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ABSTRACT 

Association rule mining is an important technique in data mining. Traditional association 

rule discovery process deals with crisp quantitative data values. However, there are cases 

when the data values are not well separable into crisp boundaries. This data can be 

termed as fuzzy data. In such cases, a single value can have membership associated with 

multiple attributes or groups. Traditional association rule discovery fails to work on such 

data. Fuzzy association rule mining techniques are used to deal with uncertain or fuzzy 

data. In many real world applications, all items in the database may not be of equal 

significance from data mining perspective. So, in such cases weights are assigned to 

items to reflect their importance. Applying privacy preservation on weighted fuzzy 

frequent itemsets is an active area of research in data mining. 

In context to privacy preservation, fuzzy weighted itemsets can be categorized as 

sensitive itemsets and non-sensitive itemsets. Sensitive itemsets are those which are 

critical to the user or application and must remain hidden. Non-sensitive itemsets are 

those which are less critical and may not remain hidden. Some non-sensitive itemsets 

have high predicting capability i.e. they may be used to predict sensitive itemsets values. 

It is important to identify such non-sensitive itemsets and to prevent their misuse. Also, 

the hiding of sensitive itemsets may affect the sanitized database. 

In the thesis, an algorithm has been proposed to extract fuzzy weighted frequent itemsets. 

The proposed work also identifies the highly predictive fuzzy weighted non-sensitive 

itemsets and hides them in combination of sensitive itemsets to obtain well maintained 

sanitized database. To achieve database sanitization, border based approach for hiding 

fuzzy weighted itemsets has been proposed. The, work has been done using quantitative 

datasets. Case data has been taken from real life applications. 
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CHAPTER 1 

INTRODUCTION 

Privacy preserving data mining — getting valid data mining results without learning the 

underlying data values has been receiving attention in the research community. As a 

young research field, data mining has made broad and significant progress since its early 

beginning in the 1980s [1]. Today data mining is used in a vast array of areas, and 

numerous commercial data mining systems are available for various types of databases. 

This chapter gives an introduction and motivation behind the proposed work, discusses 

the problem statement of the proposed work and the structure of this thesis. 

1.1 Introduction 

The evolution of information technologies and especially the networks like the Internet 

enabled companies to easily record data from their customers. Since then, huge amounts 

of data have been collected and stored in the databases of many enterprises. Due to the 

fact that a lot of business intelligence is hidden in these large databases, the companies 

need efficient automated tools to find out patterns and regularities. 

Data mining (sometimes called knowledge discovery in data) is the process of analyzing 

data from different perspectives and summarizing it into useful information - information 

that can be used to increase revenue, cuts costs, or both. - It allows users to analyze data 

from many different dimensions or angles, categorize it, and summarize the relationships 

identified. Technically, data mining is the process of finding correlations or patterns 

among dozens of fields in large relational databases. It consists of five major elements 

[2], as shown in fig. 1.1. 

Many data mining tools have been developed that allow a great v ariety of analysis 

techniques, mostly derived from classical statistics. Since its introduction, the technique 

of association rules mining has received great interest by the data mining community and 

a lot of research has been -done resulting in the development of many different 

algorithms. Association rules are especially useful for conducting market basket analysis, 
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Figure 1.1: Knowledge Discovery Process 

where transaction data can be analyzed. Regularities in data of a supermarket for example 

can be found in this way. An association rule could be "If a customer buys bread and 

milk, he will mostly buy butter as well". This information is very useful for business 

because promotion actions can be designed accordingly. 

A problem of classical association rules is that not every kind of data can be used for 

mining. Rules can only be derived from data containing binary data, where an item either 

exists in a transaction or it does not exist. When dealing with a quantitative database, no 

association rules can be discovered. This fact led to the invention of quantitative 

association rules, where the quantitative attributes are split into intervals and the single 

elements are either members or nonmembers of those intervals. 

Beyond the positive consequences of higher information accuracy, a negative point is a 

feeling of dwindling privacy for individual person (or company). The objective of data 

mining is to generalize across population, rather than revealing information about 

individuals. So, the true problem is not data mining, but the way data mining is done. 

2 



Large repositories of data contain sensitive information that must be protected against 

unauthorized access. Recent advances in data mining and machine learning algorithms 

have increased the disclosure risks that one may encounter when releasing data to outside 

parties. Privacy preserving techniques are used to preserve the private information of a 

user. These techniques, using methods like data hiding, cryptography, perbutations, use to 

affect the basic organization of the database. So, there is a need of techniques to preserve 

the privacy of user data without affecting the distribution of the database. Mostly these 

real world databases are of quantitative type. This work proposes an algorithm to hide the 

sensitive items in the quantitative fuzzy database without affecting the non-sensitive 

database. 

1.2 Motivation 

The quantitative approach allows an item either to be member of an interval or not. This 

leads to an under or overestimation of values that are close to the borders of such "crisp" 

sets. To overcome this problem, the approach of fuzzy association rules has been 

developed. It allows the intervals to overlap, making the set fuzzy instead of crisp. Items 

can then show a partial membership to more than one set, overcoming the above 

addressed, so-called "sharp boundary problem". The membership of an item is defined by 

a membership function and fuzzy set theoretic operations are incorporated to calculate the 

quality measures of discovered rules. Using this approach, rules can be discovered that 

might have got lost with the standard quantitative approach. 

In previous works [1, 13, 14, 15], whether the database is boolean type or quantitative 

type there are some sensitive itemsets which should be hidden to make the user privacy 

preserved. Especially in medical institutions, there are databases including very extensive 

information about patients. Possible bad purposed usage of those databases threatens 

personal privacy of patients. Fuzzy data mining concept is usually concerned with 

medical databases. To estimate the type of the disease in the patient, generally doctors 

use IF-THEN rules. These IF-THEN rules are generally represented by fuzzy relations. 

That is why; fuzzy databases are used in medical applications. For example, if a patient is 



having fever of 100°C and the size of the radius of red cells in the blood .is more than 

5µm then it can imply that he has been suffering from Malaria. 

There are some recent examples about bad purpose usage of medical information of 

patient. For example; Kiser, one of the most important medical institutes of United States 

sent 858 e-mail messages by mistake. Those messages contained IDs of users and their 

answers for their illnesses and the questions as well. All of those messages were sent to 

wrong receivers. (Washington Post, 10 August 2000). In another example, Global 

Healttrax, an online firm selling health products, sent names, home phones, bank account 

numbers and credit card data through their website by mistake. (MSNBC, 19 January 

2000) [3]. 

This thesis gives an overview of membership function generation, fuzzy associations 

mining, and an introduction to hiding sensitive fuzzy weighted itemsets in quantitative 

databases. A privacy preserving framework has been proposed for fuzzy databases. 

Additionally, a technique has also been described which is used to generate the 

membership function for the fuzzy dataset. The following section describes the problem 

statement of this thesis work. 

1.3 Statement of the Problem 

The work undertaken in the thesis is given as follows, 

• To find frequent fuzzy weighted itemsets in quantitative databases. 

• To identify the highly predictable non-sensitive fuzzy weighted itemsets. 

• To hide the sensitive fuzzy weighted itemsets and non-sensitive highly 

predictable fuzzy weighted itemsets while maintaining the quality of database. 

The assumptions for the work are: 

1. The algorithms are designed for the quantitative databases. 

2. During hiding process the support of itemsets are decreased by its associated 

membership. 
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1.4 Organization of the Thesis 

The report is divided into seven chapters including this chapter that introduces the topic 

and states the problem. The rest of the thesis'report has been organized as follows: 

A brief review of literatures studied and the background knowledge for this work has 

been discussed in Chapter 2. Basic concepts like fuzzy C-Means clustering, neural 

network, fuzzy itemset mining etc. have been discussed in this chapter. All research gaps 

found will also be discussed. 

The proposed work has been described with the help of block diagram in Chapter 3. Each 

module of the block diagram has been described in detail. 

In Chapter 4, we give the implementation details of this work. It includes a brief 

description of the database used, code platform and the modules and procedures created 

in implementation. 

All the results and a detailed analysis of these results have been given in Chapter 5. In the 
end, we conclude the thesis in Chapter 6 with some suggestions for future works. 
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CHAPTER 2 

BACKGROUND AND LITERATURE REVIEW 

Privacy Preserving Data Mining is a research area concerned with the privacy driven 

from personally identifiable information, when considered for data mining. In particular, 

in privacy preserving data mining, it is aimed at providing data to public for data mining 

purpose while not risking personal data and performing high precision of the mining 

algorithm at the same time [4]. An overview will be given in this chapter. Various 

privacy preserving data mining systems are available for various types of databases. In 

real-world scenario generally databases is of quantitative form which can be implemented 

by using fuzzy concepts. In this chapter, all the literature studied for this work is given. 

2.1 Privacy Preserving Data Mining 

The use of Internet has enabled in the last years an unprecedented level of automated data 

collection. Parallel to this, data mining has emerged as an important discipline providing 

powerful tools for data analysis. Data mining software is one of a number of analytical 

tools for analyzing data. It allows users to analyze data from many different dimensions 

or angles, categorize it, and summarize the relationships identified [5]. Beyond the 

positive consequences of higher information accuracy, a negative point is a feeling of 

dwindling privacy for individual person (or. company). 

Privacy preserving data mining is first defined by R. Agrawal and R. Srikant [6]. They 

addressed the problem of development of accurate model without access to precise 

information in individual data records. In their work, R. Agrawal and R. Srikant 

introduced a quantitative measure to evaluate the amount of privacy offered by a method 

and introduced - their reconstruction procedure to reconstructing the original data 

distribution given a perturbed distribution. 

A most useful and generalized classification of different techniques was done by V. S. 

Verykios et al. [1]. They classified different privacy preserving data mining techniques 

into five categories. These categories are namely data distribution, data modification, data 

u 



mining algorithm, data or rule hiding and the privacy preserving. They also gave a review 

of Heuristic-based techniques, Cryptography-based techniques and Reconstruction-based 

techniques of privacy preserving and also provide an evaluation of privacy preserving 
algorithms. 

Data mining can be done by various techniques - i.e. the useful knowledge from the 

database can be extracted by various techniques. According to the dimensions of the data 

mining techniques, dimensions of techniques for the privacy preservation also expands. 

Privacy preservation can be applied to clustering, association rule mining, classification 

and other data mining techniques. 

2.2 Membership Function 

Fuzzy concept uses membership functions to provide membership to items into a fuzzy 

set. A membership function puts a lot of impact on the result of the fuzzy computation. 

So, selection of an accurate membership function is an important task for applying fuzzy 

concept. The membership function is a graphical representation of the magnitude of 

participation of each input. It associates a weighting with each of the inputs that are 

processed, define functional overlap between inputs, and ultimately determines an output 

response. The rules use the input membership values as weighting factors to determine 

their influence on the fuzzy output sets of the final output conclusion. 

Member degrees of fuzzy sets include similarity, preference, and uncertainty [7]. 

Membership functions on X represent fuzzy subsets of X. The membership function 

which represents a fuzzy set is usually denoted by µA. For an element x of X, the value 

p.A(x) is called the membership degree of x in the fuzzy set. The membership degree 

µA(x) quantifies the grade of membership of the element x to the fuzzy set. The value 0 

means that x is not a. member of the fuzzy set; the value 1 means that x is fully a member 

of the fuzzy set. The values between 0 and 1 characterize fuzzy members, which belong 

to the fuzzy set only partially. 
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Figure 2.1: Membership function of a fuzzy set 

Fig. 2.1 demonstrates a membership function with respect to a crisp boundary. The 

approach adopted for acquiring the shape of any particular membership function is often 

dependent on the application. For most fuzzy logic control problems the assumption is 

that the membership functions are linear - usually triangular in shape [8]. However, for 

many other applications triangular membership functions are not appropriate. 

In [9] all the basic techniques of membership function generation is described. The 

techniques include heuristic based, feed-forward neural networks, clustering and mixture 

decomposition etc. The author iterates that there is no single best method and the choice 

of method depends on the particular problem. 

Lucero and Patricia in [ 10] give a method for membership function generation if the 

training data is present. If the membership of each data point to each class is defined, then 

they show the technique to find out the membership function. They also stated that a 

module which automatically creates membership functions for a system's input 

parameters with neuro-fuzzy systems will be much more efficient. 

The author proposed a fuzzy learning method for automatically deriving membership 

functions from a set of given training examples. The proposed approach can significantly 

reduce the time and sort needed to develop a fuzzy expert system. As an example, they 

explain the technique to find out a triangular membership function. 
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The technique we have used in this work is finding membership function using clustering 

to get the class label and using these class labels, the membership values of data items for 

these classes has been obtained using neural network. 

Clustering 
Clustering involves the task of dividing data points into homogeneous classes or clusters 

so that items in the same class are as similar as possible and items in different classes are 

as dissimilar as possible. Clustering can also be thought of as a form of data compression, 

where a large number of samples are converted into a small number of representative 

prototypes or clusters. 

In non-fuzzy or hard clustering, data is divided into crisp clusters, where each data point 

belongs to exactly one cluster. In fuzzy clustering, the data points can belong to more 

than one cluster, and associated with each of the points are membership grades which 

indicate the degree to which the data points belong to the different clusters. This sub-

chapter demonstrates the fuzzy c-means clustering algorithm. The clustering used in this 

work is a bit modified version of FCM. 

Fuzzy c-means (FCM) is a method of clustering which allows one piece of data to belong 

to two or more clusters. This method is frequently used in pattern recognition. It is based 

on minimization of the following objective function: 
NC 2 

J =ZZ IIx= -c)II 
i-i .1-1 	 1 m < oo 	 (1) 

where m is any real number greater than 1, u is the degree of membership of x; in the 

cluster j, x; is the a of d-dimensional measured data, c~ is the d-dimension center of the 

cluster, and 11*11 is any norm expressing the similarity between any measured data and the 

center. Fuzzy partitioning is carried out through an iterative optimization of the objective 

function shown above. 
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This iteration will stop when 	u 	u 	
< `, where 1 is a termination criterion 

between 0 and 1, whereas k is the iteration steps. This procedure converges to a local 

minimum or a saddle point of J.. The algorithm is composed of the following steps: 

Step 1: Initialize U = [u0J matrix, U 

Step 2: At k-step: calculate the centers vectors C (k) = [ci ] with U (k) 

(2) 

Step 3: Update U~), U ( k }l) 
1 

Ya _  2 

ik —c IIr 
k_l If xi —ck11 

Step 4: If I I U ( k+') — U I 1< •` then STOP; otherwise return to step 2. 

Artificial Neural Network: 
The basic concept of artificial neural network comes from the Biological neural network 

which works in human brain. A biological neuron receives electrochemical signals from 

many sources (other neurons) and when the excitation in the neuron is high enough, it 

starts fire and passes the signal to the next neuron. 

An artificial neuron is defined as follows [11]: 

• It receives a number of inputs (either from original data, or from the output of 

other neurons). Each input comes via a connection that has a strength (or weight); 

these weights correspond to synaptic efficacy in a biological neuron. Each neuron 

also has a single threshold value. The weighted sum of the inputs is formed, and 

the threshold subtracted, to compose the activation of the neuron. 

• The activation signal is passed through an activation function (also known as a 
transfer function) to produce the output of the neuron. 

(3) 
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Figure 2.2: Single input neuron 

Coming to the very basic concept, a single neuron model is shown in fig. -2.2. The scalar 

input p is multiplied by a scalar weight w to form wp, which is sent to the summing 

function. The other input called bias (b) is passed to summing function. The summing 
function gives output n which goes to the transfer function (or activation function) f, 

which produces the neuron output a. 

In this case, the neuron output is calculated as, 

a=f(wp+b) 
	

(4) 

The actual output depends on the particular transfer function that is chosen. Table 2.1 

shows the various types of transfer function which are generally used in artificial neural 
network. 

Typically a neural network has multiple input pl, pz,...p ,. In these type of networks the 

weights are shown by a matrix of size I *n. Thus the weights will be wl, I, wj, 2 ... 
Here the output will be, a =f(   Wp + b), where W is a one dimensional matrix of weights. 

Coming to more complex type of networks, the following fig is showing a three layer 

multiple input neural network. 

As shown in the fig. 2.3, there are R inputs, L1 neurons in the first layer, L2 neurons in the 

second layer, etc. We can have different number of neurons on different layers. The 

outputs of one and two will be the inputs of layer two and three. Thus, layer 2 can be 

viewed as one-layer network with R = LI inputs, L = L2 neurons and an LI *L2 weight 
matrix W2. The input to the layer 2 is a' and output is a2. A layer whose output is the n/w 

11 



Name Input/Output Relation Icon 

Hard Limit a = 0 n<0 LJI a 	1 n>=0 

a=-1 	n<0 
Symmetrical Hard Limit 

a=+1 n>=0 

Linear a=n  

Log-Sigmoid a = 1/(1±e9 
ill 

Table 2.1: Different Activation Functions 

output is called an output layer. All the other layers are called hidden layers. In the above 
network there are two hidden layers. 

After this brief introduction to neural network themain concept to discuss is the learning 
algorithm. After the design of the neural network, we have to train it so that it can 

classify our input data objects correctly. In this step, we provide a set of training data to 

the network and using a proper learning algorithm, network use to learn. There are 

various algorithms provided for learning. Here the best known example is being 

described i.e. Back-Propagation algorithm. 

In back propagation, the gradient vector of the error surface is calculated. This vector 

points along the line of steepest descent from the current point, so we know that if we 

move along it a "short" distance, we will decrease the error. A sequence of such moves 

(slowing as we near the bottom) will eventually find a minimum of some sort. The 

difficult part is to decide how large the steps should be. s . 

The typical back-propagation network has an input layer, an output layer, and at least one 

hidden .layer. Each layer is fully -connected to the succeeding layer. The training 

process normally uses some variant of the Delta Rule, which starts with the calculated 

I2 
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Figure 2.3: A Multi-layered Multiple Input Neural Network 

difference between the actual outputs and the desired outputs. Using this error, 

connection weights are increased in proportion to the error times a scaling factor for 

global accuracy. Doing this for an individual node means that the inputs, the output, and 

the desired output all have to be present at the same processing element. The complex 

part of this learning mechanism is for the system to determine which input contributed 

the most to an incorrect output and how does that element get changed to correct the 

error. To solve this problem, training inputs are applied to the input layer of the network, 

and desired outputs are compared at the output layer. During the learning process, a 

forward sweep is made through the network, and the output of each element is computed 

layer by layer. The difference between the output of the final layer and the desired output 

is back-propagated to the previous layer(s), usually modified by the derivative of the 

transfer function, and the connection weights are normally adjusted using the Delta Rule. 

This process proceeds for the previous layer(s) until the input layer is reached. 

2.3 Fuzzy Association Rules 

Among various data mining techniques, association rule mining is the most popular one. 

In this technique, we use to find out interesting associations and correlations among 

itemsets in the database. Various works have been done in the field of association rule 

mining. Most studies have shown how binary valued transactions can be handled. 

13 
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Figure 2.4: Crisp Partition 

However, transaction in the real-world applications usually consists of quantitative 

values, so designing sophisticated data-mining algorithms able to deal with various types 

of data presents a challenge to workers in this research field. 

Based on classical association rule mining, a new approach has been developed 

expanding it by using fuzzy sets. The new fuzzy association rule mining approach 

emerged out of the necessity to mine quantitative data frequently present in databases 

efficiently. When dividing an attribute in the data into sets covering certain ranges of 

values, we are confronted with the sharp boundary problem. 

Elements near the boundaries of a crisp set will either be ignored or overemphasized. For 

example, one can consider a set representing persons of middle age, ranging from 30 to 

50 years old (see Fig. 2.4). In this example, a person aged 29 years would be a 0% 

representative and a 31 year old would be 100%. In reality, the difference between those 

ages is not that great. Implementing fuzziness can overcome this problem. 

The same problem can occur if one is dealing with categorical data. Sometimes, it is not 

ultimately possible to assign an item to a category. As an example, one can say that a 

tomato is a vegetable but also, in a way, a fruit. Crisp sets would only allow assigning the 

item to one single category; fuzzy sets allow different grades of membership to more than 

one set. 

14 
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Figure 2.5: Fuzzy Boundaries 

For example, in the previous case we might want to partition the variable Age into three 

fuzzy sets. The fuzzy sets and their membership functions will have to be defined by a 

domain expert. For easy demonstration, the borders of the sets are defined and split the 

overlapping part. equally between the so generated fuzzy sets. The following borders for 

the fuzzy sets of the variable age: Age.Low={0-33}, Age.Medium={27-55}, Age.High 
{48—oo} can be used. The generated fuzzy sets are shown in fig. 2.5. For all areas having 

no overlap of the sets, the support will simply be 1 for the actual itemset. If there is an 

overlap, the membership can be computed by using the borders of the overlapping fuzzy 
sets. The added support will here always sum up to 1. 

Kuok et al. describe fuzzy association rules as follows [12]: "Mining fuzzy association 

rule is the discovery of association rules using fuzzy set concepts such that the 

quantitative attribute can be handled". As in classical association rules, I = { i1 , j2. ... , i. 
} represents all the attributes appearing in the transaction database T={ tl  , t2 , ... , t,}. I 
contains all the possible items of a database, . different combinations of those items are 
called itemsets. Each attribute ik will associate with several fuzzy sets. In order to 
represent the fuzzy sets associated with ik, the following notion is used, 

Fik —  { f ik I  f ik2  •.. f ikm } 
	

(5) 

where Id  is the jth fuzzy set in Fik. As an example, the attribute salary could look as 
follows: FAge  = { high, medium, low }. Fuzzy sets and their corresponding membership 

functions have to be defined by domain experts. Each of the fuzzy sets can be viewed as a 

[0, 1] valued attribute, called fuzzy attribute. 
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A fuzzy association rule has the following form: 

IfX is A then Y is B 	 (6) 

In this case, X ={ x1, x2, ..., xp } and Y {yi , y2  ,... , yq } are itemsets which are subsets of I. 
It is important to notice that those two sets must be disjoint and thus do not have any 

attributes in common. Fuzzy values, 

A={ fx',fx2,  ... ,fp}andB= {fy',fy2,...,fyq} 	 (7 ) 

contain the fuzzy sets that are associated with X and Y. Known from classical association 
rules, X is A is the antecedent, Y is B is the consequent. If a sufficient amount of records 
approves this rule, it will call as satisfied. 

In order to enable the evaluation of a fuzzy association rule, we use the standard approach 

for calculating support and confidence, replacing the set-theoretic operations by the 

corresponding fuzzy set-theoretic operations [13]: 

supp (A- >B) = E x ED (T (A(x), B(x)) 
	

( 8 ) 

conf (A->B) = Ex ED (T (A(x), B(y)) / E (x, y)ED A(x) 	 ( 9 ) 

Additionally, if A supports B, B will automatically also support A. This is due to the fact 

that the support is computed by simply summing up the memberships of the different 

items in the database. Thus: 

suPP[x , y] (A->B) = suPP[x , y] (B-> A) 
	

(10) 

Work done in [ 14] describes a technique of mining the quantitative data in large 

relational tables. It defines the traditional association rule as a "Boolean Association 

Rule", and introduces a new term as "Quantitative Association Rule". The basic approach 

which is described in this work is mapping of quantitative association rule problem into 

boolean association rule problem. It first finds out the partitions in the quantitative data 

and then maps the data values into these partitions. Thus all the values in the database get 

partitioned through crisp boundaries. . 
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The main problem with this approach of partitioning is the information loss due to crisp 

boundaries, is the sharp boundary problem defined by Kuok in [ 12]. They describe that a 

fuzzy concept is better than the partitioning method, since fuzzy sets provides a smooth 

transition between members and non-members of a set. Kuok uses two factors as 

significance and certainty to find out the large itemsets and rule interestingness 
respectively. 

Hong et al. proposed a fuzzy mining algorithm to mine fuzzy rules from quantitative 

transaction data [ 15]. Basically, the fuzzy mining algorithms first used membership 

functions to transform each quantitative value into a fuzzy set in linguistic terms. The 

algorithm then calculated the scalar cardinality of each linguistic term on all the 

transaction data. The mining process based on fuzzy counts was then performed to find 
fuzzy association rules. 

One more efficient algorithm is given in [ 16], by Hong, Kuo and Wang. It uses an 

AprioriTid mining algorithm with comparatively reduced computational time. They took 

reference from the work done by R. Aggrawal and R Srikant, which describes two fast 

algorithm of association rule mining. The AprioriTlD is a fast algorithm since it uses 

only one scanning of the database from memory. So the memory I/O time get decreases. 

2.4 Frequent Itemset Hiding 

Data hiding is a popular technique to preserve the privacy of the user. In this technique 

sensitive data is hided from the attackers. There 'is a,  specific class of methods in the 

knowledge hiding area, known as frequent itemset and association rule hiding. Other 

classes of methods, under the same area, include classification rule hiding, clustering 

model hiding, sequence hiding and so on and so forth. "Association rule hiding" has been 

mentioned for the first time in 1999 in a workshop paper by Atallah et al. [13]. 

According to [ 14], association rule hiding algorithms can be divided into three distinct 

classes, i.e. heuristic approaches, that involves efficient, fast algorithms that selectively 

sanitize a set of transactions from the database to hide the sensitive knowledge, border- 
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based approaches, that considers the task of sensitive rule hiding through modification of 

the original borders in the lattice of the frequent and the infrequent patterns in the dataset 

and exact approaches that contains non-heuristic algorithms which conceive the hiding 

process as a constraint satisfaction problem that they solve by using integer or linear 
programming. 

The concept of border is used in [ 15] by Sun and Yu. They used this concept to hide the 

sensitive itemsets so that the non sensitive itemsets can be minimally affected by the 

hiding process. By iterative revising the borders and calculating the affects on non-

sensitive items this algorithm succeed in maintaining the database free from any side 

effect by sensitive frequent itemset hiding process. 

In [ 16], two new algorithms which rely on the maxmin criterion for the hiding of 

sensitive itemsets in an association rule hiding framework. Both algorithms apply the 

idea of the maxmin criterion in order to minimize the impact of the hiding process to the 

revised positive border which is produced by removing the sensitive itemsets and their 

super itemsets from the lattice of frequent itemsets. This approach relies on the maxmin 

criterion which is a method in decision theory for maximizing the minimum gain. 

Finally, there is one more work on frequent itemset hiding based on borders. This 

technique uses integer programming approach [ 17] of operation research to solve the 

problem of effect of hiding process on the database. In the first step this technique 

introduces the concept of distance between two databases (taken as original and the 

sanitized one) and a measure to quantify it. After that using integer programming 

approach it tries to minimize the distance between the two databases after each step of 
itemset hiding. 

Border Theory 

This concept will be used to apply a basic border between the sensitive and non-sensitive 

frequent itemsets. The key idea is that the border of non-sensitive frequent itemsets is 

used to track the impact on the result database during the hiding process, and maintain the 
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quality of the result database by selecting the modification with minimal impact at each 

step. 

Itemset lattices: An itemset lattice contains all of the possible itemsets for a transaction 

database. Each itemset in the lattice points to all of its supersets. When represented 

graphically, an itemset lattice can help to understand the concepts behind the borders. 

The concept of border is initially introduced in [21] and it is well applied in the research 

of maintaining the frequent itemsets. For the completeness of the report, a brief review of 

the concept of border is given here. 

Consider a set of itemsets U, the upper border of U denoted as Bd }  (U), will be a subset 

of U with the following properties: 

1) Bd (U) is an antichain collection of sets. 

2) VX E U, there exist at least one itemset Y EBdt  (U) holding X SY. 

In mathematics, in the area of order theory, an antichain is a subset of a partially ordered 

set such that any two elements in the subset are incomparable. Let S be a partially ordered 

set. We say two elements a and b of a partially ordered set 
are comparable if a < b or b _< a. If two elements are not comparable, we say they are 

incomparable; that is, x and y are incomparable if neither x <y nor y < x. 

A chain in S is a subset C of S in which' 'each pair of ' elements is comparable; that 
is, C is totally ordered. An antichain in S is a subset A of S in which each pair of 

different elements is incomparable; that is, there is no order relation between any two 

different elements in A. 

Similarly, the negative border of U is denoted by Bd (U), has the properties as, 

1) Bd (U) is an antichain collection of sets. 

2) VX E U, there exists at least one itemset Y EBd (U) holding Y.- 

An itemset in the upper border or lower border is called a border element. For fig. 2.8 the 

positive and the negative borders will be given as, 
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Figure 2.6: Example Itemset Lattice 

Bd + (L) = {abd, acd, bcd, cde) 

Bc! (L) = {a, b, c, d, e} 

Border-based Approach of Hiding Frequent Itemset 
Consider D is our original database and D' is the sanitized version of the database i.e. the 

database in which all the sensitive itemsets are not a-frequent, where a is the minimum 

support of an itemset. Also, let L is the set of all a- frequent itemsets, AL is the set of all 

frequent itemsets which have to be hidden, L, is the set of all non-sensitive frequent 

itemsets and L' is the set of a-frequent itemsets in D'. 

The following are the considerations: 

1. Any a-frequent itemset does not belong to AL. 

2. The factor I L,. — L'I must be minimized. 

According to the Apriority property, concentrating on the border Bd (L,-) during the 

hiding process is effective in avoiding the over-hiding non-sensitive frequent itemset. Let 

us consider A(A) be the set of transactions that contain frequent itemset X. A set C of 

hiding candidates of itemset Xis defined as, 

C = {(T, x) I TEA(A) A x EX). 

Once a hiding candidate (To, xo) is deleted, i.e., xo is deleted from transaction To, the new 

set of C' hiding candidate is C — {(T, x) IT = To}. Each border element B in Bd is 
assigned a weight, showing its vulnerability of being affected by item deletion. The 
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weight of B is dynamically computed based on its current support during the hiding 

process. Whenever Supp(X) of a sensitive frequent itemset X is reduced, for each hiding 

candidate c, its impact on the border as the sum of weights of the borde 

r elements that will be affected by deleting c will be calculated. Each time the candidate 

item with a minimal impact on the border Bd is deleted until Supp(X) drops to a — 1. 

Weights are defined as shown below. Let D" be the database during the process of 
transformation and Supp" (B) be the support of B in D ". The weight of border element B 
is defined as: 

w(B) = (Supp(B)-Supp "(B)+1) / Supp(B)- a 	if Supp "(B) > = a+ 1 

= A + a- Supp(B) 	 if 0<=Supp "(B)<= a (12) 

The larger the weight of a border element B is having, the more vulnerable B is to further 

change, therefore, the lower priority of having B affected. For a border element B, when 

the current support of B, Supp" (B), is greater than the threshold a, w(B) is no more than 

1. When Supp" (B) equals to a, w(B) is assigned a large integer A, where oo > A> I Bd+l 

The intuition behind this is: if the border element B- is about to be infrequent, a large 

value is assigned to w(B), indicating low priority of being affected. If B is already 

overhidden (Supp" (B) <a), B should also be avoided for further change. In that case, 

w(B) is decided by X and the amount of Supp" (B) less than a. Also, if Supp" (B) > a+ 1, 

with the decrease of Supp" (B), w(B) increases under the rate of 1 / (Supp(B)-6). 

There is a term as affected border of X which is denoted as Bd } I X, and defined as the set 

of border elements of Bay'-, which may potentially be affected by hiding X Formally, 

Bd}Ix= {B; I BE Bd~ AB; n X= p/ 
	

(13) 

Clearly, for evaluating the impact of hiding X on Bt, only Bdt l x needs to be considered. 

For a hiding candidate u of sensitive frequent itemset X, a set Su of border elements that 

will be affected by deleting u (note that S,, is a subset of Bd~I X ) will be determined. The 

impact of deleting u on the border should be the sum of the weights of border elements in 
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S. Formally, let Bd ix  be (Bl, ... , B„) and a lexicographical order can be imposed 
among B1, ... , and B. Given a hiding candidate u of sensitive frequent itemset X, we 
have a relevance bit vector b1 b2...b„ such that b, = 1 if u is a hiding candidate of B;  (i.e., 
deleting u will decrease Supp(B,)), otherwise .b, = 0. The relevance bit vector of u shows 
which border element B;  will be affected if deleting u. In the running example, for 
sensitive itemset abd, Bd1 I abd = {ab, bd, acd, cde). The relevance bit vector of hiding 
candidate (Ti, a) and (13, b) are 1010 and 1100 respectively. 

Finally, the impact function is defined, which calculates the impact of deleting a hiding 
candidate on the elements of Bd lx. It is denoted as I(u), and defined as: 

I(u)=>b1  *w(B;) 	 W J 

The value of I (u) is the sum of the weights of border elements that will be affected by 
deleting u. 

In the border-based approach basically the hiding candidate is to be found out which put 

minimal impact on the non sensitive itemsets after its removal. Every time a hiding 

candidate itemset is selected, the hiding candidate set is to be updated along with the 

weights of the border elements. Also, after selecting the hiding candidate the database 
have to be updated. 

2.5 Research Gaps 

After detailed studies of various techniques research papers, the following research gaps 

are found: 

1. Most of the privacy preserving algorithms and ; techniques has been suggested by 

researchers are based on boolean databases. Working on Os and is is relatively simple 

and straightforward. The number of algorithms that are discussed for privacy 

preserving techniques on quantitative or the numerical database is relatively less. 

2. There are cases when a user wants to add some weights to items to prioritize the items. 

In fuzzy association rule mining field, it is found that there are very few algorithms 
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that find out weighted fuzzy itemsets. 

3. Some approach should be proposed to find out highly predictive fuzzy non-sensitive 

itemsets from quantitative database which can improve the performance of privacy 

preservation process. 

4. In the field of fuzzy data mining the research work done on privacy preservation is 

considerably less. In fuzzy association rule hiding, there is one research work by M. 

Kaya and T. Berberoglu [3] which hides sensitive fuzzy association rules using 

decreasing its confidence value. Further work needed to be done in this field, which 

minimizes the effect of data hiding on the database. 
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CHAPTER 3 

PROPOSED WORK 

In this chapter, the proposed algorithm has been discussed. The overall scheme of the 

work has been shown first. Each module has been described in detail. Here after we will 

use MF for membership function, ANN for artificial neural network and FWI for fuzzy 

weighted itemsets. 

3.1 Overview 

	

Test 	 Unseen 
Dataset 	Dataset 

Training 	Preprocessing 	Building 	Classification 	Fuzzification 
Dataset 	 ANN based 	Model 

Class Labels 	classifier J 	MF 

Fuzzified 
Dataset 

Hiding in the 	Impact Calculation  

	

order of minimal 	for each Sensitive and 	( Etrxacting Highly 	Frequent Fuzzy 
Highly Predictive 	Predictive Non- 	Weighted Itemset 

	

LmPactitemsetsJ
s 	Nonsensitive FWI 	Sensitive FWI 	 Mining 

Border-Based Approach 
_ _ _ _ _J 	Minimum Support Weights 

Sanitized Sensitive Itemsets 
Dataset 

Figure 3.1: Overview of the Work 

The above figure shows an overview of the whole work. In the preprocessing step, we 

have used a modified version of fuzzy c-mean clustering, which is used to obtain the 

class labels. Using these class labels, and the test set an ANN classifier has been built. 

This classifier is used to classify the unseen dataset into number of classes. It gives the 
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membership values of different data points into these classes. Mapping these membership 

values onto the used activation function, we will obtain the membership function. This 

membership function has been used in fuzzification process which will provide us the 

membership values of different attributes in the fuzzy classes. Thus, a fuzzified database 
will be obtained. 

A frequent fuzzy weighted itemset mining process has been proposed, which gives 

frequent fuzzy weighted itemsets of the fuzzified database. After that, using sensitive 

fuzzy weighted itemsets, we find out highly predictive non-sensitive fuzzy weighted 

itemsets. Applying border-based approach on these itemsets, we will obtain a well 

maintained sanitized database, which does not contain any sensitive fuzzy weighted 

itemsets and highly predictive non-sensitive fuzzy weighted itemsets. All these modules 

will be described in detail in the following sub-chapters. 

3.2 Preprocessing 

Conceptually, an artificial neural network is used to obtain the membership values. But 

since in real life applications the initial knowledge of classes is not defined so we used 

clustering as a preprocessing step in this work. The basic concept and algorithm of fuzzy 

c-mean clustering is discussed in previous chapter. In the preprocessing module, a 

modified fuzzy c-means clustering is being used. The algorithm is composed of the 

following steps: 

Step 1: Initialize U = [u0 j matrix, U (0)  

Step 2: At k-step: calculate the centers vectors C (k)  = [c j] with U (k)  



Step 3: Update U (kj, U 
k 	 1  

u;  = 1 	for max 	 2  

c  Ik — ca I1  *-1  
f' 11xi -Ck11 

0 	otherwise 

Step 4: If U ( k+' )  — U (k)  < <` then STOP; otherwise return to step 2. 

Figure 3.2: Modified Fuzzy C-Mean Clustering 

In Step 3, the matrix entry will get a 1 for the minimum distance of a data item from the 

cluster center. Since in this work these clusters have been used for classification this 

perfect classification will give better results. 

3.3 Classification and Fuzzification 

After get trained and tested from the training dataset and test dataset the neural network is 

ready to get the membership values of various data points on the number of classes. The 

sum of the membership of the unseen data points on these classes will be equal to 1. As 

discussed in the previous chapter, a sigmoid activation function is used to get the 

membership in the fuzzy sets. When this membership function is drawn, there will be 

different curve for each class. These curves will be in form of sigmoid function (as shown 

in results). Using this graph, the membership association of various attributes is found 

out. This process is called the fuzzification process. These membership associations will 

result in the fuzzified database. 

3.4 FWI Mining 

By applying weights, a user can add some importance to the items. The application of 

weights on itemsets can include the process of privacy preservation in which the user can 

apply comparably less weights to his sensitive itemsets. Another application can be 

described by an example. In a grocery shop the shopkeeper is used to mine the 
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transactional database to find the interesting associations among items so that he can use 

this knowledge for product placement, increasing sales and promotions etc. For profit 

purpose he can require the information about the items which are associated with costly 

items. He can do this by applying more weightage to all the costly items. In the proposed 

work we have been taken the case of applying more weight to items. 

The proposed weighted fuzzy mining algorithm first transforms each quantitative value 

into a fuzzy set with linguistic terms using membership functions. The algorithm then 

calculates the scalar cardinality of each linguistic term on all the transaction data with 

weights. In this section, the weighing concept is used in the Fuzzy Apriory data-mining 

algorithm to discover priority based fuzzy association rules from quantitative values. 

Consider n be the total number of transaction data and m be the number of attributes. a is 

the predefined minimum support and . is the predefined minimum confidence value and 

g is the number of fuzzy region. The set of candidate itemsets with r attributes is denoted 

as Cr, the set of large itemsets with r attributes is denoted as L,. and W,,,*g  is the weights 

provided by the user. The proposed weighted fuzzy mining algorithm first transforms 

each quantitative value into a fuzzy set with linguistic terms using membership functions. 

The algorithm then calculates the scalar cardinality of each linguistic term on all the 

transaction data. The main concept here is the calculation of the support count. In general 

support is just the addition of the membership values of the attributes. In weighted fuzzy 

mining algorithm the weights provided by the user is used to calculate the support count. 

The Weighted Fuzzy Frequent Itemset Mining Algorithm: 
INPUT: A set of n transaction data, each with m attribute values, a set of membership 

functions, a predefined minimum support value, a predefined confidence value, and a 2-

dimensional matrix of weights. 

OUTPUT: A set of fuzzy association rules. 

STEP 1: For each transaction data D('}, i = 1 to n, and for each attribute A. j = 1 to m, 
transfer the quantitative value v3(̀)  into a fuzzy set j(')  using the given 

membership functions.  
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STEP 2: For each attribute region Rik, calculate its scalar cardinality on the transactions: 
COUntjk = (Jfkt ) * W k 	 (15) 

where fk' is the membership value of v.(̀) in Region Rik, 
STEP 3: For each Rik , 1 <=1  < = m and 1 <== k <= A11, check whether its countJk is 

larger than or equal to the predefined minimum support value a. If Rik satisfies 
the above condition, put it in the set of large 1-itemsets (L,). 

STEP 4: Set r = 1, where r is used to represent the number of items kept in the current 
large itemsets. 

STEP 5: Generate the candidate set C,+1 from L, in .a way similar to that in the apriori 
algorithm except that two regions belonging to the same attribute cannot 

simultaneously exist in an itemset in Cr,,. Restated, the algorithm first joins Lr 
and Lr under the condition that r-1 items in the two itemsets are the same and 
the other one is different. It then keeps in C,.+l the itemsets which have all their 
sub-itemsets of r items existing in L, and do not have two items R;p and R;9 
where p ~ q.  

STEP 6: For each newly formed (r+l)-itemset s with items (sj, s2, ... , s, +r) in C,.+1 do the 
following sub-steps: 

a) For each transaction data D('), calculate its fuzzy value on s as, f (') = fs1~ )̀ n 

fs2(̀0... fl fs,.+i(̀ ) where fsf ) is the membership value of D(' in region s1. If the 

minimum operator is used for the intersection, then f (`) will contain the 

minimum value from the row multiplied by the respective weights for each f ('). 
b) Calculate the scalar cardinality of s on the transactions as: 

counts = I f i' ) * Max(WsS for i = I to n and j = 1 to r+1 	 (16) 

c) If counts, is larger than or equal to the predefined minimum support value a, put 
s in Lp+i. 

STEP 7: If L,.+j = null, then go to the next step; otherwise, Output all the frequent 
itemsets in L,.+I, set r = r + 1 and repeat STEPS 5-7. 

STEP 8: End 

We have taken the maximum value of the weight among all the weights of items in an 

itemset to show the maximum impact of weights. 
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3.5 Identifying Highly Predictive Non-Sensitive FWIs 

The inference of sensitive fields with the use of correlations is undesirable from a privacy 

preservation perspective. Therefore, in order to prevent such inference, it may be 

desirable to also hide some of the non-sensitive entries. The corresponding tradeoff here 

is that unnecessary hiding of entries loses information for the purpose of data analysis 

applications. Therefore, it is important to hide a minimal set of entries (i.e. a set of 

minimum size) in order to prevent such privacy violations. We use the term Inauspicious 

for these types of itemsets. Inauspicious or Adversarial itemsets are those itemsets, which 

are itself non-sensitive, but having a strong predictive power so that the values of the 

hidden sensitive itemsets can be extracted. The basic Framework presented in [22] is 

extended for the fuzzy databases. 

In many real world scenarios, there are some entries in the databases which user want to 

be hidden. By removing the entry value from table we can say that the private 

information of user is preserved from data mining results. But it may happen that there 

are some other frequent itemsets that have a strong predictive power to predict the 

sensitive value. In this case there is no sense to remove the sensitive entry from its place. 

Thus, there is a need to extract these itemsets and an effective data hiding technique is 

also applied on these non-sensitive itemsets in combination of sensitive itemsets. 

In this propose work, different constraints are defined for fuzzy itemsets to be 

inauspicious. And then along with the sensitive itemsets these non-sensitive itemsets are 

combined and border-based approach for frequent fuzzy itemset hiding is applied. In this 

sub-chapter the constraints for checking a frequent fuzzy itemset to be inauspicious will 

be given. 

In classical boolean databases, the rules are of the form, A->x, where A is an attribute and 

x is an entry. In fuzzy databases, rules are of the form, A->Ao. In boolean databases, if an 

entry x is sensitive in the database then it reflect to only one place of the database i.e. (Tx, 

A) where TX  is the tuple containing x and A is the attribute type of x. Thus the private 

dataset given by user will be the set of these types of entries. 
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However, in fuzzy database, one entry x of the quantitative database reflects R places on 
the tuple of x, where R is the fuzzy regions. The reason behind this is, in fuzzy database 
one entry is shown by R region. All R regions contain some membership of x. So, to 

remove the entry from database, we have to remove all the entries of R regions 
corresponding to the tuple T. 

One scheme to show the sensitive quantitative entry in the fuzzified database is to remove 
all the entries of R regions corresponding to the tuple T. But this technique can result in 
over-hiding of fuzzy items, since the membership of an entry is not same in all regions. 

So, the proposed solution is to take the region with highest count among all the regions of 
the attribute. 

To understanding the concept, let the sensitive entries are replaced by a fake character 

`#' temporarily. Corresponding to the constraints defined for the boolean items, the 

following constraints are defined for the fuzzy items. The fuzzy tables before and after 

introducing the fake character `#' (bold items are the terms containing sensitive values), 

AO Al A2 BO B1 B2 CO Cl C2 DO D1 D2 

Ti 0.11 0.33 0.66 0.77 0.11 0.22 0.33 0.33 0.44 0.11 0.55 0.44 
T2 0.33 0.44 0.33 0.66 0.11 0.33 0.44 0.66 0.00 0.44 0.55 0.11 

T3 0.33 0.11 0.66 0.55 0.33 0.22 0.22 0.55 0.33 0.77 0.00 0.33 

T4 0.88 0.11 0.11 0.11 0.44 0.55 0.77 0.11 0.22 0.33 0.77 0.00 

T5 0.33 0.33 0.44 0.33 0.66 0.11 0.22 0.33 0.55 0.22 0.22 0.66 

Table 3.1: Fuzzified Quantitative Database 

AO Al A2 BO B1 B2 CO C1 C2 DO D1 D2 

Ti 0.11 0.33 0.66 # 0.11 0.22 0..33 0.33 0.44 0.11 0.55 0.44 
T2 0.33 0.44 0.33 0.66 0.11 0.33 0.44 # 0.00 0.44 0.55 0.11 
T3 0.33 0.11 0.66 0.55 0.33 0.22 0.22 0.55 0.33 0.77 0.00 0.33 
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T4 0.88 0.11 0.11 0.11 0.44 # 0.77 0.11 0.22 0.33 0.77 0.00 

T5 0.33 0.33 0.44 0.33 0.66 0.11 0.22T0.33 0.55 0.22 0.22 # 

Table 3.2: Fuzzified Quantitative Temporary Database 

Initially a subset of the original database for an itemset, which can be reflected by it, is 

defined as, 

Projected Database: Let X be a fuzzy itemset, T be a fuzzified table, and P be a directly 

private set. For a tuple t in T, if X publicly appears in t, then the projection of t with 

respect to X, denoted by (t~, X), is the set of entries in t that are not matched by X. If X 

does not publicly appear in t, then (tj, X) = null. The projected database with respect to X 

is the set of nonempty projections with respect to X in T. 

Privacy-Free Fuzzy Itemsets: A fuzzy itemset is privacy free if its projected database , 

for all t does not contain any fuzzy region of the directly private entry at all. We can 

check it by first finding the projected database of the itemset. If it does not contain at 

least one `#', then it will be called as a privacy-free fuzzy itemset. 

Non-Discriminative Fuzzy Itemsets: A fuzzy itemset X is non-discriminative if every 

tuple in the projected database of X contains directly private entries in the same region of 

attribute(s). We can check it by checking for `#' in the entire initial fuzzy region of an 

attribute for all tuples. If the initial fuzzy region is having `#' then there is no need to 

check the other fuzzy regions for that attribute. 

Contrast Fuzzy Itemsets: A fuzzy itemset X is said to be a contrast itemset if for any 

entry y belongs to P such that X -> ym , where ym = max(y) for i = 1,2,3,..., R, appears in 

some tuples in T; all the three rule have a public confidence of 0. 

Discriminative Itemsets: An itemset Xis discriminative, if X is the antecedent of some 

inauspicious rules. This can be determined by checking the projected database of X. 

Technically, if there is a value y such that X -> Y„,, where y,,, = max(y,) for i = 1,2,3,..., R 
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has public and hidden confidence of at least 6 with respect to the projected database of X, 

then X is discriminative. From hidden confidence is the confidence of the rule P where P 

is the rule used to predict the value yR. Here yR is a fuzzy value for region R for item y. 

3.6 Border-Based Approach for Hiding Sensitive FWTs 

Border theory is very useful in determining the effect of hiding the sensitive itemsets on 

the non-sensitive itemsets. Thus, helps in maintaining the quality of the sanitized 

database. In this proposed work, the basic border-based approach which was applicable 

on the boolean databases is extended to the border-based approach which will be 

applicable for the fuzzy databases. Using this approach, one can hide sensitive fuzzy 

itemset while maintaining the quality of the database. A new heuristic is also proposed 

for candidate generation algorithm for fuzzy items. 

The fuzzy terminology is used is same as described in section 2.3. In addition, consider r 

is the number of fuzzy regions. A transaction T is a pair (T;d, X) where T d  is a unique 

identifier of a transaction and X is an itemset. Given a fuzzy database D, the support of an 

itemset X, denoted as Supp(X) is the count of each attribute region. 6 is the minimum 

support threshold. An itemset X is called an Q frequent itemset if Supp(X) > = 6. 

Suppose, L be the complete set of 6-frequent itemsets in D and AL be the set of sensitive 

itemset that needed to be hidden. D' is our sanitized database in which any X that belongs 

to AL is not a c-frequent itemset. Also, Let L' is the set of 6-frequent itemsets in D' and 

Lr  is the set of all non-sensitive frequent itemsets. Our main aim is to try to minimize Lr  

L'J. 

The key idea is to use the borders of non-sensitive itemsets to track the impact on the 

sanitized database during the hiding process and maintain its quality by selecting the 

modifications with minimal impact at each step. The concept of borders has been 

described in the last chapter (section 2.5). Let us consider there are four attributes as A, B, 
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AoBoDi 	A2C2D1 	A2B1Do 

AoBo  A2C2  A2B1  BoDI  B1 Do  C2D1  

A B B C D D 

Figure 3.3: Frequent Fuzzy Itemset Lattice 

C and D in our database with three fuzzy sets. Thus, after fuzzification the attributes in 

the database will be A0, Al, A2, Bo, Bj, B2 and so on. The following fig is showing the 
lattice of frequent fuzzy itemsets. 

In this lattice, we can see that the fuzzy items from different region but same attribute can 

never present together. This is a fuzzy concept because after the fuzzification process 

each attribute gets divided into fuzzy fields. Thus, in a rule one attribute can imply one 

fuzzy field. 

The negative border of the sensitive frequent itemset will be denoted as if and positive 

border of non-sensitive itemsets will be denoted as B+  and these two borders have been 

taken into consideration. For each itemset X in B+, there will be a set of hiding candidate 

C, which is a set of all the transactions that contain X. 

In the previous work, since the itemset are defined by either 0 or 1, the hiding candidate 

set can be a subset of the transaction database by the number of rows but in fuzzy 

database each fuzzy attribute is having some membership in each transaction, so here C 

will not have the number of rows less than the number of transactions in the database. 

The proposed work will suggest a factor, which decides the selection of transactions from 

this hiding candidate set. 
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The weight calculations will the same process as suggested for the boolean dataset. For 

revision purpose, the weight is calculated to prioritize the itemsets in B+  from being •  

affected by itemset deletion. Also, the definition of affected border of itemset X and the 

relevance bit vector will be the same (described in section 2.5). 

The main approach is, for each element in if , the affected itemset of B}  and weights are 

found out. Then, a candidate is selected for deletion and the item which puts minimal 

impact will be deleted. In each iteration, C, weights and the database also updated. The 

proposed algorithm is shown in the given fig. 

Input: A database D, the set L of a-frequent itemset in D and the set of sensitive 
itemsets L' 

Output: D' with the maintained quality 
Method: 

Compute Bd-  and Bd+; 
Sort itemsets in Bd-  in descending order of length and ascending order of 
support; 
for each X in Bd do 

Compute Bd+ I x and w (B) where B. in Bd+ I x; 

Initialize C (C is the set of hiding candidates of X); 
for(i = 0; i < Supp(X) — a; i++) do 

Sort the candidate set, according to the decreasing order of fuzzy 
membership values for x;  
Find u, = (T;, x) from the sorted C such that I (u) = Min (I (u) u in C); 
Update C = C — {(T, x) IT= T,}; 
Update w (B) where B. in Bd+ Ix; 

Update database D; 
Output D' = D; 

Figure 3.4: Border-based Approach for Hiding Sensitive Fuzzy Weighted Itemsets 

The candidate selection step gives the core of the border-based approach, which is to 

efficiently find the hiding candidate with minimal impact on border. The proposed 
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approach finds u, in an efficient manner for fuzzy itemsets. The justification is given 

below. 

In boolean databases, we calculate support by the ratio of itemset count and the number 

of total transactions. We can conclude from this that, since all the counted itemset are 

having a "1" on the place it is present; it gives its 100% membership for the support 

count Thus the support-deciding-factor is 1 for all elements. However, this is not the case 

with fuzzy items. In fuzzy databases, the support-deciding-factor is different due to 

membership of the itemsets so in the candidate selection step we have taken the greatest 

value so that we can distinguish the candidates which affect the selection most. 
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CHAPTER 4 

SYSTEM DESIGN AND IMPLEMENTATION 

A complete description of the system design and implementation has been given in this 

chapter. First of all, the used database has been described followed by a brief description 

of the used platform. All the basic modules and the procedures used in the coding have 

also been described. 

4.1 Database Used 

There are a large number of algorithms that are implemented on the Boolean database. 

The basic concept of algorithms for quantitative databases works in different manner. 

The database used in this dissertation work is of quantitative type. 

The breast cancer is one of the most common tumor related disease among women in 

Korea and throughout the world. We have used well known WBCD which is provided by 

the University of Wiscosin Hospitals based on microscopic examination of breast masses 

with fine needle aspirate tests. It is the breast cancer databases was obtained from the 

University of Wisconsin Hospitals, Madison from Dr. William H. Wolberg. The database 

is denoted on 15th  July, 1992 to the UCI Machine Learning Repository. 

Basic Details: 

• Title: Wisconsin Breast Cancer Database (January 8, 1991) 

• Sources: 
Dr. WIlliam H. Wolberg (physician) 

University of Wisconsin Hospitals 

Madison, Wisconsin 

• Number of Instances: 699 

• Number of Attributes: 10 plus the class attribute 
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Attribute Information: 

Attributes Domain 

1.  Sample Code number Patient ID number 

2.  Clump Thickness 1-10 

3.  Uniformity of Cell Size 1-10 

4.  Uniformity of Cell Shape 1-10 

5.  Marginal Adhesion 1-10 

6.  Single Epithelial Cell Size 1-10 

7.  Bare Nuclei 1-10 

8.  Bland Chromatin 1-10 

9.  Normal Nucleoli 1-10 

10.  Mitoses 1-10 

11.  Class of Tumor 
2 for benign 

4 for malignant 

Table 4.1: Database Details 

4.2 Code Platform 	. 

For coding and testing purposes, two most suitable platforms have been chosen. These 

two platforms are JAVA and MATLAB. Java is used for the basic implementation while 

Matlab is used to generate the fuzzy membership values. A brief description about each 

platform will be given below. NetBeans IDE 6.5.0 is used for using JAVA. Netbeans 

provide application programming interface for java. 

JAVA: Object-orientation is the core of Java. The features of Java make it the most 

suitable platform for this work. Inheritance and Abstraction is the main feature of object 

orientation which is used in Java during implementation. Classes like Itemset defines the 

basic functionality in a program while hiding its implementation details. Some of classes 

are derived from the super class to add new functionalities to the class. Like Apriori is 

written in a class and then its main features is used in another class called Fuzzy-Apriori 

to add the new features of fuzzy concept. 
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Large databases are normally stored in separate spreadsheet like MS Excel or MS Access. 

Java provides easy connectivity using JDBC database connectivity. Only few lines of 

codes have to be written to access the database. 

Java Swing has been used for designing GUI. It provides a lot of classes and interfaces 

using which an attractive and user friendly GUI can be designed. 

MATLAB: MATLAB (MATrix LABoratory) is popular for its large repository of inbuilt 

functions. Very large programs get converge to a few lines of code using Matlab 

functions. MATLAB allows easy matrix manipulation, plotting of functions and data, 

implementation of algorithms, creation of user interfaces, and interfacing with programs 

in other languages. 

In this implementation, Fuzzy Toolbox and Neural Network Toolbox are used to get the 

membership from the database. These inbuilt functional toolboxes help in the process 

simulation and analysis. Also to draw.  the membership function a toolbox named as 

Membership Function Editor is used. 

4.3 Modules and Procedures 

In this work, a complete fuzzy system is designed which, as an input takes a quantitative 

database, the sensitive itemsets, minimum support and weights and provide a well 

maintained sanitized database which is free from all the sensitive itemsets and highly 

predictive non-sensitive itemsets. This section describes each module and the classes and 

functions used to implement these modules. 	. 

Clustering: 
Clustering is used to classify the data objects into classes or clusters. These clusters will 

be used by artificial neural network for classification.. The dataset we have used is having 

10 attributes. The number of the class in which the dataset is to be classified is two. 

Fuzzy C-means clustering is used here to get classes. 
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A function FCM.m is used to get the clusters, prototype of the function is as follows: 

[CENTER, U, OBJ_FCN] = FCM (DATA, N_CLUSTER) 

finds N_CLUSTER number of clusters in the data set DATA. DATA is size M-by-N, 

where M is the number of data points and N is the number of coordinates for each data 

point. The coordinates for each cluster center are returned in the rows of the matrix 

CENTER. The membership function matrix U contains the grade of membership of each 

DATA point in each cluster. The values 0 and I indicate no membership and full 

membership respectively. Grades between 0 and 1 indicate that the data point has partial 

membership in a cluster. At each iteration, an objective function is minimized to find the 

best location for the clusters and its values are returned in OBJ FCN. 

Classification: 
Classification process is done by using artificial neural network. Feed forward multilayer 

neural network can be used to generate the membership functions from the labeled data. 

As given in [technique MF], the output values of a sigmoid activation function of a 

neuron are quite similar to the membership values. A sigmoid function is given as, 

f(t)= 1 /(1 +e-) 
	

(17) 

The number of neurons in the input layer is set to the number of features or attributes and 

the number of neurons in the output layer is set to the number of classes we want to 

classify the data points. 

In order to generate the class membership values, the multilayered network must be 

trained using a suitable algorithm. I have used the Feed forward backpropogation 

algorithm to train the network. This algorithm not only sends the output of one layer to 

the input of next layer, but also refines the network by reducing the learning errors in 

each iteration. 

The following figure shows the basic design Of the neural network used in this work. The 

sigmoid activation function is used in each neuron, since as pointed out earlier, sigmoid 
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activation function gives values similar to membership function. 10 neurons are used in 

first layer and 2 neurons in the last layer since we require 10 attributes in the input data 

10 neui 

Figure 4.1: Multilayer Feed-forward Neural Network 

and 2 classes. There were 16 instances in the database with missing value. These tuples 

are removed to construct a new dataset with 683 instances. The first 400 instances in the 

new dataset are chosen as the training set and the remaining 283 as the test set. The 

maximum number of epochs is set to 500 and the learning rate is set to 0.03. 

After getting membership values for each class, the membership function for each class is 

defined. There are several types of membership functions such as triangular, trapezoidal, 

and Gaussian, to name a few. The triangular membership function is used in this work. 

NNTOOL of MATLAB is used to design the desired neural network. 

Fuzzification: 
Artificial Neural Network gives the membership values of each data point for each class. 

For the fuzzification of the database it is needed to draw the membership function. Since 

the sigmoid activation function is used to get the membership values the membership 

function we get, should be in the form of sigmoid function. We will get fuzzy regions in 

the form of sigmoid function for each class. 



In the fuzzification process, the quantitative data values of the database for each item is 

entered into a fuzzy set represented as, (/5' / Rol, 12 / Rf2,... , f j / R31) by using the given 
membership function for the item quantities, where I is the number of fuzzy regions. 

A class is written in JAVA named as fuzzification Java. Function establishes JDBC 

connectivity from the database (MS Access). It contains the following functions: 

Dataptdistance(int [] datapoint) : calculates the distance of the membership value from 

the centroids of two classes. 

Fuzzy Frequent Weighted Itemset Mining: 

This is one of the proposed works. This process gives frequent weighted itemsets using 

the proposed algorithm. Inputs are two files, one for the input transactions and another for 

the weights which is to be applied to the items. Minimum support and confidence 

thresholds are also taken from the user. 

A class is written in java named as Apriori Java which is used to find out number of 

frequent itemset in boolean databases. A second class is derived from it named as 

FuzzApriori.java. Using inheritance a large amount of duplicacy is removed. Itemset.java 

is a class which is used to show an itemset and all the functions defined on it. 

The main functions used in these classes are namely: 

countSinglesO: count the number of the single itemsets. 

orderArrayO: order the items in the itemset. 

combinations (Itemset itemset): returns all the combinations of a set except null. 

resizedata (Itemset[][] itemset): resizes the 2D array of itemsets by deleting the itemsets 

having support lower than minimum threshold. 

Fregltemset (Itemset[][] itemset): returns all the frequent itemsets. 

combine (Itemset [] [] itemset): combine two large itemsets to get candidate itemsets. 

largeltemset (Itemset [] [] itemset): returns all itemsets having support greater than 

minimum support threshold. 
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pruneitems(Itemset itemset): delete all items having lower support than the minimum 

support threshold. 

chkRegions(Itemset itemset): checks whether two fuzzy candidate itemsets are belonging 

to same attribute or not. 

support(Itemset itemset): calculates support of the itemset: 

Highly Predictive Non-Sensitive Itemsets Extraction: 
This module use to find out the inauspicious itemsets that are having a strong predictive 

power. Using three constraints, as given in the proposed work, an itemset is checked for 

being an inauspicious itemset. Adversarial Java is the class name used to implement. 

The main functions used in this class are: 

fuzzconfidence(Itemset itemset, Double val, String attr): calculate confidence. 

projectDB(Itemset itemset, String tuple): returns the projected database for tuple tuple. 

PDB X(Itemset itemset): returns the projected database for itemset itemset. 

checkPFree(Itemset itemset, String tuple, Itemset PrivateSet): checks for privacy free. 

chknonDisc(Itemset itemset, Itemset PrivateSet): checks for non-discriminative. 

chk Contrast(Itemset itemset, Itemset PrivateSet): check for contrast. 

chkDiscriminative(Itemset itemset, Itemset PrivateSet, Double delta): check for 

discriminative with respect to hidden confidence delta. 

Border-Based Approach for Hiding Frequent Fuzzy Weighted Itemsets: 
This is also one of the proposed works. This process takes the sensitive fuzzy weighted 

itemsets as well as the inauspicious non-sensitive fuzzy weighted itemsets and hides the 

sensitive fuzzy weighted itemsets in such a way that the quality of sanitized database is 

maintained. Border Java is the class used for it. 

The main functions used in this class are: 

PostiveBorder(): calculates the positive border of an itemset. 

NegativeBorderO:calculates the negative border of an itemset. 

HidingCandidateO: returns all the transactions selected to for hiding. 
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AffectedBorder Candidate(Itemset itemset): returns all the itemsets of positive borders 

that are affected by itemset. 

RelevenceBitVector(Itemset itemset, char c): returns the relevance bit vector for itemset. 

Impact( int[] RelBit Vector, Double [] weights): calculates the impact. 

Weights(): calculates weight. 

In addition to these functions other utility functions are also present like 

combination(Itemset itemset) which is used to find all the combinations of an itemset, 

Support(Itemset itemset) which is used to find out the support of an itemset, 

StrtoArr(String str) and ArrtoStr(Char[] str) used to convert character array to String and 

vice-versa. 
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CHAPTER 5 

RESULTS AND ANALYSIS 

Various experiments have been conducted on the proposed work using a real life dataset. 

Results obtained are shown in this chapter to show the effectiveness of the work. A brief 

analysis of these results has also been performed and discussed. We have taken minimum 

support as 0.2. 

5.1 Results 

1. Membership function 
After getting class labels using clustering and building the artificial neural network, the 

membership values of different data points is mapped graphically. Since sigmoid function 

is used as activation function, the resultant membership functions obtained for the two 

classes are the two sigmoid curves. The membership function for one of the two classes is 

shown in fig. 5.1. mfl is showing the membership function for class 1. For class 2 

function curve obtain is complementary to the function curve of class 1. 

I 

I.  

Quantitative Values 
Figure 5.1: Membership Function obtained for Class I 

2. Frequent Fuzzy Weighted Itemset Mining (FFWIM) 

Various experiments were conducted to test the performance of the proposed algorithm. 

We have taken popular breast cancer database from UCI data repository. The unseen 
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Figure 5.2: Effect of Support on Number of Frequent Weighted Itemsets 

dataset contained 450 records. All the values are of quantitative type. Fig. 5.2 shows the 

effect of the minimum support threshold over the number of frequent patterns. 

Weight applied to an item shows its importance to the user. An infrequent itemset will 

become frequent if extra weight is applied to it. Since support count is a major metric to 

quantify the importance of an itemset, the weights applied affect the support count of an 

itemset. A relative comparison has been shown in fig 5.3. Graph shows the affect of 

support count on the number of frequent itemsets in the frequent fuzzy weighted itemset 
mining and frequent fuzzy itemset mining. 
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Figure 5.3: Comparison between FFIM and FFWIM 
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3. Highly Predictive Non-Sensitive Itemsets Extraction 
Graph in fig. 5.4 shows the affect of the support and the number sensitive entries to the 

number of highly predictive non-sensitive itemsets. 

4. Border-Based Approach for Hiding Frequent Sensitive Fuzzy Weighted Itemsets 
In fig.. 5.5 we have shown the comparison between the proposed border-based approach 

for data hiding and the previous data hiding approach [3]. To measure the effectiveness, 
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Figure 5.5: Effect of Average Support Difference on Quality Factor 
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we. have compared the set of non-sensitive frequent itemset Lr with the set L' of frequent 
itemsets in D'. The quality Q of the result dataset D' could be measured as: Q = IL'1/1Lr ~. 

A new term, average support difference introduced in [191 is taken as a factor to compare 

the results. The average support difference considers the support counts for negative 

border of the sensitive frequent itemsets. It is defined as, avg_suppdiff = Y, (Supp (X,)-a) / 
IB- j for all X belongs to if and or is the support count. 

5.2 Analysis 

We have proposed a frequent fuzzy weighted itemset mining algorithm on quantitative 

-database. Since, the work is a modification in the basic algorithm there will not be any 

change in the performance parameter. However, comparing these two algorithms it can 

be observed that the memory usage and execution time of the proposed algorithm 

exceeds that of the basic algorithm by a small factor as shown in fig 5.6. 

Fig. 5.4 shows the effect of increasing support count and the number of fuzzy weighted 

sensitive entries on the number of highly predictive fuzzy weighted non-sensitive 

itemsets. The number of frequent patterns will decrease as the support count increases. 

Also we can analyze from the graph that the number of highly predictive non-sensitive 

itemsets decreases according to the decrement of sensitive entries. 
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In the border-based approach, to measure the effectiveness of the approach, it is natural to 

compare the set of non-sensitive frequent itemset Lr  with the set L' of frequent itemsets in 

D'. As this approach does not introduce new frequent itemsets in D', the quality Q of the 

result dataset D' could be measured as: Q = IL'I / IL,.I. At any instant, the average support 

difference will be given by, avg_suppdiff = E ((supp(X)-o) / I B- I where X belongs to if 

and Q is the support count [ 15]. Here we have only considered the itemsets in if since it 

shows all the sensitive itemsets on the negative border. 
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In the border-based approach, to measure the effectiveness of the approach, it is natural to 

compare the set of non-sensitive frequent itemset L,. with the set L' of frequent itemsets in 
D'. As this approach does not introduce new frequent itemsets in D', the quality Q of the 
result dataset D' could be measured as: Q = IL'I / L,.l. At any instant, the average support 
difference will be given by, avg_suppdiff = Y. ((supp(X)-6) / 1.81 where X belongs to B-
and o is the support count [15]. Here we have only considered the itemsets in if since it 
shows all the sensitive itemsets on the negative border. 
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CHAPTER 6 

CONCLUSION AND FUTURE WORK 

In this chapter, the work is concluded. Some future works are also suggested so that some 

more research works can be initiated in the field of privacy preserving fuzzy itemset 

mining. 

6.1 Conclusion 

A generalized framework has been proposed for hiding fuzzy sensitive weighted itemsets 

in quantitative databases. Proposed works shows the affect of prioritized itemsets on the 

process of mining frequent fuzzy weighted itemsets. In order to be able to use frequent 

itemsets in practical applications, like targeted marketing or customer retention, one must 

be able to prioritize between various frequent itemsets mined with respect to the 

magnitude of the effect they produce on the outcome. 

There are cases where some non-sensitive itemsets can be used to predict to sensitive 

entries. In the proposed work we have consider these types of non-sensitive fuzzy 

itemsets to improve the accuracy of privacy preservation. 

In order to hide sensitive fuzzy itemsets, a border-based approach is proposed. Using 

borders, the quality of the sanitized databases can be preserved from the itemset hiding 

process. The contribution of this work includes the minimization of the side effect on the 

sanitized databases. 

A number of experiments have be en conducted to evaluate the effectiveness of the 

.proposed algorithms. A real life case data has been taken to conduct experiments. 

Respective results have been shown for quantitative dataset. 



6.2 Future Work 

To obtain class labels for the classifiers, we have used Fuzzy C-Means clustering. While 

other techniques like K-Means Clustering can also be used. Choice of this clustering 

algorithm should be done on the basis of low learning error of classifier. 

We have used artificial neural network as classifier. Other techniques can also be used to 

explore the area of automated generation of membership functions. 

Proposed work used a static approach of applying weights. However, other approaches 

can also be explored to generate weights dynamically. 
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APPENDIX: SOURC CODE LISTING 

1. Fuzzy Weighted Itemset Mining (FWI Mining) 
1. Counting the number of single itemsets 

protected int[] [1 countsinglesO 
{ 

int [ ] [ ] countArray = new int [numCol s+ l ] [2];  
for (int index=0 ; index<countArray.length ; index++) 
{ 

countArray [index] [ 0 ] = index; 
countArray [index] [ 1 ] = 0; 

for(int rowIndex=0 ; rowIndex<dataArray.length ;.rowIndex++) 
{ 
if (dataArray[rowIndex] != null) 
{ 
for (int collndex=0;colIndex<dataArray[rowIndex].length; 

colIndex++) 
countArray (dataArray [rowIndex] [collndex] ] [1] ++; 

return(countArray); 
} 

2. Order items in itemsets according to their support count 

private void orderCountArray(int[] [1 countArray) 
{ 
int attribute, quantity; 
boolean isOrdered; 
int index; 

do 
{ 
isOrdered = true; 
index 	= 1; 
while (index < (countArray.length-1)) 
{ 
if (countArray [index ] El]  >= countArray [index+ l ] [ 1 ] ) 
index++; 

else 
{ 

isOrdered = false; 
attribute = countArray[index][0]; 
quantity = countArray[index][1]; 
countArray [index] [0] 	= countArray [index+l] [0] ; 
countArray [index] [1] 	= countArray [index+l] [1] ; 
countArray [index+l] [0] = attribute; 
countArray [index+l] [1] = quantity; 
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index++; 
} 

} 
} 
while (isOrdered==false); 

3. Combinations of items in itemsets 

String[] combinations(Itemset itemset) 

int n; 
int [] x =' new int [20] 
int len = itemset.length; 
int com = (int)Math.pow(2,len); 
NumComb = com; 
String [] [] combi = new String [com-1] [len] 
char [] [] ex = new char [com-1] [len] 

for(int j = 0 ; j < com-1 ; j++) 
{ 
n = j+l; 
for(int i = 0 ; i<len ; i++) 
{ 
x[i] = n 	2; 
ex[j] [i] = Integer.toString(x[i]) .charAt(0) 
n = n / 2; 

} 
} 
int r=0; 
for(int i=0;i<com-l;i++) 
{ 
r=0; 
for(int j=0;j<len;j++) 
if (ex [i] [j]=='i') 
{ 

combi [i] [r] =s [j ] ; 
r++; 

} 
} 
String [] C = new String[com-1] ; 

for(int i=0;i<com-l;i++) 
C[i] = StrArrToStr (combi [i]) ; 

return C; 

4. Resize Dataset According to Minimum Threshold 

public void resizeInputData(double percentage) 
{ 
numRows = lint) ((double) numRows*(percentage/100.0)); 
short[] [] trainingSet = new short [numRows] [] ; 
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for (int index=0 ; index<numRows; index++) 
trainingSet[index] = dataArray[index]; 

dataArray = trainingSet; 
minSupport = (numRows,* support)/100.0; 

S. 	Frequent Itemsets 

private int outputFrequentSets(int number, short[] itemSetSofar, 
int size, TtreeNode [] linkRef) 

{ 
if (linkRef == null) 

return (number); 

for (short index=1; index < size; index++) 
{ 
if (linkRef[index] != null) 
{ 
if (linkRef [index].support >= minSupport) 
{ 
short[] newItemSet = realloc2(itemSetSofar,index); 
outputltemSet(newItemSet); 
number = outputFrequentSets(number + 1,newItemSet,index, 

linkRef [index] .childRef); 
} 

} 
} 

return(number); 

6. 	Combine two large itemsets 

protected FuzzyDataItem[] - reallocl(FuzzyDataltem[] oldItemSet, 
FuzzyDataltem newElement) 

{ 
if (oldItemSet == null) 
{ 
FuzzyDataltem[] newitemSet = new FuzzyDataltem[l]; 
newItemSet[O] = new FuzzyDataltem(newElement); 
return(newltemSet); 

} 
int oldItemSetLength = oldltemSet.length; 
FuzzyDataltem[] newItemSet = new 

FuzzyDataltem[oldltemSetLength+l]; 

int index; 
for (index=0;index < oldItemSetLength;index++) 

newItemSet[index] = new FuzzyDataltem(oldltemSet[index]); 
newItemSet[index] = newElement; 

return(newItemSet); 
} 

57 



7. Returns all the Large Itemsets 

private int outputFrequentSets(int number, short[] itemSetSofar, 
int size, TtreeNode[] linkRef) 

{ 
if (linkRef == null) return(number); 

for (short index=l; index < size; index++) 
{ 
if (linkRef[index] != null) 
{ 
if (linkRef[index] .support >= minSupport) 
{ 
short[] newItemSet = realloc2(itemSetSofar,index); 
outputItemSet(newItemSet); 
number = outputFrequentSets(number + 1,newItemSet,index, 

linkRef[index].childRef); 
} 

} 
} 

return(number); 
} 

8. Prune items with low support from Ttree 

protected boolean pruneLevelN(TtreeNode [] linkRef, int level) 
{ 
int size = linkRef.length; 
if (level == 1) 
{ 
boolean allUnsupported = true; 
for (int indexl=l;indexl<size;indexl++) 
{ 
if (linkRef[indexi] != null) 
{ 
if (linkRef[indexl].support < minSupport) 

linkRef [indexi] = null; 
else 
{ 
numFrequentSets++; 
allUnsupported = false; 

} 
} 

} 
return(allUnsupported); 

for (int indexl=level;indexl<size;indexl++) 
{ 
if (linkRef[indexi] != null) .. 
{ 
if (linkRef [indexl] . childRef ! = null) 
{ 
if (pruneLevelN(linkRef[indexl].childRef,level-1)) 

linkRef [indexl].childRef=null; 
} 
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} } 

return (false) 

2. Highly Predictive Non-Sensitive FWI Extraction 
1. Projected Database: 

String [][] project_DB(Itemset itemset, String tuple) 
{ 

String [] [] Projdb = new String [2] [4] ; 
int i = 0 , j = 0 , x = 0 , count = 0 , k= 0 ; 
int [] itemset_index = itemset.getIndex(); 

try 
{ 

Class. forName("sun.jdbc.odbc.JdbcOdbcDriver"); 
Connection con = DriverManager.getConnection 

("Jdbc:Odbc:Dissertdb"); 
Statement stmt = con.createStatement(); 
ResultSet rs = stmt.executeQuery("select * from Table2 

where TID = '" + tuple + 

while(rs.nextO) 
{ 

for(i=0;i<4;i++) 
{ 

if (i != itemset_index[j]) 
{ 

Projdb [0] [count] =String.valueOf 
(rs.getDouble(i+2)); 

Projdb [1] [count] = itemset.getClassname (i) ; 
count++; 

} 
j++; 
if (j ==itemset_index. length) 

j'-; 
} 

} 
con.close(); 

} 
catch (Exception exp) 
{ 

exp.printStackTrace();,, 

c = count; 
return Projdb; 
} 

String [] [] PDB_X (Itemset itemset) 
{ 

int i = 0, j = 0, count = 0, k= 0; 
int x =0; 
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String TID; 
int itemset_len = itemset.attrname.length; 
int m = 5 - itemsetlen; 
String [] [] PDB = new String [10] [5] 
int [] itemset_index = itemset.getIndex(); 
Double str =null; 

try 
{ 

Class.forName("sun. jdbc.odbc.JdbcOdbcDriver"); 
Connection con = DriverManager.getConnection 

("Jdbc:Odbc:Dissertdb"); 
Statement stmt = con. createStatement(); 
ResultSet rs = stmt.executeQuery("select * from Tablet"); 

while(rs.nextO) 
{ 

count =0; 
TID = rs.getString'(1); 
for(i = 0 ; i<itemset_len ; i++) 
{ 

str = rs.getDouble (itemset_index[i] +2); 
if(itemset.value[i].equals(str)) 

count++; 
if(count==itemset len) 

x++; 

String [] [j ProjDB_X = project —DB (itemset, TID) ; 

PDB [k] [0] = TID; 
PDB [k+l] [0] = TID; 
for (j = 1 ; j < m ; j++) 
{ 

PDB[k] [j] = ProjDB_X[0] [j-l]; 
PDB[k+l] [j] = ProjDB_X[ll [j-1] 

} 
k = k + 2 

} 
} 

System. out . print ln(); 
} 
c = 2*x; 
con. close O; 

} 
catch (Exception exp) 
{ 

exp .printStackTrace(); 
} 
return PDB; 

2. fuzzConfidence: 

boolean confidence (Itemset. itemset, Double val , String attr) 
{ 
boolean conf = true; 
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Double [] [] rsltset = new Double [20] [20] 
int i= 0, j = 0, x = 0 
int [] itemsetindex = itemset.getlndex(); 
int index = itemset.getIndex(attr); 

try 
{ 
Class. forName ("sun. jdbc.odbc.JdbcOdbcDriver"); 
Connection con = DriverManager.getConnection 

("Jdbc:Odbc:Dissertdb"); 
Statement stmt = con.createStatement(); 
ResultSet rs = stmt.executeQuery("select * from Tablet"); 

while(rs.nextO) 
{ 

for(j=1;j<5;j++) 
rsltset [i] [j-1] = rs.getDouble(j+l) ; 
i++; 

} 

for(i=0;i<5;i++) 
for(j=0;j<4;j++) 

{ 
for(int k=0;k<itemset.attrname.length;k++) 

if (rsltset [i] [itemsetindex [k] ] .equals (itemset .value [k]) ) 
x++; 

if(x==itemset.attrname.length) 
if (rsltset [i] [index] . equals (val) ) 

conf = false; 
break; 

} 
con.close(); 

} 
catch (Exception exp) 
{ 

exp .printStackTrace(); 
} 

return conf; 

3. Checking for Privacy Free Itemsets: 

Boolean chk_PFree(Itemset itemset, String tuple, Itemset [] P) 
{ 

Boolean b = true; 
String []I] ProjDB,X = project_DB(itemset,tuple); 
int j = 0 ; 
Double [] [] PrivateSet = new Double [5] [5] ; 
int [] numItemsinPrivate = new int[5]; 
int TotnumPrivateitems = P.length; 

for(int i = 0 ; i < TotnumPrivateitems ; i++) 
if (P[i] .tuple.equals(tuple) ) 
{ 

PrivateSet[j] = P [i] .value; 
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numItemsinPrivate[j] = P[il.value.length; 
j++; 

} 

int numPrivateSelected = j; 
for(j = 0 ; j < numPrivateSelected ; j++) 	//for j tuple 
{ 

System. out . print ln("); 
for(int i=0;i<numItemsinPrivate[j];i++) 	// 

for(int t=0 ; t<ProjDB_X[0].length ; t++) 

if (PrivateSet Li]  [i] .equals (Double .parseDouble (Prof 
DB_X [0] [t]))) 

{ 
b=false; 
break; 

} 
} 
return b; 

4. Checking for Non Discriminative Itemsets: 

Boolean chk_nonDiscri(Itemset itemset , Itemset [] P) 
{ 

Boolean b = false; 
int i = 0 , x = 0 , j = 0; 
int len = itemset.attrname.length; 
int cnt = 0; 
int t = 0; 

String [] [] PDB = PDB_X(itemset) ; 
int numrowPDB = PDB[0].length; 
int numrow = c/2; 
int numcol = 4 - len; 
int [ ] [ ] countj = new int [numrow] [numcol]; 

System.out.println("Numrows = " + numrow + "Numcol=" + numcol); 

for(i = 0 ; i<numrow ; i++) 
for(j = 0 ; j<numcol ; j++) 

countj [i] [j ] = 0; 

•for(int k=0; k<P.length;k++) 	//for every private element 
{ 

t=0; 
for(i = 1 ; i<c ; i = i + 2) 
{ 

for(j = 1 ; j <=numcol ; j++)  
{ 

if (P [k] .tuple.equals (PDB [i] [0]) ) 
{ 
if (P[k] .attrname[O] .equals(PDB[i] [j]) && 
P [k] .value [0] .equals (Double.parseDouble (PDB [i- 
1] [j]))) 
{ 

count] [t] [j ] ++; 
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t++; 

for(int y=0;y<numcol;y++) 
{ 

cnt=0; 
for(x = 0 ; x<numrow ; x++) 

cnt = cnt + countj [x] [y] ; 
if(cnt == numrow) 
{ 

b = true; 
break; 

} 
} 

return b; 
} 

5. Checking for Contrast Itemsets: 

Boolean chk_Contrast(Itemset itemset,.Itemset[] P) 
{ 
Boolean b = false 
int i= 0, j= 0, t= 0, r =0; 
String [] [] PDB = PDB_X (itemset) ; 
int len = itemset.attrname.length; 
int numcol = 4 - len; 
Double [] private_value = new Double[100]; 
String [] attr = new String[1001; 
Boolean [] conf = new Boolean[5] 

for(int k = 0; k < P.length ; k++) 
{ 
for(i = 1 ; i<c ; i = i + 2) 
for(j = 1 ; j<=numcol ; j++) 
{ 
if(P[k] .tuple.equals(PDB[i] [0])) 
{ 

if (P [k] . attrname [O] .equals (PDB [i] [j]) && 
P[k] .value [0] .equals (Double.parseDouble (PDB [i-1] Ii)))) 
{ 
private_value [t] = P [k] .value [0] ; 
attr [t] = P [k] . attrname [0] ; 
t++; 

} 

for(i=0;i<t;i++) 
{ 
conf [i] = confidence(itemset, private_value [i] , attr [i]) ; 
if (conf [i]) 	// if conf = 0 then contrast 

r++; 

63 



} 
if (r==t) 

b=true; 

return b; 

5. Checking for Discriminative Itemsets: 

String [][] chkDiscriminitive(Itemset itemset, Itemset [] P. 
double delta) 

{ 
String [] [] PDB = PDB_X (itemset) ; 
String [l [] Pattr = new String [cl [2) ; 
int r = 0 , i = 0 , j = 0 , cnt = 0 ; 
double [] conf = new double [10] ; 
String [] [] disc = new String [20] [20] 
int numAI = 0; 
int len = itemset.attrname.length; 
int n = 6-len; 

for(i=0;i<10;i++) 
conf [i] =0; 

for (i=0;i<c;i++) 
for(j=0;j<n;j++) 

if (PDB [i] [j] .equals("*"))  
{ 

Pattr [r] [0] = PDB [i] [0] ; 
r++; 

} 
cnt = r; 
r=0; 

for(i=0;i<cnt;i++) 
for (j=0;j<3;j++) 

if (Patty [i] [0] • equals (P [j ] [0]) ) 
Pattr [i] [11= P [j ] [1] ; 

for(i=0;i<cnt;i++) 
Pattr [i] [0] =Pattr [i] [1] ; 

for(i=0;i<cnt;i++) 
{ 

conf [i] = confidence (X, Pattr [i] [1]) ; 
if (conf [i] ==delta) 
{ 

disc [numA2] = X; 
numAl++; 

} 
} 
return disc; 

7. Itemset Class: 
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class Itemset 
{ 

String[] Attributes = { "classl" , "class2" }; 
String [] attrname 	new String [100]; 
Double [ ] value = new Double [1001;  
double support 
String tuple; 

Itemset() 
{ 

attrname [0] _ "" 
support = 0.0; 
value [O] = 0.0; 

} 

Itemset(String[] itemset) 
{ 

attrname = itemset; 
support = support(attrname); 

Itemset(String[] itemset, Double [] val) 
{ 

attrname = itemset; 
value = val; 
support = support(attrname); 

} 
Itemset(String [] itemset,String t, Double [] val) 
{ 

attrname = itemset; 
tuple = t; 
value = val; 

Itemset(String [] itemset, String t) 
{ 

attrname = itemset; 
tuple = t; 

String getClassname(int index) 
{ 

return(Attributes[index]); 
} 

int [] getIndex() 
{ 

int len = this.attrname.length; 
int [] index = new int [len] ; 

for(int i=0;i<len;i++) 
index[i] = 0; 

for(int j=0 ; j<len ; j++) 
for(int i=0 ; i<Attributes.length ; i++) 

if (this . attrname [j ] .equals (Attributes [i]) ) 
index[j] = i; 
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return index; 

int getlndex(String a) 
{ 

int index = 0; 
for(int i=0 ; i<Attributes.length ; i++) 

if (a. equals (Attributes [i]) ) 
index = i; 

return index; 

Double [] valueof(String tuple) 
{ 

int [ ] index = this . getIndex ( ) ; 
int len = index.length; 
Double [] value = new Double [len] ; 

try 
{ 

Class. forName("sun.jdbc.odbc..JdbcOdbcDriver"); 
Connection con = DriverManager.getConnection 

("Jdbc : Odbc: Dissertdb"); 
Statement stmt = con.createStatement(); 
ResultSet rs = stmt.executeQuery("select * from Table2 

where TID = '"+tuple+"'"); 

rs.next(); 
for(int i=0;i<len;i++) 

value[i] = rs.getDouble(i+2); 

con. close (); 
} 
catch (Exception exp) 
{ 

exp.printStackTrace(); 
} 
return value; 

} 
double support(String [] X). 
{ 

int len = X.length; 
double sup = 0 , supi = 0 , min = 10000; 
int i = 0; 
String items = 
Double [] row = new Double [4]; 

try 
{ 

Class.forName("sun.jdbc.odbc.JdbcOdbcDriver"); 
Connection con = DriverManager.getConnection 

("Jdbc:Odbc:Dissertdb"); 
Statement stmt = con.createStatement(); 

if(len == 1) 
{ 
ResultSet rs = stmt.executeQuery("select " + items + 

from Table2"); 



while(rs.next()) 
supi+= rs.getDouble(items); 

else 
{ 

for(i=0;i<len-l;i++) 
items = items + ", " + X(i+1]; 
ResultSet rs = stmt.executeQuery("select " + items + 

from Table2"); 

while(rs.next()) 
{ 

min = 10000; 
for (i=0; i<len; i++) 
{ 

row(i] = rs. getDouble (i+l) ; 
} 

for(i=0;i<len;i++) 
if (min>row[i] ) 

min = row[i] ; 

supi+= min; 
} 

} 
sup = supi/(double)5; 
con . close ( ) ; 

} 
.catch(Exception exp) 

{ 
exp.printStackTrace(); 

} 
return sup; 

} 

void displtemset() 
{ 

System.out.println("Itemset : count =
11); 

for(int i=0;i<attrname.length;i++) 
System. out . println (attrname [i]) ; 

System.out.println(" : " + support); 

3. Border-based Approach for Hiding Sensitive FWI 
1. Positive Border: 

String [] PositiveBorder() 
{ 

String [IPBorder = new String [100]; 
Freqltemset [] f 
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f = new Fregltemset[17]; 
int p=0; 

for(int i=O;i<17;i++) 
f [i] = new Freqltemset 0; ; 

int len = X.length; 

for(int i=0;i<len;i++) 
{ 

f [i] . Itemset=X [i] 
f [i] .sup = 

} 
String []Combltem; 

for(int i=0;i<len-l;i++) 
{ 

cnt =0; 
Combltem = combinations(StrToStrArr(f [ii .Itemset)); 

for(int j=i+l ; j<len ; j++) 
{ 
for(int k=0;k<NumComb-l; k++) 

if (CombItem [k] .equals (f [j ] .Itemset) && f[i] . SupSet) 
{ 

f[j]  . SupSet=false; 
if(cnt==0) 
{ 

PBorder [p] = f [i] .Itemset; 
p++; 

} 
cnt++; 
break; 

} 
} 

} 
NumPBorders = p; 

for(int i=0 ; i<NumPBorders ; i++) 
{ 

InitSup_PBorder[i] = support(StrToStrArr(PBorder[i])); 
} 

String [] ABX = AffectedBorder(PBorder, "cd") ; 
double [] W_x = Weights(); 
int [] ABu = RelevenceBitVector(ABX,'a'); 

String [][]W = AffectedBorder_Candidate("ab"); 

double impact_delu = Impact(ABu, W_x); 
return PBorder; 

2. Hiding Candidate: 

String [] [] I-Iiding_Candidate (String Itemset) 
{ 

int len = Itemset.length(), i=0, j=0,p=0,k=0; 
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String [] [] rsltset = new String [20] [20] 
int [] index = new int [len] 
String[] X = StrToStrArr(Itemset); 
String [] [IC = new String [NumRows] [len+l] ; 

for (i=0;i<len;i++) 
for (j=0;j<9;j++) 
if (X [i] .equals (Attr [j ]) ) 
{ 

index [p] =j; 
p++; 

} 
i=0; 
try 
{ 

Class. forName("sun.jdbc.odbc.JdbcOdbcDriver"); 
Connection con = DriverManager.getConnection 

("Jdbc:Odbc:BorderApp"); 
Statement stmt = con.createStatement(); 
ResultSet rs = stmt.executeQuery("select * from Tablel"); 

while(rs.nextO) 
{ 

for(j=1;j<=9;j++) 
rsltset [i] [j -1] = rs. getString (j) 

i++; 
} 
NumRows = i; 

for(i=0; i<NumRows; i++) 
{ 

cnt = 0; 
for (j=0;j<p;j++) 

if (rsltset [i] [index [j ] ] .equals ("l") ) 
cnt++; 

if (cnt==len) 
{ 

C [k] [j] = rsltset [i] [0] ; 
k++; 

} 
} 

con.closeO; }  

catch(Exception exp) 
{ 

exp. printStackTrace(); 
} 

return C; 
} 

3. Relevence Bit Vector: 

int [] RelevenceBitVector(String []ABX, char c) 
{ 
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int numAffItem = ABX.length; 
int [] RelBit = new int [numAffltem] 
int lenAB = 0, p = 0; 
char [] ABXArr = new char[lenAB]; 

for(int i=0;i<numAffltem;i++) 
RelBit [i] =0; 

for(int i=0;i<numAffItem && ABX[i]!=null;i++) 
{ 

ABXArr = ABX [ i ] . toCharArray ( ) ; 
lenAB = ABXArr.length; 
for(int j=0;j<lenAB;j++) 

if (ABXArr[j] ==c) 
{ 

RelBitfi]=1; 
break; 

} 
} 

return RelBit; 
} 

4. Impact Calculation: 

double Impact (int [ ] ABu, double [ ] W x) 
{ 
double impact_delu = 0; 
for(int i=0 ; i<W_x.length ; i++) 

impact_delu = impact_delu + ABu[i]*W x[i]; 

return impact_delu; 
} 

5. Negative Border: 

String [] NegativeBorder() 
{ 

String []NBorder = new String [100]; 
Freqltemset [] f 
f = new Fregltemset [17] ; 
int p=0; 

for(int i=0;i<17;i++) 
f[i] = new FregItemset ( ) 

int len = X.length; 

for(int i=0;i<len;i++) 
{ 

f [i] . Itemset=X [i] 
f [i] .sup = 

} 

String []Combltem; 
String X1,X2; 
int k = 0; 
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for(int i=0;i<len-l;i++) 
{ 

cnt =0; 
Combltem = combinations (StrToStrArr (f [i] . Itemset)) ;. 
for(int j=i+l ; j<len ; j++) 
{ 

X2 = f[j].Itemset; 
for(k=0;k<NumComb-1; k++) 
{ 

Xl = Combltem [k] ; 
if(Xl.equals(X2)) 
{ 

if(cnt==0) 
NBorder [p] = f[j]  . Itemset; 

cnt++; 
p++; 
break; 

} 
} 
if(k==NumComb-1) 
{ 

NBorder [p] = f[i] . Itemset; 
p++; 

} 
} 

} 
return NBorder; 

6. Weights: 

double [] Weights() 
{ 

double [] wt = new double£NumPBorders]; 
double [] CurSup_PBorder = new double[NumPBorders]; 

for(int i=0; i<NumAffBorX; i++) 
CurSup_PBorder[i] = InitSup_PBorder[i]; 

for(int i=0;i<NumAffBorX;i++) 
{ 

i f (CurSup_PBorder [ i ] >= minsup) 
wt[i] = (double) 1; 

else if(CurSup_PBorder[i]>=0&&CurSup_PBorder[i]<=minsup) 
wt[i] = lambda + minsup - InitSup_PBorder[i]; 

} 
return wt; 

7. Affected Border: 

String[] AffectedBorder(String []PBorder, String X) 
{ 

71 



String [] AffBorX = new String [10] .; 
String [] ArrX = StrToStrArr(X); 
String [] combX = combinations(ArrX); 
String [] Combi = null; 
int lent = combX.length; 
int len2 = 0, p=0; 
boolean flag = false; 

for(int i=0;i<NumPBorders;i++) 
{ 

Combi = combinations(StrToStrArr(PBorder[i])); 
len2 = Combi.length; 
flag=false; 

for(int j=0;j<lenl;j++) 
{ 

if (flag) 
break; 

for(int k=0;k<len2;k++) 
if (combX [j ] .equals (Combi [k]) && PBorder [i] !=null) 
{ 

AffBorX [p] = PBorder [i] ; 
System.out.println("Aff Bor="+ AffBorX[p]); 
p++; 
flag = true; 
break; 

} 
} 

} 
NumAffBorX = p; 
int x=0; 
String [] A = new String [p] ; 
for(int i=0;i<p;i++) 

{ 
A [x] =AffBorX [i] ; 
x++; 

} 
return A; 

8. Combinations: 

String[] combinations(Itemset itemset) 

int n; 
int [] x = new int [20] 
int len = itemset.length; 
int com = (int)Math.pow(2,len); 
NumComb = com; 
String [] [] combi = new String[com-1] [len] ; 
char [] [] ex = new char [com-1] [len] 

for(int j = 0 ; j < com-1 ; j++) 
{ 

n = j+l; 
for(int i = 0 ; i<len ; i++) 
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x [i] = n o 2; 
ex[j] [i] = Integer . toString (x [i]) . charAt (0) ; 
n = n / 2; 

} 
} 
int r=O; 
for(int i=0;i<com-1;i++) 
{ 

r=O; 
for(int j=0;j<len;j++) 

if (ex [i] [j ] ==' 1' ) 
{ 

combi(i] [r]=s[j] 
r++; 

} 
} 
String [] C = new String [corn-1] ; 

for(int i=0;i<com--l;i++) 
C[i] = StrArrToStr (combi [1]); 

// 	System. out.println(C[i]); 

return C; 
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