
COMPUTATIONAL INTELLIGENCE IN
CONTROL APPLICATIONS

A DISSERTATION
Submitted in partial fulfillment of the

requirements for the award of the degree
of

MASTER OF TECHNOLOGY
in

ELECTRONICS AND COMPUTER ENGINEERING
With Specialization in Control & Guidance)

By
TUSH JAIN

DEPARTMENT OF ELECTRONCS AND COMPUTER ENGINEERING
INDIAN *sum-re OF TECHNOLOGY ROORKEE

ROORKEE -247 7 (INDIA)
JUNE, 2009

CANDIDATE'S DECLARATION

I here by declare that the work presented in this dissertation entitled

"Computational Intelligence in Control Applications being submitted in partial

fulfillment of the requirements for the award of the degree of Master of Technology
with specialization in Control & Guidance, in the Department of Electronics &

Computer Engineering, Indian Institute of Technology, Roorkee, under the guidance

of Dr. M.J. Nigam, Department of Electronics & Computer Engineering, Indian

Institute of Technology Roorkee, Roorkee.

Date: 3 June, 2009

Place: Roorkee (Tushar Jain)

CERTIFICATE

This is to certify that the above statement made by the candidate is true to the best

of my knowledge and belief.

Date: 3. O. . 0c\ 	 (Dr. M.J. Nigam)

Place: Roorkee 	 Associate Professor

Department of Electronics & Computer Engineering,

Indian Institute of Technology Roorkee,

Roorkee — 247667, India.

ACKNOWLEDGEMENT

I express my foremost and deepest gratitude to Dr. M.J. Nigam, Department of

Electronics & Computer Engineering, Indian Institute of Technology Roorkee, Roorkee

for his valuable guidance, support and motivation throughout this work. The valuable

hours of discussion and suggestions that I had with him have undoubtedly helped in

supplementing my thoughts in the right direction for attaining the desired objective. I

consider myself extremely fortunate for having got the opportunity to learn and work

under his able supervision over the entire period of my association with him.

My sincere thanks to all faculty members of Control & Guidance for their constant

encouragement, caring words, constructive criticism and suggestions towards the

successful completion of this work. My sincere thanks to laboratory staff to access the

computers and other resources at will for completion of this work.

Last but not the least, I'm highly indebted to my parents and family members,

whose sincere prayers, best wishes, moral support and encouragement have a constant

source of assurance, guidance, strength, and inspiration to me.

(Tushar Jain)

ii

ABSTRACT

Sensitivity and Robustness is the primary issue while designing the controller for non-

linear systems. One of the performance objectives for controller design is to keep the

error between the controlled output and the set-point as small as possible. The control of

many non-linear, inherently unstable systems using conventional methods is both

difficult to design and marginally satisfactory in implementation. The introduction of

optimization techniques in control engineering that makes use of evolutionary

computation and an implicit imprecision is successful in counteracting these limitations.

The field of computational intelligence has incorporated to such systems with an

objective to achieve higher optimality and satisfactory performance

The main aim of this work is to design and implement biologically inspired optimization

algorithms based control system. The performance of Particle Swarm Optimization

(PSO), Genetic Algorithm (GA), and Bacterial Foraging (BF) Optimization has been

improved using hybridization. The novel algorithms developed are hybrid BF-PSO or

adaptive BF, Genetically Bacterial Swarm Optimization (GBS0). The algorithms are first

tested on basic mathematical functions and then implemented on various control

engineering problems: Inverted Pendulum system, Ball and Beam System and trajectory

tracking in robot manipulators. The proposed algorithms also played a vital role in

eliminating the curse of dimensionality to an acceptable value.

The knowledge base of a Fuzzy Logic Controller (FLC) encapsulates expert knowledge

and consists of the data base (membership functions) and rule-base of the controller.

Optimization of both of these knowledge base components is critical to the performance

of the controller and has traditionally been achieved through a process of trial and error

and certain classical optimization techniques. In this work, the superiority of novel hybrid

algorithms is demonstrated through offline tuning of rule base and scaling factor over the

experts' design of rule base and design using classical optimization techniques.

iii

Light weight flexible arms will most likely constitute the next generation robots due to

their large payload carrying capacities at high speeds and less power demand. Control

problem of robots with flexible members is more complex compared to rigid robots due

to vibrations during the motion. Here the trajectory control of two link rigid-flexible

manipulator is presented in two phases. In first phase, only the scaling factors of hybrid

fuzzy precompensated PD control are optimized using the optimization techniques. While

in second phase, the rule base of fuzzy precompensator is optimized using characteristic

parameters keeping the PD controller parameter constant.

iv

CONTENT

Declaration 	
Acknowledgement 	 ii

Abstract 	 iii

Content 	
1. Introduction 	1

1.1. Evolutionary Computation 	1

1.2. Swarm Intelligence 	 2

1.3. Fuzzy Systems 	 3
1.4. Problem Statement 	3

1.5. Literature Review 	4

2. Intelligent Computational Techniques. 	7
2.1. Genetic Algorithm 	 7

2.1.1. Basic Construction of GA's 	7

2.2. Particle Swarm Optimization 	11

2.3. Bacterial Foraging 	13

2.3.1. Components of bacterial foraging 	14

3. Hybridization of Intelligent Computational Techniques 	20

3.1. Hybrid Bacterial Foraging 	 20

3.1.1. Hybrid Chemotaxis 	 21

3.1.2. Hybrid Reproduction 	 23

3.2. Hybrid Bacterial Foraging-Particle Swarm Optimization 	 23

3.3. Genetically-Bacterial Swarm Optimization 	 26

3.3.1. Ranking and Selection in GBSO 	 27

3.3.2. Crossover operation in GBSO 	 27

3.3.3. Mutation operation in GBSO 	27

3.3.4. Particle Swarm Optimization 	 27
3.3.5. The GBSO algorithm 	 28

4. Fuzzy Logic and Fuzzy Control 	 33

4.1. Fuzzy Logic Controller 	 33

4.1.1. Linguistic Variable, Rule Bases and Membership Functions..33

4.1.2. Fuzzification 	 35

4.1.3. Inference 	 35

4.1.4. Rule Base 	 37

4.1.5. Defuzzification 	 38

4.2. Designing a Fuzzy Logic Controller 	 38

4.2.1. Assumptions and Constraints 	 38

4.2.2. Spacing Parameter 	 39

4.2.3. Designing the Rule-Base 	 40

4.3. Hybrid Fuzzy Precompensated PD Controller Design 	 42

4.3.1. PD Control 	 42

4.3.2. Fuzzy Precompensation 	 43

5. Applications of Intelligent Computational Techniques 	 45

5.1. Inverted Pendulum 	 45

	

5.2. Ball and Beam System 46

5.2.1. Mechanical Model of Ball & Beam 	 47

5.3. Two Link Rigid-Flexible Manipulator Dynamics 	 49

6. Results and Their Interpretation 	 54

6.1. Experimental results using test functions 	 54

	

6.2. Inverted Pendulum 59

6.3. Ball and Beam system 	 62

6.4. Two link rigid-flexible robot manipulator 	 65

7. Conclusion and Future. Scope 	 78

References 	 79

Research papers published by the author 	 83

vi

1. INTRODUCTION

A major thrust in the algorithmic development is the design of algorithmic models

to solve increasingly complex problems. Enormous successes have been achieved

through the modeling of biological and natural intelligence, resulting in so-called

"intelligent systems" [35]. These intelligent algorithms include artificial neural networks,

evolutionary computation, swarm intelligence, artificial immune systems, and fuzzy

systems. Together with logic, deductive reasoning, expert systems, case-based reasoning

and symbolic machine learning systems, these intelligent algorithms form part of the field

of Computational Intelligence (CI).

1.1. Evolutionary Computation
Evolutionary Computation (EC) has its objective to mimic processes from natural

evolution, where the main concept is survival of the fittest: the weak must die. In natural

evolution, survival is achieved through reproduction. Offspring, reproduced from two

parents (sometimes more than two), contain genetic material of both (or all) parents -

hopefully the best characteristics of each parent. Those individuals that inherit bad

characteristics are weak and lose the battle to survive. This is nicely illustrated in some

bird species where one hatchling manages to get more food, gets stronger, and at the end

kicks out all its siblings from the nest to die.

Evolutionary algorithms use a population of individuals, where an individual is

referred to as a chromosome. A chromosome defines the characteristics of individuals in

the population. Each characteristic is referred to as a gene. The value of a gene is referred

to as an allele. For each generation, individuals compete to reproduce offspring. Those

individuals with the best survival capabilities have the best chance to reproduce.

Offspring are generated by combining parts of the parents, a process referred to as

crossover. Each individual in the population can also undergo mutation which alters some

of the allele of the chromosome. The survival strength of an individual is measured using

a fitness function which reflects the objective and constraints of the problem to be solved.

After each generation, individuals may undergo culling, or individuals may survive to the

next generation (referred to as elitism). Additionally, behavioral characteristics (as

1

encapsulated in phenotypes) can be used to influence the evolutionary process in two

ways: phenotypes may influence genetic changes, and/or behavioral characteristics

evolve separately.

Evolutionary computation has been used successfully in real-world applications,

for example, data mining, combinatorial optimization, fault diagnosis, classification,

clustering, scheduling, and time series approximation.

1.2. Swarm Intelligence
Swarm intelligence (SI) originated from the study of colonies, or swarms of social

organisms. Studies of the social behavior of organisms (individuals) in swarms prompted

the design of very efficient optimization and clustering algorithms. For example,

simulation studies of the graceful, but unpredictable, choreography of bird flocks led to

the design of the particle swarm optimization algorithm, and studies of the foraging

behavior of E. coli bacteria resulted in bacterial foraging optimization algorithms.

Particle swarm optimization (PSO) is a stochastic optimization approach, modeled

on the social behavior of bird flocks. PSO is a population-based search procedure where

the individuals, referred to as particles, are grouped into a swarm. Each particle in the

swarm represents a candidate solution to the optimization problem. In a PSO system,

each particle is "flown" through the multidimensional search space, adjusting its position

in search space according to its own experience and that of neighboring particles. A

particle therefore makes use of the best position encountered by it and the best position of

its neighbors to position itself toward an optimum solution. The effect is that particles

"fly" toward an optimum, while still searching a wide area around the current best

solution. The performance of each particle (i.e. the "closeness" of a particle to the global

minimum) is measured according to a predefined fitness function which is related to the

problem being solved. Applications of PSO include function approximation, clustering,

optimization of mechanical structures, and solving systems of equations.

Studies of bacterial foraging have contributed in abundance to the set of

intelligent algorithms. The modeling of running, tumbling, and swimming by bacteria in

their search for the shortest paths to food sources resulted in the development of shortest

path optimization algorithms. Other applications of bacterial foraging optimization

2

include routing optimization in telecommunication networks, graph coloring, scheduling

and solving the quadratic assignment problem.

1.3. Fuzzy Systems

Traditional set theory requires elements to be either part of a set or not. Similarly,

binary-valued logic requires the value of parameters to be either 0 or 1, with similar

constraints on the outcome of an inference process. Human reasoning is, however, almost

always not this exact. The observations and reasoning usually include a measure of

uncertainty.

Fuzzy sets and fuzzy logic allow what is referred to as approximate reasoning.

With fuzzy sets, an element belongs to a set to a certain degree of certainty. Fuzzy logic

allows reasoning with these uncertain facts to infer new facts. In a sense, fuzzy sets and

logic allow the modeling of common sense.

The uncertainty in fuzzy systems is referred to as nonstatistical uncertainty, and

should not be confused with statistical uncertainty. Statistical uncertainty is based on the

laws of probability, whereas nonstatistical uncertainty is based on vagueness, imprecision

and/or ambiguity. Statistical uncertainty is resolved through observations. For example.

when a coin is tossed we are certain what the outcome is, while before tossing the coin,

we know that the probability of each outcome is 50%. Nonstatistical uncertainty, or

fuzziness, is an inherent property of a system and cannot be altered or resolved by

observations.

Fuzzy systems have been applied successfully to control systems, gear

transmission and braking systems in vehicles, controlling lifts, home appliances,

controlling traffic signals, and many others.

1.4. Problem Statement

In light of the discussion, the prime objectives of the research work will focus on

the developing simple but commercially attractive and viable methods for the purpose of

designing optimal control systems. The objectives of the thesis can be summarized as

follows:

1. Develop particular Evolutionary Algorithms and Swarm Intelligence Techniques

that can enable automation to provide optimal control system.

2. Develop a novel approach using hybridization of basic optimization techniques by

which their performance can be enhanced in terms of convergence of fitness

function in less generation.

3. Implement the developed hybrid algorithms over various control engineering

problems, for example, Inverted Pendulum, two link rigid flexible robot

manipulator, ball and beam system.

4. Provide a comparison of the developed hybrid algorithms adopted to achieve the

optimal control.

1.5. Literature Review
The era of evolutionary computation started with genetic algorithms in the past

three decades. Amounts of applications have benefited from the utilization of GA [1].

Potter and De Jong [2] have demonstrated the use of co-operative co-evaluation GA in

multivariable functional optimization. Breeder genetic algorithm (BGA) [3] is first

introduced by Muhlenbein et al. The major difference lies in the method of selection in

comparison to simple GA. A typical task of GA is to find the best values of a predefined

set of free parameters associated with either a process model or a control vector. The GA

uses the basic reproduction operators such as crossover and mutation to produce the

genetic composition of a population. Efforts are being made in the enhancement of

conventional algorithm [4-7]. GA with neural network and fuzzy control [8] has also

been used extensively to optimize nonlinear and multivariable systems. In the past,

researches have been carried out in using hybrid genetic algorithm approaches for

optimization problems. Buczak and Uhrig proposed a novel hierarchal fuzzy-genetic [9]

information fusion technique. Constraint handling is one of the major concern for solving

the optimization problems using GA. Chootinan and Chen proposed a gradient

information [10], derived from the constraint set, to systematically repair infeasible

solutions.

Though the GA methods have been successful to solve complex optimization

problems, recent search has identified some deficiencies in GA performance [11]. This

4

degradation in efficiency is apparent in applications with highly epistatic objective

functions (i.e. where the parameters being optimized are highly correlated), the genetic

operators alone cannot ensure better fitness of offspring because chromosomes in the

population have similar structure and their average fitness are high toward the end of

evolutionary process. Researches are being done to increase the efficiency of GA by

hybridization [12]. Yang et al [13] proposes a hybrid immigrants scheme that combines

the concept of elitism, dualism and random immigrants to address dynamic optimization

problems.

Particle Swarm Optimization (PSO) was originally introduced by J. Kennedy et al

in 1995, which is an evolutionary algorithm based on the swarm intelligence [14-16], and

motivated from the simulation of social behavior. The PSO technique can generate a

high-quality solution within shorter calculation time and stable convergence

characteristic than other stochastic methods. Many researchers are working in the

direction of improving the search phenomena of PSO technique. A novel PSO algorithm

based on immunity-clonal strategies, called clonal particle swarm optimization (CPSO)

[17] is proposed by Y. Tan et al with applications and comparison analysis with standard

PSO. Teng-Bo Chen modifies the classical PSO technique in four phases [18]: first, a

contractive factor is introduced to the position update equation, and the particles are

limited in search region. A new strategy for updating velocity is then adopted, in which

the velocity is weakened linearly. Thirdly, two modified PSO algorithms are intersected.

Finally, adding an item of integral control in the modified algorithm improves its global

search ability. The particle swarm optimizer is also used for solving constrained

optimization problems [19] which adopt a very small population size. PSO is hybridized

with differential evolution [20] and GA [21-23] to increase the effectiveness in finding

the optimal solution.

Natural selection tends to eliminate animals with poor foraging strategies through

methods for locating, handling, and ingesting food and favors the propagation of genes of

those animals that have successful foraging strategies, since they are more likely to obtain

reproductive success [24, 25]. After many generations, poor foraging strategies are either

eliminated or shaped into good ones. Since a foraging organism takes actions to

maximize the energy utilized per unit time spent foraging, considering constraints

5

presented by its own physiology (e.g., sensing and cognitive capabilities) and

environment (e.g., density of prey, risks from predators, physical characteristics of the

search area). It is essentially this idea that could be applied to complex optimization

problems. In 2007, Kim et al. proposed a hybrid approach involving GA and BF for

function optimization [26, 27]. PSO-BF [28] hybridized algorithm is discussed in Arijit et

al. work where the mutation is added using PSO in the classical BF optimization.

1.6 	Organization of the thesis

The report has been organized into seven chapters. Chapter 1 gives an

impression of the subject, basics, literature survey and objective of the study. Chapter

2 briefly discussed the basic optimization techniques. Chapter 3 describes algorithms

developed using hybridization of basic optimization techniques. Chapter 4 contains the

introduction of fuzzy logic systems and its optimization. Chapter 5 gives an overview

of the applications used. Chapter 6 presents the simulation results for controller

designed using hybridized algorithms for the applications. Chapter 7 presents the

conclusion of the study and suggestions are given for further study of this subject.

6

string position based on the mutation probability. An example of the operator

is shown in Table-2.1.3.

Table-2.1.2 An example of the crossover of GA's

Old Chromosome Fitness value New Chromosome

[101010]

S 	t
[010101]

[110110]

[011011]

0.3

0.5

0.1

0.9

[111011]

[000100]

Table-2.1.3 An example of the mutation of GA's

Old Chromosome Fitness value New Chromosome

[101010] 0.3

[010101] 0.5

[110110] 0.1 [110011]

11
0 1

5. Elite Method: Due to random process, GA's could loss the best chromosome in a

population, so the Elite method is adopted. The best individual in each generation is

selected without the three basic operations, and make it as a member of the new

generation. Until the other better string is found in the new population, the elite string is

superseded. Thus the superior individual in each population is always preserved. So the

fitness of the generation is gradually increased generation to generation.

6. Reinforced Search Method: As above, the individual with higher fitness is

selected to copy to a new population. On the contrary, inferior string can be selected to

operate. But it has some differences from the Elite method. The worst individual should

be mutated with higher mutation rate. We will select the N inferior strings to mutate but

the size of N should be small enough. This method has some advantages: 1) using the

higher mutation rate makes the search space widely, 2) the probability in searching the

global optimum is higher, 3) the method can avoid the population rarefied. Therefore, it

9

can avoid that the solutions premature convergence to form a wrong local-optimum. The

full search flowchart is shown in Figure-2.1.1. All elements in a population will be

divided into three groups. The left path in Figure-2.1.1 implements the Elite method. The

middle ones achieve the Reinforced search method, and the right executes simple GA's

with three basic operations.

Generate the initial
population, Gen = 0

Calculate the fitness of each
individual

Reproduction

Hole the best chromosome

Generate the new population
Gen = Gen +

End

Higher mutated rate
mutation

Crossover

Low mutated rate
mutation

Figure-2.1.1 Flowchart of genetic algorithm

10

a random term, with separate random numbers being generated for acceleration toward

pbest and gbest locations.

For example, the jth particle is represented as x j = ()cid, x j;2, 	x j, g) in the g-

dimensional space. The best previous position of the jth particle is recorded and

represented as pbestj = (pbestp, pbestj,2, 	pbestj). The index of the best particle among

all of the particles in the group is represented by the gbestg. The rate of the position

change (velocity) for particle j is represented as v.; = (vi,/, v j,2,..., vi , g). the modified

velocity and position of each particle can be calculated using the current velocity and the

distance from pbestig to gbesti,g as shown in the following formulas:

v") = w -v(1)g +c1 * rand()* (pbest Ig — x(I))+ c 2 * rand()* (gbest g —
/

)) j 	1,g

X = X ± V
(r+1) 	(t) 	(r+1)
J,g 	J , g 	J,K

= 1, 2, ..., n

g = 1,2, ...,m

where

n 	number of particle in'a group;

m 	number of members in a particle;

t 	 pointer of iterations (generations);

v(0 	velocity of particle j at iteration t, V7" < vY,g) 	;

w 	inertia weight factor;

CI, C2 	 acceleration constant;

rand() 	random number 0 and 1;

x(
`g current position of particle/ at iteration t;

pbest 	pbest of particle/.

gbest 	gbest of the group.

(2.2.1)

(2.2.2)

In the above procedures, the parameter V"' determined the resolution, or fitness, with

which regions be searched between the present position and the target position. If rax is

too high, particles might fly past good solutions. If Jini' is too small, particles may not

12

explore sufficiently beyond local solutions. In many experiences with PSO, rax was
often set at 10-20% of the dynamic range of the variable on each dimension.

The constants c1 and c2 represent the weighting of the stochastic acceleration

terms that pull each particle toward pbest and gbest positions. Low values allow particles

to roam far from the target regions before being tugged back. On the other hand, high

values result in abrupt movement toward, or past, target regions. Hence, the acceleration

constants ci and c2 were often set to be 2.0 according to past experiences.

Suitable selection of inertia weight w in (eq no. 2.2.3) provides a balance between

global and local explorations, thus requiring less iteration on average to find a sufficiently

optimal solution. As originally developed, w often decreases linearly from about 0.9 to

0.4 during a run. In. general, the inertia weight w is set according to the following

equation:

w 	w max w nil" x iterwmax 	 itermax 	 (2.2.3)

Where iter' is the maximum number of iterations (generations), and iter is the current

number of iterations. The full search flowchart is shown in Figure-2.2.1

2.3. Bacterial Foraging

Bacterial foraging was formally introduced in 2002 by Kevin M. Passino in [24].

The BF is a stochastic search and optimization technique based on the foraging habits of

Escherichia coli, more commonly known as E. coli, a bacterium commonly found in the

gut of human beings. A fundamental part of the BF is the movement of the bacterium

termed as chemotaxis. The chemotactic motion exhibited alternately by the E. coli, whilst

searching for better forage, is of two distinct types: (1) tumble and (2) runs (swims). The

chemotactic motion of E. coli is modeled within the BF algorithm according to the

possible mediums the bacteria encounters and its response within such mediums. This is

summarized as follows:

1. Neutral substance medium: Bacterium tumbles and runs alternately

13

2. Noxious substance medium: Bacterium tumbles more than it swims as it attempts

to get out of the noxious substance (climb down the noxious substance gradient).

It essentially seeks favorable conditions.

3. Nutrient substance medium: Bacterium swims more than it tumbles while it

searches for even more favorable nutrient mediums (up the nutritious substance

gradient).

The implementation of the BF optimization algorithm is summarized in Figure-2.3.1. The

highlighted stages — initialization, chemotaxis, swarming, reproduction and

elimination/dispersal are described in the following sections.

2.3.1 Components of bacterial foraging

1. Initialization: At the start of BF algorithm, all the parameters required for its

implementation are specified. These include the number of bacteria within the

population, the positions of each bacterium within the sample space, the number of

chemotactic steps taken during each bacterium lifetime, the number of reproduction and

elimination/dispersal events.

2. Chemotaxis: E. coli has the proclivity to convene at nutrient-rich areas by an

activity called chemotaxis. They achieve chemotaxis in two different ways: Each

bacterium can either 'run', which is movement in a specified direction, or it can 'tumble',

which is a movement in a random direction. In order to search for the positions with best

nutrient concentrations, each bacterium takes a specified number of chemotactic steps. At

the initialization of the algorithm or at the beginning of each chemotactic step, tumble or

run/swim within the chemotactic loop, each bacterium has, what is referred to as, its

`initial' position. Nutrient concentration function is used to indicate a progressive search

procedure.

The subsequent nutrient concentration values are determined each time a

bacterium tumbles or run/swim from its initial position. In the chemotactic step, the

tumble must always occur before the run/swim. After a tumble, which is a move in a

random direction to a 'new' position, the nutrient concentration is evaluated. The

comparison between 'new' nutrient concentration values with 'initial' nutrient

14

Velocity updating

fitness value
is better than

pbest

fitness value
is better than

gbest

Initialization of pbest
and gbest

Initialization: the
velocity and place of

particles

Figure-2.2.1 Flowchart of particle swarm optimization

15

Randomly Generate Initial Population of
Bacteria & their Positions, 01(hk,l) on
Domain of the Optimization problem

k =N„

L.../JP°d

if 1 < Ned. 1 = 1 + 1

Elimination-dispersal - With probability Pea, eliminate and disperse
each bacterium to random positions on the optimization domain

Iff(i,/±1,k,l) >
or m = N,& j < Ne

i= + I

V

IfJ(ij+.1,k,1) < Jim
or m < N,& rn rn +1

4. Swim in Random Direction.
Calculate new J(i,j+1,k,1).

Com pare with Jtast

j = N,

Reproduction - Sort Bacterium health Jhealth in ascending
order. Bacteria with highest Jheahh die. Bacteria with lowest

Jhea tth split, with the new copies replacing dead bacteria

if k < N,„, k k 1

Bacterial Swarming
2. Add Cell-to-Cell Attractant

Effect

3. Tumble in Random Direction.
Calculate new J(i,j+1,k,1). Let

this equal last

Perform Chemotaxis for Bacterium
1. Calculate the Nutrient Concentration, J(i,j,k,l)

of each bacterium at Current Positions

lir 1 = Ned

End Program with the
best result as output

Figure-2.3.1 Flowchart of the Bacterial Foraging Optimization Algorithm

16

concentration value determines whether a swim will follow subsequently. The smaller

nutrient concentration value sets the reference point that subsequently follows, for

example, say first run/swim. After the first swim occurs, a new bacterium position is

obtained. The bacterial position, represented by 0, is given by eq-2.3.1. Within the

equation, i represent the counter for each bacteria within the population; j represent the

number of chemotactic steps that each bacteria has undertaken during its lifetime; k

represent the counter for the reproduction steps while 1 is the indicator for the elimination

and dispersal events that occurring.

01 (j +1,k,1)---- 0' (j,k,1)+C(i)0(j) 	 (2.3.1)

Where 0`(j,k,l) represents the position of the ith bacteria at the jth chemotactic step, the

le reproductive step and the lth elimination and dispersal step. C(i) is the size of the

chemotactic step taken in a random direction by the igh bacteria.

3. 	Swarming: When cells of the E. coli are randomly distributed in a solution that

has varying concentrations of nutrients and noxious substances randomly distributed

within it, each bacterium would secrete attractants to signal other cells if it finds that it is

swimming in areas with good nutrient concentration. This facilitates the convergence of

cells of bacteria to form groups around areas in the solution with high nutrient

concentration. This enhances the effectiveness of the search and foraging procedure.

Also, when cells of bacteria experience noxious substances, each cell would

secrete repellants to divert the search and foraging process away from the areas with

noxious substances. This causes divergence of the bacteria cells, ensuring that they

spread out to other areas, this improving the effectiveness of the search procedure. This

behavior of the foraging of bacteria termed swarming has been modeled within the BF

optimization algorithm. The mathematical expression for swarming can be represented as

in eq-2.3.2.

17

J,(0,P(j,k,1))= 	 (j,k,1))

L[— d attract exP(— W attract Ecom
m=i

+ X 	hrepellent exp.
1=1

W repellent Ec
m=i

(2.3.2)

J„(61,P(j,k,1)) is the cell-to-cell attraction/repulsion function value that is to be added

to the nutrient concentration function, which is to be optimized. S is the total number of

bacteria, p is the number of parameters to be optimized which are present in each

bacterium, dattract and w attract represent the quantification of the depth and width of the

repellent secreted by each bacterium.

4. Reproduction: Reproduction occurs when every cell in the bacteria population

has moved the specified number of chemotactic steps. It is necessary to cause all the

bacteria within the population to converge at the bacteria population with the best

nutrient concentration value. Reproduction is achieved in two stages: first stage

essentially involves assigning a fitness value to each bacterium within the population.

The fitness value determines which bacteria is fit enough to reproduce. Having achieved

the fitness assignment, the bacteria are then ranked according to their fitness values. The

bacterium with smaller nutrient concentration values are ranked higher than those with

larger values. In order to reproduce, the one-half of the population of bacteria, ranked the

least, is kicked off. The remaining half which has the better ranks is replicated — each

surviving bacterium splits into two copies of itself The new population then serves as

initial position for the next chemotactic process or the next elimination-dispersal event.

5. Elimination and Dispersal: The process simply involves randomly killing off

some of the poorly performing bacteria within the population. The need for this is simply

to provide room for new members of the bacterium population that potentially are

situated in areas ith higher nutrient concentration. The obvious effect of elimination is a

reduction in the total bacterial population. In order to counter the reduction, a

complimentary process termed Dispersal occurs.

18

The eliminated bacteria are randomly replaced by new ones, which are probably

situated in different (and possibly better) locations than the previously existing members

of the population. These new locations might be better because they may be situated

closer to spaces with better nutrient concentration.

19

3. HYBRIDIZATION OF INTELLIGENT COMPUTATIONAL
TECHNIQUES

The description of basic techniques for intelligent computation has been

highlighted in chapter 2. This chapter focuses on the hybridization of three basic

algorithms employed for the optimal automated control. For several problems a simple

optimization algorithm might be good enough to find the desired solution. As reported in

the literature, there are several types of problems where a direct evolutionary algorithm

could fail to obtain a convenient (optimal) solution. This clearly paves way to the need

for hybridization of basic optimization algorithms. Some of the possible reasons for

hybridization are as follows:

1. To improve the performance of the evolutionary algorithm (example: speed of

convergence)

2. To improve the quality of the solutions obtained by the evolutionary algorithm

3. To incorporate the evolutionary algorithm as part of a larger system.

3.1. Hybrid Bacterial Foraging
The Hybrid Bacteria Foraging (HBF) is an example of a hybrid evolutionary

algorithm. Its name has been chosen for two reasons:

1. it is formed from the combination of the GA and the BF

2. it is largely similar in implementation to the BF.

Similar hybrid evolutionary algorithms have been developed and used in [32], [33], [26]

and [34] but the novelty of the developed algorithm lies especially in the uniqueness of

the application it has been specifically developed for. The circumstance that led to the

development of the HBF stemmed from the process of investigating ways to improve the

effectiveness of the simple BF optimization algorithm (described in section 2.3) as an

approach for the design of robust controllers for the electronic drive. In the formation of

the HBF optimization algorithm, the aim was to combine specific desirable functions of

20

operator uses only the 'social' component and eliminates the 'cognitive' component as

the local search in different regions of the search space is already taken care of by the

chemotactic steps of the BF algorithm.

Here the approach used is somewhat different from the original paper, instead of

mutation step using PSO in the basic BF algorithm the search direction vector is made

adaptive using PSO. The search vector is made constant in [28] and in this thesis, it gets

changed after all the bacteria gets tumble and swim in the particular direction. This vector

helps in early convergence of the fitness function as the direction vector is not constant;

the individual knows how much it should move to reach the optimal solution. Basic

velocity and position equation as described in section 2.2 are used to update the search

vector. This combination of both BFO and PSO aims to make use of PSO ability to

exchange social information and BFO ability in finding a new solution by elimination

and dispersal. The (BFO-PSO) models bacterial Population Chemotaxis, swarming,

reproduction, elimination and dispersal oriented by PSO, is shown in flowchart form as in

Figure-3.2.1. (Initially, j = k = l = 0).

Initialize parameters n, S, Nc, Ns, Nre, Ned, Ped, C(0(i = 1, 2... S), Delta, CI, C2, RI, R2.

where,

• n: Dimension of the search space,

• S : The number of bacteria in the population,

• Sr : Half the total number of bacteria ,

• NS : Maximum number of swim length,

• : Chemotactic steps,

• Nre : The number of reproduction steps,

• Ned : Elimination and dispersal events,

• Ped: Elimination and dispersal with probability,

• c(i) : The step size taken in the random direction,

• C1, C2 : PSO random parameter,

• R1, R2: PSO random parameter.

24

Start

Initialize the parameters

(Tumble)

Determine random direction and position

Run one step and calculate
J (4/4-1, k, l)

Evaluate current
position and local cost

t
Update position and

coat function

m<Ac
And does the

nutrient

concentration
increase

i= + I

(Select next bacterium)

Calculate total fitness of each bacterium and sort in

reverse

Destroy the second half of the population and split the first half of the
population

Yes

0

Elimination and Dispersal

Reset the step sizes

0

Did all bacteria

tumble and swim

i < S

Evaluate Pgbest and Pgbest for each bacteria

Evaluate the new direction for each bacteria

Decrease the step sizes

(Stop

Figure-3.2.1. Flowchart of Hybrid Bacterial Foraging and Particle Swarm based

Optimization

25

N re, 	No. of reproduction steps

N ed , 	No. of elimination-dispersal events

Ped 	Elimination-dispersal with probability

C(i), 	size of the step taken in the random direction specified by the tumble

oi, 	Position vector of the i-th bacterium, in j-th chemotactic step, k-th

reproduction

[Step 2] Elimination-dispersal loop:1 = +1 .

[Step 3] Reproduction loop: k = k +1.

[Step 4] Chemotaxis loop: j = j +1.

[substep a] 	For i = 1,2,...S, take a chemotactic step for bacterium i as follows.

[substep b] Compute fitness function, J(i, j,k,l)

[substep c] 	Let J = J(i, j, k, l) to save this value since we may find a better

cost via a run

[substep d] Tumble: generate a random vector A(i) E RP with each element

A. (i),m =1,2,...,p, a random number on [-1,1]

[substep e] 	Move: Let 0' (j + 1, k, l) = 0' (j,k,1)+ C(i) 	A(i)
AT (i)A(i)

[substep f] 	Compute J(i, j +1,k,1), and then let

J(i, j +1,k,1)= J(i, j +1,k,1)+ J 	(j +1,k ,1), P(j + 1,k ,1))

[substep g] Swim

i) Let m=0 (counter for swim length)

ii) While m < N S (if have not climbed down too long)

• Let m=m+1

• If J(i, j +1,k,l) < Jraxi (if doing better)

let J = J(i, j +1,k,l) and let

0'(j +1,k,1)= 0' (j,k,1)+ C(i) 	A(i)
VAT (i)A(i)

29

[substep h]

[substep 1]

[substep j]

[substep k]

and use this 0' (j + 1, kJ) to compute the new

J(i, j +1,k,l) as we did in [substep f]

Pcurrent(i, j +1)= P(i,j +1)

local 	+1) = Jtas, (i + 1)

Pcurrent(il j +1) 	 j +1) • Else, 	 , let m = N c . This is the
local (17' J. + 	1 tart (i, + 1)

end of while statement.

Ranking and Select individuals from population using SUS.

Recombine selected individuals using crossover operator.

Mutate offsprings.

Go to next bacterium (i,l) if i # S (i.e. go to [substep b] to process

[substep 1]

[substep m]

the next bacterium)

Evaluate the local best position (P,) ibest

best position (P) gbesi

Evaluate the new direction for each bacteria

for each bacteria and global

V = co* V +C i * RI (Pthe,„ Pcurren1) C2 * R2 (Pgbesi

A= V

[Step 5] If j < Ne , go to step 3. In this case, continue chemotaxis, since the life of

bacteria is not over

[Step 6] Reproduction:

- 1),„„„,)

[substep a]

[substep b]

For the given k and 1, and for each i = 1,2,...,S, let

Alc+1
,health 	 j, k,1)

J=1

be the health of the bacteriumi (a measure of how many nutrients it

got over its lifetime and how successful it was at avoiding noxious

substances). Sort bacteria and chemotactic parameters C(i) in order

of ascending cost health (higher cost means lower health)

The Sr bacteria with the highest J health values die and the other S,.

30

Evaluate current
position and cost
function for PSO

operation

Update position and
cost function

(Tumble)
Determine random direction and position

Run one step and calculate
J(f,j+1,k, 1)

m < N s
And does the

nutrient
concentration

increase
i = + 1

(Select next bacterium
•

Did all bacteria
tumble and swim

i < S

Selection

Crossover

Mutation

Evaluate local best and global best positions for
each bacteria in PSO

Evaluate the Delta for each bacteria using velocity
equation in PSO

Yes

Start

Initialize the parameters

Yes

Calculate total fitness of each bacterium and sort in
reverse

Destroy the second half of the population and split the first half of the
population

N

Elimination and Dispersal

No

Stop

Figure3.3.1. Flowchart of Hybrid Genetically-Bacterial Foraging converged by Particle swarm
optimization

31

Bacteria with the best values split (and the copies that are made are

placed at the same location as their parent).

[Step 7] If k < Ire , go to step 3. We have not reached the specified number of

reproduction steps. So we start the next generation in the chemo-taxis loop.

[Step 8] Elimination-dispersal: For i= 1,2,..., S , with probability Pa , eliminate and

disperse each bacterium (this keeps the number of bacteria in the population

constant). If / < Ned , then go to step 2; otherwise end.

The flowchart depicting the step by step algorithm discussed above is shown in Figure-

3.3.1.

32

4. FUZZY LOGIC AND FUZZY CONTROL

Conventional control system design depends upon the development of a

mathematical description of the system's behavior. This usually involves assumptions

being made in relation to the system dynamics and any non-linear behavior that may

occur. In cases where assumptions in respect of non-linear behavior cannot be made, the

need to describe mathematically, ever increasing complexity becomes difficult and

perhaps infeasible.

Fuzzy logic [36] is the application of logic to imprecision and has found

application in control system design in the form of Fuzzy Logic Controllers (FLCs).

Fuzzy logic controllers facilitate the application of human expert knowledge, gained

through experience, intuition or experimentation, to a control problem. Such expert

knowledge of a system's behavior and the necessary intervention required to adequately

control that behavior is described using imprecise term known as "linguistic variables".

The imprecision of linguistic variables reflects the nature of human observation and

judgment of objects and events within our environment, and there use in FLCs thus

allows the mapping of heuristic, system-related information to actions observed to

provide adequate system control. In this way, FLCs obviate the need for complex

mathematical descriptions of non-linear behavior to the nth degree and thus offer an

alternative method of system control.

4.1. Fuzzy Logic Controller
Figure-4.1 shows the structure of Fuzzy controller. It consists of a preprocessing,

fuzzification interface, knowledge base, fuzzy inference system, defuzzification interface

and a post processing unit. The preprocessing block transforms the input (e and e) on

the actual universe of discourse (UOD) to the normalized universe of discourse, using the

input scaling factors Kp, KD and KG' for computational simplicity. The fuzzification block

converts crisp inputs to appropriate fuzzy sets using the membership functions.

4.1.1. Linguistic Variable, Rule Bases and Membership Functions
Linguistic variables are descriptive terms that might be used, and best understood,

by an expert of the system under consideration, which describe the behavior of a system

33

Rule
base

Fuzzification Defuzzification —11■0

Inference
gine

Preprocessing

and the applied actions required to control that system. For the FLC in this study, the

linguistic variables are based upon the error e(t), and the rate-of-change of error, de/cit.

Fuzzycontroller

gill". Postpro cess in

Figure-4.1 Structure of fuzzy controller

The rule base [36] of a FLC consists of a set of behavior/action constructs that

describe the action to be taken on the occurrence of particular observed/measured system

behavior or state. The constructs consist of a premise (i.e. system behavior/state) and the

associated consequent (i.e. the action to be taken in order to achieve adequate system

control under the observed system behavior/state) used in an 'if premise then

consequent' form. Combinations of multiple premises and consequents are possible

which enhance the precision of the rule -base. The rule base of a FLC must adequately

cover all possible system behavior in respect of applied actions, in order for the FLC to

provide reliable system control.

The above descriptions of linguistic variables and rule -bases do not in themselves

render the controller 'fuzzy', since, as defined, they could be adequately used in a

Boolean-based system. What makes the controller 'fuzzy' is the use of membership

functions (MFs) [36] to quantify to what degree of certainty each rule is true (i.e. fired) in

respect of the system state at any particular time. The 'shapes' and relative spacing of the

MFs form a critical element of the FLC and describe expert understanding of the

meaning of the linguistic variables. Typical MF shapes are triangular, trapezoidal,

sigmoid or custom-based, with several MFs used to partition the domain of the numeric

value under consideration (i.e. the universe of discourse UOD).

The use of MFs ensures that certainty, as defined within a FLC, is based upon the

subjective interpretation of an expert rather than upon a probability distribution. Degrees

34

of certainty (i.e. degree of membership of a fuzzy set) range from 0 to 1 in value and
hence partial membership is possible. The FLC aggregates the levels of certainty for the

entire rule -base to obtain an aggregate fuzzy output set, which is subsequently used to

obtain a crisp (i.e. numerically valued), control action. The combination of the rule -base

(RB), and associated membership functions (MF), constitute the controller knowledge

base (KB), which in effect represents the embedded expert system knowledge. In general,

two forms of FLC are defined [37],

• Mamdani

• Sugeno
Both of these architectures are similar in all respects except for the formulation of the

output crisp value. In the Mamdani FLC, the output is formulated using fuzzy sets

whereas the Sugeno type FLC uses single -spike output MFs (i.e. singletons) rather than

distributed functions [37].

4.1.2. Fuzzification
This is the process of transforming numeric inputs to fuzzy values [36]. The

premise(s) of each rule is evaluated in respect of its degree of membership of the fuzzy

sets defined across the range of possible values that the input may assume (i.e. the

universe of discourse). For example, Figure-4.1.2 below shows the MFs for the error

input as generated using the MATLAB fuzzy GUI. An error input value of 0.1 for the

position controller, corresponds to a degree of membership of approximately 0.75 for the

ZERO fuzzy set and a degree of membership of approximately of 0.25 for the PS

(positive small) fuzzy set (i.e. FIZERO[e(t)]=0.75 liNS[e(t)]=0.25). Degree of

membership of all other fuzzy sets in the universe of discourse for the error, where e(t) —
0.1, is zero.

4.1.3. Inference
Having fuzzified the controller inputs, the inference process consists of two

phases;

35

B B N z P NS PS

0.8
lizoao[e(t)]=0.751

0.6

0.4
1INs[e(t)]=0.25! 	

0.2

0

• Rule Matching
The controller evaluates the applicability of each of the rules with respect to the current

system state using fuzzy operators (e.g. min). Where a rule contains only a single premise

then this stage will return the value obtained from the fuzzification process. FLCs

commonly use multiple premises within each rule and therefore the certainty as to what

degree the rule as a whole applies to the current system state must be evaluated. To

perform the evaluation, the controller applies a logic operator to the fuzzified values of

the inputs. Two operators commonly used for the AND conjunction are the minimum and

product operators (for OR conjunction, the max operator is commonly used). For the

position controller, the min operator was used.

0 	02 	0.4 	0.6 	0.8 	I
input variable "e"

Figure-4.1.2 Degree of membership of Z and NS for input, e = 0.425

• Implied Conclusions

The consequent of each rule is a fuzzy set, which is truncated in accordance with

the degree of certainty that the premise or conjunction of premises, of the rule applies to

the current system state. The degree of certainty for the rule is evaluated by matching

rules to the current system state using the FLC inputs as is outlined in the previous

section. For all rules therefore deemed to be 'fired' (i.e. that apply) an implication

operator is applied to the consequent fuzzy set in order to truncate the set relative to the

36

degree of firing for the rule. So for the example above where the min operator was used
to evaluate a degree of certainty for the rule to be 0.25, then accordingly the consequent
fuzzy set is truncated by this amount.

4.1.4 Rule Base

As stated, the rule -base consists of a set of linguistic variable constructs in the
form of;

if premise_l and/or.... premise_n then consequent] and/or 	 consequent_m
which describes the system behavior or states to a level of resolution considered to
adequately cover all expected states or behavior and the required actions. The number of

rules is dependent upon the number of controller inputs and the number of linguistic
variables used to describe those variables. For the position controller in this study, 2
inputs are used with 5 linguistic variables to describe the nature of those inputs relative to
their universe of discourse, which results in at most 52 = 25 rules. Although in this case,
every scenario has an associated entry, it is possible to leave a particular space blank,
which would infer that the controller takes no action (i.e. output remains the same as
previously).

For systems with 1, 2 or 3 inputs, a tabular form of the rule-base can be
constructed. Figure-4.1.3 illustrates the rule -base used for the heuristic position
controller in tabular form.

eN
NB NS Z PS PB

NB NS NS NB NB Z

NS NS NS NB Z PB

Z NB NB Z PB PB

PB NB Z PB PS PS

PS Z PB PB PS PS

Figure-4.1.3 Heuristically-tuned FLC rule-base

37

The rule -base above was arrived at through intuition and trial, using Simulink,
and is not necessarily optimal for the system. A feature of the rule-base used is the
symmetry across the diagonal. This feature occurs in systems where the physical

behavior of the system exhibits symmetry, which is consistent in the case of the cart-
positioning model used in this study where the surface upon which it travels is even and

considered identical in both possible directions of travel. Where systems display such
symmetry, obtaining, or optimizing a rule -base may prove quicker if the symmetrical
feature can be exploited to some extent.

4.1.5 Defuzzification
The final process of the FLC is to aggregate the fuzzy sets resulting from the

inference mechanism to produce a decision (i.e. crisp output), which is the "most certain"
in respect of the current system behavior.

A number of methods can be used for defuzzification (e.g. center-average, mean-
of-maxima), however the most commonly used method is the equation for computation
of center-of-gravity (COG), or centroid, which ensures a smooth control action but which
requires more complex calculations particularly for non-linear MFs [36].

4.2. Designing a Fuzzy Logic Controller

In this chapter, a demonstration is given of how to automate the design of
a Fuzzy Logic Controller. The assumptions used and the constraints introduced to
simplify this process are explained.

4.2.1 Assumptions and Constraints
To apply the Fuzzy Logic Controller to various control engineering problems,

certain properties of the system are exploited so that the design of the controller can be
made easier. As the system used are symmetrical, it is assumed that symmetrical
membership functions about the y-axis will provide a valid controller. A symmetrical
rule-base is also assumed.

Other constraints are also introduced to the design of the FLC:

38

• All universes of discourses are normalized to lie between —1 and 1 with
scaling factors external to the FLC used to give appropriate values to the variables.

• It is assumed that the first and last membership functions have their apexes at —1 and
1 respectively. This can be justified by the fact that changing the external
scaling would have similar effect to changing these positions.

• Only triangular membership functions are to be used.

• The number of fuzzy sets is constrained to be an odd integer greater than unity. In
combination with the symmetry requirement, this means that the central membership
function for all variables will have its apex at zero.

• The base vertices of membership functions are coincident with the apex of the
adjacent membership functions. This ensures that the value of any input variable is a

member of at most two fuzzy sets, which is an intuitively sensible situation. It also
ensures that when a variable's membership of any set is certain, i.e. unity, it is a
member of no other sets.

Using these constraints the design of the membership functions can be
described using two parameters:

• The number of membership functions

• The positioning of the triangle apexes

4.2.2. Spacing Parameter
The second parameter specifies how the centers are spaced out across the universe

of discourse. A value of one indicates even spacing, while a value larger than

unity indicates that the membership functions are closer together in the centre of the
range and more spaced out at the extremes as shown in Figure-4.2.1. The position
of each centre is calculated by taking the position the centre would be if the
spacing were even and by raising this to the power of the spacing parameter. For
example, in the case where there are five sets, with even spacing (p=1) the centre of one
set would be at 0.5. If p is set to two, the position of this centre moves to 0.25. If
the spacing parameter is set to 0.5 then this centre moves to 0.707 in the normalized
universe of discourse.

39

This method of designing the membership functions is inspired by the work of

Park et al. [38] and Cheong et al [39]. It does mean that there is a reduction in the

number of possible FLCs than if the design was fully flexible but the trade-off is that the

design process is made much simpler. Also it is felt that even within these constraints
there is sufficient flexibility to allow a FLC that meets the design requirements to be

built.

4.2.3. Designing the Rule-Base

As well as specifying the membership functions, the rule-base also needs

to be designed. Again ideas presented by Park et al. [38] were used. In specifying a rule

base, characteristic spacing parameters for each variable and characteristic angle for each

input variable less one are used to construct the rules.

Figure-4.2.1 Effects of spacing parameters on Mfs

40

chid points are also placed in the output space representing each possible
combination of input linguistic values. These are spaced in the same way as before.
The rule-base is determined by calculating which seed-point is closest to each grid
point. The output linguistic value representing the seed-point is set as the consequent of
the antecedent represented by the grid point. This is illustrated in Figure-4.2.2, which

is a graph showing seed points (blue circles) and grid-points (red circles).
Table-4.2.1 shows the derived rule base. The lines on the graph delineate the

different regions corresponding to different consequents. The parameters for this example

are 0.9 for both input spacing, 1 for the output spacing and 45° for the angle.

4.3 Hybrid Fuzzy Precompensated PD Controller Design

Conventional control methods, such as PD and PID controllers, are widely used in
industrial applications. Such controller suffers from the problem of large overshoots and
undershoots in its output response when applied to systems containing distributed

- parameters, nonlinearity, strong coupling. In this work, a novel fuzzy logic-based

precompensation approach for controlling system with high nonlinearity is attempted.

The control structure consists of a fuzzy logic-based precompensator followed by a
conventional PD controller.

Table-4.2.1 Derived Rule base
NB NS Z PS PB

NB NB NB NS NS Z

NS NB NS NS Z PS

Z NS NS Z PS PS

PB NS Z PS PS PB

PS Z PS PS PB PB

4.3.1 PD Control
In this section we describe a general PD (Proportional-Derivative) controller for

the control of rigid-flexible link arm. The control input to the 1th actuator is given by,

42

r = K e, (t) — K D/e, (t) 	 (4.3.1)

where,

(t) = [4d; (t) — q (t)]

In Equation above, (t) and ei (t) represent the error in the joint angle and velocity

for the ith link. Kpi and KDI are the proportional and derivative gains, respectively.
Sufficient literature dealt PD control investigated that better response has not been
achieved in case of this distributed parameters, nonlinearity, strong coupled systems.

4.3.2 Fuzzy Precompensation

The fuzzy precompensator uses the desired position q d, and the plant output q, to

generate a precompensated modified desired position 4,1 . The fuzzy pre-compensator

modifies the desired position, to compensate undershoot and overshoot in the output

response, to eliminate the steady-state error and improve the performance of the output

response for PD control systems with nonlinearities by introducing a fuzzy logic
controller in front of the PD controller. Fuzzy precompensation that proposed is indeed
insensitive to nonlinearities, and exhibits good transient and steady-state behavior.

A Fuzzy Precompensated PD controller was designed and applied to control the

position of the manipulator, since it is well known that Fuzzy PD gives a faster transient

than Fuzzy PI type. The fuzzy precompensator is described by the equations,

	

e (t) = [q th (t) — q (t)] 	 (4.3.2)

	

(t) = F[e ,(t),e (t)] 	 (4.3.3)

	

4di = qd, + Y(0 	 (4.3.4)

The inputs to the precompensator are the desired position q dr(t) and the plant

actual position q ,(t) . The term F[e (t), e (t)] is a nonlinear mapping of e (t) and e, (t)

based on fuzzy logic (described below). The term y(t) = F[e (t), e (t)] represents a

compensation or correction term, so that the compensated/modified desired position

"4,/,(t) is simply the sum of the external desired position q d,(t) and y(t) . The correction

term is based on the error e (t) , and the change of error e (t) . The compensated

43

command signal 4,1,0) is used as the input to the PD controller, as shown in Figure-4.3.1

in the overall block diagram of the hybrid fuzzy precompensated PD controller.

FIJZZy Precompensation

Kp —>
qd

PD
Control

KD

	 Fuzzy
	 Controller

Figure-4.3.1 Overall block diagram of the proposed hybrid controller.

44

5. APPLICATIONS OF INTELLIGENT COMPUTATIONAL
TECHNIQUES

In order to assess the performance of the optimization algorithms, various control
engineering problems were considered. Some of the practical applications used are:

1. Inverted Pendulum

2. Ball and Beam System
3. Two link rigid-flexible robot manipulator

5.1. Inverted Pendulum
The inverted pendulum control problem [40] is usually presented as a pole

balancing task. The system to be controlled consists of a cart and a rigid pole hinged to
the top of the cart. The cart can move left or right on a one-dimensional bounded track,
whereas the pole can swing in the vertical plane determined by the track. The linearized

system equations around 0 = ir in the state space are:

0 	1 	 0 	0
— (I+M12)5 	 m2g12 0 	 0

AM + in)+MM/2 	+ in) + Min/2

0 	0 	 0 	1
— mlb 	mgl(M + m) 0 	 0

I(M + m)+ Mm12 I(M + m)+ Mm12
0

I +ml 2
I (M + m) + Mml 2

0

ml
AM + M) + Min/ 2

x
x

x

0

L _

(5.1.1)

x
x

[
o
0 iu

Y=
0 0 01
0 1 of (5.1.2)

45

Where,

M = mass of cart = 0.5 kg

m = mass of pendulum = 0.2 kg

b = friction of cart = 0.1 N/m/sec

I = inertia of pendulum = 0.006 kgm2

1= length of pendulum's center of mass = 0.3 m

F = force applied to cart

The state of the system is defined by values of four system variables: (x,±,0,e) the

cart position, cart velocity, pendulum angle and angular velocity of the pendulum pole,

respectively. Control force is applied to the system to prevent the pole from falling while

keeping the cart within the specified limits.

5.2. Ball and Beam System
The ball-beam system is a frequently encountered example of nonlinear

dynamical system. While the ideal system is indeed nonlinear, its practical

implementation has additional non-linearities, including: deadband, backlash introduced

by the DC motor and gearbox, discrete position sensing and uneven rolling surface. The

system is a product from Googol Technology. The practical system is shown in Figure-

5.2.1.

Figure-5.2.1. Functional components of mechanical plant

The motion of the motor's shaft is governed by IPM100 intelligent drive. This is a

high precision, fully digital servo drive with embedded intelligence and 100W power

46

DC Servo
Motor

Bali &
Beam

Computer

IPM100
Servo Drive

Encoder

H Position Sensor

amplifier suitable for brushless/brush motors. Based on feedback information from
sensors, it computes and then applies appropriate PWM modulated voltage to the motor
windings in such a way that a sufficient torque moves the motor shaft according the

programmed control algorithm. This embedded intelligence provides a true real-time
control performance independent of any delays caused by PC's non-real time Operating
System.

The closed loop control algorithm employed for the application is given in Figure-
5.2.2:

Figure-5.2.2. Structure of the control algorithm

The DC motor provides actuation of the beam via a gear. The PID control
algorithm inside IPM100 intelligent drive is employed in an inner control loop as a motor

_ position controller. The PID gains are tuned in such a way that the motor exhibits a fast
response without overshoot. The flowchart of the control algorithm is depicted in Figure-
5.2.3.

5.2.1 Mechanical Model of Ball & Beam
The schematics of the Ball&Beam mechanical system is shown in Figure-5.2.4.

Figure-5.2.4. Ball&Beam Mechanical System

47

Specify target position
of the ball

The system moves the ball to
the specified target position

Compute the control according
to CCA-GA algorithm

Amplify and modulate
the control signal

Read current actual
position from feedback

Figure-5.2.3 Flowchart of the control program

• Gear ratio is 4.28:1 (107:25)

• Let the angle between the line that connects the joint of the lever arm with the

center of the gear, and the horizontal line be 0 (there should be some boundaries
on its range so that it can reach the safe maximum and minimum limits); the
distance between the center of the gear and the joint of the lever arm be d, and the
length of the beam be L. Then the beam angle a can be expressed in terms of the
rotation angle of the gear 0 according to the following equation:

d a= —17
L

48

In turn, as it has just been noted above, the angle 0 is connected with the
rotational angle of motor shaft through reduction gear ratio n=4.28.
The controller design task is to keep the position of the ball r equal to the
specified target position by properly manipulating the gear angle 0.

• The dynamics of the ball is subjected to the gravity, inertial and centrifugal
forces. The ball linear acceleration along the beam is given by the following
simple equation:

(
—J + mjr + mgsin a –mt(a)2 =0
R 2

Where
g is the gravitational acceleration
m 	is the mass of the ball
J is the ball moment of inertia
r 	is the position of the ball along the beam
R 	is the radius of the ball

Here it is assumes that the ball rolls without slipping and the friction between the
beam and ball is negligible.

5.3. Two Link Rigid-Flexible Manipulator Dynamics
The Flexible manipulator used for simulation purpose is shown in Figure-5.3.1.

The arm used for simulation is a direct drive planar chain with two revolute joints and
two links, the second of which the forearm is very flexible. A nonlinear dynamic model
of the two link rigid flexible arm has been derived following a Lagrangian approach.
Small deformations are assumed for the forearm, leading to a linear dynamics of the
flexible part, so that the main nonlinearities in the model arise from the rigid body
interactions between the two links. To compute the low frequency modes, the forearm
link is considered as an Euler – Bernoulli beam of length 12 and length of the rigid link as
11, uniform density p, and constant elastic properties EL With reference to Figure-5.3.1,
for a link point x e [0, 12]; w(x, t) is the bending deflection measured from the axis
passing through the center of mass of the forearm. Accordingly, 02 is the angle between

49

this same axis and the first rigid links and 01 is the angle of first rigid link with X

coordinate as shown in Figure-5.3.1.

Figure-5.3.1. Schematic diagram of rigid-flexible manipulator and its variables

Considering the stewing nature of the forearm, deformation, Eigen functions have

been obtained in Ref. 41. The second joint moment of inertia J02 and the payload mass

MP and the moment of inertia JP are explicitly included in the boundary conditions

associated to the partial differential equation for w(x, t). An approximation of order n of
the deflection can be expressed as,

w(x,t) = E Oi (x)8i (t)
1=1

with the time varying coordinates 8,(t) associated to the mode shapes,

(5.3.1)

0, (x) = Ci , sin(fl,x)+ C2 , cos(f3,x) + C30 sinh(10,x) + C47 cosh(13,x) 	(5.3.2)

The coefficients C's are determined, up to a scaling factor which is chosen through

normalization, from the imposed boundary conditions. The values 	are numerically
obtained as the first n roots of the characteristic equation [20].

50

CASTRAt elit It1i75'
Ar41149,.

j02 C • sh — s • ch-
2M

 P f3,s•sh- 2J p

— 13,3 c • ch—)3,3 (1+ c•ch)
P 	 P

M p
— p 2 /3,4 (J 2 + J p)(c • sh — s • ch) + J02 p 13,6 (c • sh + s• ch)

P
2

J-02 J pM p
	 fl,7 (1— c • ch) = 0

P 3

(5.3.3)

where s = sin(f3,/2), c = cos(fl,12) , sh = sinh(f3,2) , and ch = cosh(13,12) . The natural

angular frequencies wi of the flexible link are related to fli through/3,4 = pw2 / EI .Starting

from the analysis, the lagrangian dynamics of the two link robot is derived in the standard

way as

B(q)4 + c(q,4)+ Kq + 1304 = Gu 	 (5.3.4)

where q = (01 ,02 ,81 , 	 „) E R"}2 , and with positive definite symmetric inertia matrix B,

coriolis and centripetal terms c, and elasticity matrix K. Joint viscous friction and modal

damping coefficients are arranged on the diagonal of D, while input matrix G, transforms

motor torques u into generalized forces performing work on q. To express the single

dynamic terms in (4), the following notation will be used

12
v, = p P,(x)dx, i =1, 	 .n, 	 (5.3.5)

0

and,

ao.(x)
Oie =0,(x)lx,, o'io = e(x)

(5.3.6)

Since the eigen functions Oi (x) automatically satisfy proper orthonormality

conditions, relevant simplifications arise in the dynamic model. For control design

purposes, we will consider only two modes of deformation, so that

51

q = (91,192,81,82) E R4 . Neglecting the Kinetic energy of the system which is quadratic

or higher order in the deformation variables 8 yields the inertia matrix,

b11 b12 b13 b14

B (q)
b12 b22 0 0

(5.1.7) b13 0 1 0
b14 0 0 1

with elements,

bll = J1Tot J1Tot 2h3 COS() 2 — 2(h01 h28 2) sin 02

b12 = J 2rot h3 COS 02 — (1/161 h2 62) Sin 02

b13 = COS 02

b14 = h2 co SO 2

b22 = 2Tot

in which,

h, = (v1 + M p0,)12 , 1=1, 2

h3 = (M2 d2 + M ,12)l1

J1Tot = J01 + ./1 M1di2 + (M2 +M02 + MP)/12

J 2Tot = J02 + + M2 d22 4+114122

where, in addition to previous definitions, it is the length of link i, Ma and Mot are the
mass of the link i and of joint i, J, and Jot are their moments of inertia referred to the
respective center of mass, and d, is the distance of the center of mass of link i from joint
axis i. The components of the coriolis and centripetal force vector c(q,4) are,

52

=—(29162 +02 2) + [h3 sin 02 — (h181 + h282)cose2]
—2(01 + 02)(kS1 + h2c82)sine2]

C2 = 912 [h3 sin 02 + (h181 + h2 82) cos 02

c3 = 9121/1 sin 92

'
C4 = 01

2
 h2 sin e2

The input matrix takes the form,

while the elasticity matrix becomes,

K=

Also, modal damping is included

D
 =[

0

G

[

0
0

0
0 D8

GO

0
K3

by

]
,D

1,G8

OK

specifying,

-

=
8

=[

°.161
0 	0.20

co
1

2 	
0

0 	co2 2

2C1 co1
[24.2(1)2

0 	-1

(5.3.8)

(5.3.9)

(5.3.10)

(5.3.11)

where the first zeros on the diagonal of D are due to the fact that the low friction at the
joints is neglected. The above explicit expressions can be generalized to the case of n>2
modes in a straightforward way. And the tip deflection of the forearm is written as,

_up 	Ole A 10

"
(02e

VI
20)6

 2
2 (5.3.12)

53

100

50

0

i -50

LL.

-100

-150

	 PSO
	BF

AF-PSO
GBSO

•■••

~+"r. ...
Wm a =I■./.1■••• ...I

N,44.4,.........

...i
%

.....• •
.11

.....

_

.I. •ft,

• A▪ la

N.

ft. .
ft.,,,,

11

..1.

..a. aa ,....

4..........
4m....

.
.%,........,.1211,.....,.........

...s...s.....,.......%.
N.

...Aft,en.....m.......
.. ..am....... •ao a. aa■ ...:\

'. ‘..S

f.

I 1
.... 	

•

.....

• MB

-200
0 5 10 15 20 25 30 35 40 45

Cliefeetectie Steps

Figure-6.1.3 Performance of GBSO in comparison to others optimization techniques

Table-6.1.1 Performance of GBSO in comparison to other algorithms

62 Optimal objective function Mean (Std. Deviation)

PSO -1.4172 -0.6480 -186.4206 -177.0016 (15.7282)

BF -1.4371 -0.8213 -185.4273 -182.6566 (2.9025)

BF-PSO -1.4164 -0.8354 -184.0926 -183.1964 (1.8568)

GBSO -1.4251 -0.8003 -186.7309 -186.7309 (0)

Figure-6.1.3 shows the path of objective function achieving the optimal

solution of all algorithms. The convergence rate as shown in Figure-6.1.3 is very high

using GBSO in comparison to other optimization techniques. Twenty independent

rims of the four algorithms were carried out on each problem and average of the best-

of-run solutions and standard deviations were noted. The performance of all

algorithms is tabulated in Table-6.1.1. The two variables are adjusted iteratively to

achieve the optimal objective value with minimum standard deviation.

Figure-6.1.4 illustrates the Rosenbrock function behavior given by Eqs.-6.1.3

followed by the comparison of GBSO with other techniques in log scale in Figure-

6.1.5.

56

Y-02 -5 -5

Nutrient concentration (valleys=foody pealcsnoxious)

4 	 •• •.
X i0

...... .. 10

	P50
	Of
---• BF-PSO

GBSO

FRose k =100(i9 — 02)2 ± (1 — 0)2 	 (6.1.3)

The fitness value reaches the optimum in very less chemotactic steps whereas the
other techniques settle at sub-optimal region. The comparison is shown in Table- _
6.1.2.

Figure-6.1.4 Rosenbrock function landscape

lot

... •••
id
a 	

',.....
.......''''''.-........ 	

........ 	11........

= \ .2 	 '"\. 10 	 — 1 -,

10 	20 	313 	40
Chemotactic Steps

Figure-6.1.5. Performance of
GBSO in comparison to others
optimization techniques

10

10'0

Table-6.1.2. Performance of Rosenbrock function

01 02 Optimal objective function Mean (Std. Deviation)

PSO 0.9731 0.9519 0.0032 0.0182 (0.0176)
BF 0.9916 0.8841 0.0253 0.0065 (0.0047)
BF-PSO 1.0176 1.0408 0.0011 0.0027 (0.0025)
GBSO 1.0120 1.0242 1.4413e-004 1.947e-04 (3.188e-04)

Figure-6.1.6 illustrates the Rastrigin function behavior given by Eqs.-
6.1.4 followed by the comparison of GBSO with other techniques in Figure-6.1.7. The
comparison is shown in Table-6.1.3.

1,
.E[0,2 —10cos(27n9) +10]

1=1
(6.1.4)

57

-5 X=.01

100 - -

50

r°2
40 10 	20 	30

Chernotoctic Steps

5

0
0

40

35

30

Fi
tn

es
s

V
a

lu
e

25

20

15

10

.. .. 51kla

	PSO

BF-PSO
GBSO

0.8

0.6
5

II. 0.4

0.2

1.4

1.2

	 PSO
	 OF

BF-PSO
6050

...

Nutrient concentration (valieyfood, peaks—noxious)
• .

Figure-6.1.6 Rastrigin function landscape 	Figure-6.1.7 Performance of
GBSO in comparison to others
optimization techniques

Figure-6.1.8 illustrates the Griewank function behavior defined by Eqs.-6.1.5.
The comparison between the optimization is shown in Figure-6.1.9. Statistical data is
given in Table-6.1.4.

Nutrient concentration (valleys food, pealcnoxious)

IM

Y-02 	-5 X=01
10 	20 	30

Chemotectic Steps

Figure-6.1.8 Griewank function landscape Figure-6.1.9 Performance of GBSO in
comparison to others optimization
techniques

1 n 2 — i 1--rcos(n 	0, --,_) +1 Griewank = BI
4000 i=1 	 i (6.1.5)

58

Table-6.1.3 Performance of Rastrigin function

81 62 Optimal objective function Mean (Std. Deviation)

PSO -0.0180 0.1016 0.0250 0.0563 (0.0935)
BF -0.0286 0.0115 0.1879 0.3428 (0.2544)
BF-PSO -0.0455 0.0207 0.0611 0.4809 (0.0966)
GBSO -0.7620e-9 0.3871e-9 0 0 (0)

Table-6.1.4 Performance of Griewank function

01 02 Optimal objective function Mean (Std. Deviation)

PSO 3.1397 -4.4366 0.0074 0.0057 (0.0031)
BF 0.0156 0.0226 2.4842e-004 2.0809e-4 (2.1267e-4)
BF-PSO 0.0002 0.0505 6.3654e-004 6.4676e-5 (7.4995e-7)
GBSO 0 0 0 0 (0)

6.2 Inverted Pendulum
The open loop step response of a pendulum angle is shown in Figure-6.2.1. It

can be seen that a small force or disturbance acting on the cart sets the pendulum
angle at 90 degrees therefore, to improve the dynamics of the system; some controller

has to be designed. The block diagram of PD-PI control system for Inverted
Pendulum is shown in Figure-6.2.2.

The performance of the PD-PI control can be judged by the value of its
parameters. Figure-6.2.2 shows the implementation of optimization algorithms which

have been used to estimate the parameters. Empirical tuning methods cannot be
applied to the system under consideration as the conditions (i.e. open loop stability, S-
shaped response etc.) are not being satisfied. The performance with all the
optimization algorithms has been analyzed on the basis of ITAE (Integral Time
Absolute Error). The objective of the controller is to maintain the upward position of
the pendulum for any external disturbance.

59

Optimization Algorithms

theta

. theta

omega

omega

.cart position

Reference
angle

P. T7 cart velocity

Force applied II
to the cart

Inverted Pendulum

Figure-6.2.2 Block diagram of PD-PI controller and its implementation

100 	

80

20

2 	4 	6
	

10

Time (sec)
Figure-6.2.1 Open loop response of pendulum angle

Table 6.2.1 Closed loop data of Inverted Pendulum using Optimization Techniques

Optimization
Techniques/Controller

parameters

K P K, Kd ITAE

GA 23.0673 37.5323 2.5116 0.01236
BF-GA 90.6809 104.7037 40.0440 0.00023

BF 25.4356 45.6982 2.6580 0.00745
BF-PSO 32.6711 50.9613 4.6441 0.00624

PSO 30.7611 49.1693 4.4641 0.00675
GBSO 150.5704 250.3077 70.4004 0.00011

60

2.5

0.06

0.05

0.04

0.03

;E 0.02

0.01

0

-0.01
0 0.5 	1 	1.5

Time (sec)

— GA
BF GA
BF
BF-PSO
PSO
GB SO

3

Numerical values of constant parameters of the controller and performance
index using different optimization techniques are tabulated in Table 6.2.1. It can be
seen that ITAE reduces to an optimal value with the developed algorithms.

Figure-6.2.3 Closed loop response of controller with ITAE as performance index

For the system under consideration, the simulation results with GBSO
techniques prove to be more effective than with other optimization algorithms. In

GAs, the limits defined by the number of parameters gives the search region while in
PSO, the search region is independent of the number of parameters, given by the
distance between the randomly selected initial position and the position corresponding
to optimal fitness value. The speed of computation is determined by the velocity

initializing the PSO algorithm with which it reaches to the best solution. It is also
observed that the speed of computation in PSO is very less in comparison to GAs and
BG.

6.3 Ball and Beam System

Ball and Beam represents a Single Input Single Output (SISO) system where
X(s) and 0 (s) are the Laplace representation of the output (position of the ball on the

beam) and input (beam angle) of Ball and Beam. The open loop transfer function of

61

mgd
3,2

L(—+ m)
R2

0(s)
k p +-- +kds x(s)

PID controller 	Ball-Beam system

the system mechanics can be approximated by double integrator. The closed loop
model is shown in Figure-6.3.1.

Figure-6.3.1 Block diagram of Ball-Beam system with a PID controller
Where
mass of ball, m
ball moment of inertia, J
gravitational acceleration, g
position of ball along the beam, d
radius of the ball, R

The real nonlinear system is approximated to double differentiator as shown in
Figure-6.3.1. MATLAB simulations were carried first using Hybrid BF and GBSO
algorithms to determine the optimal set of PID parameters. This experiment is mainly
performed to determine the superiority of the previously developed hybrid BF-GA

algorithm. The set of PID parameters are then implemented real time on experimental

setup discussed above. Performance index for fitness evaluation constitutes
summation of settling time and steady state error for a period of 10 sec.

The real time output of the ball-beam system with a step input is shown in
Figure-6.3.2. Initially the ball is placed at one end (maximum length 40 cm) of the

beam. For the desired position of the ball at 10 cm, the overshoot and settling time is
shown in Figure-6.3.2a. For the desired position as 20 cm and 30 cm, the overshoot
and settling time is shown in Figure-6.3.2b and Figure-6.3.2c respectively. It is
evident from above figures that there is reduction in overshoot and settling time as the

desired position approaches near the initial point of the ball (40 cm) for the same set
of PID parameters. The response for a desired position having pulse input with duty
cycle of 50% and amplitude varying between 20.cm and 0 cm is also studied as shown
in Figure-6.3.3. The response has a large overshoot in comparison to step response
with the same desired position.

= 0.111
2*m*RA2/5

= -9.8
= 0.04
= 0.01

62

3 	4 1 	2
Time (sec)

0.4

0.35

0.3
E

0.25

0.2
a.

0.15
Kt 0.1

0.05

Figure-6.3.2a. Step Response with desired
position 10 cm using GBSO algorithm
GBSO

Figure-6.3.2b. Step response with
desired position 20cm using

1.5 	2

0.5

1
Time(sec)

Figure-6.3.2c. Step response with desired
with
position 30 cm

0.5

0.4

2

•

0,3 "ft-
0.1 	

1.5 0 	0.5 	1 	 2 	2.5
Time (sec)

Figure-6.3.3 Pulse input response

duty cycle 50%

.5

OA
0

0.3

g 0.2

0.1

O- 01

< 0.1

L L

The fitness profile of ball and beam system using GBSO is shown in Figur-

6.3.4. The comparison of performance using BF-GA and GBSO algorithms are shown
in Table-6.3.1. For 80 numbers of decades, the tuning of three parameters towards

optimal solution is illustrated in Figure-6.3.5.

63

tcp
	 K1

2

1.8

lifirdmuinCost
	 MeanCost 60

50

40
I.

30

a.
20

1.2

....... j---:

1
0 10 20 30 40 50 60 70 80

Number of Decades

10-

10 20 30 40 50 60 70 80
Number of Decades

Figure-6.3.4 Fitness profile of Ball-Beam 	Figure-6.3.5 Tuning of parameters
system during 80 decades

Table-6.3.1 Performance comparison using different methods

Methods ic„ ki kd Mo (%) Ess is tr

BF-GA 9.6960 8.3156 48.3786 1.0030 0.023 0.1086 0.0644

GBSO 14.5911 0.5126 47.3933 0.8721 0 0.1080 0.0637

This section demonstrated the novel hybrid approach consisting BF-GA and
GBSO. The improvement is shown in terms of convergence rate of the objective
function towards the optimality in comparison to BF-GA for higher dimension. The
proposed GBSO algorithm is implemented on a real time ball-beam system supplied

by Googol Technology for tuning the PID controller. As evident from the graphical
and empirical results, the suggested hybrid system performed well.

6.4 Two Link Rigid-Flexible Robot Manipulator
In this section, various optimization schemes have been used for the

optimization of controller parameters shown in Figure-6.4.1. The integral square error
(ISE) performance index is used as the objective function "J" for optimization

J = ISE = e 2 (t)dt where e(t)=qd(t)-q(t)
0

(6.4.1)

64

blinimumCost
bleanCost

J

10 20 30 40 50 60 70 so
Number of Decades

2

1.8

0

•

1.6

1.4

1.2

1
0

s

•

40

o. 30

n.
20

10

ice

°

10 20 30 40 50 60 70 80
Number of Decades

Figure-6.3.4 Fitness profile of Ball-Beam 	Figure-6.3.5 Tuning of parameters
system 	 during 80 decades

Table-6.3.1 Performance comparison using different methods
Methods kp ki kd Mo(%) Ess t, t,.
BF-GA 9.6960 8.3156 48.3786 1.0030 0.023 0.1086 0.0644
GBSO 14.5911 0.5126 47.3933 0.8721 0 0.1080 0.0637

This section demonstrated the novel hybrid approach consisting BF-GA and
GBSO. The improvement is shown in terms of convergence rate of the objective
function towards the optimality in comparison to BF-GA for higher dimension. The
proposed GBSO algorithm is implemented on a real time ball-beam system supplied
by Googol Technology for tuning the PM controller. As evident from the graphical
and empirical results, the suggested hybrid system performed well.

6.4 Two Link Rigid-Flexible Robot Manipulator
In this section, various optimization schemes have been used for the

optimization of controller parameters shown in Figure-6.4.1. The integral square error
(ISE) performance index is used as the objective function "J" for optimization

J = ISE = e 2 (t)dt where e(t)=qd(t)-q(t) 	 (6.4.1)
0

64

qd

I
A

H- 	qd I

1

t---
PD

Control
Rigid-
Flexile
Robot

Kc Fuzzy
Precompensation

Optimization Algorithms

Controller parameters

Figure-6.4.1 Fuzzy Precompensated PD Control

Here in simulation for tuning the fuzzy precompensated PD controller,

dimension of search space is 7 with 10 numbers of bacteria, 4 number of chemotactic

steps, length of the swim and number of reproduction steps as 4, and 2 number of
elimination dispersal events is considered. The simulation was run under MATLAB
7.01 with Fuzzy Logic Toolbox 2.2 (R14SP1). Simulink block diagram of two link
rigid-flexible manipulator is shown in Figure-6.4.2. To demonstrate the effectiveness
of the proposed Fuzzy precompensated PD controller, the dynamic model of two link
rigid flexible arm is considered. The fuzzification block converts crisp inputs to
appropriate fuzzy sets using the membership functions as shown in Figure-6.4.3. The
knowledge base provides the membership functions and the linguistic control rules.
The fuzzy inference engine performs fuzzy reasoning, based on the linguistic control
rules, using Zadeh's compositional rule of inference. The defuzzification block
generates a crisp control output u (t) by utilizing the centre of gravity method,

E ,u,(u)u,
u(t) = 	

,u, (u)
(6.4.2)

The rules for our fuzzy precompensator are given in Table-6.4.1. In this case,
we used 27 rules. Rules were derived by using a combination of experience, "trial and

65

uU

'3.

u.1 col

—A-

A

ft

0

To
 W

or
k
sp

ac
e

LLI

IA +
A

I

cl
u

a
lm

s
2n

d
er

Y.

Figure- 6.4.2 Simulink diagram of two link rigid flexible manipulator

66

ns ZO

0 	 0.6 -0.5

error", and our knowledge of the response of the system. These are common
approaches to the design of fuzzy logic rules, as described in [23]. Figure-6.4.4
represents the output surface of the fuzzy precompensated controller. The flexible
robot arm considered is characterized by following data;

/I= 0.3 m 	 hi = 0.336 kg m2 	(02 = 14.395.2x rad/sec-1

12 = 0.7 m 	 h2 = 0.126 kg m2 	0.07

://Tot = 0.447 kg m2 	h3 = 0.195 kg m2 	4."2 = 0.03

JITot = 0.303 kg m2 	0'10 = 5.74 	ale = -1.446 m

.102 = 6.35 X10-4 kg m2 0'20 = 11.64 	02e = 1.369 m

11/1p =Jp=0 	 co = 4.16.27E rad/sec-I

Figure-6.4.5 shows the desired joint position profiles for the simulation to
evaluate the effectiveness of the proposed approach. Figure-6.4.6, 6.4.7, 6.4.8 shows

the modified or compensated desired position 4d,(t) for i=1, 2 using fuzzy

precompensation. Figure-6.4.10, 6.4.11, 6.4.12 shows the Joint position error profiles
for the two joints using the proposed bacterial foraging optimized fuzzy
precompensated PD controller (BFFPPDC), particle swarm optimized fuzzy
precompensated PD controller (PSOFPPDC) and hybrid particle swarm and bacterial
foraging optimized FPPDC. The same controllers are compared by optimizing with
genetic algorithm optimization and are shown in Figure-6.4.9. Table-6.4.2 constitutes
the integral square errors for the two joints.

Figure-6.4.3 Fuzzy input-output membership Figure-6.4.4 Output surface of the
function 	 fuzzy precompensator controller

67

Desired Trajectory

1.5 	2 	2.5
	

3
	

3.5
	

4
	

4.5
Time(secs)

Figure-6.4.5 Desired Position profile

Table-6.4.1 Fuzzy Precompensated PD Controller rules

e
e

NB NM NS Z PS PM PB

NB NB NB NB NM
NM NM
NS NS PS PM
Z NB NB NM Z PS PM PM
PB NB NB NM PS PM PB PB
PM NM PM PB
PS PM PB

68

jointl
------ joint2

2—

I
I -
1

-

Modified desired position using Fuzzy precompensation
• 1.5

1.5 	 1.5 0.5 	 5 	 2.5
Time (sec)

.05

0.5

1.5
0 3 31.6 	4 	4.5 5

Joint1
coirpint2

Modified delsred position using Fuzzy Precornpensation

0.5 	1 	 2 	2.5 	 3.5 1 	 4.5
	

5
Tim e(secs)

Figure-6.4.6 Modified desired position using fuzzy precompensation using BFFPPDC

Figure-6.4.7 Modified desired position using fuzzy precompensation using
PSOFPPDC

69

- Joint1
	 Jotnt2

Modified desired postion using hazy compensation

0.5 	1 	1.5 	2 	2.5 	3 	3.5 	4 	4.5
Time(secs)

Figure-6.4,8 Modified desired position using fuzzy precompensation using BF-
PSOFPPDC

Joint Errors for proposed controller optimized by Genetic Algorithm
0.3

joint1

-0.4 	
0
	

0.5
	

1 1.5 	2 	2.5
Time(secs)

3.5 	4 	4.5 5 3

Figure-6.4.9 Error profiles for the two joints using GAFPPDC.

70

8
x 104 Joint Errors for the proposed hybrid EGO-PSO Approach

Joint1
Joirit2

too 0.5
	

1.5 	2 	2.5
	

3
	

3.5
	

4
	

4.5
Time(secs)

5

Figure-6.4.12 Error profiles for the two joints using BFO-PSO

Table-6.4.2 Controller constants and integral square errors for various joints

Controller GAFPPDC BFFPPDC PSOFPPDC BFO-PSO
Kp

Fuzzy
Precompensator

input-1

15.0431 16.1823 8.0092 9.9119

Kd
Fuzzy

Precompensator
input-2

5.2987 1.8166 1.4251 2.0370

1(6
Fuzzy

Precompensator
output

-0.0266 9.6140 4.7827 8.2721

Kpi 13.8523 15.4089 10.5684 6.7586
Kai 0.8591 15.7654 3.6909 2.4895
Kp2 6.7532 13.3856 6.6176 4.7579
Ka 0.9215 7.5116 1.6961 3.9908

Joint-1 ISE 0.1059 0.0017 0.0063 4.227e-05
Joint-2 ISE 0.0643 0.0009 0.0040 0.0001

6

4

2

0

-4

72

In second phase of designing the fuzzy precompensated PD control of two link
rigid-flexible manipulator FLC rule base is optimized using characteristic parameters.
Here the results are presented using GBSO algorithm. To apply a GBSO algorithm to
the design of fuzzy logic controller, an evaluation function is defined to calculate the
fitness of a set of parameters. The parameters are passed to the evaluation function,
which processes them and returns a value corresponding to how well the parameter
performed the task. This function firstly extracts the relevant parameters from the
individuals passed in. After performing some error checking, the parameters are used
to create a Fuzzy Inference System (FIS) and set the appropriate scaling factors.

A SIMUUNK model is then called as shown in Figure-6.4.2 from which a
record of the error in the joint position throughout the duration of the simulation is
returned. The desired trajectory is shown in Figure-6.4.5. The error in the joint
position and the change in of error are scaled by the appropriate gains (these
parameters are also set by the optimization algorithm) and the result is clipped so that
it lies in the range -1 to 1. These inputs are fed into the FLC and the FLC's output is

then scaled by another gain.
To run GBSO, a suitable encoding for each of the parameters and bounds for

each of them needs to be decided. For this task the parameters given in Table 6.4.3 are
used with the shown ranges and precisions.

Table-6.4.3 Parameters used for encoding

Parameter Range Precision

Number of Membership Functions 3 — 9 2
Membership Function Spacing 0.1 — 1.0 0.01

MF Spacing (Power to be Raised by) -1-1 2
Rule Base Scaling 0.1 — 1.0 0.01

Rule-Base Spacing (Power to be Raised by) -1 — 1 2

Input Scaling -50 — 50 0.1

Output Scaling -50 — 50 0.1

Rule-Base Angle 0 — 27 n/512

The numbers of membership functions are limited to the odd integers inclusive

between three and nine. For the spacing parameters, two separate parameters are used.

73

(a) (b)

de -1 .1

B

NS 2 PS
	

PO

The first, with the range [0.1 — 1.0], determines the magnitude and the second, which
takes only the values -1 or 1, is the power by which the magnitude is to be raised. This
determines whether the membership functions compress in the centre or at the
extremes. The scaling for the input and output variables is allowed to vary in the
range [-50 - 50].

The comparison is presented between two algorithms namely, GA and GBSO.
In first part, the rule base is designed using experts' rule base and same input-output
membership function. Here the two algorithms optimize the membership functions

using characteristic parameters. Figure 6.4.13 shows the rule base optimized using
two algorithms.

Figure 6.4.13 Output surface of the fuzzy precompensator controller (a) using GA (b)
using GBSO

NS 	2 	PS 	PO 41

a.

0

	

1, 0.2 	

tS - a

17, 0.4

iD
E

: 	

io 0.6

	

os 	 1 0.8

E 0.6

	

0 	 0

-1 	-0.5 	0
	

0.5 	 -1 	-0.5
	0 	0.5

(a) 	 (b)

Figure 6.4.14 Input-1 membership function of the fuzzy precompensator controller (a)
using GA (b) using GBSO

fi 0.2

'45 OA

74

P 2

10.2

0

0.5 0
de

(b)

-0.5 0
de

(a)

0.5 -0.5

0.

0.8

0.6
C
W

15 0A

0.2

• 0

'NS
	2 	PS
	

P13

Figure 6.4.15 Input-2 membership function of the fuzzy precompensator controller (a)
using GA (b) using GBSO

Figure 6.4.14, 6.4.15, 6.4.16 shows the input output membership functions. Finally
the joint error profile is illustrated in Figure 6.4.17 and 6.4.18. It can be easily verified
that by optimizing the rule base using GA improves the joint error profile from the
previous case where only the constants of the controller were optimized. The
statistical comparison is tabulated in Table 6.4.5 and 6.4.6. The scaling factors and
rule base actually decides the superiority of the GBSO algorithm over GA. The PD
controller constants are kept as Kpi = 8, Kdi = 1, Kp2 = 8, Kd2 = 1.

t, OA

t, 0.2
a

0 011141V11 	

.8 OA

Is 0.2

0

CP. 	 Cr-
-C
a 0.8 	 a 0.8
W 491-

0.6 	 0.6

-0.5 	0 	0.6 	 -0.5
	

0
	

0.5
output
	 output

(a)
	 (b)

Figure 6.4.16 Output membership function of the fuzzy precompensator controller (a)
using GA (b) using GBSO

75

Joint 1
Joint 2

Table 6.4.5 Scaling factors and ISE of the fuzzy precompensated controller

Ke Kde K. Joint-1 ISE Joint-2 ISE
GA 2.1569 1.843 7.500 0.0001 4.264e-05

GBSO 9.6078 -0.0392 -8.5882 8.499e-08 2.577e-10

0.06

0.04

11 0.02

0
0 0

0
al -0.02
0

',7) -0.04

-0.06

3.5
	

4
	

4.5
4.08

0 	0.5 	1 	1.5 	2 	2.5 	3
Time (sec)

Figure 6.4.17 Joint error profile of hybrid FPPD using GA

10

8

6

4

2

0

Jo
in

t
p

o
si

ti
on

 e
rr

or
 (

ra
d)

# 4'4.1 	 .00

 de.

ft

•

4N 	 	 =10

-2

-4

-8
0 	0.5 	1 	1.5 	2 	2.5 	3

	
3.5
	

4
Time (sec)

Figure 6.4.17 Joint error profile of hybrid FPPD using GBSO

4.5

76

7. CONCLUSION AND FUTURE SCOPE

In this dissertation, novel hybrid approach consisting genetic algorithm,
bacterial foraging and particle swarm optimization and their performances are

evaluated using various test functions. It has been established by comparison of the
fitness function profile that the developed hybrid algorithms outperformed standard
basic techniques. The improvement is shown in terms of convergence rate of the
performance index in reaching the optimality over basic optimization algorithms.
Also, the proposed algorithm is implemented on a practical ball and beam system
supplied by Googol Technology for tuning the PID controller. As evident from the
graphical and empirical results, the suggested hybrid system performed exceedingly
well.

Fuzzy precompensated PD control also proves its effectiveness by minimizing
the overshoot and modifying the required trajectory over the simple PD controller for
two link rigid-flexible robot manipulator. The performance of the hybrid fuzzy
precompensator is successfully achieved by first optimizing the PD controller

constants and then optimizing the fuzzy rule base using characteristic parameters. An
advantage of the present approach is that an existing PD controller can be easily
modified into the suggested control structure by simply adding a fuzzy
precompensator.

As the complexity of the highly uncoupled system increases, the iterative
procedure takes a lot of time in reaching the optimal solution. Sometimes, the fitness
function converges to the sub-optimal region too as analyzed in two link rigid-flexible
manipulator. The future research would include the model complexity reduction using
optimizing techniques. This will help in reducing the system order while keeping
intact the behavior of original model. Also, the effects of initialization parameters on
the convergence behavior of the hybrid algorithms may be worthy to undertake.

78

REFERENCES

[1] Chaiyaratana, N., Zalzala, A.M.S. "Recent developments in evolutionary and
genetic algorithms: theory and applications", GALESIA '97, pp. 270-277.

[2] Potter, M. A., De Jong, K. A. "A cooperative coevolutionary approach to
function optimization", International Conference on Evolutionary
Computation, The Third Conference on Parallel Problem Solving from

Nature (pp. 249-257). Berlin, Germany: Springer-Verlag, 1994.

[3] Muhlenbein, H., Schlierkamp-Voosen, D, "Predictive models for the
breeder genetic algorithm: 1. continuous parameter optimization"
Evolutionary Computation, 1(1), pp. 25-49, 1993.

[4] Francisco Herrera and Manuel Lozano, "Gradual distributed real-coded
Genetic Algorithms", IEEE transactions on Evolutionary Computation,

Vol.4, No.1, pp. 43-63, April 2000.

[5] Ming Chen, Zhengwei Yao, "Classification Techniques of Neural Networks

using improved Genetic Algorithms", Second IEEE Conference on Genetic

and Evolutionary Computing, 2008, pp. 115-119.

[6] Shengxiang Yang and Renato Tinos, "Hyper-Selection in Dynamic

Environments", IEEE Congress on Evolutionary Computation, 2008, pp.

3185-3192.

[7] Jingjun Zhang, Kanghau Lou, Ruizhen Gao, Guanyuan liu, Yang sun,

"Application of Coarse-Grained Genetic Algorithm for the Optimal Design

of the Flexibility Multi-body Model Vehicle Suspensions", 31d IEEE

Conference on Industrial Electronics and Applications, 2008, pp. 1343-1347.

[8] M.N.H. Siddique, M.O. Tokhi, "GA-based neuro-fuzzy controller for

flexible-link manipulator", Proceedings of IEEE Conference on Control

Applications, pp. 471-476, 2002.

[9] A.L. Buczak, R.E. Uhrig, "Hybrid fuzzy-genetic technique for multisensor

fusion", Information Sciences 93 (3-4), pp. 265-281, 1996

[10] P. Chootinan, A. Chen, "Constraint handling in genetic algorithms using a
gradient-based repair method", Computers and Operations Research 33 (8),

pp. 2263-2281, 2006

79

[11] R.C. Eberhart and Y. Shi, "Comparison between genetic algorithms and
particle swarm optimization", in Proc. IEEE Int. Conf. Evol. Comput.,
Anchorage, AK, May 1998, pp. 611-616.

[12] Zne-Jung Lee, Chaou-Yaun Lee, "A hybrid search algorithm with heuristics
for resource allocation problem", Information Sciences, Vol.173, pp. 155-
167, 2005.

[13] Shengxiang Yang, Renato Tinos, "A Hybrid Immigrants Scheme for Genetic
Algorithms in Dynamic Environments", International Journal of Automation
and Computing, 2007, pp. 243-254.

[14] J. Kennedy, R. Eberhart, "Particle Swarm Optimization", Proceedings of
IEEE Conference on Neural Networks, 1995, pp. 1942-1948.

[15] M. Clerc, J. Kennedy, "The Panicle Swarm-Explosion, Stability, and
Convergence in a Multidimensional Complex Space", IEEE Transactions on
Evolutionary Computation 6, pp. 58-73, 2002.

[16] K.E. Parsopoulos, M.N. Vrahatis, "On the Computation of All Global
Minimizers Through Particle Swarm Optimization", IEEE Transactions on
Evolutionary Computation, pp. 211-224, 2004.

[17] Y. Tan, Z.M. Xiao, "Clonal Particle Swarm Optimization and its
Application", IEEE Congress on Evolutionary Computation, 2007, pp. 2303-
2309.

[18] Teng-Bo Chen, Yin-Li Dong, Yong-Chang Jiao, and Fu-Shun Zhang,

"Crossed Particle Swarm Optimization Algorithm", ICNC 2006- Springer-
Verlag Berlin Heidelberg, 2006, pp. 935-938.

[19] Juan C. Fuentes Cabrera, Carlos A. Coello Coello, "Handling Constraints in
Particle Swarm Optimization Using a Small Population Size", Lecture notes
in Computer Science, Springer Berlin/Heidelberg, 2007, pp. 41-51.

[20] Ben Niu, Li Li, "A Novel PSO-DE-Based Hybrid Algorithm for Global
Optimization", ICIC 2008, Springer-Verlag Berlin Heidelberg, pp. 156-163.

[21] Riccardo Poli, William B.L. and Owen Holland, "Extending Particle Swarm
Optimization via Genetic Programming" Proceedings of Stn European
Conference EuroGP, 2005, pp. 291-300.

[22] Chia-Feng Juang, "A Hybrid of Genetic Algorithm and Particle Swarm
Optimization for Recurrent Network Design", IEEE Transactions on
Systems, Man, and Cybernetics, Vol.34, No.2, pp. 997-1006, 2004.

80

[23] D.H. Kim, A. Abraham, K. Hirota, "Hybrid Genetic: Particle Swarm
Optimization Algorithm", Studies in Computational Intelligence: Springer-
Verlag Berlin Heidelberg, 2007, pp. 147-170.

[24] K.M. Passino, "Biomimicry of Bacterial Foraging for Distributed
Optimization", University Press, Princeton, New Jersey, 2001.

[25] K.M. Passino, "Biomimicry of Bacterial foraging for distributed
optimization and control", IEEE Control Systems Magazine, 2002, pp. 52-

67.

[26] D.H. Kim, A. Abraham, J.H. Cho, "A hybrid genetic algorithm and bacterial
foraging approach for global optimization", Information Sciences, Vol.177

(18), pp. 3918-3937, 2007.
[27] D.H. Kim, J.H. Cho, "Intelligent Control of AVR system using GA-BF', in:

Rajiv Khosla, Robert J. Howlett, Lalchmi C. Jain (Eds.), Proceedings of KES
2005, Melbourne, Australia, Lecture Notes in Computer Science,

Vol.3684/2005, 2005, pp. 854-860.

[28] Arijit Biswas, Sambarta Dasgupta, Swagatam Das, Ajith Abraham, "Synergy
of PSO and Bacterial Foraging Optimization", Innovations in Hybrid

Intelligent Systems, Springer-Verlag Berlin Heidelberg, 2007, pp. 255-263.

[29] Esmaeil Atashpaz Gagari, Farzad Hashemzadeh, Ramin Rajabioun, Caro

Lucas ,"Colonial competitive algorithm: A novel approach for PID
controller design in MIMO distillation column process", International

Journal of Intelligent Computing and Cybernetics, pp. 337-355, 2008.
[30] A.H. Mantawy, Youssef L. Abdel-Magid, M.A. Abido, "A Simulated

Annealing Algorithm for Fuzzy Unit Commitment Problem", IEEE

Conference on Transmission and Distribution, pp. 142-147, 1999.

[31] John J. Grefenstette, "Optimization of Control Parameters for Genetic
Algorithms", IEEE Transactions on Systems, Man, and Cybernetics, p.p.

122-128, 1986.
[32] Crina Grosan, Ajith Abraham, Hisao Ishibuchi, "Hybrid Evolutionary

Algorithms" Springer-Verlag Berlin Heidelberg, 2007
[33] Tai-Chen Chen, Pei-Wei Tsai, Shu-Chuan Chu, and Jeng-Shyang Pan, "A

Novel Optimization Approach: Bacterial-GA Foraging" Innovative
computing, innovation and control conference, p.p. 391-394, 2007.

81

[34] Dong Hwa Kim, Jae Hoon Cho, "A Biologically Inspired Intelligent PID

Controller Tuning for AVR Systems" International Journal of Control,

Automation and Systems, Vol.4, No.5, pp. 624-636, 2006.

[35] Andries P. Engelbrecht, "Computational Intelligence: An Introduction" John

Wiley and Sons, Ltd, Second Edition, 2007.
[36] Kevin M. Passino, Stephen Yurkovich, "Fuzzy Control" Addison Werley

Longman, First Edition, 1998.

[37] "Fuzzy Logic Toolbox" Matlab. http://www.mathworks.com

[38] Young Jun Park, Hyung Suck Cho, Dong Hyuk Cha, "Genetic Algorithm

Based Optimization of Fuzzy Logic Controller Using Characteristic
Parameters" Proceedings of the IEEE International Conference on

Evolutionary Computation, pp. 831-836, 1995.

[39] France Cheong, Richard Lai, "Constraining the Optimization of a Fuzzy
Logic Controller Using an Enhanced Genetic Algorithm" IEEE Transactions.

on Systems, Man, and Cybernetics, pp. 31-46, 2000.

[40] Elmer P. Dadios, David J. Williams, "A Fuzzy-Genetic Controller for the
Flexible Pole-Cart Balancing Problem" Proceedings of IEEE Conference on

Evolutionary Computation, pp. 223-228, 1996.

[41] F. Bcllezza, L. Lanari, G. Ulivi, "Exact modeling of the slewing flexible

link" Proceedings of IEEE Conference on Robotics and Automation,

Cincinnati, OH, May 13 18, pp. 734-739, 1990.

82

Research paper published by the author:

1. Tushar Jain and M.J. Nigam, "Optimization of PD-PI Controller Using
Swarm Intelligence", International Journal of Computational Cognition, Vol.6,

No.4, p.p. 55-59, December, 2008.
2. Tushar Jain, Vishwanath Patel, M.J. Nigam, "Implementation of PID

Controlled SIMO Process on FPGA Using Bacterial Foraging for Optimal
Performance", International Journal of Computers and Electrical Engineers,

Vol.1, No.2, p.p. 109-112, June 2009
3. Srinivasan Alavandar, Tushar Jain and Madhav Ji Nigam, "Bacterial

Foraging Optimized Hybrid Fuzzy Precompensated PD Control of Two Link
Rigid-Flexible Manipulator", International Journal of Computational
Intelligence Systems, Vol.2, No.1, p.p. 51-59, March 2009

4. Srinivasan Alavandar, Tushar Jain and Madhav Ji Nigam, "Particle Swarm
Optimized Hybrid Fuzzy Precompensated Trajectory Control of Rigid-Flexible

Manipulator", International Journal of Knowledge-Based and Intelligent

Engineering System (in press)
5. Srinivasan Alavandar, Tushar Jain and Madhav Ji Nigam, "Hybrid Bacterial

Foraging and Particle Swarm Optimization for Fuzzy Precompensated

Control of Flexible Manipulator", International Journal of Automation and
Control. (in press)

6. Tushar Jain, Srinivasan Alavandar, M.J. Nigam, "A Hybrid Genetically-
Bacterial Foraging Algorithm converged by Particle Swarm Optimization for

global optimization", International Journal of Bio-Inspired Computation-

Inderscience Publishers(in press)
7. Tushar Jain, M.J. Nigam, "Tuning of Type-I Servo System Using Swarm

Intelligence for SIMO Process", Journal of Engineering Science and

Technology. (under review)
8. Tushar Jain, M.J. Nigam "Optimization of PID Controller Using

Evolutionary Algorithms", Proceedings of National Conference on Mechanism
Science and Technologies, NIT-Hamirpur, p.p. 44-53 November, 2008.

9. Srinivasan Alavandar, Tushar Jain, M.J. Nigam "Synthesis of genetically

bacterial swarm algorithm for optimization of fuzzy control of flexible
manipulator" (under writing)

83

10. Tushar Jain, Srinivasan Alavandar, M J Nigam "Optimization of Modified

fuzzy PD control of flexible manipulator using genetically bacterial swarm
algorithm" (under writing)

11. Tushar Jain, Srinivasan Alavandar, M J Nigam "Cooperative Approaches of

hybrid genetically bacterial swarm algorithm" (under writing)

84

2. INTELLIGENT COMPUTATIONAL TECHNIQUES

This chapter briefly describes the basic techniques for intelligent computation.

The components of genetic algorithm based optimization are discussed in section 1.

Behavior of bird flocking is analyzed in section 2 which leads to particle swarm

optimization. Section 3 discusses the foraging of behavior of bacteria known as bacterial

foraging optimization.

2.1. Genetic Algorithm

Genetic algorithms (GA) are stochastic global search methods inspired by the

process of natural evolution. The genetic algorithm starts with no knowledge of the

correct solution and depends entirely on responses from its environment and evolution

operators (reproduction, crossover and mutation) to arrive at the best solution [31]. By

starting at several independent points and searching in parallel, the algorithm avoids local

minima and converging to sub optimal solutions.

A genetic algorithm is typically initialized with a random population consisting of

between 20-100 individuals. This population is usually represented by a real-valued

number or a binary string called a chromosome. How well an individual performs a task

is measured by the objective function. The objective function assigns each individual a

corresponding number called its fitness value. The fitness of each chromosome is

assessed and a survival of the fittest strategy is applied.

2.1.1. Basic Construction of GA's

The basic construction of GA's can be simply described as follows:

1. Define the string of chromosome: The string of searching parameters for the

optimization problem should be defined first. These parameters are genes in a

chromosome, which can be binary coded or real coded and termed "chromosome".

Different chromosome represents different possible solutions.

2. Define the Fitness Function: The fitness function is the performance index of

GA's to resolve the viability of each chromosome. According to the performance

7

requirements of the problem, the fitness function can be obtained, e.g., convergence

value, error, rise time, etc.

3. Generate an Initial Population: N sets of chromosomes should be randomly

generated before using GA's operation. These chromosomes are called the initial

population. The size of the population, N, is chosen according to the sophistication of the

optimization problem. Generally speaking, the larger the value of N requires fewer

generations to come to a convergent solution. However, the total computation effect

depends on N times the generation numbers.

4. Generate the Next Generation or Stop: GA's use the operations of reproduction,

crossover, and mutation to generate the next generation. From generation to generation,

the maximum value of the fitness value is achieved.

a. Reproduction: Reproduction is the operator carrying old strings through into a

new population, depending on the fitness value. Strings with high fitness

values obtain a larger number of copies in the next generation. An example of

such an operation is shown in Table-2.1.1

Table-2.1.1 An example of the reproduction of GA's

Old Chromosome Fitness value New Chromosome
[101010] 0.3
[010101] 0.5
[110110] 0.1
[011011] 0.9 [011011]

b. Crossover: Crossover is a recombination operator incorporated with

reproduction. It is an effective way of exchanging information segments from

high-fitness individuals. The crossover procedure is to randomly select a pair

of strings from the mating pool, then randomly determine the crossover

position. An example of the operation is shown in Table-2.1.2

c. Mutation: The mutation operator is used to avoid the possibility of mistaking

a local optimum for a global one. It is an occasional random change at some

8

2.2. Particle Swarm Optimization

In 1995, Kennedy and Eberhart first introduced the particle swarm optimization

(PSO) method. It is one of the optimization techniques and a kind of evolutionary

computation technique. The particle swarm optimization (PSO) algorithm is a

population-based search algorithm based on the simulation of the social behavior of birds

within a flock. In PSO, individual, referred to as particles, are "flown" through hyper

dimensional search space. Changes to the position of particles within the search space are

based on the social-psychological tendency of individuals to emulate the success of other

individuals. PSO is therefore a kind of symbiotic cooperative algorithm. A PSO

algorithm maintains a swarm of particles, where each particle represents a potential

solution. The method has been found to be robust in solving problems featuring

nonlinearity and nondifferentiability, multiple optima, and high dimensionality through

adaptation, which is derived from the social-psychological theory. The features of the

method are as follows [35]:

• The method is developed from research on swarm such as fish schooling and bird

flocking.

• It can be easily implemented, and has stable convergence characteristic with good

computational efficiency.

Instead of using evolutionary operators to manipulate the particle (individual),

like in there evolutionary computational algorithms, each particle in PSO flies in the

search space with velocity which is dynamically adjusted according to its own flying

experience and its companions' fling experience. Each particle is treated as a volume less

particle n g-dimensional search space.

Each particle keeps track of its coordinates in the problem space, which are

associated with the best solution (evaluating value) it has achieved so far. This value is

called pbest. Another best value that is tracked by the global version of the particle

swarm optimizer is the overall best value, and its location, obtained so far by any particle

in the group, is called gbest. The PSO concept consists of, at each time step, changing the

velocity of each particle toward its pbest and gbest location. Acceleration is weighted by

11

the BF and the GA into one algorithm. The BF optimization algorithm is known for its

`excellent local search' capabilities but it does have obvious limitations in its global

search approach. This presents a scenario, which is the converse for the GA: it has

excellent global search capabilities but is rather limited in its local search procedure.

Merging the two algorithms, through selective combination of certain favorable functions

of the BF and GA could potentially yield an algorithm that has excellent local and global

search capabilities. Every other process within the HBF is exactly the same as those of

the BF optimization algorithm apart from the Chemotactic and Reproduction process.

The modifications that are implemented through the combination with GA are the reasons

for the differences. These constituent processes were modified because they largely

determine the effectiveness of the HBF and sensible modifications to such processes can

bring about significant improvements in the performance of any algorithm.

3.1.1 Hybrid Chemotaxis
The Hybrid chemotactic process includes the process of tumble and run/swim. It

also includes the GA reproductive process which is the modification that aims to improve

the normal chemotactic process of the BF. After every bacterium has performed

chemotaxis, the new bacteria position and the corresponding nutrient concentration

values achieved are modified using the reproductive process adopted from the GA. The

idea is to create a new set of bacteria positions from the initial set, which is derived from

the tumbles (and swims). The new set obtained through the GA modifications will then

be used in next chemotactic step.

In deriving the new set of bacteria positions, first, the initial set of bacteria

positions are ranked. The ranking is based on their nutrient concentration values. The

smaller values are ranked higher and vice versa. After the ranking process, a certain

(user-specified) number of bacteria positions, which are the most highly ranked are

passed directly into the new set of bacteria positions. The remaining members of the new

set are formed from the initial set by randomly simulating crossover to produce new

bacteria positions and then carrying out the mutation function on randomly selected

bacteria positions. These GA reproduction operators are described in section 2.1. The

new set of bacteria positions are used as the initial positions for the next chemotactic step.

21

Start

Evaluation

Selection

Crossover

Initialization

Tumbling

Swimming

Mutation

Reproduction

Elimination

Fad

Figure-3.1.1 Flowchart of the hybrid bacterial foraging algorithm [33]

22

3.1.2 Hybrid Reproduction

A similar modification described for the Hybrid chemotaxis has been

implemented for the reproduction phase of the BF to yield the hybrid reproduction of the

HBF. The reproduction phase described in section 2.1.1 involves initially assigning

fitness values to each member of the bacteria population, ranking each member of the

population according to its respective fitness value, killing-off of the bottom-half of the

ranked population and finally duplicating each member of the top half of the population.

The GA modification alters this reproduction process by using the operators of crossover

and mutation to produce a new population, rather than merely duplicating the top half of

the ranked bacterial population.

The bacterial population is ranked according to their fitness values of each

bacterium. The fitness value is derived by considering only a single value, which

corresponds to the best (minimum) nutrient concentration value the bacterium

experienced all through the chemotactic process. The lower the fitness value of

bacterium, the better is rank and vice versa. Having achieved a ranked bacterial

population, a number of highly ranking bacterium is passed unaltered to the new

population of bacteria. The remaining members of the new population are obtained by

applying the functions of crossover and mutation randomly on the remaining bacteria

within the ranked population. The modified approach to reproduction enables a better

chance of convergence of the bacterial population to the positions that correspond to the

best structure and parameters for the controller being designed. At the same time, the

mutation function enables the algorithm to search wider areas within the sample space

thus enhancing the global nature of the search procedure. The flowchart of hybrid

bacterial foraging is shown in Figure-3.1.1.

3.2. Hybrid Bacterial Foraging-Particle Swarm Optimization

The hybrid bacterial foraging-particle swarm optimization (BF-PSO) was

proposed by Arijit et. al. [28]. In his approach, after undergoing a chemo-tactic step, each

bacterium also gets mutated by a PSO operator. In this phase, the bacterium is

stochastically attracted towards the globally best position found so far in the entire

population at current time and also towards its previous heading direction. The PSO

23

3.3. Genetically-Bacterial Swarm Optimization

The main goal of GBSO algorithm is to find the minimum of a functionJ(0),

9 E R P which is not in the gradient VJ(9). Here, Ois the position of the bacterium, and

J(0) is an attractant-repellant profile. That is, where nutrients and noxious substances

are located, J < 0, J = 0, and J > 0 represents the presence of nutrients. A neutral

medium, and the presence of noxious substances, respectively can be defined by

P(j,k,l) = {0' (j,k,l)Ii = 	 (3.3.1)

Eqs. (3.3.1) represents the position of each member in the population of S bacteria at the

j th chemotactic step, k th reproduction step, and / th elimination-dispersal event. The

co-ordinates of the bacterium here represent an individual solution of the optimization

problem. The approach to GBSO technique is considered in two phases: first, the genetic

selection using stochastic universal sampling method, crossover using extended

intermediate recombination and mutation as used in BGA [3] are included in the

chemotaxis loop which forces bacteria to exchange the information they carried to the

others via switching the information on parts of the dimension. These operators extract

common features from different bacteria in order to achieve even better solutions.

Secondly, the search direction vector is iterated using PSO algorithm. The randomly

initialized direction vector in basic BF algorithm remains same throughout the algorithm

which can result delay in reaching the optimal solution and at times it can converge into

some sub-optimal region. This delay is handled using PSO velocity equation.

Furthermore, the elimination course is marginally different from the process in BF. If

there is a probability of elimination-dispersal event to occur then instead of generating

another population via the initialization process as considered in basic BF algorithm, the

whole new individuals are generated via mutating all the dimensions from the eliminated

one.

In this work, the GA implementation presents the following characteristics:

26

3.3.1 Ranking and Selection in GBSO

In a minimization problem of function J(0), a 'ranking' operation [32] is

performed where individuals are sorted in decreasing J(0) value first, and then, J(0) is

replaced by its position. Each individual has a new cost function value .T(0).

Selection is made by the operator known as Stochastic Universal Sampling (SUS)

[31]. If N ind is the number of individuals, then the survival probability of an individual

P(69 is guarantd to be:

jiC6') P(01) = Nid
E.P(61)
j=1

(3.3.2)

3.3.2 Crossover operation in GBSO

An extended intermediate recombination [30] is used for the GBSO algorithm as:

zi = +a; 	— 	 (3.3.3)

where x 	 y = (y1 ,...yn) are the parents and z = (z) ,...zn) is the

successor, a, is a random number generator. The operation, achieved with a probability

Pc can be performed on each bacteria, separately.

3.3.3 Mutation operation in GBSO

The mutation operation is performed for each bacterium with a probability fin. Then, a

random value is added for each individual — generated with a normal distribution and a

standard deviation set to 20% of the search space range. If necessary, the mutated

individual is kept in the search space by truncation.

3.3.4. Particle Swarm Optimization

PSO [10] is a stochastic optimization technique that draws inspiration from the behavior

of flock of birds or the collective intelligence of a group of social insects with limited

27

individual capabilities. The E coli algorithm depends on random search directions which

may lead to delay in reaching the global solution. The velocity update equation of PSO

algorithm is used for optimizing the search direction in E coli algorithm which decreases

the delay and hence enhances the convergence rate. They move iteratively through the d-

dimension problem space to search the new solutions. Each particle has a position

represented by a position vector X kl where (i is the index of the particle), and a velocity

represented by a velocity-vector V . . Each particle remembers its own best position PA„,

The best position vector among the swarm then stored in a vector 	. During the

iteration time k , the update of the velocity from the previous velocity to the new velocity

is determined by

V,c1± , = 	+ C,R,(P Lbest — X lc) C 2R 2(PC;lohai — X ;) (3.3.4)

The new position is then determined by the sum of the previous position and the new

velocity.

X k+1 = X ki + V ki 	 (3.3.5)

where RI , R2 are random numbers and C, , C2 are learning factors.

3.3.5 The GBSO algorithm

The GBSO algorithm to search optimal values of parameters is described as

follows:

[Step 1] Initialize parameters p, S, N c , N s , N re , N ed , Pea , C(i)(i = 1,2,...,S),

Where,

19, 	Dimension of the search space

S, 	Number of bacteria in the population

A Tc , 	No. of Chemotactic steps

N s , 	Swim length

28

Certain characteristics of the rule-base are assumed in using the proposed

construction method:

• Extreme outputs more usually occur when the inputs have extreme values while

mid-range outputs generally are generated when the input values are mid-range.

• Similar combinations of input linguistic values lead to similar output values

Using these assumptions the output space is partitioned into different

regions corresponding to different output linguistic values. How the space is

partitioned is determined by the characteristic spacing parameters and the characteristic

angle. The angle determines the slope of a liner through the origin on which seed

points are placed. The positioning of the seed points is determined by a similar spacing

method as was used to determine the centre of the membership functions.

Figure-4.2.2 Seed Points and Grid Points for rule-base construction

41

	Title

	Abstract'

	Chapter 1

	Chapter 2

	Chapter 3

	Chapter 4
	Chapter 5

	References

