	w  max  w  nil" x iterwmax 	 itermax 	 (2.2.3) 

Where iter' is the maximum number of iterations (generations), and iter is the current 

number of iterations. The full search flowchart is shown in Figure-2.2.1 

2.3. Bacterial Foraging 

Bacterial foraging was formally introduced in 2002 by Kevin M. Passino in [24]. 

The BF is a stochastic search and optimization technique based on the foraging habits of 

Escherichia coli, more commonly known as E. coli, a bacterium commonly found in the 

gut of human beings. A fundamental part of the BF is the movement of the bacterium 

termed as chemotaxis. The chemotactic motion exhibited alternately by the E. coli, whilst 

searching for better forage, is of two distinct types: (1) tumble and (2) runs (swims). The 

chemotactic motion of E. coli is modeled within the BF algorithm according to the 

possible mediums the bacteria encounters and its response within such mediums. This is 

summarized as follows: 

1. Neutral substance medium: Bacterium tumbles and runs alternately 
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2. Noxious substance medium: Bacterium tumbles more than it swims as it attempts 

to get out of the noxious substance (climb down the noxious substance gradient). 

It essentially seeks favorable conditions. 

3. Nutrient substance medium: Bacterium swims more than it tumbles while it 

searches for even more favorable nutrient mediums (up the nutritious substance 

gradient). 

The implementation of the BF optimization algorithm is summarized in Figure-2.3.1. The 

highlighted stages — initialization, chemotaxis, swarming, reproduction and 

elimination/dispersal are described in the following sections. 

2.3.1 Components of bacterial foraging 

1. Initialization: At the start of BF algorithm, all the parameters required for its 

implementation are specified. These include the number of bacteria within the 

population, the positions of each bacterium within the sample space, the number of 

chemotactic steps taken during each bacterium lifetime, the number of reproduction and 

elimination/dispersal events. 

2. Chemotaxis: E. coli has the proclivity to convene at nutrient-rich areas by an 

activity called chemotaxis. They achieve chemotaxis in two different ways: Each 

bacterium can either 'run', which is movement in a specified direction, or it can 'tumble', 

which is a movement in a random direction. In order to search for the positions with best 

nutrient concentrations, each bacterium takes a specified number of chemotactic steps. At 

the initialization of the algorithm or at the beginning of each chemotactic step, tumble or 

run/swim within the chemotactic loop, each bacterium has, what is referred to as, its 

`initial' position. Nutrient concentration function is used to indicate a progressive search 

procedure. 

The subsequent nutrient concentration values are determined each time a 

bacterium tumbles or run/swim from its initial position. In the chemotactic step, the 

tumble must always occur before the run/swim. After a tumble, which is a move in a 

random direction to a 'new' position, the nutrient concentration is evaluated. The 

comparison between 'new' nutrient concentration values with 'initial' nutrient 
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Velocity updating 

fitness value 
is better than 

pbest 

fitness value 
is better than 

gbest 

Initialization of pbest 
and gbest 

Initialization: the 
velocity and place of 

particles 

Figure-2.2.1 Flowchart of particle swarm optimization 
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Randomly Generate Initial Population of 
Bacteria & their Positions, 01(hk,l) on 
Domain of the Optimization problem 

k =N„ 

L.../JP°d  

if 1 < Ned. 1 = 1 + 1 

Elimination-dispersal - With probability Pea,  eliminate and disperse 
each bacterium to random positions on the optimization domain 

Iff(i,/±1,k,l) > 
or m = N,& j < Ne  

i= + I 

V 

IfJ(ij+.1,k,1) < Jim  
or m < N,& rn rn +1 

4. Swim in Random Direction. 
Calculate new J(i,j+1,k,1). 

Com pare with Jtast 

j = N, 

Reproduction - Sort Bacterium health Jhealth in ascending 
order. Bacteria with highest Jheahh die. Bacteria with lowest 

Jhea tth split, with the new copies replacing dead bacteria 

if k < N,„, k k 1 

Bacterial Swarming 
2. Add Cell-to-Cell Attractant 

Effect 

3. Tumble in Random Direction. 
Calculate new J(i,j+1,k,1). Let 

this equal last 

Perform Chemotaxis for Bacterium 
1. Calculate the Nutrient Concentration, J(i,j,k,l) 

of each bacterium at Current Positions 

lir  1 = Ned 

End Program with the 
best result as output 

Figure-2.3.1 Flowchart of the Bacterial Foraging Optimization Algorithm 
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concentration value determines whether a swim will follow subsequently. The smaller 

nutrient concentration value sets the reference point that subsequently follows, for 

example, say first run/swim. After the first swim occurs, a new bacterium position is 

obtained. The bacterial position, represented by 0, is given by eq-2.3.1. Within the 

equation, i represent the counter for each bacteria within the population; j represent the 

number of chemotactic steps that each bacteria has undertaken during its lifetime; k 

represent the counter for the reproduction steps while 1 is the indicator for the elimination 

and dispersal events that occurring. 

01 (j +1,k,1)---- 0' (j,k,1)+C(i)0(j) 	 (2.3.1) 

Where 0`(j,k,l) represents the position of the ith  bacteria at the jth  chemotactic step, the 

le reproductive step and the lth  elimination and dispersal step. C(i) is the size of the 

chemotactic step taken in a random direction by the igh  bacteria. 

3. 	Swarming: When cells of the E. coli are randomly distributed in a solution that 

has varying concentrations of nutrients and noxious substances randomly distributed 

within it, each bacterium would secrete attractants to signal other cells if it finds that it is 

swimming in areas with good nutrient concentration. This facilitates the convergence of 

cells of bacteria to form groups around areas in the solution with high nutrient 

concentration. This enhances the effectiveness of the search and foraging procedure. 

Also, when cells of bacteria experience noxious substances, each cell would 

secrete repellants to divert the search and foraging process away from the areas with 

noxious substances. This causes divergence of the bacteria cells, ensuring that they 

spread out to other areas, this improving the effectiveness of the search procedure. This 

behavior of the foraging of bacteria termed swarming has been modeled within the BF 

optimization algorithm. The mathematical expression for swarming can be represented as 

in eq-2.3.2. 
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J,(0,P(j,k,1))= 	 (j,k,1)) 

L[— d  attract exP(—  W  attract Ecom 
m=i 

+ X 	hrepellent exp.  
1=1 

W  repellent Ec 
m=i 

(2.3.2) 

J„(61,P(j,k,1)) is the cell-to-cell attraction/repulsion function value that is to be added 

to the nutrient concentration function, which is to be optimized. S is the total number of 

bacteria, p is the number of parameters to be optimized which are present in each 

bacterium, dattract and w attract represent the quantification of the depth and width of the 

repellent secreted by each bacterium. 

4. Reproduction: Reproduction occurs when every cell in the bacteria population 

has moved the specified number of chemotactic steps. It is necessary to cause all the 

bacteria within the population to converge at the bacteria population with the best 

nutrient concentration value. Reproduction is achieved in two stages: first stage 

essentially involves assigning a fitness value to each bacterium within the population. 

The fitness value determines which bacteria is fit enough to reproduce. Having achieved 

the fitness assignment, the bacteria are then ranked according to their fitness values. The 

bacterium with smaller nutrient concentration values are ranked higher than those with 

larger values. In order to reproduce, the one-half of the population of bacteria, ranked the 

least, is kicked off. The remaining half which has the better ranks is replicated — each 

surviving bacterium splits into two copies of itself The new population then serves as 

initial position for the next chemotactic process or the next elimination-dispersal event. 

5. Elimination and Dispersal: The process simply involves randomly killing off 

some of the poorly performing bacteria within the population. The need for this is simply 

to provide room for new members of the bacterium population that potentially are 

situated in areas ith higher nutrient concentration. The obvious effect of elimination is a 

reduction in the total bacterial population. In order to counter the reduction, a 

complimentary process termed Dispersal occurs. 
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The eliminated bacteria are randomly replaced by new ones, which are probably 

situated in different (and possibly better) locations than the previously existing members 

of the population. These new locations might be better because they may be situated 

closer to spaces with better nutrient concentration. 
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3. HYBRIDIZATION OF INTELLIGENT COMPUTATIONAL 
TECHNIQUES 

The description of basic techniques for intelligent computation has been 

highlighted in chapter 2. This chapter focuses on the hybridization of three basic 

algorithms employed for the optimal automated control. For several problems a simple 

optimization algorithm might be good enough to find the desired solution. As reported in 

the literature, there are several types of problems where a direct evolutionary algorithm 

could fail to obtain a convenient (optimal) solution. This clearly paves way to the need 

for hybridization of basic optimization algorithms. Some of the possible reasons for 

hybridization are as follows: 

1. To improve the performance of the evolutionary algorithm (example: speed of 

convergence) 

2. To improve the quality of the solutions obtained by the evolutionary algorithm 

3. To incorporate the evolutionary algorithm as part of a larger system. 

3.1. Hybrid Bacterial Foraging 
The Hybrid Bacteria Foraging (HBF) is an example of a hybrid evolutionary 

algorithm. Its name has been chosen for two reasons: 

1. it is formed from the combination of the GA and the BF 

2. it is largely similar in implementation to the BF. 

Similar hybrid evolutionary algorithms have been developed and used in [32], [33], [26] 

and [34] but the novelty of the developed algorithm lies especially in the uniqueness of 

the application it has been specifically developed for. The circumstance that led to the 

development of the HBF stemmed from the process of investigating ways to improve the 

effectiveness of the simple BF optimization algorithm (described in section 2.3) as an 

approach for the design of robust controllers for the electronic drive. In the formation of 

the HBF optimization algorithm, the aim was to combine specific desirable functions of 
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operator uses only the 'social' component and eliminates the 'cognitive' component as 

the local search in different regions of the search space is already taken care of by the 

chemotactic steps of the BF algorithm. 

Here the approach used is somewhat different from the original paper, instead of 

mutation step using PSO in the basic BF algorithm the search direction vector is made 

adaptive using PSO. The search vector is made constant in [28] and in this thesis, it gets 

changed after all the bacteria gets tumble and swim in the particular direction. This vector 

helps in early convergence of the fitness function as the direction vector is not constant; 

the individual knows how much it should move to reach the optimal solution. Basic 

velocity and position equation as described in section 2.2 are used to update the search 

vector. This combination of both BFO and PSO aims to make use of PSO ability to 

exchange social information and BFO ability in finding a new solution by elimination 

and dispersal. The (BFO-PSO) models bacterial Population Chemotaxis, swarming, 

reproduction, elimination and dispersal oriented by PSO, is shown in flowchart form as in 

Figure-3.2.1. (Initially, j = k = l = 0). 

Initialize parameters n, S, Nc, Ns, Nre, Ned, Ped, C(0(i = 1, 2... S), Delta, CI, C2, RI, R2. 

where, 

• n: Dimension of the search space, 

• S : The number of bacteria in the population, 

• Sr  : Half the total number of bacteria , 

• NS  : Maximum number of swim length, 

• : Chemotactic steps, 

• Nre  : The number of reproduction steps, 

• Ned :  Elimination and dispersal events, 

• Ped: Elimination and dispersal with probability, 

• c(i) : The step size taken in the random direction, 

• C1, C2 : PSO random parameter, 

• R1, R2: PSO random parameter. 
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Start 

Initialize the parameters 

(Tumble) 

Determine random direction and position 

Run one step and calculate 
J (4/4-1, k, l) 

Evaluate current 
position and local cost 

t  
Update position and 

coat function 

m<Ac 
And does the 

nutrient 

concentration 
increase 

i= + I 

(Select next bacterium) 

Calculate total fitness of each bacterium and sort in 

reverse 

Destroy the second half of the population and split the first half of the 
population 

Yes 

0 

Elimination and Dispersal 

Reset the step sizes 

0 

Did all bacteria 

tumble and swim 

i < S 

Evaluate Pgbest and Pgbest for each bacteria 

Evaluate the new direction for each bacteria 

Decrease the step sizes 

( Stop 

Figure-3.2.1. Flowchart of Hybrid Bacterial Foraging and Particle Swarm based 

Optimization 
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N  re, 	No. of reproduction steps 

N ed , 	No. of elimination-dispersal events 

Ped 	Elimination-dispersal with probability 

C(i), 	size of the step taken in the random direction specified by the tumble 

oi, 	Position vector of the i-th bacterium, in j-th chemotactic step, k-th 

reproduction 

[Step 2] Elimination-dispersal loop:1 = +1 . 

[Step 3] Reproduction loop: k = k +1. 

[Step 4] Chemotaxis loop: j = j +1. 

[substep a] 	For i = 1,2,...S, take a chemotactic step for bacterium i as follows. 

[substep b] Compute fitness function, J(i, j,k,l) 

[substep c] 	Let J = J(i, j, k, l) to save this value since we may find a better 

cost via a run 

[substep d] Tumble: generate a random vector A(i) E RP with each element 

A. (i),m =1,2,...,p, a random number on [-1,1] 

[substep e] 	Move: Let 0' (j + 1, k, l) = 0' (j,k,1)+ C(i) 	A(i)  
AT  (i)A(i) 

[substep f] 	Compute J(i, j +1,k,1), and then let 

J(i, j +1,k,1)= J(i, j +1,k,1)+ J 	(j +1,k ,1), P(j + 1,k ,1)) 

[substep g] Swim 

i) Let m=0 (counter for swim length) 

ii) While m < N S  (if have not climbed down too long) 

• Let m=m+1 

• If J(i, j +1,k,l) < Jraxi (if doing better) 

let J = J(i, j +1,k,l) and let 

0'(j +1,k,1)= 0' (j,k,1)+ C(i) 	A(i)  
VAT  (i)A(i) 
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[substep h] 

[substep 1] 

[substep j] 

[substep k] 

and use this 0' (j + 1, kJ) to compute the new 

J(i, j +1,k,l) as we did in [substep f] 

Pcurrent(i, j +1)= P(i,j +1) 

local 	+1 ) = Jtas, (i + 1) 

Pcurrent(il j +1 ) 	 j +1 ) • Else, 	 , let m = N c . This is the 
local (17' J.  + 	1  tart (i, + 1) 

end of while statement. 

Ranking and Select individuals from population using SUS. 

Recombine selected individuals using crossover operator. 

Mutate offsprings. 

Go to next bacterium (i,l) if i # S (i.e. go to [substep b] to process 

[substep 1] 

[substep m] 

the next bacterium) 

Evaluate the local best position ( P, ) ibest  

best position ( P 	) gbesi 

Evaluate the new direction for each bacteria 

for each bacteria and global 

V = co* V +C i * RI (Pthe,„ Pcurren1) C2 * R2 (Pgbesi 

A= V  

[Step 5] If j < Ne  , go to step 3. In this case, continue chemotaxis, since the life of 

bacteria is not over 

[Step 6] Reproduction: 

- 1),„„„, ) 

[substep a] 

[substep b] 

For the given k and 1, and for each i = 1,2,...,S, let 

Alc+1 
,health 	 j, k,1) 

J=1 

be the health of the bacteriumi (a measure of how many nutrients it 

got over its lifetime and how successful it was at avoiding noxious 

substances). Sort bacteria and chemotactic parameters C(i) in order 

of ascending cost health  (higher cost means lower health) 

The Sr  bacteria with the highest J health  values die and the other S,.  
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Evaluate current 
position and cost 
function for PSO 

operation  

Update position and 
cost function 

(Tumble) 
Determine random direction and position 

Run one step and calculate 
J(f,j+1,k, 1)  

m < N s  
And does the 

nutrient 
concentration 

increase 
i = + 1 

(Select next bacterium 
• 

Did all bacteria 
tumble and swim 

i < S 

Selection 

Crossover 

Mutation 

Evaluate local best and global best positions for 
each bacteria in PSO 

Evaluate the Delta for each bacteria using velocity 
equation in PSO  

Yes 

Start 

Initialize the parameters 

Yes 

Calculate total fitness of each bacterium and sort in 
reverse 

Destroy the second half of the population and split the first half of the 
population 

N 

Elimination and Dispersal 

No 

Stop 

Figure3.3.1. Flowchart of Hybrid Genetically-Bacterial Foraging converged by Particle swarm 
optimization 
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Bacteria with the best values split (and the copies that are made are 

placed at the same location as their parent). 

[Step 7] If k < Ire  , go to step 3. We have not reached the specified number of 

reproduction steps. So we start the next generation in the chemo-taxis loop. 

[Step 8] Elimination-dispersal: For i= 1,2,..., S , with probability Pa , eliminate and 

disperse each bacterium (this keeps the number of bacteria in the population 

constant). If / < Ned , then go to step 2; otherwise end. 

The flowchart depicting the step by step algorithm discussed above is shown in Figure-

3.3.1. 

32 



4. FUZZY LOGIC AND FUZZY CONTROL 

Conventional control system design depends upon the development of a 

mathematical description of the system's behavior. This usually involves assumptions 

being made in relation to the system dynamics and any non-linear behavior that may 

occur. In cases where assumptions in respect of non-linear behavior cannot be made, the 

need to describe mathematically, ever increasing complexity becomes difficult and 

perhaps infeasible. 

Fuzzy logic [36] is the application of logic to imprecision and has found 

application in control system design in the form of Fuzzy Logic Controllers (FLCs). 

Fuzzy logic controllers facilitate the application of human expert knowledge, gained 

through experience, intuition or experimentation, to a control problem. Such expert 

knowledge of a system's behavior and the necessary intervention required to adequately 

control that behavior is described using imprecise term known as "linguistic variables". 

The imprecision of linguistic variables reflects the nature of human observation and 

judgment of objects and events within our environment, and there use in FLCs thus 

allows the mapping of heuristic, system-related information to actions observed to 

provide adequate system control. In this way, FLCs obviate the need for complex 

mathematical descriptions of non-linear behavior to the nth  degree and thus offer an 

alternative method of system control. 

4.1. Fuzzy Logic Controller 
Figure-4.1 shows the structure of Fuzzy controller. It consists of a preprocessing, 

fuzzification interface, knowledge base, fuzzy inference system, defuzzification interface 

and a post processing unit. The preprocessing block transforms the input (e and e ) on 

the actual universe of discourse (UOD) to the normalized universe of discourse, using the 

input scaling factors Kp, KD and KG' for computational simplicity. The fuzzification block 

converts crisp inputs to appropriate fuzzy sets using the membership functions. 

4.1.1. Linguistic Variable, Rule Bases and Membership Functions 
Linguistic variables are descriptive terms that might be used, and best understood, 

by an expert of the system under consideration, which describe the behavior of a system 
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Inference 
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Preprocessing 

and the applied actions required to control that system. For the FLC in this study, the 

linguistic variables are based upon the error e(t), and the rate-of-change of error, de/cit. 

Fuzzycontroller 

gill". Postpro cess in 

Figure-4.1 Structure of fuzzy controller 

The rule base [36] of a FLC consists of a set of behavior/action constructs that 

describe the action to be taken on the occurrence of particular observed/measured system 

behavior or state. The constructs consist of a premise (i.e. system behavior/state) and the 

associated consequent (i.e. the action to be taken in order to achieve adequate system 

control under the observed system behavior/state) used in an 'if premise then 

consequent' form. Combinations of multiple premises and consequents are possible 

which enhance the precision of the rule -base. The rule base of a FLC must adequately 

cover all possible system behavior in respect of applied actions, in order for the FLC to 

provide reliable system control. 

The above descriptions of linguistic variables and rule -bases do not in themselves 

render the controller 'fuzzy', since, as defined, they could be adequately used in a 

Boolean-based system. What makes the controller 'fuzzy' is the use of membership 

functions (MFs) [36] to quantify to what degree of certainty each rule is true (i.e. fired) in 

respect of the system state at any particular time. The 'shapes' and relative spacing of the 

MFs form a critical element of the FLC and describe expert understanding of the 

meaning of the linguistic variables. Typical MF shapes are triangular, trapezoidal, 

sigmoid or custom-based, with several MFs used to partition the domain of the numeric 

value under consideration (i.e. the universe of discourse UOD). 

The use of MFs ensures that certainty, as defined within a FLC, is based upon the 

subjective interpretation of an expert rather than upon a probability distribution. Degrees 
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of certainty (i.e. degree of membership of a fuzzy set) range from 0 to 1 in value and 
hence partial membership is possible. The FLC aggregates the levels of certainty for the 

entire rule -base to obtain an aggregate fuzzy output set, which is subsequently used to 

obtain a crisp (i.e. numerically valued), control action. The combination of the rule -base 

(RB), and associated membership functions (MF), constitute the controller knowledge 

base (KB), which in effect represents the embedded expert system knowledge. In general, 

two forms of FLC are defined [37], 

• Mamdani 

• Sugeno 
Both of these architectures are similar in all respects except for the formulation of the 

output crisp value. In the Mamdani FLC, the output is formulated using fuzzy sets 

whereas the Sugeno type FLC uses single -spike output MFs (i.e. singletons) rather than 

distributed functions [37]. 

4.1.2. Fuzzification 
This is the process of transforming numeric inputs to fuzzy values [36]. The 

premise(s) of each rule is evaluated in respect of its degree of membership of the fuzzy 

sets defined across the range of possible values that the input may assume (i.e. the 

universe of discourse). For example, Figure-4.1.2 below shows the MFs for the error 

input as generated using the MATLAB fuzzy GUI. An error input value of 0.1 for the 

position controller, corresponds to a degree of membership of approximately 0.75 for the 

ZERO fuzzy set and a degree of membership of approximately of 0.25 for the PS 

(positive small) fuzzy set (i.e. FIZERO[e(t)]=0.75 liNS[e(t)]=0.25). Degree of 

membership of all other fuzzy sets in the universe of discourse for the error, where e(t) — 
0.1, is zero. 

4.1.3. Inference 
Having fuzzified the controller inputs, the inference process consists of two 

phases; 
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B B N z P NS PS 

0.8 
lizoao[e(t)]=0.751 

0.6 

0.4 
1INs[e(t)]=0.25! 	 

0.2 

0 

• Rule Matching 
The controller evaluates the applicability of each of the rules with respect to the current 

system state using fuzzy operators (e.g. min). Where a rule contains only a single premise 

then this stage will return the value obtained from the fuzzification process. FLCs 

commonly use multiple premises within each rule and therefore the certainty as to what 

degree the rule as a whole applies to the current system state must be evaluated. To 

perform the evaluation, the controller applies a logic operator to the fuzzified values of 

the inputs. Two operators commonly used for the AND conjunction are the minimum and 

product operators (for OR conjunction, the max operator is commonly used). For the 

position controller, the min operator was used. 

0 	02 	0.4 	0.6 	0.8 	I 
input variable "e" 

Figure-4.1.2 Degree of membership of Z and NS for input, e = 0.425 

• Implied Conclusions 

The consequent of each rule is a fuzzy set, which is truncated in accordance with 

the degree of certainty that the premise or conjunction of premises, of the rule applies to 

the current system state. The degree of certainty for the rule is evaluated by matching 

rules to the current system state using the FLC inputs as is outlined in the previous 

section. For all rules therefore deemed to be 'fired' (i.e. that apply) an implication 

operator is applied to the consequent fuzzy set in order to truncate the set relative to the 
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degree of firing for the rule. So for the example above where the min operator was used 
to evaluate a degree of certainty for the rule to be 0.25, then accordingly the consequent 
fuzzy set is truncated by this amount. 

4.1.4 Rule Base 

As stated, the rule -base consists of a set of linguistic variable constructs in the 
form of; 

if premise_l and/or.... premise_n then consequent] and/or 	 consequent_m 
which describes the system behavior or states to a level of resolution considered to 
adequately cover all expected states or behavior and the required actions. The number of 

rules is dependent upon the number of controller inputs and the number of linguistic 
variables used to describe those variables. For the position controller in this study, 2 
inputs are used with 5 linguistic variables to describe the nature of those inputs relative to 
their universe of discourse, which results in at most 52 = 25 rules. Although in this case, 
every scenario has an associated entry, it is possible to leave a particular space blank, 
which would infer that the controller takes no action (i.e. output remains the same as 
previously). 

For systems with 1, 2 or 3 inputs, a tabular form of the rule-base can be 
constructed. Figure-4.1.3 illustrates the rule -base used for the heuristic position 
controller in tabular form. 

eN
NB NS Z PS PB 

NB NS NS NB NB Z 

NS NS NS NB Z PB 

Z NB NB Z PB PB 

PB NB Z PB PS PS 

PS Z PB PB PS PS 

Figure-4.1.3 Heuristically-tuned FLC rule-base 
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The rule -base above was arrived at through intuition and trial, using Simulink, 
and is not necessarily optimal for the system. A feature of the rule-base used is the 
symmetry across the diagonal. This feature occurs in systems where the physical 

behavior of the system exhibits symmetry, which is consistent in the case of the cart-
positioning model used in this study where the surface upon which it travels is even and 

considered identical in both possible directions of travel. Where systems display such 
symmetry, obtaining, or optimizing a rule -base may prove quicker if the symmetrical 
feature can be exploited to some extent. 

4.1.5 Defuzzification 
The final process of the FLC is to aggregate the fuzzy sets resulting from the 

inference mechanism to produce a decision (i.e. crisp output), which is the "most certain" 
in respect of the current system behavior. 

A number of methods can be used for defuzzification (e.g. center-average, mean-
of-maxima), however the most commonly used method is the equation for computation 
of center-of-gravity (COG), or centroid, which ensures a smooth control action but which 
requires more complex calculations particularly for non-linear MFs [36]. 

4.2. Designing a Fuzzy Logic Controller 

In this chapter, a demonstration is given of how to automate the design of 
a Fuzzy Logic Controller. The assumptions used and the constraints introduced to 
simplify this process are explained. 

4.2.1 Assumptions and Constraints 
To apply the Fuzzy Logic Controller to various control engineering problems, 

certain properties of the system are exploited so that the design of the controller can be 
made easier. As the system used are symmetrical, it is assumed that symmetrical 
membership functions about the y-axis will provide a valid controller. A symmetrical 
rule-base is also assumed. 

Other constraints are also introduced to the design of the FLC: 
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• All universes of discourses are normalized to lie between —1 and 1 with 
scaling factors external to the FLC used to give appropriate values to the variables. 

• It is assumed that the first and last membership functions have their apexes at —1 and 
1 respectively. This can be justified by the fact that changing the external 
scaling would have similar effect to changing these positions. 

• Only triangular membership functions are to be used. 

• The number of fuzzy sets is constrained to be an odd integer greater than unity. In 
combination with the symmetry requirement, this means that the central membership 
function for all variables will have its apex at zero. 

• The base vertices of membership functions are coincident with the apex of the 
adjacent membership functions. This ensures that the value of any input variable is a 

member of at most two fuzzy sets, which is an intuitively sensible situation. It also 
ensures that when a variable's membership of any set is certain, i.e. unity, it is a 
member of no other sets. 

Using these constraints the design of the membership functions can be 
described using two parameters: 

• The number of membership functions 

• The positioning of the triangle apexes 

4.2.2. Spacing Parameter 
The second parameter specifies how the centers are spaced out across the universe 

of discourse. A value of one indicates even spacing, while a value larger than 

unity indicates that the membership functions are closer together in the centre of the 
range and more spaced out at the extremes as shown in Figure-4.2.1. The position 
of each centre is calculated by taking the position the centre would be if the 
spacing were even and by raising this to the power of the spacing parameter. For 
example, in the case where there are five sets, with even spacing (p=1) the centre of one 
set would be at 0.5. If p is set to two, the position of this centre moves to 0.25. If 
the spacing parameter is set to 0.5 then this centre moves to 0.707 in the normalized 
universe of discourse. 
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This method of designing the membership functions is inspired by the work of 

Park et al. [38] and Cheong et al [39]. It does mean that there is a reduction in the 

number of possible FLCs than if the design was fully flexible but the trade-off is that the 

design process is made much simpler. Also it is felt that even within these constraints 
there is sufficient flexibility to allow a FLC that meets the design requirements to be 

built. 

4.2.3. Designing the Rule-Base 

As well as specifying the membership functions, the rule-base also needs 

to be designed. Again ideas presented by Park et al. [38] were used. In specifying a rule 

base, characteristic spacing parameters for each variable and characteristic angle for each 

input variable less one are used to construct the rules. 

Figure-4.2.1 Effects of spacing parameters on Mfs 
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chid points are also placed in the output space representing each possible 
combination of input linguistic values. These are spaced in the same way as before. 
The rule-base is determined by calculating which seed-point is closest to each grid 
point. The output linguistic value representing the seed-point is set as the consequent of 
the antecedent represented by the grid point. This is illustrated in Figure-4.2.2, which 

is a graph showing seed points (blue circles) and grid-points (red circles). 
Table-4.2.1 shows the derived rule base. The lines on the graph delineate the 

different regions corresponding to different consequents. The parameters for this example 

are 0.9 for both input spacing, 1 for the output spacing and 45° for the angle. 

4.3 Hybrid Fuzzy Precompensated PD Controller Design 

Conventional control methods, such as PD and PID controllers, are widely used in 
industrial applications. Such controller suffers from the problem of large overshoots and 
undershoots in its output response when applied to systems containing distributed 

- parameters, nonlinearity, strong coupling. In this work, a novel fuzzy logic-based 

precompensation approach for controlling system with high nonlinearity is attempted. 

The control structure consists of a fuzzy logic-based precompensator followed by a 
conventional PD controller. 

Table-4.2.1 Derived Rule base 
NB NS Z PS PB 

NB NB NB NS NS Z 

NS NB NS NS Z PS 

Z NS NS Z PS PS 

PB NS Z PS PS PB 

PS Z PS PS PB PB 

4.3.1 PD Control 
In this section we describe a general PD (Proportional-Derivative) controller for 

the control of rigid-flexible link arm. The control input to the 1th  actuator is given by, 
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r = K e, (t) — K D/e, (t) 	 (4.3.1) 

where, 

(t) = [4d; (t) — q (t)] 

In Equation above, (t) and ei  (t) represent the error in the joint angle and velocity 

for the ith  link. Kpi and KDI are the proportional and derivative gains, respectively. 
Sufficient literature dealt PD control investigated that better response has not been 
achieved in case of this distributed parameters, nonlinearity, strong coupled systems. 

4.3.2 Fuzzy Precompensation 

The fuzzy precompensator uses the desired position q d, and the plant output q, to 

generate a precompensated modified desired position 4,1  . The fuzzy pre-compensator 

modifies the desired position, to compensate undershoot and overshoot in the output 

response, to eliminate the steady-state error and improve the performance of the output 

response for PD control systems with nonlinearities by introducing a fuzzy logic 
controller in front of the PD controller. Fuzzy precompensation that proposed is indeed 
insensitive to nonlinearities, and exhibits good transient and steady-state behavior. 

A Fuzzy Precompensated PD controller was designed and applied to control the 

position of the manipulator, since it is well known that Fuzzy PD gives a faster transient 

than Fuzzy PI type. The fuzzy precompensator is described by the equations, 

	

e (t) = [q th  (t) — q (t)] 	 (4.3.2) 

	

(t) = F[e ,(t),e (t)] 	 (4.3.3) 

	

4di = qd, + Y(0 	 (4.3.4) 

The inputs to the precompensator are the desired position q dr(t) and the plant 

actual position q ,(t) . The term F[e (t), e (t)] is a nonlinear mapping of e (t) and e, (t) 

based on fuzzy logic (described below). The term y(t) = F[e (t), e (t)] represents a 

compensation or correction term, so that the compensated/modified desired position 

"4,/,(t) is simply the sum of the external desired position q d,(t) and y(t) . The correction 

term is based on the error e (t) , and the change of error e (t) . The compensated 
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command signal 4,1,0) is used as the input to the PD controller, as shown in Figure-4.3.1 

in the overall block diagram of the hybrid fuzzy precompensated PD controller. 

FIJZZy Precompensation 

Kp —> 
qd 

PD 
Control 

KD 

	 Fuzzy 
	 Controller 

Figure-4.3.1 Overall block diagram of the proposed hybrid controller. 
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5. APPLICATIONS OF INTELLIGENT COMPUTATIONAL 
TECHNIQUES 

In order to assess the performance of the optimization algorithms, various control 
engineering problems were considered. Some of the practical applications used are: 

1. Inverted Pendulum 

2. Ball and Beam System 
3. Two link rigid-flexible robot manipulator 

5.1. Inverted Pendulum 
The inverted pendulum control problem [40] is usually presented as a pole 

balancing task. The system to be controlled consists of a cart and a rigid pole hinged to 
the top of the cart. The cart can move left or right on a one-dimensional bounded track, 
whereas the pole can swing in the vertical plane determined by the track. The linearized 

system equations around 0 = ir in the state space are: 

0 	1 	 0 	0 
— (I+M12 )5 	 m2g12  0 	 0 

AM + in)+MM/2 	+ in) + Min/2  

0 	0 	 0 	1 
— mlb 	mgl(M + m)  0 	 0 

I(M + m)+ Mm12  I(M + m)+ Mm12  
0 

I +ml 2  
I (M + m) + Mml 2  

0 

ml 
AM + M) + Min/ 2  

x 
x 

x 

0 
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(5.1.1) 
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Where, 

M = mass of cart = 0.5 kg 

m = mass of pendulum = 0.2 kg 

b = friction of cart = 0.1 N/m/sec 

I = inertia of pendulum = 0.006 kgm2  

1= length of pendulum's center of mass = 0.3 m 

F = force applied to cart 

The state of the system is defined by values of four system variables: (x,±,0,e) the 

cart position, cart velocity, pendulum angle and angular velocity of the pendulum pole, 

respectively. Control force is applied to the system to prevent the pole from falling while 

keeping the cart within the specified limits. 

5.2. Ball and Beam System 
The ball-beam system is a frequently encountered example of nonlinear 

dynamical system. While the ideal system is indeed nonlinear, its practical 

implementation has additional non-linearities, including: deadband, backlash introduced 

by the DC motor and gearbox, discrete position sensing and uneven rolling surface. The 

system is a product from Googol Technology. The practical system is shown in Figure-

5.2.1. 

Figure-5.2.1. Functional components of mechanical plant 

The motion of the motor's shaft is governed by IPM100 intelligent drive. This is a 

high precision, fully digital servo drive with embedded intelligence and 100W power 
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amplifier suitable for brushless/brush motors. Based on feedback information from 
sensors, it computes and then applies appropriate PWM modulated voltage to the motor 
windings in such a way that a sufficient torque moves the motor shaft according the 

programmed control algorithm. This embedded intelligence provides a true real-time 
control performance independent of any delays caused by PC's non-real time Operating 
System. 

The closed loop control algorithm employed for the application is given in Figure- 
5.2.2: 

Figure-5.2.2. Structure of the control algorithm 

The DC motor provides actuation of the beam via a gear. The PID control 
algorithm inside IPM100 intelligent drive is employed in an inner control loop as a motor 

_ position controller. The PID gains are tuned in such a way that the motor exhibits a fast 
response without overshoot. The flowchart of the control algorithm is depicted in Figure-
5.2.3. 

5.2.1 Mechanical Model of Ball & Beam 
The schematics of the Ball&Beam mechanical system is shown in Figure-5.2.4. 

Figure-5.2.4. Ball&Beam Mechanical System 
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Specify target position 
of the ball 

The system moves the ball to 
the specified target position 

Compute the control according 
to CCA-GA algorithm 

Amplify and modulate 
the control signal 

Read current actual 
position from feedback 

Figure-5.2.3 Flowchart of the control program 

• Gear ratio is 4.28:1 (107:25) 

• Let the angle between the line that connects the joint of the lever arm with the 

center of the gear, and the horizontal line be 0 (there should be some boundaries 
on its range so that it can reach the safe maximum and minimum limits); the 
distance between the center of the gear and the joint of the lever arm be d, and the 
length of the beam be L. Then the beam angle a can be expressed in terms of the 
rotation angle of the gear 0 according to the following equation: 

d a= —17 
L 
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In turn, as it has just been noted above, the angle 0 is connected with the 
rotational angle of motor shaft through reduction gear ratio n=4.28. 
The controller design task is to keep the position of the ball r equal to the 
specified target position by properly manipulating the gear angle 0. 

• The dynamics of the ball is subjected to the gravity, inertial and centrifugal 
forces. The ball linear acceleration along the beam is given by the following 
simple equation: 

(
—J + mjr + mgsin a –mt(a)2  =0 
R 2  

Where 
g is the gravitational acceleration 
m 	is the mass of the ball 
J is the ball moment of inertia 
r 	is the position of the ball along the beam 
R 	is the radius of the ball 

Here it is assumes that the ball rolls without slipping and the friction between the 
beam and ball is negligible. 

5.3. Two Link Rigid-Flexible Manipulator Dynamics 
The Flexible manipulator used for simulation purpose is shown in Figure-5.3.1. 

The arm used for simulation is a direct drive planar chain with two revolute joints and 
two links, the second of which the forearm is very flexible. A nonlinear dynamic model 
of the two link rigid flexible arm has been derived following a Lagrangian approach. 
Small deformations are assumed for the forearm, leading to a linear dynamics of the 
flexible part, so that the main nonlinearities in the model arise from the rigid body 
interactions between the two links. To compute the low frequency modes, the forearm 
link is considered as an Euler – Bernoulli beam of length 12 and length of the rigid link as 
11, uniform density p, and constant elastic properties EL With reference to Figure-5.3.1, 
for a link point x e [0, 12]; w(x, t) is the bending deflection measured from the axis 
passing through the center of mass of the forearm. Accordingly, 02 is the angle between 
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this same axis and the first rigid links and 01 is the angle of first rigid link with X 

coordinate as shown in Figure-5.3.1. 

Figure-5.3.1. Schematic diagram of rigid-flexible manipulator and its variables 

Considering the stewing nature of the forearm, deformation, Eigen functions have 

been obtained in Ref. 41. The second joint moment of inertia J02 and the payload mass 

MP and the moment of inertia JP are explicitly included in the boundary conditions 

associated to the partial differential equation for w(x, t). An approximation of order n of 
the deflection can be expressed as, 

w(x,t) = E Oi (x)8i (t) 
1=1 

with the time varying coordinates 8,(t) associated to the mode shapes, 

(5.3.1) 

0, (x) = Ci , sin(fl,x)+ C2 , cos(f3,x) + C30  sinh(10,x) + C47  cosh(13,x) 	(5.3.2) 

The coefficients C's are determined, up to a scaling factor which is chosen through 

normalization, from the imposed boundary conditions. The values 	are numerically 
obtained as the first n roots of the characteristic equation [20]. 
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where s = sin(f3,/2), c = cos(fl,12 ) , sh = sinh(f3,2 ) , and ch = cosh(13,12 ) . The natural 

angular frequencies wi  of the flexible link are related to fli  through/3,4  = pw2 / EI .Starting 

from the analysis, the lagrangian dynamics of the two link robot is derived in the standard 

way as 

B(q)4 + c(q,4)+ Kq + 1304 = Gu 	 (5.3.4) 

where q = (01 ,02 ,81 , 	 „) E R"}2 , and with positive definite symmetric inertia matrix B, 

coriolis and centripetal terms c, and elasticity matrix K. Joint viscous friction and modal 

damping coefficients are arranged on the diagonal of D, while input matrix G, transforms 

motor torques u into generalized forces performing work on q. To express the single 

dynamic terms in (4), the following notation will be used 

12 
v, = p P,(x)dx, i =1, 	 .n, 	 (5.3.5) 

0 

and, 

ao.(x)  
Oie =0,(x)lx,, o'io = e(x) 

(5.3.6) 

Since the eigen functions Oi (x) automatically satisfy proper orthonormality 

conditions, relevant simplifications arise in the dynamic model. For control design 

purposes, we will consider only two modes of deformation, so that 
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q = (91,192,81,82) E  R4  . Neglecting the Kinetic energy of the system which is quadratic 

or higher order in the deformation variables 8 yields the inertia matrix, 

b11 b12  b13  b14  

B (q) 
b12  b22  0 0 

(5.1.7) b13  0 1 0 
b14  0 0 1 

with elements, 

bll = J1Tot J1Tot 2h3  COS() 2  — 2(h01  h28 2 ) sin 02  

b12 = J 2rot  h3  COS 02  — (1/161  h2  62  ) Sin 02  

b13  = COS 02  

b14  = h2  co SO 2  

b22 = 2Tot 

in which, 

h, = (v1  + M p0,)12  , 1=1, 2 

h3  = (M2  d2  + M ,12)l1 

J1Tot = J01  + ./1  M1di2  + (M2  +M02 + MP )/12  

J 2Tot = J02 + + M2  d22  4+114122  

where, in addition to previous definitions, it  is the length of link i, Ma  and Mot are the 
mass of the link i and of joint i, J, and Jot  are their moments of inertia referred to the 
respective center of mass, and d, is the distance of the center of mass of link i from joint 
axis i. The components of the coriolis and centripetal force vector c(q,4) are, 
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=—(29162  +02 2 ) + [h3  sin 02  — (h181  + h282)cose2] 
—2(01 + 02 )(kS1 + h2c82)sine2 ] 

C2  = 912  [h3  sin 02  + (h181 + h2  82  ) cos 02  

c3  = 9121/1  sin 92  

' 
C4 = 01

2 
 h2  sin e2 

The input matrix takes the form, 

while the elasticity matrix becomes, 

K= 

Also, modal damping is included 

D 
 =[

0 

G 

[

0 
0 

0  
0 D8 

GO  

0 
K3  

by 

] 
,D 

1,G8  

OK 

specifying, 

- 

= 
8  

=[ 

°.161 
0 	0.20 

co
1

2 	
0 

0 	co2 2  

2C1 co1  
[ 	 24.2(1)2 

0 	-1 

(5.3.8) 

(5.3.9) 

(5.3.10) 

(5.3.11) 

where the first zeros on the diagonal of D are due to the fact that the low friction at the 
joints is neglected. The above explicit expressions can be generalized to the case of n>2 
modes in a straightforward way. And the tip deflection of the forearm is written as, 

_up 	Ole A 10 

" 
(02e 

VI
20  )6  

 2 
2 (5.3.12) 
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Figure-6.1.3 Performance of GBSO in comparison to others optimization techniques 

Table-6.1.1 Performance of GBSO in comparison to other algorithms 

62 Optimal objective function Mean (Std. Deviation) 

PSO -1.4172 -0.6480 -186.4206 -177.0016 (15.7282) 

BF -1.4371 -0.8213 -185.4273 -182.6566 (2.9025) 

BF-PSO -1.4164 -0.8354 -184.0926 -183.1964 (1.8568) 

GBSO -1.4251 -0.8003 -186.7309 -186.7309 (0) 

Figure-6.1.3 shows the path of objective function achieving the optimal 

solution of all algorithms. The convergence rate as shown in Figure-6.1.3 is very high 

using GBSO in comparison to other optimization techniques. Twenty independent 

rims of the four algorithms were carried out on each problem and average of the best-

of-run solutions and standard deviations were noted. The performance of all 

algorithms is tabulated in Table-6.1.1. The two variables are adjusted iteratively to 

achieve the optimal objective value with minimum standard deviation. 

Figure-6.1.4 illustrates the Rosenbrock function behavior given by Eqs.-6.1.3 

followed by the comparison of GBSO with other techniques in log scale in Figure-

6.1.5. 
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The fitness value reaches the optimum in very less chemotactic steps whereas the 
other techniques settle at sub-optimal region. The comparison is shown in Table- _ 
6.1.2. 

Figure-6.1.4 Rosenbrock function landscape 
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Table-6.1.2. Performance of Rosenbrock function 

01  02  Optimal objective function Mean (Std. Deviation) 

PSO 0.9731 0.9519 0.0032 0.0182 (0.0176) 
BF 0.9916 0.8841 0.0253 0.0065 (0.0047) 
BF-PSO 1.0176 1.0408 0.0011 0.0027 (0.0025) 
GBSO 1.0120 1.0242 1.4413e-004 1.947e-04 (3.188e-04) 

Figure-6.1.6 illustrates the Rastrigin function behavior given by Eqs.- 
6.1.4 followed by the comparison of GBSO with other techniques in Figure-6.1.7. The 
comparison is shown in Table-6.1.3. 

1, 
.E[0,2 —10cos(27n9) +10] 

1=1 
(6.1.4) 
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Figure-6.1.8 illustrates the Griewank function behavior defined by Eqs.-6.1.5. 
The comparison between the optimization is shown in Figure-6.1.9. Statistical data is 
given in Table-6.1.4. 

Nutrient concentration (valleys food, pealcnoxious) 

IM 

Y-02 	-5 X=01  
10 	20 	30 

Chemotectic Steps 

Figure-6.1.8 Griewank function landscape Figure-6.1.9 Performance of GBSO in 
comparison to others optimization 
techniques 

1   n  2 — i 1--rcos(n 	0, --,_) +1 Griewank = BI  
4000 i=1 	 i (6.1.5) 
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Table-6.1.3 Performance of Rastrigin function 

81 62 Optimal objective function Mean (Std. Deviation) 

PSO -0.0180 0.1016 0.0250 0.0563 (0.0935) 
BF -0.0286 0.0115 0.1879 0.3428 (0.2544) 
BF-PSO -0.0455 0.0207 0.0611 0.4809 (0.0966) 
GBSO -0.7620e-9 0.3871e-9 0 0 (0) 

Table-6.1.4 Performance of Griewank function 

01  02  Optimal objective function Mean (Std. Deviation) 

PSO 3.1397 -4.4366 0.0074 0.0057 (0.0031) 
BF 0.0156 0.0226 2.4842e-004 2.0809e-4 (2.1267e-4) 
BF-PSO 0.0002 0.0505 6.3654e-004 6.4676e-5 (7.4995e-7) 
GBSO 0 0 0 0 (0) 

6.2 Inverted Pendulum 
The open loop step response of a pendulum angle is shown in Figure-6.2.1. It 

can be seen that a small force or disturbance acting on the cart sets the pendulum 
angle at 90 degrees therefore, to improve the dynamics of the system; some controller 

has to be designed. The block diagram of PD-PI control system for Inverted 
Pendulum is shown in Figure-6.2.2. 

The performance of the PD-PI control can be judged by the value of its 
parameters. Figure-6.2.2 shows the implementation of optimization algorithms which 

have been used to estimate the parameters. Empirical tuning methods cannot be 
applied to the system under consideration as the conditions (i.e. open loop stability, S-
shaped response etc.) are not being satisfied. The performance with all the 
optimization algorithms has been analyzed on the basis of ITAE (Integral Time 
Absolute Error). The objective of the controller is to maintain the upward position of 
the pendulum for any external disturbance. 
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Figure-6.2.1 Open loop response of pendulum angle 

Table 6.2.1 Closed loop data of Inverted Pendulum using Optimization Techniques 

Optimization 
Techniques/Controller 

parameters 

K P K, Kd ITAE 

GA 23.0673 37.5323 2.5116 0.01236 
BF-GA 90.6809 104.7037 40.0440 0.00023 

BF 25.4356 45.6982 2.6580 0.00745 
BF-PSO 32.6711 50.9613 4.6441 0.00624 

PSO 30.7611 49.1693 4.4641 0.00675 
GBSO 150.5704 250.3077 70.4004 0.00011 
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Numerical values of constant parameters of the controller and performance 
index using different optimization techniques are tabulated in Table 6.2.1. It can be 
seen that ITAE reduces to an optimal value with the developed algorithms. 

Figure-6.2.3 Closed loop response of controller with ITAE as performance index 

For the system under consideration, the simulation results with GBSO 
techniques prove to be more effective than with other optimization algorithms. In 

GAs, the limits defined by the number of parameters gives the search region while in 
PSO, the search region is independent of the number of parameters, given by the 
distance between the randomly selected initial position and the position corresponding 
to optimal fitness value. The speed of computation is determined by the velocity 

initializing the PSO algorithm with which it reaches to the best solution. It is also 
observed that the speed of computation in PSO is very less in comparison to GAs and 
BG. 

6.3 Ball and Beam System 

Ball and Beam represents a Single Input Single Output (SISO) system where 
X(s) and 0 (s) are the Laplace representation of the output (position of the ball on the 

beam) and input (beam angle) of Ball and Beam. The open loop transfer function of 

61 



mgd 
3,2 

L(—+ m) 
R2  

0(s) 
k p  +-- +kds x(s) 

PID controller 	Ball-Beam system 

the system mechanics can be approximated by double integrator. The closed loop 
model is shown in Figure-6.3.1. 

Figure-6.3.1 Block diagram of Ball-Beam system with a PID controller 
Where 
mass of ball, m 
ball moment of inertia, J 
gravitational acceleration, g 
position of ball along the beam, d 
radius of the ball, R 

The real nonlinear system is approximated to double differentiator as shown in 
Figure-6.3.1. MATLAB simulations were carried first using Hybrid BF and GBSO 
algorithms to determine the optimal set of PID parameters. This experiment is mainly 
performed to determine the superiority of the previously developed hybrid BF-GA 

algorithm. The set of PID parameters are then implemented real time on experimental 

setup discussed above. Performance index for fitness evaluation constitutes 
summation of settling time and steady state error for a period of 10 sec. 

The real time output of the ball-beam system with a step input is shown in 
Figure-6.3.2. Initially the ball is placed at one end (maximum length 40 cm) of the 

beam. For the desired position of the ball at 10 cm, the overshoot and settling time is 
shown in Figure-6.3.2a. For the desired position as 20 cm and 30 cm, the overshoot 
and settling time is shown in Figure-6.3.2b and Figure-6.3.2c respectively. It is 
evident from above figures that there is reduction in overshoot and settling time as the 

desired position approaches near the initial point of the ball (40 cm) for the same set 
of PID parameters. The response for a desired position having pulse input with duty 
cycle of 50% and amplitude varying between 20.cm and 0 cm is also studied as shown 
in Figure-6.3.3. The response has a large overshoot in comparison to step response 
with the same desired position. 

= 0.111 
2*m*RA2/5 

= -9.8 
= 0.04 
= 0.01 

62 



3 	4 1 	2 
Time (sec) 

0.4 

0.35 

0.3 
E 

0.25 

0.2 
a. 

0.15 
Kt 0.1 

0.05 

Figure-6.3.2a. Step Response with desired 
position 10 cm using GBSO algorithm 
GBSO 

Figure-6.3.2b. Step response with 
desired position 20cm using 

         

         

  

     

1.5 	2 

     

  

0.5 

  

   

1 
Time(sec) 

Figure-6.3.2c. Step response with desired 
with 
position 30 cm 

0.5 

0.4 

2 

• 

0,3 "ft- 
0.1 	  

1.5 0 	0.5 	1 	 2 	2.5 
Time (sec) 

Figure-6.3.3 Pulse input response 

duty cycle 50% 

.5 

OA 
0 

0.3 

g 0.2 

0.1 

O- 01 

< 0.1 

L L 

The fitness profile of ball and beam system using GBSO is shown in Figur-

6.3.4. The comparison of performance using BF-GA and GBSO algorithms are shown 
in Table-6.3.1. For 80 numbers of decades, the tuning of three parameters towards 

optimal solution is illustrated in Figure-6.3.5. 
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Table-6.3.1 Performance comparison using different methods 

Methods ic„ ki kd Mo (%) Ess is  tr  

BF-GA 9.6960 8.3156 48.3786 1.0030 0.023 0.1086 0.0644 

GBSO 14.5911 0.5126 47.3933 0.8721 0 0.1080 0.0637 

This section demonstrated the novel hybrid approach consisting BF-GA and 
GBSO. The improvement is shown in terms of convergence rate of the objective 
function towards the optimality in comparison to BF-GA for higher dimension. The 
proposed GBSO algorithm is implemented on a real time ball-beam system supplied 

by Googol Technology for tuning the PID controller. As evident from the graphical 
and empirical results, the suggested hybrid system performed well. 

6.4 Two Link Rigid-Flexible Robot Manipulator 
In this section, various optimization schemes have been used for the 

optimization of controller parameters shown in Figure-6.4.1. The integral square error 
(ISE) performance index is used as the objective function "J" for optimization 

J = ISE = e 2  (t)dt where e(t)=qd(t)-q(t) 
0 

(6.4.1) 
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Table-6.3.1 Performance comparison using different methods 
Methods kp  ki  kd Mo(%) Ess t, t,. 
BF-GA 9.6960 8.3156 48.3786 1.0030 0.023 0.1086 0.0644 
GBSO 14.5911 0.5126 47.3933 0.8721 0 0.1080 0.0637 

This section demonstrated the novel hybrid approach consisting BF-GA and 
GBSO. The improvement is shown in terms of convergence rate of the objective 
function towards the optimality in comparison to BF-GA for higher dimension. The 
proposed GBSO algorithm is implemented on a real time ball-beam system supplied 
by Googol Technology for tuning the PM controller. As evident from the graphical 
and empirical results, the suggested hybrid system performed well. 

6.4 Two Link Rigid-Flexible Robot Manipulator 
In this section, various optimization schemes have been used for the 

optimization of controller parameters shown in Figure-6.4.1. The integral square error 
(ISE) performance index is used as the objective function "J" for optimization 

J = ISE = e 2  (t)dt where e(t)=qd(t)-q(t) 	 (6.4.1) 
0 
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Figure-6.4.1 Fuzzy Precompensated PD Control 

Here in simulation for tuning the fuzzy precompensated PD controller, 

dimension of search space is 7 with 10 numbers of bacteria, 4 number of chemotactic 

steps, length of the swim and number of reproduction steps as 4, and 2 number of 
elimination dispersal events is considered. The simulation was run under MATLAB 
7.01 with Fuzzy Logic Toolbox 2.2 (R14SP1). Simulink block diagram of two link 
rigid-flexible manipulator is shown in Figure-6.4.2. To demonstrate the effectiveness 
of the proposed Fuzzy precompensated PD controller, the dynamic model of two link 
rigid flexible arm is considered. The fuzzification block converts crisp inputs to 
appropriate fuzzy sets using the membership functions as shown in Figure-6.4.3. The 
knowledge base provides the membership functions and the linguistic control rules. 
The fuzzy inference engine performs fuzzy reasoning, based on the linguistic control 
rules, using Zadeh's compositional rule of inference. The defuzzification block 
generates a crisp control output u (t) by utilizing the centre of gravity method, 

E ,u,(u)u, 
u(t) = 	 

,u, (u) 
(6.4.2) 

The rules for our fuzzy precompensator are given in Table-6.4.1. In this case, 
we used 27 rules. Rules were derived by using a combination of experience, "trial and 
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Figure- 6.4.2 Simulink diagram of two link rigid flexible manipulator 

66 



ns ZO 

0 	 0.6 -0.5 

error", and our knowledge of the response of the system. These are common 
approaches to the design of fuzzy logic rules, as described in [23]. Figure-6.4.4 
represents the output surface of the fuzzy precompensated controller. The flexible 
robot arm considered is characterized by following data; 

/I= 0.3 m 	 hi = 0.336 kg m2 	(02 = 14.395.2x rad/sec-1  

12  = 0.7 m 	 h2  = 0.126 kg m2 	0.07 

://Tot = 0.447 kg m2 	h3 = 0.195 kg m2 	4."2  = 0.03 

JITot = 0.303 kg m2 	0'10  = 5.74 	ale  = -1.446 m 

.102 = 6.35 X10-4  kg m2  0'20  = 11.64 	02e  = 1.369 m 

11/1p =Jp=0 	 co = 4.16.27E rad/sec-I  

Figure-6.4.5 shows the desired joint position profiles for the simulation to 
evaluate the effectiveness of the proposed approach. Figure-6.4.6, 6.4.7, 6.4.8 shows 

the modified or compensated desired position 4d,(t) for i=1, 2 using fuzzy 

precompensation. Figure-6.4.10, 6.4.11, 6.4.12 shows the Joint position error profiles 
for the two joints using the proposed bacterial foraging optimized fuzzy 
precompensated PD controller (BFFPPDC), particle swarm optimized fuzzy 
precompensated PD controller (PSOFPPDC) and hybrid particle swarm and bacterial 
foraging optimized FPPDC. The same controllers are compared by optimizing with 
genetic algorithm optimization and are shown in Figure-6.4.9. Table-6.4.2 constitutes 
the integral square errors for the two joints. 

Figure-6.4.3 Fuzzy input-output membership Figure-6.4.4 Output surface of the 
function 	 fuzzy precompensator controller 
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Figure-6.4.5 Desired Position profile 

Table-6.4.1 Fuzzy Precompensated PD Controller rules 

e 
e 

NB NM NS Z PS PM PB 

NB NB NB NB NM 
NM NM 
NS NS PS PM 
Z NB NB NM Z PS PM PM 
PB NB NB NM PS PM PB PB 
PM NM PM PB 
PS PM PB 
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Figure-6.4.6 Modified desired position using fuzzy precompensation using BFFPPDC 

Figure-6.4.7 Modified desired position using fuzzy precompensation using 
PSOFPPDC 
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Figure-6.4,8 Modified desired position using fuzzy precompensation using BF- 
PSOFPPDC 
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Figure-6.4.9 Error profiles for the two joints using GAFPPDC. 
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x 104  Joint Errors for the proposed hybrid EGO-PSO Approach 
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Figure-6.4.12 Error profiles for the two joints using BFO-PSO 

Table-6.4.2 Controller constants and integral square errors for various joints 

Controller GAFPPDC BFFPPDC PSOFPPDC BFO-PSO 
Kp  

Fuzzy 
Precompensator 

input-1 

15.0431 16.1823 8.0092 9.9119 

Kd 
Fuzzy 

Precompensator 
input-2 

5.2987 1.8166 1.4251 2.0370 

1(6 
Fuzzy 

Precompensator 
output 

-0.0266 9.6140 4.7827 8.2721 

Kpi  13.8523 15.4089 10.5684 6.7586 
Kai 0.8591 15.7654 3.6909 2.4895 
Kp2  6.7532 13.3856 6.6176 4.7579 
Ka 0.9215 7.5116 1.6961 3.9908 

Joint-1 ISE 0.1059 0.0017 0.0063 4.227e-05 
Joint-2 ISE 0.0643 0.0009 0.0040 0.0001 
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In second phase of designing the fuzzy precompensated PD control of two link 
rigid-flexible manipulator FLC rule base is optimized using characteristic parameters. 
Here the results are presented using GBSO algorithm. To apply a GBSO algorithm to 
the design of fuzzy logic controller, an evaluation function is defined to calculate the 
fitness of a set of parameters. The parameters are passed to the evaluation function, 
which processes them and returns a value corresponding to how well the parameter 
performed the task. This function firstly extracts the relevant parameters from the 
individuals passed in. After performing some error checking, the parameters are used 
to create a Fuzzy Inference System (FIS) and set the appropriate scaling factors. 

A SIMUUNK model is then called as shown in Figure-6.4.2 from which a 
record of the error in the joint position throughout the duration of the simulation is 
returned. The desired trajectory is shown in Figure-6.4.5. The error in the joint 
position and the change in of error are scaled by the appropriate gains (these 
parameters are also set by the optimization algorithm) and the result is clipped so that 
it lies in the range -1 to 1. These inputs are fed into the FLC and the FLC's output is 

then scaled by another gain. 
To run GBSO, a suitable encoding for each of the parameters and bounds for 

each of them needs to be decided. For this task the parameters given in Table 6.4.3 are 
used with the shown ranges and precisions. 

Table-6.4.3 Parameters used for encoding 

Parameter Range Precision 

Number of Membership Functions 3 — 9 2 
Membership Function Spacing 0.1 — 1.0 0.01 

MF Spacing (Power to be Raised by) -1-1 2 
Rule Base Scaling 0.1 — 1.0 0.01 

Rule-Base Spacing (Power to be Raised by) -1 — 1 2 

Input Scaling -50 — 50 0.1 

Output Scaling -50 — 50 0.1 

Rule-Base Angle 0 — 27 n/512 

The numbers of membership functions are limited to the odd integers inclusive 

between three and nine. For the spacing parameters, two separate parameters are used. 
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The first, with the range [0.1 — 1.0], determines the magnitude and the second, which 
takes only the values -1 or 1, is the power by which the magnitude is to be raised. This 
determines whether the membership functions compress in the centre or at the 
extremes. The scaling for the input and output variables is allowed to vary in the 
range [-50 - 50]. 

The comparison is presented between two algorithms namely, GA and GBSO. 
In first part, the rule base is designed using experts' rule base and same input-output 
membership function. Here the two algorithms optimize the membership functions 

using characteristic parameters. Figure 6.4.13 shows the rule base optimized using 
two algorithms. 

Figure 6.4.13 Output surface of the fuzzy precompensator controller (a) using GA (b) 
using GBSO 
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Figure 6.4.14 Input-1 membership function of the fuzzy precompensator controller (a) 
using GA (b) using GBSO 
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Figure 6.4.15 Input-2 membership function of the fuzzy precompensator controller (a) 
using GA (b) using GBSO 

Figure 6.4.14, 6.4.15, 6.4.16 shows the input output membership functions. Finally 
the joint error profile is illustrated in Figure 6.4.17 and 6.4.18. It can be easily verified 
that by optimizing the rule base using GA improves the joint error profile from the 
previous case where only the constants of the controller were optimized. The 
statistical comparison is tabulated in Table 6.4.5 and 6.4.6. The scaling factors and 
rule base actually decides the superiority of the GBSO algorithm over GA. The PD 
controller constants are kept as Kpi = 8, Kdi = 1, Kp2 = 8, Kd2  = 1. 
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Figure 6.4.16 Output membership function of the fuzzy precompensator controller (a) 
using GA (b) using GBSO 
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Joint 1 
Joint 2 

Table 6.4.5 Scaling factors and ISE of the fuzzy precompensated controller 

Ke  Kde K. Joint-1 ISE Joint-2 ISE 
GA 2.1569 1.843 7.500 0.0001 4.264e-05 

GBSO 9.6078 -0.0392 -8.5882 8.499e-08 2.577e-10 
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Figure 6.4.17 Joint error profile of hybrid FPPD using GA 
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7. CONCLUSION AND FUTURE SCOPE 

In this dissertation, novel hybrid approach consisting genetic algorithm, 
bacterial foraging and particle swarm optimization and their performances are 

evaluated using various test functions. It has been established by comparison of the 
fitness function profile that the developed hybrid algorithms outperformed standard 
basic techniques. The improvement is shown in terms of convergence rate of the 
performance index in reaching the optimality over basic optimization algorithms. 
Also, the proposed algorithm is implemented on a practical ball and beam system 
supplied by Googol Technology for tuning the PID controller. As evident from the 
graphical and empirical results, the suggested hybrid system performed exceedingly 
well. 

Fuzzy precompensated PD control also proves its effectiveness by minimizing 
the overshoot and modifying the required trajectory over the simple PD controller for 
two link rigid-flexible robot manipulator. The performance of the hybrid fuzzy 
precompensator is successfully achieved by first optimizing the PD controller 

constants and then optimizing the fuzzy rule base using characteristic parameters. An 
advantage of the present approach is that an existing PD controller can be easily 
modified into the suggested control structure by simply adding a fuzzy 
precompensator. 

As the complexity of the highly uncoupled system increases, the iterative 
procedure takes a lot of time in reaching the optimal solution. Sometimes, the fitness 
function converges to the sub-optimal region too as analyzed in two link rigid-flexible 
manipulator. The future research would include the model complexity reduction using 
optimizing techniques. This will help in reducing the system order while keeping 
intact the behavior of original model. Also, the effects of initialization parameters on 
the convergence behavior of the hybrid algorithms may be worthy to undertake. 

78 



REFERENCES 

[1] Chaiyaratana, N., Zalzala, A.M.S. "Recent developments in evolutionary and 
genetic algorithms: theory and applications", GALESIA '97, pp. 270-277. 

[2] Potter, M. A., De Jong, K. A. "A cooperative coevolutionary approach to 
function optimization", International Conference on Evolutionary 
Computation, The Third Conference on Parallel Problem Solving from 

Nature (pp. 249-257). Berlin, Germany: Springer-Verlag, 1994. 

[3] Muhlenbein, H., Schlierkamp-Voosen, D, "Predictive models for the 
breeder genetic algorithm: 1. continuous parameter optimization" 
Evolutionary Computation, 1(1), pp. 25-49, 1993. 

[4] Francisco Herrera and Manuel Lozano, "Gradual distributed real-coded 
Genetic Algorithms", IEEE transactions on Evolutionary Computation, 

Vol.4, No.1, pp. 43-63, April 2000. 

[5] Ming Chen, Zhengwei Yao, "Classification Techniques of Neural Networks 

using improved Genetic Algorithms", Second IEEE Conference on Genetic 

and Evolutionary Computing, 2008, pp. 115-119. 

[6] Shengxiang Yang and Renato Tinos, "Hyper-Selection in Dynamic 

Environments", IEEE Congress on Evolutionary Computation, 2008, pp. 

3185-3192. 

[7] Jingjun Zhang, Kanghau Lou, Ruizhen Gao, Guanyuan liu, Yang sun, 

"Application of Coarse-Grained Genetic Algorithm for the Optimal Design 

of the Flexibility Multi-body Model Vehicle Suspensions", 31d  IEEE 

Conference on Industrial Electronics and Applications, 2008, pp. 1343-1347. 

[8] M.N.H. Siddique, M.O. Tokhi, "GA-based neuro-fuzzy controller for 

flexible-link manipulator", Proceedings of IEEE Conference on Control 

Applications, pp. 471-476, 2002. 

[9] A.L. Buczak, R.E. Uhrig, "Hybrid fuzzy-genetic technique for multisensor 

fusion", Information Sciences 93 (3-4), pp. 265-281, 1996 

[10] P. Chootinan, A. Chen, "Constraint handling in genetic algorithms using a 
gradient-based repair method", Computers and Operations Research 33 (8), 

pp. 2263-2281, 2006 

79 



[11] R.C. Eberhart and Y. Shi, "Comparison between genetic algorithms and 
particle swarm optimization", in Proc. IEEE Int. Conf. Evol. Comput., 
Anchorage, AK, May 1998, pp. 611-616. 

[12] Zne-Jung Lee, Chaou-Yaun Lee, "A hybrid search algorithm with heuristics 
for resource allocation problem", Information Sciences, Vol.173, pp. 155-
167, 2005. 

[13] Shengxiang Yang, Renato Tinos, "A Hybrid Immigrants Scheme for Genetic 
Algorithms in Dynamic Environments", International Journal of Automation 
and Computing, 2007, pp. 243-254. 

[14] J. Kennedy, R. Eberhart, "Particle Swarm Optimization", Proceedings of 
IEEE Conference on Neural Networks, 1995, pp. 1942-1948. 

[15] M. Clerc, J. Kennedy, "The Panicle Swarm-Explosion, Stability, and 
Convergence in a Multidimensional Complex Space", IEEE Transactions on 
Evolutionary Computation 6, pp. 58-73, 2002. 

[16] K.E. Parsopoulos, M.N. Vrahatis, "On the Computation of All Global 
Minimizers Through Particle Swarm Optimization", IEEE Transactions on 
Evolutionary Computation, pp. 211-224, 2004. 

[17] Y. Tan, Z.M. Xiao, "Clonal Particle Swarm Optimization and its 
Application", IEEE Congress on Evolutionary Computation, 2007, pp. 2303-
2309. 

[18] Teng-Bo Chen, Yin-Li Dong, Yong-Chang Jiao, and Fu-Shun Zhang, 

"Crossed Particle Swarm Optimization Algorithm", ICNC 2006- Springer-
Verlag Berlin Heidelberg, 2006, pp. 935-938. 

[19] Juan C. Fuentes Cabrera, Carlos A. Coello Coello, "Handling Constraints in 
Particle Swarm Optimization Using a Small Population Size", Lecture notes 
in Computer Science, Springer Berlin/Heidelberg, 2007, pp. 41-51. 

[20] Ben Niu, Li Li, "A Novel PSO-DE-Based Hybrid Algorithm for Global 
Optimization", ICIC 2008, Springer-Verlag Berlin Heidelberg, pp. 156-163. 

[21] Riccardo Poli, William B.L. and Owen Holland, "Extending Particle Swarm 
Optimization via Genetic Programming" Proceedings of Stn  European 
Conference EuroGP, 2005, pp. 291-300. 

[22] Chia-Feng Juang, "A Hybrid of Genetic Algorithm and Particle Swarm 
Optimization for Recurrent Network Design", IEEE Transactions on 
Systems, Man, and Cybernetics, Vol.34, No.2, pp. 997-1006, 2004. 

80 



[23] D.H. Kim, A. Abraham, K. Hirota, "Hybrid Genetic: Particle Swarm 
Optimization Algorithm", Studies in Computational Intelligence: Springer-
Verlag Berlin Heidelberg, 2007, pp. 147-170. 

[24] K.M. Passino, "Biomimicry of Bacterial Foraging for Distributed 
Optimization", University Press, Princeton, New Jersey, 2001. 

[25] K.M. Passino, "Biomimicry of Bacterial foraging for distributed 
optimization and control", IEEE Control Systems Magazine, 2002, pp. 52-

67. 

[26] D.H. Kim, A. Abraham, J.H. Cho, "A hybrid genetic algorithm and bacterial 
foraging approach for global optimization", Information Sciences, Vol.177 

(18), pp. 3918-3937, 2007. 
[27] D.H. Kim, J.H. Cho, "Intelligent Control of AVR system using GA-BF', in: 

Rajiv Khosla, Robert J. Howlett, Lalchmi C. Jain (Eds.), Proceedings of KES 
2005, Melbourne, Australia, Lecture Notes in Computer Science, 

Vol.3684/2005, 2005, pp. 854-860. 

[28] Arijit Biswas, Sambarta Dasgupta, Swagatam Das, Ajith Abraham, "Synergy 
of PSO and Bacterial Foraging Optimization", Innovations in Hybrid 

Intelligent Systems, Springer-Verlag Berlin Heidelberg, 2007, pp. 255-263. 

[29] Esmaeil Atashpaz Gagari, Farzad Hashemzadeh, Ramin Rajabioun, Caro 

Lucas ,"Colonial competitive algorithm: A novel approach for PID 
controller design in MIMO distillation column process", International 

Journal of Intelligent Computing and Cybernetics, pp. 337-355, 2008. 
[30] A.H. Mantawy, Youssef L. Abdel-Magid, M.A. Abido, "A Simulated 

Annealing Algorithm for Fuzzy Unit Commitment Problem", IEEE 

Conference on Transmission and Distribution, pp. 142-147, 1999. 

[31] John J. Grefenstette, "Optimization of Control Parameters for Genetic 
Algorithms", IEEE Transactions on Systems, Man, and Cybernetics, p.p. 

122-128, 1986. 
[32] Crina Grosan, Ajith Abraham, Hisao Ishibuchi, "Hybrid Evolutionary 

Algorithms" Springer-Verlag Berlin Heidelberg, 2007 
[33] Tai-Chen Chen, Pei-Wei Tsai, Shu-Chuan Chu, and Jeng-Shyang Pan, "A 

Novel Optimization Approach: Bacterial-GA Foraging" Innovative 
computing, innovation and control conference, p.p. 391-394, 2007. 

81 



[34] Dong Hwa Kim, Jae Hoon Cho, "A Biologically Inspired Intelligent PID 

Controller Tuning for AVR Systems" International Journal of Control, 

Automation and Systems, Vol.4, No.5, pp. 624-636, 2006. 

[35] Andries P. Engelbrecht, "Computational Intelligence: An Introduction" John 

Wiley and Sons, Ltd, Second Edition, 2007. 
[36] Kevin M. Passino, Stephen Yurkovich, "Fuzzy Control" Addison Werley 

Longman, First Edition, 1998. 

[37] "Fuzzy Logic Toolbox" Matlab. http://www.mathworks.com 

[38] Young Jun Park, Hyung Suck Cho, Dong Hyuk Cha, "Genetic Algorithm 

Based Optimization of Fuzzy Logic Controller Using Characteristic 
Parameters" Proceedings of the IEEE International Conference on 

Evolutionary Computation, pp. 831-836, 1995. 

[39] France Cheong, Richard Lai, "Constraining the Optimization of a Fuzzy 
Logic Controller Using an Enhanced Genetic Algorithm" IEEE Transactions. 

on Systems, Man, and Cybernetics, pp. 31-46, 2000. 

[40] Elmer P. Dadios, David J. Williams, "A Fuzzy-Genetic Controller for the 
Flexible Pole-Cart Balancing Problem" Proceedings of IEEE Conference on 

Evolutionary Computation, pp. 223-228, 1996. 

[41] F. Bcllezza, L. Lanari, G. Ulivi, "Exact modeling of the slewing flexible 

link" Proceedings of IEEE Conference on Robotics and Automation, 

Cincinnati, OH, May 13 18, pp. 734-739, 1990. 

82 



Research paper published by the author: 

1. Tushar Jain and M.J. Nigam, "Optimization of PD-PI Controller Using 
Swarm Intelligence", International Journal of Computational Cognition, Vol.6, 

No.4, p.p. 55-59, December, 2008. 
2. Tushar Jain, Vishwanath Patel, M.J. Nigam, "Implementation of PID 

Controlled SIMO Process on FPGA Using Bacterial Foraging for Optimal 
Performance", International Journal of Computers and Electrical Engineers, 

Vol.1, No.2, p.p. 109-112, June 2009 
3. Srinivasan Alavandar, Tushar Jain and Madhav Ji Nigam, "Bacterial 

Foraging Optimized Hybrid Fuzzy Precompensated PD Control of Two Link 
Rigid-Flexible Manipulator", International Journal of Computational 
Intelligence Systems, Vol.2, No.1, p.p. 51-59, March 2009 

4. Srinivasan Alavandar, Tushar Jain and Madhav Ji Nigam, "Particle Swarm 
Optimized Hybrid Fuzzy Precompensated Trajectory Control of Rigid-Flexible 

Manipulator", International Journal of Knowledge-Based and Intelligent 

Engineering System (in press) 
5. Srinivasan Alavandar, Tushar Jain and Madhav Ji Nigam, "Hybrid Bacterial 

Foraging and Particle Swarm Optimization for Fuzzy Precompensated 

Control of Flexible Manipulator", International Journal of Automation and 
Control. (in press) 

6. Tushar Jain, Srinivasan Alavandar, M.J. Nigam, "A Hybrid Genetically-
Bacterial Foraging Algorithm converged by Particle Swarm Optimization for 

global optimization", International Journal of Bio-Inspired Computation-

Inderscience Publishers(in press) 
7. Tushar Jain, M.J. Nigam, "Tuning of Type-I Servo System Using Swarm 

Intelligence for SIMO Process", Journal of Engineering Science and 

Technology. (under review) 
8. Tushar Jain, M.J. Nigam "Optimization of PID Controller Using 

Evolutionary Algorithms", Proceedings of National Conference on Mechanism 
Science and Technologies, NIT-Hamirpur, p.p. 44-53 November, 2008. 

9. Srinivasan Alavandar, Tushar Jain, M.J. Nigam "Synthesis of genetically 

bacterial swarm algorithm for optimization of fuzzy control of flexible 
manipulator" (under writing) 

83 



10. Tushar Jain, Srinivasan Alavandar, M J Nigam "Optimization of Modified 

fuzzy PD control of flexible manipulator using genetically bacterial swarm 
algorithm" (under writing) 

11. Tushar Jain, Srinivasan Alavandar, M J Nigam "Cooperative Approaches of 

hybrid genetically bacterial swarm algorithm" (under writing) 

84 



2. INTELLIGENT COMPUTATIONAL TECHNIQUES 

This chapter briefly describes the basic techniques for intelligent computation. 

The components of genetic algorithm based optimization are discussed in section 1. 

Behavior of bird flocking is analyzed in section 2 which leads to particle swarm 

optimization. Section 3 discusses the foraging of behavior of bacteria known as bacterial 

foraging optimization. 

2.1. Genetic Algorithm 

Genetic algorithms (GA) are stochastic global search methods inspired by the 

process of natural evolution. The genetic algorithm starts with no knowledge of the 

correct solution and depends entirely on responses from its environment and evolution 

operators (reproduction, crossover and mutation) to arrive at the best solution [31]. By 

starting at several independent points and searching in parallel, the algorithm avoids local 

minima and converging to sub optimal solutions. 

A genetic algorithm is typically initialized with a random population consisting of 

between 20-100 individuals. This population is usually represented by a real-valued 

number or a binary string called a chromosome. How well an individual performs a task 

is measured by the objective function. The objective function assigns each individual a 

corresponding number called its fitness value. The fitness of each chromosome is 

assessed and a survival of the fittest strategy is applied. 

2.1.1. Basic Construction of GA's 

The basic construction of GA's can be simply described as follows: 

1. Define the string of chromosome: The string of searching parameters for the 

optimization problem should be defined first. These parameters are genes in a 

chromosome, which can be binary coded or real coded and termed "chromosome". 

Different chromosome represents different possible solutions. 

2. Define the Fitness Function: The fitness function is the performance index of 

GA's to resolve the viability of each chromosome. According to the performance 
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requirements of the problem, the fitness function can be obtained, e.g., convergence 

value, error, rise time, etc. 

3. Generate an Initial Population: N sets of chromosomes should be randomly 

generated before using GA's operation. These chromosomes are called the initial 

population. The size of the population, N, is chosen according to the sophistication of the 

optimization problem. Generally speaking, the larger the value of N requires fewer 

generations to come to a convergent solution. However, the total computation effect 

depends on N times the generation numbers. 

4. Generate the Next Generation or Stop: GA's use the operations of reproduction, 

crossover, and mutation to generate the next generation. From generation to generation, 

the maximum value of the fitness value is achieved. 

a. Reproduction: Reproduction is the operator carrying old strings through into a 

new population, depending on the fitness value. Strings with high fitness 

values obtain a larger number of copies in the next generation. An example of 

such an operation is shown in Table-2.1.1 

Table-2.1.1 An example of the reproduction of GA's 

Old Chromosome Fitness value New Chromosome 
[101010] 0.3 
[010101] 0.5 
[110110] 0.1 
[011011] 0.9 [011011] 

b. Crossover: Crossover is a recombination operator incorporated with 

reproduction. It is an effective way of exchanging information segments from 

high-fitness individuals. The crossover procedure is to randomly select a pair 

of strings from the mating pool, then randomly determine the crossover 

position. An example of the operation is shown in Table-2.1.2 

c. Mutation: The mutation operator is used to avoid the possibility of mistaking 

a local optimum for a global one. It is an occasional random change at some 
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2.2. Particle Swarm Optimization 

In 1995, Kennedy and Eberhart first introduced the particle swarm optimization 

(PSO) method. It is one of the optimization techniques and a kind of evolutionary 

computation technique. The particle swarm optimization (PSO) algorithm is a 

population-based search algorithm based on the simulation of the social behavior of birds 

within a flock. In PSO, individual, referred to as particles, are "flown" through hyper 

dimensional search space. Changes to the position of particles within the search space are 

based on the social-psychological tendency of individuals to emulate the success of other 

individuals. PSO is therefore a kind of symbiotic cooperative algorithm. A PSO 

algorithm maintains a swarm of particles, where each particle represents a potential 

solution. The method has been found to be robust in solving problems featuring 

nonlinearity and nondifferentiability, multiple optima, and high dimensionality through 

adaptation, which is derived from the social-psychological theory. The features of the 

method are as follows [35]: 

• The method is developed from research on swarm such as fish schooling and bird 

flocking. 

• It can be easily implemented, and has stable convergence characteristic with good 

computational efficiency. 

Instead of using evolutionary operators to manipulate the particle (individual), 

like in there evolutionary computational algorithms, each particle in PSO flies in the 

search space with velocity which is dynamically adjusted according to its own flying 

experience and its companions' fling experience. Each particle is treated as a volume less 

particle n g-dimensional search space. 

Each particle keeps track of its coordinates in the problem space, which are 

associated with the best solution (evaluating value) it has achieved so far. This value is 

called pbest. Another best value that is tracked by the global version of the particle 

swarm optimizer is the overall best value, and its location, obtained so far by any particle 

in the group, is called gbest. The PSO concept consists of, at each time step, changing the 

velocity of each particle toward its pbest and gbest location. Acceleration is weighted by 
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the BF and the GA into one algorithm. The BF optimization algorithm is known for its 

`excellent local search' capabilities but it does have obvious limitations in its global 

search approach. This presents a scenario, which is the converse for the GA: it has 

excellent global search capabilities but is rather limited in its local search procedure. 

Merging the two algorithms, through selective combination of certain favorable functions 

of the BF and GA could potentially yield an algorithm that has excellent local and global 

search capabilities. Every other process within the HBF is exactly the same as those of 

the BF optimization algorithm apart from the Chemotactic and Reproduction process. 

The modifications that are implemented through the combination with GA are the reasons 

for the differences. These constituent processes were modified because they largely 

determine the effectiveness of the HBF and sensible modifications to such processes can 

bring about significant improvements in the performance of any algorithm. 

3.1.1 Hybrid Chemotaxis 
The Hybrid chemotactic process includes the process of tumble and run/swim. It 

also includes the GA reproductive process which is the modification that aims to improve 

the normal chemotactic process of the BF. After every bacterium has performed 

chemotaxis, the new bacteria position and the corresponding nutrient concentration 

values achieved are modified using the reproductive process adopted from the GA. The 

idea is to create a new set of bacteria positions from the initial set, which is derived from 

the tumbles (and swims). The new set obtained through the GA modifications will then 

be used in next chemotactic step. 

In deriving the new set of bacteria positions, first, the initial set of bacteria 

positions are ranked. The ranking is based on their nutrient concentration values. The 

smaller values are ranked higher and vice versa. After the ranking process, a certain 

(user-specified) number of bacteria positions, which are the most highly ranked are 

passed directly into the new set of bacteria positions. The remaining members of the new 

set are formed from the initial set by randomly simulating crossover to produce new 

bacteria positions and then carrying out the mutation function on randomly selected 

bacteria positions. These GA reproduction operators are described in section 2.1. The 

new set of bacteria positions are used as the initial positions for the next chemotactic step. 
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Figure-3.1.1 Flowchart of the hybrid bacterial foraging algorithm [33] 
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3.1.2 Hybrid Reproduction 

A similar modification described for the Hybrid chemotaxis has been 

implemented for the reproduction phase of the BF to yield the hybrid reproduction of the 

HBF. The reproduction phase described in section 2.1.1 involves initially assigning 

fitness values to each member of the bacteria population, ranking each member of the 

population according to its respective fitness value, killing-off of the bottom-half of the 

ranked population and finally duplicating each member of the top half of the population. 

The GA modification alters this reproduction process by using the operators of crossover 

and mutation to produce a new population, rather than merely duplicating the top half of 

the ranked bacterial population. 

The bacterial population is ranked according to their fitness values of each 

bacterium. The fitness value is derived by considering only a single value, which 

corresponds to the best (minimum) nutrient concentration value the bacterium 

experienced all through the chemotactic process. The lower the fitness value of 

bacterium, the better is rank and vice versa. Having achieved a ranked bacterial 

population, a number of highly ranking bacterium is passed unaltered to the new 

population of bacteria. The remaining members of the new population are obtained by 

applying the functions of crossover and mutation randomly on the remaining bacteria 

within the ranked population. The modified approach to reproduction enables a better 

chance of convergence of the bacterial population to the positions that correspond to the 

best structure and parameters for the controller being designed. At the same time, the 

mutation function enables the algorithm to search wider areas within the sample space 

thus enhancing the global nature of the search procedure. The flowchart of hybrid 

bacterial foraging is shown in Figure-3.1.1. 

3.2. Hybrid Bacterial Foraging-Particle Swarm Optimization 

The hybrid bacterial foraging-particle swarm optimization (BF-PSO) was 

proposed by Arijit et. al. [28]. In his approach, after undergoing a chemo-tactic step, each 

bacterium also gets mutated by a PSO operator. In this phase, the bacterium is 

stochastically attracted towards the globally best position found so far in the entire 

population at current time and also towards its previous heading direction. The PSO 
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3.3. Genetically-Bacterial Swarm Optimization 

The main goal of GBSO algorithm is to find the minimum of a functionJ(0), 

9 E R P  which is not in the gradient VJ(9). Here, Ois the position of the bacterium, and 

J(0) is an attractant-repellant profile. That is, where nutrients and noxious substances 

are located, J < 0, J = 0, and J > 0 represents the presence of nutrients. A neutral 

medium, and the presence of noxious substances, respectively can be defined by 

P(j,k,l) = {0' (j,k,l)Ii = 	 (3.3.1) 

Eqs. (3.3.1) represents the position of each member in the population of S bacteria at the 

j th chemotactic step, k th reproduction step, and / th elimination-dispersal event. The 

co-ordinates of the bacterium here represent an individual solution of the optimization 

problem. The approach to GBSO technique is considered in two phases: first, the genetic 

selection using stochastic universal sampling method, crossover using extended 

intermediate recombination and mutation as used in BGA [3] are included in the 

chemotaxis loop which forces bacteria to exchange the information they carried to the 

others via switching the information on parts of the dimension. These operators extract 

common features from different bacteria in order to achieve even better solutions. 

Secondly, the search direction vector is iterated using PSO algorithm. The randomly 

initialized direction vector in basic BF algorithm remains same throughout the algorithm 

which can result delay in reaching the optimal solution and at times it can converge into 

some sub-optimal region. This delay is handled using PSO velocity equation. 

Furthermore, the elimination course is marginally different from the process in BF. If 

there is a probability of elimination-dispersal event to occur then instead of generating 

another population via the initialization process as considered in basic BF algorithm, the 

whole new individuals are generated via mutating all the dimensions from the eliminated 

one. 

In this work, the GA implementation presents the following characteristics: 
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3.3.1 Ranking and Selection in GBSO 

In a minimization problem of function J(0), a 'ranking' operation [32] is 

performed where individuals are sorted in decreasing J(0) value first, and then, J(0) is 

replaced by its position. Each individual has a new cost function value .T(0). 

Selection is made by the operator known as Stochastic Universal Sampling (SUS) 

[31]. If N ind is the number of individuals, then the survival probability of an individual 

P(69 is guarantd to be: 

jiC6')  P(01 ) = Nid  
E.P(61) 
j=1  

(3.3.2) 

3.3.2 Crossover operation in GBSO 

An extended intermediate recombination [30] is used for the GBSO algorithm as: 

zi  = +a; 	— 	 (3.3.3) 

where x 	 y = (y1 ,...yn ) are the parents and z = (z ) ,...zn ) is the 

successor, a, is a random number generator. The operation, achieved with a probability 

Pc  can be performed on each bacteria, separately. 

3.3.3 Mutation operation in GBSO 

The mutation operation is performed for each bacterium with a probability fin. Then, a 

random value is added for each individual — generated with a normal distribution and a 

standard deviation set to 20% of the search space range. If necessary, the mutated 

individual is kept in the search space by truncation. 

3.3.4. Particle Swarm Optimization 

PSO [10] is a stochastic optimization technique that draws inspiration from the behavior 

of flock of birds or the collective intelligence of a group of social insects with limited 

27 



individual capabilities. The E coli algorithm depends on random search directions which 

may lead to delay in reaching the global solution. The velocity update equation of PSO 

algorithm is used for optimizing the search direction in E coli algorithm which decreases 

the delay and hence enhances the convergence rate. They move iteratively through the d-

dimension problem space to search the new solutions. Each particle has a position 

represented by a position vector X kl where ( i is the index of the particle), and a velocity 

represented by a velocity-vector V . . Each particle remembers its own best position PA„, 

The best position vector among the swarm then stored in a vector 	. During the 

iteration time k , the update of the velocity from the previous velocity to the new velocity 

is determined by 

V,c1± , = 	+ C,R,(  P Lbest — X lc) C 2R 2(PC;lohai — X ;) (3.3.4) 

The new position is then determined by the sum of the previous position and the new 

velocity. 

X k+1  = X ki  + V ki 	 (3.3.5) 

where RI , R2  are random numbers and C, , C2  are learning factors. 

3.3.5 The GBSO algorithm 

The GBSO algorithm to search optimal values of parameters is described as 

follows: 

[Step 1] Initialize parameters p, S, N c , N s , N re , N ed , Pea , C(i)(i = 1,2,...,S), 

Where, 

19, 	Dimension of the search space 

S, 	Number of bacteria in the population 

A Tc , 	No. of Chemotactic steps 

N s , 	Swim length 
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Certain characteristics of the rule-base are assumed in using the proposed 

construction method: 

• Extreme outputs more usually occur when the inputs have extreme values while 

mid-range outputs generally are generated when the input values are mid-range. 

• Similar combinations of input linguistic values lead to similar output values 

Using these assumptions the output space is partitioned into different 

regions corresponding to different output linguistic values. How the space is 

partitioned is determined by the characteristic spacing parameters and the characteristic 

angle. The angle determines the slope of a liner  through the origin on which seed 

points are placed. The positioning of the seed points is determined by a similar spacing 

method as was used to determine the centre of the membership functions. 

Figure-4.2.2 Seed Points and Grid Points for rule-base construction 
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