
A BORDER BASED APPROACH FOR HIDING FUZZY
WEIGHTED SENSITIVE ITEMSETS

A DISSERTATION

Sub itted in partial fulfillment of the
requirements for the award of the degree

of
MASTER OF TECHNOLOGY

in
COMPUTER SCIENCE AND ENGINEERING

MRIDULA

DEPARTMENT OF ELECTRONICS AND COMPUTER ENGINEERING
INDIAN INSTITUTE OF TECHNOLOGY ROORKEE

ROORKEE -247 667 (INDIA)
JUNE, 2009

CANDIDATE'S DECLARATION

I hereby declare that the work, which is being presented in the dissertation entitled "A
BORDER BASED APPROACH FOR HIDING SENSITIVE FUZZY WEIGHTED
ITEMSETS IN QUANTITATIVE DATABASES" towards the partial fulfillment of
the requirement for the award of the degree of Master of Technology in Computer
Science submitted in the Department of Electronics and Computer Engineering, Indian
Institute of Technology Roorkee, Roorkee (India) is an authentic record of my own work
carried out during the period from July 2008 to June 2009, under the guidance of Dr.

Durga Toshniwal, Assistant Professor, Department of Electronics and Computer
Engineering, IIT Roorkee.

I have not submitted the matter embodied in this dissertation for the award of any other
degree or diploma.

Date:
Place: Roorkee 	 (MRIDULA VERMA) ---

CERTIFICATE

This is to certify that the above statement made by the candidate is correct to the best of
my knowledge and belief.

Date:
Place: Roorkee

lMI foci

(Dr. Durga Toshniwal)

Assistant Professor
Department of Electronics and Computer Engineering

IIT Roorkee -- 247 667

1

ACKNOWLEDGEMENT'S

I would like to take this opportunity to extend my heartfelt gratitude to my guide and

mentor Dr. Durga Toshniwal, Assistant Professor, Department of Electronics and

Computer Engineering, Indian Institute of Technology Roorkee, for her trust in my work,

her able guidance, regular source of encouragement and assistance throughout this

dissertation work. I would state that the dissertation work would not have been in the

present shape without her inspirational support and I consider myself fortunate to have

done my dissertation under her.

I also extend my sincere thanks to Dr. S. N. Sinha, Professor and Head of the

Department of Electronics and Computer Engineering, for providing facilities for the

work.

Finally, I would like to say that I am indebted to my parents for everything that they have

done for me. All of this would have been impossible without their constant support.

MRIDULA VERMA

ii

ABSTRACT

Association rule mining is an important technique in data mining. Traditional association

rule discovery process deals with crisp quantitative data values. However, there are cases

when the data values are not well separable into crisp boundaries. This data can be

termed as fuzzy data. In such cases, a single value can have membership associated with

multiple attributes or groups. Traditional association rule discovery fails to work on such

data. Fuzzy association rule mining techniques are used to deal with uncertain or fuzzy

data. In many real world applications, all items in the database may not be of equal

significance from data mining perspective. So, in such cases weights are assigned to

items to reflect their importance. Applying privacy preservation on weighted fuzzy

frequent itemsets is an active area of research in data mining.

In context to privacy preservation, fuzzy weighted itemsets can be categorized as

sensitive itemsets and non-sensitive itemsets. Sensitive itemsets are those which are

critical to the user or application and must remain hidden. Non-sensitive itemsets are

those which are less critical and may not remain hidden. Some non-sensitive itemsets

have high predicting capability i.e. they may be used to predict sensitive itemsets values.

It is important to identify such non-sensitive itemsets and to prevent their misuse. Also,

the hiding of sensitive itemsets may affect the sanitized database.

In the thesis, an algorithm has been proposed to extract fuzzy weighted frequent itemsets.

The proposed work also identifies the highly predictive fuzzy weighted non-sensitive

itemsets and hides them in combination of sensitive itemsets to obtain well maintained

sanitized database. To achieve database sanitization, border based approach for hiding

fuzzy weighted itemsets has been proposed. The, work has been done using quantitative

datasets. Case data has been taken from real life applications.

iii

CONTENTS

CANDIDATE'S DECLARATION ... i

ACKNOWLEDGEMENTS... ii

ABSTRACT .. iii

	

TABLEOF CONTENTS .. 	iv

	

LISTOF FIGURES ... 	vi

	

LISTOF TABLES ... 	vii

	

CHAPTER 1: INTRODUCTION ... 	1

	

1 .1 	Introduction ... 	1

	

1.2 	Motivation .. 	3

	

1.2 	Statement of the Problem ... 	4

	

1.3 	Organization of the Dissertation ... 	'5

CHAPTER 2: BACKGROUND AND LITERATURE REVIEW 6

	

2.1 	Privacy Preserving Data Mining .. 	6

	

2.2 	Membership Function ... 	7

	

2.3 	Fuzzy Association Rules .. 	13

	

2.4 	Frequent Pattern Hiding ... 	17

	

2.5 	Research Gaps .. 	22

CHAPTER 3: PROPOSED WORK ... 24

	

3.1 	Overview ... 	24

	

3.2 	Preprocessing .. 	25

	

3.3 	Classification and Fuzzification .. 	26

	

3.4 	Fuzzy Weighted Itemsets (FWI) Mining 26

	

3.5 	Identifying Highly Predictive Non-Sensitive FWIs 	29

	

3.6 	Border-Based Approach for Hiding Sensitive FWIs 32

iv

CHAPTER 4: SYSTEM DESIGN AND IMPLEMENTATION 36

	

4.1 	Database Used .. 	3 6

	

4.2 	Code Platform ... 	37

	

4.3 	Modules and Procedures ... 	38

CHAPTER 5: RESULTS AND ANALYSIS ... 44

	

5.1 	Results .. 	44

	

5.2 	Analysis ... 	47

CHAPTER 6: CONCLUSION AND FUTURE WORK .. 49

	

6.1 	Conclusion ..:......................... 	49

	

6.2 	Future Work 	5 0

REFERENCES... 51

LIST OF PUBLICATIONS ... 54

APPENDIX: SOURCE CODE LISTING .. 55

u

LIST OF FIGURES

Figure 	Description
Number

	

1.1 	Knowledge Discovery Process

	

2.1 	Membership function of a -fuzzy set

	

2.2 	Single input neuron

	

2.3 	A Multi-layered Multiple Input Neural Network

	

2.4 	Crisp Partition

	

2.5 	Fuzzy Boundaries

	

2.6 	Example Itemset Lattice

	

3.1 	Overview of the Work

	

3.2 	Modified Fuzzy C-Mean Clustering

	

3.3 	Frequent Fuzzy Itemset Lattice

	

3.4 	Border-based Approach for Hiding Sensitive Fuzzy

Weighted Itemsets

	

4.1 	Multilayer Feed-forward Neural Network

	

5.1 	Membership Function obtained for Class 1

	

5.2 	Affect of Support on Number of Frequent Weighted

Itemsets

	

5.3 	Comparison between FFIM and FFWIM

	

5.4 	Effect of Support & no. of Sensitive entries on no. of highly

predictive non-sensitive itemsets

	

5.5 	Effect of Average Support Difference on Quality Factor

	

5.6 	Effect of Number of Transactions on Execution Time

Page
Number

2

8

11

13

14

15

20

24

26

33

34

40

44

45

45

46

47

47

vi

LIST OF TABLES

Table Number Description

2.1 Different Activation Functions

21 Membership function of a fuzzy set

2.3 Single input neuron

3.1 Fuzzified Quantitative Database
3.2 Fuzzified Quantitative Temporary Database
4.1 Database Details

Page Number

12

18

21

30

30

37

vii

CHAPTER 1

INTRODUCTION

Privacy preserving data mining — getting valid data mining results without learning the

underlying data values has been receiving attention in the research community. As a

young research field, data mining has made broad and significant progress since its early

beginning in the 1980s [1]. Today data mining is used in a vast array of areas, and

numerous commercial data mining systems are available for various types of databases.

This chapter gives an introduction and motivation behind the proposed work, discusses

the problem statement of the proposed work and the structure of this thesis.

1.1 Introduction

The evolution of information technologies and especially the networks like the Internet

enabled companies to easily record data from their customers. Since then, huge amounts

of data have been collected and stored in the databases of many enterprises. Due to the

fact that a lot of business intelligence is hidden in these large databases, the companies

need efficient automated tools to find out patterns and regularities.

Data mining (sometimes called knowledge discovery in data) is the process of analyzing

data from different perspectives and summarizing it into useful information - information

that can be used to increase revenue, cuts costs, or both. - It allows users to analyze data

from many different dimensions or angles, categorize it, and summarize the relationships

identified. Technically, data mining is the process of finding correlations or patterns

among dozens of fields in large relational databases. It consists of five major elements

[2], as shown in fig. 1.1.

Many data mining tools have been developed that allow a great v ariety of analysis

techniques, mostly derived from classical statistics. Since its introduction, the technique

of association rules mining has received great interest by the data mining community and

a lot of research has been -done resulting in the development of many different

algorithms. Association rules are especially useful for conducting market basket analysis,

1

Evaluation

EMEng
e
e
e

Transformation e 	 e
e

 ~► 	 Knowledge
,

Preprocessing 	 '
e 	 ,

Selection 	 ~ 	 e e 	,
e 	 e
e 	 e
e 	 e
, 	 e
, 	 e

Database

Figure 1.1: Knowledge Discovery Process

where transaction data can be analyzed. Regularities in data of a supermarket for example

can be found in this way. An association rule could be "If a customer buys bread and

milk, he will mostly buy butter as well". This information is very useful for business

because promotion actions can be designed accordingly.

A problem of classical association rules is that not every kind of data can be used for

mining. Rules can only be derived from data containing binary data, where an item either

exists in a transaction or it does not exist. When dealing with a quantitative database, no

association rules can be discovered. This fact led to the invention of quantitative

association rules, where the quantitative attributes are split into intervals and the single

elements are either members or nonmembers of those intervals.

Beyond the positive consequences of higher information accuracy, a negative point is a

feeling of dwindling privacy for individual person (or company). The objective of data

mining is to generalize across population, rather than revealing information about

individuals. So, the true problem is not data mining, but the way data mining is done.

2

Large repositories of data contain sensitive information that must be protected against

unauthorized access. Recent advances in data mining and machine learning algorithms

have increased the disclosure risks that one may encounter when releasing data to outside

parties. Privacy preserving techniques are used to preserve the private information of a

user. These techniques, using methods like data hiding, cryptography, perbutations, use to

affect the basic organization of the database. So, there is a need of techniques to preserve

the privacy of user data without affecting the distribution of the database. Mostly these

real world databases are of quantitative type. This work proposes an algorithm to hide the

sensitive items in the quantitative fuzzy database without affecting the non-sensitive

database.

1.2 Motivation

The quantitative approach allows an item either to be member of an interval or not. This

leads to an under or overestimation of values that are close to the borders of such "crisp"

sets. To overcome this problem, the approach of fuzzy association rules has been

developed. It allows the intervals to overlap, making the set fuzzy instead of crisp. Items

can then show a partial membership to more than one set, overcoming the above

addressed, so-called "sharp boundary problem". The membership of an item is defined by

a membership function and fuzzy set theoretic operations are incorporated to calculate the

quality measures of discovered rules. Using this approach, rules can be discovered that

might have got lost with the standard quantitative approach.

In previous works [1, 13, 14, 15], whether the database is boolean type or quantitative

type there are some sensitive itemsets which should be hidden to make the user privacy

preserved. Especially in medical institutions, there are databases including very extensive

information about patients. Possible bad purposed usage of those databases threatens

personal privacy of patients. Fuzzy data mining concept is usually concerned with

medical databases. To estimate the type of the disease in the patient, generally doctors

use IF-THEN rules. These IF-THEN rules are generally represented by fuzzy relations.

That is why; fuzzy databases are used in medical applications. For example, if a patient is

having fever of 100°C and the size of the radius of red cells in the blood .is more than

5µm then it can imply that he has been suffering from Malaria.

There are some recent examples about bad purpose usage of medical information of

patient. For example; Kiser, one of the most important medical institutes of United States

sent 858 e-mail messages by mistake. Those messages contained IDs of users and their

answers for their illnesses and the questions as well. All of those messages were sent to

wrong receivers. (Washington Post, 10 August 2000). In another example, Global

Healttrax, an online firm selling health products, sent names, home phones, bank account

numbers and credit card data through their website by mistake. (MSNBC, 19 January

2000) [3].

This thesis gives an overview of membership function generation, fuzzy associations

mining, and an introduction to hiding sensitive fuzzy weighted itemsets in quantitative

databases. A privacy preserving framework has been proposed for fuzzy databases.

Additionally, a technique has also been described which is used to generate the

membership function for the fuzzy dataset. The following section describes the problem

statement of this thesis work.

1.3 Statement of the Problem

The work undertaken in the thesis is given as follows,

• To find frequent fuzzy weighted itemsets in quantitative databases.

• To identify the highly predictable non-sensitive fuzzy weighted itemsets.

• To hide the sensitive fuzzy weighted itemsets and non-sensitive highly

predictable fuzzy weighted itemsets while maintaining the quality of database.

The assumptions for the work are:

1. The algorithms are designed for the quantitative databases.

2. During hiding process the support of itemsets are decreased by its associated

membership.

E

1.4 Organization of the Thesis

The report is divided into seven chapters including this chapter that introduces the topic

and states the problem. The rest of the thesis'report has been organized as follows:

A brief review of literatures studied and the background knowledge for this work has

been discussed in Chapter 2. Basic concepts like fuzzy C-Means clustering, neural

network, fuzzy itemset mining etc. have been discussed in this chapter. All research gaps

found will also be discussed.

The proposed work has been described with the help of block diagram in Chapter 3. Each

module of the block diagram has been described in detail.

In Chapter 4, we give the implementation details of this work. It includes a brief

description of the database used, code platform and the modules and procedures created

in implementation.

All the results and a detailed analysis of these results have been given in Chapter 5. In the
end, we conclude the thesis in Chapter 6 with some suggestions for future works.

5

CHAPTER 2

BACKGROUND AND LITERATURE REVIEW

Privacy Preserving Data Mining is a research area concerned with the privacy driven

from personally identifiable information, when considered for data mining. In particular,

in privacy preserving data mining, it is aimed at providing data to public for data mining

purpose while not risking personal data and performing high precision of the mining

algorithm at the same time [4]. An overview will be given in this chapter. Various

privacy preserving data mining systems are available for various types of databases. In

real-world scenario generally databases is of quantitative form which can be implemented

by using fuzzy concepts. In this chapter, all the literature studied for this work is given.

2.1 Privacy Preserving Data Mining

The use of Internet has enabled in the last years an unprecedented level of automated data

collection. Parallel to this, data mining has emerged as an important discipline providing

powerful tools for data analysis. Data mining software is one of a number of analytical

tools for analyzing data. It allows users to analyze data from many different dimensions

or angles, categorize it, and summarize the relationships identified [5]. Beyond the

positive consequences of higher information accuracy, a negative point is a feeling of

dwindling privacy for individual person (or. company).

Privacy preserving data mining is first defined by R. Agrawal and R. Srikant [6]. They

addressed the problem of development of accurate model without access to precise

information in individual data records. In their work, R. Agrawal and R. Srikant

introduced a quantitative measure to evaluate the amount of privacy offered by a method

and introduced - their reconstruction procedure to reconstructing the original data

distribution given a perturbed distribution.

A most useful and generalized classification of different techniques was done by V. S.

Verykios et al. [1]. They classified different privacy preserving data mining techniques

into five categories. These categories are namely data distribution, data modification, data

u

mining algorithm, data or rule hiding and the privacy preserving. They also gave a review

of Heuristic-based techniques, Cryptography-based techniques and Reconstruction-based

techniques of privacy preserving and also provide an evaluation of privacy preserving
algorithms.

Data mining can be done by various techniques - i.e. the useful knowledge from the

database can be extracted by various techniques. According to the dimensions of the data

mining techniques, dimensions of techniques for the privacy preservation also expands.

Privacy preservation can be applied to clustering, association rule mining, classification

and other data mining techniques.

2.2 Membership Function

Fuzzy concept uses membership functions to provide membership to items into a fuzzy

set. A membership function puts a lot of impact on the result of the fuzzy computation.

So, selection of an accurate membership function is an important task for applying fuzzy

concept. The membership function is a graphical representation of the magnitude of

participation of each input. It associates a weighting with each of the inputs that are

processed, define functional overlap between inputs, and ultimately determines an output

response. The rules use the input membership values as weighting factors to determine

their influence on the fuzzy output sets of the final output conclusion.

Member degrees of fuzzy sets include similarity, preference, and uncertainty [7].

Membership functions on X represent fuzzy subsets of X. The membership function

which represents a fuzzy set is usually denoted by µA. For an element x of X, the value

p.A(x) is called the membership degree of x in the fuzzy set. The membership degree

µA(x) quantifies the grade of membership of the element x to the fuzzy set. The value 0

means that x is not a. member of the fuzzy set; the value 1 means that x is fully a member

of the fuzzy set. The values between 0 and 1 characterize fuzzy members, which belong

to the fuzzy set only partially.

I.0 .1^- — — — — 	—
z I t.S Wst. fri i r j Wt: A

I
I
t

tttrctar~clia
Ci rit,ion µ(

M
X

Figure 2.1: Membership function of a fuzzy set

Fig. 2.1 demonstrates a membership function with respect to a crisp boundary. The

approach adopted for acquiring the shape of any particular membership function is often

dependent on the application. For most fuzzy logic control problems the assumption is

that the membership functions are linear - usually triangular in shape [8]. However, for

many other applications triangular membership functions are not appropriate.

In [9] all the basic techniques of membership function generation is described. The

techniques include heuristic based, feed-forward neural networks, clustering and mixture

decomposition etc. The author iterates that there is no single best method and the choice

of method depends on the particular problem.

Lucero and Patricia in [10] give a method for membership function generation if the

training data is present. If the membership of each data point to each class is defined, then

they show the technique to find out the membership function. They also stated that a

module which automatically creates membership functions for a system's input

parameters with neuro-fuzzy systems will be much more efficient.

The author proposed a fuzzy learning method for automatically deriving membership

functions from a set of given training examples. The proposed approach can significantly

reduce the time and sort needed to develop a fuzzy expert system. As an example, they

explain the technique to find out a triangular membership function.

8

The technique we have used in this work is finding membership function using clustering

to get the class label and using these class labels, the membership values of data items for

these classes has been obtained using neural network.

Clustering
Clustering involves the task of dividing data points into homogeneous classes or clusters

so that items in the same class are as similar as possible and items in different classes are

as dissimilar as possible. Clustering can also be thought of as a form of data compression,

where a large number of samples are converted into a small number of representative

prototypes or clusters.

In non-fuzzy or hard clustering, data is divided into crisp clusters, where each data point

belongs to exactly one cluster. In fuzzy clustering, the data points can belong to more

than one cluster, and associated with each of the points are membership grades which

indicate the degree to which the data points belong to the different clusters. This sub-

chapter demonstrates the fuzzy c-means clustering algorithm. The clustering used in this

work is a bit modified version of FCM.

Fuzzy c-means (FCM) is a method of clustering which allows one piece of data to belong

to two or more clusters. This method is frequently used in pattern recognition. It is based

on minimization of the following objective function:
NC 2

J =ZZ IIx= -c)II
i-i .1-1 	 1 m < oo 	 (1)

where m is any real number greater than 1, u is the degree of membership of x; in the

cluster j, x; is the a of d-dimensional measured data, c~ is the d-dimension center of the

cluster, and 11*11 is any norm expressing the similarity between any measured data and the

center. Fuzzy partitioning is carried out through an iterative optimization of the objective

function shown above.

0

m 	
_~(k*1} (k)I1 ~

This iteration will stop when 	u 	u 	
< `, where 1 is a termination criterion

between 0 and 1, whereas k is the iteration steps. This procedure converges to a local

minimum or a saddle point of J.. The algorithm is composed of the following steps:

Step 1: Initialize U = [u0J matrix, U

Step 2: At k-step: calculate the centers vectors C (k) = [ci] with U (k)

(2)

Step 3: Update U~), U (k }l)
1

Ya _ 2

ik —c IIr
k_l If xi —ck11

Step 4: If I I U (k+') — U I 1< •` then STOP; otherwise return to step 2.

Artificial Neural Network:
The basic concept of artificial neural network comes from the Biological neural network

which works in human brain. A biological neuron receives electrochemical signals from

many sources (other neurons) and when the excitation in the neuron is high enough, it

starts fire and passes the signal to the next neuron.

An artificial neuron is defined as follows [11]:

• It receives a number of inputs (either from original data, or from the output of

other neurons). Each input comes via a connection that has a strength (or weight);

these weights correspond to synaptic efficacy in a biological neuron. Each neuron

also has a single threshold value. The weighted sum of the inputs is formed, and

the threshold subtracted, to compose the activation of the neuron.

• The activation signal is passed through an activation function (also known as a
transfer function) to produce the output of the neuron.

(3)

10

Inputs General Neuron

,,7 	n.

ip+b)
Figure 2.2: Single input neuron

Coming to the very basic concept, a single neuron model is shown in fig. -2.2. The scalar

input p is multiplied by a scalar weight w to form wp, which is sent to the summing

function. The other input called bias (b) is passed to summing function. The summing
function gives output n which goes to the transfer function (or activation function) f,

which produces the neuron output a.

In this case, the neuron output is calculated as,

a=f(wp+b)
	

(4)

The actual output depends on the particular transfer function that is chosen. Table 2.1

shows the various types of transfer function which are generally used in artificial neural
network.

Typically a neural network has multiple input pl, pz,...p ,. In these type of networks the

weights are shown by a matrix of size I *n. Thus the weights will be wl, I, wj, 2 ...
Here the output will be, a =f(Wp + b), where W is a one dimensional matrix of weights.

Coming to more complex type of networks, the following fig is showing a three layer

multiple input neural network.

As shown in the fig. 2.3, there are R inputs, L1 neurons in the first layer, L2 neurons in the

second layer, etc. We can have different number of neurons on different layers. The

outputs of one and two will be the inputs of layer two and three. Thus, layer 2 can be

viewed as one-layer network with R = LI inputs, L = L2 neurons and an LI *L2 weight
matrix W2. The input to the layer 2 is a' and output is a2. A layer whose output is the n/w

11

Name Input/Output Relation Icon

Hard Limit a = 0 n<0 LJI a 	1 n>=0

a=-1 	n<0
Symmetrical Hard Limit

a=+1 n>=0

Linear a=n

Log-Sigmoid a = 1/(1±e9
ill

Table 2.1: Different Activation Functions

output is called an output layer. All the other layers are called hidden layers. In the above
network there are two hidden layers.

After this brief introduction to neural network themain concept to discuss is the learning
algorithm. After the design of the neural network, we have to train it so that it can

classify our input data objects correctly. In this step, we provide a set of training data to

the network and using a proper learning algorithm, network use to learn. There are

various algorithms provided for learning. Here the best known example is being

described i.e. Back-Propagation algorithm.

In back propagation, the gradient vector of the error surface is calculated. This vector

points along the line of steepest descent from the current point, so we know that if we

move along it a "short" distance, we will decrease the error. A sequence of such moves

(slowing as we near the bottom) will eventually find a minimum of some sort. The

difficult part is to decide how large the steps should be. s .

The typical back-propagation network has an input layer, an output layer, and at least one

hidden .layer. Each layer is fully -connected to the succeeding layer. The training

process normally uses some variant of the Delta Rule, which starts with the calculated

I2

Inputs First Layer Second Layer Third Layer

tilt all 	lv't t 	rr21 	11, Sl.t "3i 	f3 	X33

bil b2s bit

~2
I

tt~2
1

rr~~ 	 T7~2

	

0:2 H~2 	 '2

,3 ~ja ~j

pR $ i I a s

"L'3c3__3 3
r i ~

5tt=ft('tp.-J:) 2 =t 2(%V2517 	112) 	513=f3(%V3a2±b)
,q l = f 3 	f 2 (NV2f 1(\Vtp+bt)+b2)+bi)

Figure 2.3: A Multi-layered Multiple Input Neural Network

difference between the actual outputs and the desired outputs. Using this error,

connection weights are increased in proportion to the error times a scaling factor for

global accuracy. Doing this for an individual node means that the inputs, the output, and

the desired output all have to be present at the same processing element. The complex

part of this learning mechanism is for the system to determine which input contributed

the most to an incorrect output and how does that element get changed to correct the

error. To solve this problem, training inputs are applied to the input layer of the network,

and desired outputs are compared at the output layer. During the learning process, a

forward sweep is made through the network, and the output of each element is computed

layer by layer. The difference between the output of the final layer and the desired output

is back-propagated to the previous layer(s), usually modified by the derivative of the

transfer function, and the connection weights are normally adjusted using the Delta Rule.

This process proceeds for the previous layer(s) until the input layer is reached.

2.3 Fuzzy Association Rules

Among various data mining techniques, association rule mining is the most popular one.

In this technique, we use to find out interesting associations and correlations among

itemsets in the database. Various works have been done in the field of association rule

mining. Most studies have shown how binary valued transactions can be handled.

13

1

0
iv. 	 5u Age

Figure 2.4: Crisp Partition

However, transaction in the real-world applications usually consists of quantitative

values, so designing sophisticated data-mining algorithms able to deal with various types

of data presents a challenge to workers in this research field.

Based on classical association rule mining, a new approach has been developed

expanding it by using fuzzy sets. The new fuzzy association rule mining approach

emerged out of the necessity to mine quantitative data frequently present in databases

efficiently. When dividing an attribute in the data into sets covering certain ranges of

values, we are confronted with the sharp boundary problem.

Elements near the boundaries of a crisp set will either be ignored or overemphasized. For

example, one can consider a set representing persons of middle age, ranging from 30 to

50 years old (see Fig. 2.4). In this example, a person aged 29 years would be a 0%

representative and a 31 year old would be 100%. In reality, the difference between those

ages is not that great. Implementing fuzziness can overcome this problem.

The same problem can occur if one is dealing with categorical data. Sometimes, it is not

ultimately possible to assign an item to a category. As an example, one can say that a

tomato is a vegetable but also, in a way, a fruit. Crisp sets would only allow assigning the

item to one single category; fuzzy sets allow different grades of membership to more than

one set.

14

N

Age

Figure 2.5: Fuzzy Boundaries

For example, in the previous case we might want to partition the variable Age into three

fuzzy sets. The fuzzy sets and their membership functions will have to be defined by a

domain expert. For easy demonstration, the borders of the sets are defined and split the

overlapping part. equally between the so generated fuzzy sets. The following borders for

the fuzzy sets of the variable age: Age.Low={0-33}, Age.Medium={27-55}, Age.High
{48—oo} can be used. The generated fuzzy sets are shown in fig. 2.5. For all areas having

no overlap of the sets, the support will simply be 1 for the actual itemset. If there is an

overlap, the membership can be computed by using the borders of the overlapping fuzzy
sets. The added support will here always sum up to 1.

Kuok et al. describe fuzzy association rules as follows [12]: "Mining fuzzy association

rule is the discovery of association rules using fuzzy set concepts such that the

quantitative attribute can be handled". As in classical association rules, I = { i1 , j2. ... , i.
} represents all the attributes appearing in the transaction database T={ tl , t2 , ... , t,}. I
contains all the possible items of a database, . different combinations of those items are
called itemsets. Each attribute ik will associate with several fuzzy sets. In order to
represent the fuzzy sets associated with ik, the following notion is used,

Fik — { f ik I f ik2 •.. f ikm }
	

(5)

where Id is the jth fuzzy set in Fik. As an example, the attribute salary could look as
follows: FAge = { high, medium, low }. Fuzzy sets and their corresponding membership

functions have to be defined by domain experts. Each of the fuzzy sets can be viewed as a

[0, 1] valued attribute, called fuzzy attribute.

15

A fuzzy association rule has the following form:

IfX is A then Y is B 	 (6)

In this case, X ={ x1, x2, ..., xp } and Y {yi , y2 ,... , yq } are itemsets which are subsets of I.
It is important to notice that those two sets must be disjoint and thus do not have any

attributes in common. Fuzzy values,

A={ fx',fx2, ... ,fp}andB= {fy',fy2,...,fyq} 	 (7)

contain the fuzzy sets that are associated with X and Y. Known from classical association
rules, X is A is the antecedent, Y is B is the consequent. If a sufficient amount of records
approves this rule, it will call as satisfied.

In order to enable the evaluation of a fuzzy association rule, we use the standard approach

for calculating support and confidence, replacing the set-theoretic operations by the

corresponding fuzzy set-theoretic operations [13]:

supp (A- >B) = E x ED (T (A(x), B(x))
	

(8)

conf (A->B) = Ex ED (T (A(x), B(y)) / E (x, y)ED A(x) 	 (9)

Additionally, if A supports B, B will automatically also support A. This is due to the fact

that the support is computed by simply summing up the memberships of the different

items in the database. Thus:

suPP[x , y] (A->B) = suPP[x , y] (B-> A)
	

(10)

Work done in [14] describes a technique of mining the quantitative data in large

relational tables. It defines the traditional association rule as a "Boolean Association

Rule", and introduces a new term as "Quantitative Association Rule". The basic approach

which is described in this work is mapping of quantitative association rule problem into

boolean association rule problem. It first finds out the partitions in the quantitative data

and then maps the data values into these partitions. Thus all the values in the database get

partitioned through crisp boundaries. .

16

The main problem with this approach of partitioning is the information loss due to crisp

boundaries, is the sharp boundary problem defined by Kuok in [12]. They describe that a

fuzzy concept is better than the partitioning method, since fuzzy sets provides a smooth

transition between members and non-members of a set. Kuok uses two factors as

significance and certainty to find out the large itemsets and rule interestingness
respectively.

Hong et al. proposed a fuzzy mining algorithm to mine fuzzy rules from quantitative

transaction data [15]. Basically, the fuzzy mining algorithms first used membership

functions to transform each quantitative value into a fuzzy set in linguistic terms. The

algorithm then calculated the scalar cardinality of each linguistic term on all the

transaction data. The mining process based on fuzzy counts was then performed to find
fuzzy association rules.

One more efficient algorithm is given in [16], by Hong, Kuo and Wang. It uses an

AprioriTid mining algorithm with comparatively reduced computational time. They took

reference from the work done by R. Aggrawal and R Srikant, which describes two fast

algorithm of association rule mining. The AprioriTlD is a fast algorithm since it uses

only one scanning of the database from memory. So the memory I/O time get decreases.

2.4 Frequent Itemset Hiding

Data hiding is a popular technique to preserve the privacy of the user. In this technique

sensitive data is hided from the attackers. There 'is a, specific class of methods in the

knowledge hiding area, known as frequent itemset and association rule hiding. Other

classes of methods, under the same area, include classification rule hiding, clustering

model hiding, sequence hiding and so on and so forth. "Association rule hiding" has been

mentioned for the first time in 1999 in a workshop paper by Atallah et al. [13].

According to [14], association rule hiding algorithms can be divided into three distinct

classes, i.e. heuristic approaches, that involves efficient, fast algorithms that selectively

sanitize a set of transactions from the database to hide the sensitive knowledge, border-

17

based approaches, that considers the task of sensitive rule hiding through modification of

the original borders in the lattice of the frequent and the infrequent patterns in the dataset

and exact approaches that contains non-heuristic algorithms which conceive the hiding

process as a constraint satisfaction problem that they solve by using integer or linear
programming.

The concept of border is used in [15] by Sun and Yu. They used this concept to hide the

sensitive itemsets so that the non sensitive itemsets can be minimally affected by the

hiding process. By iterative revising the borders and calculating the affects on non-

sensitive items this algorithm succeed in maintaining the database free from any side

effect by sensitive frequent itemset hiding process.

In [16], two new algorithms which rely on the maxmin criterion for the hiding of

sensitive itemsets in an association rule hiding framework. Both algorithms apply the

idea of the maxmin criterion in order to minimize the impact of the hiding process to the

revised positive border which is produced by removing the sensitive itemsets and their

super itemsets from the lattice of frequent itemsets. This approach relies on the maxmin

criterion which is a method in decision theory for maximizing the minimum gain.

Finally, there is one more work on frequent itemset hiding based on borders. This

technique uses integer programming approach [17] of operation research to solve the

problem of effect of hiding process on the database. In the first step this technique

introduces the concept of distance between two databases (taken as original and the

sanitized one) and a measure to quantify it. After that using integer programming

approach it tries to minimize the distance between the two databases after each step of
itemset hiding.

Border Theory

This concept will be used to apply a basic border between the sensitive and non-sensitive

frequent itemsets. The key idea is that the border of non-sensitive frequent itemsets is

used to track the impact on the result database during the hiding process, and maintain the

18

quality of the result database by selecting the modification with minimal impact at each

step.

Itemset lattices: An itemset lattice contains all of the possible itemsets for a transaction

database. Each itemset in the lattice points to all of its supersets. When represented

graphically, an itemset lattice can help to understand the concepts behind the borders.

The concept of border is initially introduced in [21] and it is well applied in the research

of maintaining the frequent itemsets. For the completeness of the report, a brief review of

the concept of border is given here.

Consider a set of itemsets U, the upper border of U denoted as Bd } (U), will be a subset

of U with the following properties:

1) Bd (U) is an antichain collection of sets.

2) VX E U, there exist at least one itemset Y EBdt (U) holding X SY.

In mathematics, in the area of order theory, an antichain is a subset of a partially ordered

set such that any two elements in the subset are incomparable. Let S be a partially ordered

set. We say two elements a and b of a partially ordered set
are comparable if a < b or b _< a. If two elements are not comparable, we say they are

incomparable; that is, x and y are incomparable if neither x <y nor y < x.

A chain in S is a subset C of S in which' 'each pair of ' elements is comparable; that
is, C is totally ordered. An antichain in S is a subset A of S in which each pair of

different elements is incomparable; that is, there is no order relation between any two

different elements in A.

Similarly, the negative border of U is denoted by Bd (U), has the properties as,

1) Bd (U) is an antichain collection of sets.

2) VX E U, there exists at least one itemset Y EBd (U) holding Y.-

An itemset in the upper border or lower border is called a border element. For fig. 2.8 the

positive and the negative borders will be given as,

19

Figure 2.6: Example Itemset Lattice

Bd + (L) = {abd, acd, bcd, cde)

Bc! (L) = {a, b, c, d, e}

Border-based Approach of Hiding Frequent Itemset
Consider D is our original database and D' is the sanitized version of the database i.e. the

database in which all the sensitive itemsets are not a-frequent, where a is the minimum

support of an itemset. Also, let L is the set of all a- frequent itemsets, AL is the set of all

frequent itemsets which have to be hidden, L, is the set of all non-sensitive frequent

itemsets and L' is the set of a-frequent itemsets in D'.

The following are the considerations:

1. Any a-frequent itemset does not belong to AL.

2. The factor I L,. — L'I must be minimized.

According to the Apriority property, concentrating on the border Bd (L,-) during the

hiding process is effective in avoiding the over-hiding non-sensitive frequent itemset. Let

us consider A(A) be the set of transactions that contain frequent itemset X. A set C of

hiding candidates of itemset Xis defined as,

C = {(T, x) I TEA(A) A x EX).

Once a hiding candidate (To, xo) is deleted, i.e., xo is deleted from transaction To, the new

set of C' hiding candidate is C — {(T, x) IT = To}. Each border element B in Bd is
assigned a weight, showing its vulnerability of being affected by item deletion. The

20

weight of B is dynamically computed based on its current support during the hiding

process. Whenever Supp(X) of a sensitive frequent itemset X is reduced, for each hiding

candidate c, its impact on the border as the sum of weights of the borde

r elements that will be affected by deleting c will be calculated. Each time the candidate

item with a minimal impact on the border Bd is deleted until Supp(X) drops to a — 1.

Weights are defined as shown below. Let D" be the database during the process of
transformation and Supp" (B) be the support of B in D ". The weight of border element B
is defined as:

w(B) = (Supp(B)-Supp "(B)+1) / Supp(B)- a 	if Supp "(B) > = a+ 1

= A + a- Supp(B) 	 if 0<=Supp "(B)<= a (12)

The larger the weight of a border element B is having, the more vulnerable B is to further

change, therefore, the lower priority of having B affected. For a border element B, when

the current support of B, Supp" (B), is greater than the threshold a, w(B) is no more than

1. When Supp" (B) equals to a, w(B) is assigned a large integer A, where oo > A> I Bd+l

The intuition behind this is: if the border element B- is about to be infrequent, a large

value is assigned to w(B), indicating low priority of being affected. If B is already

overhidden (Supp" (B) <a), B should also be avoided for further change. In that case,

w(B) is decided by X and the amount of Supp" (B) less than a. Also, if Supp" (B) > a+ 1,

with the decrease of Supp" (B), w(B) increases under the rate of 1 / (Supp(B)-6).

There is a term as affected border of X which is denoted as Bd } I X, and defined as the set

of border elements of Bay'-, which may potentially be affected by hiding X Formally,

Bd}Ix= {B; I BE Bd~ AB; n X= p/
	

(13)

Clearly, for evaluating the impact of hiding X on Bt, only Bdt l x needs to be considered.

For a hiding candidate u of sensitive frequent itemset X, a set Su of border elements that

will be affected by deleting u (note that S,, is a subset of Bd~I X) will be determined. The

impact of deleting u on the border should be the sum of the weights of border elements in

21

S. Formally, let Bd ix be (Bl, ... , B„) and a lexicographical order can be imposed
among B1, ... , and B. Given a hiding candidate u of sensitive frequent itemset X, we
have a relevance bit vector b1 b2...b„ such that b, = 1 if u is a hiding candidate of B; (i.e.,
deleting u will decrease Supp(B,)), otherwise .b, = 0. The relevance bit vector of u shows
which border element B; will be affected if deleting u. In the running example, for
sensitive itemset abd, Bd1 I abd = {ab, bd, acd, cde). The relevance bit vector of hiding
candidate (Ti, a) and (13, b) are 1010 and 1100 respectively.

Finally, the impact function is defined, which calculates the impact of deleting a hiding
candidate on the elements of Bd lx. It is denoted as I(u), and defined as:

I(u)=>b1 *w(B;) 	 W J

The value of I (u) is the sum of the weights of border elements that will be affected by
deleting u.

In the border-based approach basically the hiding candidate is to be found out which put

minimal impact on the non sensitive itemsets after its removal. Every time a hiding

candidate itemset is selected, the hiding candidate set is to be updated along with the

weights of the border elements. Also, after selecting the hiding candidate the database
have to be updated.

2.5 Research Gaps

After detailed studies of various techniques research papers, the following research gaps

are found:

1. Most of the privacy preserving algorithms and ; techniques has been suggested by

researchers are based on boolean databases. Working on Os and is is relatively simple

and straightforward. The number of algorithms that are discussed for privacy

preserving techniques on quantitative or the numerical database is relatively less.

2. There are cases when a user wants to add some weights to items to prioritize the items.

In fuzzy association rule mining field, it is found that there are very few algorithms

22

that find out weighted fuzzy itemsets.

3. Some approach should be proposed to find out highly predictive fuzzy non-sensitive

itemsets from quantitative database which can improve the performance of privacy

preservation process.

4. In the field of fuzzy data mining the research work done on privacy preservation is

considerably less. In fuzzy association rule hiding, there is one research work by M.

Kaya and T. Berberoglu [3] which hides sensitive fuzzy association rules using

decreasing its confidence value. Further work needed to be done in this field, which

minimizes the effect of data hiding on the database.

23

CHAPTER 3

PROPOSED WORK

In this chapter, the proposed algorithm has been discussed. The overall scheme of the

work has been shown first. Each module has been described in detail. Here after we will

use MF for membership function, ANN for artificial neural network and FWI for fuzzy

weighted itemsets.

3.1 Overview

	

Test 	 Unseen
Dataset 	Dataset

Training 	Preprocessing 	Building 	Classification 	Fuzzification
Dataset 	 ANN based 	Model

Class Labels 	classifier J 	MF

Fuzzified
Dataset

Hiding in the 	Impact Calculation

	

order of minimal 	for each Sensitive and 	(Etrxacting Highly 	Frequent Fuzzy
Highly Predictive 	Predictive Non- 	Weighted Itemset

	

LmPactitemsetsJ
s 	Nonsensitive FWI 	Sensitive FWI 	 Mining

Border-Based Approach
_ _ _ _ _J 	Minimum Support Weights

Sanitized Sensitive Itemsets
Dataset

Figure 3.1: Overview of the Work

The above figure shows an overview of the whole work. In the preprocessing step, we

have used a modified version of fuzzy c-mean clustering, which is used to obtain the

class labels. Using these class labels, and the test set an ANN classifier has been built.

This classifier is used to classify the unseen dataset into number of classes. It gives the

24

membership values of different data points into these classes. Mapping these membership

values onto the used activation function, we will obtain the membership function. This

membership function has been used in fuzzification process which will provide us the

membership values of different attributes in the fuzzy classes. Thus, a fuzzified database
will be obtained.

A frequent fuzzy weighted itemset mining process has been proposed, which gives

frequent fuzzy weighted itemsets of the fuzzified database. After that, using sensitive

fuzzy weighted itemsets, we find out highly predictive non-sensitive fuzzy weighted

itemsets. Applying border-based approach on these itemsets, we will obtain a well

maintained sanitized database, which does not contain any sensitive fuzzy weighted

itemsets and highly predictive non-sensitive fuzzy weighted itemsets. All these modules

will be described in detail in the following sub-chapters.

3.2 Preprocessing

Conceptually, an artificial neural network is used to obtain the membership values. But

since in real life applications the initial knowledge of classes is not defined so we used

clustering as a preprocessing step in this work. The basic concept and algorithm of fuzzy

c-mean clustering is discussed in previous chapter. In the preprocessing module, a

modified fuzzy c-means clustering is being used. The algorithm is composed of the

following steps:

Step 1: Initialize U = [u0 j matrix, U (0)

Step 2: At k-step: calculate the centers vectors C (k) = [c j] with U (k)

Step 3: Update U (kj, U
k 	 1

u; = 1 	for max 	 2

c Ik — ca I1 *-1
f' 11xi -Ck11

0 	otherwise

Step 4: If U (k+') — U (k) < <` then STOP; otherwise return to step 2.

Figure 3.2: Modified Fuzzy C-Mean Clustering

In Step 3, the matrix entry will get a 1 for the minimum distance of a data item from the

cluster center. Since in this work these clusters have been used for classification this

perfect classification will give better results.

3.3 Classification and Fuzzification

After get trained and tested from the training dataset and test dataset the neural network is

ready to get the membership values of various data points on the number of classes. The

sum of the membership of the unseen data points on these classes will be equal to 1. As

discussed in the previous chapter, a sigmoid activation function is used to get the

membership in the fuzzy sets. When this membership function is drawn, there will be

different curve for each class. These curves will be in form of sigmoid function (as shown

in results). Using this graph, the membership association of various attributes is found

out. This process is called the fuzzification process. These membership associations will

result in the fuzzified database.

3.4 FWI Mining

By applying weights, a user can add some importance to the items. The application of

weights on itemsets can include the process of privacy preservation in which the user can

apply comparably less weights to his sensitive itemsets. Another application can be

described by an example. In a grocery shop the shopkeeper is used to mine the

26

transactional database to find the interesting associations among items so that he can use

this knowledge for product placement, increasing sales and promotions etc. For profit

purpose he can require the information about the items which are associated with costly

items. He can do this by applying more weightage to all the costly items. In the proposed

work we have been taken the case of applying more weight to items.

The proposed weighted fuzzy mining algorithm first transforms each quantitative value

into a fuzzy set with linguistic terms using membership functions. The algorithm then

calculates the scalar cardinality of each linguistic term on all the transaction data with

weights. In this section, the weighing concept is used in the Fuzzy Apriory data-mining

algorithm to discover priority based fuzzy association rules from quantitative values.

Consider n be the total number of transaction data and m be the number of attributes. a is

the predefined minimum support and . is the predefined minimum confidence value and

g is the number of fuzzy region. The set of candidate itemsets with r attributes is denoted

as Cr, the set of large itemsets with r attributes is denoted as L,. and W,,,*g is the weights

provided by the user. The proposed weighted fuzzy mining algorithm first transforms

each quantitative value into a fuzzy set with linguistic terms using membership functions.

The algorithm then calculates the scalar cardinality of each linguistic term on all the

transaction data. The main concept here is the calculation of the support count. In general

support is just the addition of the membership values of the attributes. In weighted fuzzy

mining algorithm the weights provided by the user is used to calculate the support count.

The Weighted Fuzzy Frequent Itemset Mining Algorithm:
INPUT: A set of n transaction data, each with m attribute values, a set of membership

functions, a predefined minimum support value, a predefined confidence value, and a 2-

dimensional matrix of weights.

OUTPUT: A set of fuzzy association rules.

STEP 1: For each transaction data D('}, i = 1 to n, and for each attribute A. j = 1 to m,
transfer the quantitative value v3(̀) into a fuzzy set j(') using the given

membership functions.

27

STEP 2: For each attribute region Rik, calculate its scalar cardinality on the transactions:
COUntjk = (Jfkt) * W k 	 (15)

where fk' is the membership value of v.(̀) in Region Rik,
STEP 3: For each Rik , 1 <=1 < = m and 1 <== k <= A11, check whether its countJk is

larger than or equal to the predefined minimum support value a. If Rik satisfies
the above condition, put it in the set of large 1-itemsets (L,).

STEP 4: Set r = 1, where r is used to represent the number of items kept in the current
large itemsets.

STEP 5: Generate the candidate set C,+1 from L, in .a way similar to that in the apriori
algorithm except that two regions belonging to the same attribute cannot

simultaneously exist in an itemset in Cr,,. Restated, the algorithm first joins Lr
and Lr under the condition that r-1 items in the two itemsets are the same and
the other one is different. It then keeps in C,.+l the itemsets which have all their
sub-itemsets of r items existing in L, and do not have two items R;p and R;9
where p ~ q.

STEP 6: For each newly formed (r+l)-itemset s with items (sj, s2, ... , s, +r) in C,.+1 do the
following sub-steps:

a) For each transaction data D('), calculate its fuzzy value on s as, f (') = fs1~)̀ n

fs2(̀0... fl fs,.+i(̀) where fsf) is the membership value of D(' in region s1. If the

minimum operator is used for the intersection, then f (`) will contain the

minimum value from the row multiplied by the respective weights for each f (').
b) Calculate the scalar cardinality of s on the transactions as:

counts = I f i') * Max(WsS for i = I to n and j = 1 to r+1 	 (16)

c) If counts, is larger than or equal to the predefined minimum support value a, put
s in Lp+i.

STEP 7: If L,.+j = null, then go to the next step; otherwise, Output all the frequent
itemsets in L,.+I, set r = r + 1 and repeat STEPS 5-7.

STEP 8: End

We have taken the maximum value of the weight among all the weights of items in an

itemset to show the maximum impact of weights.

28

3.5 Identifying Highly Predictive Non-Sensitive FWIs

The inference of sensitive fields with the use of correlations is undesirable from a privacy

preservation perspective. Therefore, in order to prevent such inference, it may be

desirable to also hide some of the non-sensitive entries. The corresponding tradeoff here

is that unnecessary hiding of entries loses information for the purpose of data analysis

applications. Therefore, it is important to hide a minimal set of entries (i.e. a set of

minimum size) in order to prevent such privacy violations. We use the term Inauspicious

for these types of itemsets. Inauspicious or Adversarial itemsets are those itemsets, which

are itself non-sensitive, but having a strong predictive power so that the values of the

hidden sensitive itemsets can be extracted. The basic Framework presented in [22] is

extended for the fuzzy databases.

In many real world scenarios, there are some entries in the databases which user want to

be hidden. By removing the entry value from table we can say that the private

information of user is preserved from data mining results. But it may happen that there

are some other frequent itemsets that have a strong predictive power to predict the

sensitive value. In this case there is no sense to remove the sensitive entry from its place.

Thus, there is a need to extract these itemsets and an effective data hiding technique is

also applied on these non-sensitive itemsets in combination of sensitive itemsets.

In this propose work, different constraints are defined for fuzzy itemsets to be

inauspicious. And then along with the sensitive itemsets these non-sensitive itemsets are

combined and border-based approach for frequent fuzzy itemset hiding is applied. In this

sub-chapter the constraints for checking a frequent fuzzy itemset to be inauspicious will

be given.

In classical boolean databases, the rules are of the form, A->x, where A is an attribute and

x is an entry. In fuzzy databases, rules are of the form, A->Ao. In boolean databases, if an

entry x is sensitive in the database then it reflect to only one place of the database i.e. (Tx,

A) where TX is the tuple containing x and A is the attribute type of x. Thus the private

dataset given by user will be the set of these types of entries.

29

However, in fuzzy database, one entry x of the quantitative database reflects R places on
the tuple of x, where R is the fuzzy regions. The reason behind this is, in fuzzy database
one entry is shown by R region. All R regions contain some membership of x. So, to

remove the entry from database, we have to remove all the entries of R regions
corresponding to the tuple T.

One scheme to show the sensitive quantitative entry in the fuzzified database is to remove
all the entries of R regions corresponding to the tuple T. But this technique can result in
over-hiding of fuzzy items, since the membership of an entry is not same in all regions.

So, the proposed solution is to take the region with highest count among all the regions of
the attribute.

To understanding the concept, let the sensitive entries are replaced by a fake character

`#' temporarily. Corresponding to the constraints defined for the boolean items, the

following constraints are defined for the fuzzy items. The fuzzy tables before and after

introducing the fake character `#' (bold items are the terms containing sensitive values),

AO Al A2 BO B1 B2 CO Cl C2 DO D1 D2

Ti 0.11 0.33 0.66 0.77 0.11 0.22 0.33 0.33 0.44 0.11 0.55 0.44
T2 0.33 0.44 0.33 0.66 0.11 0.33 0.44 0.66 0.00 0.44 0.55 0.11

T3 0.33 0.11 0.66 0.55 0.33 0.22 0.22 0.55 0.33 0.77 0.00 0.33

T4 0.88 0.11 0.11 0.11 0.44 0.55 0.77 0.11 0.22 0.33 0.77 0.00

T5 0.33 0.33 0.44 0.33 0.66 0.11 0.22 0.33 0.55 0.22 0.22 0.66

Table 3.1: Fuzzified Quantitative Database

AO Al A2 BO B1 B2 CO C1 C2 DO D1 D2

Ti 0.11 0.33 0.66 # 0.11 0.22 0..33 0.33 0.44 0.11 0.55 0.44
T2 0.33 0.44 0.33 0.66 0.11 0.33 0.44 # 0.00 0.44 0.55 0.11
T3 0.33 0.11 0.66 0.55 0.33 0.22 0.22 0.55 0.33 0.77 0.00 0.33

30

T4 0.88 0.11 0.11 0.11 0.44 # 0.77 0.11 0.22 0.33 0.77 0.00

T5 0.33 0.33 0.44 0.33 0.66 0.11 0.22T0.33 0.55 0.22 0.22 #

Table 3.2: Fuzzified Quantitative Temporary Database

Initially a subset of the original database for an itemset, which can be reflected by it, is

defined as,

Projected Database: Let X be a fuzzy itemset, T be a fuzzified table, and P be a directly

private set. For a tuple t in T, if X publicly appears in t, then the projection of t with

respect to X, denoted by (t~, X), is the set of entries in t that are not matched by X. If X

does not publicly appear in t, then (tj, X) = null. The projected database with respect to X

is the set of nonempty projections with respect to X in T.

Privacy-Free Fuzzy Itemsets: A fuzzy itemset is privacy free if its projected database ,

for all t does not contain any fuzzy region of the directly private entry at all. We can

check it by first finding the projected database of the itemset. If it does not contain at

least one `#', then it will be called as a privacy-free fuzzy itemset.

Non-Discriminative Fuzzy Itemsets: A fuzzy itemset X is non-discriminative if every

tuple in the projected database of X contains directly private entries in the same region of

attribute(s). We can check it by checking for `#' in the entire initial fuzzy region of an

attribute for all tuples. If the initial fuzzy region is having `#' then there is no need to

check the other fuzzy regions for that attribute.

Contrast Fuzzy Itemsets: A fuzzy itemset X is said to be a contrast itemset if for any

entry y belongs to P such that X -> ym , where ym = max(y) for i = 1,2,3,..., R, appears in

some tuples in T; all the three rule have a public confidence of 0.

Discriminative Itemsets: An itemset Xis discriminative, if X is the antecedent of some

inauspicious rules. This can be determined by checking the projected database of X.

Technically, if there is a value y such that X -> Y„,, where y,,, = max(y,) for i = 1,2,3,..., R

31

has public and hidden confidence of at least 6 with respect to the projected database of X,

then X is discriminative. From hidden confidence is the confidence of the rule P where P

is the rule used to predict the value yR. Here yR is a fuzzy value for region R for item y.

3.6 Border-Based Approach for Hiding Sensitive FWTs

Border theory is very useful in determining the effect of hiding the sensitive itemsets on

the non-sensitive itemsets. Thus, helps in maintaining the quality of the sanitized

database. In this proposed work, the basic border-based approach which was applicable

on the boolean databases is extended to the border-based approach which will be

applicable for the fuzzy databases. Using this approach, one can hide sensitive fuzzy

itemset while maintaining the quality of the database. A new heuristic is also proposed

for candidate generation algorithm for fuzzy items.

The fuzzy terminology is used is same as described in section 2.3. In addition, consider r

is the number of fuzzy regions. A transaction T is a pair (T;d, X) where T d is a unique

identifier of a transaction and X is an itemset. Given a fuzzy database D, the support of an

itemset X, denoted as Supp(X) is the count of each attribute region. 6 is the minimum

support threshold. An itemset X is called an Q frequent itemset if Supp(X) > = 6.

Suppose, L be the complete set of 6-frequent itemsets in D and AL be the set of sensitive

itemset that needed to be hidden. D' is our sanitized database in which any X that belongs

to AL is not a c-frequent itemset. Also, Let L' is the set of 6-frequent itemsets in D' and

Lr is the set of all non-sensitive frequent itemsets. Our main aim is to try to minimize Lr

L'J.

The key idea is to use the borders of non-sensitive itemsets to track the impact on the

sanitized database during the hiding process and maintain its quality by selecting the

modifications with minimal impact at each step. The concept of borders has been

described in the last chapter (section 2.5). Let us consider there are four attributes as A, B,

32

AoBoDi 	A2C2D1 	A2B1Do

AoBo A2C2 A2B1 BoDI B1 Do C2D1

A B B C D D

Figure 3.3: Frequent Fuzzy Itemset Lattice

C and D in our database with three fuzzy sets. Thus, after fuzzification the attributes in

the database will be A0, Al, A2, Bo, Bj, B2 and so on. The following fig is showing the
lattice of frequent fuzzy itemsets.

In this lattice, we can see that the fuzzy items from different region but same attribute can

never present together. This is a fuzzy concept because after the fuzzification process

each attribute gets divided into fuzzy fields. Thus, in a rule one attribute can imply one

fuzzy field.

The negative border of the sensitive frequent itemset will be denoted as if and positive

border of non-sensitive itemsets will be denoted as B+ and these two borders have been

taken into consideration. For each itemset X in B+, there will be a set of hiding candidate

C, which is a set of all the transactions that contain X.

In the previous work, since the itemset are defined by either 0 or 1, the hiding candidate

set can be a subset of the transaction database by the number of rows but in fuzzy

database each fuzzy attribute is having some membership in each transaction, so here C

will not have the number of rows less than the number of transactions in the database.

The proposed work will suggest a factor, which decides the selection of transactions from

this hiding candidate set.

33

The weight calculations will the same process as suggested for the boolean dataset. For

revision purpose, the weight is calculated to prioritize the itemsets in B+ from being •

affected by itemset deletion. Also, the definition of affected border of itemset X and the

relevance bit vector will be the same (described in section 2.5).

The main approach is, for each element in if , the affected itemset of B} and weights are

found out. Then, a candidate is selected for deletion and the item which puts minimal

impact will be deleted. In each iteration, C, weights and the database also updated. The

proposed algorithm is shown in the given fig.

Input: A database D, the set L of a-frequent itemset in D and the set of sensitive
itemsets L'

Output: D' with the maintained quality
Method:

Compute Bd- and Bd+;
Sort itemsets in Bd- in descending order of length and ascending order of
support;
for each X in Bd do

Compute Bd+ I x and w (B) where B. in Bd+ I x;

Initialize C (C is the set of hiding candidates of X);
for(i = 0; i < Supp(X) — a; i++) do

Sort the candidate set, according to the decreasing order of fuzzy
membership values for x;
Find u, = (T;, x) from the sorted C such that I (u) = Min (I (u) u in C);
Update C = C — {(T, x) IT= T,};
Update w (B) where B. in Bd+ Ix;

Update database D;
Output D' = D;

Figure 3.4: Border-based Approach for Hiding Sensitive Fuzzy Weighted Itemsets

The candidate selection step gives the core of the border-based approach, which is to

efficiently find the hiding candidate with minimal impact on border. The proposed
. 34

approach finds u, in an efficient manner for fuzzy itemsets. The justification is given

below.

In boolean databases, we calculate support by the ratio of itemset count and the number

of total transactions. We can conclude from this that, since all the counted itemset are

having a "1" on the place it is present; it gives its 100% membership for the support

count Thus the support-deciding-factor is 1 for all elements. However, this is not the case

with fuzzy items. In fuzzy databases, the support-deciding-factor is different due to

membership of the itemsets so in the candidate selection step we have taken the greatest

value so that we can distinguish the candidates which affect the selection most.

35

CHAPTER 4

SYSTEM DESIGN AND IMPLEMENTATION

A complete description of the system design and implementation has been given in this

chapter. First of all, the used database has been described followed by a brief description

of the used platform. All the basic modules and the procedures used in the coding have

also been described.

4.1 Database Used

There are a large number of algorithms that are implemented on the Boolean database.

The basic concept of algorithms for quantitative databases works in different manner.

The database used in this dissertation work is of quantitative type.

The breast cancer is one of the most common tumor related disease among women in

Korea and throughout the world. We have used well known WBCD which is provided by

the University of Wiscosin Hospitals based on microscopic examination of breast masses

with fine needle aspirate tests. It is the breast cancer databases was obtained from the

University of Wisconsin Hospitals, Madison from Dr. William H. Wolberg. The database

is denoted on 15th July, 1992 to the UCI Machine Learning Repository.

Basic Details:

• Title: Wisconsin Breast Cancer Database (January 8, 1991)

• Sources:
Dr. WIlliam H. Wolberg (physician)

University of Wisconsin Hospitals

Madison, Wisconsin

• Number of Instances: 699

• Number of Attributes: 10 plus the class attribute

36

Attribute Information:

Attributes Domain

1. Sample Code number Patient ID number

2. Clump Thickness 1-10

3. Uniformity of Cell Size 1-10

4. Uniformity of Cell Shape 1-10

5. Marginal Adhesion 1-10

6. Single Epithelial Cell Size 1-10

7. Bare Nuclei 1-10

8. Bland Chromatin 1-10

9. Normal Nucleoli 1-10

10. Mitoses 1-10

11. Class of Tumor
2 for benign

4 for malignant

Table 4.1: Database Details

4.2 Code Platform 	.

For coding and testing purposes, two most suitable platforms have been chosen. These

two platforms are JAVA and MATLAB. Java is used for the basic implementation while

Matlab is used to generate the fuzzy membership values. A brief description about each

platform will be given below. NetBeans IDE 6.5.0 is used for using JAVA. Netbeans

provide application programming interface for java.

JAVA: Object-orientation is the core of Java. The features of Java make it the most

suitable platform for this work. Inheritance and Abstraction is the main feature of object

orientation which is used in Java during implementation. Classes like Itemset defines the

basic functionality in a program while hiding its implementation details. Some of classes

are derived from the super class to add new functionalities to the class. Like Apriori is

written in a class and then its main features is used in another class called Fuzzy-Apriori

to add the new features of fuzzy concept.

37

Large databases are normally stored in separate spreadsheet like MS Excel or MS Access.

Java provides easy connectivity using JDBC database connectivity. Only few lines of

codes have to be written to access the database.

Java Swing has been used for designing GUI. It provides a lot of classes and interfaces

using which an attractive and user friendly GUI can be designed.

MATLAB: MATLAB (MATrix LABoratory) is popular for its large repository of inbuilt

functions. Very large programs get converge to a few lines of code using Matlab

functions. MATLAB allows easy matrix manipulation, plotting of functions and data,

implementation of algorithms, creation of user interfaces, and interfacing with programs

in other languages.

In this implementation, Fuzzy Toolbox and Neural Network Toolbox are used to get the

membership from the database. These inbuilt functional toolboxes help in the process

simulation and analysis. Also to draw. the membership function a toolbox named as

Membership Function Editor is used.

4.3 Modules and Procedures

In this work, a complete fuzzy system is designed which, as an input takes a quantitative

database, the sensitive itemsets, minimum support and weights and provide a well

maintained sanitized database which is free from all the sensitive itemsets and highly

predictive non-sensitive itemsets. This section describes each module and the classes and

functions used to implement these modules. 	.

Clustering:
Clustering is used to classify the data objects into classes or clusters. These clusters will

be used by artificial neural network for classification.. The dataset we have used is having

10 attributes. The number of the class in which the dataset is to be classified is two.

Fuzzy C-means clustering is used here to get classes.

38

A function FCM.m is used to get the clusters, prototype of the function is as follows:

[CENTER, U, OBJ_FCN] = FCM (DATA, N_CLUSTER)

finds N_CLUSTER number of clusters in the data set DATA. DATA is size M-by-N,

where M is the number of data points and N is the number of coordinates for each data

point. The coordinates for each cluster center are returned in the rows of the matrix

CENTER. The membership function matrix U contains the grade of membership of each

DATA point in each cluster. The values 0 and I indicate no membership and full

membership respectively. Grades between 0 and 1 indicate that the data point has partial

membership in a cluster. At each iteration, an objective function is minimized to find the

best location for the clusters and its values are returned in OBJ FCN.

Classification:
Classification process is done by using artificial neural network. Feed forward multilayer

neural network can be used to generate the membership functions from the labeled data.

As given in [technique MF], the output values of a sigmoid activation function of a

neuron are quite similar to the membership values. A sigmoid function is given as,

f(t)= 1 /(1 +e-)
	

(17)

The number of neurons in the input layer is set to the number of features or attributes and

the number of neurons in the output layer is set to the number of classes we want to

classify the data points.

In order to generate the class membership values, the multilayered network must be

trained using a suitable algorithm. I have used the Feed forward backpropogation

algorithm to train the network. This algorithm not only sends the output of one layer to

the input of next layer, but also refines the network by reducing the learning errors in

each iteration.

The following figure shows the basic design Of the neural network used in this work. The

sigmoid activation function is used in each neuron, since as pointed out earlier, sigmoid

39

activation function gives values similar to membership function. 10 neurons are used in

first layer and 2 neurons in the last layer since we require 10 attributes in the input data

10 neui

Figure 4.1: Multilayer Feed-forward Neural Network

and 2 classes. There were 16 instances in the database with missing value. These tuples

are removed to construct a new dataset with 683 instances. The first 400 instances in the

new dataset are chosen as the training set and the remaining 283 as the test set. The

maximum number of epochs is set to 500 and the learning rate is set to 0.03.

After getting membership values for each class, the membership function for each class is

defined. There are several types of membership functions such as triangular, trapezoidal,

and Gaussian, to name a few. The triangular membership function is used in this work.

NNTOOL of MATLAB is used to design the desired neural network.

Fuzzification:
Artificial Neural Network gives the membership values of each data point for each class.

For the fuzzification of the database it is needed to draw the membership function. Since

the sigmoid activation function is used to get the membership values the membership

function we get, should be in the form of sigmoid function. We will get fuzzy regions in

the form of sigmoid function for each class.

In the fuzzification process, the quantitative data values of the database for each item is

entered into a fuzzy set represented as, (/5' / Rol, 12 / Rf2,... , f j / R31) by using the given
membership function for the item quantities, where I is the number of fuzzy regions.

A class is written in JAVA named as fuzzification Java. Function establishes JDBC

connectivity from the database (MS Access). It contains the following functions:

Dataptdistance(int [] datapoint) : calculates the distance of the membership value from

the centroids of two classes.

Fuzzy Frequent Weighted Itemset Mining:

This is one of the proposed works. This process gives frequent weighted itemsets using

the proposed algorithm. Inputs are two files, one for the input transactions and another for

the weights which is to be applied to the items. Minimum support and confidence

thresholds are also taken from the user.

A class is written in java named as Apriori Java which is used to find out number of

frequent itemset in boolean databases. A second class is derived from it named as

FuzzApriori.java. Using inheritance a large amount of duplicacy is removed. Itemset.java

is a class which is used to show an itemset and all the functions defined on it.

The main functions used in these classes are namely:

countSinglesO: count the number of the single itemsets.

orderArrayO: order the items in the itemset.

combinations (Itemset itemset): returns all the combinations of a set except null.

resizedata (Itemset[][] itemset): resizes the 2D array of itemsets by deleting the itemsets

having support lower than minimum threshold.

Fregltemset (Itemset[][] itemset): returns all the frequent itemsets.

combine (Itemset [] [] itemset): combine two large itemsets to get candidate itemsets.

largeltemset (Itemset [] [] itemset): returns all itemsets having support greater than

minimum support threshold.

41

pruneitems(Itemset itemset): delete all items having lower support than the minimum

support threshold.

chkRegions(Itemset itemset): checks whether two fuzzy candidate itemsets are belonging

to same attribute or not.

support(Itemset itemset): calculates support of the itemset:

Highly Predictive Non-Sensitive Itemsets Extraction:
This module use to find out the inauspicious itemsets that are having a strong predictive

power. Using three constraints, as given in the proposed work, an itemset is checked for

being an inauspicious itemset. Adversarial Java is the class name used to implement.

The main functions used in this class are:

fuzzconfidence(Itemset itemset, Double val, String attr): calculate confidence.

projectDB(Itemset itemset, String tuple): returns the projected database for tuple tuple.

PDB X(Itemset itemset): returns the projected database for itemset itemset.

checkPFree(Itemset itemset, String tuple, Itemset PrivateSet): checks for privacy free.

chknonDisc(Itemset itemset, Itemset PrivateSet): checks for non-discriminative.

chk Contrast(Itemset itemset, Itemset PrivateSet): check for contrast.

chkDiscriminative(Itemset itemset, Itemset PrivateSet, Double delta): check for

discriminative with respect to hidden confidence delta.

Border-Based Approach for Hiding Frequent Fuzzy Weighted Itemsets:
This is also one of the proposed works. This process takes the sensitive fuzzy weighted

itemsets as well as the inauspicious non-sensitive fuzzy weighted itemsets and hides the

sensitive fuzzy weighted itemsets in such a way that the quality of sanitized database is

maintained. Border Java is the class used for it.

The main functions used in this class are:

PostiveBorder(): calculates the positive border of an itemset.

NegativeBorderO:calculates the negative border of an itemset.

HidingCandidateO: returns all the transactions selected to for hiding.

42

AffectedBorder Candidate(Itemset itemset): returns all the itemsets of positive borders

that are affected by itemset.

RelevenceBitVector(Itemset itemset, char c): returns the relevance bit vector for itemset.

Impact(int[] RelBit Vector, Double [] weights): calculates the impact.

Weights(): calculates weight.

In addition to these functions other utility functions are also present like

combination(Itemset itemset) which is used to find all the combinations of an itemset,

Support(Itemset itemset) which is used to find out the support of an itemset,

StrtoArr(String str) and ArrtoStr(Char[] str) used to convert character array to String and

vice-versa.

43

CHAPTER 5

RESULTS AND ANALYSIS

Various experiments have been conducted on the proposed work using a real life dataset.

Results obtained are shown in this chapter to show the effectiveness of the work. A brief

analysis of these results has also been performed and discussed. We have taken minimum

support as 0.2.

5.1 Results

1. Membership function
After getting class labels using clustering and building the artificial neural network, the

membership values of different data points is mapped graphically. Since sigmoid function

is used as activation function, the resultant membership functions obtained for the two

classes are the two sigmoid curves. The membership function for one of the two classes is

shown in fig. 5.1. mfl is showing the membership function for class 1. For class 2

function curve obtain is complementary to the function curve of class 1.

I

I.

Quantitative Values
Figure 5.1: Membership Function obtained for Class I

2. Frequent Fuzzy Weighted Itemset Mining (FFWIM)

Various experiments were conducted to test the performance of the proposed algorithm.

We have taken popular breast cancer database from UCI data repository. The unseen

350 •---; 	 _____--~°~

300 ~

250

3 200

150
FFWIM

O 100

50

E 0 Z
0.3 0.4 0.5 0.6

Support

Figure 5.2: Effect of Support on Number of Frequent Weighted Itemsets

dataset contained 450 records. All the values are of quantitative type. Fig. 5.2 shows the

effect of the minimum support threshold over the number of frequent patterns.

Weight applied to an item shows its importance to the user. An infrequent itemset will

become frequent if extra weight is applied to it. Since support count is a major metric to

quantify the importance of an itemset, the weights applied affect the support count of an

itemset. A relative comparison has been shown in fig 5.3. Graph shows the affect of

support count on the number of frequent itemsets in the frequent fuzzy weighted itemset
mining and frequent fuzzy itemset mining.

350 	---
r

250 ■ Frequent Fuzzy
W 0 Itemset Mining

u..- 200
%- 41
Z a 150 ■ Frequent Fuzzy
M 100 Weighted
E 50 Itemset Mining
z

0
0.3 0.4 0.5 0.6

Minimum Support

Figure 5.3: Comparison between FFIM and FFWIM

45

1800

1600

a d 1400
t 1200

w 1000

	

o o 	800
m d c

	

E E 	600
z' z o 400

	

G 	200

C 	0
W

-4-Number of Sensitive
Entries

-.-Number of Highly
Predictive Non-Sensitive
Itemsets

0.2 	0.3 	0.4 	0.5

Support

Figure 5.4: Effect of Support & no. of Sensitive entries on no. of highly predictive non-

sensitive itemsets

3. Highly Predictive Non-Sensitive Itemsets Extraction
Graph in fig. 5.4 shows the affect of the support and the number sensitive entries to the

number of highly predictive non-sensitive itemsets.

4. Border-Based Approach for Hiding Frequent Sensitive Fuzzy Weighted Itemsets
In fig.. 5.5 we have shown the comparison between the proposed border-based approach

for data hiding and the previous data hiding approach [3]. To measure the effectiveness,

0.8

0.7

	

0.6 	 -• Border-.

	

0.5 	 Based

	

0.4 	
Approach

-• Previous

	

0.3 	 Hiding

	

0.2 	 Approach

0.1

0
20 30 40 50

Avg. Support Difference

Figure 5.5: Effect of Average Support Difference on Quality Factor

riot

we. have compared the set of non-sensitive frequent itemset Lr with the set L' of frequent
itemsets in D'. The quality Q of the result dataset D' could be measured as: Q = IL'1/1Lr ~.

A new term, average support difference introduced in [191 is taken as a factor to compare

the results. The average support difference considers the support counts for negative

border of the sensitive frequent itemsets. It is defined as, avg_suppdiff = Y, (Supp (X,)-a) /
IB- j for all X belongs to if and or is the support count.

5.2 Analysis

We have proposed a frequent fuzzy weighted itemset mining algorithm on quantitative

-database. Since, the work is a modification in the basic algorithm there will not be any

change in the performance parameter. However, comparing these two algorithms it can

be observed that the memory usage and execution time of the proposed algorithm

exceeds that of the basic algorithm by a small factor as shown in fig 5.6.

Fig. 5.4 shows the effect of increasing support count and the number of fuzzy weighted

sensitive entries on the number of highly predictive fuzzy weighted non-sensitive

itemsets. The number of frequent patterns will decrease as the support count increases.

Also we can analyze from the graph that the number of highly predictive non-sensitive

itemsets decreases according to the decrement of sensitive entries.

350000
300000

7 250000
j 200000
o 150000

100000

x 50000 uJ
0

—• —Weighted
Fuzzy Frequent
Itemset Mining

• Fuzzy Fequent
Itemset Mining

200 400 600 800

Number of Transactions

Figure 5.6: Effect of Number of Transaction on Execution Time

47

In the border-based approach, to measure the effectiveness of the approach, it is natural to

compare the set of non-sensitive frequent itemset Lr with the set L' of frequent itemsets in

D'. As this approach does not introduce new frequent itemsets in D', the quality Q of the

result dataset D' could be measured as: Q = IL'I / IL,.I. At any instant, the average support

difference will be given by, avg_suppdiff = E ((supp(X)-o) / I B- I where X belongs to if

and Q is the support count [15]. Here we have only considered the itemsets in if since it

shows all the sensitive itemsets on the negative border.

48

In the border-based approach, to measure the effectiveness of the approach, it is natural to

compare the set of non-sensitive frequent itemset L,. with the set L' of frequent itemsets in
D'. As this approach does not introduce new frequent itemsets in D', the quality Q of the
result dataset D' could be measured as: Q = IL'I / L,.l. At any instant, the average support
difference will be given by, avg_suppdiff = Y. ((supp(X)-6) / 1.81 where X belongs to B-
and o is the support count [15]. Here we have only considered the itemsets in if since it
shows all the sensitive itemsets on the negative border.

48

CHAPTER 6

CONCLUSION AND FUTURE WORK

In this chapter, the work is concluded. Some future works are also suggested so that some

more research works can be initiated in the field of privacy preserving fuzzy itemset

mining.

6.1 Conclusion

A generalized framework has been proposed for hiding fuzzy sensitive weighted itemsets

in quantitative databases. Proposed works shows the affect of prioritized itemsets on the

process of mining frequent fuzzy weighted itemsets. In order to be able to use frequent

itemsets in practical applications, like targeted marketing or customer retention, one must

be able to prioritize between various frequent itemsets mined with respect to the

magnitude of the effect they produce on the outcome.

There are cases where some non-sensitive itemsets can be used to predict to sensitive

entries. In the proposed work we have consider these types of non-sensitive fuzzy

itemsets to improve the accuracy of privacy preservation.

In order to hide sensitive fuzzy itemsets, a border-based approach is proposed. Using

borders, the quality of the sanitized databases can be preserved from the itemset hiding

process. The contribution of this work includes the minimization of the side effect on the

sanitized databases.

A number of experiments have be en conducted to evaluate the effectiveness of the

.proposed algorithms. A real life case data has been taken to conduct experiments.

Respective results have been shown for quantitative dataset.

6.2 Future Work

To obtain class labels for the classifiers, we have used Fuzzy C-Means clustering. While

other techniques like K-Means Clustering can also be used. Choice of this clustering

algorithm should be done on the basis of low learning error of classifier.

We have used artificial neural network as classifier. Other techniques can also be used to

explore the area of automated generation of membership functions.

Proposed work used a static approach of applying weights. However, other approaches

can also be explored to generate weights dynamically.

REFERENCES

[1] V. Verkios, E. Bertino, I. G. Fovino, L. P. Provenza, Y. Saygin and Y. Theodoris,

"State-of-the-art in Privacy Preserving Data Mining," Special Interest Group on

Management Of Data (SIGMOID), March 2004, Vol.33, No. 1, pp.50-57.

[2] H. Mannila. "Local and Global Methods in Data Mining: Basic Techniques and

Open Problems," Proc. 29th Int'l Colloquium on Automata, Languages, and

Programming, ICALP 2002, pp. 57-68

[3] T. Berberoglu and M. Kaya, "Hiding Fuzzy Association Rules in Quantitative

Data," Proc. 3rd Int'l Conf. on Grid and Pervasive Computing, 2008, Vol. 33, pp.

387-392.

[4] S. Agrawal, V. Krishnan and J.R. Haritsa, "On Addressing- ,Efficiency Concerns in

Privacy Preserving Mining," Proc. 9th Int'l Conf. on Database Systems for

Advanced Applications (DASFAA-2004), Jeju Island, Korea. March 2004, pp.

113-124.

[5] M. Gibbs, G. Shanks and R. Lederman, "Data Quality, Database Fragmentation

and Information Privacy," Journal of Surveillance and Society, January 2005,

Vol. 3, No.1, pp. 45-58.

[6] R. Agrawal and R. Srikant, "Privacy Preserving Data mining," Proc. ACM

SIGMOID Conference on Management of Data, Dallas, Texas, May 2000, pp.

439-450.

[7] L.A. Zadeh, "Fuzzy sets," Journal of Information and Control, Vol. 8, 1965, pp.

338-353.

[8] C. Czarnecki, R. John and S. Bennett, "The Application of Fuzzy Logic to Real

Time Multiple Robot Collision Avoidance," Proc. ICSC Fuzzy Logic Symposium,

1995, pp.116- l 21.

[9] S. Medasani, J.Kim and R. Krishnapuram, "An Overview of Membership

Function Generating Techniques for Pattern Reorganization," Int'1 Journal of

Approximate Reasoning", 1998, pp. 391-417.

51

[10] J.C. Can and P.A. Nava, "A Fuzzy Method for Automatic Generation of

Membership Function using Fuzzy Relations from Training Examples," Proc.
Annual Meeting of the North American Fuzzy Information Processing Society,

2002, pp. 158-162.

[11] A. Carling, "Introducing Neural Networks," Sigma Press, Wilmslow, UK, 1992,
pp. 233-234.

[12] Kuok, Chan Man, Fu Ada Wong, Man Hon, "Mining Fuzzy Association Rules in

Databases," Special Interest Group on Management Of Data (SIGMOD), Vol. 27,

1998, pp. 41-46.

[13] Dubois Didier, Eyke Hullermeier, Prade Henri, "A Note on Quality Measures for

Fuzzy Association Rules," Proc. Tenth Int'l Fuzzy Systems Association World

Congress on Fuzzy Sets and Systems, Springer, 2003 pp. 356-353.

[14] Srikant R, Agrawal R., "Mining quantitative .association rules in large relational

tables," Proc. ACM SIGMOD Int'l Conf. on Management of Data, Monreal,

Canada, 1996, pp. 1-12.

[15] T.P. Hong, C.S. Kuo, S.C. Chi, "Mining Association Rules from Quantitative

Data," Journal of Intelligent Data Analysis, Vol. 3(5), 1999, pp. 363-376.

[16] T.P. Hong, C.S. Kuo and S.L. Wang, "A Fuzzy AprioriTid Mining Algorithm

with Reduced Computational Time," Proc. Fourth Int'l Conference on Machine

Learning and Cybernetics, Guangzhou, August 2005, pp. 1812-1815.

[17] M. Atallah, E. Bertino, A. Elmagarmid, M. Ibrahim and V.S. Verykios,

"Disclosure Limitation of Sensitive rules," Proc. IEEE Knowledge and Data

Engineering Exchange Workshop (KDEX'99), 1999, pp. 45-52.

[18] C. Aggrawal and P. Yu, "Privacy Preserving Data Mining: Models and

Algorithms," Vol. 34, pp. 267-268.

[19] X. Sun and P.S. Yu, "A Border-Based Approach for Hiding Sensitive Frequent

Itemsets," Proc. Fifth IEEE Int'l Conf Data Mining (ICDM `05), 2005, pp. 426-

433.

[20] G. Moustakides and V.S. Verykios, "A Max-Min Approach for Hiding Frequent

Itemsets," Proc. Sixth IEEE Intl Conf Data Mining (ICDM '06), 2006, pp. 502-

506.

52

[21] A.G. Divanis and V.S. Verykios, "An Integer Programming Approach for

Frequent Itemset Hiding," Proc. ACM Conf. Information and Knowledge
Management (CIKM'06), Nov. 2006, pp. 748-757.

[22] C.C. Aggarwal, J. Pei and B. Zhang, "On Privacy Preservation against

Adversarial Data Mining," Knowledge Discovery and Data Mining (KDD, 06),

Philadelphia, USA, August 2006, pp. 510-516.
[23] http://archive.ics.uci.edu/ml/datasetsBreast+Cancer+Wisconsin+(Original).

(Dataset)

53

[21] A.G. Divans and V.S. Verykios, "An Integer Programming Approach for
Frequent Itemset Hiding," Proc. ACM Conf. Information and Knowledge
Management (CIKM'06), Nov. 2006, pp. 748-757.

[22] C.C. Aggarwal, J. Pei and B. Zhang, On Privacy Preservation against
Adversarial Data Mining," Knowledge Discovery and Data Mining (KDD, 06),
Philadelphia, USA, August 2006, pp. 510-516.

[23] http://archive.ics.uci.edu/ml/datasetsBreast+Cancer+Wisconsin+(Original).
(Dataset)

53

LIST OF PUBLICATIONS

[1] Mridula Verma, Durga Toshniwal, "Fuzzy Weighted Sensitive Itemset Mining in

Quantitative Databases", ls` International Conference of Multi-Label Data, Slovenia

(under communication).

[2] Mridula Verma, Durga Toshniwal, "A Border Based Approach for Hiding Fuzzy

Weighted Sensitive Itemsets", International Journal of Knowledge and Information

Systems, to be published by Springer. (under communication).

APPENDIX: SOURC CODE LISTING

1. Fuzzy Weighted Itemset Mining (FWI Mining)
1. Counting the number of single itemsets

protected int[] [1 countsinglesO
{

int [] [] countArray = new int [numCol s+ l] [2];
for (int index=0 ; index<countArray.length ; index++)
{

countArray [index] [0] = index;
countArray [index] [1] = 0;

for(int rowIndex=0 ; rowIndex<dataArray.length ;.rowIndex++)
{
if (dataArray[rowIndex] != null)
{
for (int collndex=0;colIndex<dataArray[rowIndex].length;

colIndex++)
countArray (dataArray [rowIndex] [collndex]] [1] ++;

return(countArray);
}

2. Order items in itemsets according to their support count

private void orderCountArray(int[] [1 countArray)
{
int attribute, quantity;
boolean isOrdered;
int index;

do
{
isOrdered = true;
index 	= 1;
while (index < (countArray.length-1))
{
if (countArray [index] El] >= countArray [index+ l] [1])
index++;

else
{

isOrdered = false;
attribute = countArray[index][0];
quantity = countArray[index][1];
countArray [index] [0] 	= countArray [index+l] [0] ;
countArray [index] [1] 	= countArray [index+l] [1] ;
countArray [index+l] [0] = attribute;
countArray [index+l] [1] = quantity;

55

i

index++;
}

}
}
while (isOrdered==false);

3. Combinations of items in itemsets

String[] combinations(Itemset itemset)

int n;
int [] x =' new int [20]
int len = itemset.length;
int com = (int)Math.pow(2,len);
NumComb = com;
String [] [] combi = new String [com-1] [len]
char [] [] ex = new char [com-1] [len]

for(int j = 0 ; j < com-1 ; j++)
{
n = j+l;
for(int i = 0 ; i<len ; i++)
{
x[i] = n 	2;
ex[j] [i] = Integer.toString(x[i]) .charAt(0)
n = n / 2;

}
}
int r=0;
for(int i=0;i<com-l;i++)
{
r=0;
for(int j=0;j<len;j++)
if (ex [i] [j]=='i')
{

combi [i] [r] =s [j] ;
r++;

}
}
String [] C = new String[com-1] ;

for(int i=0;i<com-l;i++)
C[i] = StrArrToStr (combi [i]) ;

return C;

4. Resize Dataset According to Minimum Threshold

public void resizeInputData(double percentage)
{
numRows = lint) ((double) numRows*(percentage/100.0));
short[] [] trainingSet = new short [numRows] [] ;

56

for (int index=0 ; index<numRows; index++)
trainingSet[index] = dataArray[index];

dataArray = trainingSet;
minSupport = (numRows,* support)/100.0;

S. 	Frequent Itemsets

private int outputFrequentSets(int number, short[] itemSetSofar,
int size, TtreeNode [] linkRef)

{
if (linkRef == null)

return (number);

for (short index=1; index < size; index++)
{
if (linkRef[index] != null)
{
if (linkRef [index].support >= minSupport)
{
short[] newItemSet = realloc2(itemSetSofar,index);
outputltemSet(newItemSet);
number = outputFrequentSets(number + 1,newItemSet,index,

linkRef [index] .childRef);
}

}
}

return(number);

6. 	Combine two large itemsets

protected FuzzyDataItem[] - reallocl(FuzzyDataltem[] oldItemSet,
FuzzyDataltem newElement)

{
if (oldItemSet == null)
{
FuzzyDataltem[] newitemSet = new FuzzyDataltem[l];
newItemSet[O] = new FuzzyDataltem(newElement);
return(newltemSet);

}
int oldItemSetLength = oldltemSet.length;
FuzzyDataltem[] newItemSet = new

FuzzyDataltem[oldltemSetLength+l];

int index;
for (index=0;index < oldItemSetLength;index++)

newItemSet[index] = new FuzzyDataltem(oldltemSet[index]);
newItemSet[index] = newElement;

return(newItemSet);
}

57

7. Returns all the Large Itemsets

private int outputFrequentSets(int number, short[] itemSetSofar,
int size, TtreeNode[] linkRef)

{
if (linkRef == null) return(number);

for (short index=l; index < size; index++)
{
if (linkRef[index] != null)
{
if (linkRef[index] .support >= minSupport)
{
short[] newItemSet = realloc2(itemSetSofar,index);
outputItemSet(newItemSet);
number = outputFrequentSets(number + 1,newItemSet,index,

linkRef[index].childRef);
}

}
}

return(number);
}

8. Prune items with low support from Ttree

protected boolean pruneLevelN(TtreeNode [] linkRef, int level)
{
int size = linkRef.length;
if (level == 1)
{
boolean allUnsupported = true;
for (int indexl=l;indexl<size;indexl++)
{
if (linkRef[indexi] != null)
{
if (linkRef[indexl].support < minSupport)

linkRef [indexi] = null;
else
{
numFrequentSets++;
allUnsupported = false;

}
}

}
return(allUnsupported);

for (int indexl=level;indexl<size;indexl++)
{
if (linkRef[indexi] != null) ..
{
if (linkRef [indexl] . childRef ! = null)
{
if (pruneLevelN(linkRef[indexl].childRef,level-1))

linkRef [indexl].childRef=null;
}

58

} }

return (false)

2. Highly Predictive Non-Sensitive FWI Extraction
1. Projected Database:

String [][] project_DB(Itemset itemset, String tuple)
{

String [] [] Projdb = new String [2] [4] ;
int i = 0 , j = 0 , x = 0 , count = 0 , k= 0 ;
int [] itemset_index = itemset.getIndex();

try
{

Class. forName("sun.jdbc.odbc.JdbcOdbcDriver");
Connection con = DriverManager.getConnection

("Jdbc:Odbc:Dissertdb");
Statement stmt = con.createStatement();
ResultSet rs = stmt.executeQuery("select * from Table2

where TID = '" + tuple +

while(rs.nextO)
{

for(i=0;i<4;i++)
{

if (i != itemset_index[j])
{

Projdb [0] [count] =String.valueOf
(rs.getDouble(i+2));

Projdb [1] [count] = itemset.getClassname (i) ;
count++;

}
j++;
if (j ==itemset_index. length)

j'-;
}

}
con.close();

}
catch (Exception exp)
{

exp.printStackTrace();,,

c = count;
return Projdb;
}

String [] [] PDB_X (Itemset itemset)
{

int i = 0, j = 0, count = 0, k= 0;
int x =0;

59

String TID;
int itemset_len = itemset.attrname.length;
int m = 5 - itemsetlen;
String [] [] PDB = new String [10] [5]
int [] itemset_index = itemset.getIndex();
Double str =null;

try
{

Class.forName("sun. jdbc.odbc.JdbcOdbcDriver");
Connection con = DriverManager.getConnection

("Jdbc:Odbc:Dissertdb");
Statement stmt = con. createStatement();
ResultSet rs = stmt.executeQuery("select * from Tablet");

while(rs.nextO)
{

count =0;
TID = rs.getString'(1);
for(i = 0 ; i<itemset_len ; i++)
{

str = rs.getDouble (itemset_index[i] +2);
if(itemset.value[i].equals(str))

count++;
if(count==itemset len)

x++;

String [] [j ProjDB_X = project —DB (itemset, TID) ;

PDB [k] [0] = TID;
PDB [k+l] [0] = TID;
for (j = 1 ; j < m ; j++)
{

PDB[k] [j] = ProjDB_X[0] [j-l];
PDB[k+l] [j] = ProjDB_X[ll [j-1]

}
k = k + 2

}
}

System. out . print ln();
}
c = 2*x;
con. close O;

}
catch (Exception exp)
{

exp .printStackTrace();
}
return PDB;

2. fuzzConfidence:

boolean confidence (Itemset. itemset, Double val , String attr)
{
boolean conf = true;

•1

Double [] [] rsltset = new Double [20] [20]
int i= 0, j = 0, x = 0
int [] itemsetindex = itemset.getlndex();
int index = itemset.getIndex(attr);

try
{
Class. forName ("sun. jdbc.odbc.JdbcOdbcDriver");
Connection con = DriverManager.getConnection

("Jdbc:Odbc:Dissertdb");
Statement stmt = con.createStatement();
ResultSet rs = stmt.executeQuery("select * from Tablet");

while(rs.nextO)
{

for(j=1;j<5;j++)
rsltset [i] [j-1] = rs.getDouble(j+l) ;
i++;

}

for(i=0;i<5;i++)
for(j=0;j<4;j++)

{
for(int k=0;k<itemset.attrname.length;k++)

if (rsltset [i] [itemsetindex [k]] .equals (itemset .value [k]))
x++;

if(x==itemset.attrname.length)
if (rsltset [i] [index] . equals (val))

conf = false;
break;

}
con.close();

}
catch (Exception exp)
{

exp .printStackTrace();
}

return conf;

3. Checking for Privacy Free Itemsets:

Boolean chk_PFree(Itemset itemset, String tuple, Itemset [] P)
{

Boolean b = true;
String []I] ProjDB,X = project_DB(itemset,tuple);
int j = 0 ;
Double [] [] PrivateSet = new Double [5] [5] ;
int [] numItemsinPrivate = new int[5];
int TotnumPrivateitems = P.length;

for(int i = 0 ; i < TotnumPrivateitems ; i++)
if (P[i] .tuple.equals(tuple))
{

PrivateSet[j] = P [i] .value;

61

numItemsinPrivate[j] = P[il.value.length;
j++;

}

int numPrivateSelected = j;
for(j = 0 ; j < numPrivateSelected ; j++) 	//for j tuple
{

System. out . print ln(");
for(int i=0;i<numItemsinPrivate[j];i++) 	//

for(int t=0 ; t<ProjDB_X[0].length ; t++)

if (PrivateSet Li] [i] .equals (Double .parseDouble (Prof
DB_X [0] [t])))

{
b=false;
break;

}
}
return b;

4. Checking for Non Discriminative Itemsets:

Boolean chk_nonDiscri(Itemset itemset , Itemset [] P)
{

Boolean b = false;
int i = 0 , x = 0 , j = 0;
int len = itemset.attrname.length;
int cnt = 0;
int t = 0;

String [] [] PDB = PDB_X(itemset) ;
int numrowPDB = PDB[0].length;
int numrow = c/2;
int numcol = 4 - len;
int [] [] countj = new int [numrow] [numcol];

System.out.println("Numrows = " + numrow + "Numcol=" + numcol);

for(i = 0 ; i<numrow ; i++)
for(j = 0 ; j<numcol ; j++)

countj [i] [j] = 0;

•for(int k=0; k<P.length;k++) 	//for every private element
{

t=0;
for(i = 1 ; i<c ; i = i + 2)
{

for(j = 1 ; j <=numcol ; j++)
{

if (P [k] .tuple.equals (PDB [i] [0]))
{
if (P[k] .attrname[O] .equals(PDB[i] [j]) &&
P [k] .value [0] .equals (Double.parseDouble (PDB [i-
1] [j])))
{

count] [t] [j] ++;

62

t++;

for(int y=0;y<numcol;y++)
{

cnt=0;
for(x = 0 ; x<numrow ; x++)

cnt = cnt + countj [x] [y] ;
if(cnt == numrow)
{

b = true;
break;

}
}

return b;
}

5. Checking for Contrast Itemsets:

Boolean chk_Contrast(Itemset itemset,.Itemset[] P)
{
Boolean b = false
int i= 0, j= 0, t= 0, r =0;
String [] [] PDB = PDB_X (itemset) ;
int len = itemset.attrname.length;
int numcol = 4 - len;
Double [] private_value = new Double[100];
String [] attr = new String[1001;
Boolean [] conf = new Boolean[5]

for(int k = 0; k < P.length ; k++)
{
for(i = 1 ; i<c ; i = i + 2)
for(j = 1 ; j<=numcol ; j++)
{
if(P[k] .tuple.equals(PDB[i] [0]))
{

if (P [k] . attrname [O] .equals (PDB [i] [j]) &&
P[k] .value [0] .equals (Double.parseDouble (PDB [i-1] Ii))))
{
private_value [t] = P [k] .value [0] ;
attr [t] = P [k] . attrname [0] ;
t++;

}

for(i=0;i<t;i++)
{
conf [i] = confidence(itemset, private_value [i] , attr [i]) ;
if (conf [i]) 	// if conf = 0 then contrast

r++;

63

}
if (r==t)

b=true;

return b;

5. Checking for Discriminative Itemsets:

String [][] chkDiscriminitive(Itemset itemset, Itemset [] P.
double delta)

{
String [] [] PDB = PDB_X (itemset) ;
String [l [] Pattr = new String [cl [2) ;
int r = 0 , i = 0 , j = 0 , cnt = 0 ;
double [] conf = new double [10] ;
String [] [] disc = new String [20] [20]
int numAI = 0;
int len = itemset.attrname.length;
int n = 6-len;

for(i=0;i<10;i++)
conf [i] =0;

for (i=0;i<c;i++)
for(j=0;j<n;j++)

if (PDB [i] [j] .equals("*"))
{

Pattr [r] [0] = PDB [i] [0] ;
r++;

}
cnt = r;
r=0;

for(i=0;i<cnt;i++)
for (j=0;j<3;j++)

if (Patty [i] [0] • equals (P [j] [0]))
Pattr [i] [11= P [j] [1] ;

for(i=0;i<cnt;i++)
Pattr [i] [0] =Pattr [i] [1] ;

for(i=0;i<cnt;i++)
{

conf [i] = confidence (X, Pattr [i] [1]) ;
if (conf [i] ==delta)
{

disc [numA2] = X;
numAl++;

}
}
return disc;

7. Itemset Class:

64

class Itemset
{

String[] Attributes = { "classl" , "class2" };
String [] attrname 	new String [100];
Double [] value = new Double [1001;
double support
String tuple;

Itemset()
{

attrname [0] _ ""
support = 0.0;
value [O] = 0.0;

}

Itemset(String[] itemset)
{

attrname = itemset;
support = support(attrname);

Itemset(String[] itemset, Double [] val)
{

attrname = itemset;
value = val;
support = support(attrname);

}
Itemset(String [] itemset,String t, Double [] val)
{

attrname = itemset;
tuple = t;
value = val;

Itemset(String [] itemset, String t)
{

attrname = itemset;
tuple = t;

String getClassname(int index)
{

return(Attributes[index]);
}

int [] getIndex()
{

int len = this.attrname.length;
int [] index = new int [len] ;

for(int i=0;i<len;i++)
index[i] = 0;

for(int j=0 ; j<len ; j++)
for(int i=0 ; i<Attributes.length ; i++)

if (this . attrname [j] .equals (Attributes [i]))
index[j] = i;

65

return index;

int getlndex(String a)
{

int index = 0;
for(int i=0 ; i<Attributes.length ; i++)

if (a. equals (Attributes [i]))
index = i;

return index;

Double [] valueof(String tuple)
{

int [] index = this . getIndex () ;
int len = index.length;
Double [] value = new Double [len] ;

try
{

Class. forName("sun.jdbc.odbc..JdbcOdbcDriver");
Connection con = DriverManager.getConnection

("Jdbc : Odbc: Dissertdb");
Statement stmt = con.createStatement();
ResultSet rs = stmt.executeQuery("select * from Table2

where TID = '"+tuple+"'");

rs.next();
for(int i=0;i<len;i++)

value[i] = rs.getDouble(i+2);

con. close ();
}
catch (Exception exp)
{

exp.printStackTrace();
}
return value;

}
double support(String [] X).
{

int len = X.length;
double sup = 0 , supi = 0 , min = 10000;
int i = 0;
String items =
Double [] row = new Double [4];

try
{

Class.forName("sun.jdbc.odbc.JdbcOdbcDriver");
Connection con = DriverManager.getConnection

("Jdbc:Odbc:Dissertdb");
Statement stmt = con.createStatement();

if(len == 1)
{
ResultSet rs = stmt.executeQuery("select " + items +

from Table2");

while(rs.next())
supi+= rs.getDouble(items);

else
{

for(i=0;i<len-l;i++)
items = items + ", " + X(i+1];
ResultSet rs = stmt.executeQuery("select " + items +

from Table2");

while(rs.next())
{

min = 10000;
for (i=0; i<len; i++)
{

row(i] = rs. getDouble (i+l) ;
}

for(i=0;i<len;i++)
if (min>row[i])

min = row[i] ;

supi+= min;
}

}
sup = supi/(double)5;
con . close () ;

}
.catch(Exception exp)

{
exp.printStackTrace();

}
return sup;

}

void displtemset()
{

System.out.println("Itemset : count =
11);

for(int i=0;i<attrname.length;i++)
System. out . println (attrname [i]) ;

System.out.println(" : " + support);

3. Border-based Approach for Hiding Sensitive FWI
1. Positive Border:

String [] PositiveBorder()
{

String [IPBorder = new String [100];
Freqltemset [] f

67

f = new Fregltemset[17];
int p=0;

for(int i=O;i<17;i++)
f [i] = new Freqltemset 0; ;

int len = X.length;

for(int i=0;i<len;i++)
{

f [i] . Itemset=X [i]
f [i] .sup =

}
String []Combltem;

for(int i=0;i<len-l;i++)
{

cnt =0;
Combltem = combinations(StrToStrArr(f [ii .Itemset));

for(int j=i+l ; j<len ; j++)
{
for(int k=0;k<NumComb-l; k++)

if (CombItem [k] .equals (f [j] .Itemset) && f[i] . SupSet)
{

f[j] . SupSet=false;
if(cnt==0)
{

PBorder [p] = f [i] .Itemset;
p++;

}
cnt++;
break;

}
}

}
NumPBorders = p;

for(int i=0 ; i<NumPBorders ; i++)
{

InitSup_PBorder[i] = support(StrToStrArr(PBorder[i]));
}

String [] ABX = AffectedBorder(PBorder, "cd") ;
double [] W_x = Weights();
int [] ABu = RelevenceBitVector(ABX,'a');

String [][]W = AffectedBorder_Candidate("ab");

double impact_delu = Impact(ABu, W_x);
return PBorder;

2. Hiding Candidate:

String [] [] I-Iiding_Candidate (String Itemset)
{

int len = Itemset.length(), i=0, j=0,p=0,k=0;

68

String [] [] rsltset = new String [20] [20]
int [] index = new int [len]
String[] X = StrToStrArr(Itemset);
String [] [IC = new String [NumRows] [len+l] ;

for (i=0;i<len;i++)
for (j=0;j<9;j++)
if (X [i] .equals (Attr [j]))
{

index [p] =j;
p++;

}
i=0;
try
{

Class. forName("sun.jdbc.odbc.JdbcOdbcDriver");
Connection con = DriverManager.getConnection

("Jdbc:Odbc:BorderApp");
Statement stmt = con.createStatement();
ResultSet rs = stmt.executeQuery("select * from Tablel");

while(rs.nextO)
{

for(j=1;j<=9;j++)
rsltset [i] [j -1] = rs. getString (j)

i++;
}
NumRows = i;

for(i=0; i<NumRows; i++)
{

cnt = 0;
for (j=0;j<p;j++)

if (rsltset [i] [index [j]] .equals ("l"))
cnt++;

if (cnt==len)
{

C [k] [j] = rsltset [i] [0] ;
k++;

}
}

con.closeO; }

catch(Exception exp)
{

exp. printStackTrace();
}

return C;
}

3. Relevence Bit Vector:

int [] RelevenceBitVector(String []ABX, char c)
{

69

int numAffItem = ABX.length;
int [] RelBit = new int [numAffltem]
int lenAB = 0, p = 0;
char [] ABXArr = new char[lenAB];

for(int i=0;i<numAffltem;i++)
RelBit [i] =0;

for(int i=0;i<numAffItem && ABX[i]!=null;i++)
{

ABXArr = ABX [i] . toCharArray () ;
lenAB = ABXArr.length;
for(int j=0;j<lenAB;j++)

if (ABXArr[j] ==c)
{

RelBitfi]=1;
break;

}
}

return RelBit;
}

4. Impact Calculation:

double Impact (int [] ABu, double [] W x)
{
double impact_delu = 0;
for(int i=0 ; i<W_x.length ; i++)

impact_delu = impact_delu + ABu[i]*W x[i];

return impact_delu;
}

5. Negative Border:

String [] NegativeBorder()
{

String []NBorder = new String [100];
Freqltemset [] f
f = new Fregltemset [17] ;
int p=0;

for(int i=0;i<17;i++)
f[i] = new FregItemset ()

int len = X.length;

for(int i=0;i<len;i++)
{

f [i] . Itemset=X [i]
f [i] .sup =

}

String []Combltem;
String X1,X2;
int k = 0;

70

for(int i=0;i<len-l;i++)
{

cnt =0;
Combltem = combinations (StrToStrArr (f [i] . Itemset)) ;.
for(int j=i+l ; j<len ; j++)
{

X2 = f[j].Itemset;
for(k=0;k<NumComb-1; k++)
{

Xl = Combltem [k] ;
if(Xl.equals(X2))
{

if(cnt==0)
NBorder [p] = f[j] . Itemset;

cnt++;
p++;
break;

}
}
if(k==NumComb-1)
{

NBorder [p] = f[i] . Itemset;
p++;

}
}

}
return NBorder;

6. Weights:

double [] Weights()
{

double [] wt = new double£NumPBorders];
double [] CurSup_PBorder = new double[NumPBorders];

for(int i=0; i<NumAffBorX; i++)
CurSup_PBorder[i] = InitSup_PBorder[i];

for(int i=0;i<NumAffBorX;i++)
{

i f (CurSup_PBorder [i] >= minsup)
wt[i] = (double) 1;

else if(CurSup_PBorder[i]>=0&&CurSup_PBorder[i]<=minsup)
wt[i] = lambda + minsup - InitSup_PBorder[i];

}
return wt;

7. Affected Border:

String[] AffectedBorder(String []PBorder, String X)
{

71

String [] AffBorX = new String [10] .;
String [] ArrX = StrToStrArr(X);
String [] combX = combinations(ArrX);
String [] Combi = null;
int lent = combX.length;
int len2 = 0, p=0;
boolean flag = false;

for(int i=0;i<NumPBorders;i++)
{

Combi = combinations(StrToStrArr(PBorder[i]));
len2 = Combi.length;
flag=false;

for(int j=0;j<lenl;j++)
{

if (flag)
break;

for(int k=0;k<len2;k++)
if (combX [j] .equals (Combi [k]) && PBorder [i] !=null)
{

AffBorX [p] = PBorder [i] ;
System.out.println("Aff Bor="+ AffBorX[p]);
p++;
flag = true;
break;

}
}

}
NumAffBorX = p;
int x=0;
String [] A = new String [p] ;
for(int i=0;i<p;i++)

{
A [x] =AffBorX [i] ;
x++;

}
return A;

8. Combinations:

String[] combinations(Itemset itemset)

int n;
int [] x = new int [20]
int len = itemset.length;
int com = (int)Math.pow(2,len);
NumComb = com;
String [] [] combi = new String[com-1] [len] ;
char [] [] ex = new char [com-1] [len]

for(int j = 0 ; j < com-1 ; j++)
{

n = j+l;
for(int i = 0 ; i<len ; i++)

72

x [i] = n o 2;
ex[j] [i] = Integer . toString (x [i]) . charAt (0) ;
n = n / 2;

}
}
int r=O;
for(int i=0;i<com-1;i++)
{

r=O;
for(int j=0;j<len;j++)

if (ex [i] [j] ==' 1')
{

combi(i] [r]=s[j]
r++;

}
}
String [] C = new String [corn-1] ;

for(int i=0;i<com--l;i++)
C[i] = StrArrToStr (combi [1]);

// 	System. out.println(C[i]);

return C;

73

	Title
	Abstract
	Chapter 1
	Chapter 2
	Chapter 3
	Chapter 4
	Chapter 5
	Conclusion
	References
	Appendix

