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ABSTRACT 

Jharia is one of the main coal field regions of India where the coal fire burning is 

the major problem. The present dissertation tries to attempt to detect and monitor cloud 

and coal fire regions of Jharia by using various image processing technique and 

application of thresholding cloud detection algorithm with operational Satellite Data (i.e. 

AVHRR). A Thresholding and Multithresholding algorithm based on Digital Image 

Processing is developed which is capable to detect cloudy pixels in cloud the hot/fire 

spots of the study area. The observed suspected regions were highlighted and gave quite 

good agreement with the results obtained by other researchers. The patterns of different 

cloud of last 10 years has been observed which provides information of cloudy pixels 

and tells about any change in or near the cloudy pixels in cloud. The Thresholding 

technique is applied to reduce the false area location of cloudy surface. 

Various computer codes (i.e. Calibration,Thresholding, Multi-Threshold, Segmentation, 

etc) for satellite image processing have been developed. Finally, the study will be- quite 

helpful to develop automated cloudy pixels and hotspot detection software of study areas 

for AVHRR data. 
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CHAPTER 1 
	

INTRODUCTION 

1.1. Introduction 

Hydrology means science of water.Every drop of water comes from clouds. 

Cloud is primary source of water. Clouds are masses of condensed water vapor which are 

visible signs of atmospheric processes at work. Clouds help regulate the earth's energy 

balance by reflecting and scattering solar radiation and by absorbing the earth's infrared 

radiation. In addition, clouds help redistribute surplus heat from the equator toward the 

poles and return water (in the form of precipitation) to the oceans and land masses across 

the globe Clouds are essential to the earth-atmosphere system. 

Clouds complete the following functions: 

1. Clouds help regulate Earth's energy balance by reflecting and scattering solar 

radiation and by absorbing Earth's infrared energy. 

2. Clouds are required for precipitation to occur and, hence are an essential part of the 

Hydrological cycle. 

3. Clouds indicate what type of atmospheric processes are occurring (e.g., cumulus 

clouds indicate surface heating and atmospheric turbulence). 

4. Clouds help redistribute extra heat from the equator toward the poles. Clouds are 

masses of condensed water vapor. 

5. Clouds are formed when water vapor is condensed into liquid water (cloud 
droplets). 

There are three basic requirements for clouds to occur: 
1. Water vapor must be present in sufficient amounts so that saturation can 

be reached by some means. 

2. Cloud condensation nuclei (CCN) must be present to provide a surface on 

which water will condense. (Examples of CCN include dust in the air from 
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the earth's surface, salt particles from the sea, combustion products, and 

volcanic or meteorite dust.) 

3. Cooling mechanism is required to cool the air temperature to the dew 

point temperature. 

The requirements for sufficient water vapor and CCN are rarely the limiting 

factors for cloud development. Typically, the limiting factor is a cooling mechanism. 

Thus, the air temperature needs to be lowered to the dew point temperature for a cloud to 

form. If a cooling mechanism is not present, clouds will In order to predict the climate 

several decades into the future; we need to understand many aspects of the climate 

system, one being the role of cloud in determining climate sensitivity. Clouds affect 

climate, and are in turn affected by changes in the climate. The relationship is a 

complicated system of feedbacks, in which clouds modulate Earth's radiation balance. 

Everything, from an individual person to Earth as a whole, emits energy. Scientists refer 

to this energy as radiation. As Earth absorbs incoming sunlight, it warms up. The planet 

must emit some of this warmth into space or increase in temperature. Two components 

make up the Earth's outgoing energy: heat (or thermal radiation) that the Earth's surface 

and atmosphere emit; and sunlight (or solar radiation) that the land, ocean, clouds and 

aerosols reflect back to space. The balance between incoming sunlight and outgoing 

energy determines the planet's temperature and, ultimately, climate. Both natural and 

human-induced changes affect this balance, called the Earth's radiation budget. 

Earth's radiation budget is a balance between incoming and outgoing radiation. 

Clouds affect the radiation budget directly by reflecting sunlight into space (cooling the 

Earth) or absorbing sunlight and heat emitted by the Earth. When clouds absorb sunlight 

and heat, less energy escapes to space and the planet warms. To understand how clouds 

impact the energy budget, scientists need to know the composition of cloud particles, the 

altitude of clouds and the extent to which clouds at different altitudes overlap each other. 

Therefore, it is important aspect to know the percentage of cloud cover over land surfaces 
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in particular area for a lot of climate modeler. 	In this direction, satellite images can 

help a lot. 

In recent studies, the image analysis techniques were successfully used for 

detecting cloud, environmental hazards and extracting changes in the features on the 

earth surfaces. Environmental hazards like drought (Ramesh et al 2003), forest fire 

(Domenikiotis et al 2003), coal fires (Vekerdy et al 1999, Gangopadhyay et al 2005), 

general fires (Louis et al 2003, Pereira 1999), Iandslides, floods (Domenikiotis et al 

2003), and Automated cloud detection(Gallaudet,T.C., and simpson,J.J.1991) etc. were 

predicted using different image analysis methodologies like thresholding, neural 

networks, change detection, subpixel analysis etc. using different satellites like 

NOAA/AVHRR (National Oceanic and Atmospheric Administration! Advanced Very 

High Resolution Radiometer) MODIS (Moderate Resolution Imaging 

Spectroradiometer), Landsat TM (Thematic Mapper), and TIROS (Television Infrared 

Observation Satellite) etc. In similar way, changes in features like vegetation cover 

(Weiss et al 2001), soil moisture, evapotranspiration (Fabien et al 2000), water properties 

(Rokade et al 2004) etc. was also analyzed and the information were extracted from the 

satellite data. 

Image analysis or image processing is the area of recognition of individual 

regions or cloud in an image. The different processes are applied to extract the attributes 

from the image and recognition of individual cloudy pixels. The area of image processing 

are so varied that it is needed to categorize images. Based on their source their source 

these are categorized as imaging using X-rays Bands, Microwave Bands, Radio Bands, Visible 

Bands etc. The Bands used in the present dissertation lies in Infrared, Near Infrared, visible and 
Mid wave Infra-Red range. 

Some of the fundamental steps involved in the processing of the image includes: 

Image acquisition, Image enhancement, Image restoration, Color image processing, 

Wavelets, Segmentation, Representation and Description, Recognition etc. Image 

acquisition is the basic step which involves preprocessing of the image such as scaling, 

calibration etc. Next step is the enhancement of an image which is done to highlight some 

important features such as contrast, brightness etc. Color processing is done to segment 

more than one feature in an image at the same time. The images of various degrees of 
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resolution are the key foundation of the wavelet theory. Segmentation is done to identify 

objects in an image individually. Description is the process of feature selection which 

deals with the extraction of attributes from a segmented image. Lastly, Recognition deals 

with assigning of Labels to object based descriptors. These processing techniques are 

used together and separately to trace the meaningful patterns from the image. 

(S.E. Marsh et al 1992) came with his concept of processing technique of vectors and 

mapping which he employed on the image to have a study on soil property. (L. Olsson et 

a! 1994) worked on Fourier series and its derivatives (the base of image processing in 

frequency domain) for study of temporal sequence of satellite imagery. Similarly a lot of 

research works are being carried out in study of movements of cloud detection,thunder 

storm, forest fires, bush fires, coal fires detection etc. 

Cloud detection and its monitoring, which is an existing challenge, can also be detected 

and its features can be extracted from the satellite image using image processing 

techniques. Features and patterns of cloud, which are not visible can also be detected 
using these image analysis techniques. 

Clouds have occurred in almost all parts of the world like India, the US, 

Indonesia, South Australia, China, Germany and many other countries. However, the 

nature and magnitude of the clouds differs from country to country. Because monsoon 

season is totally dependant on the geographical location (latitude and longitude), as well 

as wind pattern. In India, monsoon season possibly four months (June to September) and 

some parts of India occurs clouds during month of December (in Tamilnadu). 

In present project, we have taken the Jharia region for observing the cloud cover 

over various seasons with satellite images Jharia coalfield in Bihar is an exclusive 

storehouse of prime coke coal in the country, consisting of 23 large underground and nine 

large open cast mines. The mining activities in coalfields started in 1894 and had really 
intensified in 1925. The Jharia Coalfields is located in the Dhanbad district of Bihar state, 

and is named after the main mining Jharia. It is situated at the heart of the Damodar 

valley and is about 250km NW of and about 1150km SE of Delhi. It is confined between 

the latitudes 23°38' N and 23°50'N and longitudes 86°07'E and 86°30'E. The maximum 

length is about 38 km from E to W and 19 km from N to S. The area covered by the coal 

belt is about 450 km2. Many clouds were detected until now and it is very difficult to 
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monitor or observe the proper change cloud. The field measurements are very 

cumbersome and expensive. Thus there is an urgent need to use satellite data and image 

analysis techniques to observe clouds over this region . 

The operational satellite data has been used for the image' analysis is from 

NOAA/AVHRR (National Oceanic and Atmospheric Administration/ Advanced Very 

High Resolution Radiometer) The data are in level 1 B format and are of Ikm 

Resolution. These satellite data from earth observation sensor systems is widely used in a 

range of oceanographic, terrestrial, and atmospheric applications, such as land cover 

mapping, environmental modeling and monitoring, predictions plenty of work has been 

done to extract the features from the image in the field of image processing using 

different image analysis techniques. Some of them includes change detection, 

Thresholding, segmentation, color mapping. 

1.2. Problem definition 

The diffulty is to continuously monitor the area due to its tediousness and cost 

factor. Nature of the cloud is uneven and not continuous. Thus problem that is focused in 

present dissertation is to remove this difficulty and develop an economical and efficient 

technique for observing of cloud in Jharia region. For this purpose various image 

analysis techniques has to be applied on operational satellite data from NOAA/AVHRR 

satellite for features and recognizing the pattern. 

1.3 	Aim and objective 

Aim of this dissertation is to develop an approach for observe clouds in Jharia region 

with operational satellite data (NOAA/AVHRR) using image analysis technique. 

To achieve this aim, the objectives are defined as 

1 Study of NOAA/AVHRR which has 1 Km.Sq. resolution. 

2 Impact of various bands on the clouds. 

3 Algorithm to be developed for detecting the clouds. 
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4. Assessment of percentage cloudy pixel- in whole images. 

5. Specification for clouds detection from satellite image to the future users. 

1.4 	Types of Satellite data 

1.4.1 	MODIS (Moderate Resolution Imaging Spectroradiometer) 

Modis is a_ key instrument aboard the Terra (EOS AM) and Aqua (EOS PM) 

satellites. Terra's orbit around the Earth is timed so that it passes from north to south 

across the equator in the morning, while Aqua passes south to north over the equator in 

the afternoon. Terra MODIS and Aqua MODIS are viewing the entire Earth's surface 

every 1 to 2 days, acquiring data in 36 spectral bands, or groups of wavelengths (see 

MODIS Technical Specifications). These data will improve our understanding of global 

dynamics and processes occurring on the land, in the oceans, and in the lower 

atmosphere. MODIS is playing a vital role in the development of validated, global, 

interactive Earth system models able to predict global change accurately enough to assist 

policy makers in making sound decisions concerning the protection of our environment. 

The MODIS instrument is operating on both the Terra and Aqua spacecraft. It 

has a viewing swath width of 2,330 km and views the entire surface of the Earth every 

one to two days. Its detectors measure 36 spectral bands between 0.405 and 14.385 gm, 

and it acquires data at three spatial resolutions -- 250m, 500m, and 1,000m. 

The many data products derived from MODIS observations describe features 

of the land, oceans and the atmosphere that can be used for studies of processes and 

trends on local to global scales. As just noted, MODIS products are available from 

several sources. MODIS Level I and atmosphere products are available through the 

Goddard DAAC at the Goddard Space Flight Center (GSFC) in Greenbelt, MD. Land 

Products are available through the Land Processes DAAC at the U. S. Geological Survey 

EROS Data Center (EDC). Cryosphere data products (snow and sea ice cover) are 

available from the National Snow and Ice Data Center (NSIDC) in Boulder, Colorado. 

Ocean color products and sea surface temperature products along with information about 

these products are obtainable at the OCDPS at GSFC. Users with an appropriate x-band 



receiving system may capture regional data directly from the spacecraft using the MODIS 

Direct Broadcast signal. 

Table 1.1 

Orbit: 

Scan Rate: 

Swath 

Dimensions: 

Telescope: 

Size: 

Weight: 

Power: 

Data Rate: 

Quantization: 

Spatial 

Resolution: 

Design Life: 

MODIS band 

705 km, 10:30 a.m. descending node (Terra) or 1:30 p.m. ascending 

node (Aqua), sun-synchronous, near-polar, circular 

20.3 rpm, cross track 

2330 km (cross track) by 10 km (along track at nadir) 

17.78 cm diam. off-axis, afocal (collimated), with intermediate field 

stop 

1.0 x 1.6 x 1.0 in 

228.7 kg 

162.5 W (single'orbit average) 

10.6 Mbps (peak daytime); 6.1 Mbps (orbital average) 

12 bits 

250 m (bands 1-2) 

500 in (bands 3-7) 

1000 in (bands 8-36) 

6 years 

Primary Use 

Land/Cloud/Aerosols 

Land/Cloud/Aerosols 

Properties 

Band Bandwidthl Spectral Required 
Radiance2 SNR3 

1 620-670 121.8 128 

2 841-876 24.7 201 

3 459-479 35.3 243 

4 545-565 29.0 228 

5 1230-1250 5.4 74 
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Ocean Color/  

iogeochemistry 

Atmospheric 

Water Vapor 

1628-1652 7.3 '275 

7 2105-2155 1.0 2110 

8 405-420 44.9 880 

9 438-448 '41.9 1 838 

10 483-493 132.1 802 

11 1526- 536 i 27.9 754 

12 546-556 21.0 750 

13 1662-672 i9.5 1910 

14 673-683 8.7 1087 

15 743-753 10.2 586 

16 862-877 6.2 1 516 

17 1890-920. 10.0 167 

18 931-941 13.6 57 

19 [915-965 1 15.0 1250 

Primary Use 'Band Bandwidth! 'Spectral 'Required 

Radian ce2 NEIdeltaJTK4 

Surface/Cloud 20 3.660 - 3.840 0.45(300K) 0.05 

Temperature 121 3.929 - 3.989 2.38(335K) [2.00 
22 3929-3.989 ;0.67(300K) ; 0.07 

23 .4.020 - 4.080 10.79(300K) 0.07 

Atmospheric 24 4.433 - 4.498 [0.17(250K) 1 0.25 

Temperature 125 4.482 - 4.549 0.59(275K) 0.25 

Cirrus Clouds 126 1.360 - 1.390 6.00 150(SNR) 

Water Vapor 127 6.535 - 6.895 1.16(240K) 0.25 

28 7.175-7.475 '2.18(250K) 1 0.25 

Cloud Properties 29 8.400 - 8.700 9 5 8(300K) 0.05 

Ozone  t 30 9580-9880 3.9(250K) 025 

Surface/Cloud . 31 10.780 - 11.280 9.55(300K) 10.05 
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Cloud Top 

32 	L11.770-12.270 

34 ;13.485-13.785 

35 
_.._...._._._........._.._....-...._.. .-..........._.....--.--......_. 

;13.785-14.085 

36 114.085-14.385 

8.94(300K) 
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 

10.05 
. . . . . . : . . . . . . . . . . . . . . . . . . . . . 

4.52(260K) ;0.25 

3.76(250K) 10.25 
,_.........._........ _._._......-_-......--._.........-......- 

3.11(240K) 
. 	...._... 

10.25 

2.08(220K) ;0.35 

` Bands 1 to 19 are in nm; Bands 20 to 36 are in µm 

2  Spectral Radiance values are (W/m2  -µm-sr) 

3  SNR = Signal-to-noise ratio 

4  NE(delta)T = Noise-equivalent temperature difference 

ote: Performance goal is 30-40% better than required 

1.4.2. LANDSAT 

The Landsat Mission, initiated in 1972 with the launch of the Landsat 1 satellite, 

began as an experiment to determine the usefulness of Earth orbiting spacecraft in 

providing land usage data as well as future land and ocean development data. The first 

Landsat satellites proved to be extremely useful in collecting data relating to climatic 

change. Overtime, the instruments onboard these satellites have been improved, and 

have enhanced the quality and quantity of the data the satellites have collected. The 

newest Landsat satellite, Landsat 7 which was launched in April of 1999, is continuing 

the Landsat mission to collect data in order for scientists to increase knowledge on the 

causes of the changes of the Earth. 

Regardless of the source of satellite images, clouds often obstruct such images. 

Since clouds are prominent features of an image, the proper identification of clouds is 

important for two reasons. Larger images of the Earth's surface are formed from smaller. 

images taken by satellites with a process known as Image Registration. In this process, 

prominent features from multiple satellite images are matched to these features in other 

images. The coinciding features are then use to align one image to another, resulting in 

the creation of a larger image. Unfortunately, clouds can mask prominent features and 

can also be mistaken with prominent features from other images. As a result, 



inaccurately assessed features such as clouds may then be used to orient one image with 

another resulting in misaligned images. In order to align images of the same area more 

accurately, clouds need to be removed so that only valid land features are used to match 

images. 

1.4.2.1. Automatic cloud cover assessment 

Landsat 5 was the first of the Landsat satellites generations to use a cloud 

detection system, known as Automatic Cloud Cover Assessment (ACCA) for image 

processing. It was inaccurate in assessing cloud cover because the algorithms used 

identified some landmasses as clouds because of the similar characteristics. A second 

cloud detection system was created for .image processing for Landsat 7, which included 

improved algorithms to detect clouds more accurately. As shown in Error! Reference 

source not found., the improved ACCA algorithm used for the processing of the Landsat 

7 images discriminates between clouds and difficult terrain features better than the 

algorithm used for the Landsat 5 satellite. 

1.4.3. Multi-angle Imaging SpectroRadiometer (MISR) imagery. 

With the launch of the Multi-angle Imaging SpectroRadiometer (MISR) onboard the 

National Aeronautics and Space Administration (NASA) Terra satellite in 1999 novel 

electromagnetic radiation measurements made at nine angles became available for 

scientific study. The MISR sensor consists of nine cameras (Figure 1), with each camera 

viewing Earth scenes at a different angle in four spectral bands (blue, green, red, and 

near-infrared). The view zenith angles of the nine cameras are 70.5° (Df), 600 (Cf), 45.6° 

(Bf), and 26.1° (At) in the forward direction, 0.0° (An) in the nadir direction and 26.1 

(Aa), 45.6° (Ba), 600 (Ca) and 70.5° (Da) in the aft direction.The "f' in the letter 

designation of the cameras represents the "forward" direction and the "a"represents the 

"aft" direction. The Da camera collects data from a location seven minutes after 

the Df camera. The nominal resolution of the MISR radiances is 275 m by 275 m at the 

Earth'ssurface, but the blue, green and near-infrared radiances are aggregated onboard to 

a 1.1 km byl .1 km resolution to reduce data transmission from the Terra satellite. 
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The MISR cameras cover a swath at the Earth's surface that is approximately 360 

km wide and extends across the daylight side of the Earth from the Arctic down to 

Antarctica in about 4 forty-five minutes. There are 233 geographically distinct, but 

overlapping, MISR swaths, which are also called paths. MISR collects data from all paths 

on a repeat cycle of 16 days; that is, it covers the exact same path every 16 days. In the 

MISR data products each path is subdivided into 180 blocks, with the block numbers 

increasing from the north to south pole. Each complete trip of MISR around the earth is 

given its own orbit number. 

However, the MISR operational cloud detection algorithms were designed 

before MISR was launched and they were not particularly targeted at detecting clouds 

over bright surfaces in polar regions. As a result, MISR operational algorithms do not 

work well over polar regions. Moreover, one orbit of data needs to be processed before 

the next orbit comes, so an operational cloud detection algorithm is necessary. The 

massive MISR data size (MISR collects 3.3 megabits per second on average and 9.0 

megabits per second at peak) poses a hurdle for operational processing. 

Especially of cloud coverage as clouds play an important role in modulating the 

sensitivity of the Arctic to increasing surface air temperatures. Ascertaining the properties 

of clouds in the Arctic is a challenging problem because liquid and ice-water cloud 

particles often have similar scattering properties to the particles that compose ice- and 

snow-covered surfaces. As a result, the amount of visible and infrared electromagnetic 

radiation emanating from clouds and snow- and ice-covered surfaces is often similar, 

which leads to problems in the detection of clouds over these surface types. 

1.4.4. CERES 

The Clouds and the Earth's Radiant Energy System (CERES) experiment is 

one of the highest priority scientific satellite instruments developed for EOS. CERES 

products 'include both solar-reflected and Earth-emitted radiation from the top of the 

atmosphere to the Earth's surface. Cloud properties are determined using simultaneous 

measurements by other EOS instruments such as the Moderate Resolution Imaging 

Spectroradiometer (MODIS). Analyses of the CERES data, which build upon the 

foundation laid by previous missions such as the Earth Radiation Budget Experiment 
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(ERBE), will lead to a better understanding of the role of clouds and the energy cycle in 

global climate change. 

CERES instruments were launched aboard the Tropical Rainfall Measuring 

Mission (TRMM) in November 1997 and on the EOS Terra satellite in December 1999. 

Two additional instruments will fly on the EOS Aqua spacecraft in 2002. Multiple 

satellites are needed to provide adequate temporal sampling since clouds and radiative 

fluxes vary throughout the day. The first 24 months of CERES data collected on both 

TRMM and Terra demonstrate that the CERES instruments are substantially improved 

over the ERBE instruments. The CERES data show lower noise, improved ties to the 

ground calibration in absolute terms, and smaller fields of view. CERES instrument 

calibration stability on TRMM and Terra is typically better than 0.2%, and calibration 

consistency from ground to space is better than 0.25%. Onboard calibration sources 

provide traceability of the measurements to the International Temperature Scale of 1990 

at the 0.2% level. Such levels of accuracy have never before been achieved for radiation 

budget instruments . 

1.4.5. 	ASTER(Advance spaceborne thermal Emmission and Reflectance 
Radiometer). 

The ASTER instrument aboard the Terra satellite has a complement of three 

different telescopes with varying pointing capabilities. ASTER data are primarily 

acquired and processed in support of a global mapping mission, and based on Data 

Acquisition Requests (DARs) from authorized users. ASTER Level-1 data are produced 

at the Ground Data System (GDS) facility of the Earth Remote Sensing Data Analysis 

Center (ERSDAC) in Tokyo, Japan, and subsequently sent to the Land Processes (LP) 

Distributed Active Archive Center (DAAC) for archiving, distribution, and higher-level 

product generation. The ASTER Level-IA data set contains reconstructed, instrument 

digital numbers (DNs) derived from the telemetry streams of the 3 telescopes: Visible 

Near Infrared (VNIR), Shortwave Infrared (SWIR), and Thermal Infrared (TIR). The 

Level-IA data contains depacketized, demultiplexed, and realigned instrument image 

data with their geometric correction coefficients and radiometric calibration coefficients 

calculated and appended but not applied. It also includes corrections for the SWIR 
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parallax, and intra- and inter-telescope registration information. The EOS Data Gateway 

(EDG) provides GDS-produced Level-IA browse images for each of the three sensors, 

and allows users to view and/or request these images. 

1.4.5.1 Converting Level-1A DNs to Scaled DNs 

An ASTER Level-IA data set contains raw digital numbers (DNs) quantized as 

8-bit unsigned integers. To convert these to scaled or calibrated DNs, the ASTER Level-

1A DNs are converted on a detector-by- detector basis using the Slope/Inclination (A), 

Gain (G) and Offset (D) values from the Radiometric Conversion Coefficients (RCC) 

table that is appended with the Level-lA data set in the HDF-EOS file. The RCC 

information determines how the Level-lA DNs are converted into Level-1B calibrated 

DNs. The gain and offset information in the RCC table are used in that conversion 

1.4.6 . 	AVHRR (Advance Very High Resolution Radiometer) 

The National oceanic and Atmospheric Agency(NOAA) operates two 

types of satellites intended for studying meteorology. These satellites collect 

electromagnetic radiation in the visible light and infrared portions of the spectrum. 

Geostationary meteorological satellites stay in one place above the Earth, by orbiting 

with the Earth as it rotates, and provide continuous information for the area they can see 

Polar-orbiting satellites are designed to provide complementary information to the 

geostationary meteorology satellites. They have a sun — synchronous, near-polar orbit, 

which means that a satellite travel from the North Pole to the South Pole as the earth 

rotates below it. The significance of a sun-synchronous orbit is that the satellite passes 

over the same part of the earth at approximately the same local time each day, ensuring 

comparable daylight condition over time. 

The primary senor on board the NOAA polar-orbiting satellite is the 

AVHRR (Advance Very High Resolution Radiometer). The AVHRR instrument consists 

of an array of small sensors that record (as digital number) the amount of visible and infra 

red radiation reflected and emitted from the earth surface. This provides images of the 

earth's surface showing elements that cannot normally be viewed with the human eye. 
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Initially, the NOAA/AVHRR satellites were designed to observe the earth's 

weather in the form of cloud patterns. However, further research on the sensors clearly 

demonstrated that they could be used for more than just monitoring weather phenomena. 

There are 5 sensors or "channels"(bands) on board each AVHRR satellite, each designed 

to record information from a different part of the earth 

The AVHRR sensor provides for global (pole to pole) on board collection of 

data from all spectral channels. Each pass of the satellite provides a 2399 km (1491 mi) 

wide swath. The satellite orbits the Earth 14 times each day from 833 km (517 mi) above 

its surface. It provides four to six band multispectral data from the NOAA polar-orbiting 

satellite series. It is providing the global coverage since June 1979, with morning and 

afternoon acquisitions available. The resolution is 1 .1 kilometer at nadir. 

1.4.6.1. Data Formats 

The AVHRR data is saved in the common HRPT (high resolution picture 
transmission) format. There are three types of AVHRR data: High Resolution Picture 

Transmission (HRPT), Local Area Coverage (LAC) and Global Area Coverage (GAC). 

HRPT data are full resolution (1 km) image data that are transmitted to a ground station 

as they are collected (in real time). LAC are also full resolution data, but are recorded 

with an on-board tape recorder over selected areas for subsequent transmission to a 

ground station during the next overpass. GAC data are low resolution data (4 km) that 

provide sub sampled global coverage recorded on the satellite's tape recorders which are 
then transmitted to a ground station. 

These instruments are carried on various satellites such as TIROS -N and 

NOAA-1 I satellite. The AVHRR 5 channel scanning radiometer with 1.1 Km resolution 

is sensitive in the visible 7 near infra red and infra red "window" region. This instrument 

will be carried through NOAA-J(14), NOAA-K, L, M (15, 16, 17) and will have similar 
instrument with six channels and other improvements. 
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Record Byte Bytes contents 

1 1-2 2 Scan the line 

3-8 6 Time code 

9-12 4 Quality indicator 

13-52 40 Calibration coefficient 

53 1 Number of meaningful zenith angles and 

earth location points appended to scan 

54-104 51 Solar zenith angles. 

105-308 204 Earth location. 

309-448 140 Telemetry header 

449-7400 6952 LAC/HRPT video data 

2 1-6704 6704 LACIHRPT video data 

6705-6724 20 Additional decimal portion of 51 solar 

zenith angles. 

6725-6726 2 Clock 	drift delta 	in 	millisec 	X 2 	+ 

indicator 

0 	no time adjustment 

1 	time adjustments 

6727-7400 674 Space 
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1.4.6.2. Downloading the data 

NOAA/AVHRR data is easily available on:  http://www.saa.noaa.gov 

Step! Log on to the above website and sign in as a registered user. 

Step2 Specify the AVHRR data from the list of product given. 

Step3 Specify the dates you wish in the "Choose a date/time" box. 

Step4 Select the correct spatial range of the latitude and longitude i.e. 

Latitude: 	West - 85 	 East - 87 

Longitude 	North -24.5 	 South -22.5: 

Step5 Click on the "search" button. 

Step6 Select the image and place it in the CART specifying the FTP/pull to download 

data option. 

Step? Place the order by giving some basic information. 

The following is the Band details of NOAA AVHRR data whose sensing is done in the 

visible near-infrared, and thermal infrared portions of the electromagnetic spectrum. 

16 



1.4.6.3 	The spectral characteristics of these 5 channels are 

Band NOAA NOAA NOAA Location Primary use 

Number Satellites: 6,8,10 Satellites: Satellites: in 

7,9,11,12,14 15,16,17 spectrum 
1 0.58— 0.68 0.58— 0.68 0.58— 0.68 Visible Red Daytime cloud 

/ 	surface 

mapping 

2 0.725 —1.10 0.725 —1.10 0.725 —1.10 Near Infra Surface 	water 

red delineation, ice 

& snow melt 

3 (A) 1.58— 1.64 Thermal Snow 	/ 	ice 

infrared discrimination 

3 (B) 3.55 - 3.93 3.55 - 3.93 3.55 - 3.93 Thermal Sea 	Surface 

infrared temperature, 

night 	time 

cloud mapping 

4 10.50-11.50 10.50-11.50 10.50-11.50 Thermal Sea 	Surface 

infrared temperature, 

night 	time 

cloud mapping 

5 Band 4 repeated 11.50— 12.50 11.50— 12.50 Sea 	Surface 

temperature, 

night 	time 

cloud mapping 

(In micrometers) (In micrometers) (In micrometers) 
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CHAPTER 2 
	

LITERATURE REVIEW 

2.1 CLOUD DETECTION TECHNIQUES 

Various cloud detection methods have been proposed, namely for AVHRR, 

GOES, and Meteosat images. They are usually based on the contrast (visible as well as 

thermal) between cloud (usually bright, cold) and surface (usually darker and warmer). 

The thermal band, which allows the detection of clouds through temperature differences 

with the surface, is also a critical tool for cloud identification, particularly for thin clouds 

that do not reflect much sunlight 

The SPOT VGT is a relatively recent sensor with four optical bands in the visible, 

near- infrared and short-wave infrared. It has a footprint resolution of about 1 km with 

one morning pass (Equator crossing time: 10h30 AM local time). Linear threshold or 

clustering cloud detection methods that rely on thermal infrared bands have been 

developed for cloud detection of AVHRR, GOES and Meteosat images 

Detection of clouds in satellite imagery is straightforward in most circumstances. 

In most situations, clouds are brighter than the background surface at visible wavelengths 

and colder than the background surface at thermal infrared wavelengths. Infrared imagery 

is usually viewed as a negative image so that clouds appear white several problem areas 

for cloud detection exist, and cloud detection is difficult, if the image pixel size is 

significantly larger than the size of individual cloud elements. This is particularly 

problematic for thin cirrus, low stratiform cloud decks, polar regions and multilayer cloud 

systems. Cloud detection is difficult at night in areas where the thermal contrast between 

the surface and the cloud is low, for example, in the case of marine stratocumulus regions 

and areas of fog. [Arthur P Cracknell, Cracknell P Cracknell, 1994] 

In regions of thin cirrus, the observed radiance is a combination of the 

radiance from cloud and the ground. In the Polar regions and other areas of snow cover, 

the contrast is low at visible wavelength and the thermal gradient in the atmosphere is 
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often weak. In the polar winter, where a strong surface inversion forms, the thermal 

contrast is inverted. Detection of clouds is problem areas can be enhanced by the use of 

multispectral imagery to detect the signatures of cloud types. Predominately, cloud 

detection relies on optical and thermal infrared observations, but wavelengths regions in 

the near infrared have been used to distinguish between clouds and snow (1.6 u m) and to 

detect the presence of fog (3.7 u m). Such multispectral analysis offers the opportunity to 

develop cloud type signatures for improved classification of clouds. Pattern recognition 

techniques have also been applied to problem areas such as wintertime polar clouds. 

[Arthur P Cracknell, Cracknell P Cracknell, 1994] 

Cloud masking is essentially the same process as cloud detection, except that 

the focus is on the elimination of cloud-affected pixels from further analysis. When 

determining surface parameters such as surface temperature and vegetation indices from 

satellite radiance data, the presence of clouds can seriously contaminate the result. 

A number of techniques have been used for cloud masking. A simple 

threshold brightness temperature (e.g. AVHRR channel 5) can be used, to indicate cloud 

— affected pixels. Alternatively, a ratio Q = R1 / R2, where R, is optical — band 

reflectance, can be used to distinguish between ocean (Q generally less than 1), land (Q 

greater than 1) and cloud (Q 1). Some techniques have been the difference in brightness 

temperature between AVHRR channels 4 and 5 as indicators of presence of cloud. The 

Spatial coherence of cloud - affected areas is generally larger than that of cloud free 

areas, and this can also be used for cloud masking although the technique is not useful 

where the background variance is large, e.g. in coastal regions. Most cloud masking 

schemes involve the derivation of empirical threshold and their success depend on the 

geographical area of application.[ Arthur P Cracknell, Cracknell P Cracknell ] 

They have used vegetation indices, surface temperature and emissivity to 

determine a regression model with the soil color. This model is an image processing 

technique which is a part of color image processing. Model along with the VIs and the 

emissivity were used to prepare soil color grids and in turn used to detect the degradation 

areas. 

People also have come up with image analysis techniques like thresholding at 

different range of values rather than using indices for extracting features from the image. 
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(Donna et al 1995) used many image processing techniques for determining the thickness 

of the sea. They made use of Region thresholding, Gaussian curve approximation, 

threshold clustering, histogram computation etc for removing noise and clearing image to 

draw out features of sea and water from the image. (M Craig Doboson et al 1996) used 

image segmentation to get the knowledge about the Land Cover classification. (Giglio et 

al 1999) took the combination of band 3 and band 4 of NQAA/AVI-IRR satellite and the 

mean of these bands were calculated. 

Data from AVHRR which is a satellite from NOAA was also used for image 

analysis and features extraction.T1 1, T12 bands important for image processing. They 

employed these for cloud and water masking. Multi-thresholding technique involving T4 

and T5 were used for detecting the cloudy pixels. 

Apart from these methods other optimization techniques like GA (Genetic 

Algorithm), Neural Networks, SVM (Support Vector Machine) etc. have been used along 

with image processing to remove false points. Neural Networks with Statistical methods 

for classification of Multi-resource Remote Sensing Data. They found the results for 

Neural Network to be more accurate and better than the statistical approach. Neural 

Networks have been used for classification of land cover, detection of cloud, etc. has 

identified cloud from AVHRR. images. Both ANN and multi-threshold techniques were 

used for differentiating cloud and land surface. The study involves two major steps — 

identifying potential areas covered by cloud using the neural networks or threshold 

classifier, then removing false-classified pixels by applying additional tests, texture 

analysis and spatial filtrations. The multi-threshold approach is based on differences in 

the reflectance of AVHRR band 1 (R1) and band 2 (R2) and in the brightness 

temperature of band 4 (BT4) and band 5 (BT5). The 2 steps involved were marking 

potential cloud pixels and removing false pixels. 3 X3 and 9X9 median filtering was also 

done to remove false and noisy cloud pixels in the output of neural network. 

Cloud detection by ANN has been proposed by Yhann and Simpson (1995) for 

AVHRR images and by Lewis et al. (1997) for Meteosat images. Faure et al. (2001) 

proposed ANN retrieval of cloud parameters as a feasibility study using synthetic 

radiometric data for new sensors such as the moderate resolution imaging 

spectroradiometer (MODIS) and global imager (GLI). 
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A detailed description of MLP implementation with BP (Back Propagation) training is 

given in the following six steps (Lippmann, 1987): 

Step 1. Initialize weights and biases 

Set all weights w and biases 0 to small random values between 0 and 1. 

Step 2. Present input and desired outputs 

Present a continuous valued input vector x0, x1,...XN_ I and specify the desired output 

vector do, dI,...dM_]. 

Step 3. Compute actual outputs, yj 

1 	 J! 	{1iIV 

Step 4. Update weights and biases 

w (t + 1) = 1V', (t) + 7)6 Y j . 
	 (2) 

where w1 (t) is the weight from node i at the former layer to nodej at the latter layer at 

time t, rl is a learning rate and 8j is an error term for node j. If node k is a output node, 

then 

I = yt(1- J'~)(drx - yt) ........... 	 (3) 

where dk is the desired output at node k and Yk is the actual output. If node k is an 

internal hidden node, then 

_ ' (1 — 7 )Z S't wk jt 
It 	........... 	 (4) 
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Convergence is sometimes faster and weight changes are smoothed if a momentum term 

(g) is added by 

'W (t + 1) = 1►'jj (t) + r~S 7 J + r(1►t0 (t) — ii (t — 1)) ....... 
	(5) 

wJ(t+1)=-Ir j(t)+slS f,+r(w3(t)—zr,(t -1))
....... (6) 

where in general 0 <r < 1 and 0 <p. < 1. In this study, those two parameters were set to 

r1=0.5 and g=0.2, respectively. 

Step 5. Compute mean square error (MSE) 

MSE = 	(d1— y) 

1 	.................... 	(7) 

Step 6. Repeat by going to 2 until MSE becomes 0.005 or 1000 iterations. 

Various method using for Cloud detection by earlier researcher. 

Simpson, J.J. and Gobat, J. I.(1995) have done Improved cloud detection in 

GOES scenes over Oceans, in which accurate cloud detection in GOES data over the 

ocean is a difficult task complicated by poor spatial resolution (4 Km) in the GOES IR 

data , relatively coarse , quantization (6 bits) for GOES VIS data , a visible sensing 

region of the spectrum not ideally suited for cloud versus ocean segmentation, and 

relative small oceanic signal dynamic range compared to that of either cloud or land 

structures found in a typical GOES scene. The GOES adapted LDTNLR (Local Dynamic 

Threshold Non — Linear Rayleigh) ocean cloud mask (GALOCM) algorithm for cloud 

detection in GOES scenes. 

Over the oceans provides a computationally efficient, scene — specific way to circumvent 

these difficulties. The algorithm consists of four steps 



6. generate a cloud mask using the LDTNLR algorithm of Simpson and 

Humphrey 

7. generate a second cloud mask using an adaptive threshold. 

8. Divide the pixels in the scene into three groups (both methods agree that pixel is 

ocean, pixel is cloud, or the pixel is in contention.) and 

9. Iteratively apply an adaptive threshold to the contested pixels. Convergence 

occurs when pixels are no longer in contention based on statistical criteria. 

Results show that the GALOCM method produces accurate cloud masks over 

the oceans which are neither regionally dependent nor temporally specific. GOES 

scenes containing ocean, cloud and land are best cloudscreened using a 

combination of the GOES Split — and — merge clustering and the GALOCM 

algorithm. 

10. Simpson, J. J. And Keller, R.I. (1995) have done, An improved fuzzy logic 

segmentation of sea ice, cloud and ocean in remotely sensed arctic imagery, in 

which the accurate segmentation of sea ice from cloud and from cloud — free 

ocean in polar AVHRR imagery is important for many scientific application (e.g. 

sea ice — albedo feedback mechanism, heat exchange between ocean and 

atmosphere in polar regions). Unfortunately, it is a difficult task complicated by 

the common visible reflectance characteristics of sea ice and cloud. Moreover, 

AVHRR channels 3 data historically have been contaminated by highly variable 

sensor noise which generally has hampered their use in the classification of polar 

scenes. Likewise, polar scenes often contain pixels with mixed classes (e. g. Sea 

ice and cloud). This article uses a combination of fuzzy logic classification 

methods , noise reduction in AVHRR channel 3 - data using Wiener filtering 

methods (Simpson and Yhann, 1994) and a physically motivated rule base which 

makes effective use of the Wiener filter channel 3 data to more accurately 

segment polar imagery. The new methods improved classification skill compared 

to more traditional methods as well as its reginal independence is demonstrated. 

The algorithm is computationally effient and hence is suitable for analyzing the 

large volumes of polar imagery needed in many global change studies. 
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Saunders, R.W. and Kriebel, K.T. have done, An improved method for detecting clear 

sky and cloudy radiances from AVHRR data. To obtain accurate estimates of surface and 

cloud parameters from satellite radiance data a scheme has to be devised which identifies 

cloud - free and cloud — filled pixels (i.e. fields of view). Such a scheme has been 

developed for application to high resolution (1.1 Km pixel) images recorded over 

western Europe and the North Atlantic by the AVHRR on the TIROS — N / NOAA polar 

orbiters. The consists of five daytime or five night time tests applied to each individual 

pixel to determine whether that pixels is cloud — free, partly cloudy or cloud — filled. The 

pixel is only identified as cloud — free or cloud — filled if it is passes all yhe tests to 

identify that condition ; otherwise it assumed to be partly cloudy . Surface parameters 

(e.g. Skin temperature, reflectance, vegetation index, snow cover) can then be inferred 

from cloud — free radiances, and cloud parameters (e. g. cloud top temperature, optical 

depth and Iiquid water content) from the cloud — filIed radiances. Only 8fractional cloud 

cover is derived from the partly cloudy pixels which, together with the number of cloud — 

filled pixels, gives total cloud cover over a given area. The schemes has been successfully 

applied to data for all seasons, including images with unusually cold or warm surface 

temperatures. 

A simple method for cloud Detection over land using Daytime AVHRR Data 

(MyoungSeok Suh, Kwangmi Jang, KyoungYoon park, 1997) in which, 5 steps threshold 

method using different combination on channels was developed to detect the cloud-

contaminated pixels from NOAA-14/AVHRR daytime imagery. The first two thresholds 

were applied to the infra — red (channel 4) and visible (channel 1) imagery to detect the 

low temperature pixels (high or middle — level clouds) and the high reflectance pixels 

(low-level clouds). To detect the cloud edge and small cumulus cloud, spatial coherency 

test using local standard deviation (LSD) was applied to near infra - red images. And split 

— window threshold (the brightness temperature difference between channel 4 and 5) was 

applied to detect the optically thin cirrus. Finally, inverse relation between visible and 

infra-red imagery was tested the other contaminated pixels. 

NOAA/AVHRR Imagery detected automatic cloud, by real —time 

processing.(M.Derrien, B.Fanki, L.Harang,H.LeGleau, A.Noyalet, D.Pochic)Polar 
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orbiting satellites allows a description of cloud cover, oceanic, and continental surfaces 

that is used by MeteoFrance for nowcasting activities and as input for numerical weather 

prediction models (NWP). A real-time processing scheme has been designed at the 

Centre de Meteorologie Spatially (CMS) in Lannion to extract cloud cover and surface 

parameters from NOAA-lI AVHRR imagery received at CMS. The key step of this 

scheme is cloud detection. It is based upon threshold tests applied to different 

combinations of channels. Its main originality is its complete automation by the 

computation of the 11 u m infrared threshold from a monthly sea surface temperature 

(SST) climatology over the oceans and from air temperature (near the surface) forecast 

by NWP over land. A special test has been implemented to detect cloud edges and sub 

pixel clouds over continental surfaces during daytime. It is applied daily in deferred time 

only to compute normalized difference vegetation index (ND VI). This scheme has been 

used operationally since February 1990, and its quality has been checked. It has enabled 

the routine production of various products. A nighttime cloud classification is sent to all 

French forecasters; NDVI values are computed daily and used to map the vegetation 

cover; and SST and thermal fronts are derived operationally from nighttime imagery. 

Cirrus cloud detection from Airborne Imaging Spectrometer Data shows that a 

malfunction of the water vapor channel at 1.38 µ m to detect cirrus clouds,(E.Ben-Dor). 

A combination of elevation, vegetation coverage, water vapor content, and albedo 

characteristics (mostly governed by the terrain) are the major factors affecting cirrus 

cloud detection. Using the criteria of relative low radiance and high signal-to-noise ratio 

amongst several targets and across the 1.84-1.92 /1 m spectral region, the 1.84-1.92 µ m 

channel was found to more effectively mask ground signals than the 1.382 7- µ m 

channel. Over targets having moderate elevation, dry conditions, minimal vegetation, and 

high albedos, both spectra regions present significant ground signals that can mistakenly 

be attributed to cirrus cloud particles. It is strongly recommended that for accurate cirrus 

cloud detection, both spectral regions around 1.38 µ m and 1.88 u m be examined along 

with the above-mentioned factors. 
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Accurate cloud detection in Advanced Very High Resolution Radiometer 

(AVHRR) data over land is a difficult task complicated by spatially and temporally 

varying land surface reflectances and emissivities. The AVHRR Split-and-Merge 

Clustering (ASMC) algorithm for cloud detection in AVHRR scenes over land provides a 

computationally efficient, scene-specific, objective way to circumvent these difficulties, 

(J.J.Simpson and J.I.Gobat, 1996). The algorithm consists of two steps: 

1) a lit-and-merge clustering of the input data (calibrate channel 2 albedo, 

calibrated channel 4 temperature, and a channel 3 - channel 4 temperature difference), 

which segments the scene into its natural groupings; and 2) a cluster-labelling procedure 

that uses scene-specific, joint three-dimensional adaptive labelling thresholds (as opposed 

to constant static thresholds) to label the clusters as either cloud, cloud-free land, or 

uncertain. The uncertain class is used for those pixels whose signature is not clearly 

cloud-free land or cloud (e.g., pixels at cloud boundaries that often contain sub pixel 

cloud and land information that has been averaged together by the integrating aperture 

function of the AVHRR instrument). Results show that the ASMC algorithm is neither 

regionally nor temporally specific and can be used over a large range of a solar altitudes. 

Sensitivity of the segmentation and labelling steps to the choice of input variables also 

was studied. Results obtained with the ASMC algorithm also compare favorably with 

those obtained from a wide range of currently used algorithms to detect cloud over land 

in AVHRR data. Moreover, the ASMC algorithm can be adapted for use with data to be 

taken by the Moderate Resolution Imaging Spectrometer-Nadir (MODIS-N). 

Valid estimates of sea surface temperature (SST) from satellite data [e.g., the 

Along 	Track Scanning Radiometer (ATSR)] are critically dependent upon the 

identification and removal of cloud from the data, but few cloud screening algorithms for 

ATSR data have appeared in the literature,(J.J.Simpson, Andrew Schmist,and Andrew 

harris.,1998). A new algorithm, the ATSR Split-and-Merge Clustering (ATSR/SMC) 

algorithm, for cloud masking ATSR data is presented which evaluates every pixel in the 

image, is statistically reproducible, computationally efficient, and requires no knowledge 

of cloud type. Moreover, it is effective in detecting multilayer cloud structures in a scene, 

which is a difficult task because such systems generally have bimodal statistical 
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distributions. It also accurately detects glint radiance, which is quite common in at least 

one of the 1.6 u m views, sub pixel cloud contamination near cloud boundaries and low- 

lying marine stratiform cloud. Historically, these issues have interfered with ATSR-based 

SST retrieval [see the work of Jones et al., (19.96a, b) and the references cited therein]. 

The SSTs derived from the cloud-free ocean pixels were validated with .96 buoy 

observations and the mean difference (buoy—SST) was +0.24°C±0.51°C. For the 103 

pairs of images (forward/nadir views) tested, the mean 11 1a m BTs that result from 

SADIST (standard ATSR processing) vs. ATSR/SMC cloud detection are 0.4°C 

(daytime) and 0.6°C (nighttime) colder for SADIST than for ATSR/SMC, even though 

the SADIST cloud masks generally over detect clouds relative to ATSR/SMC cloud 

masks. The conclusion that the new procedure produces cloud masks which are superior 

to the standard ATSR operational cloud mask product and it retains substantially more 

valid pixels. The algorithm can be used in tropical and midlatitude regions; it is not 

designed to detect sea ice, and consequently should not be used in Polar Regions. Finally, 

the approach can easily he adapted to ATSR-2 data and to other data to be taken from 

soon to be launched sensors. 



CHAPTER 3 	 METHODOLOGY 

3. ALGORITHM DESCRIPTION 

3.1. Introduction 

In order to detect the fire spots, cloudy pixels more than one algorithm have been 

proposed in this dissertation which are based on change detection, multi-thresholding 

and thresholding. In change detection, the pixel values of different years of data were 

compared. Multi-thresholding algorithm is based on differences in the values of AVHRR 

bands 3, 4 and 5 in the land surface temperature (LST Night). Thresholding algorithm is 

based on all the bands of AVHRR. 

3.2. Preprocessing 

The preprocessing of AVHRR is done in order to make the data more meaningful and for 

easier processing at later stages. In case of AVHRR the preprocessing involves two basic 

steps — reprojection and calibration 

3.2.1. Reprojection 

The downloaded data has the information of geographic coordinates but they are either 

in meters or need to be projected. The data used here are gridded products of AVHRR 

which is reprojected to its geographic Lat/Long using Everest 1956 datum. 

3.2.2. Calibration 

Absolute calibration is essential for a variety of scientific studies and image analysis 

applications. Calibration is done in order to convert the DN (Digital Number) values of 

the bands to meaningful values. In this dissertation, we used LST Day, LST Night 

which actually represents temperature in K. 

Three major steps are involved in the method used here in detection of cloudy pixels. 

1 Change Detection using Image analysis. 
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2. Multi-thresholding using Image processing. 

3.3. Change Detection using Image analysis 

Change detection is a technique based on the comparison of temporal development curve 

for successive years of remotely. sensed indicators derived from high temporal resolution 

data such as those from NOAA/AVHRR or MODIS etc. When the time trajectory of a 

particular pixel or Lat/Long deviates from the expected value for that pixel or Lat/Long, a 

process of change can he detected. 10 years data using for image analysis. 

This method involves separately classifying images for two different dates. The classified 

image are then compared. pixel by pixel to detect change in its values. Result is then 

displayed in a change matrix or change map or by plotting graph in XY plane. 

3.4 Multi-thresholding using Image processing 

3.4.1. Thresholding 

Consider an image of gray scale where each pixel f(x,) represents some pixel in the 

image. Each pixel has some gray scale value in the image. If the image is separated based 

on the fact if f(x, y)>T (some pre-decided threshold value) are assigned black or 0 and 

f(x, y) <T are assigned white or 1. This makes the image in zeroes and ones. The 

technique discussed is called ThreshoIding. 

Thermal anomalies and their background can be separated through a threshold, which is 

defined as the first histogram turning point after the mean plus the standard deviation. A 

proper threshold can minimize the number of false alarms. When a threshold is set, the 

result map can be sliced to a bit map representing cloudy induced thermal anomalies and 

the non-cloudy area. Furthermore, some false alarms, such as fire, can be removed by 
taking appropriate threshold values. 



3.6. ALGORITHM 

In order to detect the cloud and fire pixels, four algorithms have been used in this 

dissertation which is based on multi-thresholding. Two algorithms used for to detect 

cloudy pixels. 

3.6.1 THE AVHRR SPLIT-AND-MERGE CLUSTERING CLOUD-DETECTION 

ALGORITHM 

The algorithm, called the AVHRR Split-and-Merge Clustering(ASMC) cloud-detection 

algorithm, uses an iterative , nested , partitional , hierarchical clustering procedure to 

segment the AVHRR scene into its natural divisions and then joint , three dimensional , 

adaptive thresholding procedure to label the segments as cloudy , cloud — free , or 

uncertain. [Ref] 

The AVHRR Split-and-Merge Clustering algorithm uses high spatial resolution 

channel-2 visible -albedo, infrared temperature derived from channel-4 data, and a 

channel 3 minus channel 4 temperature difference. Although channel-1 data may give 

better contrast between land and cloud than channel-2 data, channel-2 data are preferred 

over channel-1 data for this application because channel-1 data are much more affected 

by time-and- space varying atmospheric processes (e.g., Rayleigh and aerosol scattering) 

than are channel-2 data. A detailed discussion of this point, including results from 

radiative transfer model computations, is given by Simpson and Gobat (1995b). 

Prefiltering the channel-3 data with a Wiener filter to remove noise (Simpson and Yhann, 

1994) generally has not proved necessary in this application based on tests that used both 

raw and filtered channel-3 data to form the required channel 3 minus 4 temperature 

difference. Extremely noisy channel-3 data, however, may require preconditioning with 

the Wiener filter methods. The algorithm has two steps 1) a split-and- merges clustering 

procedure, and 2) an adaptive-labelling procedure. 
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3.6.1.1.. Split-and-Merge Iterative Clustering 

Clustering refers to any type of method that attempts to automatically partition a given 

data set by identifying the natural groupings of the data within a specified feature space 

by optimizing a chosen clustering criterion (Pairman and Kittler, 1986). Hence, this 

approach is dependent on the global properties of the data. Clustering attempts to make 

all the elements of a given cluster as similar as possible (i.e., minimize within-cluster 

variance) and simultaneously make individual clusters as distinct as possible (i.e., 

maximize between-cluster variance). Scatter matrices used here provide a 

computationally convenient way in which to formulate this minimization problem. 

Moreover, Gallaudet and Simpson (1991) have shown that minimizing the within-cluster 

scatter matrix simultaneously maximizes the between- cluster scatter matrix if total 

variance is to be conserved. 

We define n a  as the number of bands in the input image. Then we 

can describe the input data as N n d  no- dimensional column vectors where N is the 

number of valid pixels in the input image. Each column vector corresponds to a given 

pixel location within the input image , and each component of the column vector•

corresponds to a single spectral or derived value at that location. For the ASMC 

algorithm, n d  3; each vector is defined as 

a, 
y= T4 	 (1) 

S 

where a 2 is the channel-2 albedo, T4 is the surface temperature derived from channel 4, 

and is S the temperature difference between channels 3 and 4, subject to the constraint 

that negative differences are mapped to 0.0. 

The clustering operation proceeds as follows: 

1. Distribute the initial K, cluster centers, in k'  equidistant throughout the range of 

the input data 
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k-1 	 / 

	

In k  = 	+ 	 (y' max — Y min) .... 	(2) 
K, —1 

where the maximum and minimum vectors of the entire data set y' max and, 

y m;n respectively, are defined as the component-wise maximum and minimum of 

the n d spectral or derived inputs. 

2. Assign each input vector, y, to the nearest cluster center by computing the 

Euclidean distance from the vector to each cluster center 

dk =(Y - mk)T  (Y -mk) 	 k=1.......K 	 (3) 

where K is the total number of clusters) and assign the vector to the cluster that 

corresponds to the minimum dk. In Eq. (3) and elsewhere superscript T denotes the 

transpose operation. 

3. Compute the between-cluster scatter matrix, Sb 
K 

S b  = 	1k  (T71k  — T71)(1nk  — m)T 	 (4)  
k=1 

where nk The number of vectors in cluster k, 

and in is the mean vector of the entire input data 

m= N  X nk mk 

1 K . 

	

k=l 
	 (5) 

4. Check for convergence based on the trace of the between-cluster scatter matrix, 

T r (Sb). T r (S b) is a measure of between-cluster variance. Convergence 

there is negligible change in this measure from one iteration to the next, that is , if 

	

T.(Sb) 
	<tol 
	

(6) 
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then we stop the clustering process and move on to the labelling stage. In the 

convergence check above, T r (S'b) represents the between-cluster from the previous 

iteration and tol is a predefined numerical tolerance. 

5. For each cluster k, compute the distance between the component-wise cluster 

maximum and minimum vectors, 

d = (Ymax — Y )T  (Ym. — Ymin) 	 (7) 

where the cluster minimum and maximum vectors are defined by a procedure 

analogous to that used for the image minimum and maximum vectors in (2); they are 

the component-wise cluster minimum and maximum vectors, If d,, is greater than the 

splitting threshold (T s) split the cluster by reassigning each vector to one of two 

new clusters, based on whether it is closer to the maximum or minimum. 

6. Repeat step 5 until nothing is split during that step. 

7. For every pair of clusters, compute the distance, d b, between the cluster mean 

vectors 

dt (m, —in)  (in; 	 (8) 

If d b  is less than the merging threshold (T ), combine all the vectors in clusters i and j 

into single cluster. 

8. Repeat step 7 until nothing is merged during that step. 
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9. Based on the current K cluster centers, repeat the process beginning at step 2. 

The process outlined above uses four predetermined parameters: 

the number of initial clusters the splitting threshold (T s,), the merging threshold (Y., ), 
and the convergence tolerance (tol). All our are reatively easy to determine because, as 

Gallaudet and Simpson (1991) have shown, the clustering procedure is largely insensitive 

to the values chosen. Specifically, Gallaudet and Simpson (1991) show the sensitivity 

contours of the T s and T,,, thresholds to: a) within- cluster variance, b) number of split 

and merge operations in the first iteration of the clustering procedure, c) the percentage of 

pixels rejected as cloud, d) the total number of iterations required for convergence to a 

stable cluster population, and e) the final number of clusters at convergence. 

Moreover, a detailed discussion of the sensitivity of the clustering procedure to the initial 

number of (K. ) and to the convergence criteria (tol) is given. Because the ASMC 

clustering procedure is a slight adaptation of that used by the original PCTSMC 

algorithm of Gallaudet and Simpson (1991). The same rules apply for selection of input 

parameters to the clustering procedure of the ASMC algorithm. Thus, for the ASMC 

algorithm, these parameters are specified as follows. K, , the initial number of clusters, is 

chosen as 30 because this number is small enough that the algorithm still performs 

acceptably fast and large enough that the clustering result is generally stable for any 

number larger than this. The splitting and merging thresholds are defined by Gallaudet 

and Simpson (1991) 

r" ( .max — ,y min )T (y  max — y min) 	 (9) 

That is, as some percentage of the distance between the input data set maximum and 

minimum vectors. /3 was chosen as '0.01. The convergence tolerance was taken as 0.05. 

This means that if the traces of the between-cluster scatter matrix changes by less than 

5% from one iteration to the next, then the algorithm will accept the current set of 
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sters and proceeds to the labelling stage. 
method of clustering just described combines both partitional and hierarchica 

)roaches. It consists of a partitional clustering algorithm augmented by a splitting-and 
rging step at each iteration, Combining a partitional with a hierarchical method ha 
'eral advantages over the use of either method `alone (see Gallaudet and Simpson 
1 and the references contained therein). 
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3.4.1.2. Labelling 
Once the data have been segmented into their natural classes, a labelling algorithm is 

used to label each cluster (and thus all the pixels in that cluster) as either cloudy or clear. 

The labelling criteria for ASMC are based on an adaptively determined decision plane 

that split the three-dimensional input space into clear and cloudy regions, Figure 1 

illustrates three-dimensional vector space of the problem (albedo,temperature,T 3 -T4 

temperature difference) as the dashed outline; the plane that splits this space into clear 

and cloudy regions is drawn as the solid triangle. 

Given n final clusters from step 1 of the ASMC algorithm, we define a m;n as the 

minimum albedo component of the n cluster mean vectors, Similarly, S in  is the 

minimum 13-  T 4 temperature difference and T max  is the maximum temperature 

component. The scene-specific adaptive labelling threshold values, a,,, , S ,,, , and T,,,, 

are determined from an adaptive threshold of the appropriate component of the input data 

of the entire image using the following procedure: 

1) for a given input component, select the image mean as an initial threshold 

2) use this value to divide the image into two groups having new means m, and m, 

3) define a new threshold as the average of and m, and m 2  ; and 

4) iterate until the a adaptively computed threshold, remains constant . 

The complementary roles of the split and merge thresholds used to segment the image 

and the adaptive labelling thresholds used to label the segments (cloudy versus cloud-

free). 

Given a cluster mean vector with components (a o ,8 o , T o  ) , the cluster is labeled 

as cloud if it falls outside the polyhedron defined by the adaptive labelling thresholds and 

the extrema of the cluster means (Fig. la). Algebraically, a cluster will be labeled as cloud 

if the inner product of the cluster mean vector and the adaptively determined decision 
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plane is positive (i.e., if the normal vector from the decision plane to the cluster center 

points outward from the polyhedron). If we write the equation of the plane as 

ma + nT + S - (S min +ma  mm +nT,,,) = 0 	(1Oa) 

where in and a are defined as 

S ,h — 5min 
m = 

	

	 ........... 	(1 0b) 
( ad, — amin 

and 

	

Smin 	 Ih 

n= T —T 	 (IOc) ............... 

	

max 	,h 

Then the signed distance, ds, from the plane to the cluster cent 

d  = mao  + nTo  +80  — Smin  — mam;n  — nT,,, 

	

S 	 m2 	+n' 	 (1 Od) +1  

it is important to emphasize that egsIOa and 10d provide a cluster-specific labelling rule 

for determining if a given cluster falls outside the decision polyhedron (ds > 0) and hence 

is a cloud (Figure la). Eqs. IOa and IOd do not compute a single static threshold for the 

entire scene. 



Complementary Roles of Clustering and Labelling Procedures 

The clustering procedure (step 1 of the ASMC algorithm) uses cluster split — 

(Ts) and merge (Tm)-thresholds to partition the original spectral and derived input space 

(a 2  , T 4  , S)into a set of homogeneous regions in cluster space. The adaptive-labelling 

thresholds (a , S ,,, , and T,,,) partition the cluster space into the geophysical domains 

of interest (cloudy, cloud-free). The cluster thresholds are determined solely from the 

spectral and derived properties of the specific image under study using the dynamic 

computational procedures . The adaptive-labelling thresholds are computed as defined in 

the section entitled Labelling. 

If the adaptive-labelling thresholds were used singularly, then they would behave very 

much like the traditionally used static thresholds. Use of the decision polyhedron, 

however, allows us to apply the individual adaptive thresholds in a novel simultaneous 

sense (novel and simultaneous as opposed to the more traditional simple "and" or "or" 

logical conditions). Moreover, the joint adaptive-labelling thresholds are applied to the 

clusters and not to individual pixels as generally has been done. The variance associated 

with even small subsets of adjacent pixels can give rise to noise in a statistical sense, 

which often causes single and / or logically linked sequences of static thresholds to break 

down. This problem is resolved by the initial clustering step of the ASMC algorithm 

because the joint-labelling criteria are only applied to statistically homogeneous 

structures (i.e., the clusters) whose statistical signatures are more clearly indicative of 

cloud or cloud-free conditions than are the signatures of individual pixels. 

The difference between traditional thresholding of individual pixels and the use of 

clustering [with splitting (Ts) - and merging (Tm).threshold] to segment the scene 

into homogenous natural groupings, followed by cluster labelling (with adaptive labelling 

thresholds (a,;,, S ,,, ,T,h ,) is clearly shown in Figure la. 
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3.4.1.3. The Uncertainty Criteria 

In addition to the binary clear / cloud classification defined by the sign of the distance 

from the decision plane to cluster center (Eq. 10d), the labeling scheme also can make 

use of the actual distance from the decision plane and use it to attach a reliability estimate 

to the resulting label. Thus, a cluster with large negative distance is interpreted as clear 

land with a high degree of certainty; a large positive is interpreted as cloud with a high 

degree of certainty. The smaller the distance (either positive or negative), the less certain 

is the final label (either cloud or clear land). Because of the uncertain labels associated 

with cluster that lie very close to the decision plane, additional planes (parallel to the 

original) can be added to the decision rules to define zones of ambiguity or zones where 

very uncertain labels are likely to occur . The definition of these additional planes 

depends on the application (i.e., recovering as much clear land as possible, ensuring that 

clear land labels are assigned with a high degree of certainty, or identifying regions of 

possible subpixel cloud contamination). 

For the purposes of this article, two additional planes were defined. The first, just outside 

of the original decision plane effectively increases the size of the polyhedron in which 

clear land labels should be assigned. 

The second additional surface is even further beyond the original plane and the area 

between this plane and the first additional plane defines a region where ambiguous labels 

are assigned. The actual placements of these planes are defined as 5% and 12% of the 

maximum corner-to-corner distance beyond the original decision plane (where the 

corner-to-corner distance refers to the dashed cube in Fig. la). With the addition of these 

two planes, the labelling rules can be summarized as follows: 

z l = 
	 r 

D — ((amax — amin)
~_ 

+ 
( 
\Tma,, — Tmin 

z 
+ (8max — min / 

ds < 0.05D 	clear 

0.05D ds ~ 0.21 	ambiguous 



Decision: Polyhedron 

(Figure 1 a) 

ds > 0.12D 	_> 	cloud ............... 

where ds, is the signed distance defined by Eq l Od, and D is the corner-to-corner distance 

of the cube that completely encloses all of the cluster-mean vectors. Thus, if ds is 

negative or a small positive number less than 0.05 x D, the cluster is labeled cloud-free 

land 

Decision polyhedron 

First additional plane (labeled as clear) 

Second additional plane (ambiguous )outside f 

other regions labeled as cloud 

(fi gure l b) 
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Figurela) definition of decision plane used to separate cloudy from cloud- free land 

pixels in the labeling step of the ASMC algorithm. 

Figurelb) Definition of the ambiguous domain used in the labeling step of the ASMC 

algorithm. 

3.6.2. DAYTIME ALGORITHM 

3.6.2.1. Detection of cloud-free pixels 

The overall philosophy of this cloud detection scheme is to apply up to five tests to detect 

cloud and then to identify a pixel as cloud-free only if all the tests prove negative. This 

does lead to the possibility that some tests will incorrectly identify some cloud-free pixels 

as cloud-contaminated but this is the safest way to ensure no cloud- contaminated pixels 

escape detection. These tests can vary depending on whether it is night or day and on the 

underlying surface type which is divided into three classes, sea, land and coast (i.e. 

mixed). The scheme uses all available channels of the AVHRR, which are in the 

following wavelength ranges: 0.58-0.68 ,u m, 0.72-1.10 y m, 3.55-3.93 u m, 10.3- 

11.3 u m and (for AVI-RR/2) 1 1.5-12.5 u m for channels 1 to 5 respectively. During 

the day bi-directional reflectance from channels land 2 and infrared brightness 

temperatures (i.e. equivalent black body temperatures) from channels 4 and 5 are required 

for input to the scheme whereas at night the infrared brightness temperatures from 

channels 3, 4 and 5 are required.[ref. Kidwell,1985 and Lauritson et al ,1979.] If channel 

5 is not available, as is the case for TIROS-N and NOAA-6, -8 and -10, the scheme is 

simplified by omitting all tests using channel 4 and 5 differences and wherever possible 

substituting channel 4 for channel 5. More details of the AVHRR instrument and 

calibration procedure can be found in Kidwell (1985) and Lauritson et al. (1979). Some 

of the cloud detection tests have already been described elsewhere (Saunders 1986 a) and 

so are only mentioned here briefly for the sake of completeness. However, a few 

improvements have been made and additional tests included. 
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The first test applied to both daytime and night-time data is an infrared 

threshold test using the measured AVHRR/2 12pm brightness temperature (or 11 p m if 

no channel 5 is available) as a check on cloud contamination. The 12 p m brightness 

temperature is used because clouds have a greater optical depth at these wavelengths 

(Olesen an Grassl 1985). If the measured brightness temperature is below a certain 

threshold temperature the pixel is rejected as cloud-contaminated. A problem arises in 

defining an appropriate threshold temperature. Over the sea it is straightforward as the 

sea surface temperature (SST) varies only slowly during the year. An operational scheme 

could use the last 5-day mean SST for each 1 degree latitude/longitude grid point 

corrected for the maximum likely atmospheric absorption -effects to give a brightness 

temperature at the top of the atmosphere. Over the land, however, the large day-to-day 

variability in surface temperature due to different meteorological conditions makes 

defining a threshold temperature more difficult. Operationally a forecast surface skin 

temperature could be used from a mesoscale model to define a threshold top-of-the-

atmosphere brightness temperature. During the development of the scheme the thresholds 

were determined interactively from the data. An 11 p m brightness temperature image 

was displayed and the user identified cloud-free land and sea areas which were likely to 

be the coldest in the image. The brightness temperature over these areas were then 

determine and temperatures 2 deg K less than the measured values were used as threshold 

values. This approach is only suitable for images of small sections of one pass, as 

thresholds for Scotland for instance will be inappropriate over Spain. Over the.coast the 

temperature threshold for the coldest surface (i.e. land or sea) is used;  which is normally 

the sea during the day and the land at night.. 

The second test is a local uniformity or spatial coherence test applied on 3 x 3 pixel array 

of 11 p m brightness temperatures. During the day it is only applied over the sea (with a 

standard deviation threshold of 0.2deg K), as the horizontal temperature variations over 

cloud-free land can be considerable. We have found that the surface temperature 

variability over land is less at night, making a spatial coherence test possible, and so it is 

used with an increased standard deviation threshold of Ideg K. The test is never applied 

over coastal areas where there are usually large variations in surface temperature. 
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The third test applied during the day (i.e. when the solar elevation is greater than 10 

degrees) is a dynamic reflectance threshold test. Over land and sea a cloud-free peak can 

be identified in the reflectance histograms of about 50 x 50 pixel arrays, allowing a 

reflectance threshold to be set at a slightly higher reflectance. All pixels with reflectances 

above this threshold are assumed to be cloud-contaminated. Identifying a cloud-free 

reflectance peak and then setting a threshold value removes' uncertainties due to 

variations in calibration and changes in surface reflectance with solar zenith/azimuth 

angles, etc. If a fixed reflectance threshold is applied these variations will mean that it is 

often too high or too low. Over coastal areas, however, identification of the cloud-free 

peak is more difficult so a fixed reflectance threshold of 15 per cent has to be used. Over 

sea, channel 2 reflectances are used, as they are less sensitive to aerosol and molecular 

scattering effects. Over the land channel 1 reflectances arc used since the reflectance of 

land surfaces in channel 1 is much less than in channel 2, which increases the contrast 

between land and cloud. More details of all these tests described above can be found in 

Saunders (1986 a). 

The fourth test used during the day makes use of the ratio of near-infrared bidirectional 

reflectance's (AVHRR channel 2) to visible bi-directional reflectance's (AVHRR 

channel 1). Bi-directional reflectance R in this paper is defined as 

G„C+Y„ 
R,= I cos 0a 	 (1) 

where R„ is in units of percentage reflectance, the gain G„ and intercept Y,r are 

given in the appendices of Lauritson et at.1 979), C is the raw count value received from 

the satellite for channel n and 6  0 is the appropriate solar zenith angle. The ratio used in 

the test is then simply defined as 

RZ  
Q= Rl 	........ 	 ( 2) 



This ratio Q is close to unity over clouds, as the reflectance of clouds only decreases 

slightly at near-infrared wavelengths and anisotropy effects are similar in both channels 

and hence cancel. Over cloud-free water, however, enhanced backscattering at the shorter 

wavelengths due to molecular and aerosol scattering causes the visible reflectance to be 

often twice that in the near-infrared (outside sun glint), giving values of Q of around 0.5. 

Over land with growing vegetation the reflectance increases markedly at near-infrared 

wavelengths compared to shorter visible wavelengths (Swain and Davis 1978). Even over 

desert or during the winter when the vegetation js dormant the reflectance is higher at the 

longer wavelengths (except over snow and ice), ensuring that Q is always greater than 

unity. The land and sea peaks are well defined at the `dark' end with cloudy reflectances 

producing a broad higher reflectance tail. The cloud-free sea and land radiances are well 

separated with a well-defined cloudy peak close to unity. To identify cloud-free pixels a 

cloud-free sea or land peak is identified from the histogram of Q and then only pixels 

with values of Q closer to the cloud-free peak(s) than pre-defined values (0.06 over sea 

and 0.2 over Land identified as cloud-free. This works well over sea but over land, as , 

there is often no well-defined peak due to the large variability of the ratio overland. In 

this case a default threshold of 1.6 is set where all pixels with a value of Q less than this 

are assumed to be cloud-contaminated. 'If a cloud-free peak over sea cannot be 

identified, all pixels with values of Q greater than 0.75 are assumed to be cloud-

contaminated. One problem is in areas of sun glint where Q can approach unity, having 

the same value as over cloud, and so the test is not applied over these areas. 

The final test applied to both daytime and night-time data examines the difference 

between the 11 u m (channel 4) and 12 y m (channel 5) brightness temperatures. Figure 

shows the overall flow diagram of the scheme to detect cloud-contaminated pixels during 

the day. A pixel must pass all of the tests described above to be assigned cloud-free. 

More details of the first three tests are given in Saunders (1986 a). 
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Figure: 2 Day time Algorithm 



3.6.3. CONTEXTUAL ALGORITHM 

Regular information about fire events at local to national scales is a necessary 

prerequisite to understanding and documenting the extent of their occurrence, in space 

and time. 

Under an ongoing programmed of activities for improving direct access to 

environmental information where most needed , the local applications of Remote sensing 

Techniques group ( LARST ) at the Natural Resources Institute ( NRI ) uses national 

Oceanic and Atmospheric Administration (NOAA) , Advanced Very High Resolution 

radiometer (AVHRR) data as a primary source of information for detecting vegetation 

fires. 

3.6.3.1. 	Contextual approach 

The principles of this contextual approach were first found in a fire 

detection algorithm review by Justice and Dowty (1994). When interpreting an image 

visually, the human eye usually spots a fire because of the fire itself and its surroundings. 

This is exactly the way the contextual algorithm works: a decision about whether a pixel 

is a fire is made by comparing the values of a possible fire with those of its immediate 

neighbors. If the contrast between the two is high enough, the pixel is identified as a fire. 

The main difference from `traditional threshold algorithm `is that a decision is made on a 

relative basis rather than an absolute one. The algorithm is self — adaptive and 

automatically detects fire under different conditions. 

Test) since the band width of AVHRR channel 3 covers parts of both the solar 

and thermal ranges of the electromagnetic spectrum , it is important to reject those pixels 

whose value in channel 3 would saturate or would be too high due to high reflection 

rather than high temperature (e. g. from bright soils , clouds or sun glinths). 

This is assessed by looking at the reflectance in channel 2. 

PF is a not a fire if 

p 2 >  20 % 

Where p 2 is the top — of — atmosphere bidirectional reflectance factor for AVI-IRR 

channel 2. 
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CHAPTER 4 	 RESULT AND DISCUSSION 

4.1 Introduction 

In this dissertation report, an attempt has been made to detect the cloudy pixels in 

NOAA/AVHRR images using different image analysis techniques. To accomplish this 

change detection, multi-thresholding techniques were developed and applied in order to 

extract features from the image. The images of AVHRR satellite were first calibrated, 

georeferenced, and then image processing techniques were applied for realizing the 

objectives. The data was reprojected to geographic Lat/Long using Everest-1956 datum 

for obtaining processed image. Figure 4.1 shows the procedure followed in processing an 

image for detection of cloudy pixels from cloud using image analysis technique. 

................................... 

Preprocessing 

: ............................................... 
Calibration 	 Georeferencing : ....................................................................... 

--------------------------------------------------------' 

------------------------------------------------------------------- ----------- ------ 

Color mapping and 	 Cloud detection algorithm 
Segmentation 

F ------------------------------------------ 	---------------------------------------- 

Cloudy 
pixel 	f 

Image Processing 

......... ................................................ 

Figure 4.1: Processing Stages of Cloud detection 
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Figure 4.2 Band 1(Sept. 1995) 

Multi-thresholding technique was combined along with image processing 

techniques for observing cloud in Jharia (Jharkhand), India, using operational satellite 

(NOAA/AVHRR) images. Cloudy pixels of Jharia region are obtained from given image 

data that shown approximately similar trends during year 1995 to 2004. The multi-

thresholding techniques discriminated cloud, and land surfaces successfully. The 

observed results encourage further application of these techniques which includes the 

calculation and assessment of actual cloudy surface in cloud image using image 

processing. With the use of temporal satellite data of various automated detection 

techniques can be developed and can be compared by using different optimization 

- techniques. 
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Figure 4.3 Band 2 (Sept. 1995) 

Figure 4.2 bandl (Sept 1995), figure 4.3 band 2 (Sept 1995) and figure 4.3 band 4 (Sept 

1995) are showing cloudy area in the sky. Band 1 and band 2 are shown the reflectance of 

the cloud and land surface. Band 4 is shown the temperature of the cloud and land 

surface. 
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Figure 4.4 band 4 (Sept. 1 
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Different bands of AVHRR images are shown cloudy pixels in the cloud image. 

Band 1, 2, and 4 images represent reflectivity and temperature. 
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Figure 4.5 Color mapping of cloud 

Above image (Fig: 4.5) is showing a different color, i.e. red. This color 

represents land pixels and pink color corresponds to cloudy .pixels. This is the easy 

method to differentiate the cloudy pixels and land surfaces. 
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Figure 4.6 Band 4 (Feb. 1995) 

Figure 4.7. Band 4 (Sept 97) 
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Observations of data (cloud image data) of the same month (i.e. Sept) but for different 

years (1995 and 1997), shows changes in the cloudy pixels, due to different 

Meteorological conditions. Due to this, we get different image data for the same month of 

different years, which shows changes in value of the cloudy pixels. 

4.2 Change Detection in Image Analysis 

Further processing of these band images gave more idea about features of the region. 

Graphs for different years that demonstrate the change in the suspected region were 

plotted (below) and changes in the cloud images of Jharia region (Long north-24.5° to 

south-22.5° and Lat west-85° to east 87°) were observed. This implies the changing cloud 

properties of the region. 

No. Method / Year 1995 1996 1997 1998 1999 2000 2001 2002 2003 2004 
1 S&M 30 33 36 39 42 43 39 48 62 54 
2 Daytime 31 37 33 42 43 44 38 50 58 53 

Table 4.1. June data of Split and Merge Clustering and Daytime Algorithm. 

R2 =0.7813 All June 	R2 =0.8153 

80 	 0 S&M 
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Histogram 4.1. June data of Split and Merge Clustering and Daytime Algorithm. 
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Line graph 4.1. June data of Split and Merge Clustering and Daytime Algorithm. 

`Split and Merge Clustering' and `Daytime' algorithms are used for checking and 

detecting percentage of cloudy pixels in the obtained image data for the month of June. 

The variations in the value of cloudy pixels of the same month (June) of the different year 

(from 1995 to 2004) are shown in the Histogram 4.1 and Line graph 4.1. 

Trend line of Split and Merge Clustering and Daytime algorithms of June data is 

continuously ascending upwards along with an increment in the year. Further the cloudy 

_pixels are varying year by year. 

No. Method /Year 1995 1996 1997 1998 1999 2000 2001 2002 2003 2004 
1 S&M 48 34 45 52 54 57 62 68 72 '59 
2 Daytime 45 36 42 48 51 53 57 66 64 58 

Table 4.2. July data of Split and Merge Clustering and Daytime Algorithm. 
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Histogram 4.2. July data of Split and merge Clustering and Daytime algorithm 
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Line graph 4.2. July data of Split and Merge Clustering and Daytime Algorithm 

In a similar way the analysis of the cloudy pixel data for the month of July for different 

years can be carried out. And one can apply the `Split and Merge Clustering' and 

`Daytime' algorithms and plot the respective histogram and line graph. These are shown 

in: Histogram 4.2 and Line graph 4.2. 

The same inference about the ascending nature of the trend line in the histogram along 

with the varying cloudy pixel data can be suggested as was done in the previous case for 

the month of June. 
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No. Method/Year 1995 1996 1997 1998 1999 2000 2001 2002 2003 2004 
1 S&M 42 35 38 35 31 32 32 30 31 30 
2 Daytime 40 36 37 36 30 33 31 30 31 30 

Table 4.3. Sept data of Split and Merge Clustering and Daytime Algorithm. 
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Histogram 4.3. Sept data of Split and merge Clustering and Daytime algorithm 
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Line graph 4.3.{ Sept data of Split and Merge Clustering and Daytime Algorithm 
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Accordingly, the histogram obtained as a result of the plotting the cloudy image data 

following the mentioned algorithms are also shown in fig: Histogram 4.3 and Line graph 

4.3. The month considered over here is September. 

It is seen that the trend line obtained here is showing somewhat different characteristics; 

i.e. there is a descending nature in the image data, as the year progresses. 

Contextual Algorithm: 

No. Method /Year 1995 1996 1997 1998 1999 2000 2001 2002 2003 2004 
1 Justice 2 1.75 1.5 1.75 1.25 0 0.75 0.5 0 0.25 
2 Flasse-ceccato 2 2.5 2.25 2 1.5 1.75 1.5 0.75 0.5 1 

Table 4.4. June data of Justice and Flasse-ceccato (contextual) Algorithm. 
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Histogram 4.4. June data of Justice and Flasse-ceccato (contextual) Algorithm. 
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Line graph 4.4. June. data of Justice and Flasse-ceccato (contextual) Algorithm. 

A. contextual algorithm can be used to detect the fire pixels. Above shown figures is the 

result of applying this contextual algorithm. The trend line obtained shows a sharp 

decline in the contextual data. The month under consideration is June. 

No. Method /Year 1995 1996 1997 1998 1999 2000 2001 2002 2003 2004 
1 Justice 2 2.25 1.75 1.5 0 0.75 0.25 0 0.25 0 
2 flasse-ceccato 2.5 2.25 2 1.5 1.5 1.25 0 0.25 0 0.75 

Table 4.5. July data of Justice and Flasse-ceccato (contextual) Algorithm. 

R2  = 0.7831 	AII_July 	R2  = 0.8074 
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Histogram 4.5. July data of Justice and Flasse-ceccato (contextual) Algorithm. 
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Line graph 4.5. July data of Justice and Flasse-ceccato (contextual) Algorithm 

The fire pixel data for the month of July are plotted for different years (from 1995 to 

-2004), using the Contextual algorithm. These are shown in table 4.5 and its histogram 

4.5. There is a similar trend found as was the case with the month of June. 

No. Method /Year 1995 1996 1997 1998 1999 2000 2001 2002 2003 2004 
1 Justice 1 1.5 1.25 1 1.75 2.5 2.75 3.5 4 3.25 
2 Flasse-ceccato 1.25 1.5 1.75 1 1.25 1.75 2.5 2.75 2.5 3.5 

Table 4.6. Sept data of Justice and Flasse-ceccato (contextual) Algorithm. 
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Histogram 4.6. Sept data of Justice and Flasse-ceccato (contextual) Algorithm. 
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Line graph 4.6. Sept data of Justice and Flasse-ceccato (contextual) Algorithm 

However, for the month of September, there is a different pattern found in the histogram 

obtained as a result of Contextual algorithm. The trend line is showing some ascending 

nature. This can be dedicated to the changes caused in season and meteorological aspects. 

In this dissertation work, the cloudy image data for the months of June, July and 

September are shown along with their histograms and line charts. 

The histograms plotted are based on the application of various algorithms available 

such as; Cloud detection algorithm and Contextual algorithm. The data used in this 

procedure is for ten different years (from 1995 to 2004). A detailed study shows that 

there is a drastic change in the data obtained and the nature of the respective trend lines 

for the months of June and September. This difference can be devoted to the various 

changes brought in the image data because of seasonal changes and meteorological 

parameters. 

Individual month data for 10 year (from 1995 to 2004) are shown in tables (from Table 

4.1 to 4.6) and the respective histogram (Histogram4.1 to 4.6) and Line graph- (Line graph 

4.1 to 4.6) can be referred for the analysis. 

Line graphs obtained for different months considered (June, July and September). for a 

data ranging between ten years (from 1995 to 2004) are showing fluctuations in the 

values of the cloudy pixels, i.e. year by year, for the same month, cloudy pixels varied. 
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The algorithms that are used in this work are Daytime algorithm and Split and Merge 

Clustering algorithm. The histograms thus obtained for the same month of different years 

as a result of application of these two algorithms shows minute variations in the cloud 

image data. However the nature of the trend lines is similar for both types of algorithms. 

In the month of June and July, cloudy pixels are easily achieved because of monsoon 

period. Contextual algorithms that detect the fire pixel data (Justice and Flasse-ceccato) 

are used in this work. These two algorithms again give minute changes in the data 

obtained that are comparable. Further the nature of trend lines for different months 

considered, illustrate same characteristics. i.e. either constantly descending or ascending 

in nature. 

Observing the changes in the cloudy pixel data over the regions of Jharia for the year 

1995 as compared to other years (1996 to 2004), it is concluded that the changes in the 

image data may be devoted to the variations in the meteorological parameters, such as, 

wind direction, temperature, evapotranspiration, etc. The images of Sept 1995 and Sept 

1997 are showing variations in the value of cloudy pixels. Since AVHRR data is 

available from the year 1995 to 2004, large temporal coverage can be made for 

application of change detection algorithm. 

4.3. Multi-Thresholding in Image Processing 

Thresholding was applied at more than one threshold value which made the cloud and fog 

coverage pixels segmented in the image. The choice of temperature to detect the cloud 

pixels was decided by taking the minimum threshold 300 K. In figure 4.5, pink color 

represents the cloud whereas the red color corresponds to land. 

The work was more emphasized on the use of AVHRR and image processing for the 

detection of cloudy pixels in the image data. This dissertation work show good results 

that are near to perfection. AVHRR Split-and-Merge clustering and Daytime algorithm, 

both are showing good results. Both the algorithms are showing a minimum of 30% 

cloudy pixels. Coming to maximum of the cloudy pixels, the split and merge clustering 

algorithm is showing a maximum of 72% cloudy pixels. In case of Daytime algorithm 

this maximum is found to be 66%. Hence the intersection of these two algorithms can be 

given as 30% cloudy pixels of image data. 
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CHAPTER 5 	 CONCLUSION AND FUTURE SCOPE 

Conclusions: 

All the methods discussed in this report were found, to be useful ' in the detection of 

cloudy pixels. Both the algorithms (Split and Merge Clustering and Daytime) are 

representing cloudy pixels in the region (Jharia, Jharkhand) to a minimum of 30%, during 

the monsoon period. Change detection, threshold and multi-threshold techniques were 

combined along with image processing techniques for the detection of cloud on Jharia 

region of Jharkhand, India, using satellite (AVHRR) images. Some changes were seen 

during the years 1995 to 2004 in cloudy pixels of cloud images over the Jharia region, 

and are showing approximately changing trends for changing years (1995 to 2004). The 

multi-threshold technique was found to be accurate due to highlighting of cloud pixels. 

The technique though successful in discriminating cloudy pixels from other land surfaces, 

highlights the false points. The application of multi-thresholding along with segmentation 

technique of image analysis provides precise results in locating the cloudy pixels in the a 

Jharia region of Jharkhand. The observed results encourage further work into these 

techniques which includes the calculation and assessment of actual cloudy pixels using 

image processing and also correlate it with various meteorological parameters. There is a 

scope of observing the change detection in large time series data provided with the actual 

ground truth points. With the use of temporal satellite data an automated detection 

technique can be developed and can be compared by using different optimization 

techniques. 
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1) 	function [newcluster, newcenter, newtrace] = asmc_partl(b2, b4, del, 
clustercenter, K) 

m = clustercenter; 
N = length(b2); 
clusters = zeros(N, 100); 
% Assigning each vector to its nearest cluster. 
disp('Assigning each vector to its nearest cluster'); 

for i = 1:N 
y = [b2(i), b4(i), del(i)]'; 

for k = l :K 
d(k) _ (y - m(:,k))'*(y - m(:,k)); 

end 
mind = find(d==min(d)); 
current = clusters(:,mind); 
location = find(current==0); 
clusters(location(1),mind) = i; 

end 

% Computing the mean vector of the image 
disp('Computing the mean vector of the image'); 
sum = zeros(3,1); 
fork= 1:K 

sum = sum + length(find(clusters(:,k)—=0))*m(:,k); 
end 

mean = sum/N; 

% Computing the between-cluster scatter matrix. 
disp('Computing the between-cluster scatter matrix'); 

sb = zeros(3,3); 
fork= 1:K 

sb = sb + length(find(clusters(:,k)—=0))*(m(:,k) - mean)*(m(:,k)-mean)'; 
end 

newtrace = trace(sb); 
newcluster = clusters; 
newcenter = m; 



2) 	function [newclusters, newcenter] = asmc part2(b2, b4, del, clusters, 
clustercenter, Ts, Tm; K) 

N = length(b2); 
% checking whether to split the cluster or not. 
m = clustercenter; 
disp('checking whether to split the cluster or not'); 
fork= 1:K 

current = clusters(:,k); 
location = find(current==0); 
current = current( l :location( 1)-i); 
tb2 = zeros(length(current),1); 
tb4 = zeros(length(current),1); 
tdel = zeros(length(current),1); 
for i = I :length(current) 

1= current(i); 
tb2(i) = b2(l); 
tb4(i) = b4(l); 
tdel(i) = del(l); 

end 
mincluster_vector_y = [min(tb2), min(tb4), min(tdel)]'; 
maxcluster vectory = [max(tb2), max(tb4), max(tdel)]'; 

dm = (maxcluster_vector_y - mincluster_vector_y)'* (maxcluster_vectory -
minclustervector y); 

if dm>Ts 
% 	disp('the cluster number which is getting splitted is'); 
% 	disp(k); 

newcluster 1 = zeros(N, 1); 
newcluster2 = zeros(N,1); 

K=K+1; 
for i = l:length(current) 

ytemp = [tb2(i), tb4(i), tdel(i)]'; 
dl = (ytemp - mincluster_vector y)'* (ytemp - mincluster_vector y); 
d2 = (ytemp - maxcluster_vector_y)'* (ytemp - maxcluster_vector_y); 
if dl<d2 

place = find(newclusterl=0); 
newcluster 1 (place( 1)) = current(i); 

else 
place = find(newcluster2==0); 
neweluster2(place(1)) = current(i); 

end 
end 



clusters(:,k) = newclusterl; 
clusters(:,K) = newcluster2; 

% 	display('The cluster no. which got splitted and the new clusters were formed as 
position'); 
% 	disp(k);disp(k);disp(K); 
% 	display('The length of cluster and the cluster center at position k is'); 
% 	disp(length(neweluster1)); disp(mincluster_vector_y); 
% 	display('The length of cluster and the cluster center at position K is'); 
% 	disp(length(newcluster2)); disp(maxcluster_vector_y); 

m(:,k) = mincluster_vector_y; 
m(:,K) = maxcluster_vector_y; 
k= 1; 

end 
end 

% disp('after splitting the clusters, value of K is'); 
% display(K); 
% disp('after splitting the clusters, the new cluster center is'); 
% disp(m(:,1:K)); 

% checking whether to merge the clusters or not. 
disp('checking whether to merge the clusters or not'); 
forj= 1:K-1 

fork=j+1:K 
db = (m(:,j)-m(:,k))'*(m(:,j)-m(:,k)); 
if db<Tm 

% 	disp('Now the cluster numberj and k are getting merged, wherej and k 
are'); 
% 	disp(j); disp(k); 

oldclusterl = clusters(:,j); 
oldcluster2 = clusters(:,k); 
newcluster = zeros(N,1); 
placeold1 = find(oldclusterl= 0); 
placeold2 = find(oldcluster2==0); 
finalloc = placeoldl(1) + placeold2(1) -2; 

newcluster(1:placeold1(1)-1) = oldcluster1(1:placeold1(1)-1); 
newcluster(placeold1(1): finalloc) = oldcluster2(1:placeold2(1)-1); 

display('the Iength of old clusters at position j and k was'); 
% 	disp(placeoldl(1)=,1); disp(placeold2(1)-1); 
% 	disp('the length of new cluster at position j is'); 

disp(finalloc); 
clusters(:,j) = newcluster; 
clusters(:,k) = 0; 

% 	display('the old and new cluster center at position j is'); 
% 	disp(m(:,j)); 
% 	disp('the cluster center at position k was'); 



% 	disp(m(:,k)); 
m(:,k) = 0; 

% 	disp('After merging, the cluster center at position k is now'); 
% 	disp(m(:,k)); 

j=1;  
k= 1; 

end 
end 

end 

% disp('after merging the clusters, value of K is'); 
% display(K); 
% disp('after merging all the clusters, the new cluster center is'); 
% disp(m(:,1:K)); 

countclust = 0; 
for e=1:K; 

if clusters(:,e)-0 
countclust = countclust+l; 

end 
end 

% disp('the number of clusters which are having atleast one vector is'); 
% disp(K-countclust); 

countcen =0; 
for e = 1:K; 

if m(:,e)==0 
countcen = countcen+l; 

end 
end 

% disp('the number of centers which are having atleast one vector is'); 
% disp(K-countcen); 

newclusters = zeros(N,K-countclust); 
newm = zeros(3,K-countcen); 

count = 1; 
for e=1:K; 

if m(:,e)==0 
count = count; 

else 
newm(:,count) = m(:,e); 
newclusters(:,count) = clusters(:,e); 
count = count+l; 



end 
end 

% disp('newcluster size is'); 
% display(size(newclusters)); 

% disp('new m size is'); 
% display(size(newm)); 

newcenter = newm; 

3) 	function [final clusters, final centers] = cloud detect(roi) 

bl = roi(:,8); 
b2 = roi(:,9); 
b3 = roi(:,10); 
b4 = roi(:,11); 
del = b3-b4; 
del(find(del<0))=0; 
K= 30; 
N = length(bl); 
b2min = min(b2); 
b4min = min(b4); 
delmin = min(del); 

b2max = max(b2); 
b4max = max(b4); 
delmax = max(del); 

ymax = [b2max, b4max, delmax]'; 
ymin = [b2min, b4min, delmin]'; 

Ts = 0.01 *(ymax - ymin)'*(ymax - ymin); 
Tm = Ts; 
Tot = 0.05; 

% Computing cluster centers for each cluster 
m = zeros(3,100); 
for k = 1:K 

m(:,k) = ymin + ((k-1)/(K-1))*(ymax-ymin); 
end 



disp('The initial clustercenter is'); 
display(m(:, 1 :K)); 
oldtr = 0; 
clustercenter =m;; 
[newclusters, newcenter, newtrace] = asmc_part 1 (b2, b4, del, clustercenter, K); 
clusters = newclusters; 
clustercenter = newcenter; 
checkontol = abs((newtrace - oldtr)/newtrace); 
% disp('the value of checkontol for the first time is'); 
% display(checkontol); 
while checkontol>=Tol 

oldtr = newtrace; 
[newclusters, newcenter] = asmc_part2(b2, b4, del, clusters, clustercenter, Ts, Tm, K); 

% disp('after calling asmc_part2 first time, now the cluster center is'); 
% display(newcenter); 

clusters( :,:)=0; 
clustercenter(:, :)=0; 
clustercenter(:, 1 :size(newcenter,2)) = newcenter; 
K = size(newcenter,2); 
disp(`Now K is'); 
display(K); 
[newclusters, newcenter, newtrace] = asmc_partI(b2, b4, del, clustercenter, K); 
checkontol = abs((newtrace - oldtr)/newtrace); 
disp('the value of checkontol for the next time is'); 
display(checkontol); 
clusters = newclusters; 
clustercenter = newcenter; 

end 

final_clusters = newclusters(:, 1 :K); 
final_centers = newcenter(:, 1 :K); 



4) 	function [cloudarray] = labeI_clusters(roi, cluster, clustercenter, outputfile) 

bl = roi(:,8); 
b2 = roi(:,9); 
b3 = roi(:,10); 
b4 = roi(:,11); 
b5 = roi(:,12); 
xloc = roi(:,2); 
yloc = roi(:,3); 
del = b3-b4; 
del(find(del<O))=0; 
K = size(cluster,2); 
N =length(b2); 

countclust = 0; 
for e = 1:K; 

if cluster(:,e)==0 
countclust = countclust+l; 

end 
end 
countclust 

newcluster = zeros(N,K-countclust); 
count = 1; 
for e = 1:K; 

if cluster(:,e)==0 
count = count; 

else 
newcluster(:,count) = clu-ster(:,e); 
count = count+1; 

end 
end 
size(newcluster) 

%calculating cluster mean vectors 
meanvector = zeros(3,K-countclust); 
cloudarray = zeros( 1 ,K-countclust); 

for k= 1 :K-countclust 
temp = newcluster(:,k); 
location = find(temp==0); 
current = temp(1: location( 1)- 1); 
tempb2 = zeros(length(current), 1); 
tempb4 = zeros(length(current),1); 



tempdel = zeros(length(current),1); 
for i=l:length(current) 

loc = current(i); 
tempb2(i) = b2(loc); 
tempb4(i) = b4(loc); 
tempdel(i) = del(loc); 

end 
sumvector = [sum(tempb2), sum(tempb4), sum(tempdel)]'; 
meanvector(:,k) = sumvector/length(current); 

end 

amin = min(meanvector(l,:)); 
tmax = max(meanvector(2,:)); 
delmin = min(meanvector(3,:)); 

aTh = mean(b2); 
delTh = mean(del); 
tTh = mean(b4); 

preaTh = 0; 
predelTh = 0; 
pretTh = 0; 

while aTh-preaTh 
temp l = b2. * (b2>aTh); 
tempt = b2.*(b2<=aTh); 

zerotemp 1 = length(find(temp 1==O)); 
zerotemp2 =length(find(temp2==0)); 

preaTh = aTh; 

ml = sum(temp l)/(length(temp 1) - zerotemp 1); 
m2 = sum(temp2)/(length(temp2) - zerotemp2); 

aTh = (ml +m2)/2; 
end 

while delTh-=predelTh 
temp i = del.*(del>delTh); 
temp2 = del.*(del<=delTh); 

zerotemp 1 = length(find(temp 1=0)); 
zerotemp2 = length(find(temp2==0)); 

predelTh = delTh; 



ml = sum(temp 1)/(length(temp 1) - zerotemp 1); 
m2 = sum(temp2)/(length(temp2) - zerotemp2); 

delTh = (ml+m2)/2; 
end 

while tTh-pretTh 
tempi temp 1 = b4. * (b4>tTh); 
tempt = b4.*(b4<=tTh); 

zerotemp I = length(find(temp 1=0)); 
zerotemp2 = length(find(temp2==0)); 

pretTh = tTh; 

ml = sum(temp 1)/(length(temp 1) - zerotemp 1); 
m2 = sum(temp2)/(length(temp2) - zerotemp2); 

tTh = (m 1+m2)/2; 
end 

m = (delTh - delmin)/(aTh - am in) 
n = (delmin - de1Th)/(tmax - tTh) 

for k= 1 :K-countclust 
aO = meanvector(l,k) 
tO = meanvector(2,k) 
delO = meanvector(3,k) 

ds = ((m*aO) + (n*tO) + delO - delmin - (m*amin) - (n*tTh))/sgrt(m^2 + n'2 + 1) 
if ds>0 

cloudarray(k) = 1; 
end 

end 

fid = fopen(outputfile,'w'); 
count=l; 
for k=1:K-countclust 

if cloudarray(k)==1 
temp = newcluster(:,k); 
location = find(temp==0); 
current = temp( 1 :location(1 )- 1); 

tempb 1 = zeros(length(current), 1); 



tempb2 = zeros(Iength(current), 1); 
tempb3 = zeros(length(current),1); 
tempb4 = zeros(length(current), 1); 
tempb5 = zeros(length(current), 1); 
tempx = zeros(length(current), 1); 
tempy = zeros(length(current),1); 

for i=1:length(current) 
loc = current(i); 

fprintf(fid,'%u\t%u\t%u\t%u\t%u\t%u\t%u\t%u\n',count,xloc(loc),yloc(loc),b 1(loc),b2(lo 
c),b3 (Ioc),b4(loc),b5 (lc)); 

count = count+ 1; 
end 

end 
end 
fclose(fid); 



5) 	function c16=daytime 1(im) 
b l=im(:,:,1); 
b2=im(:,:,2); 
b3=im(:,:,3); 
b4=im(:,:,4); 
b5=im(:,:,5); 
delta=(b3-b4); 
stdev_4=pstd(b4); 
ratio=(b2/b 1); 
T11_T 12=(b4-b5); 
Tmin=300; 
SDthr=273; 
ALBthr= 10; 
td=T 11 _T 12; 
[a,b]=size(ratio); 
countl=0; 
count2=0; 
for r=1:1:a 

for s=1:1:b 
if ((b5(r,$)>Tmin) && (stdev_4>SDthr) && (b 1 (r,$)>ALBthr) && 

(0.75<ratio(r,$)<1.6) && (td(r,$)> 0.81)) 
cloudypixl=r 
cloudypix2=s 
disp('pixel is cloudy'); 
countl=countl+l; 
else 

%disp('pixel is non-cloudy'); 
count2=count2+1; 

end 
end 

end 
fprintf('total cloudy pixel is%6d\n ',countl ); 
fprintf('total non-cloudy pixel is %6d\n',count2); 
c16=1; 



6) 	function cl=fiery(im) 
b3=im(:,:,3); 
b4=im(:,:,4); 
delta=(b3-b4); 
mean_4=pmean(b4); 
mean_del=pmean(de lta); 
stdev_del=pstd(delta); 
delta t=(2*stdev_del)+0.1; 
value=mean_d e l+de lta_t; 
[a,b]=size(delta); 
count l =0; 
count2=0; 
for r=1:1:a 

for s=1:1:b 
if (delta(r,$)>value && b4(r,$)>mean_4) 

fireypix I =r 
firepix2=s 

disp('fire pixel'); 
count l=countl+1; 

else 
%disp('pixel is non-fire'); 
count2=count2+ 1; 

end 
end 

end 
fprintf('total fire pixel is%6d\n ',countl); 
fprintf('total non-fire pixel is %6d\n',count2); 
c1=1; 



7) 
function cl1=  fiery I(im,m,n) 

b3=im(:,:,3); 
b4=im(:,:,4); 
delta=(b3-b4); 
mean_4=pmean(b4); 
mean del=pmean(delta); 
stdev_de l=p std(de lta) ; 
delta_t=(2 * std ev_de l)+0.1; 
value=mean_dal+delta_t; 
if (delta(m,n)>value && b4(m,n)>mean_4) 

disp('fire pixel'); 
else 

disp('pixel is non-fire'); 
end 
cll=1; 



8) 	function c12=fiery2(im) 
b3=im(:,:,3); 
b4=im(:,:,4); 
delta=(b3-b4); 
mean_3=pmean(b3); 
mean _del=pmean(delta); 
stdev_3=pstd(b3); 
stdev_del=p std(delta); 
value 1=(b3-(mean_3+2* stdev_3)); 
value2=(mean_del+2 * stdev_del); 
[a,b]=size(delta); 
count 1=0; 
count2=0; 
forr=l:1:a 

for s=1:1:b 
if (abs(valuel(r,$))>3 && (delta(r,$)>value2)) 
cloudypix1=r 
cloudpix2=s 

disp('fire pixel'); 
countl=countl+l; 
else 

%disp('pixel is non-fire'); 
count2=count2+ 1; 

end 
end 

end 
fprintf('total fire pixel is%6d\n ',count 1); 
fprintf('total non-fire pixel is %6d\n',count2); 
cl2=1; 



9) 	function c13=fiery3(im,m,n) 
b3=im(:,:,3); 
b4=im(:,:,4); 
delta= (b3-b4); 
mean_3=pmean(b3); 
stdev_3=pstd(b3); 
mean_del=pmean(delta); 
stdev_del=pstd(delta); 
value 1=b3-(mean_3+2* stdev_3); 
value2=mean_del+2*stdev_del; 
if (value I (rn,n)>3 && delta(m,n)>value2) 

disp('fire pixel'); 
else 

disp('pixel is non-fire'); 
end 
cl3=1; 
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