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Abstract 

Predicting Protein Function is one of the important tasks of bioinformatics in post 

genomic era. Genome sequencing projects are scientific attempts that ultimately aim to 

determine the complete genome sequence of an organism. Although these sequences 

provide us with a lot of information, the functions of many of these are yet to be 

characterized. Computational biology methods provide powerful tools for this to 

minimize this sequence-function gap. 

Though a large number of methods have been proposed and implemented for predicting 

protein function, a complete framework which considers all aspects for functional 

relatedness is missing. A great amount of research is carried out in finding the association 

based on similarity measures, constructing the phylogenetic tree and comparing them for• 

phylogeny and assigning weights while finding the association, but still there are 

insufficient methods that have all the things. 

In this - Dissertation entitled "PREDICTING PROTEIN FUNCTION USING 

PHYLOGENETIC PROFILES ", a solution is proposed which considers the co-evolution 

of the target genome which gives the basic similarity measure, the background phylogeny 

of reference genomes for profiles generation and assigning weights to the reference 

genomes. The ordering of genomes is used to show phylogeny which is computationally 

feasible. 

The proposed strategy can be extended to increasing number of reference genomes. The 

accuracy of the predictions has been compared with existing approaches and the 

predictions are validated using the standard dataset. The possibility of using Functional 

Catalogue database for predicting protein function using Support Vector Machine 

classifier with radial basis as kernel function is also explored. 
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Chapter 1 

Introduction and Statement of the Problem 

1.1 Introduction 

Predicting the functions of uncharacterized proteins from their sequence is a central goal 

of bioinformatics. The fully sequenced genomes of numerous organisms offer large 

amounts of information about cellular biology. It is a central challenge of bioinformatics 

to use this information in discovering the function of proteins [1]. Functional assignments 

of proteins come primarily from biochemical experimentation, which can be extended by 

matching recently sequenced proteins to those that have already been characterized. The 

problem of assigning functions to the remaining proteins is addressed here. 

The huge amount of data that has accumulated over the years has made biological 

discovery via manual analysis tedious and cumbersome. This has in turn necessitated the 

use of techniques from the field of bioinformatics, an approach that is crucial in today's 

age of rapid generation and warehousing of biological data. Bioinformatics is the field of 

science in which biology, computer science and information technology merge to form a 

single discipline. The ultimate goal of the field is to enable the discovery of new 

biological insights as well as to create a global perspective from which unifying 

principles in biology can be discerned. At the beginning of the "genomic revolution", a 

bioinformatics concern was the creation and maintenance of a database to store biological 

information, such as nucleotide and amino acid sequences. Development of this type of 

database involved not only design issues but the development of complex interfaces 

where by researchers could both access existing data as well as submit new or revised 

data [2]. 

The computational methods for predicting protein function can provide an essential tool 

for the biologist, because many biological questions are directly answered when we 

understand the role of a protein in a biological process, how it interacts with other 

proteins and DNA and where in the cell it operates. Given the limitations of current 
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predictive methods, however, the purpose of such technology cannot be to replace 

experimentation, but rather to assist the biologist either by directly generating hypotheses 

to be verified experimentally or by suggesting a restricted set of candidate functions that 

can guide the exploration of promising hypotheses [3]. 

1.2 Motivation 

Proteins are the most essential and versatile macromolecules of life and the knowledge of 

their functions is a crucial link in the development of new drugs, better crops and even 

the development of synthetic biochemicals such as biofuels. 

Experimental procedures for protein function prediction are inherently low throughput 

because of huge experimental and human effort required in analyzing a single protein. 

Thus unable to annotate a non-trivial fraction of proteins that are becoming available due 

to rapid advances in genome sequencing technology. Release 40.3 of 26-May-2009 of 

UniProtKB(universal protein resource knowledge base)/TrEMBL(Translated European 

Molecular biology laboratory) [4] contains 7916844 sequence entries comprising 

2577542687 amino acids. The growth of the database is summarized in the Figure 1.1. 

8. 0M 

7.5M 
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6.5M 

6.0M 
5. 5M 
5. 0M 
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Figure 1.1 Number of Entries in UniProtKB/TrEMBL [4] 
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Currently, approximately 20%, 7%, 10% and 1% of annotated proteins in the Homo 

sapiens, Mus musculus, Drosophila melanogaster and Caenorhabditis elegans genomes, 

respectively, have been experimentally characterized (Annotations in Gene Ontology) 

[5]. This has resulted in a continually expanding sequence-function gap for the 

discovered proteins. 

The state-of-the-art methods in text mining were presented in a competition for 

assessment of text mining systems in biology, the BioCreAtivE [6] (Critical Assessment 

of Information Extraction systems in Biology) (BioCreAtIvE, 2006). One of the two 

"biologically meaningful" tasks defined by BioCreAtivE was the automatic extraction of 

functional annotations to proteins from full-text documents related to them, by using the 

Gene Ontology (GO) classification system. Among the 20 participants, the best 

annotations were achieved with a perfect prediction percentage equal to 11.80%, which is 

still too low. This shows that automated methods for functional annotation of genes are 

still far from being perfect. And also the automated systems for the extraction of protein-

protein interactions are performing with low accuracy rates. 

These observations have motivated the development of computational techniques that 

utilize a high-throughput experimental data, phylogenetic profiles for protein function 

prediction with higher accuracies. 

1.3 Statement of the Problem 

The problem is to develop a technique for accurate and efficient way to predict the 

functions of a protein being queried from the database of proteins whose functions are 

known, using data mining techniques. 

In this dissertation, we have made an attempt to design and implement the framework to 

solve the mentioned problem using two methodologies: 

(i) Functional Protein Association Network 

(ii) Functional Catalogue Database 
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1.4 Organization of the Report 

This dissertation report comprises of six chapters including this chapter that introduces 

the topic and states the problem. The rest of the report is organized as follows. 

Chapter 2 gives the background of protein functions and description of some well known 

prediction techniques in this field and Research Gaps. 

Chapter 3 gives the design and implementation of the work done for the prediction of the 

protein function using the methodology, Functional Protein Association Network. 

Chapter 4 gives the design and implementation of the work done for the prediction of the 

protein function using the methodology, Functional Catalogue Database. 

Chapter 5 discusses the performance metrics used and the accuracy of the predictions has 

been compared with existing approached and the predictions are validated using the 

standard dataset. 

Chapter 6 concludes the dissertation work and gives suggestions for future work. 
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Chapter 2 

Background and Literature Review 

2.1 Protein Function 

The concept of protein function is highly context-sensitive and not very well-defined. In 

fact, this concept typically acts as an umbrella term for all types of activities that a 

protein is involved in, be it cellular, molecular or physiological. 

Gene Ontology (GO) - The Gene Ontology Consortium's ontology GO [7], provides `a 

dynamic controlled vocabulary for all organisms, with sufficient flexibility to 

accommodate the constant changes in biological knowledge. GO is aimed at providing a 

controlled terminology for labeling protein functions in a more precise, reliable and 

computer-readable manner. 

GO maintains three separate taxonomies of terms, namely, "Molecular Function", 

"Biological Process" and "Cellular Component" as shown in Figure 2.1. Unlike other 

schemes, GO is not a tree-like hierarchy, but a Directed Acyclic Graph (DAG), where 

any term may have more than one parent as well as zero, one, or more children. This 

permits a more complete and realistic description of a term. Protein functions of any 

organism are described using the gene ontology. 

Molecular 	 Biological 	 Cellular 
Function 	 Process 	 Component 

Figure 2.1 The three aspects of Gene Ontology Annotations 

(a) Molecular function: Molecular function describes activities, such as catalytic or 

binding activities, that occur at the molecular level. GO molecular function terms 

represent activities rather than the entities (molecules or complexes) that perform the 



actions and do not specify where or when, or in what context, the action takes place. 

Molecular functions generally correspond to activities that can be performed by 

individual gene products, but some activities are performed by assembled complexes of 

gene products. 

(b) Biological Process: A biological process is series of events accomplished by one or 

more ordered assemblies of molecular functions. 

(c) Cellular Component: A cellular component is just that, a component of a cell, but 

with the proviso that it is part of some larger object, this may be an anatomical structure 

or a gene product group. 

The other definition is "function is everything that happens to or through a protein" [8]. 

The shape of a protein determines its biological activity. A single protein may have 

varying structure and more than one function. Proteins have many different biological 

functions. Proteins are classified according to their biological roles. 

Enzymatic Proteins: The most varied and most highly specialized proteins are those with 

catalytic activity-the enzymes. Virtually all the chemical reactions of organic 

biomolecules in cells are catalyzed by enzymes. Many thousands of different enzymes, 

each capable of catalyzing .a different kind of chemical reaction, have been discovered in 

different organisms. Digestive enzymes hydrolyze the polymers in food. 

Transport Proteins: These proteins are involved in transporting other substances. For 

example, hemoglobin, the iron-containing protein of blood, transports oxygen from the 

lungs to other parts of the body. Other proteins transport molecules across cell 

membranes. 

Structural Proteins: Structural proteins are very important for support. Collagen and 

elastin provide a fibrous framework in animal connective tissues, such as tendons and 

ligaments. Keratin is the protein of hair, horns, feathers, quills and other skin appendages 

of animals. 
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Storage Proteins: These proteins store amino acids. Ovalbumin is the protein of egg 

white, used as an amino acid source for the developing embryo. Casein, the protein of 

milk, is the major source of amino acids for baby mammals. Plants store proteins in 

seeds. 

Hormonal Proteins: Hormonal proteins coordinate the bodily activities. Insulin, a 

hormone secreted by the pancreas, helps regulate the concentration of sugar in the blood. 

Receptor Proteins: Receptor proteins are built into the membrane of a nerve cell and they 

detect chemical signals released by other nerve cells. They are involved in the cell's 

response to chemical stimuli. 

Contractile Proteins: These proteins are very important in movement. Actin and myosin 

are responsible for the movement of muscles. Contractile proteins are responsible for the 

undulations of cilia and flagella, which propel many cells. 

Defensive Proteins: These proteins protect against diseases. Antibodies combat bacteria 

and viruses. 

2.2 Bioinformatics 

The rate at which sequencing methods are producing genomic and proteomic data is far 

outpacing the rate at which these sequences are being experimentally annotated and 

understood. This trend is depicted in Figure 1.1. The number of human annotated proteins 

(Swiss-Prot, Protein Data Bank) is small compared to the number of proteins for which 

only the sequence is known (TrEMBL). In response, there has been a growing focus on 

ways to speed up the process of determining protein function through the use of computer 

systems that predict protein function. 

2.2.1 Protein Function Prediction and Determination 

In response to the overwhelming increase in protein sequence data, there has been much 

research in automated computational protein function prediction as demonstrated by the 

literature (Chapter 2.3) and the Automated Function Prediction Special Interest Group [9] 

meeting at the 2008 Intelligent Systems for Molecular Biology. 
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Protein function determination refers to the process of performing wet lab experiments to 

discover what function a protein serves. These methods can involve studying the 

protein's structure through Nuclear Magnetic Resonance or X-ray crystallography. Also, 

information about when proteins react or bind such as assays and 2-hybrid interactions 

are useful to understand the functions that a protein performs. Many approaches exist to 

understand what individual proteins do, however all of them are costly in terms of 

equipment and manpower. 

Unknown 	
GOA 	Gene 	Urot 	Predictions of 

Ontology 	
niP 	

Protein Function 
Proteins 

Protein Function Prediction System 

Figure 2.2 Protein Function Prediction 

Protein function prediction provides biologists with predictions of the most likely 

functions that proteins perform as shown in Figure 2.2, which contains GOA (gene 

ontology annotations), Gene Ontology and UniProt(Universal protein resources) etc. This 

can help in the process of protein function determination by providing likely functions 

proteins perform and thus which experiments should be carried out. These methods 

should be highly accurate to be useful and they should be high-throughput so that they 

can be used for a large amount of data. 

Another desirable feature of a prediction system is transparency [10]. Transparency refers 

to how well a user can understand why certain predictions were made. This can build a 

user's trust in the prediction system and thus can give clues as to the best experiments 

that should be performed in the wet lab. Alternatively, a user may decide that a prediction 

is incorrect by looking at the data used to make the prediction. Either way value is added 

when transparency is a feature of the prediction system. 

Prediction methods often use machine learning approaches to model the problem domain. 

Machine -learning leverages large datasets to extend knowledge about existing data and 
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supports the study of new, data which can speed up and increase the quality of, protein 

function determination. 

2.2.2 Ontologies 

In general, prediction is a mapping from instances to class. Before creating a prediction 

system, the type of predictions that it can make must be predefined. For example, in 

protein function prediction, we need to know what the possible protein functions are. 

Ontology is a set of terms describing the problem domain in a standardized way and 

defines the possible predictions that can be made. This addresses the issue of different 

researchers using different terminology to describe the same functions. 

A variety of functions that proteins could perform are shown and various wet lab 

experiments could imply. that a protein performs each of them. 

Molecular 
Function 

Signal 	 Transporter 
Transducer 	Binding Activity 

Activity 

Structural 
Molecule 
Activity 

Catalytic 
Activity 

Nucleotide \ 	( Protein 
Binding ) ( Binding 

Hydrolase 
Activity 

Methyl- 	 FMN 
CpG 	 Binding 

Binding 

Peptidase \ ( Deacetylase 
Activity 	) ( 	Activity 

Figure 2.3 Hierarchical Ontology 



Upon closer inspection, it is evident that some functions are more similar to each other 

than others. For example, the functions "nucleotide binding" and "protein binding" are 

more similar to each other than either function is to "hydrolase activity". Furthermore, 

some functions are more general descriptions of the same function. For example, 

"peptidase activity" is a specific type of "hydrolase activity", in that every protein that 

performs the function "peptidase activity" necessarily performs the function "hydrolase 

activity". To represent these relationships between functions, the ontology can be 

structured in a hierarchy as shown in Figure 2.3. Hierarchically structured ontology such 

as the one shown in Figure 2.3 is called a hierarchical ontology. 

2.3 Machine Learning 

Machine Learning is an area of Artificial Intelligence that attempts to "learn" patterns 

and behaviors from real world data [11]. There are two major areas of machine learning: 

supervised and unsupervised learning. 

In unsupervised learning, raw unlabeled data is given as input and the goal is to find 

patterns in this data. These patterns give information about similarities in the instances in 

the data set, but ultimately must be interpreted by users knowledgeable in the problem 

domain since no a priori knowledge about the data is given as input. 

In supervised learning, the data given as input also includes associated labels with each 

instance in the data set. The labels are descriptions of the problem domain. The goal of 

supervised learning is to learn a function representing the data set, which can then be 

used to predict labels for future instances where the labels are unknown. 

2.4 Classification 

Classification is the process of learning a set of rules from instances (examples in a 

training set), or more generally speaking, creating a classifier that can be used to 

generalize from new instances [12]. The process of applying supervised Machine 

Learning to a real-world problem is described as shown in Figure 2.4. 
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The first step is collecting the dataset. A requisite expert could suggest which fields 

(attributes, features) are the most informative. The second step is the data preparation and 

data preprocessing. Depending on the circumstances, researchers have a number of 

methods to choose from to handle missing data. Instance selection is not only used to 

handle noise but to cope with the infeasibility of learning from very large datasets. 

Instance selection in these datasets is an optimization problem that attempts to maintain 

the mining quality while minimizing the sample size. It reduces data and enables a data 

mining algorithm to function and work effectively with very large datasets. Feature 

subset selection is the process of identifying and removing as many irrelevant and 

redundant features as possible. This reduces the dimensionality of the data and enables 

data mining algorithms to operate faster and more effectively. 

Figure 2.4 The process of Supervised Machine Learning 
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2.5 Literature Review 

This section provides the various systems developed to predict the protein functions from 

protein database using various data mining techniques. There are three general classes of 

metrics that may be used to compare two binary phylogenetic profiles. 

2.5.1 Methods Based on Co-Evolution 

The first class of methods is insensitive to the underlying phylogeny of organisms and 

treats each position in the profile completely independent of the others. 

The first study to analyze protein function using phylogenetic profiles was presented by 

Pellegrini et al. [1]. 

To represent the subset of organisms that contain a homolog, phylogenetic profile is 

constructed for each protein.. This profile is a string with n entries, each one bit, where n 

corresponds to the number of genomes. The presence of a homolog to a given protein in 

the nth genome with an entry of unity at the nth position. If no homolog is found, the 

entry is zero. Proteins are clustered according to the similarity of their phylogenetic 

profiles. Similar profiles show a correlated pattern of inheritance and by implication, 

functional linkage. 

This method predicts that the functions of uncharacterized proteins are likely to be 

similar to characterized proteins within a cluster. Phylogenetic profiles are computed for 

the 4,290 proteins encoded by the genome of E. coli by aligning each protein sequence 

(Pi) with the proteins from 16 other fully sequenced genomes. Proteins coded by the nth 

genome are defined as including a homolog of Pi if they align to Pi with a score that is 

deemed statistically significant. 

This was a seminal study in this area and it opened the floodgates for protein function 

prediction using phylogenetic profiles. 
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Wu et al. [13] proposed a probability of matches using hypergeometric distribution. Let x 

and y be the number of lineages in which gene X and Y occur. Define the variable z as 

the number of lineages in which X and Y co-occur. 

Chance co-occurrence probability distribution: 

P (zJN, x, y) is the number of ways in which x and y can be distributed over N genomes, 

given that there are z co-occurrences, divided by the total number of ways x and y can be 

distributed without restriction as shown in Equation 2.1. 

P W (2.1) 

Where co, the number of ways to distribute z co-occurrences over the N lineages, ii The 

number of ways of distributing the remaining x —.z and y — z genes over the remaining 

N -rz lineages, W is the number of ways of distributing X and Y over N lineages without 

restriction 

It also advocated the use of more general measures of similarity for pairs- of phylogenetic 

profiles. Three popularly used measures of similarity [14], namely the Hamming 

Distance (D), Pearson's Correlation Coefficient (r) - and mutual information (MI) are 

evaluated for this task. 

Hamming Distance (D) 

D = x + y — 2z 	 (2.2) 

Pearson Correlation Coefficient (r) 

r = 
Nz — xy 

(Nx — x2 )(Ny — y2 ) 
(2.3) 

Mutual Information (MI) 
x 

P~,j( ) y 
I (x, Y) _ 	Pi,i (x, Y) logz P1(x) 	 (2.4) 

i.J 
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It is concluded from the analysis that, although the three measures are strongly related to 

each other, MI is the most informative measure of profile similarity for inferring 

functional relationship between two proteins. 

This relationship is judged by membership of the proteins in the same metabolic pathway 

in KEGG (Kyoto Encyclopedia of Genes and Genomes) [15]. In addition, it is argued that 

proteins with complimentary profiles may suggest that they are functionally similar, 

which is likely to be missed if exact similarity of profiles is required. 

However, these metrics do not consider the underlying phylogeny of the genomes in the 

profile. Accounting for phylogeny should improve our ability to detect, truly co-evolving 

genes from that are merely presentin a subset of related genomes. 

Appala et al. [16] explored the feasibility of using supervised machine learning methods 

for predicting the protein function. Performance of traditional classification algorithms 

such as decision tree, naive bayes and k-nearest neighbors were compared. 

2.5.2 Methods Considering Underlying Phylogeny 

The second class of metrics assumes that the underlying organism phylogenetic tree is 

known and takes advantage of this.prior knowledge when computing profiles similarities. 

Vert [17] proposes the use of support vector machines (SVM) for learning protein 

functions from their phylogenetic profiles. However, instead of the common kernel 

functions used for SVMs, such as linear, a tree kernel is proposed to calculate the 

similarity of the profiles in the higher dimensional space used by SVM. This high-

dimensional feature space is defined on the basis of the patterns of evolution of genes 

among the ancestors of the organisms under consideration, in a pre-specified 

phylogenetic tree. A linear time algorithm in the number of organisms, based on a post-

order traversal of the tree, is also derived and its correctness proved. 

The naive kernel does not incorporate any knowledge about the nature of phylogenetic 

profiles, in particular the - phylogenetic relationships among species. In order to create a 
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distance for phylogenetic profiles that reflects the similarity between evolutions they 

propose to map any profile to a feature space where each feature corresponds to a 

particular pattern of evolution. The tree kernel is the following, for any two profiles 

(x, ,Yc) 0 A' * A': 

K(xc,Yc) = Y. I p(x11z5) p(Y,Izs) 	 (2.5) 
SEC(T)ZSEAS  

Narra et al. [ 18] used the extended real-valued profiles to the above approach. Here, all 

the internal nodes of the phylogenetic tree are also assigned scores equal to the average of 

the scores at their children. An extended profile is now constructed for each protein by a 

post-order traversal of the tree. An SVM with a polynomial kernel is trained with these 

profiles and is used for function prediction. In evaluation using three-fold cross validation 

on the same data, performance better than that of Vert [17] is reported. The polynomial 

kernel function used is defines for vector x and y as: 

K(x, y) = [1 + s D(x, y)]d 	 (2.6) 

where s and d are two adjustable parameters. Unlike ordinary polynomial kernel, D(x,y) 

is not the dot product of vector x and y, but rather, a generalized hamming distance for 

real value vectors. 

Barker et al. [19] described a maximum likelihood statistical model for predicting 

functional gene linkages. This method detects independent instances of the correlated 

gain or loss of pairs of proteins on phylogenetic trees, reducing the high rates of false 

positives observed in conventional across-species methods that do not explicitly 

incorporate a phylogeny. It showed, in a dataset of 10,551 protein pairs, that the 

phylogenetic method improves by up to 35% on across-species analyses at identifying 

known functionally linked proteins. 

This method showed that the protein pairs with at least two to three correlated events of 

gain or loss are almost certainly functionally linked. Contingent evolution, in which one 

gene's presence or absence depends upon the presence of another, can also be detected 
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phylogenetically and may identify genes whose functional significance depends upon its 

interaction with other genes. The improvement is derived from having a lower rate of 

false positives. 

Zhou et al. [20] proposed a method based on evolutionary scenario which refers to a 

series of events that occurred in speciation over time, which can be reconstructed given a 

phylogenetic profile and a species tree. Common evolutionary pressures on two proteins 

can then be inferred by comparing their evolutionary 'scenarios, which is a direct 

indication of their functional linkage. This scenario method has proven to have better 

performance compared with the classical phylogenetic profile method, when applied to 

the same test -set. 

Barker et al. [21] proposed an approach that detects independent instances of the 

correlated gain and loss of pairs of genes from species genomes. It investigated the effect 

on results of basing evidence of correlations on two phylogenetic approaches, Dollo 

parsimony and maximum likelihood (ML). They further examined the effect of 

constraining the ML model by fixing the rate of gene gain at a low value, rather than 

estimating it from the data. 

2.5.3 Methods Considering only Ordering 

The third class of metrics is an approach that considers only an ordering of genomes and 

not a full phylogenetic tree. 

Cokus et al. [22] proposed a method based on this kind of metric which considers only 

ordering of genomes. This paper shown that this approach is superior to the first class of 

metric which considered only co-evolution because the current method is considering 

both co-evolution and phylogeny. Scoring for the pair of genes is done using the below 

formula. 

Score = log10H — log10 R 	 (2.7) 
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Where H is the weighted hypergeometric p-value and R is weighted runs p-value for a 

pair of genes. 

To test the performance of the proposed metric they computed the cumulative average 

loglo GO p-value. They restricted to the cellular components and biological process 

ontologies. The GO p-value is the probability that a randomly chosen benchmark pairs of 

genes has a common term atleast as specific as the most specific term common to the 

current pair of genes. 

2.5.4 Other Methods 

Certain amount of research is focused on selection of reference genome for construction 

of Phylogenetic Profiles. Sun et al. [23] suggested that reference organism should be 

selected based on genetic distance, rather than the relationship of taxonomy tree, because 

homology information used in the construction of phylogenetic profiles directly relies on 

the genetic distance of the sequences. And in paper by Loganantharaj et al. [24] selection 

of reference organism, for all members in a Glade should evolve from a common ancestor 

and the one far apart from the rest is close to their ancestor. Therefore, select the 

organism that is evolutionarily the farthest apart from the rest of the organisms in that 

Glade essentially selecting an outlier of that Glade. 

The approaches have been used in predicting function of some prokaryotic genomes quite 

successfully. The functional cohesiveness among clusters are week in eukaryotic target 

genomes, which is in contrast to some spectacular success in functional prediction in 

prokaryote [24]. It also suggested that Different mixture of reference sequences based on 

evolutionary history may help to improve the performance in function prediction in our 

target genome. Snitkin et al. [25] explored the application of phylogenetic profiling, 

method that explores the evolutionary co-occurrence of genes in the assignment of 

functional linkages, to eukaryotic genomes. 

The measuring of approach's accuracy and coverage as well as to identify its biases, 

strengths and weaknesses is done by Raja et al. [26]. The conclusion it gave are selection 
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of genomes for reference set both at the super-kingdom level as well as within the 

eukaryotic kingdom affects the predictive power of this approach and adding a few 

eukaryote genomes into the reference set results in an improved performance. However, 

adding too many eukaryotes into the reference set decrease the performance. It also 

showed the null hypothesis, which involves comparison of the performances of the actual 

and the shuffled profiles, to assess the statistical significance of profile similarity. 

A new technique, namely Annotating Genes with Positive Samples (AGPS), for defining 

negative samples in gene function prediction is proposed by Xing et al. [27]. The AGPS 

algorithm is different from existing methods, which have inappropriate assumptions 

about those genes that have no target annotations. Specifically, this approach do not 

simply regard those genes without target annotation as negative samples because one 

gene generally have multiple functions and it may indeed have the function even though 

it is not annotated with the target function currently. 

2.6 Research Gaps 

The first study to analyze protein function using phylogenetic profiles presented by 

Pellegrini et al. [1 ] considered only the similarity of the profiles and did not consider the 

background phylogeny of the genomes in the profile. 

Probability of matches using hypergeometric distribution which is proposed by Wu et al. 

[13] did not incorporate the weights in the calculations and this also did not consider 

background phylogeny of the genomes in the profile. Factorial calculation is present in 

the methodology on the number of genomes and in the current data the number is 305 and 

its probability calculation is computationally expensive. 

Yanum et al. [28] constructed weight-based profiles for reference proteins, but phylogeny 

is missing over here. 

Tree kernel which is incorporated in support vector machine classifier proposed by Vert 

[17] is computationally expensive. There are more feasible kernel functions which were 

not explored. 
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Chapter 3 

Protein Function Prediction Using Functional Protein 

Association Network 

Predicting protein function using functional protein association network involves lot of 

Data processing techniques and Statistical Methods. Here, we have used a number of 

techniques to employ the system. These techniques range from wide areas of data mining 

such as hierarchal clustering and optimal leaf ordering for data processing and 

conditional probability for finding the top ranked interacting pairs. 

3.1 Data Representation 

The Phylogenetic profile of a protein can be described as a string that encodes the 

presence or absence of the protein from target genome in every sequenced reference 

genome. It is a binary vector whose length is the number of sequenced reference 

genomes. The vector contains 1 in the ith  position if the ith  genome contains a homologue 

of the corresponding gene, else a zero [1]. The homologue of the genes is obtained using 

BLASTP (protein-protein Basic Local Alignment Search Tool) [29] algorithm. 

Some variations of these vectors use real numbers that reflect the extent of similarity 

between the original gene and the best match in the genome being searched, instead of Os 

and Is. Thus, these profiles provide a way of capturing the evolution of genes across 

various organisms. This information becomes useful for functional genomics when seen 

in the light of the phenomenon of speciation, which is the evolutionary mechanism by 

which new species are created from currently existing ones. 

Phylogenetic profiles offer a very innovative method for inferring functional associations 

between proteins, since "functionally associated proteins are expected to have very 

similar phylogenetic profiles" [1]. This is the basic assumption made by all the 

approaches for function prediction on the basis of phylogenetic profiles. The generation 

of the profiles is shown in the Figure 3.1. 
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Genomes 
TARGET GENOME 

P2 P4 P5 P7 
P1 P2 P3 

P4 	(5P) 6 	S Cerevisiae 

ECoh 

L
P2 P3 	 P1 P4 
P5 P7 	 P5 P6 JLi 

S Pyogenes 	P Aerophilum 

iiP1 P3 
P5 P6 

V Cholerae 

Phylogenetic Profiles: 

EC SC SP PA VC 

P1 0 0 1 	1 

P2 1 1 0 	0 

P3 0 1 0 	1 

P4 1 0 1 	0 

P5 i 1 1 	1 

P6 0 0 1 	1 

Figure 3.1 	Phylogenetic Profiles Generation 

3.2 Hypothesis of the Work 

The first basic hypothesis is based on the similarity between the given two proteins. 

Greater the similarity more the proteins are functionally related [1]. 

The second hypothesis is based on the runs of consecutive matches both the proteins 

span. A run is defined as a maximal non-empty string of consecutive occupancy matches 

between two profiles. The profiles with more runs are more likely to involve functionally 

related proteins than profiles in which all the matches are concentrated in one interval of 

the tree [22]. For calculating runs the ordering of genomes is important and the procedure 

is explained in detail in the Section 3.3. The proof of the above hypothesis is showed by 

calculating the proposed methodology on the pairs and details are shown in results 

Section 5.1. Figure 3.2 shows this hypothesis. 
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Genome I Genome 2 Genome 3 Genome 4 Genome 5 Genome 6 Genome 7 Genome 8 Genome 9 Genome 10 

Gene 1 	0 	1 	0 	1 	0 	1 	1 	1 	0 	1 

Gene 2 	1 	1 	0 	1 	0 	1 	1 	1 	0 	1 

Gene 3 	0 	0 	0 	1 	0 	1 	1 	1 	1 	1 

Gene 4 	0 	0 	0 	1 	0 	1 	1 	1 	1 	1 

Figure 3.2 Phylogenetic Profiles showing the Runs Hypothesis. 

Consider phylogenetic profiles for four genes. gene 1 and gene 2 have similarity six and 

in four runs while genes 3 and gene 4 also have similarity six and in two run. According 

to the second hypothesis we show that genes 1 and 2 are more likely to be truly co-

evolving while genes 3 and 4 are likely to be just lineage-specific. Thus gene l and gene 2 

are more functionally related when compared to second pair and in the ranking of pairs 

the first pair gene 1.  and gene 2 comes above the second pair gene3 and gene4. 

3.3 Design of Proposed Methodology 

The framework of our proposed automated protein function prediction system is as 

shown in Figure 3.3. 

Separate components are provided in the framework for the following: 

• Identifying the order of the genomes using the hierarchal clustering and optimal 

leaf ordering algorithm. 

• Calculating the probability of the similarity between the given pairs. 

• Calculating the probability of the runs between the given pairs. 

• Finding the probability of the functional relatedness between the given pairs by 

calculating the total probability. 

22 



REFERENCE GENOMES 

A 	 A 	C 

Genome 1 B 	Genome 2 	 Genome 2 B 

C 	B 	C 	A 

Protein Sequences of 

TARGET GENOME 
MAERESGLGGGAASPPAASPFL 	 BLAST P 
GCKDTLDELAAQRPGVGPPKAE 

NQDPAPRSQGQGPGTGSGDT 

RPKR .............. 

Phylogenetic Profiles Generation 

IDENTIFYING ORDERING OF GENOMES 

Hierarchal Clustering of Genome 
Phylogenetic Profiles 

Optimize Swiveling 

Calculating the Weighted Hypergeometric 
Probability of Similarity 

Calculating the Weighted Hypergeometric 
Probability of Runs 

Calculating the Total Hypergeometric Probability 

Identifying the top Ranked Pairs 

Validating the Pairs Using STRING Database 

Figure '3.3 Design of Proposed Work 
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The Phylogenetic profile generation is explained in Section 3.1. 

3.3.1 Hierarchal Clustering on Genomes.Phylogenetic Profiles 

The order of genomes is important because the number of runs generally changes as 

reference genomes are permuted. The ordering of genomes is established such that the 

order reflects the evolutionary relationships among the reference genomes [30]. Here, for 

hierarchal clustering, we used reference genomes phylogenetic profiles. Genome 

phylogenetic profiles are obtained as follows: 

The phylogenetic profiles of the proteins of target genome consists of {0, 1) matrix 

whose rows are proteins and columns are the reference genomes. The genome 

phylogenetic profiles are the columns of the matrix. 

The Procedure to perform hierarchical cluster is as shown in Figure 3.4. 

Input the genome phylogenetic profiles 

Constructing genome-genome distance matrix 

Grouping genomes into binary hierarchal cluster tree 

Cut off for the hierarchal cluster tree 

Figure 3.4 	Hierarchal Clustering 

a. Constructing Genome-Genome Distance Matrix: 

For calculating the distance matrix, we used Jaccard dissimilarity to measure distance 

between two genomes, which is the percentage of disagreeing positions among 

positions where at least one gene has a 1. Jaccard dissimilarity formula is shown in 

Equation 3.1 
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Given an m-by-n data matrix X, which is treated as m (1-by-n) row vectors x1, x2, 

..., xm the Jaccard dissimilarity( drs ) between the vector xr and xs are defined as 

follows: 

d _ # [(X,j # xsi) A ((Xrj # O)V(xsj ~ 0))] 	3.1 rs —  ( ) #[(xrj ~ o)V(xs; ~ 0)] 

b. Grouping Genomes into Binary Hierarchal Cluster Tree 

Genomes are paired into binary clusters, the newly formed clusters are grouped into 

larger clusters until a hierarchal tree is formed. Complete linkage is used here to form 

the pairs, also called furthest neighbor, uses the largest distance between objects in 

the two clusters. 

nr is the number of objects in cluster r. xr; is the ith object in cluster r. 

d(r, s) = max (dist(Xri , xsj)) 	 •(3.2) 

Where i E(1,2,.....nr) and j E(1,2,.....ns) 

c. Cut off for the Hierarchal Cluster Tree 

Here, we need the ordering of the genomes which are leaves of the tree. So, we take 

the complete dendogram obtained in the above step 

3.3.2 Optimal Leaf Ordering 

The hierarchal clustering is only topological and there is an ambiguity about the ordering 

of genomes because of each non-leaf the left and right sub trees may be exchanged. 

Ill 	4 5 6 	1 1 ' L  3 

Figure 3.5 Effect of Node Flipping on the Leaf Ordering 
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An example of the effect of node flipping on the leaves ordering is shown in Figure 3.5. 

To optimize exchanges, we use the process of minimizing the sum of the Jaccard 

dissimilarities of pair wise adjacent genomes across the leaves of dendogram [31]. 

The process of to find the optimal swivellings is shown below: 

For a tree T with n leaves, denote by zl,..., zn the leaves of T and by vl ...vn_I the n — 1 

internal nodes of T. Since there are n-1 internal nodes, there are 2°-1 possible linear 

orderings of the leaves of a binary tree. To find an ordering of the tree leaves that 

maximizes the sum of the dissimilarities of adjacent leaves in the ordering. This could be 

stated mathematically in the following way. Denote by 't the space of the 2"-1 possible 

orderings of the tree leaves. For (p E c, D(T) is defined as: 

n-1 
2 

Dp(T) = 	S(2~0i' zT.+1) 	 (3.3) 
i=1 

Where S(u,v) is the dissimilarity between two leaves of the tree. To find the ordering cp 

that minimize Dcp(T). 

To find the optimal swivellings, Dynamic programming is used [22]. The left child of a 

node x is denoted by 1(x) and right child is denoted by r(x). If x is a leaf then both 1(x) and 

r(x) is x itself. Let L(x) be the leaves of the subtree rooted at node x. For every (x, {a,d}) 

where x is a node and a is in L(l(x)) and d is in L(r(x)), keep track of the lowest cost C(x, 

{a,d}) among all swivellings of the subtree rooted at x that place a as the leftmost leaf 

and d as the rightmost leaf. Write A(b,c) for the additive cost for having leaf node b 

adjacent to leaf node c (which we, took to be the square of their Jaccard dissimilarity). 

Then C(x,{x,x}) = 0 for every leaf x and the following recurrence relation for non-leaves 

x: 

C(x, {a, d}) = min{C(l(x), [a, b]) + 0(b, c) + C(r(x), [c, d])} 	(3.4) 

b is L(1(1(x))) if aE L(r(l(x))) else b is L(r(l(x))), 

c is L(I(r(x))) if dE L(1(r(x))) else c is L(r(r(x))). 
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Once the root, leftmost leaf and rightmost leaf are fixed, an optimal swivelling has to 

place some node b as the rightmost leaf of the left subtree and some node c as the 

leftmost leaf of the right subtree and use an optimal swivelling for each of these two 

subtrees. It is easy to compute all values of C(x, {-,-}) inductively on x from the bottom 

of the tree toward the root, finishing x for the left and right child of a node before 

beginning that node. The optimal cost for swivelling the whole tree is min(C(root, 

{a,d})Ia in L(l(root)) and d in L(r(root))). 

3.3.3 Weighted Hypergeometric Similarity Probability 

The weighted hypergeometric similarity probability is the probability of two profiles 

having a certain number of matches using an extension of the hypergeometric distribution 

that accounts for number of proteins in each genome. The basic assumption is that protein 

pairs with more matches in their profiles are more likely to co-evolve. 

First, we calculate the weights w; for values of i=1..n for each genome, which is the 

fraction in (0,1) of the 4195 reference genes contained in genes i. (For example, if a 

genome contains 75% of the genes in the reference genome, then its weight is 0.75). 

Genomes highly similar to the target genome have weights near to I while those more 

distant from it have lower weights. Weighted probability reduces to unweighted when all 

the weights are same. These weights are used in the calculation of both similarity 

probability and runs probability. 

For n the number of genomes and consider a pair of genes, genel and genet. For the 

similarity probability, the null hypothesis is genome i contains gene j are mutually 

independent over all pairs of genomes and genes. 

The similarity probability for a pair of genes is that the number of genomes that have first 

gene in some number a>0, the number of genomes that have the second gene 'is b>0 and 

the number of genomes that have both genes in c?0. The similarity p-value, then the 

number of genomes with both genes is at least as large as c given a and b is 
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P(c >_ observed, a, b) 
P(c > observed Ia, b) = 	P(a, b) 	

(3.5) 

Let k take values 0,1...n and random variables Ak, Bk and Ck taking values in 0...k and 

Ak be the number of genomes that have the genel, Bk be the number of genomes that 

have gene2 and Ck be the be the number of genomes that have both genel and gene2, 

restriction to genomes 0...k. To obtain conditional distribution of Cn given A and B„ it 

is sufficient to calculate the joint distribution A~, Bn and C. Probability distributions are 

represented as multivariate polynomials with real coefficients in {0,1 }. A multivariate 

polynomial' is nothing more than an alternate representation of a multi-dimensional array 

of numbers. So if P' represent that table and here the variables are three, so it is a 3-

dimensional table of each side n where the entries the possibility of occurrence of that 

combination. So the similarity p-value turns out to be as follows: 

P(c > observed Ia b) = Ec -C P'[a + 1,b + 1, c' + 1] 	
(3.6) 

zr=0 P'[a+ 1,b+ 1,c' + 1] 

The details of calculation of the probability table P' is explained in implementation 

Section 3.6. 

3.3.4 Weighted Runs Probability 

The weighted hypergeometric runs probability is the probability of two profiles having a 

certain number of runs using an extension of the hypergeometric distribution that 

accounts for number of proteins in each genome. The basic assumption is that protein 

pairs with more runs in their profiles are more likely to co-evolve. 	 o 

The runs probability for a pair of genes is that the number of runs that have first gene in 

some number r>_0, the number of runs that have in the second gene is s>_0 and the 

number of runs that have in both genes in t>0 is the value of the unique entry of P that is 

P[r+1, s+l, t+l]. The runs p-value, then the number of genomes with both genes is at 

least as large as c given a and b is 
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P(t >_ observed jr, s) = 
P(t >_ observed, r, s) 

P(r, s) 
(3.7) 

Let k take values 0,1... n and random variables Rk, Sk  and Tk taking values in 0... k and 

Rk be the number of runs that have the genel, Sk be the number of runs that have gene2 

and Tk  be the be the number of runs that have both genet and gene2, restriction to 

genomes 0...k. To obtain conditional distribution of Tr, given Rn  and S„ it is sufficient to 

calculate the joint distribution R, S„ and T. So if P" represent that table and here the 

variables are three, so it is a 3-dimensional table of each side n where the entries the 

possibility of occurrence of that combination. So the runs p-value turns out to be as 

follows: 

P(t >_ observed Jr, s) = 

n 
zt_tP'[r+1,s+1,t'+1] 

n 
yt_oP'[r+1,s+1,t'+1] 

(3.8) 

The details of calculation of the probability table P" is explained in detail in 

implementation Section 3.6. 

3.3.5 Total Probability 

If H is the weighted hypergeometric similarity p-value for a given pair of genes and R is 

the modified weighted runs p-value for the same pair of genes, then we score the pair of 

genes as H*R or, on a logarithmic scale score is as follows. 

Score = log10 H + log10R  (3.9) 

Lesser the score of a given pairs, more the pairs are functionally related. 

3.4 Data Set 

The phylogenetic profiles constructed from 305 genomes [32]. These profiles had been 

computed for each reference organism using BLASTP [29] to define the presence and 

absence of homologs across the genomes. Of all the 4,195 genes of the genome 

of Escherichia coli K12 are used as they have the most comprehensive annotations and 

therefore, allow us to more accurately assess the performance of methods. However, 
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there is no reason to expect that the results are specific to E. coli and therefore, expect the 

method to perform well if any of the fully sequenced genomes are used as target. 

3.5 Collecting Benchmark Pairs 

STRING (Search Tool for the Retrieval of Interacting Genes/Proteins) is 

a database and web resource of known and predicted protein-protein interactions [33]. 

The STRING database contains information from numerous sources [34][35][36]. 

• Neighborhood 

• Gene Fusion 

• Co-occurrence 

• Co-expression 

• Experiments 

• Databases 

• Text Mining 

These approaches are well known and widely accepted in case of prokaryotes, so it is 

always good to consider all of them. The data is weighted and integrated and a 

confidence score is calculated for all protein interactions. All the pairs whose score is 

greater than 0.5 are considered to be robust, so these pairs are considered for evaluation. 

The count of the number of pairs is 1,00,000 (1 lakh pairs). 

3.6 Implementation Details of Proposed Methodology 

This section presents the implementation details of the framework discussed in the earlier 

section. The individual modules in the previously discussed framework can perform 

independently from each other but in the same order as shown in the framework. The 

modules are implemented according to - implementation convenience using different 

language tools like Matlab and Java. The implementation details are discussed below. 

3.6.1 System Requirements 

The programs are written in Matlab and Java. So, the system requires a Matlab software 

and Java Development Kit with Java Virtual Machine on the system. 
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Memory requirements for the hypergeometric probability calculation are as follows: 

The multivariate variable in the probability calculation step of the framework is a three 

dimensional cube with each side of size equal to the number of genomes. We considered 

305 genomes, so n is 305. The memory to hold a 3D cube of side 305 and datatype 

double is = ( 306 * 306 * 306) * 16 = 458441856 bytes, which is approximately 0.5 GB. 

We also used 4 temporary variables of this size. Total the memory required is 

approximately 3 GBytes RAM. 

The system processor architecture requirements are as follows: 

In 32-bit architecture, the maximum java virtual memory size is 1.5 GBytes. So, 64-bit 

architecture processor and 64 bit operating System are used. 

3.6.2 Implementation of Genomes Ordering 

The following Matlab functions are used. 

• Y = pdist(X, `jaccard') computes the Jaccard dissimilarity between pairs of objects in 

n-by-p data matrix X. Rows of X correspond to observations; columns correspond to 

variables. Y is a row vector of length n(n-1)/2, corresponding to pairs of observations 

in X. The distances are arranged in the order (2,1), (3,1), ..., (n, l ), (3,2), ..., (n,2), ..., 

(n,n—1 )). 

• Dist = squareform (Y), where Y is a vector as created by the pdist function, converts 

y into a square, symmetric format Dist, in Dist Z(i,j) denotes the distance between the 

ith  and jth  objects in the original data. 

• Tree = linkage(Dist , 'complete') creates a hierarchical cluster tree from the distances 

in Dist. Complete linkage, also called furthest neighbor, is used for the largest 

distance between objects in the two clusters. 

• dendogram (Tree,O) generates a dendogram plot of the hierarchical-, binary cluster 

tree represented by Z. Zero is given as second parameter to display the complete tree. 

• Order = optimalleaforder (Tree, Dist) function is used to determine the optimal leaf 

ordering for the hierarchical binary cluster tree represented by Tree, using the 

distance matrix Dist. 
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3.6.3 Implementation of Probability Modules 

Let n the number of genomes and consider a pair of genes. Let ai, b; and c; E { 0, 1 } be 1 

if genome i E 1..n has the first gene, second gene and both genes, respectively. In the 

case of runs, it is useful to have a notional "0th genome" with ao = bo = co = 0. Let r;, s; t; 

E {0, 1 } be 1 iff genome i E 1..n begins a run (i.e., genome i has a 1 and genome i — 1 has 

a 0) in the first and second genes and both genes respectively. With ro=so=to=0 To 

determine whether a run starts in a given genome, the previous genome is also used. 

Weight w; and 'variables A, B, C, R, S and T are define in Section 3.3.3, which takes 

cumulative values of a, b, c, r, s and t. 

We divide the probability into four parts based on the values of a and b as shown in 

Figure 3.6 
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Figure 3.6 	Division of the Probability Calculation 

Pk = Wk+Xk+ Yk+Zk 	 (3.10) 
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Wk represent the possibility of a=0 and b=0 

Xk represent the possibility of a=0 and b=1 

Yk represent the possibility of a=1 and b=0 

Zk represent the possibility of a=1 and b=1 

And initial values are Wk = 1, Xk = 0, Yk = 0, Zk = 0 

(a) Similarity Probability calculation: 

Wo=1 

X0 Yo = Zo =0 

Wi = (1 - wi)2 ( 	'Y1 + Yi-r + zi-1 

Xi = (1 — wl )w jb (w''_1 + Xi -1 + l'i-~ + Zi-1 
Yi = (1 — wi)wia Wi-1 + Xi_1 + Yi-1 + Zi-1 
Z' = w?abc (Wi-1 + Xi-1 + Yi-1 + Zi-1 ) 

Pi =(Wi+X,+Y'+Z' ) 

Cubical array is used to store a polynomial in a, b, c with increasing successive powers 0, 

1, 2, ... of `a' going front-to-back, of `b` going top-to-bottom and of `c' going left-to-

right. We start with an array consisting of a single element +1.0, i.e., P. 

For i E 1..n, replace the array with the entry wise sum of following four arrays 

(corresponding to the four terms of the first factor of the right-hand side of P'1 ): 

(1) The current array with every entry multiplied by (1 - w;)2 and padded by a 1-entry-

thick slab of +0.0's on the back, bottom and right. 

(2) The current array with every entry multiplied by (1 - w;)w; and padded by a 1-entry-

thick slab of +0.0's on the back, top and right. 

(3) The current array with every entry multiplied by wi(1-w1) and padded by a 1-entry-

thick slab of +0.0's on the front, bottom and right. 

(4) The current array with every entry multiplied by (w1)2 and padded by a 1-entry-thick 

slab of +0.0's on the front, top and left. 
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The final array gives P„' and is easily post-processed in a single last pass to obtain a full 

set of the desired p-values for the given pairs 

(b) Runs Probability 

Wi = (1 - w1)2 ( Wi-1 + Xi-1 + Yi-1 + zi-1 ) 

xi = (1 — w1)wi (SW-1 + Xt-1 + SYi11 + Zi-1 )  

= (1 — wi)wi (rW1 _1 + rX1 _1 + Yi_1 + Zi_1 ) 
Zi = wt (rst W~_1 + rtXt _1 + stYi11 + ZC _1 ) 

Pi =(WL +Xi +Yi + zi ) 

Cubical array is used to store a polynomial in r, s, t with increasing successive powers 0, 

1, 2, ... of `r' going front-to-back, of `s` going top-to-bottom and of `t' going left-to-

right. We start with four arrays W, X, Y and Z. 

For i E 1...n, simultaneously update W, X, Y and Z as follows: 

(1) Replace W with entry wise sum of four current arrays after multiplying each element 

by (1-w1)2 and padding by a 1-entry-thick slab of +0.0's on the back, bottom and 

right. 

(2) Replace X by following : take entry wise sum of current W and Y after padding by a 

1-entry-thick slab of +0.0's on the back, top and right, and current X and Z after 

padding by a 1-entry-thick slab of +0.0's on the back, bottom and right, then multiply 

by (w;)2. 

(3) Replace Y by following : take entry wise sum of current W and X after padding by a 

1-entry-thick slab of +0.0's on the front, bottom and right and current Y and Z after 

padding by a 1-entry-thick slab of +0.0's on the back, bottom and right, then multiply 

by (1 - w;) w;. 

(4) Replace Z by following : take entry wise sum of current W after padding by a 1- 

entry-thick slab of +0.0's on the front, top and left, and current X after padding by a 

1-entry-thick slab of +0.0's on the front, bottom and Ieft and current Y after padding 

by a 1-entry-thick slab of +0.0's on the back, top and left and current Z after 

padding by a 1-entry-thick slab of +0.0's on back, bottom and right. 
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The final array gives P1," is obtained by taking entry wise sum of the final W, X, Y and Z 

arrays. Now PI," is easily post-processed in a single last pass to obtain a full set of the 

desired p-values for the given pairs. 
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Chapter 4 

Protein Function Prediction Using Functional Catalogue 

Database 

Predicting protein function using Functional Catalogue Database involves lot of Data 

processing techniques and computational methods. Here, we have used Classification 

techniques to employ the system. The basic architecture of two stage supervised learning 

used is shown in Figure 4.1. 

Figure 4.1 Two stages of Supervised Learning 

4.1 Design of Proposed Methodology 

The framework of our proposed automated protein function prediction system is as 

shown in Figure 4.2. 

Phylogenetic profiles generation is explained in the Section 3.1. Class labeling is the 

process of determining the functional classes of the different protein and it is very much 

ongoing process and to a large extent one of the key steps in understanding the genomes 



of the various species. We considered yeast genomes as target genomes and fortunately, 

in the case of the yeast genome, there exist extensive annotations for a large fraction of 

the genes. For our study, we used the functional annotations that are available in the 

MIPS(Munich Information Center for Protein Sequences) database [37]. 

Phylogenetic Profiles Generation 

Class labeling for all protein profiles 

Divide the data into test and training using 3 fold cross 
validation 

Build the model for the training data using Classification 

Predict the class labels of test data using model 

Calculate the ROC score and add to previous iteration 
values 

it 
Repeated 
10 times? 

Average the ROC scores and display class wise results 

Figure 4.2 Design of Proposed Methodology 
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4.1.1 Cross Validation 

Cross validation is used to minimize the empirical error, i.e. the error made on the data 

used to train the algorithm. A current pitfall when we try to do this is to stick too closely 

to the data : we learn irrelevant details of the training set, which leads to a wrong 

generalization. This problem happens when we have too little data and a too 

precise model. 

a 

• 
• • 

A 	A  

A 

(a)Training data and an overfitting 
classifier 

+ l . 
0 

• 
A 

A 1 

• 
A 

(° 	O 

A 
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~- 	o 

A 
0 ° ° 

(b) Applying an overfitting classifier 
on testing data 

U 

0  

\A \ 

o

°o 

 0 

% 	0

\1 

• 

(c) Training data and a better 	(d) Applying a better classifier on 
classifier 	 testing data 

Figure 4.3 	An Overfitting Classifier and a Better Classifier (Dark circle and triangle: 

training data; Hollow circle and triangle: testing data) 
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In v-fold cross-validation, we first divide the training set into v subsets of equal size. 

Sequentially one subset is tested using the classifier trained on the remaining v -1 

subsets. Thus, each instance of the whole training set is predicted once so the cross-

validation accuracy is the percentage of data which are correctly classified. 

The cross-validation procedure can prevent the overfitting problem. We use Figure 4.3 

which is a binary classification problem (triangles and circles) to illustrate this issue. 

Filled circles and triangles are the training data while hollow circles and triangles are the 

testing data. The testing accuracy the classifier in Figures 4.3(a) and 4.3(b) is not good 

since it overfits the training data. If we think training and testing data in Figure 4.3(a) and 

4.3(b) as the training and validation sets in cross-validation, the accuracy is not good. On 

the other hand, classifier in Figure 4.3(c) and 4.3(d) without overfitting training data 

gives better cross-validation as well as testing accuracy. 

4.1.2 Classification 

Over the years a variety of different classification algorithms have been developed by the 

machine learning community. Depending on the characteristics of the data sets being 

classified certain algorithms tend to perform better than others. In recent years, 

algorithms based on support vector machine have been shown to produce reasonably 

good results for -problems in which the independent variables are homogeneous. For this 

reason, we primarily used this classification algorithm. 

Support Vector Machine: Support Vector Machine (SVM) is a learning algorithm 

proposed by Vapnik [38]. This algorithm is introduced to solve two-class pattern 

recognition problems. Given a training set in a vector space, this method finds the best 

decision hyper plane that separates two classes. The quality of a decision hyper plane is 

determined by the distance (referred as margin) between two hyper planes that are 

parallel to the decision hyper plane and touch the closest data points of each class. The 

best decision hyper plane is the one with the maximum margin. By defining the hyper 

plane in this fashion, SVM is able to generalize to unseen instances quite effectively. The 

SVM problem can be solved using quadratic programming techniques [39]. SVM extends 
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its applicability on the linearly non-separable data sets by either using soft margin hyper 

planes, or by mapping the original data vectors into a higher dimensional space in which 

the data points are linearly separable. The mapping to higher dimensional spaces is done 

using appropriate kernel functions, resulting in efficient algorithms. A new test object is 

classified by looking on which side of the separating hyper plane it falls and how far 

away it is from it. 

In their basic form, SVMs learn linear decision rules h(z) = sign(w.z + b) described by a 

weight vector w and a threshold b. Let the input be a sample of n training examples with 

the j h̀ input point being x' _ (x; , xz ,..., x). 

Let this input point be labeled by the random variable Y' c {-1,+l} . For a linearly 

separable input, the SVM finds the hyperplane with maximum Euclidean distance to the 

closest training examples. This distance is called the margin S as depicted in Figure 4.4 

For non separable training sets, the amount of training error is measured using slack 

variable 	as shown in Figure 4.4 for a two class problem. Computing hyperplanes is 

equivalent to solving the following primal optimization problem. 

minimize 

n 

	

= 1 w.iv+CEO' 	 (4.1) 

subject to 

	

tl;=, : y' [i ' + b] >_ 1— ~' 	 (4.2) 

f > 0 	 (4.3) 

The second constraint requires that all the training examples are classified properly up to 
n 

a slack. Therefore, Iii is an upper bound on the number of training errors. The factor 

C in Equation 4.1 is a parameter that allows trading off training error verses model 

complexity. Note that the margin of the resulting hyperplane is 8 =1 / wll . The hyperplane 

40 



that separates the positive from the negative examples and has maximal margin is called 

the maximal margin hyperplane or the Optimal Separating Hyperplane (OSH) as shown 

in Figure 4.4. The hyperplanes that contain the training points with the minimal distance 

to the OSH are called the margin hyperplanes and they form the boundary of the margin. 

They are represented as HI and H2 in Figure 4.4. 

Support Vectors a* 

OSH  

Hi 0 0 

0 

•'` J 0 ,r~ 

O 	
0 

0 0 
0 0 

Figure 4.4 The Optimal Separating Hyperplane (OSH), Support Vectors a; and the 
Slack Variables 

4.1.3 Kernel Function 

The performance of SVM classification is strongly related to the choice of the kernel 

function and the penalty parameter C. There are a large number of kernel functions 

available. The RBF(Radial Basis Function) kernel non-linearly maps samples into a 

higher dimensional space and can handle the case when the relation between class labels 

and attributes is nonlinear. And when the number of instances is much greater than the 

number of features then, non linear kernel is used. So RBF kernel is used. The RBF 

kernel can be described for vectors a and b as follows 

K(a, b) = e-gamma* Ila-bil? 	 (4.4) 
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For finding the optimum values of parameters (C, y) automatically, a grid search 

technique is used using cross validation. And for this kernel function, we tuned the 

classifier and got the gamma value as 1 and C value as 1. The kernel functions are 

conveniently implemented in the open source software package SVM Light [39] which is 

used in this work. 

4 .2 Data Set 

We used the yeast Saccharomyces cervisiae genome the same dataset as in [17], [18]. 

Proteins with accurate functional classification were selected. The phylogenetic profiles 

of 2465 yeast genes selected for their accurate functional classifications were generated 

for each target organism using BLASTP [29] to define the presence and absence of 

homologs across the genomes. 

For the data, there are 251 gene functional classes organized in tree structure. Based on 

the amount of information that is known for each gene, the MIPS database [37] assigns it 

to one or more nodes of the functional classes. Genes for whom detailed functional 

information is known tend to be assigned towards the leaves of the tree, whereas genes 

for which the information is more limited tend to be assigned at the higher-level nodes of 

the tree. For example, a gene YHR037W is assigned a function named amino-acid 

biosynthesis. Because amino-acid biosynthesis which is also a sub-function of the top-

level function metabolism, YHR037W has all those functions, {amino-acid biosynthesis, 

amino-acid metabolism, metabolism}, a function at a node and all the functions of its 

path to the top-level node. A gene also may have functions assigned from multiple 

branches. For the case of YAL001 C it has functions from the top level classes 

transcription, cellular organization and their subcategories. As a result of this functional 

class assignment, each gene has 3.4 functions assigned on the average. The distribution of 

the number of classes at the different level of the tree is shown in Table 4.1. 

Most of the functions are small in their size, which makes functionality prediction 

difficult. For this reason only functional classes that contain at least 10 genes were 

extracted which resulted in 133 functional classes. 
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Table 4.1 	Number of defined function categories at each level in the tree. 

Level Functions 

1 16 

2 107 

3 86 

4 40 

5 2 

4.3 Implementation Details of Methodology 

SVM is trained for each functional category to predict whether a gene should be assigned 

to it or not based on phylogenetic profiles. A 3-fold cross validation was adopted for the 

experiments. For each functional class, two third of members are randomly selected as 

positive training examples and rest as positive testing examples. Genes not belonging in 

that class were randomly split into two thirds as negative training and one third as 

negative testing examples. Now, the positive training examples and negative training 

examples are combined to form training data and positive testing examples and negative 

testing examples are combines to form testing data for that particular class. After 

generating the data model build using training data and the model is tested using the test 

data. The performance of the classifier is measured using the ROC scores. ROC curve 

plots true positive rate (TPR) on y-axis and false positive rate (FPR) on x-axis. 

TP 
TPR = TP + FN 	

(4.5) 

FP  
FPR = FP + TN 	

(4.6) 

Where TP is true positive, FN is false negatives, FP is false positive, TN is true negatives. 

Here we plotted true positives as a function of false positives. After training the SVM 

with training data the output file we get when we test the model with test data contains a 

score related to the distance between the test example and the linear boundary in the 

feature space. As each functional class contains a small number of genes learning 

problem is very unbalanced (there are few positive examples but many negative ones). 
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This issue •is handled by giving more weight to the positive examples in SVM learning. 

Moreover, this implies that only a small percentage of false positives can be tolerated in 

real world -applications (such as function predictions), so we measured the R0050 score 

for each SVM, i.e., the area under the ROC curve up to the first 50 false positives [40]. 
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Chapter 5 

Results and Discussions 

5.1 Results of Protein Association Network Method 

The phylogenetic profiles generated consider 305 genomes. As mentioned in the Section 

3.5, all the pairs whose score is greater than 0.5 are considered for evaluation. The total 

number of pairs are 1,00,000 (1 lakh). The weighted hypergeometric probability with 

runs proposed by Cokus et al. [22] outperformed all the existing methods which uses the 

following methodology: 

a. Unweighted hypergeometric: This method is based assumption that all the genomes 

in the profiles generation are given equal weightage. And the phylogenetic relation 

which is present at the background is not considered. Drawback of this is it cannot be 

implemented for our method because it contains the factorial calculation which 

cannot be calculated for the updated data which contains string of length 305. 

b. Mutual information: This method gave the measure as the entropy of first profile plus 

the entropy on second profile minus the entropy of the joint profile viewed one 

genome at a time. Drawback of this case is also the phylogenetic relation is not 

considered. 

c. Weighted hypergeometric: This method gave the weightage to the genome by which 

the profiles are generated which is not considered in the above methods. But the 

drawback of this method is the phylogenetic relation is not considered. 

So, we compared our method with weighted hypergeometric probability with runs, which 

implies that if the results are better than this method then its obvious that it is better than 

all the above methods. 

The drawbacks of the methods are mentioned in detail in the literature review section. 

We also compared our result with weighted hypergeometric method. All the three 

methods are benchmarked against pairs which are obtained from the STRING [36] 

database. 

5.1.1 Comparison Using Benchmark Pairs 

Figure 5.1 compares three methods, considering one method at a time. 
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Each method assigns a p-value to every pair of genes (1 lakh pairs). Then gene pairs are 

sorted in ascending order by this p-value. Graph in Figure 5.1 is plotted as given x-axis 

value x, y is plotted as mean(total score) of first x gene pairs after sorting based on p-

value. Where total score is the score which is obtained from the STRING database. The 

score is ranged from value 0 to 1. The greater the value the more the functional 

relatedness between the proteins. From the graph it shows that the pairs obtained from the 

propose method modified weighted hypergeometric probability with runs (green line) 

outperformed the other two methods weighted hypergeometric probability with runs (blue 

line) and weighted hypergeometric probability without runs (red line). 

Table 5.1 Cumulative Average of Total Score for top 10,000 pairs 

Cumulative Average of 
Method 

Total Score 

Modified Hypergeometric Probability with 
0.76945 

runs (Proposed) 

Hypergeometric Probability with runs 0.756 

Hypergeometric Probability without runs 0.753 

The cumulative average considering the 10,000 pairs for the proposed method is 0.76945, 

where as the values of weighted hypergeometric probability with runs is 0.756 and for 

weighted hypergeometric probability without runs is 0.753 as shown in Table 5.1. In the 

paper which proposed weighted hypergeometric probability with runs compared the 

results with gene ontologies and showed that it out performed weighted hypergeometric 

probability without runs with a big margin_ If we see that margin in this case between 

those two methods is 0.003, though numerically low value since it is an average on 

10,000 pairs it is good in this case. If we see our proposed method, it outperformed the 

best method existing which is weighted hypergeometric probability with runs by a value 

of 0.01345 which is a big margin in term of interaction score given by STRING database. 
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5.1.2 Network Degree Distribution 

A network (an undirected graph with no multiple edges and no self-edges) is obtained 

from a computational method by ranking gene pairs by the p-values from that method and 

then collecting the top ranked 10,000 pairs. The nodes are the genes mentioned in the 

kept gene pairs and an edge is placed between two different genes if and only if the gene 

pair consisting of the two genes is among the kept gene pairs. The degree of a node is the 
number of edges incident with that node. 

The Figure 5.2 shows two histograms (with a logarithmic scale for frequency) of node 

degree, one (blue) for the network from the weighted hypergeometric with runs 

computational method and the other (red) for the modified weighted hypergeometric with 

runs computational method. 

—Weighted Hypergeometric with runs —Modified weighted hypergeometric with runs 
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Degree of Nodes 

Figure 5.2 Network Degree Distribution 

In Figure 5.2, we can see that proposed weighted hypergeometric with runs network (blue 

line) contains may nodes with 90 or more edges, while the modified weighted with runs 

(red line) has almost none. By seeing the above graph, we can say that the network 
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formed by proposed method is broken down into smaller clusters when compared to the 

pure weighted hypergeometric probability with runs. This is significant because large 

clusters are not very useful for functional studies since they bring together proteins with a 

broad range of functions. In contrast, small clusters can contain proteins with well-

defines functional relationships. 

5.1.3 Analysis with an Example 

We considered the subunits of nitrate reductase. The Figure 5.3 shows all the interactions 

of the six subunits of nitrate reducatase which are narY, narH, narZ, narV, narJ and narG. 

These interactions are which are present in the STRING database. 

Figure 5.3 Functional Interactions between Proteins in Nitrate Reductase in the STRING 

Database. 

The Figure 5.4 shows network containing all the interactions of the six subunits of nitrate 

reducatase which are observed using our proposed methodology modified weighted 

hypergeometric probability with runs. These proteins belong together as they are subunits 

of a protein complex that catalyzes the reduction of nitrate to ammonia. In the network 

generated using our methodology, the interactions missing are narG-narZ, narZ-narJ and 

narJ-narG and these links, were of less score implies that less significant edges. The 
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network obtained is almost near to the existing true interactions which are found in the 

database. 

Figure 5.4 Functional Interactions between Proteins in Nitrate Reductase Using Proposed 

Methodology. 

5.2 Results of Functional Catalogue Database Method 

SVM is trained for each functional category to predict whether a gene should be assigned 

to it or not based on phylogenetic profiles. Using 3-fold cross validation repeated 10 

times for each class, we compared the performance of proposed kernel function to SVM 

with the linear kernel, polynomial kernel [ 18] and tree kernel [ 17] through their Receiver 

Operating Characteristic (ROC) curves, i.e., the plot of true positives as a function of 

false positives. 

5.2.1 ROC 50 Scores 

Table 5.2 shows the functional categories of the level 1 in functional class tree and their 

R0050 scores obtained by SVM using linear kernel, polynomial kernel, radial basis 

function (RBF) and tree kernel. It show that the performance of the radial basis kernel is 

similar to polynomial kernel is some functional classes. However for the class 

TRANSPORT FACILITATION both linear kernel and polynomial kernel has much 

higher R0050 score and for class TRANSCRIPTION all the four kernels have almost 
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same R0050 score and this tend to be larger and more general classes than other. Over 

all radial basis kernel outperformed the polynomial kernel linear kernels and tree kernel. 

Table 5.2 	R0050 scores for the predictions of the level 1 classes in the functional 
class tree using 4 kernel functions. 

RBF 

Functional Class Linear Polynomial Tree (Proposed 

Method) 

METABOLISM 0.242 0.272 0.218 0.323 

ENERGY 0.099 0.265 0.105 0.29 

PROTEIN SYNTHESIS 0.061 0.274 0.186 0.288 

CELLULAR ORGANIZATION 0.169 0.218 0.221 0.229 

IONIC HOMEOSTASIS 0.047 0.179 0.105 0.217 

TRANSPORT FACILITATION 0.318 0.381 0.273 0.19 

CELLULAR TRANSPORT AND 
0.072 0.109 0.054 0.147 

TRANSPORTMECHANISMS 

CELL RESCUE, DEFENSE, CELL 
0.054 0.113 0.049 0.141 

DEATH AND AGEING 

TRANSCRIPTION 0.114 0.125 0.117 0.122 

CELL GROWTH, CELL DIVISION 
0.059 0.08 0.06 0.086 

AND DNA SYNTHESIS 

PROTEIN DESTINATION 0.048 0.09 0.04 0.078 

CELLULAR 

COMMUNICATION/SIGNAL 0.057 0.122 0.079 0.062 

TRANSDUCTION 

CELLULAR BIOGENESIS 0.03 0.031 0.034 0.033 

The R0050 scores of the 50 largest protein functions in descending order sorted by size 

are plotted in Figure 5.5. The sum of the R0050 scores over the 50 functions for the 

linear, polynomial, radial basis and tree kernel are 4.8, 8.0, 7.5 and 6.0 respectively. 
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Even though radial basis has outperformed all three kernels, polynomial kernel has high 

sum. The reason for this is that the polynomial kernel has much higher values than other 

kernels in classes like amino-acid metabolism (0.437) and transport facilitation (0.381). 

5.2.2 Class Wise Results 

Amino-acid Metabolism 

Energy 

Protein Synthesis 

Figure 5.6 ROC Curves 
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Figures 5.6 shows the ROC curves up to 50 false positives corresponding to the top three 

classes with the highest radial basis function ROC score, in order to further study the 

differences in performance. These plots show that in several cases the RBF kernel 

significantly outperforms the other three kernels. 
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Chapter 6 

Conclusion and Future Work 

6.1 Conclusion 
In this work, we explored the possibility of predicting protein function using 

phylogenetic profiles. We proposed two solutions, first one using Functional Protein 

Association Network and second one using Functional Catalogue Database. 

In the first method using Functional Protein Association Network, we used the 

probabilistic approach to incorporate the two important aspects of functional relatedness 

which are similarity measure and the number of runs the profiles span given the ordering 

of genomes. We tested the method using the 4195 phylogenetic profiles of Escherichia 

coli K12 generated using 305 genomes. 

The following conclusions can be made from the results obtained using the proposed 

system and above mentioned data: 

• The proposed method can yield good predictions based on number of reference 

genomes. Greater the number of genomes considered as reference genomes for 

profiles generation better will be the predictions. 

• The cumulative average of STRINGS score considering the top ranked 10,000 

pairs for the proposed method is 0.76945, where as the values of weighted 

hypergeometric probability with runs is 0.756 and for weighted hypergeometric 

probability without runs is 0.753. 

• Our proposed method outperformed the best method existing which is weighted 

hypergeometric probability with runs by a value of 0.01345 which is a big margin 

in term of interaction score given by STRINGS database. 

• The proposed method is not computationally expensive while considering 

phylogeny for identifying links 

• This method is applicable to any target genome. 
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In the second method using Functional Catalogue Database, we classified phylogenetic 

profiles using supervised machine learning method, support vector machine classification 

along with radial basis function as kernel for identifying functionally linked proteins. We 

tested the algorithm for 2465 annotated genes from the yeast genome. 

We compared the results with linear kernel, polynomial kernel and tree kernel. 

Polynomial kernel and RBF kernel together gave prediction more accurate than linear and 

tree kernel. Overall RBF kernel outperformed other three kernels. 

Hence, this work can aid the understanding of protein functions for biomedical 

researchers and assist database curators in annotating protein functions and interactions 

efficiently, thus promoting the progress of genomics research. 

6.2 Future Work 

There is obviously significant room for improving the methods that we used for the 

prediction of protein function. The possible improvements in the future are listed as 

below: 

• In the optimal leaf ordering step there are optimization steps involved in the 

implementation stage which is itself an area of research. 

• For incorporating phylogeny we used concepts of runs, other optimal methods of 

incorporating phylogeny can be explored. 

• Since the profiles are binary vectors, an entire field of data mining known as 

.association analysis has been dedicated to this kind of data which is yet to be 

explored. 

• Set of phylogenetic profiles can be treated as a binary matrix, which maps directly 

to the concept of market basket analysis. 

In the future, there will be enormous need for the rapid annotations of protein functions 

and interactions for biomedical researchers to access the biomedical problems of human 

beings and to prescribe the drugs for their cure. 
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APPENDIX: Genomes List and their Ordering 

A. List of all the reference genomes considered for construction of Phylogenetic profiles. 

S No. Reference Genomes 
1 Bifidobacterium longum 
2 Co 	ebacterium di htheriae 
3 Corynebacterium efficiens YS-314 
4 Corynebacteriumglutamicum ATCC 13032 Kitasato 
5 Corynebacterium glutamicum ATCC 13032 Bielefeld 
6 Corynebacterium 'eikeium K411 

7 Frankia CcI3 
8 Leifsonia xyli xyli CTCBO 
9 Mycobacterium avium 	aratuberculosis 

10 Mycobacterium bovis 
11 Mycobacterium leprae 
12 Mycobacterium tuberculosis CDC1551 
13 Mycobacterium tuberculosis H37Rv 
14 Nocardia farcinica IFM10152 
15 Propionibacterium acnes KPA 171202 

16 Stre tomyces avermitilis 
17 Stre tomyces coelicolor 
18 Symbiobacterium thermo hilum IAM14863 
19 Thermobifida fusca YX 
20 Tro heryma_whipplei TWOS 27 
21 Tro he 	ma whi 	lei Twist 
22 Agrobacterium tumefaciens C58 UWash 
23 AgrobacteriumtumefaciensC58 Cereon 
24 Ana lasma marginale St Manes 
25 Bartonella henselae Houston-1 

26 Bartonella 	uintana Toulouse 
27 Bradyrhizobiumjaponicum 
28 Brucella abortus 9-941 
29 Brucella melitensis 
30 Brucella melitensis biovar Abortus 
31 Brucella suis 1330 
32 Candidatus Pelagibacter ubique HTCC 1062 
33 Caulobacter crescentus 
34 Ehrlichia canis Jake 
35 Ehrlichia ruminantium Garde! 



36 Ehrlichia ruminantium str. Wel evonden 
37 Ehrlichia ruminantium Welgevonden 
38 Erythrobacter litoralis HTCC2594 
39 Gluconobacter oxydans 621H 
40 Magnetos irillum ma neticum AMB-1 
41 Mesorhizobium loti 
42 Nitrobacter wino radskyi Nb-255 
43 Novos hin obium aromaticivorans DSM 12444 
44 Rhizobium etli CFN 42 
45 Rhodobacter sphaeroides 2 4 1 

46 Rhodo seudomonas 	alustris CGA009 
47 Rhodopseudomonas_palustris HaA2 

48 Rhodos irillum rubrum ATCC 11170 

49 Rickettsia conorii 
50 Rickettsia felis URRWXCal2 
51 Rickettsia 	rowazekii 
52 Rickettsiatyphiwilmington 
53 Silicibacter 	omeroyi DSS-3 
54 Sinorhizobium meliloti 
55 Wolbachia endos mbiont of Droso hila melano aster 
56 Wolbachia endosymbiont of Brugia malayi TRS 
57 Zymomonas mobilis ZM4 
58 Aquifex aeolicus 
59 Bacteroides fragilis NCTC 9434 
60 Bacteroides fra ilis YCH46 
61 Bacteroides thetaiotaomicron VPI-5482 
62 Chlorobium chlorochromatii CaD3 
63 Chlorobium tepidum TLS 
64 Pelodictyon luteolum DSM 273 
65 PorphyromonasgingivalisW83 
66 Salinibacter ruber DSM 13855 
67 Azoarcus s 	EbNI 
68 Bordetella bronchise tica 

69 Bordetella 	ara ertussis 
70 Bordetella_pertussis 
71 Burkholderia mallei ATCC 23344 
72 Burkholderia 	seudomallei 1710b 
73 Burkholderia 	seudomallei K96243 
74 Burkholderia 383 



75 Burkholderia thailandensis E264 
76 Chromobacterium violaceum 
77 Dechloromonas aromatica RCB 
78 Neisseria gonorrhoeae FA 1090 
79 Neisseria meningitidis MC58 
80 Neisseria menin itidis Z2491 
81 Nitrosomonas euro aea 
82 Nitrosos ira multiformis ATCC 25196 
83 Ralstonia eutro ha JMP134 
84 Ralstonia solanacearum 
85 Thiobacillus denitrificans ATCC 25259 
86 Parachlamydiasp UWE25 
87 Chlam dia muridarum 
88 Chlamydia trachomatis A HAR-13 
89 Chlamydia trachomatis 
90 Chlamydo hila abortus S26 3 
91 Chlamydo hila caviae 
92 Chlamydophila 	neumoniae AR39 
93 Chlamydo hila 	neumoniae CWL029 
94 Chlam do hila 	neumoniae J138 
95 Chlamydo hila 	neumoniae TW 183 
96 Dehalococcoides etheno enes 195 
97 Dehalococcoides CBDB 1 
98 Aero yrum 	emix 
99 obaculum aero hilum 

100 Sulfolobus acidocaldarius DSM 639 
101 Sulfolobus solfataricus 
102 Sulfolobus tokodaii 
103 Anabaena variabilis ATCC 29413 
104 Gloeobacter violaceus 
105 Nostoc_sp  
106 Prochlorococcus marinus MIT 9312 
107 Prochlorococcus marinus MIT9313 
108 Prochlorococcus marinus NATL2A 
109 Prochlorococcus marinus CCMP1375 
110 Prochlorococcus marinus MED4 
111 S 	echococcus elon atus PCC 6301 
112 S nechococcus elongatus PCC 7942 
113 S nechococcus CC9605 



114 S nechococcus CC9902 
115 Cyanobacteria bacterium Yellowstone B-Prime 

116 C anobacteria bacterium Yellowstone A-Prime 
117 S nechococcus s 	WH8102 
118 Synechocystis PCC6803 
119 Thermosynechococcus elongatus 
120 Deinococcus radiodurans 
121 Thermus thermo hilus HB27 
122 Thermus thermo hilus HB8 
123 Bdellovibrio bacteriovorus 
124 Desulfotalea 	sychro hila LSv54 
125 Desulfovibrio desulfuricans G20 
126 Desulfovibrio vul aril Hildenborou h 
127 Geobacter metallireducens GS-15 
128 Geobacter sulfurreducens 
129 Pelobacter carbinolicus 
130 CampylobacterjejuniRM1221 
131 Cam ylobacter 'ejuni 
132 Helicobacter he aticus 

133 Helicobacter 	lori 26695 
134 Helicobacter 	ylori J99 
135 Thiomicrospira_denitrificans ATCC 33889 

136 Wolinella succinogenes 
137 Archaeo lobus ful idus 

138 Haloarcula marismortui ATCC 43049 
139 Ha lob acterium sp 
140 Methanococcus jannaschii 
141 Methanococcus mari aludis S2 
142 Methano 	rus kandleri 
143 Methanosarcina acetivorans 
144 Methanosarcina barkeri fusaro 
145 Methanosarcina mazei 
146 Methanos haera stadtmanae 
147 Methanobacterium thermoautotrophicum 
148 Natronomonas_pharaonis 
149 -Picro hilus torridus DSM 9790 
150 P 	ococcus ab ssi 
151 Pyrococcus_furiosus 
152 Pyrococcus horikoshii 

iv 



153 Thermococcus kodakaraensis KODI 
154 Thermo lasma acido hilum 
155 Thermo lasma volcanium 
156 Aster yellows witches-broom 	hyto lasma AYWB 
157 Bacillus anthracis Ames 0581 
158 Bacillus anthracis Ames 
159 Bacillus anthracis str Sterne 
160 Bacillus cereus ATCC 10987 
161 Bacillus cereus ATCC 14579 
162 Bacillus cereus ZK 
163 Bacillus clausii KSM-K16 
164 Bacillus halodurans 

165 Bacillus licheniformis ATCC 14580 

166 Bacillus licheniformis DSM 13 
167 Bacillus subtilis 
168 Bacillus thuringiensis konkukian 
169 Carbox dothermus h drogenoformans Z-2901 
170 Clostridium acetobutylicum 
171 Clostridium 	erfrin ens 
172 Clostridium tetani E88 
173 Enterococcus faecalis V583 
174 Geobacillus kausto hilus HTA426 
175 Lactobacillus acido hilus NCFM 
176 Lactobacillus 'ohnsonii NCC 533 
177 Lactobacillus plantarum 

178 Lactobacillus sakei 23K 
179 Lactococcus lactis 
180 Listeria innocua 
181 Listeria monocytogenes 
182 Listeria monocytogenes 4b F2365 
183 Mesoplasma forum L1 
184 Moorella thermoacetica ATCC 39073 
185 Mycoplasma ca ricolum ATCC 27343 
186 Mycoplasma gallise ticum 

187 Mycoplasma_genitalium 
188 Mycoplasma hyopneumoniae 232 
189 M cq lasma h o neumoniae 7448 
190 Mycoplasma hyo neumoniae J 
191 Myco lasma mobile 163K 



192 M co lasma m coides 
193 Mycoplasma 	enetrans 
194 Myco lasma 	neumoniae 
195 Myco lasma 	ulmonis 
196 Myco lasma synoviae 53 
197 Oceanobacillus iheyensis 
198 Onionyellows_phytoplasma 
199 Staphylococcus aureus RF122 
200 Staphylococcus aureus COL 
201 Staphylococcus aureus aureus MRSA252 
202 Staphylococcus aureus aureus MSSA476 
203 Staphylococcus aureus MW2 
204 Staphylococcus aureus Mu50 
205 Staphylococcus aureus N315 
206 Staphylococcus aureus NCTC 8325 
207 Staphylococcus aureus USA300 
208 Staphylococcus epidermidis ATCC 12228 
209 Sta hylococcus e idermidis RP62A 
210 Staphylococcus haemolyticus 
211 Staphylococcus saprophyticus 

212 Stre tococcus agalactiae 2603 
213 Streptococcus agalactiae A909 
214 Streptococcus agalactiae NEM316 
215 Streptococcus mutans 

216 Streptococcus 	neumoniae R6 
217 Streptococcus 	neumoniae TIGR4 
218 Streptococcus_pyogenes Ml GAS 
219 Stre - tococcus 	yogenes MGAS10394 
220 Stre tococcus 	yogenes MGAS315 

221 Streptococcus_pyogenes MGAS5005 
222 Streptococcus_pyogenes MGAS6180 
223 Streptococcus 	o enes MGAS8232 
224 Stre tococcus 	yogenes SSI-1 

225 Streptococcus thermophilus CNRZ1066 
226 Streptococcus thermo hilus LMG 18311 
227 Thermoanaerobacter tengcongensis 
228 Ureaplasma_urealyticum 

229 Fusobacterium nucleatum 
230 Acinetobacter s 	ADPI 

vi 



231 Buchnera_sp  
232 Buchnera. aphidicola 
233 Buchnera a hidicola Sg 
234 Candidatus Blochmannia floridanus 
235 Candidatus Blochmannia 	enns lvanicus BPEN 

236 Colwellia 	sychrerythraea 34H 
237 Coxiella burnetii 
238 Erwinia carotovora atrose tics SCRI1043 
239 Escherichia coli CFT073 
240 Escherichia coli K12 

241 Escherichia coli 0157H7 
242 Escherichia coli O157H7 EDL933 

243 Francisella tularensis tularensis 
244 Haemophilus ducreyi 35000HP 

245 Haemophilus influenzae 86 028NP 

246 Haemophilus influenzae 
247 Hahella chejuensis KCTC 2396 

248 Idiomarina loihiensis L2TR 
249 Legionella 	neumo hila Lens 
250 Le ionella 	neumo hila Paris 
251 Legionella 	neumophila Philade] hia 1 
252 Mannheimia succinici roducens MBEL55E 

253 Meth lococcus capsulatus Bath 

254 Nitrosococcus oceani ATCC 19707 
255 Pasteurella multocida 
256 Photobacterium 	rofundum SS9 
257 Photorhabdus luminescens 
258 Pseudoalteromonas halo lanktis TAC125 

259 Pseudomonas aeruginosa 

260 Pseudomonas fluorescens Pf-5 

261 Pseudomonas fluorescens PfO-1 
262 Pseudomonas 	utida KT2440 
263 Pseudomonas syringae 	haseolicola 1448A 
264 Pseudomonas syringae 	v B728a 
265 Pseudomonas_syringae 
266 Psychrobacter arcticum 273-4 
267 Salmonella enterica Choleraesuis 
268 Salmonella enterica Paraty i ATCC 9150 
269 Salmonella typhi Ty2 

vi i 



270 Salmonella typhi 
271 Salmonella typhimurium LT2 
272 Shewanella oneidensis 
273 Shigella boydii Sb227 
274 Shigella dysenteriae 
275 Shigella flexneri 2a 2457T 
276 Shi ells flexneri 2a 
277 Shi ells sonnei Ss046 
278 Sodalis glossinidius morsitans 
279 Thiomicrospira crunogena XCL-2 
280 Vibrio cholerae 
281 Vibrio fischeri BS 114 

282 Vibrio_parahaemolyticus 
283 Vibrio vulnifcus CMCP6 
284 Vibrio vulnificus YJ016 
285 Wi glesworthia brevi alpis 
286 Xanthomonas citri 
287 Xanthomonas cam estris 8004 
288 Xanthomonas cam estris 
289 Xanthomonas cam estris vesicatoria 85-10 
290 Xanthomonas oryzae KACC 10331 
291 Xylella fastidiosa 
292 Xylella_fastidiosa Temecula1 
293 Yersinia 	estis C092 
294 Yersinia 	estis KIM 
295 Yersinia 	estis biovar Mediaevails 
296 Yersinia 	seudotuberculosis IP32953 
297 Nanoarchaeum a uitans 
298 Pirellulasp  
299 Borrelia burgdorferi 
300 Borrelia 	arinii PBi 
301 Le tos ira interro ans serovar Co enha eni 
302 Le tos ira interrogans serovar Lai 
303 Tre onmg denticola ATCC 35405 
304 Tre onema 	allidum 
305 Thermotoga maritima 

viii 



B. Order of the reference genomes considered for construction of Phylogenetic profiles 
after running optimal leaf ordering algorithm. 

275, 75, 23, 89, 103, 201, 282, 238, 44, 39, 130, 207, 93, 21, 69, 199, 295, 119, 136, 11, 
8, 303, 254, 15, 105, 193, 76, 142, 64, 30, 57, 151, 195, 14, 160, 104, 153, 92, 294, 45, 
107, 31, 258, 242, 25, 47, 68, 216, 91, 230, 219, 110, 13, 205, 86, 149, 95, 211, 108, 185, 
115, 150, 225, 222, 220, 157, 228, 56, 112, 284, 276, 50, 26, 137, 236, 233, 111, 63, 138, 
22, 196, 241, 131, 48, 132, 290, 251, 100, 79, 96, 271, 292, 19, 203, 162, 246, 74, 180, 
248, 53, 192, 33, 41, 213, 217, 302, 152, 170, 123, 232, 281, 260, 147, 188, 259, 255, 
114, 208, 268, 197, 223, 27, 101, 189, 257, 293, 144, 215, 204, 253, 24, 182, 183, 124, 
280, 4, 7, 283, 60, 73, 70, 126, 186, 181, 300, 113, 267, 67, 87, 161, 289, 117, 28, 165, 
148, 5, 55, 72, 234, 231, 134, 187, 298, 118, 169, 16, 194, 154, 40, 191, 38, 200, 209, 
299, 190, 264, 279, 143, 198, 173, 140, 58, 171, 61, 224, 287, 62, 297, 291, 9, 36, 52, 
202, 82, 42, 125, 167, 17, 237, 277, 116, 285, 77, 81, 128, 177, 159, 71, 54, 166, 304, 
133, 3, 252, 163, 244, 206, 227, 129, 229, 99, 155, 214, 226, 262, 102, 305, 240, 178, 

249, 245, 139, 10, 35, 20, 78, 278, 32, 286, 90, 235, 256, 184, 80, 274, 18, 127, 43, 288, 
141, 6, 88, 65, 34, 266, 212, 270, 164, 247, 168, 210, 2, 29, 83, 66, 49, 46, 250, 179, 156, 
296, 37, 172, 261, 85, 12, 243, 122, 221, 135, 146, 175, 263, 176, 109, 121, 97, 94, 84, 
272, 273, 1, 120, 218, 98, 265, 145, 106, 59, 239, 301, 174, 158, 51, 269. 
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Narra et al. [18] used the extended real-valued profiles to incorporate phylogeny which 

did not basically compare the trees. 

Barker et al. [21] reconstructed phylogenetic tree to identify proteins that appear to co-

evolve is more complex and computationally expensive. 

Cokus et al. [22] used runs for considering phylogeny but while calculating runs 

probability it used similarity rather than using runs of the pairs. 

From all above gaps found in the earlier work done by many of the authors, following is 

the summary of some of the properties which are crucially required in a proposed 

scheme. 

1. Co-evolution should be considered. 

2. The background phylogeny of genomes in the profile should also be 

considered. 

3. It should scale for the rapidly increasing number of reference genomes. 

4. It should not be computationally expensive while considering the tree 

in the calculation of functional relatedness. 

5. Solution should be applicable to any target genome. 
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