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Abstract 

Distributed Denial of Service (DDoS) attacks pose a severe security threat to the steady 

functioning of any network. These attacks aim at depleting the resources of a server or an 

administrative network by overwhelming it with enormous and useless traffic. The 

outcome of this is the fact that legitimate users are denied service. 

Though a large number of schemes have been proposed and implemented for defense 

against the DDoS attacks, an end-to-end approach for the same is still missing. Great 

amount of research has been carried out in the areas of the detection of the presence of 

these attacks, differentiating the legitimate flows from the attack ones, tracing the identity 

of the attackers and fortifying the server in order to minimize the impact of the attack. 

But there is still a paucity of effective frameworks that encompass multiple stages of the 

process of defense against DoS attacks. 

In this work "A NOVEL MITIGATION AND TRACEBACK SCHEME FOR DDoS 

ATTACK ", a novel solution is. proposed which deals with mitigating the influence of the 

attack, and identification of the path traversed by the flow once it has been characterized 

as an attack flow. 

In the proposed strategy, the packets are marked a hash of the router in there 

identification field. The TTL field is used to calculate the distance from the marked 

router to the Victim. These packets are subjected to characterization module and if attack 

is diagnosed the modified pushback as well as the traceback to the attacker starts. 

Pushback gives the immediate relief to the Victim as well as gives time to trace the 

attacker. The effectiveness of the approach is validated with simulation in ns-2 on a 
Linux platform. 
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Chapter 1 

Introduction and Statement of Problem 

1.1 Introduction 

Distributed denial-of-service attacks (DDoS) attacks consist of an overwhelming 

quantity of packets being sent from multiple attack sites to a victim site. These 

packets arrive in such a. high quantity that some key resource at the victim 

(bandwidth, buffers, and CPU time to compute responses) is quickly exhausted. The 

victim either crashes or spends so much time handling the attack traffic that it cannot 

attend to its real work. Thus legitimate clients are deprived of the victim's service for 

as long as the attack lasts. 

Distributed denial-of-service attacks are widely regarded as a major threat to the 

Internet. They have adversely affected service to individual machines, major Internet 

commerce sites, and even core Internet infrastructure services. Occasionally, a very 

large-scale DDoS attack occurs (usually as the by-product of a virus or worm spread), 

crippling Internet-wide communications for hours. While services are restored as 

soon as the attack subsides, the incidents still create a significant disturbance to the 

users and costs victim sites millions of dollars in lost revenue. Furthermore, the 

Internet is used daily for important communications such as stock trades, financial 

management and even some infrastructure services. Many of these transactions must 

be processed in a timely manner and can be seriously delayed by the onset of a DDoS 

attack. The seriousness of the threat is further increased by the ease of how these 

attacks are performed. Any unsophisticated user can easily locate and download 

DDoS tools and engage them to perform successful, large-scale attacks. The attacker 

runs almost no risk of being caught. All of these characteristics have contributed to a 

widespread incidence of DDoS attacks. The first large-scale appearance of distributed 

denial-of-service (DDoS) attacks occurred in mid-1999. Today, Almost Ten years 

later, researchers are still struggling to devise an effective solution to the DDoS 

problem. The damage done by DDoS attacks is increasing day by day as the records 

shown in Figure 1.1 [1]. The biggest damage was done by virus and was estimated as 

approximately 5.5 crore dollars. DDoS was the cause for the second largest damage 
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in 2004 causing a loss of more then 2 crore dollars and the condition are still not 

improved. 

,500: 

iutxr 	£WI( 	a yuxrI , 	qu... 	.,punt 	4 °,, 

Total Lossesfor xooq — $141496 .560 
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Figure 1.1 Dollar Amount of Losses by Type 

1.2 Motivation 

Regardless of the diligence, effort, and resources spent securing against intrusion, 

Internet connected systems face a consistent and real threat from DoS attacks because 

of two fundamental characteristics of the Internet. 

• The Internet is comprised of limited and consumable resources. 

The infrastructure of interconnected systems and networks comprising the 

Internet is entirely composed of limited resources. Bandwidth, processing power, and 

storage capacities are all common targets for DoS attacks designed to consume 

enough of a target's available resources to cause some level of service disruption. An 

abundance of well-engineered resources may raise the bar on the degree an attack 

must reach to be effective, but today's attack methods and tools place even the most 

abundant resources in range for disruption. 



• Internet security is highly interdependent. 

DoS attacks are commonly launched from one or more points on the Internet 

that are external to the victim's own system or network. In many cases, the launch 

point consists of one or more systems that have been subverted by an intruder via a 

security-related compromise rather than from the intruder's own system or systems. 

As such, intrusion defense not only helps to protect Internet assets and the mission 

they support, but it also helps prevent the use of assets to attack other Internet-

connected networks and systems. Likewise, regardless of how well defended your 

assets may be, your susceptibility to many types of attacks, particularly DoS attacks, 

depends on the state of security on the rest of the global Internet. 

There are four different ways to defend against DoS attacks [2]: 

(1) Attack prevention aims to fix security holes, such as insecure protocols, 

(2) Attack detection aims to detect DoS attacks in the process of an attack, 

(3) Attack source identification aims to locate the attack sources, 

(4) Attack reaction aims to eliminate or curtail the effects of an attack. 

The number and assortment of both the attacks as well as the defense mechanisms is 

monstrous. Though an array of schemes has been proposed for the detection of the 

presence of these attacks, characterization of the flows as normal or malicious, 

identifying the source(s) of the attacks and mitigating the effects of the attacks once 

they have been detected, there is still a dearth of complete frameworks that encompass 

multiple stages of the process of defense against DDoS attacks. These observations 

have motivated the need of a solution against the DDoS attacks which should be 

efficient, scalable and easy to implement. 
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1.3 Statement of the Problem 

To propose a solution for defending DDoS attacks and encompasses the following 
activities in defense against DDoS attacks: 

(i) Mitigation of the effect of the attack on the victim node or network, 

(ii) Accurate traceback of the source(s) of the attack flows. 

1.4 Organization of Dissertation 

This report comprises of seven chapters including this chapter that introduces the 

topic and states the problem. The rest of the dissertation report is organized as 

follows. 

Chapter 2 gives an overview of the DoS and DDoS attacks and gives a brief view of 

the challenges faced in defending these attacks. Also, tools used for realizing DDoS 

attacks are discussed in brief. It discusses the related work and research gaps in the 

various phases of the defense against DDoS attacks. 

Chapter 3 gives an overall structure of the proposed framework. It gives a big picture 

of the solution and leaves the details for the subsequent chapters. 

Chapter 4 explains in detail the characterization work of the proposed scheme. It also 

describes the mechanism to achieve the dual functionality of mitigation and traceback. 

Chapter 5 describes the system design that includes the system components and the 

simulation model. The implementation details are also charted out in terms of the 

topology used for simulation purposes, procedures and simulation parameters. 

Chapter 6 discusses the simulation results and displays the effectiveness of the 

proposed mechanism for defense against DDoS attacks. 

Chapter 7 concludes the work and gives the directions for future work. 
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Chapter 2 

Distributed Denial of Service Attacks 

In general, a denial of service (DoS) attack is any attack which makes an on-line 

service (e.g. Web Service) unavailable. The attack could involve a single packet (e.g. 

the "land" attack [3]) exploiting software bugs in a server, or a traffic stream with a 

tremendous number of packets that congest the target's server or network. We define 

a bandwidth attack as any attack that consumes a target's resources through a massive 

traffic volume. In this dissertation, we focus on bandwidth attacks, and henceforth we 

mean bandwidth attack when we refer to denial of service attacks unless otherwise 

stated. The distributed denial of service (DDoS) attack is a bandwidth attack whose 

attack traffic comes from multiple sources. To launch a DDoS attack, an attacker 

usually compromises many insecure computers connected to the Internet first. Then a 

DDoS attack is launched from these compromised computers. The reflector attack is 

an attack where innocent third-parties (reflectors) are used to bounce attack traffic 

from the attacker to the target. A reflector can be any network device that responds to 

any incoming packet, for example, a web server. The attacker can make the attack 

traffic highly distributed by using many reflectors. The reflector attack is a type of 

DDoS attack. To summarize, the relations between different types of attacks are 

illustrated in Figure 2.1 

DOS Attacks 

Bandwidth Attacks 

DDoS Attacks 

Reflector 
Attacks 

Figure 2.1: The relation of different types of attacks 

-5- 



2.1 Attacker Goals 

The goal of a DDoS attack is to inflict damage on the victim. Frequently the ulterior 

motives are personal reasons (a significant number of DDoS attacks are perpetrated 

presumably for purposes of revenge), or prestige (successful attacks on popular Web 

servers gain the respect of the hacker community). However, it is not unlikely that 

some DDoS attacks are performed for material gain (damaging competitor's 

resources, such as the recent case of Linux fans attacking SCO [4] because of its 

lawsuit against IBM) or for political reasons (a country at war could perpetrate attacks 

against its enemy's critical resources, potentially enlisting a significant portion of the 

entire country's computing power for this action). In some cases, the true victim of 

the attack might not be the actual target of the attack packets, but others who rely on 

the target's correct operation. For example, in September 2002 there was an onset of 

attacks that overloaded the Internet infrastructure rather than targeting specific victims 

[5]. 

It also frequently happens that a DDoS attack is perpetrated accidentally, as a by-

product of another malicious activity, such as worm spread [6]. Inefficient worm-

spreading strategies create massive traffic that congests the Internet and creates a 

denial-of-service effect to numerous clients. While ordinary home users are less 

likely to become victims of DDoS attacks than large corporate networks, no one is 

free from the DDoS threat. The next attack may target AOL servers, denying service 

to many home users, or the next worm may congest the Internet so severely that no 

one can receive service. DDoS is an Internet-wide problem and all parties should 

cooperate to find a suitable solution. 

2.2 Modus Operandi 

A distributed denial-of-service is carried out in several phases. The attacker first 

recruits multiple agent (slave) machines. This process is usually performed 

automatically: the attacker downloads a scanning tool and deploys it from other 

compromised machines under its command (masters/handlers). The tool scans 
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remote machines, probing for security holes that will enable subversion. Vulnerable 

machines are then exploited—broken into using the discovered vulnerability. They 

are subsequently infected with the attack code. The exploit/infect phase is also 

automated, and the infected machines can be used for further recruitment of new 

agents. Attackers attempt to cover the fact that agent machines have been 

compromised. They erase all logs showing malicious activity to destroy evidence that 

could incriminate them. They also hide attack scripts under system directories and 

give them obscure, non-suspicious names so they will not attract a user's attention and 

be erased. Sometimes they patch the vulnerability used for the exploit, to prevent 

other hackers from taking over the machine. Current exploit/infection scripts contain 

automated tools for covering tracks, so even inexperienced attackers do not leave 

much evidence of the subversion. 

During a DDoS attack, agent machines are engaged to send the attack packets to the 

victim. The attacker orchestrates the onset of the attack, and scenario details such as 

the desired type and duration and the target address from the master to the agent 

machines. Agent machines usually fire out the packets at a maximum possible rate to 

increase the attack's chances of success. However, there have been attacks where 

agents were generating packets at a small rate (to prevent agent discovery) or where 

agent machines were periodically pausing the attack to avoid detection (pulsing 

attacks). Attackers usually hide the identity of subverted machines during the attack 

through spoofing of the source address field in attack packets. Note, however, that 

spoofing is not always required for a successful DDoS attack. With the exception of 

reflector attacks that use spoofing as an attack tool, all other attack types' use 

spoofing only to hinder detection and discovery of agent machines. 

Figure 2.2 shows the architecture of the DDoS Attacks. 
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.ombies 
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Figure 2.2: Architecture of DDoS Attacks 

2.3 Commonly Used Attack Tools 

While there are numerous scripts that are used for scanning, compromise and 

infection of vulnerable machines, there are only a handful of DDoS attack tools that 

have been used to carry out the engagement phase. A detailed overview of these 

tools, along with a timeline of their appearance, is given in [7]. DDoS attack tools 

mostly differ in the communication mechanism deployed between masters and slaves, 

and in the customizations they provide for attack traffic generation. The following 

paragraphs provide a brief overview of these popular tools. 

Trinoo [8] deploys a master/slave architecture, where an attacker sends commands to 

the master via TCP and masters and slaves communicate via UDP. Both master and 

slaves are password protected to prevent them from being taken over by another 

attacker. Trinoo generates UDP packets of a given size to random ports on one or 

multiple target addresses, during a specified attack interval. 
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Tribe Flood Network (TFN) [9] also deploys master/slave architecture. Agents can 

wage a UDP flood, TCP - SYN flood, ICMP ECHO flood and Smurf attacks at 

specified or random victim ports. The attacker communicates with masters using any 

of a number of connection methods (e. g., remote shell bound to a TCP port, UDP 

based client/server remote shells, ICMP-based client/server shells such as LOKI [10], 

SSH terminal sessions, or normal "telnet" TCP terminal sessions. ) Remote control of 

TFN agents is accomplished via ICMP ECHOREPLY packets. All commands sent 

from master to slaves through ICMP packets are coded, not clear text, which. hinders 

detection. 

Stacheldraht [11] (German for "barbed wire") combines features of Trinoo and TFN 

tools and adds encrypted communication between the attacker and the masters. 

Stacheldraht uses TCP for encrypted communication between the attacker and the 

masters, and TCP or ICMP for communication between master and agents. Another 

added feature is the ability to perform automatic updates of agent code. Available 

attacks are UDP flood, TCP SYN flood, ICMP ECHO flood and Smurf attacks. 

Shaft [12] is a DDoS tool similar to Trinoo, TFN and Stacheldraht. Added features 

are the ability to switch master servers and master ports on the fly (thus hindering 

detection by intrusion detection systems), a "ticket" mechanism to link transactions, 

and a particular interest in packet statistics. Shaft uses UDP for communication 

between masters and agents. Remote control is achieved via a simple telnet 

connection from the attacker to the master. Shaft uses "tickets" for keeping track of 

its individual agents. Each command sent to the agent contains a password and a 

ticket. Both passwords and ticket numbers have to match for the agent to execute the 

request. A simple letter-shifting (Caesar cipher) is used to obscure passwords in sent 

commands. Agents can generate a UDP flood, TCP SYN flood, ICMP flood, or all 

three attack types. The flooding occurs in bursts of 100 packets per host (this number 

is hard-coded), with the source port and source address randomized. Masters can 

issue a special command to agents to obtain statistics on malicious traffic generated 

by each agent. It is suspected that this is used to calculate the yield of a DDoS 

network. 
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Tribe Flood Network 2000 (TFN2K) [13] is an improved version of the TFN attack 

tool. It includes several features designed specifically to make TFN2K traffic 

difficult to recognize and filter, to remotely execute commands, to obfuscate the true 

source of the traffic, to transport TFN2K traffic over multiple transport protocols 

including UDP, TCP, and ICMP, and features to confuse attempts to locate other 

nodes in a TFN2K network by sending "decoy" packets. TFN2K obfuscates the true 

traffic source by spoofing source addresses. Attackers can choose between random 

spoofing and spoofing within a specified range of addresses. In addition to flooding, 

TFN2K can also perform some vulnerability attacks by sending malformed or invalid 

packets. 

mstream [14] generates a flood of TCP packets with the ACK bit set. Masters can be 

controlled remotely by one or more attackers using a password protected interactive 

login. The communications between attacker and masters, and a master and agents, 

are configurable at compile time and have varied significantly from incident to 

incident. Source addresses in attack packets are spoofed at random. The TCP ACK 

attack exhausts network resources and will likely cause a TCP RST to be sent to the 

spoofed source address (potentially also creating outgoing bandwidth consumption at 

the victim). 

Trinity [15] is the first DDoS tool that is controlled via 'IRC or ICQ. Upon 

compromise and infection by Trinity, each machine joins a specified IRC channel and 

waits for commands. Use of legitimate (IRC or ICQ) service for communication 

between attacker and agents eliminates the need for a master machine and elevates the 

level of the threat. Trinity is capable of launching several types of flooding attacks on 

a victim site, including UDP, IP fragment, TCP SYN, TCP RST, TCP ACK, and 

other floods. 

Flitz [16] is a DDoS tool which features spoofed ip/tcp/udp flood, flooding in 

parallel, distributed smurf attack and status report of the slave. With one stop 

command, you can stop all the slaves at once. 

BlackEnergy [17] is a web-based distributed denial of service (DDoS) bot used by 

the Russian hacker underground. BlackEnergy gives the attackers an easy to control 
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web-based bot that can launch various attacks and control the bots using a minimal 

syntax and structure. The BlackEnergy HTTP C&C is built on PHP, MySQL. The 

BlackEnergy botnet uses HTTP to communicate to its controlling servers by sending a 

POST message to the server. 

2.4 Distributed Denial of Service Defenses 

The seriousness of the DDoS problem and the increased frequency, sophistication and 

strength of attacks has led to the advent of numerous defense mechanisms. Yet, 

although it has been several years since the first distributed attacks were perpetrated, 

and many solutions have been developed since then, the problem is hardly dented, let 

alone solved. 

2.5 Defense Challenges 

The challenges to designing DDoS defense systems fall roughly into two categories: 

Technical Challenges and Social Challenges. Technical challenges encompass 

problems associated with the current Internet protocols and characteristics of the 

DDoS threat. Social challenges, on the other hand, largely pertain to the manner in 

which a successful technical solution will be introduced to Internet users, and 

accepted and widely deployed by these users. The main problem that permeates both 

technical and social issues is the problem of large scale. DDoS is a distributed threat 

that requires a distributed solution. 

2.5.1 Technical Challenge 

The distributed nature of DDoS attacks and use of legitimate traffic models and IP 

spoofing represent the main technical challenges to designing effective DDoS defense 

systems. In addition to that, the advance of DDoS defense research is hindered by the 

lack of attack information and absence of standardized evaluation and testing 

approaches. The following list summarizes and discusses technical challenges for 

DDoS defense: 

1. Need for a distributed response at many points on the Internet. 



There are many possible DDoS attacks, very few of which can be handled only by the 

victim. Thus it is necessary to have a distributed, possibly coordinated, response 

system. It is also crucial that the response be deployed at many points on the Internet 

to cover diverse choices of agents and victims. Since the Internet is administered in a 

distributed manner, wide deployment of any defense system (or even various systems 

that could cooperate) cannot be enforced or guaranteed. This discourages many 

researchers from even designing distributed solutions. 

2. Lack of detailed attack information. 

It is widely believed that reporting occurrences of attacks damages the business 

reputation of the victim network. Therefore, very limited information exists about 

various attacks, and incidents are reported only to government organizations under 

obligation to keep them secret. It is difficult to design imaginative solutions to the 

problem if one cannot become familiar with it. Note that the attack information 

should not be confused with attack tool information, which is publicly available at 

many Internet sites. Attack information would include the attack type, time and 

duration of the attack, number of agents involved (if this information is known), 

attempted response and its effectiveness, damages suffered, etc. 

3. Lack of defense system benchmarks. 

Many vendors make bold claims that their solution completely handles the DDoS 

problem. There is currently no standardized approach for testing DDoS defense 

systems that would enable their comparison and characterization. This has two 

detrimental influences on DDoS research: (1) since there is no attack benchmark, 

defense designers are allowed to present those tests that are most advantageous to 

their system, and (2) researchers cannot compare actual performances of their 

solutions to the existing defenses; instead they can only comment on design issues. 

4. Difficulty of large-scale testing. 
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DDoS defenses need to be tested in a realistic environment. This is currently 

impossible due to the lack of large scale testbeds, safe ways to perform live 

distributed experiments across the Internet, or detailed and realistic simulation tools 

that can support several thousands of nodes. Claims about defense system 

performance are thus made based on small-scale experiments and simulations, and are 

not credible. 

2.5.2 Social Challenges 

Many DDoS defense systems require certain deployment patterns to be effective. 

Those patterns fall into several categories: 

1. Complete deployment 

2. Contiguous deployment 

3. Large-scale, widespread deployment 

4. Complete deployment at specified points in the Internet 

5. Modification of widely deployed Internet protocols, such as TCP, IP or HTTP 

6. All (legitimate) clients of the protected target deploy defenses. 

None of the above requirements are practical for general purposes (although they may 

work well to protect an important server or application that communicates with a 

selected set of clients). The Internet is extremely large and is managed in a 

distributed manner. No solution, no matter how effective, can be deployed 

simultaneously in hundreds of millions of disparate places. 

2.6 Defense Goals 

The primary goal of DDoS defense is to provide good service to a victim's legitimate 

clients during the attack, thus cancelling the denial-of-service effect. Ideally, clients 

should perceive little or no service degradation while the attack is ongoing. The 

secondary goal is to alleviate the effect of the attack on the victim so that its resources 

can be dedicated to legitimate clients or preserved. Last, attack attribution (locating 

with high accuracy agent machines and perpetrators of the attack) will serve as a 

- 13 - 



strong deterrent to DDoS incidents, as attackers could face the risk of discovery and 

punishment. 

2.7 Defense Approaches 

DDoS defense approaches can roughly be divided into three categories: preventive, 

survival and responsive approaches. 

Preventive approaches introduce changes into Internet protocols, applications and 

hosts, in order to patch existing vulnerabilities and reduce the incidence of intrusions 

and exploits. Their goal is to prevent vulnerability attacks, and to impede the 

attacker's attempts to gain a large agent army. While preventive approaches are 

necessary for improving Internet security, they need to be deployed widely to 

constrain the DDoS threat. As long as large numbers of machines are insecure, 

attackers can still wage large-scale attacks. There is no reason to believe that 

preventive approaches will successfully undermine the power of the DDoS threat in 

the foreseeable future. 

Survival approaches enlarge a victim's resources, enabling it to serve both legitimate 

and malicious requests during the attack, thus cancelling the denial of service effect. 

The enlargement is achieved either statically — by purchasing more resources, or 

dynamically -- by acquiring resources at the sign of possible attack from a set of 

distributed public servers and replicating the target service. 

Responsive approaches detect the occurrence of the attack and respond to it ("fight 

back") either by controlling attack streams, or by attempting to locate agent machines 

and invoking human action. In order to be successful, response approaches must meet 

following requirements: 

1. Accurate detection. The system must be able to detect all attacks that inflict 

damage at the victim. 

2. Effective response. The system must stop the attack flows, regardless of their 

volume or distribution. Alternately, in the case of response by agent identification, 

the system must be able to accurately identify the majority of attack machines 
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regardless of their distribution. This identification must be prompt so that the action 

can be taken while the attack is on-going. Ideally, identification responses should 

identify not only the agent machines, but also the master and the attacker machines. 

3. Selective response. The system must differentiate between legitimate and attack 

packets, and ensure good service to legitimate traffic during the attack. Collateral 

damage due to the response must be lower than the damage suffered by legitimate 

clients in the absence of response. This requirement does not pertain to agent 

identification approaches. 

2.8 Related Work and Research Gaps 

2.8.1 Related work 

Burch and Cheswick introduce the concept of network trace back. They identify 

attack paths by selectively flooding network links and monitoring the changes caused 

in attack traffic [18]. The scheme could easily fooled by the attackers by creating 

stealth traffic to match the required parameters. 

Savage et al. Propose the Fragment Marking Scheme (FMS) for IP traceback [19]. 

They suggest that routers probabilistically mark the 16 bit IP identification field, and 

that the receiver reconstructs the IP addresses of routers on the attack path using these 

markings. The FMS do not work well if only a small number of routers implement 

them. 

Bellovin [20] proposes the idea of ICMP traceback messages, where every router 

samples the forwarded packets with a very low probability (e. g., 1 out of 20,000) and 

sends an ICMP Traceback message to the destination. An ICMP Traceback message 

contains the previous and next hop addresses of the router, timestamp, portion of the 

traced packet, and authentication information. 
l 

Incoming packets to a network domain can be filtered by ingress routers. These 

filters verify the identity of packets entering into the domain, like an immigration 

security system at the airport. Ingress filtering, proposed by Farguson and Senie [21], 
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is a restrictive mechanism that drops traffic with IP address that does not match a 

domain prefix connected to the ingress router. 

Goodrich presents a marking scheme that marks nodes instead of links into packets 

[22]. Because this approach does not use a distance field, it has issues with attack 

graph reconstruction and does not scale to a large number of attackers. 

Snoeren et al. propose SPIE, a mechanism using router state to track the path of a 

single packet [23]. The main advantage of SPIE is that it enables a victim to trace 

back a single packet by querying the router state of upstream routers; however, it does 

require routers to keep a large amount of state. Li et al. have further developed their 

approach, lowering the required router state, at the expense of a large communication 

overhead for traceback [24]. Consider the case where 50% of the routers implement 

the SPIE mechanism. Let's consider (very conservatively), that a router has 10 

neighbouring routers on average. 

With the SPIE mechanism, we find that a given router forwarded an attack packet, 

and we attempt to find out from which neighbouring router it came from. Thus, we 

need to contact the 9 neighbouring routers which potentially forwarded the packet (we 

do not need to query the next-hop router towards the victim). Let's assume that 5 of 

the neighbouring routers implement SPIE, but that 4 do not implement it. Besides the 

5 SPIE-enabled routers, we also need to contact all neighbours of the 4 legacy routers, 

about 40 additional routers. However, 20 of those routers are legacy routers 

themselves, so we need to contact all of their neighbours as well. It is clear that this 

approach scales poorly if an attack path traverses several legacy routers. 

Dawn et al. proposed the Advanced Marking Scheme and the Authenticated Marking 

Scheme [25], which allows the victim to traceback the approximate origin of spoofed 

IP packets. It used the identification field of IP header for storing the hash as well as 
the distance from the router which marked the packet. The AMS approach suffers 

from a problem. The upstream map of routers used by AMS is gathered using the 

trace route tool, which does not distinguish between AMS-enabled and legacy routers. 

However, the AMS distance field only counts hops of AMS-enabled routers, which 

leads to the following problem. 



Assuming the victim has identified a router at distance x, when receiving an edge 

marking from distance x+l, the victim will have to test the IP addresses of all the 

routers at distances greater than x (rather than just those at distance x + 1) because the 

edge between two AMS-enabled routers may traverse several non-marking legacy 

routers. This effect will lead to an increase in the false-positive rate of the scheme, 

particularly with high percentages of legacy routers present. AMS also suffers from 

lack of the enough range for the hash values. With 11 bits, we can have only 211 

hashing values. With 232  possible IP address space, the probability of collision will be 

very high. 

Park and Lee [26] propose route-based distributed packet filtering, which rely on 

route information to filter out spoofed IP packets. The authors of the paper shows that 

with partial deployment of route-based filters, about 20% in the Internet AS 

topologies, it is possible to achieve a good filtering effect that prevents spoofed IP 

flows reaching other ASes. These filters need to build route information by 

consulting BGP routers of different ASes. Since routes on the Internet change with 

time, it is a challenge for route-based .filters to be updated in real time. Finally, all 

filters proposed in the literature so far fall short to detect IP address spoofing from the 

domain in which the attacker resides. 

Dean et al: suggest algebraic traceback, an algorithm to encode a router's IP address 

as a polynomial in the IP identification field [27]. Adler presents a theoretical 

analysis of traceback, presenting a one-bit marking scheme [28]. This work is 

primarily of theoretical interest, and does not scale to large numbers of attackers. 

Ratul Mahajan et al. [29] presented the term PUSHBACK. In this system the packets 

arrive at router in the input queues from where they are sent to the module which 

matches them with the congestion signature. The packets survived from match go to 

the output queue directly. The packets whose signature match with congestion 

signature (may be attack packets or legitimate) are sent to the rate limiter which drops 

a significant amount of traffic depending upon parameters set by "pushbackd" 

daemon. The pushback method introduced. by Ratul et al. performed pretty well but 

it could not stop the legitimate users to suffer. 
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Ruiliang Chen et al. [30] proposed Attack Diagnosis (AD), a novel attack mitigation 

scheme that combines the concepts of Pushback and packet marking. AD's 

architecture is inline with the ideal DDoS attack countermeasure paradigm, in which 

attack detection is performed near the victim host and attack mitigation is executed 

close to the attack sources. AD is a reactive defense that is activated by a victim host 

after an attack has been detected. 

Rajesh Sharma et al. [31] proposed Shared Based Rate Limiting, whose basic 

mechanism was to have monitoring, rate limiting and filtering routers at various levels 

of ISPs. The participating routers, start there function after getting a signal from a 

server under attack. 

The scheme was invoked only during attack times, and was able to mitigate attack 

traffic through dynamic filtering. Server tells edge routers to rate limit the traffic 

according to the share of traffic which was being passed through particular routers. 

The solution proposed was an ISP level solution. 

Bhawna et al. [32] proposed An Integrated Framework for Proactive Mitigation, 

Characterization and Traceback of DDoS Attacks, a novel integrated framework 

which deals with proactively mitigating the influence of the attack, characterization of 

the TCP flows as attack or legitimate, and identification of the path traversed by the 

flow once it has been characterized as an attack flow. In the proposed framework, 

generation of copies of TCP/IP headers by intermediate routers provides for the dual 

functionality of proactive mitigation and traceback. The characterization of the flows 

has been achieved by an innovative Exactly Periodic Subspace Decomposition 

(EPSD) based approach. 

Zhaoyang Qu et al. [33] proposed A Novel Two-step Traceback Scheme for DDoS 

Attacks traceback scheme to track DDoS attack source by dividing the tracing process 

into two steps. In the first step, Packet Marking Method based on Autonomous 

System (ASPMM) is adopted to determine the attack-originating Autonomous System 

(AS). In the second step, Non-repeated Probabilistic Packet Marking (NRPPM) is 

used to identify the exact origin of the attacks in the specific AS. Compared with 
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previous algorithms, the two-step traceback scheme has the benefits of low bandwidth 

consumption, quick convergence speed, light computational overhead of address 

recombination; it can decrease the number of packets the path reconstruction needs, 

and improve the efficiency of path reconstruction, hence making it possible to trace 

the DDoS attack source rapidly. 

2.8.2 Research Gaps 

Burch and Cheswick [18] could be easily fooled by attackers by creating stealth 

traffic as well as the enormous load on the network created causes the users to suffer a 

lot. 

FMS [19], SPIE [23], ingress filtering [21] had implementation issues. Partial 

implementation of these solutions caused loopholes in system which could be easily 

exploited to attack victims. 

FMS [19] proposed an 11 bit hash value to be included in the identification field of 

the IP header. Research proved that 11 bit hash value fails (start to collide) after the 

total number of attacker exceeds 60[ 34]. 

ICMP traceback messages [20] could be easily created by attackers thus they can be 

mixed with actual packets generated by routers to misguide victim's calculations. 

AMS [25] biggest disadvantage was to rely on external tools for topology creation. 

AMS Calculated the distance from victim to marked router depending upon AMS 

enabled routers whereas the topology created by the tools also included the legacy 

routers. This difference causes a loophole in the system. 

Route Based Filtering [26] relied on BGP routers for updating which changes very 

frequently so the real time updating was a big issue. 

Algebric Traceback [27] does not scale to a large number of nodes because of its 

extensive calculations and requirement for a high performance routers at each node. 
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Ruiliang Chen et al. [30] did not have the capability of scaling well. If the attackers 

increase there power the system could easily be nailed down. 

Rajesh Sharma et al. [31] and Zhaoyang Qu et al. [33] solutions biggest drawback was 

that it depends upon ISP or Autonomous Systems for routing information. The most 

difficult part of the scheme will be to bring all the AS to a consent to use the solution 

so obviously they had implementation issues. 

Bhawna et al. [32] framework depends upon header forwarding to the victim but the 

solution provided was very fragile. It did not scale well due to the storage required at 

the routers for the packets so practically can not be implemented. 

From all above gaps found in the earlier work done by many of the authors, following 

is the summary of some of the properties which are crucially required in a proposed 

scheme. 

1. Proposed solution must work even if partially deployed across routers 
in the Internet. 

2. It must require only a small hardware change on routers. 
3. It must allow a victim to identify the attack path after only a small 

number of packets. 
4. It could scale to a large number of attackers. 
5. It must allow a victim to Traceback locally, without communicating 

with any router or ISP. 
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Chapter 3 	
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Defense Strategy Against DDoS Attacks 

Every solution works on the basis of some of the facts of the system in which it is 

going to be implemented, so is our solution. Before proposing we assume some 

assumptions which should be fulfilled by the network. 

3.1 Assumptions 

We assume the following network environment. Every host, either a client or a server, 

is connected to its local edge router. Edge routers are in turn interconnected by core 

routers. The server being attacked is called the victim. A study [34] has shown that 

95% of the routes observed in the Internet have fewer than five observable daily 

changes. So we make the reasonable assumption that every route from a client to the 

victim is fixed during the timeframe of interest. We also assume that Internet routers 

are not compromised. 

We use the term false negative to denote a zombie machine whose attack packets have 

not been filtered, and use the term false positive to denote a legitimate client whose 

packets have been incorrectly throttled. 

Like other packet marking based mitigation schemes, we assume the existence of an 

IDS module installed at the victim (or at its firewall), which is able to identify and 

collect malicious packets. 

3.2 Proposed Solution 

The proposed solution provides for reactive mitigation of the effect of DDoS attacks 

as described next. Whenever a packet arrives at a router (belonging to a predefined 

set) to be forwarded to the potential victim server, instead of sending that packet 

directly on the outbound link, the router mark the packet and then forward it to the 
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server for characterization. This marking is from the family of PPM (Probability 

Packet Marking [35]. 

The technique to be used in this solution for mitigation provides the dual functionality 

of IP Traceback as well. The 16-bit IP Identification field in the header of the original 

packet will be used for traceback purposes. 

The packets sent to the victim server will be subject to the characterization test 

described next. For characterization, Traffic Measurement Analysis (TMA) [36] 

technique will be used as part of this Solution. The TMA is a well proved technique 

for characterization proposed by Lersak Limwiwatkul et al. Any other technique can 

be used convincingly rather then TMA without affecting the efficiency of the 

proposed solution. 

Distance L 

44  

*=_ 	___ 	Server V 

Bottleneck Link C 

.-I 

SetR 
Clients 

Figure 3.1: Sample topology to illustrate proposed solution. 

To get a better understanding of the proposed model, consider a sample topology 

shown in Figure 3.1. The topology considered is similar to the one used traditionally 

to depict a typical client-server scenario in the Internet for simulation purposes [37]. 
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Let R be a set of routers at a pre-defined distance L 
from the server V. Let C be a single bottleneck link 
at a distance less than L from V. 

Every packet aimed at V and passing through a 
router r E R is marked at r. The router r stamps the 
hash of its own IP address in the identification field 
and the TTL field is set to a Constant value. The 
MSB of TTL field is copied to MSB of 
identification field. 

Every router decrements the TTL field thus 
automatically providing the distance from the 
marking router to the Victim Server. 

At C, the TMA Characterization module is run on 
the individual flows. 

Result of 
Characterization? 

Attack 

Pushback as well as 
traceback modules are 
started and the attacker is 
identified with the help 
of the marking done in 
packets. 

Legitimate 

No action required. 

Figure 3.2: Flowchart depicting details. 

The clients (attack and legitimate) send their requests (indicated by thick arrows) to 

the server V. The routers (set R) en route from the clients to the server will mark 

these packets and send the packets to V (indicated by thin arrows). Once these 

packets reach the bottleneck link C, they will undergo the TMA test and thus the 
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flows will be characterized as attack or legitimate. If a flow is characterized as a 

legitimate flow, No action is required. If a flow is characterized as an attack flow, 

then the router of Victim V informs the routers in upward direction to start pushback 

for giving immediate relief to the Victim. As well as the method to find the attacker 

(traceback) starts on Victim server to identify the attacker. A flowchart depicting the 

solution is illustrated in Figure 3.2. The effort of creating an attack graph is saved in 

case of legitimate flows. 

This chapter only gives a brief overview of the proposed Solution. The individual 

phases of the Solution are considered in detail in the subsequent chapters. The aim of 

this. chapter is to show the big picture so that the forest is not missed for the trees. 

The details of the Characterization, Mitigation and Traceback techniques applied in 

the framework are covered in the subsequent chapters. 
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Chapter 4 

Characterization, Mitigation and Traceback 

An overview of the entire solution implemented as part of this work has been 

presented in Chapter 3. In this chapter, the three phases of Characterization, 

Mitigation and IP Traceback are covered in detail. 

4.1 Characterization 

Characterization is the process of identifying accurately which of the flows aimed at 

the victim are attack flows and which ones are legitimate. Lersak Limwiwatkul et al. 

[36] proposed the Traffic Measurement Analysis to identify any kind of suspected 

flows in the incoming traffic flows. In this solution, Traffic Measurement Analysis 

based characterization scheme is used for characterizing DDoS attacks. 

The method works on the basis of general characteristics of the Traffic. It proposes to 

measure various characteristics like volume, distribution and ratio of the packets and 

any discrepancy in the measurements of the characteristics will prove any suspicious 

move. 

Before applying Traffic Measurement Technique we can apply some rules like header 

check on the packet header which allow us to subcategorize the packets on which 

measurement is to be done. After having header check traffic measurements should 

be applied to study the attack traffic signature. The Algorithm proposed by the 

authors is:- 

1. Input is the Network Packet. 

2. Consider whether packet is matched with Designed conditional rules or 

not, if not, it should be declined. 

3. Consider whether the test period is within the considering period (AT) or 

not, if not, the period should be changed. 

4. If packet matched with rules and within AT, packet will be analyzed by 

Traffic Measurement Analysis. 
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5. 	The data from the analysis can be used further; for example creating the 

graph for monitoring. 

The matched packets can be processed for the traffic measurement analysis using the 

following rules: 

Let AT be the defined time period; For example 0.5 Seconds 

• 	Volume Measurement Analysis equation is- 

Volume= Total Number of packet 
AT 

Here, we count the number of packet occurring during a period of time. 

• Distributed Measurement Analysis Equation is- 

Distributed= Total Number of distinct packet 
AT 

Here we measure the number of distinct packets of the observing data packets per 

AT. 

• Ratio Measurement Analysis Equation is- 

Ratio= Total Number of packets incoming 
Total Number of packets outgoing 

Here we divide the total number of incoming packets with the total number of 

outgoing packets. 

4.1.1 The Packet Process 

TCP is a sliding-window and acknowledgement (ACK) based transport protocol. The 

window size of a TCP flow limits the number of in-flight packets it can have in the 

network. The window size is determined by the advertised window size of the 
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receiver and the estimated congestion level of the network. TCP is a window- based, 

and Acknowledgement (ACK) - based transport protocol widely used in the Internet. 

Every data packet arriving at the receiver can permit the receiver to transmit an ACK 

packet to the sender. Similarly, every ACK packet arriving at the sender allows it to 

place a new data packet on the network. Thus, if we monitor the network at any point 

between the sender and the receiver and if we observe a certain number of packets 

belonging to a particular flow, then it is quite probable that the same number of 

packets belonging to that flow will be visible after one round — trip time between the 

sender and the receiver. This introduces periodicity in a normal TCP flow and causes 

the ratio of incoming versus outgoing packets equals to one. Even if the TCP uses 

SACK (Selective Acknowledgement) and doesn't send the acknowledgement for 

every packet, still the ratio can not exceed three (Assumption). In an attack flow, the 

attackers overwhelm the server by not obeying the TCP policy of waiting for ACK 

packets before the outstanding data packets can be sent. Thus, there is the loss of a 

constant ratio of incoming to outgoing packets in such flows. 

4.1.2 Algorithm Used 

Let Tsaz„pie  be the time interval after which the flow statistics (packet arrivals) are 

monitored continuously per flow. Let NC111Te1t  be the number of packets arrived till the 

sample instant from the time the flow was active minus the number of packets arrived 

till the last sample instant. Let volume_stats (named as volumeudp. txt and 

volumetcp. txt in coding) be a file of which stores the value of N,„ne„t  for the last all 

instants. The statistics of these volumes will be used for validating our results later 

into the simulation. Once the volume for the links is placed in the volume_stats, the 

traffic measurement analysis starts on the incoming packets. 

If the ratio of the incoming packets to the outgoing packets is less then three, the flow 

is tagged as the legitimate flow otherwise tagged as an attack, hence declared as the 

suspicious flow in the output. 
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The detailed steps are shown in the form of a flowchart in Figure 4.1. 

Start 
	

Start 

Sample the number of packets arriving 
every Trample  seconds. 

Let Ncu,Tent  be the difference between the 
numbers of packets arrived till the 
current sample and the number arrived 
till the last sample. It is Volume. 

(a) 

Check the total Number 
of Packets arrived at input 
link as well as the packets 
gone at the output link. 

Calculate the 
Ratio of the 
Packets 

Yes 

Is Ration<=3 	— 

No 

Flow is 
suspicious. 

Flow is not 
suspicious. 

(b) 

Add Ncuirent  as the latest element of the 
array volume stats, which maintains the 
Ncunent values of the previous all samples. 

es 

Has the flo c 	Tag flow 
been proved 	as `attack 
`suspicious': 
	

flow'. 

Figure 4.1: (a) Flowchart for sampling the number of packets per flow. (b) Flowchart 

for invoking the Traffic Measurement Analysis functionality for the online 

methodology. 

4.2 Mitigation and Traceback 

The proposed traceback mechanism is in the family of PPM (Probabilistic Packet 

Marking) traceback schemes, and consists of 3 parts: a packet marking scheme to be 

deployed at routers, pushback to be implemented at router level and, map and path 

reconstruction algorithms used by end hosts receiving the packet marking. Figure 4.2 

shows the notation we use in this dissertation. 



L 

P.dist bit 

P.hash 

q 
TTL [0] 

TTL [5] 

TTL [4::0] 

H (IP) 

b1c 

nmap 

Bit replacement for the 5 LSB of the TTL 

The distance bit in packet P 

The hash in packet P 

Marking probability 

Least significant bit (LSB) of the TTL 

Sixth bit of the TTL 

The five least significant bits of the TTL 

Compute a cryptographic hash function on the IP address, e.g., 

SHA - 1(IP) 

Concatenation of the values b and c 

Number of unique fragments needed for single IP address map 

reconstruction 

Fig 4.2: Notation used 

In proposed scheme, an attack victim is assumed to have constructed a map of 

upstream routers and their IP addresses using packet markings received before the 

attack itself occurs. Routers mark the 16-bit IP ID field of certain forwarded packets. 

The packet markings contain two elements: a hash of the marking router's IP address, 

and a distance field. Based on the distance field and the TTL of a given packet, the 

attack victim can determine from how many hops away the marking is generated. 

The victim uses the hash fragments and distance calculation from the markings in the 

malicious packets in conjunction with its router map to identify a candidate set of 

marking routers. After a number of different hash fragments matching a particular 

router arrive at the victim, that router is added to the reconstructed attack path. 

4.2.1 Packet Marking 

In the proposed scheme, as in all other PPM schemes, routers mark (overwrite) the 16 

bit IP Identification (IP ID) field of the IPv4 header of a small percentage of the 

packets that they forward. A router marks a forwarded packet with a certain 

probability, q, which is a global constant among all solution enabled routers. A 

packet mark is divided into two fields, as shown in Figure 4.3. The first field, denoted 
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as b, is the 1-bit distance field. The second field involves the router's hash. Each 

router pre-calculates a hash of its IP address. 

1-bit 	 15-bits 

b 	 H (IP) 

Figure 4.3: Marking field diagram. (The distance field b is one bit and the remaining 

15 bits are used for the hash.) 

Unlike other PPM schemes, solution has a deterministic marking aspect. For each 

packet that a particular router has not probabilistically marked, that same router 

calculates a boundary check based on the packet's TTL field and distance bit. The 

boundary check contains a calculation of the minimum bound on the distance, in 

solution-enabled and legacy router hops, since the packet was last marked. If the 

packet was not marked for the past 32 hops then the boundary check evaluates to true 

and the packet is automatically marked by the forwarding router. The boundary check 

is evaluated as: (blc- TTL [5::O]) mod 64 > 32, where blc denotes the concatenation 

of the distance bit b in the packet with the global constant c, and TTL [5::0] denotes 

the six least significant bits of the TTL field. 

When marking a packet a router sets the 5 least significant bits of the packet's TTL to 

a global constant c, and stores the 6th bit of the TTL in the distance field b. This last 

step allows the next solution-enabled router, or the packet receiver, to determine the 

distance since the router's mark. We explain the details of calculating the distance in 

the following section. Finally, if a router does not mark the packet then it will not 

change any part of the IP ID field. 

4.2.2 Calculating Distance 

Recall the distance related operations a marking router performs in solution: it sets the 

5 least-significant bits of the packet's TTL field to a global constant c, and stores the 

sixth bit of the TTL in the distance field b. When a packet arrives at its destination, 

the distance at which the packet was marked is computed as: d = (blc - TTL[5::O]) 

mod 64, where bic denotes concatenation of the one bit distance field b with the five 
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bit TTL replacement constant c. Because legacy routers decrement the TTL, the 

distance is representative of the exact number of hops from a marking router, rather 

than just the number of hops of traceback enabled routers. Invalidating the distance 

space (through boundary check) and having solution-enabled routers automatically 

mark packets with distances in the invalid range will increase the percentage of 

marked packets relative to other traceback schemes using the same marking 

probability, q. 

4.2.3 Pushback 

Proposed solution uses a modified version of pushback. It removes the disadvantage 

of pushback which makes the legitimate users suffer. According to the system we 

consider that we already have means to detect an attack. The attack alarm will be 

supported by a sudden increase in the arrivals of hashed packets that signifies an 

abnormal increase in traffic. This alarm activates the pushback as well as the path 

reconstruction (As described in Section 4.2.5). Rather then stopping the complete 

traffic whose signature match with congestion signature the pushback just limits the 

traffic up to the maximum capability of the connecting link of the routers (which was 

decided as a part of TCP/IP handshake), as our victim is capable of handling that 

much load easily. For example if the capacity of the link between the victim and the 

router next to victim is having a capacity of 100Mbps. At the time of attack, there is 

150Mbps data arriving, out of which 50Mbps is from legitimate user and 100 Mbps is 

from attacker. 

The original pushback orders the upstream router to stop all the traffic whose 

signature match with congestion signature so it will stop all the 100Mbps traffic as 

well as some part of legitimate user (whose signature match with congestion 

signature). This make the innocent user suffer. The modified version of pushback 

stops the only extra 50Mbps rather then stopping all 100 Mbps. It will make less 

legitimate users suffer due to unintentional match of signature. Also it would not 

affect the victim as victim is already capable of handling that much of load. 
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4.2.4 Map Reconstruction 

Proposed scheme need the map of upstream routers for traceback. For map 

reconstruction any of the tools available can be used as the proposed scheme does not 

have a difference in the distance given by the tool to the distance calculations done by 

the scheme. For simulations purposes we have not developed the map reconstruction 

module as we are well aware of the topology. This is a pre-processing step which 

should be done offline so it does not affect the actual efficiency of the system. 

In this section, we describe how the victim can generate this upstream router map. 

From Section 4.2.1, every packet mark consists of an IP address hash fragment, a 

fragment number, and a distance bit. Its map reconstruction leverages the fact that an 

endhost can group together packets that traverse the same path during a TCP 

connection. When receiving packet markings from the same distance and TCP 

connection, an endhost can assume that the markings come from the same router. 

Thus, the endhost collects nmap unique fragments from a particular distance, scans 

through the space of all possible IP addresses, and adds the IP address whose hash 

matches the nmap fragments to the upstream router map. 

4.2.5 Path Reconstruction 

The purpose of an IP Traceback mechanism is to reconstruct the IP addresses of the 

routers on the path from the attacker to the victim. We assume that the victim has 

completed the map reconstruction phase that we outline in the previous section (i.e., 

generated the map of upstream routers). Similar to all previous IP Traceback 

mechanisms, we assume that the victim has a mechanism to identify malicious 

packets, so that it can perform traceback. In the path reconstruction phase, the victim 

uses its router map and marked attack packets to reconstruct the attack path, which is 

the set of all routers that forwarded attack packets. Earlier we describe that the victim 

can detect how many routers the packet traversed since it was marked, using .the one 

bit distance field b, the last six bits of the TTL, and the five bit TTL replacement 

constant c: d = (bic - TTL[5::O]) mod 64. 
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Based on these values, the victim can identify candidate attack path routers after 

receiving only a single marked packet as follows. The victim compares the hash 

fragment it receives with the hash fragments of all routers at the distance d in its 

router map, and marks any router with a matching fragment. In the case that the 

victim's map contains a unique path from the reconstructed router to the victim, the 

victim can knows that the router, and all its downstream routers, are on the attack path 

as well. 

- 33 - 



Chapter 5 

System Design and Implementation 

5.1 System Design 

To investigate the effectiveness of the proposed framework in defending against 

DDoS attacks, the simulation on a simplified topology has been carried out on 

Network Simulator 2(ns-2. 33) [38]. A large number of scenarios are explored. 

5.1.1 Network Simulator 

Network simulations for Ns-2[38] are composed of C++ code, which is used to model 

the behaviour of the simulation nodes, and oTcl scripts that control the simulation 

and specify further aspects, for instance the network topology. This design choice 

was originally made to avoid unnecessary recompilations if changes are made to the 

simulation set-up. Back in 1996 when the first version of ns-2 was released, this was 

a reasonable intent, as the frequent recompilation of C++ programs was indeed time-

consuming and slowed down the research cycle. However, from today's perspective, 

the design of ns-2 trades off simulation performance for the saving of recompilations, 

which is questionable if one, is interested in conducting scalable network simulations. 

We chose Ns2 over the other simulation tools available like OPNET, OMNET++, 

SWANS, JiST, and SimPy because of the vast options available in Ns2 for academic 

research. Some of the tools mentioned above are not freeware which makes them 

restricted to the developer community and some of them provide the facility to work 

in Ad-Hoc networks only. As my work was focussed in wired networks, Ns2 was the 

best option to choose. 

5.1.2 System Components 

The system consists of the following components: 
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Clients: Two types of clients are considered: Legitimate Clients and Attackers. The 

legitimate clients obey the TCP protocol, whereas it is not expected of the attackers to 

adhere to the TCP congestion avoidance protocols. 

Server: The service provided by the server is a generic TCP-based service. The 

legitimate clients connect to the server with the aim of achieving file downloads, 

whereas the attackers aim at clogging the bottleneck link leading to the server in order 

to make the service unavailable to the legitimate clients. 

Agents on Intermediate Routers: one new agent (IFS) is created in order to provide for 

the functionality of the proposed framework. They are deployed at certain 

intermediate routers. They are discussed in detail next. 

5.1.3 Simulation Model 

Clients: The legitimate clients are modelled by FTP applications run on 

TCPNewReno (a flavour of TCP). They obey the constraints imposed by the TCP 

protocol. The attackers are modelled by CBR traffic on UDP. This choice is done as 

a . UDP sender does not need to wait for any acknowledgement from the receiver 

before sending out further outstanding packets. This property is apt to model an 

attacker as an attacker would normally send out large bursts of packets continuously 

with the aim of flooding the links leading to the server under attack. 

Server: The server is modelled by a simple TCPSink which sends out ACK packets 

for packets it receives. 

IFS: Integrated Functional System agent is deployed on the routers that are located at 

a certain pre-determined distance L from the server. This agent receive packets from 

the clients (legitimate and attackers) that are actually aimed for the server and mark 

them before sending to the server. 

Flow Monitor: ns-2 provides for the Flow Monitor feature which is used to monitor 

individual flows. To provide the functionality of Characterization of flows as attack 
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or legitimate, the Flow Monitor is modified. The statistics of every flow are sent to 

characterizing modules which label the traffic as legitimate or Attack. 

5.2 Implementation 

5.2.1 Simulation Topology 

Figure 5.1 illustrates the simulated network topology. The topology considered is 

similar to the one used traditionally to depict a typical client-server scenario in the 

Internet for simulation and validation purposes [32]. 

The simulation is carried out in Network Simulator ns-2 [38]. The legitimate clients 

are TCP agents that request files of size 1 Mbps each. The attackers are modelled by 

UDP agents. The rate is kept very high (3Mbps) which is very typical of an attack 

flow. A UDP connection is used instead of a TCP one because in a practical attack 

flow, the attackers would normally never follow the basic rules of TCP, i.e. waiting 

for ACK packets before the next window of outstanding packets can be sent, etc. 

Each of the links is a duplex link of 5 Mbps bandwidth, with the exception of the high 

bandwidth bottleneck link which is modelled by a combination of two simplex links 

of 20 Mbps bandwidth each. The Flow Monitor tailored for the purpose of 

Characterization is attached to the bottleneck link. As illustrated in Figure 5.1, the 

legitimate clients, the attackers, the agent IFS are differentiated by colour. 

5.2.2 Procedures 

The procedures used to implement the various features discussed are described next. 

5.2.2.1 Characterization 

For characterization the method used is Traffic Measurement Analysis [36]. The 

scheme is already a proved solution for DDoS attack characterization. The most 
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Figure 5.1: Topology used for Simulation. 

powerful advantage of the scheme is that it did not make flash crowd as a DDoS 

attack as done by many other solutions available. 

Any of the other solution for characterization can comfortably replace the used 

solution for characterization. The Flow Monitor in NS2 is modified to characterize 

the attack as well as to start the pushback and traceback at victims end. 

5.2.2.2 Mitigation and Traceback 

IFS: The IFS agent is implemented by the class IfsAgent. Its recv function provides 

the functionality of receiving the packets, marking them according to the rules 

described and then forwarding it to the receiver. 

5.2.3 Simulation Parameters 

Table 5.1 lists the simulation parameters, their values and description of these 

parameters used in the simulation. 
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5.2.4 Performance Evaluation Metrics 

The main purpose for simulation is to study the cost and benefit of the proposed 

framework. The cost is incurred by the overhead in terms of the additional router 

capacity needed as well as the network capacity required for implementing the 

solution. The benefit is measured in terms of the improvement in the congestion 

window of the legitimate users when the system is under attack. 

Parameter Value Description 

Simulator ns-2 Simulation tool 

Number of Nodes 30 Network nodes 

Client Load 0. 	1 - 0. 4 Relative load* issued by client 

requests 

Attack Load 0-0. 9 Relative load due to attack 

traffic. 

Simulation time 0-300 sec Simulation duration 

Attack time 150— 180 sec Attack duration 

Legitimate Traffic type TCP File Transfer Protocol 

Attack Traffic Type UDP Constant Bit Rate 

Client-Router link BW 5 Mbps Bandwidth 

Attacker-Router link BW 5 Mbps Bandwidth 

Router-Router link BW 5 Mbps Bandwidth 

Router-Server link BW 40 Mbps Bandwidth 

Table 5.1: Simulation Parameters. 
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Chapter 6 

Results and Discussion 

An analysis of the simulation experiments carried out in ns-2 [38] is carried out next. 

6.1 Results for Characterization 

Legitimate Flow (T sple=O. 2 seconds):- 

For Tsa mpie = 20 ms. a sample result is as shown next. The figure 6.1 shows 

the expected behaviour of a user when no attack is active. The starting peak of the 

traffic is due to slow start phase. Once the slow start phase is over and the window 

size is fixed the legitimate flow goes steady. 

25 

►~ Dx '\ ►~ '~ ro O ~, h O '~ D~ ' D~ 3 ro O 1, O• O• O• 	N. ' '• ci,• 1' t-• 3• 	 • • • 4• 

Time 

■ Volume of Legitimate Traffic 

Figure 6.1: Traffic Volume for a legitimate flow. 

The packet process shows the desired behaviours of the users. Once the slow start 

phase is over they should never send packets more then the window size allotted. 
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The packet process of an attack flow is illustrated in Figure 6.2. 
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Figure 6.2: Traffic volume for an attack flow. 
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Figure 6.3: Congestion Window of a legitimate flow. 



The packet process highlights the fact that it was a bursty DDoS attack. The process 

kills the traffic of the legitimate users. When the attack is on the volume of the 

legitimate users almost falls to zero. The attack volume is so high that it consumes all 

the bandwidth between bottleneck router and the Destination and does not allow any 

of the legitimate traffic to flow. 

The behaviour of the flow can also be judge by seeing the congestion window of the 

TCP links as shown in Figure 6.3. We will evaluate our mitigation and traceback on 

the basis of this congestion window only. 

6.1.1 Sample Output 

The characterization technique is applied to the simulation topology and the results 

obtained are shown next. The 6 legitimate sources are started first at same time (0.0); 

hence they are allotted flow ids 0,2,4,7 to 9. Then the 4 attackers are started at the 

same time (2.0) to depict the real-world scenario where multiple attackers (zombies) 

would synchronize their start times and end times in order to make their attack more 

effective. Since they are started after the first 6 sources are already active, they are 

assigned flow ids 1, 3, 5 and 6. A few relevant lines of output are shown below. 

After each 0.2 seconds the method gives us an output that which of the incoming 

flows are suspicious. Nothing suspicious turns up unless time 2.0 and that is the time 

when attack starts. 

Nothing suspecious from Node 0 
Nothing suspecious from Node 1 
Nothing suspecious from Node 2 
Nothing suspecious from Node 3 
Nothing suspecious from Node 4 
Nothing suspecious from Node 5 
Nothing suspecious from Node 6 
Nothing suspecious from Node 7 
Nothing suspecious from Node 8 
Nothing suspecious from Node 9 

------------------------------------
Nothing suspecious from Node 0 
Nothing suspecious from Node 1 
Nothing suspecious from Node 2 
Nothing suspecious from Node 3 
Nothing suspecious from Node 4 
Nothing suspecious from Node 5 
Nothing suspecious from Node 6 
Nothing suspecious from Node 7 
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Nothing suspecious from Node 8 
Nothing suspecious from Node 9 

--------------------------------------
Nothing suspecious from Node 0 
Nothing suspecious from Node 1 
Nothing suspecious from Node 2 
Nothing suspecious from Node 3 
Nothing suspecious from Node 4 
Nothing suspecious from Node 5 
Nothing suspecious from Node 6 
Nothing suspecious from Node 7 
Nothing suspecious from Node 8 
Nothing suspecious from Node 9 

------------------------------------
Nothing suspecious from Node 0 
Suspecious behaviour from Node 1 
Nothing suspecious from Node 2 
Suspecious behaviour from Node 3 
Nothing suspecious from Node 4 
Suspecious behaviour from Node 5 
Suspecious behaviour from Node 6 
Nothing suspecious from Node 7 
Nothing suspecious from Node 8 
Nothing suspecious from Node 9 

------------------------------------
Nothing suspecious from Node 0 
Suspecious behaviour from Node 1 
Nothing suspecious from Node 2 
Suspecious behaviour from Node 3 
Nothing suspecious from Node 4 
Suspecious behaviour from Node 5 
Suspecious behaviour from Node 6 
Nothing suspecious from Node 7 
Nothing suspecious from Node 8 
Nothing suspecious from Node 9 
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6.2 Mitigation and Traceback 

There are some of the advantages which proposed scheme offer as compared to the 

already available solutions. The advantages are as Follows: 

1. Proposed solution works even if partially deployed across routers in the 
Internet. 

2. It requires only a small hardware change on routers. 
3. It allows a victim to identify the attack path after only a small number of 

packets. 
4. It can scale to a large number of attackers. 
5. It allows a victim to Traceback locally, without communicating with any 

router or ISP. 

In proposed solution marking scheme allows 15 bit hash to be included in the 

identification field because it saves the distance field by adding it to the TTL field. 

With a 15 bit hash value the false positives are very less as compared to the solution 

which have an Ii bit hash value due to the distance field. The data provided by 
skitter project [39] (Number of unique routers vs. Distance) can be.used to make 

comparisons. Figure 6.4 shows the data provided by the skitter project. 

f-root monitor(Palo Alto CA) 

45000 
40000 
35000 
30000 

'~ 20000 	
= 

6 15000 	 - 
10000 
5000 
0 

1 35 7 9 11 13 15 17 19 21 23 25 27 29 

Hops from Victim 

Figure 6.4: Number of unique IP addresses at each hop away from the f-root Skitter 

monitor 

According to the data provided by the skitter project, if we calculate the false 

positives generated by proposed solution that will be comparatively far less then other 
schemes with 11 bit hash values as shown in table 6.2 
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Hops from Victim False positives Any other 11 bit hash 

scheme 

5 0.03 0.48 

10 0. 97 15. 	6 

15 0. 73 11. 	7 

20 0. 	12 1. 95 

25 0. 006 0. 09 

Table 6.2: False positives 

It can safely Traceback even with single packet arrival from the attacker. It can safely 

calculate d that is the distance of the router which marked the packet. After getting 

the packet the victim matches the hash of the packet with the hash values of all the 

routers at a distance d (As Described in 4.2.5) from victim. In the case that the 

victim's map contains a unique path from the reconstructed router to the victim, the 

victim can knows that the router, and all its downstream routers, are on the attack 

path. 

For showing the efficiency of the system we show the congestion window of the 

legitimate users in following four scenarios (Figure 6.5): 

1. No attack and Proposed Solution not used. 

2. No Attack and Proposed Solution used. 

3. Attack and Proposed solution used. 

4. Attack and Proposed solution not used. 

The Solution does not impact the congestion window so the "Cost" is not in the form 

of any reduction in congestion window but it will be the extra computing capabilities 

required at each router. The "Cost" also includes the hardware and software 

requirements required at the victim end. We need the 15 bit hash value of each IP 

address which is valid but this calculation can be done offline so it does not provide 

any delay in the processing of the packets at routers. The "Benefit" of the system is 

the improvement in the congestion window when the system is under attack. As the 
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Figure 6.5: Cost-Benefit Analysis of the Mitigation Technique. 
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Figure 6.6: The comparison between the proposed scheme [40) and 
Bhawna et al. [32] framework 
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proposed solution is a reactive solution so as soon as attack starts the congestion 

window of the legitimate user falls drastically but because of the efficiency of the 

solution, the congestion window starts improving. 

For comparison purpose, we preformed a similar simulation using Bhawna et al.[32] 

framework. Figure 6.6 illustrates the relation between path length and the number of 

packets required to reconstruct the attack paths. It is not easy to see, when 

reconstructing the path of the same path. length, the number of packets the proposed 

scheme requires is approximately half of the number that the Bhawna et al. [32] 

framework requires. So it can reduce reconstruction time and improve the speed of 

traceback. 



Chapter 7 

Conclusions and Future Work 

7.1 Conclusions 

Efficiency and scalability are the key requirements in design of defense against 

Distributed Denial of Service Attacks. The proposed scheme provides a solution for 

defense against flooding-based DDoS attacks. The effectiveness of the scheme is 

illustrated by an appropriate simulation testbed. 

The solution belongs basically to the family of PPM [35] but it improves some of the 

disadvantages which were earlier found in many of the techniques from the same 

family. It combines the two basic solutions available: Pushback and PPM. Packets 

are marked probalistically while on the way to the destination. These marked packets 

are characterized and if attack is alarmed, pushback starts to give immediate relief to 

the user. In the mean while the traceback module works on its way to the attacker. 

As described in Section 6.2, there are five advantages offered by the proposed 

scheme. The advantages are as Follows: 

1. The solution works even if partially deployed across routers in the 
Internet. 

2. It requires only a small hardware change on routers. 
3. It allows a victim to identify the attack path after only a small number 

of packets. 
4. It can scale to a large number of attackers. 
5. It allows a victim to Traceback locally, without communicating with 

any router or ISP. 

We compared some of the available solutions to the proposed scheme on the basis of 

these properties and the table 7.1 shows the comparison. As seen the solution clearly 

outstands the existing works. Results in 6.5, 6.6 prove the superiority of the solution 

over the others. 
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hanism 1. 2. 3. 4. 5. 
h and Cheswick[18] X X 
19] X X X 
25] X X X 
ich[22] X X X 
ric Traceback[27] X X X 

L23] X X 
.vna[32] X X 
dosed Scheme[40] X X X X X 

Table 7.1: Available schemes Vs proposed scheme. 

Suggestions for Future Work 

he assumption that the victim has a method available for characterizing the attacks 

an be discarded and an efficient characterization technique can be added to make it a 

complete framework. The map reconstruction phase of the solution depends upon the 

third party tool which was a disadvantage in earlier strategies [25] due to the 

difference in distance calculations. The disadvantage is removed in the proposed 

scheme but still there is a scope of developing a module for map reconstruction as 

proposed. 

Proposed scheme is a reactive technique. It mitigates the DDoS attacks very 

effectively but still once the victim has to face the attack and that will result in 

collateral damage. To reduce the effect the technique can be modified to be a 

proactive technique. For probabilistic packet marking the scheme used 16 bit 

"Identification" field. If the QoS is not the primary concern then the "Type of 

Service" field can be used along with the "Identification" field which will greatly 

improve the efficiency of the system. Moreover the Hash marked on packets can be 

fragmented to make scheme more robust. 
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#final.tcl 
#Create the simulator instance 
set ns [new Simulator] 
$ns color 1 Red 
$ns color 3 Red 
$ns color 5 Red 
$ns color 6 Red 
$ns color 0 Blue 
$ns color 2 Blue 
$ns color 4 Blue 
$ns color 7 Blue 
$ns color 8 Blue 
$ns color 9 Blue 

#Open the NAM trace file 
set nf [open out.nam w] 
$ns namtrace-all $nf 

#Open the trace file 
set tf [open out_expo.tr w] 
$ns trace-all $tf 

proc finish {} { 
global ns nf 
$ns flush-trace 
close $nf 
exec /home/Harsh/Desktop/ns-allinone-2.33/nam-1.13/nam 

/home/Harsh/Desktop/ns-al linone-2.3 3/ns-2.3 3 /out.nam 
exit 0 

#create 28 nodes 
for {set i 0} {$i<28} {incr i} 

set m($i) [$ns node] 

#nodes forming the bottleneck link 
set n2 [$ns node] 
set n3 [$ns node] 

#Create links between the nodes 
$ns simplex-link $m(0) $m(10) 5Mb lOms DropTail 
$ns simplex-link $m(10) $m(0) 5Mb lOms DropTail 
$ns simplex-link $m(1) $m(10) 5Mb lOms DropTail 
$ns simplex-link $m(10) $m(1) 5Mb lOms DropTail 
$ns simplex-link $m(10) $m(16) 5Mb lOms DropTail 
$ns simplex-link $m(16) $m(10) 5Mb lOms DropTail 
$ns simplex-link $m(2) $m(11) 5Mb lOms DropTail 
$ns simplex-link $m(1 1) $m(2) 5Mb lOms DropTail 
$ns simplex-link $m(11) $m(12) 5Mb lOms DropTail 
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$ns simplex-link $m(12) $m(11) 5Mb lOms DropTail 
$ns duplex-link $m(12) $m(17) 5Mb lOms DropTail 
$ns simplex-link $m(3) $m(12) 5Mb lOms DropTail 
$ns simplex-link $m(12) $m(3) 5Mb lOms DropTail 
$ns simplex-link $m(4) $m(13) 5Mb lOms DropTail 
$ns simplex-link $m(13) $m(4) 5Mb lOms DropTail 
$ns simplex-link $m(13) $m(18) 5Mb lOms DropTail 
$ns simplex-link $m(18) $m(13) 5Mb lOms DropTail 
$ns simplex-link $m(5) $m(13) 5Mb lOms DropTail 
$ns simplex-link $m(13) $m(5) 5Mb lOms DropTail 
$ns simplex-link $m(6) $m(14) 5Mb lOms DropTail 
$ns simplex-link $m(14) $m(6) 5Mb lOms DropTail 
$ns duplex-link $m(14) $m(13) 5Mb lOms DropTail 
$ns simplex-link $m(7) $m(19) 5Mb lOms DropTail 
$ns simplex-link $m(19) $m(7) 5Mb lOms DropTail 
$ns simplex-link $m(8) $m(15) 5Mb lOms DropTail 
$ns simplex-link $m(15) $m(8) 5Mb lOms DropTail 
$ns simplex-link $m(15) $m(19) 5Mb lOms DropTail 
$ns simplex-link $m(19) $m(15) 5Mb lOms DropTail 
$ns simplex-link $m(9) $m(15) 5Mb lOms DropTail 
$ns simplex-link $m(15) $m(9) 5Mb lOms DropTail 
$ns duplex-link $m(16) $m(20) 5Mb lOms DropTail 
$ns duplex-link $m(17) $m(21) 5Mb lOms DropTail 
$ns duplex-link $m(18) $m(22) 5Mb lOms DropTail 
$ns simplex-link $m(19) $m(22) 5Mb lOms DropTail 
$ns simplex-link $m(22) $m(19) 5Mb lOms DropTail 
$ns duplex-link $m(20) $m(23) 5Mb lOms DropTail 
$ns duplex-link $m(21) $m(24) 5Mb lOms DropTail 
$ns duplex-link $m'(22) $m(25) 5Mb lOms DropTail 
$ns duplex-link $m(23) $m(26) 5Mb 1 Oms DropTail 
$ns duplex-link $m(24) $m(26) 5Mb lOms DropTail 
$ns duplex-link $m(25) $m(27) 5Mb lOms DropTail 
$ns duplex-link $m(26) $n2 5Mb 1 Oms DropTail 
$ns duplex-link $m(27) $n2 5Mb lOms DropTail 
$ns simplex-link $n2 $n3 20Mb 1 Oms DropTail 
$ns simplex-link $n3 $n2 20Mb lOms DropTail 
$ns queue-limit $n2 $n3 150 

#Set up the orientation 
$ns duplex-link-op $m(0) $m(10) orient left-up 
$ns duplex-link-op $m(1) $m(10) orient left-down 
$ns duplex-link-op $m(10) $m(16) orient left-up 
$ns duplex-link-op $m(2) $m(1 1) orient left-up 
$ns duplex-link-op $m(3) $m(12) orient left-down 
$ns duplex-link-op $m(4) $m(13) orient left-up 
$ns duplex-link-op $m(5) $m(13) orient left-center 
$ns duplex-link-op $m(6) $m(14) orient left-down 
$ns duplex-link-op $m(7) $m(19) orient left-up 
$ns duplex-link-op $m(8) $m(15) orient left-center 
$ns duplex-link-op $m(9) $m(15) orient left-down 
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$ns duplex-link-op $n2 $n3 orient right-center 

#Set up 6 TCP connections 

set tcpO [new Agent/TCPlNewreno] 
$ns attach-agent $m(0) $tcpO 
set sinkO [new Agent/TCPSink] 
$ns attach-agent $n3 $sinkO 
$tcpO set fid_ 0 

set tcpl [new Agent/TCP/Newreno] 
$ns attach-agent $m(2) $tcpl 
set sink! [new Agent/TCPSink] 
$ns attach-agent $n3 $sinkl 
$tcp 1 set fid_ 2 

set tcp2 [new Agent/TCP/Newreno] 
$ns attach-agent $m(4) $tcp2 
set sink2 [new Agent/TCPSink] 
$ns attach-agent $n3 $sink2 
$tcp2 set fid_ 4 

set tcp3 [new Agent/TCP/Newreno] 
$ns attach-agent $m(7) $tcp3 
set sink3 [new Agent/TCPSink] 
$ns attach-agent $n3 $sink3 
$tcp3 set fid_ 7 

set tcp4 [new Agent/TCP/Newreno] 
$ns attach-agent $m(8) $tcp4 
set sink4 [new Agent/TCPSink] 
$ns attach-agent $n3 $sink4 
$tcp4 set fid^  8 

set tcp5 [new Agent/TCP/Newreno] 
$ns attach-agent $m(9) $tcp5 
set sink5 [new Agent/TCPSink] 
$ns attach-agent $n3 $sink5 
$tcp5 set fid_ 9 

#create FTP traffic sources 

set flpO [new Application/FTP] 
$ftp0 attach-agent $tcpO 

set ftpI [new Application/FTP] 
$flp 1 attach-agent $tcp 1 
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set ftp2 [new Application/FTP] 
$ftp2 attach-agent $tcp2 

set ftp3 [new Application/FTP] 
$ftp3 attach-agent $tcp3 

set ftp4 [new Application/FTP] 
$ftp4 attach-agent $tcp4 

set ftp5 [new Application/FTP] 
$ftp5attach-agent $tcp5 

#Setup 4 UDP connections 

set udpO [new Agent/UDP] 
$ns attach-agent $m(1) $udpO 
$udpO set fid_ 1 

set udp 1 [new Agent/UDP] 
$ns attach-agent $m(3) $udpl 
$udp1 set fid_ 3 

set udp2 [new Agent/UDP] 
$ns attach-agent $m(5) $udp2 
$udp2 set fid_ 5 

set udp3 [new Agent/UDP] 
$ns attach-agent $m(6) $udp3 
$udp3 set fid_ 6 

# Setup Null Agents 

set nu110 [new Agent/Null] 
$ns attach-agent $n3 $nullO 

set null l [new Agent/Null] 
$ns attach-agent $n3 $nulll 

set nu112 [new Agent/Null] 
$ns attach-agent $n3 $null2 

set null3 [new Agent/Null] 
$ns attach-agent $n3 $null3 

#Setup CBR over UDP connections 

set cbrO [new Application/Traffic/CBR] 
$cbrO attach-agent $udpO 
$cbrO set type_ CBR 
$cbrO set packetSize 1000 
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$cbr0 set rate_ 3Mb 

set cbrl [new Application/Traffic/CBR] 
$cbr 1 attach-agent $udp 1 
$cbrl set type CBR. 
$cbrl set packetSize 1000 
$cbrl set rate 3Mb 

set cbr2 [new Application/Traffic/CBR] 
$cbr2 attach-agent $udp2 
$cbr2 set type_ CBR 
$cbr2 set packetSize_ 1000 
$cbr2 set rate 3Mb 

set cbr3 [new Application/Traffic/CBR] 
$cbr3 attach-agent $udp3 
$cbr3 set type_ CBR 
$cbr3 set packetSize_ 1000 
$cbr3 set rate 3Mb 

#Set the IFS Agents 

set ifs0 [new Agent/Ifs] 
$ns attach-agent $m(10) $ifs0 

set ifs 1 [new Agent/Ifs] 
$ns attach-agent $m(10) $ifs 1 

set ifs2 [new Agent/Ifs] 
$ns attach-agent $m(1 1) $ifs2 

set ifs3 [new Agent/Ifs] 
$ns attach-agent $m(12) $ifs3 

set ifs4 [new Agent/Ifs] 
$ns attach-agent $m(13) $ifs4 

set ifs5 [new Agent/Ifs] 
$ns attach-agent $m(13) $ifs5 

set ifs6 [new Agent/Ifs] 
$ns attach-agent $m(14) $ifs6 

set ifs? [new Agent/Ifs] 
$ns attach-agent $m(1 9) $ifs7 

set ifs8 [new Agent/Ifs] 
$ns attach-agent $m(15) $ifs8 



set ifs9 [new Agent/Ifs] 
$ns attach-agent $m(15) $ifs9 

#Make connectivity between TCP and IFS agents 

$ns connect $tcpO $ifsO 
$ifsO actual $tcpO 
$ns connect $ifsO $sinkO 

$ns connect $tcp1 $ifs2 
$ifs2 actual $tcpl 
$ns connect $ifs2 $sinkl 

$ns connect $tcp2 $ifs4 
$ifs4 actual $tcp2 
$ns connect $ifs4 $sink2 

$ns connect $tcp3 $ifs7 
$ifs7 actual $tcp3 
$ns connect $ifs7 $sink3 

$ns connect $tcp4 $ifs8 
$ifs8 actual $tcp4 
$ns connect $ifs8 $sink4 

$ns connect $tcp5 $ifs9 
$ifs9 actual $tcp5 
$ns connect $ifs9 $sink5 

#Make connectivity between UDP and IFS agents 
$ns connect $udpO $ifsl 
$ifsl destination $nullO 
$ns connect $ifsl $nullO 

$ns connect $udpl $ifs3 
$ifs3 destination $null l 
$ns connect $ifs3 $null l 

$ns connect $udp2 $ifs5 
$ifs5 destination $null2 
$ns connect $ifs5 $null2 

$ns connect $udp3 $ifs6 
$ifs6 destination $nu113 
$ns connect $ifs6 $nu113 

#Attach A Flow Monitor 
set rlfin [$ns makeflowmon SrcDestFid] 
$ns attach-fmon [$ns link $n2 $n3] $rlfm 
set flowdesc [open mon.tr w] 
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$rl fm attach $flowdesc 
$rlfm set pdrops_ 
set fcl [$rlfm classifier] 

#connect queue monitors for characterization 
set qmonO [$ns monitor-queue $m(16) $m(10) mff] 
set qmonl [$ns monitor-queue $m(10) $m(1) mff] 
set qmon2 [$ns monitor-queue $m(12) $m(1 1) mff] 
set qmon3 [$ns monitor-queue $m(12) $m(3) mff] 
set qmon4 [$ns monitor-queue $m(18) $m(13) mffj 
set qmon5 [$ns monitor-queue $m(13) $m(5) mff] 
set qmon6 [$ns monitor-queue $m(14) $m(6) mffl 
set qmon7 [$ns monitor-queue $m(22) $m(19) mff] 
set qmon9 [$ns monitor-queue $m(1 9) $m(1 5) mffj 
set qmon9 [$ns monitor-queue $m(19) $m(15) mff] 

for {set i 0} {$i<2} liner i} { 
set x($i) 0.00 

#procedure for passing parameters of queue monitor to flowmonitor 
proc pass { } { 

global gmon0 qmonl qmon2 qmon3 qmon4 qmon5 qmon6 qmon7 qmon8 
qmon9 ns x r l fin 

set x(0) [$gmon0 set parrivals] 
set x(1) [$gmon 1 set parrivals] 
set x(2) [$qmon2 set parrivals] 
set x(3) [$gmon3 set parrivals] 
set x(4) [$qmon4 set parrivals] 
set x(5) [$qmon5 set parrivals] 
set x(6) [$qmon6 set parrivals] 
set x(7) [$qmon7 set parrivals] 
set x(8) [$qmon8 set parrivals] 
set x(9) [$qmon9 set parrivals] 
$rlfin passing $x(0) $x(1) $x(2) $x(3) $x(4) $x(5) $x(6) $x(7) $x(8) $x(9) 

#queue monitors for udp traffic measurement becoz of flaw in ns2 
set udpmon0 [$ns monitor-queue $m(1) $m(10) mff] 
set udpmonl [$ns monitor-queue $m(3) $m(12) mff] 
set udpmon2 [$ns monitor-queue $m(5) $m(13) mff] 
set udpmon3 [$ns monitor-queue $m(6) $m(14) mff] 

proc udppass {} { 
global udpmon0 udpmonl udpmon2 udpmon3 ns rlfin 
set uO [$udpmonO set parrivals] 
set ul [$udpmon1 set parrivals] 
set u2 [$udpmon2 set parrivals] 
set u3 [$udpmon3 set parrivals] 
$rl fin passudp $u0 $u 1 $u2 $u3 
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#procedure to characterize flows 
proc sample-flow {} { 

global ns rlfin 
set time2 0.2 
udppass 
pass 
$rlfm dump 
set now2 [$ns now] 
if { $now2>=5.5 } { 
finish 
exit 0 
} else { 
$ns at [expr $now2+$time2] "sample-flow" 
} 

#Pushback 
proc push-back { } { 

global ns rlfm ifs0 ifsl ifs2 ifs3 ifs4 ifs5 ifs6 ifs7 ifs8 ifs9 
set a0 [$r l fin set attack0] 
set al {$r I fin set attack 1] 
set a2 [$rIfin set attack2]. 
set a3 [$r1 fm set attack3] 
set a4 [$r l fin set attack4j 
set a5 [$rlfm set attacks] 
set a6 [$rlfin set attack6] 
set a7 [$r1 fin set attack7] 
set a8 [$rlfin set attack8] 
set a9 [Sri fin set attack9] 
if{$a0=1}{ 

puts "node 0 is attacking" 
$ifs0 stop 

if{ Sal =1}{ 
puts "node 1 is attacking" 
$ifsl stop 

if{$a2=1}{ 
puts "node 2 is attacking" 
$ifs2 stop 

if{$a3=1}{ 
puts "node 3 is attacking" 
$ifs3 stop 
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0 

if{$a4=1} { 
puts "node 4 is attacking" 
$ifs4 stop 

} 

if{$a5=1 } { 
puts "node 5 is attacking" 
$ifs5 stop 

} 

if { $a6 = 1 } { 
puts "node 6 is attacking" 
$ifs6 stop 

} 

if{ $a7=1}{ 
puts "node 7 is attacking" 
$ifs7 stop 

} 

if { $a8 = 1 } { 
puts "node 8 is attacking" 
$ifs8 stop 

} 

if{$a9=1 } { 
puts "node 9 is attacking" 
$ifs9 stop 

} 

set time 1 0.2 
set nowI [$ns now] 
$ns at [expr $nowl+$timel] "push-back" 

0 

#Schedule events 
$ns at 0.1 "$m(0) label \"Legitimate\" 
$ns at 0.1 "$m(l) label \"Attack\" 
$ns at 0.1 "$m(2) label \"Legitimate\" 
$ns at 0.1 "$m(3) label \"Attack\" 
$ns at 0.1 "$m(4) label \"Legitimate\" 
$ns at 0.1 "$m(5) label \"Attack\" 
$ns at 0.1 "$m(6) label \"Attack\" 
$ns at 0.1 "$m(7) label \"Legitimate\" 
$ns at 0.1 "$m(8) label \"Legitimate\" 
$ns at 0.1 "$m(9) label \"Legitimate\" 
$ns at 0.1 "$m(10) label \"IFS\" 
$ns at 0.1 "$m(l 1) label \"IFS\" 



$ns at 0.1 "$m(12) label \"IFS\" 
$ns at 0.1 "$m(13) label \"IFS\"" 
$ns at 0.1 "$m(14) label \"IFS\" 
$ns at 0.1 "$m(19) label \"IFS\"" 
$ns at 0.1 "$m(15) label \"IFS\" 
$ns at 0.1 "$n3 label \"Sink\" 

$ns at 2.0 "$cbrO start" 
$ns at 5.0 "$cbrO stop" 
$ns at 2.0 "$cbrl start" 
$ns at 5.0 "$cbrl stop" 
$ns at 2.0 "$cbr2 start" 
$ns at 5.0 "$cbr2 stop" 
$ns at 2.0 "$cbr3 start" 
$ns at 5.0 "$cbr3 stop" 

$ns at 0.0 "$$p0 start" 
$ns at 5.0 "$ftpO stop" 
$ns at 0.0 "$ftp 1 start" 
$ns at 5.0 "$ftp 1 stop" 
$ns at 0.0 "$ftp2 start" 
$ns at 5.0 "$ftp2 stop" 
$ns at 0.0 "$ftp3 start" 
$ns at 5.0 "$ftp3 stop" 
$ns at 0.0 "$ftp4 start" 
$ns at 5.0 "$ftp4 stop" 
$ns at 0.0 "$ftp5 start" 
$ns at 5.0 "$ftp5 stop" 

proc clean-up {} { 
puts "in cleanup..." 
global ns m(0) m(1) m(2) m(3) m(4) m(5) m(6) m(7) m(8) m(9) 
$ns detach-agent $m(0) $tcpO 
$ns detach-agent $m(2) $tcp 1 
$ns detach-agent $m(4) $tcp2 
$ns detach-agent $m(7) $tcp3 
$ns detach-agent $m(8) $tcp4 
$ns detach-agent $m(9) $tcp5 
$ns detach-agent $m(1) $udp0 
$ns detach-agent $m(3) $udpl 
$ns detach-agent $m(5) $udp2 
$ns detach-agent $m(6) $udp3 
} 

$ns at 0.1 "sample-flow" 
$ns at 0.1 "push-back" 
$ns at 5.2 "finish" 
$ns run 
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#FLOWMON.H 
class FlowMon : public EDQueueMonitor { 
public: 

FlowMon(); 
void in(Packet*); 	If arrivals 
void out(Packet*); 	// departures 
void drop(Packet*); // all drops (incl 
void edrop(Packet*); // "early" drops 
void mon_edrop(Packet*); 1/" monitored early" drops 
int command(int argc, const char*const* argv); 

//added by ratul 
void setClassifier(Classifier * classifier) { 
classifier_ = classifier; 

} 

Flow * find(Packet* p) { 
return (Flow *)classifier ->find(p); 

} 
int value_;//ADDED BY HARSH 
int attackO_; 
int attackl_; 
int attack2_; 
int attack3_; 
int attack4_; 
int attack5_; 
int attack6; 
int attack7_; 
int attack8_; 
int attack9_; 

protected: 
void dumpflowsO; 
void dumpflow(Tcl_Channel, Flow*); 
void fformat(Flow*); 
char* flow_listO; 

Classifier* 	classifier; 
Tel _Channel channel_; 

int enable_in_; 	// enable per-flow arrival state 
int enable_out_; 	// enable per-flow depart state 
int enable_drop_; 	// enable per-flow drop state 
int enable_edrop_; 	// enable per-flow edrop state 
int enable mon_edrop_; // enable per-flow mon_edrop state 

//an excessive high value for large simulations using flow monitor 
char wrk_[65536]; // big enough to hold flow list 
//Added By Harsh 
int fd[10][3]; //STATISTICS FOR EACH FLOW; 
int x[10]; 	//STATISTICS PASSED BY TCL FILE 



#FLOWMON.CC 

FlowMon::FlowMon(): classifier_(NULL), channel_(NULL), 
enable_in_(1), enable_out_(1), enable_drop_(1), enable_edrop_(1), 

enable_mon_edrop_(1),value_(0), attackO_(0),attackl_(0),attack2_(0),attack3_(0),atta 
ck4_(0),attack5_(0),attack6_(0),attack7_(0), attack8_(0),attack9_(0) 
{ 

bind_booI("enable_in_", &enable_in j; 
bind_bool("enable_out, &enable_out_; 
bind_bool("enable_drop_", &enable_drop j; 
bind_bool("enable_edrop_", &enable_edrop_); 
bind("value_",&value_);//TESTING FOR CONNECTIVITY 
bind("attack0_", &attack0 j; 
bind("attackl_",&attack1 j; 
bind("attack2_", &attack2J; 
bind("attack3_",&attack3j; 
bind("attack4_",&attack4 j; 
bind("attack5 _", &attack5_); 
bind("attack6_", &attack6_); 
bind("attack7_",&attack7 j; 
bind("attack8_",&attacks j; 
bind("attack9_", &attack9_); 

//one entry for each flow 
for(int i=0;i<=9;i++) 
{ 

fd[i][O]=i; 	//flowid 
fd[i][1]=0; 	//pdrops 
fd[i][2]=0; 	//parrivals 

} 
for(int i=0;i<=9;i++) 

flags[i]=O; 	//flags intialized to zero 

} 
for(int i=0;i<=9;i++) 

x[i]=O; 	//pkts sent which is to be compared with parrivals 

void FlowMon::in(Packet *p) 
{ 

Flow* desc; 
EDQueueMonitor: :in(p); 
if (!enable_in_) 

return; 
if ((desc = ((Flow *)classifier->find(p))) != NULL) { 

desc->setfields(p); 
desc->in(p); 
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void FlowMon::out(Packet *p) 
{ 
Flow* desc; 

EDQueueMonitor::out(p); 
if (!enable_outj 

return; 
if ((desc = ((Flow*)classifier_->find(p))) != NULL) { 

desc->setfields(p); 
desc->out(p); 

void FlowMon::drop(Packet *p) 
{ 

Flow* desc; 
ED QueueMonitor:: drop(p); 
if (!enable_drop_ 

return; 
if ((desc = ((Flow*)classifier_->find(p))) != NULL) { 

desc->setfields(p); 
desc->drop(p); 

void FlowMon::edrop(Packet *p) 
{ 

Flow* desc; 
EDQueueMonitor::edrop(p); 
if (!enable_edrop_) 

return; 
if ((desc = ((Flow*)classifier_->find(p))) != NULL) { 

desc->setfields(p); 
desc->edrop(p); 

//added for monitored early drops - ratul 
void 
FlowMon : :mon_edrop(Packet *p) 
{ 

Flow* desc; 
EDQueueMon itor:: mon_ed rop(p); 
if (! enable_mon_edropj 

return; 
if ((desc = ((Flow*)classifier_->find(p))) != NULL) { 

desc->setfields(p); 
desc->mon_edrop(p); 



void FlowMon::dumpflows() 
{ 

register int i, j = classifier ->maxslotO; 
Flow* f, 
for(i=0;i<=j;i++){ 

if ((f = (Flow*)classifier_->slot(i)) != NULL) 
{ 

fd[i][0]=f->flowid(); //ADDED BY HARSH 
fd[i] [ 1 ]=f->pdropsO; 
fd[i] [2]=f->parrivalsO; 
//printf("for flow id %d the packet arrivals are %d 

\n", fd[i] [0],fd[i] [2]); 
dumpflow(channel_, f); 

if(j<10) 

for(int 1=j+1 ;k=9;l++) 	 //for currently inactive flows 
{ 

fd[l][0]=1; 
fd[l][1]=0; 
fd[l][2]=0; 

char* F1owMon::flow list() 

register const char* z; 
register int i, j = classifier_->maxslotQ; 
Flow* f; 
register char* p = wrk_; 
register char* q; 
q = p + sizeof(wrk_) - 2; 
*p ='\0'• 

for (i=0; i<=j; i++) { 
if ((f = (Flow*)classifier_->slot(i)) != NULL) { 

z = f->nameO; 
while (*z && p < q) { 

*p++ = *z++; 
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*p 	=''• 

} 
if (p >= q) { 

fprintf(stderr, "FlowMon:: flow list exceeded working 
buffer\n"); 

fprintf(stderr, "\t recompile ns with larger FlowMon::wrk [] 
array\n"); 

exit (1); 

} 
if(p !=wrk_) 

*--p = 
return (wrk_); 

void FlowMon::fformat(Flow* f) 

double now = Scheduler::instance().clock(); 
#if defined(HAVE_1NT64) 

sprintf(wrk_, "%8.3f %d %d %d %d %d %d" STRTOI64_FMTSTR " " 
STRTOI64_FMTSTR " %d %d " STRTOI64 FMTSTR " " STRTOI64 FMTSTR ' 
%d%d%d%d%d%d%d%d%d", 
#else /* no 64-bit int */ 

sprintf(wrk_ "%8.3f %d %d %d %d %d %d %d %d %d %d %d %d %d %d 
%d%d%d%d%d%d%d", 
#endif 

now, 1/1: time 
f->flowid(), // 2: flowid 
0, // 3: category 
f->ptype(), /14: type (from common header) 
f->flowid(), // 5: flowid (formerly class) 
f->src(), // 6: sender 
f->dst(), // 7: receiver 
f->parrivals(), // 8: arrivals this flow (pkts) 
f->barrivals0, // 9: arrivals this flow (bytes) 
f->epdropsO, 1/10: early drops this flow (pkts) 
f->ebdropso , // 11: early drops this flow (bytes) 
parrivalsO, //12: all arrivals (pkts) 
barrivalsO, 1/13: all arrivals (bytes) 
epdropsO, 1/14: total early drops (pkts) 
ebdropso, /115: total early drops (bytes) 
pdropsO, // 16: total drops (pkts) 
bdropsO, 1/17: total drops (bytes) 
f->pdropsO, /118: drops this flow (pkts) [includes edrops] 
f->bdropso, /119: drops this flow (bytes) [includes edrops] 
f->qs pktsO, //20: Quick-Start packets this flow 
f->gs_bytes(), // 21: Quick-Start bytes this flow 
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f->qs drops() //22: dropped Quick-Start pkts this flow 
); 

void FlowMon::dumpflow(TclChannel tc, Flow* f) 

//ADDED BY HARSH 
for(int i=0;i<=9;i++) 

if(x[i]=0) 
x[i]=1; 

if((fd[i] [2]/x[i])<=10) 
printf("Nothing suspecious from Node %d \n",i); 

else 

printf("Suspecious behaviour from Node %d \n",i); 
value =1; 
flags[i]=1; 

} 	„ 	 -- 
//here is the imp for push back mark the attackers 
if(flags[O]=1) 

attackO_=1; 
if(flags[1] =1) 

attackl_ 1; 
if(flags[2]==1) 

attack2_=1; 
if(flags[3]=1) 

attack3 =1; 
if(flags[4]=1) 

attack4 °1; 
if(flags[5]=1) 

attack5_ 1; 
if(flags[6]=1) 

attack6_=1; 
if(flags[7]=1) 

attack? °1; 
if(flags[8]=1) 

attack8_=1; 
if(flags[9] =1) 

attack9_ 1; 
fformat(f); 
if (tc !=0) { 

int n = strlen(wrk_); 
wrk [n++] = 
wrk [n] = 
(void)Tcl_Write(tc, wrk_, n); 
wrk_[n-1] 
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} 

int FlowMon::command(int argc, const char*const* argv) 
{ 

Tcl& tel = Tel::instance(); 
if (argc =2) { 

if (strcmp(argv[1], "classifier") == 0) { 
if (classifier] 

tcl.resultf("%s", classifier_->nameO); 
else 

tcl.resultf(")• 
return (TCL_OK); 

} 
if (strcmp(argv[1], "dump") = 0) { 

dumpflowsO; 
return (TCL_OK); 

} 

if (strcmp(argv[1], "flows") = 0) { 
// 	printf("command says gimme flow listen"); 
tcl.result(flow_list()); 
return (TCL_OK); 

} 
} else if (argc == 3) { 

if (strcmp(argv[1], "classifier") == 0) { 
classifier_ = (Classifier*) 

TclObj ect::lookup(argv[2]); 
if (classifier_ = NULL) 

return (TCL_ERROR); 
return (TCL_OK); 

} 
if (strcmp(argv[1], "attach") = 0) { 

int mode; 
const char* id = argv[2]; 
channel_ = Tel GetChannel(tcl.interp(), 

(char*) id, &mode); 
if (channel_ = NULL) { 

tcl.resultf("FlowMon (%s): can't attach %s for writing", 
name(), id); 

return (TCL_ERROR); 
} 

return (TCL_OK); 
} 

} else if (argc. 12) { 	 //ADDED BY HARSH 
if (strcmp(argv[ 1], "passing") = 0) 
{ 

//printf("parameter passed\n"); 
x[0] = atoi(argv[2]); 
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x[1] = atoi(argv[3]); 
x[2] = atoi(argv[4]); 
x[3] = atoi(argv[5]); 
x[4] = atoi(argv[6]); 
x[5] = atoi(argv[7]); 
x[6] = atoi(argv[8]); 
x[7] = atoi(argv[9]); 
x[8] = atoi(argv[10]); 
x[9] = atoi(argv[1 1]); 
//printf("values of outgoing packets %d %d \n",x[O],x[1]); 

} 
return (TCL_OK); 

}else if (argc = 6){ 
if (strcmp(argv[1],"passudp") = 0) 
{ 

fd[1][2]=atoi(argv[2]); 
fd [3 ] [2]=atoi (argv [3 ] ); 
fd[5][2]=atoi(argv[4]); 
fd [6] [2]=atoi (argv [5 ] ); 

return (TCL_OK); 
} 
return (EDQueueMonitor::command(argc, argv)); 
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#IFS.H 

/* 
*File:Header for a new 'IFS' agent class for the network simulator 
*1 
#ifndef ns_ifs_h 
#define ns ifs h 

#include "agent.h" 
#include "tcicl.h" 
#include "packet.h" 
#include "address.h" 
#include. "ip.h" 
#include "tcp.h" 
#include "object.h" 

class IfsAgent:public Agent { 
public: 

IfsAgent(); 
virtual int command(int argc,const char* const* argv); 
virtual void recv(Packet*,Handler*); 
bool flag_; 
NsObject* ifstarget_; 
NsObject* ifsdest_; 
int stop_; 

}; 

#endif 
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#IFS.CC 
#include "ifs.h" 
#include <stdio.h> 
static class IfsClass : public TclClass { 
public: 

IfsClass(): TclClass("Agent/Ifs") { } 
TclObject* create(int, const char*const*) { 

return (new IfsAgento); 
} 

} class_ifs; 

IfsAgent::IfsAgent() : Agent(PT NTYPE),flag_(0),stop_(1) 

void IfsAgent::recv(Packet* pkt, Handler* h) 
{ 
packet_t recvtype=HDR_CMN(pkt)->ptype_; 
if (recvtype=0 && stop _= 1) { 	 //client packet received 

// Access the IP header for the received packet: 
hdr_ip* hdrip = hdr_ip::access(pkt); 
hdr_cmn* hdrcmn = hdr_cmn::access(pkt); 
int x,y; 
//modify the ttl of the pkt: 
x=hdremn->addr() & 07fff, 
y=hdrip->ttlO & 8000 ; 

if(flag ==0) 
{ 
hdrip->ttlO=256; 
flag_=1; 

hdrip->daddro=daddr(); 
send(pkt,0); 

else if (recvtype=0 && stop_ =0) 
{ 

Packet::free(pkt); 
} else if (recvtype=2 && stop_ ==1){ 
ifsdest ->recv(pkt,h); 

}else if (recvtype=2 && stop_=0) 
{ 

Packet::free(pkt); 



else {//ACK packet received 
hdr_ip* hdrip = hdr_ip::access(pkt); 
ifstarget_->recv(pkt,h); 

int IfsAgent::command(int argc, const char*const* argv) 
{ 
if (argc =3) { 

if (strcmp(argv[ 1 ], "actual") = 0) { 
ifstarget_ (NsObject*)TclObject::lookup(argv[2]); 
return (TCL_OK); 
} 
if (strcmp(argv [ 1 ],"destination") = 0) 
{ 

ifsdest_=(NsObj ect* )Tc1Obj ect:: lookup(argv[2]); 
return (TCL_OK); 

} 
else if (argc ==2) { 

if (strcmp(argv [ 1 ], "stop") = 0) { 
stop= 0; 

} 
return (TCL_OK); 

// If the command hasn't been processed by IfsAgent()::command, 

// call the command() function for the base class 

return (Agent::command(argc, argv)); 
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