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ABSTRACT: 

A stream, forming a boundary is often encountered in regional groundwater flow 

modeling. In case of a partially penetrating stream with considerable stream discharge, 

besides treating the stream as a prescribed head boundary, the exchange of flow between 

the stream and aquifer has to be introduced through the boundary nodes while modeling 

the groundwater flow. The recharge from a stream to an aquifer is proportional to the head 

difference in the level of water in the stream and in the aquifer in the vicinity of the 

stream. The coefficient of proportionality, recognized as reach transmissivity, depends 

upon aquifer characteristics and the shape of the stream cross- section. The water level in 

the aquifer depends on the abstractions and recharges including recharge from the stream. 

Such an implicit and complex stream-aquifer interaction problem has been analyzed by 

Morel-Seytoux and Daly (1975) who have used reach transmissivity and discrete kernel 

theory for finding an expression for recharge. 

The actual magnitude of exchange of flow depends on the local geology, particularly 

the hydraulic conductivity of the interface between the stream and the aquifer. Really the 

process of interaction over spatially varied channel boundaries is difficult to examine. 

The most common scenario of the interaction of groundwater is that of the interaction of 

streams with contiguous alluvial aquifer. This type of system has been the focus of study 

for more than 100 years, beginning from the work of Boussinesq (1877) to the present. 

In this study, it is proposed to use the variable parameter Muskingum method 

advocated by Perumal (1994) for routing the discharge hydrograph in stream reach. For 

studying stream - aquifer interaction, the stream having hydraulic connection with the 

underlying aquifer can be subdivided into a number of sub- reaches. Each of the sub-reach 
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can be considered as a rectangular recharging reach. The stage in each of the sub-

reaches varies with time due to unsteady nature of flood wave and / or due to interaction 

of stream with aquifer or vice versa, including the mutual interaction between the 

recharging sub-reaches. It is required to estimate the water level variations at different 

locations of the considered stream reach taking into account the stream-aquifer interaction. 

Further, it is required to estimate the recharge details in the interactive reaches considering 

(i) only a small stretch of the stream reach is interactive, and (ii) a long stretch of the 

stream reach is interactive. It is proposed to study the stream-aquifer interaction using the 

approximate analytical solution developed by Hantush (1967) by estimating the rise and 

fall of the water-table in an infinite unconfined aquifer in response to uniform percolation 

from rectangular recharging sub-reaches. 

Based on the study it is concluded that the use of Hantush solution may be 

considered as an alternative approach for studying stream-aquifer interaction. Further, the 

study reveals that the effect of mutual influence of interacting sub-reaches on the stream-

aquifer interaction is not significant. 
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NOTATIONS 

	

QL 	= a volumetric flow between two given sections of stream in units of 
volume per time; 

k 	= hydraulic conductivity of streambed sediment in units of length 
per time; 

	

Wp 	= wetted perimeter of the stream in units of length; 

	

L 	= length of the. reach under study; 

	

hs 	= head in the stream determined by adding stream depth to 

the elevation of the streambed in units of length; 

	

M 	= average thickness of the streambed deposits extending from the 

top to the bottom of the streambed in units of length; 

	

Q 	= stream flow; 

	

A 	= cross-sectional area; 

	

hA 	= head of the aquifer beneath the stream head in units of 

length; 

t 	= time; 

v 	= mean cross-sectional velocity; 

	

QR 	= leakage through the stream's bed and banks; 

	

So 	= bed slope; 

	

Sf 	= friction slope; 

	

yM 	= flow depth at the middle reach dx ; 

	

Q3 	= normal discharge corresponding to the mid-section 

	

yu 	= inlet stage; 

Yd = 	outlet stage; 

w.t. = 	water table; 

h = 	hour; 

m = 	meter; 

V.P.M. = 	variable parameter Muskingum; 

a = 	length of the recharging zone in Hantush solution; 

b = 	width of the recharging zone in Hantush solution; 
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Q(i —1,]) = inflow to the it" reach at time jAt ; 

QR(i, j) = lateral flow in the ith  reach at time jdt ; 

R 	= hydraulic radius of the stream; 

vX 	= downstream component of lateral inflow velocity (Henderson 
1966); 

W 	= width of the stream; 

u 	= the inlet of the reach of the stream; 

d 	= the outlet of the reach of the stream; 

S 	= the storage; 

i 	= reach no. ; 

j 	= no of time interval; 

S 	= discrete kernel; 

U 	= unit step; 

ho 	= initial stage of the stream; 

Ho 	= depth to water table from the stream bed; 

T 	= transmissivity; 

e 	= height of the stream bed from the standard datum; 

0 	= refers to the storage coefficient; 

x 	= direction along stream; 

Y 	= direction perpendicular to stream; 

y 	= Refers to the stream stage; 

s 	= rise in watertable 

xi 



A Mathematical Model for Stream- Aquifer Interaction 

CHAPTER-I 
INTRODUCTION 

1.1 GENERAL 

A stream, forming a boundary is often encountered in regional groundwater 

flow modeling. In case of a partially penetrating stream with considerable stream 

discharge, besides treating the stream as a prescribed head boundary, the 

exchange of flow between the stream and the aquifer has to be introduced 

through the boundary nodes while modeling the groundwater flow (Ruston and 

Redshaw, 1978). The recharge from a stream to an aquifer is proportional to a 

head difference in the level of water in the stream and in the aquifer in the vicinity 

of the stream (Bouwer, 1969). The coefficient of proportionality, - recognized as 

reach transmissivity, depends upon aquifer characteristics and the shape of 

stream cross-section (Morel-Seytoux, 1964; Bouwer, 1969). The water level in the 

aquifer depends on the abstractions and recharges including recharge from the 

stream. Such an implicit and complex stream-aquifer interaction problem has 

been analyzed by Morel-Seytoux and Daly (1975) who have used reach 

transmissivity and discrete kernel theory for finding an expression for 

recharge. 

Few studies have been carried out with the computation of rise in water-

table due to recharge from water bodies. Hantush (1967) has derived an 

expression for rise in water-table height due to recharge from a basin of finite 

length and width. If the dimension of length is increased to a very large value, the 
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solution will correspond to rise in water-table due to recharge from a stream. 

However, the solution involves the numerical integration. 

It has been often assumed for a stream, which is hydraulically connected 

with an aquifer, that exchange flow rate is linearly dependent to the potential 

difference between the prevailing aquifer and stream heads (Morel-Seytoux 

1975). There has been evidence that this process can be very non -linear (Dillon, 

1983, 1984; Rushton and Redshaw 1978). As it is difficult to determine the exact 

nonlinear relationship, the linear relationship is still in use. 

1.2 NECESSITY FOR STUDYING STREAM - AQUIFER INTERACTION 
PROBLEM 

In recent years, studies of the interaction of the groundwater and surface 

water have expanded in scope including studies of head water streams, lakes, 

wetlands. Interest in the relation of groundwater to headwater streams increased 

greatly in past twenty years because of concern related to acid precipitation. 

To evaluate the interaction of stream and aquifer in all environments, at all 

scales, analytical and numerical methods need to be continually improved, For 

example, to effectively manage the resources, it will be necessary to simulate 

system as realistic as possible, i.e., consideration of realistic system geometries 

and transient conditions. This is a need to evaluate the effects of complex aerial 

and temporal distribution of recharge on the interaction 	of stream 	and 

aquifer. 

The decline of groundwater levels around pumping wells near a surface- 

water body creates gradients that capture some of the ambient groundwater flow 
2 
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that would have, without pumping, discharged as base flow to the surface water. 

At sufficiently large pumping rates, these declines induce flow out of the body of 

surface water into the aquifer, a process known as induced infiltration, or induced 

recharge. The sum of these two effects leads to stream flow depletion. Quantifying 

the amount of induced infiltration, which is a function of many factors, is an 

important consideration in conjunctive water use as water demand increases and 

the reliability of surface water supplies is threatened by stream -flow depletion. 

Stream—aquifer interactions are also important in situations of groundwater 

contamination by polluted surface water, and in situations of degradation of 

surface water by discharge of saline or other low-quality groundwater. Because 

of the potential for pollution of both groundwater and surface water from varied 

sources and by varied pollutant species, quantifying the amount of induced 

infiltration is also an important factor in evaluating the reliability of well-water 

quality. 

The topics of water-resource depletion, GW—SW interactions, and water-

resource sustainability were recently re- examined by Sophocleous (1997, 1998, 

2000a, 2000b). To understand this depletion, a thorough knowledge of the 

hydrologic principles, concisely stated by Theis (1940), is required. Under 

natural conditions, prior to development by wells, aquifers approach a state of 

dynamic equilibrium: over hundreds of years, wet years, when recharge exceeds 

discharge, are offset by dry years, when discharge exceeds recharge. Discharge 

from wells upsets this equilibrium by producing a loss from aquifer storage; a 

new state of dynamic equilibrium is approached when there is no further loss or 

3 
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minimal loss from storage. This state is accomplished either by an increase in 

recharge, a decrease in natural discharge, or a combination of the two. 

Consider a stream—aquifer system such as an alluvial aquifer discharging into a 

stream, where the term "stream" is used in the broadest sense of the word to 

include streams, lakes, ponds, and wetlands. A new well drilled at some distance 

from the stream and pumping the alluvial aquifer forms a cone of depression. The 

cone grows as water is taken from storage in the aquifer. Eventually, however, the 

periphery of the cone arrives at the stream. At this point, discharge from the 

aquifer to the stream appreciably diminishes or ceases, or water starts to flow 

from the stream into the aquifer. The cone continues to expand with continued 

pumping of the well until a new equilibrium is reached, in which induced recharge 

from the, stream balances the pumping. 

Studies of stream-aquifers are really very important for the following reasons: 

1. We can optimize the cost of discharge measurement at every reach. 

2. Helpful in watershed management. 

3.. Surplus water in the stream can be controlled by just passing the surplus 

stream water through highly hydraulic conductive areas, if the areas are under 

recharging condition. 

1.3 SCOPE OF THE STUDY 

Previous studies dealing with stream—aquifer interaction use constant 

parameter discharge hydrograph routing method. But in real practice, it is not 

appropriate to consider routing parameters as constant because of transient 

0 
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conditions. So study can be made more realistic by using routing methods which 

are capable of varying the parameters. 

Further, the required variable for estimating stream-aquifer interaction is 

stream stage and, therefore, it should be directly estimated by the discharge 

routing method, rather than subsequent conversion of discharge to stage using 

stage-discharge relationship. 

The available studies on stream-aquifer interaction consider the hydraulic 

heads of the stream reach and that of the contiguous aquifer only but not the 

mutual effect of other interacting reaches, which are related to one another 

through aquifer. 

To overcome the deficiencies of the existing discharge routing method in 

using constant parameters, a variable parameter Muskingum routing method may 

be used as a component-model of the mathematical model for describing stream - 

aquifer interaction. 

1.4 OBJECTIVE 

The following is the broad objective of the study: 

-Given the flood hydrograph at a location in the stream, it is aimed to estimate the 

downstream hydrograph considering the interaction of the river /stream with the 

hydraulically connected aquifer. 

5 
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1.5 CASES FOR THE PROPOSED STUDY 

The following stream-aquifer interaction scenarios as shown in the diagram are 

considered for the proposed study: 

(a) Land Surface _ 	 Stream 

Fig. 1 Stream- aquifer interaction a) connected gaining stream b) 
connected loosing stream c) disconnected stream with a shallow 
water table (adapted from Sophocleous, 2002) 

(b)  

(c)  
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CHAPTER-ll 
REVIEW OF LITERATURE 

2.0 INTRODUCTION 

Groundwater and surface water are not isolated components of the hydrologic 

system, but instead interact in a variety of physiographic and climatic landscapes. 

Thus, development or contamination of one commonly affects the other. 

Therefore, an understanding of basic principles of interactions between 

groundwater and surface water is needed for effective management of water 

resources. Interest in the relationship of groundwater to headwater streams 

increased greatly in the past two decades because of concerns of acid rain. 

Interest in the relationship of groundwater to wetlands and to coastal areas has 

increased in the past 20 years as these ecosystems are lost to development. 

Recently, attention has been focused on exchanges between near-channel and 

in-channel water which are key to evaluating ecological structure of stream 

systems and are critical to stream restoration and riparian management effects 

(Sophocleous, 2002). This Chapter attempts to compile literature available on the 

mathematical approaches followed by different investigators for studying stream-

aquifer interaction. But before presenting these works, it is worthwhile to under 

stand the physical mechanism of the stream-aquifer interaction. 

2.1 STREAM-AQUIFER INTERACTION PROCESS 

The word stream-aquifer interaction means the transportation of water from 

aquifer to stream or vice versa depending on the prevailing hydraulic conditions. 

7 
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The hydraulic exchange of groundwater and surface water along a stream 

channel is controlled by (1) the distribution and magnitude of hydraulic 

conductivities, both within the channel and the associated alluvial plain sediments; 

(2) the relation of stream stage to the adjacent groundwater level; (3) the 

geometry and position of stream channel within the alluvial plain. The direction of 

the exchange process varies with hydraulic head, whereas flow (volume/unit time) 

depends on sediment hydraulic conductivity. Precipitation events and seasonal 

patterns alter the hydraulic head and, thereby, induce changes in flow direction. 

One can explain the stream-aquifer interaction phenomenon with the help of two 

terms: 

Influent seepage 

Effluent seepage 

2.1.1 Influent Seepage 

When the water in the stream is flowing at a higher hydraulic 

head than that of aquifer, then the water moves towards aquifer through 

the pores of the stream bed and joins the water-table through percolation 

process . This process is termed as influent seepage. 

2.1.2 Effluent Seepage 

When the hydraulic head of the stream is lower than that of the aquifer, then 

the water moves towards stream/river and joins the stream. through 

percolation process and this process is termed as effluent seepage. 

8 
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1 

Fig .2 Recharge from a stream when stream stage is 
higher than the water level in the aquifer 

Inflow I ydrographl 	 2 	 Outflow hydrogr ph 

Fig .3 Effluent seepage during recession of a flood wave 
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Time 
Fig .4 Stage hydrograph at the inlet point of the stream reach 

Time 

Fig.5 Stage hydrograph at a down stream location 

2.1.3 Mechanism of Stream-Aquifer Interaction 

The process of influent or effluent seepage is a linear process and is 

proportional to the difference between the prevailing hydraulic heads of 

stream and that of the aquifer adjacent to it. It may be estimated for a stream-

aquifer system shown in Fig..6 as: 

10 
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q =  M 

 

)(h, — hA ) 

where q is the leakage through the stream's bed and banks; K' is the hydraulic 

conductivity of the bed; Wp  is the wetted perimeter of the bed; L is the length of 

the stream; M is the thickness of the streambed; hA  is the aquifer head; and hS  

is the stream head. 

Land surface 
Stream 

:.ate r:t b1e::::: .: 	K' 	M 

:Clo:' lri :la e ::::::::::::::::::::g$..y.. 

DATUM 

Fig.6 Stream-aquifer interaction 

K'WL  
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In this formulation, transient leakage across the streambed could change 

depending on the hydraulic heads of the stream and the aquifer over a 

computational time interval. 

Thus, due to the above process of influent and effluent seepage, it is 

clear that there is always a movement of water towards aquifer or 

reverse until both hydraulic heads coincides. So this process of flow exchange 

transport affects the response of the stream flow at every sub-reach of the 

stream, i.e., when the hydraulic head of stream is higher than the hydraulic head 

of the aquifer adjacent to it, then this interaction process reduces the input to the 

next reach, while on depletion it increases the input to the same reach. 

The actual magnitude of flow depends on the local geology, particularly the 

hydraulic conductivity of the interface boundary layer at the bottom of the stream. 

Really the process of interaction over spatially varied channel boundaries are 

difficult to examine. 

The most common scenario of the interaction of groundwater is that of the 

interaction of streams with contiguous alluvial aquifer. This type of system has 

been the focus of study for more than 100 years, from the work of Boussinesq 

(1877) to the present, and stream —aquifer interaction continues to be the most 

common topic of papers discussing the interaction of groundwater and surface 

water. 

Brunke and Gonser (1997) comprehensively summarize the interactions 

between streams and groundwater. Under conditions of low precipitation, base flow 

in many streams constitutes the discharge for most of the year (effluent 

12 
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condition). In contrast, under conditions of high precipitation, surface runoff and 

interflow gradually increase, leading to higher hydraulic pressures in the lower 

stream reaches, which cause the stream to change from effluent to influent 

condition, infiltrating its banks and recharging the aquifer. During flooding, the 

stream loses water to bank infiltration, which reduces the flood level and recharges 

the aquifer. The volume of this bank storage depends on the duration, height, and 

shape of the flood hydrograph, as well as on the transmissivity and storage 

capacity of the aquifer. During a dry season, the release, of stored water 

compensates for a decrease in stream discharge. In some stream reaches, the 

water released to the stream from bank storage originating from flood runoff 

exceeds groundwater discharge under baseflow conditions. Thus, successive 

discharge and recharge of the aquifer has a buffering effect on the runoff 

regimes of streams. 

13 
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2.2 ASSESSMENT OF WATER RECHARGED FROM A RECTANGULAR REACH 

X 

A------------~ 

Observatio] 

_A 

n well 

Fig. 7 Schematic diagram showing plan and section-AA of the 
spreading basin 
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Figure 7 shows a Schematic section and plan view of a recharging rectangular 

reach, water is recharged through the reach during a certain period of time. 

Continuous monitoring of groundwater level is done at an observation well. It is 

required to find out the quantity of groundwater recharged through the reach and its 

distribution in space and time using groundwater level data. 

Hantush (1967) developed the following approximate analytical expression 

for the rise and fall of the water table in an infinite unconfined aquifer in response to 

uniform percolation from a rectangular spreading basin in the absence of any other 

source of withdrawal or recharging. 

h2 = h20 + 
wh 
20 

F , a+X b+Z F , a—X b+Z 
2 kht 2 	

+ 

kht 	2 kht 2 kht 

+F a+X b--Z +F , a—X  b—Z 
2 kh t 2 kh t 	2 kh t 2 kh t 

... (2.1) 

~erf(-L F(p,q) = 	rf q~— dz 
o / yZ 

= 
_, 
f erf 	p 	rf 	q 	0.5dV 

0.5+0.5V 	O.S+O.SV 

X 

erf(X) _ f=Je2du 
0 

Equation (2.1) can be re-written as: 
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k = Coefficient of permeability, 

2a,2b = Dimension of the rectangular strip in x and Y direction, 
The rise in water table height, s(X, Z, t) is given by: 

s(X, Z, t) = h - ho 	 ... (2.4) 

and the average water level height is given by 

h = h 2h° 	 ... (2.5) 

Substitution of h into equation (2.2) gives: 

h2 —h20 = w(h+ho)t f(X,Z,t) 	 ... (2.6) 
4~ 

h — ho = 4~ f (X, Z, t) 	 ... (2.7) 

s(X,Z,t) = 	Z, t) 	 ... (2.8) 

Equation (2.8) gives the rise of water table due to recharge at w unit rate. 

For continuous recharge at a unit rate (w=1 unit), the water table rise is given by: 

s(X,Z,t) = t f (X,Z,t) = U(X,Z,t) 	 ... (2.9) 

If recharge takes place for one unit time, and no recharge after that, the rise at the 

end of nth unit time step at jth stream reach i.e. at (X~,Z1 ) due to recharge at ith 

stream reach, i.e., at (X I ,Z; ) is given by: 

= U(i, j, n) — U(i, j, n-1) 	 ... (2.10) 

For first unit time step (n=1) 

8R0,Jll) = U(i,j,l) 
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If recharge varies with time, the rise of water table at jth reach due to recharge from 

all reaches at the end of nth unit time step is given by: 

R n 

sR(I,n)—~ZQR(i,Y)SR(i,J,n—.y+l) 	 (2.11) 
i=1 y=1 

where: 

QR (i, y) = Recharge rate at ith stream reach during y`" unit time step. 

SR(i, j,m) = Discrete Kernel coefficient of rise/fall at jth reach due to unit pulse 

recharge at it" reaches during mth unit time step. 

2.3 EXPRESSION FOR THE TRANSMISSIVITY COEFFICIENT (REACH 

TRANSMISSIVITY) 

4 W D 4*W 

Fig. 8 Flow path and influence area considered 
for estimating reach-transmissivity coefficient 
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Let us consider the stage at jth time step as s(j) and the height of streambed from 

the impervious datum as e. Other variables are shown as in Fig.-8. 

Then the path I and 12 can be expressed as: 

ll  =e+W +4W 

12 =4W 
Thus 	 ... (2.12) 

l=11+12 =4W+W +e  
2 	42 

Where 1 is the average length of the path 

Now for average area 

A, = 2*Ss(j)+W 
And 
A2  = 2* [Ss(j)+e — Ah] 

Neglecting the Ah term 

A=2*Ss(j)+e+ 2 	 .... (2.13) 

Using Equation (2.12) the average Darcy's velocity is given as: 

velocity = k 	Ah 	 ... (2.14) 
4.25*W +0.5*e 

Thus discharge across the stream boundary is expressed as: (using Equation 

(2.13)) 

Q=k Ah 	2*Ss(j)+e+W 
4.25*W+0.5*e 	 2]  

... (2.15) 
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Hence, the rate of recharge/unit reach length, for unit fall of head, known as reach 

transmissivity is expressed as: 

• [2*Ssu)+e+]  2 T 2*Ss(1)+e+ 

FR(J) ~ 4.25*W+0.5*e 	e 4.25*W+0.5*e 	
(2.16) 

Thus recharge for the entire reach of length Ax, is expressed as: 

2*Ss(j-1)+e+ W 	T[2*Ss(j—l)+e+W 

ra(j)^'k  
4.25*W+0.5*e 	e 4.25*W+0.5*e 

where FR (j) represents the transmissivity coefficient for the jth time of the 

interacting stream reach. 

2.4 AVAILABLE SOLUTIONS FOR STREAM-AQUIFER- INTERACTION 

PROBLEM 

Stream-aquifer interaction problem started gaining attention in hydrologic literature 

from late sixties. Zitta and Wiggert (1971) have given a numerical solution for flood 

routing in channels with bank seepage using the continuity equation (Stoker, 1957), 

and the Boussinesq equation governing one dimensional unsteady flow in 

unconfined aquifer. Perkins and Koussis (1996) used the USGS MODFLOW for 

solving the stream-aquifer interaction problem. They replaced STREAM module of 

USGS-MODFLOW by the Muskingum-Cunge diffusive wave routing scheme 

advocated by Koussis (1978) considering routing parameters remains constant 

during the routing process. Birkhead and James (2002) modified the Muskingum 

method to explicitly account for the interaction between channel flow and bank 

storage in stream with permeable stream banks of varying hydraulic conductivity. 
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Hantush, et al. (2002) provided a solution using Muskingum routing method in 

conjuction with one dimensional Boussinesq equation. Recently Gunduz and Aral 

(2005) advocated an approach for the simultaneous solution for surface and 

groundwater equation using matrix method. For solving the stream-aquifer 

interaction problem, szilagi (2004) employed the Kalinin-Milyukov method (Kalinin 

and Nilyukov, 1957) one dimensional Boussinessq equation given by Hantush 

(2002). 

Among these methods, none of the method is capable of handling the two-

dimensional groundwater flow as they consider only the one dimensional flow for 

studying stream -aquifer interaction problem. Further the routing methods used for 

solving this problem, be it Muskingum routing method or the K-method, have 

considered the routing parameters as constant. 

Knowing the deficiencies of the existing solution methods it is proposed to develop 

a method which is capable for handling the two-dimensional groundwater flow 

including mutual interaction of interactive reaches of the stream and employ a 

routing method which is capable of realistically modeling the stream flow by varying 

the routing parameters in contrast to the available methods. 

Moreover, previous methods assumed that the entire given stream reach is 

interactive with the aquifer, which is hardly true in nature. Therefore, the proposed 

method would be capable to handle both interactive and non interactive portions of 

the stream reach, simultaneously. 
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2.5 CONCLUSIONS 

In. this chapter, the past studies related to the stream-aquifer interaction problem 

were reviewed and it is inferred that they deal with one dimensional stream-aquifer 

interaction. These studies limited to fully penetrating stream and streams having 

considerable interface between stream and aquifer. These studies are not concern 

with streams contiguous with aquifer. 
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CHAPTER-I11 
ANALYSIS 

3.1 STATEMENT OF THE PROBLEM 

For studying the problem of stream - aquifer interaction, the stream having 

hydraulic connection with the underlying aquifer can be subdivided into a number 

of sub-* reaches. Each of the sub-reach can be considered as a rectangular 

stream reach. The stage in each of the sub-reaches varies with time due to 

unsteady nature of flood wave and /or due to interaction of stream with aquifer or 

vice versa. A schematic diagram illustrating the case of single sub- reach stream-

aquifer problem is shown in Fig. 9. 

It is required to estimate the water level variations at different locations of the 

considered stream reach and in the aquifer adjoining to the stream due to stream- 

aquifer interaction and unsteady nature of flow. 

/4 — W 

Fig. 9 Schematic diagram of stream-aquifer interaction 
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3.2 APPROACHES FOR SOLVING THE PROBLEM 

	

.~. 	Q Vi+t.i 
3 

ao, 
t —► 	4 	/2 	L- ► 	 t —_ 

o-  Ax 

Fig. 10 A snapshot view of unsteady flow in the Muskingum sub- reach 

Depending on the situation of flow prorogation in channel reaches, the following 

two types of analysis are required: 

a) Analysis for those reaches where stream-aquifer interaction does not exist 

b) Analysis for those reaches where stream-aquifer interaction exists 

3.2.1 Analysis for Those Reaches Where Stream-Aquifer Interaction Does 

Not Exist 

Routing floods in stream reaches with and without considering stream-aquifer 

interaction is carried out using the variable Parameter Muskingum (VPM) 

method advocated by Perumal (1994 a). For the sake of avoiding frequent 

reference to Chapter-II, it is considered appropriate to describe this method in 

this Chapter only. 
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Flood routing in channels is often carried out on the assumption that the flood 

wave movement is one-dimensional and governed by the St. Venant equations. 

For gradually varied unsteady flow in rigid bed channels without considering 

lateral flow, these equations are written as (Henderson, 1966): 

3x 	t 

where Q=stream flow, A=cross-sectional area. 

The momentum equation is given by 

ay vav -18v 
S j = sa — — gam gat 	 ... (3.2) 

where So= bed slope; v = mean cross-sectional velocity; Sf = friction slope; x = 

stream length; y = stream depth; t = time; g=acceleration due to gravity. 

The magnitudes of the various other terms in equation (3.2) are small in 

comparison with So (Henderson, 1966; NERC, 1975) and, therefore, quite often 

some of them can be eliminated or approximated by some procedure when 

studying many flood routing problems. 

Assumptions: 

The proposed method is developed based on the following assumptions: 

a) A prismatic channel having any shape of cross-section is assumed ; 

b) The slope of the water surface 	, the slope due to local acceleration 

1 (~ ) , and the slope due to convective acceleration v ON all remain 
g 	 g 

constant at any instant of time in a given routing reach; 
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c) The magnitudes of the multiples of the derivatives of flow and section 

variables with respect to both time and distance are negligible. 

d) At any instant of time during unsteady flow, the steady flow relationship is 

applicable between the stage at the middle of the reach and the discharge 

passing somewhere downstream of it. The same assumption is employed 

in the Kalinin-Milyukov (Appollov et al., 1964; Miller & Cunge, 1975), 

method of flood routing. 

e) The storage in the Muskingum sub-reach and, hence, the water level is 

unaffected by the stream-aquifer interaction. 

Friction slope approximation: 

Figure 10 shows a channel reach of length Ax. According to assumption (d), 

the stage at the middle of the reach corresponds to the normal depth of that 

discharge which is passing at the same instant of time at an unspecified 

distance L downstream from the middle of the reach. Let this discharge be 

denoted as Q3, and the inflow and outflow sections are represented as section-

1 and section-2 respectively. 

The discharge at any section of the reach may be expressed as: 

Q=Av 	 ... (3.3) 

The velocity v can be expressed by Manning's or Chezy's friction law as: 

v = C f RmSJ 	 ... (3.4) 

where Cf is the friction coefficient (Cf = C for Chezy's friction law, and Cf = 1/n 

for Manning's friction law); R is. hydraulic radius (A/P); P is the wetted 

perimeter; m is an exponent which depends on the friction law use (for 
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example, m = 2/3 for Manning's friction law, and m = 1/2 for Chezy's friction 

law). 

Equation (3.3) is re-written using equation (3.4) as: 

Q=AC f RmSS 	 ... (3.5) 

Differentiating equation (3.5) with respect to x and invoking assumption (b) that 

Sf is constant over x gives: 

aQ = aA 	aR ay 
(3.6) ay+mPay va 

The celerity of the flood wave can be arrived at from equation (3.6) as: 

c = aQ = l+m PaR/?y v 	
... (3.7) aA 	aA / ay 

Unlike the kinematic wave which has unique celerity for a given discharge, 

the flood wave governed by constant water surface slope does not result in 

unique celerity for the same discharge occurring in the rising and falling limbs 

of the hydrograph. 

Differentiating equation (3.6) with respect to x gives: 

82Q  & 	aA   	aRy av ?y  aA  	8R 62 y _ a+mPa 	+v a +mPaax2 	 y 	yz 

2 	 2 

	

+v a +max +mPax 	 ... 	( 3.8) 

Using assumption (b) and (c), equation (3.8) reduces to: 

a2 
Q 0 

~x 
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Equation (3.9) implies that the discharge is also varying linearly over the reach 

considered. 

Approximate expression of friction slope: 

Using equation (3.1), (3.2) and (3.6), and assumptions, the friction slope Sf can 

be expressed as: 

)]'I  
Sf = So  1— 1 	1—[.F(PaR / ay 	 ... (3.10) 

So  aax 	aA/ ray 

in which F is the Froude the number defined as: 

F_  vzaAlBy 	
...(3.11) 

gA 

Location of weighted discharge section: 

Using equation (3.5) and (3.10), the discharge at the middle of the reach is 

expressed as: 

	

Z 	Zia 

Q  — AMC'fRM•S'o1  z  1 _ 1 r?y n1_m2F4P'  . (3.12) 
So  cox M 	6A/3y    M  

where the subscript M denotes the mid-section of the reach. 

The normal discharge Q3 corresponding to yM  occurs at section-3, as shown 

in Fig. (10) Which is located at a distance L downstream of the middle of the 

reach, and it is expressed as: 

Q3 = AMC f RMS0 	 ...(3.13) 

Equation (3.12) is modified using equation (3.13) as: 
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2 	112 

QM =Q3 1— 1 	1—m2FM P7R/ay 	 ... (3.14) 
SO a M 	 (oA / ~ M 

For the sake of brevity, let 

z 

S
O-Y  

0 
c c 

M 

1—m FM aA/r?y 
	—~ 

... (3.15) 

Based on the typical values of So and oy/ax in natural streams (Henderson, 

1966), it may be considered thatirl <1. Under such a condition, expanding 

equation (3.14) in a binomial series and then neglecting the higher order terms 

of r leads to: 

Q 	PaR / ay 2 ay 
QM = Q3-2S 1—m2F OA/ 	cox 	

...(3.16) 
0 	 M M 

Since Oy/Ox is constant at any instant of time over the routing reach: 

OY 	 -' 	 ... (3.17) 
&M ox3 

Where 	is the water surface slope at section- 3. 
3 

Equation (3.16) may be re-written using equation (3.6) and (3.17) as: 

z 2 PaRlOy2

L

1-m FM 
8A/ 	J AI ] aQ

Q3 — 	 ... (3.18) QM = Q3 2So aA l+m P8R/cry 
JjV3 

3 	aA/ay  

Since the discharge also varies linearly, the term adjunct to 	represents 
3 

the distance L between the mid-section and that downstream section, where 
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the normal discharge corresponding to the depth at the mid-section passes at 

the same instant of time, i.e., L is expressed as: 

z z PaR / ay 
2 

Q3 1-m FM 
aA/ By M 

L = 	 (3.19) 
2S aA 1 + m PaR l ~y v 

~ 3 	aA/ 	 3 3 

Derivation of storage- weighted discharge relationship: 

Using equation (3.1), (3.3) and (3.5) and assumption (b), the following 

expression is arrived at: 

aQ+ 1+m A1R1'y v aQ =0 	 ... (3.20) 
at 	aA / cry 	ax 

Applying equation (3.20) at section -3 and rearranging the term yields: 

1+m 
PaR/ay v eQ =- aQ 
aAI ay 	3 ax 3 	at 3 

... (3.21) 

Due to the linear variation of discharge over the routing reach, aQ/axI3 may be 

approximated as: 

3Q OOQ = 0-I  
3  ox Z 

... (3.22) 

Where, I and 0 denote the inflow and out flow at section-1 and section-2 

respectively, and Ax is the reach length. Due to the linear variation of 

discharge as depicted in Fig. (10), Q3 may be expressed as: 

Q3 

 

=0+  - - 	(1- 0) 	 ... (3.23) 

Substitution of equations (3.22) and (3.23) in equation (3.21) gives: 
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I - 0 = 	Ax 	a[0+ 1 - L (I - 0) 	 ... (3.24) 
1+m PaR I ~' ]V3

at 	2 Ox

C~A/6-y 3 

Let the weighted parameter be: 

(3.25) 

Equation (3.24) is same as the differential equation governing the Muskingum 

method with travel time K expressed as: 

K= Ax 

l+m P7R/c7y 
J]V3 

8AIO-y  

... (3.26) 

and the weighting parameter B after substitution of L from equation (3.19) is 

expressed as: 

Z 2 PaR / ay 
oA / ay  Q3 1-m FM 1 

9=-- 	 JM ] 	 ... (3.27) 
2 2S0 aA 1+m ~RlBy v3 

5y 3 	 5 

The parameter relationships given above enable one to reduce equation (3.24) 

to the form of the conventional Muskingum differential equation as: 

I-0= a [K(oJ+(1-B)O)] 	 ... (3.28) 

with the storage in the reach expressed as: 

S = K[OI + (1- 6)0] 	 ... (3.29) 

When a constant discharge is used as the reference discharge, Qo the 

generalized expressions for variable K and 0 reduce to: 
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K= 	Ax 	 ... (3.30) 
1+m 

PaRlay  
aA/ay 

v 
o ° 

and 

z PaR/ay  Qo 1—mz F,~ 
1 	 aA/ay o 8=--  
2 	

aA 	
...(3.31) 

2S0 	1 + m PaR l ay   
ay o 	aAI' o 

where the suffices 0 represents the reference level. 

But the effect of the Froude number is not very significant (Perumal, 1994a) 

and, therefore it can be neglected. The expressions of K and 0 valid for Manning's 

friction law and applicable for a uniform rectangular cross-section channel reach are 

arrived at as: 

K= 	Ax ... (3.32) 
2*W 1+ 

3(W+2*Y3 )v3 

Q3 2 	2 W 	 ... (3.33) 
2*So *W 1+• V3 *AX 

3(W +2* Y3 

When the variables in these expressions are fixed about a reference 

discharge, and a wide rectangular cross-section is assumed, these expressions 

reduce to those derived by Cunge (1969) and Dooge et al. (1982). 

Stage hydrograph computation: 

The flow depth yd corresponding to outflow 0 is estimated using equation (3.6) as: 

8 = 
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Yd = YM + 	Qd  2 
—Q
*W 	 .... (3.34) 

W i+3*(W+2*YM) 
vM 

In which YM  is estimated iteratively from the normal discharge relationship given by 

equation (3.13). Using the computed flow depths yd  and YM  in the first sub-reach, 

'the upstream flow depth corresponding to the inflow discharge can be estimated 

using the assumption of a linear variation of water surface.. 

3.2.2 Analysis For Those Reaches Where Stream-Aquifer Interaction Exists 

For the sake of developing the computer code used for solving the stated problem 

which requires the simultaneous solution of coupled stream flow and the stream-

aquifer interaction equations at number of predefined nodes of the stream reach, it 

is more convenient to change the notations of the inflow and outflow variables of a 

sub-reach from I and Q, respectively, to Q(i —1, j) and Q(i, j) : the notation 

Q(i —1, j)denotes the inflow to the it" reach at time j&t and Q(i,j)denotes the 

outflow from ith  reach at time jot or inflow to the (i=1)th  reach. Similarly, S(i, i+1, j) 

denotes the storage in the ith  reach at time jL.t , and QR(i, j) denotes the lateral flow 

in the ith  reach at time . jAt 

Single Reach Interaction Analysis 

It is proposed to study unsteady flow movement in a given reach of length L km 

which consists of a small length of interactive stream reach. It is assumed that the 
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stream reach is sub-divided into a number of sub-reaches of length equal to that of 

the interactive stream reach. 

The continuity equation applicable for the ith  stream reach which corresponds to the 

interactive reach can be expressed as: 

Inflow — Outflow — Lateraljlow = Change in storage 

Q(i-1,j)—Q(i,j)—QR(j) = 
 dS(i,i+1,j) 

0t 
... (3.35) 

where, Q (i -1, j) is the average inflow at the section-i between the time jAt and 

(j -1)At .The notation i, j denote the location of the node and the temporal node. It 

is expressed as: 

Q(i -1,j) = 
Q(i  - 1,j)  +Q(i - 1,j-1)  2  ... (3.35a) 

Similarly Q(i, j) is the average outflow at the section-i between the time jAt 

and (j -1)At . It is expressed as: 

Q(i,j) - Q(i,j)+Q(i'j -1) _ 	2  ... (3.35b) 

The variable QR(j) denotes the average rate of lateral flow between the time jAt 

and(j-1)At. 

QR(f) = QR(i)+QR(i —1) 
2 

According to the Muskingum equation 

S = K(8*Q(i-1, j)+(1-8)Q(i, j)) 

and LiS = K[O(Q(i -1,j) - Q(i -1,j -1))+ (1 - 8)(Q(i, j) - Q(i, j -1))] 

Incorporating equation (3.35), (3.35a), (3.3 5b), (3.35c), (3.37) we have: 

... (3.35c) 

... (3.36) 

... (3.37) 
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Q(i -1,j)+Q(i -1,j -1)  QR(J)+QR(J -1)Q(i,j)+Q(r,j -1) 
2 	 2 	 2 

(K[O{Q(i —1, j) — Q(i —1, j — 1) } + (1— B) {Q(i, j) — Q(i, j — 1) } ] 
At 

... (3.38) 

Stream stage 

Ss (j) 

stream bed 

Rise in water table 
~1 •I I~I.1 1 1 1 ~ ~~I 

 

1.1 1 1 1  11 1 I  1 I I I.1 •I~I 1 

	

1'1 1 1 1 1 1 1 	1 1 1 1 	1 1 1 I I 	 1 - I 

	

I'1 11 I 1 I I I 	1 1 1 1 1 1 1 1 1 1 1 1 	 1 1 1.1'1 

 

. 1 • I 11 1 1 1 1 1 1 I  1 1 1 1  1 1 1 1 1 I 1 I 1 I 1 I 1 1 I 1 1.11 

 

1'1 11 I 1 I 1    1  1 I 1 I I 1 I I 1 1 I 1 I 1 1 I 1 1 1 I 1 1 1 1 1 II 

 

1 1 1 1 1 1 1 1   I I  1 1{{  1 1{ 1 1 1 1 1 1 I 1 I 1 1 1 1 1 1 1 I 1 1 1'1 

: t , Initial Ovate table  

e: 

Datum impervious 

Fig. 1 1.Defination sketch of stream-aquifer interaction scenario 

The influent seepage from the interactive sub-reach is estimated using equations 

(2.11) and (2.16) as: 

J 

QR(I) =ra SS(J)+Ho — LQR(Y)S(i — r+1 ) 
Y-, 

... (3.39) 

J-I 
(1+rR8(l))QR(j) =ra S.(J)+Ha — EQa(Y)6(.1 —Y+1) 	 ... (3.40) 
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where the stream stage is given by 

K(OQ(i -1, j) + (1- O)Q(i, j)) - KQ(0,0) 
ss (J) = 	 W/~X 	 Wt\X + h

n 	 (3.41) 

K(OQ(i —1,j) + (1— O)Q(i, j))  KQ(0,0) + h 

	

n
FR

Qa (J) - (1 + I (1)) 	
~-I WAX 	 WAX 	

... (3.42) 
R [+H0 -Qcv)8(J--7+1)  

7=1 

Equation (3.38) can be re-arranged by bringing known terms to the right hand side 

and the unknown terms to the left hand side as: 

2K(1-B)+AtQ(i~ j)+QR(j) 
dt 

= Q(i -1, j) + Q(i -1, j -1) - QR (j -1) - Q(i, j -1) 	 ... (3.43) 

- Q [ {Q(i -1, j) - Q(i -1, j - 1) } -(1- 9)Q(i, j -1)] 

Equation (3.42) can be re-written as: 

QR (j) — 	rR 	* K(1— O)Q(i, J) _ 

	

(1 + FR8(1)) 	WAX 	
1 

	

~_1 	 ... (3.44) 
rR 	KoQ(i —1, j) — KQ(0,0) + ho + Ho —I QR(Y)S(j — Y+1 ) (1 + FRS(1)) 	WAX 	WAX r=, 

Equation (3.43) and (3.44) can be expressed in matrix form as: 
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I'R 	* K(1-- e) 

	

 

(1+ ['R8(1)) 	WAX 	1 Q(i,J)
1 2K(1-8)+At 	1 QR(j) 

At 

r 	KBQ(i -1, j) _ KQ(0,O)  

	

(i+r S/i 	Wei' 	W~ +ho+Ho-YQR(7)S(J -Y+1) 
R l ))  y=1 J) 

= 	

KQ(i 

 

- Q 	-1, j) - Q(i -1, j -1)} -(1- O)Q(i, j -1)] 

which represent the two equations in two unknowns those can be solved by matrix 

inversion method. 

When the length of the interactive stream reach cannot be considered as a 

single Muskingum sub-reach due to violation of assumptions of the method for 

routing flood waves, it becomes necessary to sub-divide the interactive reach into 

many sub-reaches. Under this situation, the estimation of water level at any location 

of the interactive stream reach or in the adjacent aquifer would involve the 

cumulative effect of the recharge process taking place in these sub-reaches, 

including the effect of mutual interaction between these sub-reaches. To illustrate 

this aspect, analysis for estimating water level variation and influent or effluent 

seepage analysis stream-aquifer interaction of a long stream reach is presented it is 

assumed that this reach may be divided into three equal sub-reaches. A schematic 

description of three mutually interactive stream sub-reaches is shown in Fig. 12. The 

term reach specifies the reach number. 
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Analysis for three reaches interaction: 

Fig.12. Three reach interaction 
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Multi-reach interaction analysis: 

Using the lumped continuity equation applicable for the ith reach, which is 

interactive the unknown terms Q(i, j)andQR(i, j) can be expressed in terms of 

known values as: 

2K(1- B) + 0t 
~t 	Q(i j) + Qa (i, j) = Q(' -1, j) + Q(i —1,] —1) — QR (i, j — 1) 

.. (3.45) 
— Q(i, j —1) — 	—1,1) — Q(i —1, j —1) } — (1 — O)Q(i, j —1)] 

For the (i+1)th reach, which is interactive the unknown terms 

Q(i, j),Q(i + 1, j)andQR(i, j),QR (i + 1,j) can be expressed in terms of known values 

as: 

2K(1- 8) + At Q(i + 1, j) + QR (i + 1,1) = Q(i, j) + Q(i, j -1) - QR (i + 1, j -1) 
At 	 .. (3.46) 

- Q(i + 1,j -1) -
At  

[O{Q(i, j) - Q(i, j -1)} - (1- g)Q(i +1, j -1)] 

or 

2K(1 ) + At Q(i + 1,j) + QR (1+1,]) - Q(i, j) + 	OQ(i, j) 	 1 

= Q(i, j -1) - QR( +1,)  -1) -Q(i +1,j  -1)-Q [O{-Q(i, j -1) } -(1- O)Q(i +1,]  -1)] 

... (3.46a) 

For the (i+2)th reach, which is interactive the unknown terms 

Q(i, j), Q(i +1,]),  Q(i + 2, j)andQR (i, j),QR (1+ 1, j), QR (1+2, j) can be expressed in 

terms of known values as: 
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2K(1- B) + Ot 
At 	Q(i+2,j)+QR(i +2,j) 

=Q(i+1,j)+Q(i+1,j-1)-QR(i+2,j-1)-Q(i+2,j-1) 

- 	[O{Q(i + 1, j) - Q(i + 1, j -1) } - (1- O)Q(i + 2, j -1)] 

.. (3.47) 

or it can be re-written as: 

2K(1-9)+AtQ(i+2, 
j)+QR(i+2, j)-Q(i +1,1) + 2KOQ(i+1, j) 	 1 At 	 At 

= Q(i + 1, j -1) - QR  (i + 2, j -1) - Q(i + 2, j -1) - Q [8{-Q(i +1,j  -1) } -(1 - O)Q(i +2,j  -1)] 

... (3.47a) 

The influent seepage for the ith  reach can be expressed as: 

QR(i,j) = FR(i,j -1  

K[6Q(i -1,]) + (1- 9)Q(i, j)]  _  KQ(0,0)  + h0  + Ho  
WAX 	 WAX 

j 
-LQR(1,y)S(l,1,1- y+1) 

Y=1  
j 

-LQR (i+1,y)8(i+1,i, j - y+1) 
y=1 
j 

-LQR (i+2,y)8(i+2,i,x - y+1) 
Y 1  

... (3.48) 

or one can re-write 

K(1-0) 
- 

BAX  

Ir  

+[]FR("j-') 
1 	+ S(i, i,l) QR  (1,1) _ 

+[8(i+1,i,1)IQR(i+1, j) 
+ [8(i + 2, i,1)]QR  (i + 2,j) 

K*6*Q(i-1, j) KQ(0,0)  +ho  +Ho  
WAX 	WAX 

j-I 

-EQR(i'r)8(i,Z,1 -'-i-1) 
r=1 
j-I 

- EQR (i+1,y)S(i+1,i, j -- y+1) 
r=l 
j-1 

-EQR (i+2,y)S(i+2,i, j - y+1) 
Y=1  

... (3.48a) 
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The influent seepage for the (i+1)th reach can be expressed as: 

K[O*Q(i, j)+(1-B)Q(i+1, j)]-KQ(0,0) +ho +Ho 
WAX 	 WAX 

-QR(i,y)8(i,i+1, j-y+1) 
y=1 

QR(i+1,j)=iR (i+1,j-1) j 
-LQR(i +1, y)8(i +1,i+1, j -y+1) 

y=1 

-LQR(i+2,y)8(i+2,i+1,j -y+1) 
Y=1 

or one can re-write 

... (3.49) 

rr KO 
C W~

J
Q(i'j)+

L
- KW )l Q(i+1,j) 

AX 
+ [S(i, i + 1,1)]QR (i, j) 

1 
I+l- 

+8(i+l,i+1,1) QR(i+l, j) 
1) 

1S(i+2,i+1,1)]QR(l +2, j)  

H0 KQ(0,0) + h 
° WAX o 

-EQR(i,y)d(i,i+1,j - y+1) 
Y=1 

- 	1 

-EQR(i+1,y)S(i+1,i+1, j - y+1) 
y=1 

j-1 

-FQR(i+2,y)8(i+2,i+1, j-y+1) 
r=1 

. (3.49a) 

The influent seepage for the (i+2)tn reach can be expressed as: 

K[BQ(i + 1,1) + (1- O)Q(i + 2,])]_ KQ(0,0) .+ h
o + Ho 

WAX  WAX 

- jQR(i,y)8(i,i+2, j - y+1) 
Y=1 

QR(i+2, j) = rR(1+2, j -1) 	~ 
-ZQR(i+1,7)8(1+1,i+2, j-y+1) 

Y=1 

j 

-LQR(i+2,y)8(i+2,i+2,j-y+1) 
Y=1 

... (3.50) 

or one can re-write 
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H— KQ(O,O)  + h 
o WAX o 

+
L  K

WA ) IQ(i+2,j) 

+ [8(i, i + 2,1) J]QR  (i, j) 
+[S(i+1,i+2,1)1QR(i+1, j) 

+ 1 	+S(i+2,i+2,1) QR(i+2, j) 
I'R (i+2,j-1) 

i -I 
—I QR (1,y),5(i,i+2, j —y+1) 

Y=I 
— i-1 

—Q1z (i+1,y)8(i+1,i+2, j— y+1) 
r=i 
J -1  

—IQR (i+2,y)5(i+2,i+2, j—y+1) 
r=1 

... (3.50a) 

Incorporating equation (3.45), (3.46a), (3.47a), (3.48a), (3.49a), (3.50a) we have a 

matrix: 
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Flow chart for single reach interaction: 

START 

Routing step J=0 
1=0 

Enter value of discharge Q (0, J), and Q (I, 0), bed slope (So), width (W), total length, 
no. of reaches 

Estimate YM using Newton Raphson from 
s, * W5/3 * 

F(Yu)=Q(0,0)—
n*(W+2*v 2f3 

Using YM=Yo(initial stage)estimate 
K _ 	= 	Q(0,0)W 

1+3(W+2*Yo 
vo 	2*S0 *W 

1+3 W+2* 
'V

*~ ( 	y° 

J=J+1 

I=I+1 

ITERATION =1 

ESTIMATE CI, CZ, C3 
_ —KO+At12 	 _ KB+Ot12 

C' K(1-0)+Ot/2 	 C2 K(l-9)+&t12 

_ K(1—B)—Atl2 
C3 K(1—B)+fit/2 

Q(I,J) = C1 *Q(I-1,J)+C2 *Q(I-1,J-1)+C3 *Q(I,J-1) 
AND 

Q; =8*Q(I—l,J)+(1-0)*Q(J,J) 

Estimate YM using Newton Raphson from 
*W5/3*y 513 

M F(YM )=Q —Q3 n*(W+2*x,,)213 
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0 

Estimate 
QM = (Q(1,J)+Q(J -1,J))/ 2  

Estimate Y3  = YM  + 	
Q3—QM 

2*W  W 1+
3*(W+2*Ym ) vM  

Estimate A3  corresponding to Y3 

Estimate v3=Q3/A3 
K= 	 ,e-1_ 	 Q3  

1+ 2*W 
 )V3 
	2  2*So *W 1+ 2*W  )V3* 3(W+2* ) 

	

	 3(W+2* y3  

ITERATION = ITERATION +1 

D )-- 	 IS ITERATION>2 

YES 

C 4 NO 	 IS I>=INTERACTION REACH-1 

YES 

ITERATION =1 

_ 	rn 	* K(1— 6) 
1  (14- F8(1)) WAX 	Q(I, J) 

2K(1-0)+At 	1  QR(J) 
At 

LC rR 	(KOQ(l —1,J)  
(1 + I'R8(1)) 	WAX+ H

o  — QR  (r)8(J — y + 1) 

= Q(I-1,J)+Q(I-1,J-1)—QR(J-1)—Q(I,J-1) 

[_[o{Q(r  —1, J) — Q(I —1, J — l)} —(1— O)Q(I, J —1)] 

FIND OUT THE VALUE OF Q(I,J) AND QR(J) CONSIDERING QR(0 )=O 

FIND OUT 
Q3 =e* Q(I -1,J)+(1-8)*Q(I,J) 
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C 

Estimate YM using Newton Raphson from 
~,o * W5/3 * VM 5/3 

F(YM) —Q3 n* (W+2*YM )2/3 

Estimate 
QM = (Q(I,J)+Q(I —1,J))/2 

Estimate Y = YM + 	Q3—QM 
2*W 

W 1+
3*(W+2*YM ) v"' 

Estimate A3corresponding to Y3 

Estimate v3—=Q3/A3 
AX 

K= 	 ,g= 1 	 Q3 

1+3(W+2*Y3 

v3 	2 2*S0*W 1+
3(W+2*y3 V3 AX 

ITERATION = ITERATION +1 

D 	1V" 	 IS ITERATION>2 

YES 

I=INTERACTION REACH+ 1 

ITERATION =1 

ESTIMATE CI, C2, C3 

Cl = 
—KO+At/2 

K(1—e)+At/2 

_ K(1-9)—At/2 
C3 K(1— B) + Ot / 2 
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Q(I,J)=C1  *Q(I-1,J)+C2  *Q(I-1,J-1)+C3 *Q(I,J-1) 
AND 

Q3 =O* Q(I -1,J)+(1-9)* Q(I,J) 

Estimate YM  using Newton Raphson from 
So  *W5/3 * y 5/3

-  F(YM) —Q3 n*(W+2*Y„)2/3 

Estimate 
QM  = (Q(I,J)+Q(I —1,J))/2 

Estimate Y = YM + 	Q3—QM 
2*W  W 1+

3*(W+2*YM ) VM  

Estimate A3corresponding to Y3 

K=  2  W  ' 2-  ( i+
3(W+2*Y3  V3  

Estimate v3=Q3/A3 
Q3  

* 
2*So *W 1+ 2 W 	v3 *OX 

3(W +2* y3  

ITERATION = ITERATION +1 

IS ITERATION>2 

YES 

C1 NO 	 IS I>NO.OF 	CREA H 

IYES 
g  NO 	 IS J>=TOTAL TIME STEPS 

YES 

STOP 
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Flow chart for three reaches interaction: 

START 

Routing step J=0 
I=0 

Enter value of discharge Q (0, J), and Q (I, 0), bed slope (So), width (W), total length, 
no. of reaches 

Estimate YM using Newton Raphson from 
vu W513 *y 513 

F(I'u) =Q(0,0)— n*(W+2*YM )ai3 

Using YM=Yo(initial stage)estimate 

1+3 W+2 Y 
vo 	

*Y 
2*So *W 

1+3 W+2 
	

V. *~ ( 	* o 	 ( 	° 

Iii 

C 

J=J+1 

I=I+1 

ITERATION =1 

ESTIMATE C1, C2, C3 

11 

-KO+otl2 
Cl K(1— 0) + Ot / 2 	 C~ _ 

_ K(1-0)—At/2 

C3 K(1-0)+At/2 

KO+At/2 
K(1—O)+At/2 
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Q(I, J) = C1 * Q(I —1, J) + C2 * Q(I --1, J —1) + C3 * Q(1, J —1) 
AND 
Q3 = B*Q(1-1,J)+(1—B)*Q(I,J) 

Estimate YM using Newton Raphson from 
(~ *W513 * y 5/3 

~ '(YM) = Q3fin*̀'(W +2* )T )213 

Estimate 
QM = (Q(I, J) + Q(I —1, J)) / 2 

Estimate Y = YM + 	Q3—QM 
2*W WI 1+3*(W+2*Yu) v"' 

Estimate A3corresponding to Y3 

Estimate v3=Q3/A3 

K= W ,0=-- 	 2W 1+ 
1+3 W+2 Y 

v3 	2*So *W 
1+3 W+2 	v3 *) 

( 	* 	 ( 	* Y3 

ITERATION = ITERATION +1 

IS ITERATION>2 

YES 

C NO 	 IS I>=INTERACTION REACH-1 

YES 

0=01 =02 =03 

ITERATION =1 

O'/'7i B 
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Solving above equation of matrix form considering initial lateral flow as zero 

FIND OUT 

*Q(IREACH-1,J)+(1-01 ) *Q(IREACH,J) 

Q32 = Bz * Q(IREACH, J) + (1— 02 ) * Q(IREACH + 1, J) 

Q33 = 83 * Q(IREACH + 1, J) + (1 — 03 ) * Q(IREACH + 2, J) 

Estimate YM using Newton Raphson from 

F(YM ) = Q3 vn ,*J (W +2* y )2"3 
FOR ALL Q31, Q32, Q33 

Estimate 
QM , _ (Q(IREACH —1, J) + Q(IREACH, J)) / 2 

QM 2 = (Q(IREACH, J) + Q(IREACH + 1,J))/2 

QM3 = (Q(IREACH+1,J)+Q(IREACH+2,J))/2 

Estimate Y3 = 1/4+ 	Q3—QM 	for all 1, 2 3, interaction reaches 
2*W 

W 1+3*(W+2*YM)  

Estimate A3 corresponding to Y3 

Estimate V3=Q3/A3 

K= 	A 	 Q3 * 	 for all 1,2,3, 

+3W 	
v3 	2 2*So *W 

1+3 W+2* v3*~ ( +2*Y3 	(.y3 
reaches i.e. 8,,03 ,03 and then put 0 = 83 
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ITERATION = ITERATION +1 

DI NO 	 IS ITERATION>2 

I=INTERACTION REACH+3 

ITERATION =1 

ESTIMATE C1, C2, C3 
_ —KO+At/2 	_ KO+At/2 

' 1  K(1-8)+At12 	 . — 2  K(1-8)+At12 

K(1-8)—tit/2  
c3  — K(l—O)+&/2 

Q(I,J) = C1  *Q(I —I,J)+C2  *Q(I —1,J-1)+C3  *Q(I,J-1) 
AND 
Q3  = 8*Q(I-1,J)+(1-8)*Q(I,J) 

Estimate YM using Newton Raphson from 
So  *W5/3 *y5"3 - 

F(YM) —Q3  

Estimate 
Qf = (Q(I,J)+Q(I —1,J))/2 

Estimate Y = YM  + 	Q3—QM 
2*W  

W 1+3*(W+2*Y) 
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Estimate A3corresponding to Y3 

Estimate v3=Q3/A3 

A K= 	 ,B= 1 	 Q3 
2*W 	2 * * 	2*W 

1+3(W+2*Y 
v3 	2 So 

W 1+ 3(W+2*Y3 

ITERATION = ITERATION +1 

D~ 	 IS ITERATION>2 

YES 

I=I+1 

C1 NO 	 IS I>NO.OFCARE H 

B NO 	 IS J>=TOTAL TIME STEPS 

YES 

STOP 
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3.3 CONCLUSIONS 

In this chapter the solution analysis for the stream-aquifer interaction process has 

been explained by considering a small interactive stretch and a long interactive 

stretch in the stream. The solution involves the system of two and six 

simultaneous equations, respectively, for the case of small and of longer 

interactive reach, which is divided into three sub-reaches. The equations are given 

in matrix form which can solved by matrix inversion method. The flow charts for 

both cases of solutions have also been presented. 
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CHAPTER-IV 
RESULTS AND DISCUSSION 

4.1 GENERAL 

Based on the analysis presented in chapter-III, different scenarios of stream-aquifer 

interaction have been studied for a better understanding of this phenomenon. These 

scenarios correspond to two cases of stream reaches: 1) a long impervious stream 

reach intervened by a small length of interactive reach, and 2) a longer impervious 

stream reach intervened by a relatively long interactive reach which needs to be 

sub-divided for the application of the VPM routing method. A general approach 

adopted for the study is as follows: 

A given inflow hydrograph is routed using the VPM method in a rectangular 

channel reach which may be considered as impervious in the upstream reaches 

before it propagates over a short interactive reach, which is hydraulically connected 

with the adjoining aquifer. The routing in the interactive reach involves the 

accounting of lateral flow in the form of influent or effluent seepage (henceforth, 

termed as seepage) which in turn depends on the hydraulic gradient formed by the 

-a 

	

	average transient flow depth of the interactive reach and the level of water-table in 

the adjoining aquifer. The solution algorithm for estimating the seepage from the 

interactive reach and the outflow at its outlet was described in Section-3.2.2. 
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The presence of a long interactive stream reach requires the sub-division of 

that reach into multiple sub-reaches. In this study, a six km length of such 

interactive reach was considered and it was sub-divided into three equal sub-

reaches for the present analysis. Due to mutual dependence among the six 

unknown variables (two variables for each sub-reach corresponding to seepage and 

outflow) of the three interactive sub-reaches, they need to be estimated 

simultaneously using the coupled solution of the governing equations. The coupled 

solution algorithm for estimating the seepage and the associated outflow of the 

three sub-reaches was described in Section-3.2.2. 

4.2 APPLICATION 

The solutions developed in Chapter-III, for two cases of stream-aquifer 

interaction problem were studied by routing a hypothetical inflow hydrograph in a 

rectangular channel of 20 km reach length. The bed slope, So  of the considered 

channel is 0.0002; and the width of the channel is 50m. The channel is 

characterized by a uniform Manning's roughness coefficient, n=0.02; the initial flow 

depth in the channel reach corresponds to a discharge of Qo =100 m3/s. 

It is considered that the aquifer which is contiguous with the interactive 

stream reach is characterized by a reach transmissivity of T = 100 m2/h and a 

storage coefficient of S =. 0.02. For routing the given hydrograph using the VPM 

method, the 20 km channel reach is divided into 10 equal sub-reaches of 2 km 

each. Corresponding to the first case of stream-aquifer interaction, it is considered 
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that only 2 km stretch of the stream is subjected to stream-aquifer interaction, which 

corresponds to the considered sub-reach length of 2 km. The hypothetical inflow 

hydrograph is given by the four-parameter Pearson type-III distribution expressed 

as: 

 1--  
1(t) = Ib +(I p — Ib) t cr-1~ exp 

	tp 	 ... (4.1) t 

where, Ib is the initial steady flow (100 m3/s) in the reach; I P is the peak flow (1000 

m3/s); t p is the time to peak (10h) and y is the skewness factor (1.15) which 

decides the shape of the hydrograph. 

It may be noted that the discharge variable is expressed in units of m3/h 

rather than in m3/s in order to be consistent with the discharge unit of seepage. 

4.3 STUDY OF SINGLE INTERACTIVE REACH CASE 

Three scenarios have been studied in this case depending on the initial position of 

the water-table with reference to streambed as depicted in Fig. 1. 

In the first scenario, the initial water-table is positioned at a height 3 m above the 

stream bed which is higher than the initial flow depth in the channel reach 

corresponding to 100 m3/s (i.e. 360000 m3/h). 
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Fig. 13 Seepage hydrograph (when Ho = -3m) 
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Fig. 14 Average stage-hydrograph and the variation of Water-table of the 4th 
interactive sub-reach (when Ho = -3m ) 
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Fig. 15 Inflow outflow hydrograph 
(when Ho  = -3m) 
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Fig. 16 Inflow and outflow hydrograph of the 4th  sub-reach (when Ho  = -3) 
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Figures 13 and 14, respectively, illustrate the time variation of seepage of the, 

interactive sub-reach, and the consequent water-table variation in the aquifer and 

the variation of average stage hydrograph of the interactive reach. It is inferred from 

Figure 13 that prior to the arrival of flood, the seepage contribution is towards the 

stream due to the initial position of the water-table being above that of the initial 

stage of the stream. It may be noted that seepage from aquifer to stream is 

designated as negative seepage. However, when the stream stage starts raising at 

the inlet of the interactive sub-reach, but still the level of water-table in the aquifer is 

higher than the stream water level, the contribution towards stream decreases and 

eventually the stream starts contributing to the aquifer when the direction of 

hydraulic gradient changes, with seepage becoming positive(influent seepage). 

Integration of seepage hydrograph reveals that the net seepage contribution is 

towards stream. Alternatively, if the initial flow of 100 m3/s is sustained at the inlet 

for a long time, i.e. when the steady flow persists, then the net seepage 

contribution is always towards the stream and it decreases after reaching a peak 

contribution as depicted by the hydrograph at the outlet of the interactive sub-reach 

(Figure 16) 

In the second scenario under this case, the initial position of the water-table is 

assumed to be located at 1 m above the stream bed level, which is slightly lower 

than the initial flow depth (1.922m) corresponding to 100 m3/s. 
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Fig. 17 Average stage-hydrograph and the variation of Water-table (when Ho  = -1m) 
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Fig. 18 Seepage hydrograph (when Ho  = -1 m) 
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In this scenario, the results indicate that the net contribution is towards aquifer, 

reaching a peak contribution and eventually the contribution ceases. Average stage-

hydrograph of the interactive reach and the corresponding water-table variation in 

the adjacent aquifer are shown in Figure 17. The corresponding seepage 

hydrograph is shown in Figure 18 with major contribution being from stream to 

aquifer, and a minor contribution of aquifer to stream at a much later period which 

eventually leads to the water-table position same as that of stream flow depth 

corresponding to 100m3/s. 

In the third scenario, the initial water-table is considered to be at 7 m below that of 

the level of stream bed, i.e., in the beginning of unsteady flow movement in the 

stream, the initial flow of 100 m3/s contributes towards recharging the aquifer. When 

the flood wave passes the interactive reach, the seepage contribution to aquifer 

also increases consistent with the variation of stage in the stream. When the 

unsteady flow ceases and the initial flow of 100m3/s is attained, the water-table 

continues to rise, but slowly, which will eventually bring the water-table level 

corresponding to the level of steady streamflow.. Figure 19 illustrates the variability 

of seepage due to the movement of flood wave in the interactive sub-reach. Figure 

20 illustrates the average stage-hydrograph of the interactive sub-reach, and the 

variation of water-table level in the aquifer adjacent to it. 
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4.4 STUDY OF THE THREE INTERACTIVE REACHES CASE 

Two scenarios have been studied in this case, depending on the initial position of 

the water-table with reference to stream bed. Also a comparison of the interaction 

behaviour of a small interactive reach is made when the same interactive reach 

form a sub-reach of a longer interactive reach. 

In the first scenario, before the arrival of flood hydrograph, the initial water-table is 

positioned at a height of 3 m above the stream bed, which is higher than the initial 

flow depth in the channel reach corresponding to 100 m3/s. 

It may be inferred from Figure 21 that at the outlet of the stream at 20km, the effect 

of the presence of small interactive stretch or a longer interactive stretch has not 

made significant differences in the routed hydrograph. This is due to the reason that 

the magnitude of stream discharge is very high in comparison to that of seepage 

rate. 

Figure 22 illustrates the variation of the level of water-table with time in the aquifer 

and the average stage hydrograph of the interactive reach. Figure 23 shows the 

seepage hydrograph of the 4th  interactive sub-reach when it is a small reach, and a 

part of a longer interactive reach. It is inferred from Figure 23 that prior to the arrival 

of flood, the seepage contribution is towards the stream due to the initial position of 

the water-table above that of the initial stage of the stream. 

However, when the stream stage starts raising at the inlet of the interactive sub-

reach, but still the level of water-table in the aquifer is higher than the stream water 

level, the contribution towards aquifer decreases and eventually the stream starts 
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contributing to the aquifer when the direction of hydraulic gradient changes, with 

exchange of flow towards aquifer. Integration of seepage hydrograph reveals that 

the net seepage contribution is towards stream. 

It may be inferred from Figure 23 that the seepage hydrograph shows a higher peak. 

in the case of small reach interaction than that corresponding to the same sub-

reach, but when it is part of a longer interactive reach. 

Fig. 24 depicts the seepage hydrograph of each of the three consecutive sub-

reaches having interaction with aquifer and among these sub-reaches. It is inferred 

from this Figure that the effect of mutual interaction is not significant at all. 
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Fig. 28 Average stage-hydrograph and the variation of Water-table for the 5th 

sub –reach of the longer interactive reach (when Ho  =7m) 

In the second scenario, the initial water-table is considered to be at a level 7 m 

below that of the stream bed, i.e., in the beginning of unsteady flow movement in 

the stream, the initial flow of 100 m3 /s contributes towards recharging the aquifer. 

When the flood wave passes the interactive reach, seepage to aquifer also 

increases consistent with the variation of stage in the stream. When the unsteady 

flow ceases and the initial flow of 100m3/s is sustained, the water-table continues to 

rise, but slowly, which will eventually bring the water-table level corresponding to 

the level of steady stream flow. 

Fig. 25 depicts the inflow hydrograph and the routed outflow hydrograph at the 

reach outlet of the stream of 20 km and indicates the peak attenuation because of 

time delay and the aquifer contribution. Fig. 26 illustrates the variation of seepage of 

single reach interaction and multi-reach interaction corresponding to the 4th  sub- 
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reach of both cases of channels. It may be inferred from this Figure that the 

seepage hydrograph shows a higher peak in single reach interaction than that 

corresponding to the same sub-reach, but when it is part of a longer interactive 

reach. 

Figure 27 illustrates the variability of seepage due to the movement of flood wave in 

the interactive sub-reaches and it inferred that the effect of interaction between the 

sub-reaches is negligible. Figure 28 illustrates the average-stage hydrograph at the 

location of middle of the interactive sub-reaches, (i.e., 5th  sub-reach) and the 

variation of water-table level in the aquifer adjacent to it. 

4.5 EFFECT OF INTERACTION AMONGTHE REACHES 

The effect of interaction among the reaches was assessed for the two cases of 

stream-aquifer interaction studied in Section 4.2 considering 1) the 4th  sub-reach as 

a small interactive reach, and 2) the same sub-reach as the first sub-reach of a 6 

km interactive reach. Two scenarios were considered for each of these two cases 

with reference to the position of the initial water-table corresponding to Ho  = - 3m 

(i.e., 3m above the streambed) and Ho  = 7m (i.e., 7m below the streambed). 

It was found that corresponding to the first scenario in which the initial stream 

stage is lower than the water table, the net seepage of the first sub-reach of the 

longer interactive reach is higher by about 3 percent when comparison with the net 

seepage from the same reach, when it is the small interactive reach. In this case the 

stream-aquifer interaction was estimated for duration of 100 hours. However, for the 
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second scenario (Ho  = 7m) , the net seepage difference between the two cases 

work out to be about 0.05 percent, thus, indicating insignificant difference. 

4.6 EFFECT OF WIDTH OF THE STREAM ON THE STREAM-AQUIFER 

INTERACTION 

To quantify the effect of the size of the stream channel on the stream-aquifer 

interaction process, routing of inflow hydrograph given by equation (4.1) was 

studied in each of the two different channels with W = 25m and W = 50m. 
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Fig. 29 Seepage hydrograph of the 4th  sub-reach corresponding to different 
channel widths (when Ho  = -3m) 
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Each of these channels belongs to the first case of channel reach, i.e., long 

impervious reach intervened by a small interactive reach of 2km length. In each of 

these channels, routing was performed for the scenario of initial . water-table 

positioned at a level of 3m above the streambed. Figure (29) illustrates the seepage 

hydrograph of the interactive sub-reach for these two channel reaches. Figure (30) 

illustrates the average stage-hydrograph of the interactive reach and the 

consequent water-table variation in the aquifer. 

Figure 29 brings out the effect of change of stream width on the seepage 

hydrograph. When the width decreases the seepage contribution increases strongly 

and the stream contributes towards aquifer in a large amount. Seepage varies 
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significantly in comparison to the case corresponding to larger stream width, and . 

attains no seepage condition faster than the larger width case. 

4.7 SENSITIVITY WITH RESPECT TO OTHER PARAMETERS 

The sensitivity of stream aquifer-interaction process to the variation of parameters 

like transmissivity, storativity, slope of stream bed and roughness coefficient was 

studied. It was found that found that if transmissivity and storativity are large then 

interaction is also large. This aspect was studied for transmissivity value of T = 

20m2/h and 100 m2/h when there is a constant flow in the stream reach. It was 

found that for the case of T = 100 m2/h, the net seepage was 244 per cent more 

than that corresponding to the case of T= 20 m2/h. Similarly for the storage 

coefficient of S= 0.02, the net seepage was 18 per cent more than that for the case 

of S= 0.01. 

The stream aquifer interaction is also sensitive to variation of bed slope So  and 

Manning's roughness coefficient as revealed by the following results. : 

1. If the initial water-table is higher than the initial stream stage, then with the 

increase in So, the interaction increases; while with increase in roughness 

coefficient, the interaction decreases. For example, for the case of initial 

water-table positioned at a height of 3 m above the stream bed and with 

initial flow depth corresponding to 100m3/s at the inlet of the interactive 

reach, the following results were obtained while routing the inflow hydrograph 

as discussed in Section-4.2 

a) When So  = 0.001, the net seepage was estimated to be 150 per cent 

more than that estimated for the case So  = 0.0002. 
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b) For the case of variation in roughness coefficient, it was inferred that for 

n=0.02 the net contribution was towards the stream, while for n = 0 .035 it 

was reverse. But this was not the situation in case of steady flow in the 

stream, and for this case the flow was towards stream throughout. but 

with increase in slope contribution was more. 

2. If the level of initial water-table is lower than that of streambed, then with 

increase in slope interaction decreases; while with increase in roughness the 

interaction increases. For the case of water-table at a depth of 7 m below the 

streambed and with the initial stream flow of 100m3/s at the inlet of the 

interactive reach the following results were obtained while routing the inflow 

hydrograph as discussed in section 4.2 : 

a. When So = 0.0002, the net seepage was 12 percent more than that 

corresponding to So = 0.001. 

b. When n=0.035, the interaction was more by 13 percent than that 

corresponding to n=0.02. 

4.8 STUDY OF EVOLUTION OF WATER-TABLE 

Two scenarios have been studied in this case depending on the initial position of 

the water-table with reference to streambed, when there is a sustained constant 

inflow in the stream: 

In the first scenario, the initial water-table is positioned at a height 3 m above the 

stream bed which is higher than the initial flow depth in the channel reach 
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corresponding to 100 m3/s. Fig. 31 illustrates the evolution of water-table during a 

10h period showing the depletion of aquifer. The depletion occurs at a faster rate 

near the stream bank and it decreases with increase of distance from the stream 

bank. 

In the second scenario, the initial water-table is positioned at a height 7 m below 

the stream bed which is lower than the initial flow depth in the channel reach 

corresponding to the constant inflow of 100 m3/s in the stream.Fig. 32 illustrates the 

evolution of water-table during a 10h period showing the formation of mound 

beneath the stream reach. The water-table rises very soon and the rise increases 

slowly as distance increases from the centre of the recharging reach. 
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Fig. 31 Evolution of water-table of the aquifer adjacent to 4th  sub-reach 
(when H'0  = -3m) 
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CHAPTER-V 
CONCLUSIONS 

5.1 CONCLUSIONS AND RECOMMENDATIONS 

Based on the solutions presented in .Chapter-III, for two cases of stream of 

stream-aquifer interaction in a stream reach; a) a long impervious reach intervened 

by a small interactive reach, and 2) a long impervious stream reach intervened by a 

relatively long interactive reach, different scenarios of stream-aquifer interaction 

process are studied by routing a flood event for different initial water table positions. 

Based on this study, the following conclusions are drawn: 

1) The magnitude of seepage is not significant in comparison to stream flow 

during a flood. Therefore, there is no much difference in the routed 

hydrographs, whether there is interaction or not. One may infer from this 

statement, that routing can be performed independent of stream-aquifer 

interaction process. 

2) The effect of interaction among the reaches on the stream-aquifer 

interaction is negligible. Therefore, each sub-reach of a long interactive 

reach can be studied independent of interaction in other sub-reaches. 

3) Stream-aquifer interaction is more significant for narrow channel in 

comparison to that of the large width stream, while routing the same flood 

wave. 

4) For a given discharge, seepage is higher in streams characterized by steep 

slope in comparison to seepage in streams characterized by mild slope, 

when the initial level of water-table is higher than the stream stage. 
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5) For a given discharge, seepage is higher in streams characterized by small 

Manning's n value, in comparison to seepage in streams characterized by 

large n value, when the initial water-table is higher than the stream stage. 

6) A water table mound is developed under the stream bed during the passage 

of a flood wave, and it dissipates to merge with the level of flow in the 

stream. 

The above conclusions have been arrived at based on this study of routing a 

given flood wave. To give more credibility to these conclusions, a number of 

different flood hydrographs need to be routed in different configurations of channels 

characterized by varying roughness values and bed slopes, and for different initial 

levels of water-table. Field verification of this study may be conducted. 
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APPENDIX-1 
COMPUTER PROGRAMME 

FOR SINGLE REACH INTERACTION 

DIMENSION Q(0:100,0:100),QR(0: 100), 

1 STAGEA(0: 50,0:1 00),STAGER(50,100), 

2GW(96), GX(96),HDKER(100),USTEP(100), 

3AAA(2,2),CCC(2),AA(2,2) 

open(UNIT=2,FILE='YADAV.OUT',STATUS='UNKNOWN') 

open(3 ,status='old',file='GAUSS .DAT') 

read(3,*) (gw(i),i=1,96) 

read(3,*) (gx(i),i=1,96) 

PAI=3.14159265 

C 	GENERATION OF KERNEL COEFFICIENTS 

C UNIT TIME IS ONE HOUR 

TRANS=100. 

PHI=0.02 

c 	H0=5.0 

E=105. 

DELT=1. 

NTIME=100 

WIDTH=50. 

DELX=2000. 

WRITE(2, *)'TRANSMISSIVITY=',TRANS, 

1'VALUE OF PHI =',PHI,' 

2DEPTH OF DATUM FROM BED=',E, 

3'TIME STEP DURATION=',DELT, 

4'WIDTH OF RIVER =',WIDTH, 
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5'LENGTH OF STREAM=',DELX 

c 	COMPUTATION OF KERNEL COEFFICIENT 

A=WIDTH/2 

B=DELX/2. 

C 	XX=0.+4.5 *WIDTH 

XX=25. 

YY=O. 

DO N=1,NTIME 

AN=N 

TIME=AN*DELT 

CALL HANTUSH(TRANS,PHI,GW,GX,XX,YY,TIME,A,B,RES) 

USTEP(N)=RES 

END DO 

HDKER(1)=USTEP(1)/(DELT*4. *A*B) 

DO N=2,NTIME 

HDKER(N)=(USTEP(N)-USTEP(N-1))/DELT 

HDKER(N)=HDKER(N)/(4. * A* B) 

END DO 

CONV=O. 
QR(0)=O. 

C COMPUTATION OF SURFACE FLOW TILL INFLUENT REACH 
NREACH=10 

IREACH=5 
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S0=0.0002 

CMAN=0.02 

WRITE(2,*)'TOTAL NO OF REACH=',NREACH, 

1'FIRST INTERACTION REACH=',IREACH, 

2'VALUE OF BED SLOPE=',SO, 

3'MANNINGS ROUGHNESS COEFICIENT=',CMAN 

QO=100. 

PEAKQ=1000. 

C 	QO and PEAKQ are in m**3/sec 
C 	TP is in hour 

TP=10. 

GAMA=1.15 

PI=PEAKQ*3600. 

Q3=Q0*3600. 

BI0=Q3 

C 	INITIAL CONDITION 
DO I=O,NREACH 

Q(I,0)=Q3 

END DO 

C BOUNDARY CONDITION 

DO N=1,NTIME 

TIME=N*DELT 

Q(0,N)=Q3 

END DO 
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C 	DON=1,NTIME 

C TIME=N*DELT 

C 	Q(O,N)=Q3+(PI-Q3)*(TIME/TP)* *(I .I(GAMA-1.)) 
C 	1 * EXP((1 .-TIME/TP)/(GAMA-1 .)) 

C END DO 

C 	INITIAL GUESS OF CMK, THETA 

CALL STAGEYM(Q3,WIDTH,CMAN,SO,YM) 

HBASE=YM 

HO=-3. 

WRITE(2,*)'DEPTH OF THE INITIAL WATER TABLE FROM RIVER BED=',HO 

C MUSKINGUM PARAMETERS ARE NOW PREDICTED 

V3 = Q3/(WIDTH*Y3) 

THETA=0.5 -0.5* Q 3 /( SO *WIDTH * 
1(1.+2.* WIDTHI(3.*(WIDTH+2. *Y3)))* V3 *DELX ) 

CMK=DELX/((1.+2. * WIDTIV(3. *(WIDTH+2. *Y3)))* V3) 

C GAMAR=(TRANS/E)*(2*HBASE+E+0.5*WIDTH)/(4.25*WIDTH+.5*E)*DELX 

C QR(0)=GAMAR*(HBASE+HO) 

IF(IREACH.LE.NREACH) THEN 

DO 100 N=1,NTIME 

C XXXXXXXXXXXXX 
DO 200 I=1,IREACH-1 

C XXXXXXXXXXXX 

DO 300 ITER=1,2 
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C =CMK* (1.-THETA) + 0.5 * DELT 

Cl = (-CMK*THETA + 0.5*DELT)/C 

C2 = (CMK*THETA+ 0.5*DELT)/C 

C3 = (CMK*(1.- THETA) - 0.5*DELT)/C 

Q(I,N)=C1 * Q(I-1,N)+C2*Q(I-1,N-1)+C3 * Q(I,N-1) 

Q3=THETA*Q(I-1,N)+(1-THETA)* Q(I,N) 

CALL STAGEYM(Q3,WIDTH,CMAN,SO,YM) 

C 	WRITE(2,*)'THE VALUE OF YM =',YM 
QM=(Q(I- I ,N)+Q(I,N))/2.0 

VM=(QMI(WIDTH* YM)) 

Y3=YM+((Q3-QM)/( WIDTH*  (1.+(((2./3.)* WIDTH)/(WIDTH+2.0* YM)))*VM)) 

A3=WIDTH*Y3 

V3=Q3/A3 

THETA=0.5-0.5*Q3/( S0*WIDTH* 
1(1 .+2.*WIDTH/(3.*(WIDTH+2.*Y3)))*V3*DELX) 

CMK=DELX/((I .+2.* WIDTH/(3. *(WIDTH+2.*Y3)))*V3) 

C 	COMPUTATION UP TO 1-1TH REACH 

C COMPUTATION OF DISCHARGE AND STAGE 

300 CONTINUE 

C XXXXXXXX 
C 	WRITE(2,*)'RESULT AT SECTIONS PRIOR TO RECHAREGE' 
C 	WRITE(2,*)I,Q(I,N),N 

200 CONTINUE 

C COMPUTATION OF INFLUENT SEEPGE AND FLOW 
C TERM1= PREVIOUS STREAM STAGE 

DO 3.01 ITER=1,2 
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TERM 1=CMK* (THETA* Q(IREACH-1,N-1)+ 
1(1.-THETA)*Q(IREACH,N-1)-BIO)/(WIDTH* DELX)+HBASE 

GAMAR=(TRANS'E)* (2*TERM 1+E+0.5 * WIDTH)/(4.25* WIDTH+.5 *E)*DELX 

TERM2=GAMAR/(1 +GAMAR* HDKER(1)) 

MMM=2 

AAA( 1,1)=-TERM2*(CMK* (1.-THETA)/(WIDTH*DELX)) 

AAA(1,2)=1 

AAA(2,1)=(2*CMK* (1-THETA)+DELT)/DELT 

AAA(2,2)=1 

C 	WRITE(2,*)'MATRIX ELEMENT' 
C 	WRITE(2,*)AAA(1,1),AAA(1,2) 
C 	WRITE(2,*)AAA(2,1),AAA(2,2) 

C 	DO KK=1,2 
C 	DO JJ=1,2 
C AA(KK,JJ)=AAA(KK,JJ) 
C END DO 
C END DO 

CALL MATIN(AAA,MMM) 

C 	WRITE(2,*)'INVERSE MATRIX ELEMENT' 
C. WRITE(2,*)AAA(1,1),AAA(1,2) 
C 	WRITE(2,*)AAA(2,1),AAA(2,2) 

C 	TERMII=AA(1,1)*AAA(1,1)+AA(1,2)*AAA(2,1) 
C 	TERM 12=AA(1,1) * AAA(1,2)+AA(I ,2) * AAA(2,2) 
C 	TERM21=AA(2,1)*AAA(1,1)+AA(2,2)*AAA(2,1) 
C 	TERM22=AA(2,1) * AAA(1,2)+AA(2,2) * AAA(2,2) 

C 	WRITE(2,*)'IDENTITY MATRIX' 
C 	WRITE(2,*)TERMI 1,TERM12 
C 	WRITE(2, * )TERM21,TERM22 

IF (N-1)13,13,14 
13 CONV=O. 

GO TO 15 
14 CONTINUE 
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CONV=O. 

DO NGAMA=1,N-1 

CONV=CONV+QR(NGAMA)*HDKER(N-NGAMA+1) 

C 	WRITE(2,*)CONV 
END DO 

15 CONTINUE 

CCC(1)=TERM2 * ((CMK* (THETA* Q (IREACH-1,N)-BIO)/(WIDTH* DELX)) 
1+H0+HBASE-CONV) 

CCC(2)=Q(IREACH-1,N)+Q(IREACH-1,N-1)-QR(N- I)-Q(IREACH,N-1) 
1-(2*CMK/DELT)*(THETA* (Q(IREACH-1,N)-Q(IREACH,N-1)) 

2-(1-THETA)*Q(IREACH,N-1)) 

SUM 1=0. 
SUM2=0. 

DO M=1,MMM 

SUM 1=SUM 1+AAA(1,M)* CCC(M) 

SUM2=SUM2+AAA(2,M) * C CC(M) 

$ IN 

Q(IREACH,N)=SUM1 

QR(N)=SUM2 

Q3=THETA*Q(i-1,N)+(1-THETA)*Q(I,N) 

CALL STAGEYM(Q3,WIDTH,CMAN,SO,YM) 

C 	WRITE(2,*)'THE VALUE OF YM =',YM 
QM=(Q(I-1,N)+Q(I,N))/2.0 

VM=(QMI(WIDTH*YM)) 

Y3=YM+((Q3-QM)/(WIDTH*(1.+(((2./3.)* WIDTH)/(WIDTH+2.0*YM)))*VM)) 
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A3=WIDTH*Y3 

V3=Q3/A3 

THETA=0.5-0.5*Q3/( SO*WIDTH* 
1(1 .+2.*WIDTH/(3.*(WIDTH+2.*Y3)))*V3*DELX) 

CMK=DELX/((1.+2. * WIDTH/(3. * (WIDTH+2. * Y3)))* V 3) 

301 CONTINUE 

C 	WRITE (2,*)'VALUE OF STAGE=' 

S TAGER(IREACH,N)=((CMK * (THETA * Q (IREACH-1,N)+(1-
THETA)*Q(IREACH,N) 

1-BIO)/(WIDTH*DELX))+HBASE) 

STAGEA(IREACH,N)=(HO-CONV) 

C 	WRITE (2,*)'VALUE OF AQUIFER STAGE =',(HO-CONV) 
C 	WRITE(2,*)STAGEA(IREACH,N) 

C 	WRITE(2,*)'FLOW AT INFLUENT SECTION',N,Q(IREACH,N),QR(N) 
C 	TERMI=AA(1,1)-AA(2,1) 
C TERM2=CCC(1)-CCC(2) 
C CHECK1=TERM2/TERM1 
C 	CHECK2=CCC(1)-CHECK1* AA( 1,1) 
C WRITE(2,*)'CHECKI=',CHECKI,'CHECK2=',CHECK2 
C COMPUTATION BEYOND I= IREACH 

DO 20 I=IREACH+I,NREACH 

C XXXXXXXX 

DO 30 ITER=1,2 

C =CMK*(1.-THETA) + O.5*DELT 

CI = (-CMK*THETA + 0.5*DELT)/C 

C2 = (CMK*THETA+ 0.5*DELT)/C 

C3 = (CMK*(1.- THETA) - 0.5*DELT)IC 

Q(I,N)=C1 *Q(I-1,N)+C2*Q(I-1,N-1)+C3*Q(I,N-1) 
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Q3=THETA* Q(I-1,N)+(1-THETA)* Q(I,N) 

CALL STAGEYM(Q3,WIDTH,CMAN,S0,YM) 

C 	WRITE(2,*)'THE VALUE OF YM =',YM 

QM=(Q(I-1,N)+Q(I,N))/2.0 

VM=(QM/(WIDTH* YM)) 

Y3=YM+((Q3-QM)/(WIDTH* (1.+(((2./3 .) * WIDTH)/(WIDTH+2. 0*  YM)))* VM)) 

A3=WIDTH*Y3 

V3=Q3/A3 

THETA=0.5-0.5*Q3/( S0*WIDTH* 
1(1.+2.*WIDTH/(3.*(WIDTH+2.*Y3)))*V3*DELX ) 

CMK=DELX/((1 .+2 . * WIDTH/(3 . * (WIDTH+2. * Y3)))* V 3) 

30 CONTINUE 

20 CONTINUE 

100 CONTINUE 

DO N=O,NTIME 
C WRITE(2,556)N,QR(N),Q(IREACH,N) 
C556 FORMAT(1I5,5X,1F10.2,5X,1F10.2) 

WRITE(2,55 5)N,(Q(I,N),I=O,NREACH,2) 

555 FORMAT(1I5,3X,8F15.2) 

END DO 

DON=1,NTIME 

WRITE(2, 5 5 6)N, QR(N), STAGEA(IREACH,N),STAGER(IREACH,N) 

556 FORMAT( 115,5X,1F15.2,5X,1F8.4,5X,1F8.4) 
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END DO 
ELSE 

IF(IREACH.GT.NREACH)THEN 

DO 111 N=1,NTIME 

C XXXXXXXXXXXXX 
DO 211 I=1,IREACH-1 

DO 311 ITER=1,2 

C =CMK*(1.-THETA) + 0.5*DELT 

Cl = (-CMK*THETA + 0.5*DELT)/C 

C2 = (CMK*THETA+ 0.5*DELT)/C 

C3 = (CMK*(1.- THETA) - 0.5*DELT)/C 

Q(I,N)=C 1 *Q(I-1,N)+C2*Q(I- I,N-1)+C3 *Q(I,N-1) 

Q3 =THETA* Q(I-1,N)+(1-THETA)* Q(I,N) 

CALL STAGEYM(Q3,WIDTH,CMAN,S0,YM) 

C 	WRITE(2,*)'THE VALUE OF YM =',YM 
QM=(Q(I-1,N)+Q(I,N))/2.0 

VM=(QM/(WIDTH*YM)) 

Y3=YM+((Q3-QM)/(WIDTH* (1.+(((2./3.) * WIDTH)/(WIDTH+2.0 * YM)))* VM)) 

A3=WIDTH*Y3 

V3=Q3/A3 

THETA=0.5-0.5*Q3/( SO*WIDTH* 
1(1.+2.*WIDTH/(3.*(WIDTH+2.*Y3)))*V3*DELX ) 

CMK=DELX/((1 .+2.* WIDTH/(3 . * (WIDTH+2. * Y3 ))) * V 3 ) 

C 	COMPUTATION UP TO I-1 TH REACH 
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C COMPUTATION OF DISCHARGE AND STAGE 

311 CONTINUE 

C XXXXXXXX 
C 	WRITE(2,*)'RESULT AT SECTIONS PRIOR TO RECHAREGE' 
C 	WRITE(2,*)I,Q(I,N),N 

211 CONTINUE 

111 CONTINUE 

DO N=O,NTIME 
C 	WRITE(2,556)N,QR(N),Q(IREACH,N) 
C556 FORMAT(1I5,5X,1F10.2,5X,1F10.2) 

WRITE(2, 511)N,(Q(I,N),I=O,NREACH,2) 

511 FORMAT(1I5,3X,8F15.2) 

[a~i3øIS] 

ELSE 
WRITE(* ,*)'INCORRECT DATA' 
END IF 
END IF 

STOP 
END 

C PROGRAMME FOR COMPUTATION OF STAGE AT MID SECTION 

SUBROUTINE STAGEYM(Q3,WIDTH,CMAN,SO,YM) 

C 	H=INITIAL GUESS OF STAGE 
C Q3=DISCHARGE AT MID SECTION (m**3/sec) 
C 	RIVER WIDTH (m) 
C 	AN=n; Manning's Roughness Coefficient 
C 	SO=Bed Slope 
C 	YM=Stage at mid section (m) 

Q3=Q3/3600. 
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YOLD=1.0 

200 CONTINUE 

FUNC=Q3-SQRT(S0)*(WIDTH*YOLD)* *(5./3.) 
l1(CMAN*(WIDTH+2. *YOLD)* * (2./3.)) 

DFUN=-SQRT(S0)* WIDTH* *(5./3.)/CMAN 
1 *(5.*WIDTH*YOLD**(2./3.)+6.*YOLD**(5./3.)) 
1/(3.* (WIDTH+2.*YOLD)**(5./3.)) 

YNEW=YOLD-FUNC/DFUN 

IF (ABS(YOLD-YNEW).LE.0.0001) GO TO 100 

YOLD=YNEW 

GO TO 200 

100 CONTINUE 

YM=YNEW 

Q3=Q3 *3600. 

RETURN 

END 

C PROGRAMME FOR ERROR FUNCTION 

SUBROUTINE ERF(X,ERFX) 

XINDEX=X 

X1=X 

IF(X)4,5,5 

4 X1=-X 

5 CONTINUE 

IF(X1-15.)1,2,2 

1 CONTINUE 
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T=1.0/(1.0+0.3275911 *X1) 

ERFX=1.0-(0.25482959*T-0.28449673 *T* *2+ 1.42141374*T* * 3-1. 
1 45315202*T**4+1.06140542*T**5)*EXP(-X1 **2) 

GO T03 

3 CONTINUE 

IF(XINDEX)6,7,7 

6 ERFX=-ERFX 

7 CONTINUE 

C 	WRITE(2,52)X,ERFX 
C52 FORMAT(2F10.5) 

RETURN 
END 

C PROGRAMME FOR COMPUTING THE RISE IN WATER TABLE 

SUBROUTINE HANTUSH(T,PHI,GW,GX,XX,YY,TIME,A,B,RES) 

DIMENSION GW(96),GX(96) 

TERM5=2.*(T*TIME/PHI)**0.5 

TERMI=A+XX 

TERM2=B+YY 

TERM4=B-YY 

TERM 11=TERM1 /TERMS 

TERM22=TERM2/TERM5 

TERM33=TERM3/TERM5 
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TERM44=TERM4/TERM5 

SUM1=0. 
SUM2=0. 
SUM3=0. 
SUM4=0. 

DO 10 I=1,96 

V=GX(I) 

TERM=(0.5+0.5*V)**0.5 

X=TERM 11 /TERM 

CALL ERF(X,ERFX) 

ERFXI=ERFX 

X=TERM22/TERM 

CALL ERF(X,ERFX) 

ERFX2=ERFX 

X=TERM33/TERM 

CALL ERF(X,ERFX) 

ERFX3=ERFX 

X=TERM44/TERM 

CALL ERF(X,ERFX) 

ERFX4=ERFX 

ATERM 1=ERFX 1 *ERFX2 

ATERM2=ERFX3*ERFX2 

ATERM3=ERFX 1 *EpJ'x4 

ATERM4=ERFX3*ERFX4 

SUM1=SUM1+0.5*ATERM1 *GW(I) 
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SUM2=SUM2+0.5 *ATERM2 * G W(I) 

SUM3=SUM3+0.5 *ATERM3 *GW(I) 

SUM4=SUM4+0.5 * ATERM4 * GW (I) 

10 CONTINUE 

RES=(SUM 1 +SUM2+SUM3+SUM4) *TIME * 0.25/PHI 

RETURN 

END 

SUBROUTINE MATIN (AAA,MMM) 

DIMENSION AAA(2,2),B(3),C(3) 

NN=MMM-1 

AAA(1 , 1 )= 1 ./AAA( 1,1) 

DO 8 M=1,NN 

K=M+1 

DO 3 I=1,M 

B(I)=0.0 

DO 3 J=1,M 

3 	B(I)=B(I)+AAA(I,J)*AAA(J,K) 

D=0.0 

DO 4 I=1,M 

4 D=D+AAA(K,I)*B(I) 

D=-D+AAA(K,K) 
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AAA(K,K)=1./D 

DO 5 I=1,M 

5 AAA(I,K)=-B(I)*AAA(K,K) 

DO 6 J=1,M 

C(J)=0.0 

DO 6 I=1,M 

6 	C(J)=C(J)+AAA(K,I)*AAA(I,J) 

DO7J=1,M 

7 AAA(K,J)=-C(J)*AAA(K,K) 

DO 8 I=1,M 

DO 8 J=1,M 

8 	AAA(I,J)=AAA(I,J)-B(I)*AAA(K,J) 

RETURN 
END 

MULTI REACH INTERACTION 

DIMENSION Q(0:1 00,0:1 00),QR(50,0: 100), 

1 STAGEA(0:50,0:100),STAGER(0:50,0:100), 

2GW(96),GX(96),HDKER(3,3,100),USTEP(100),CONVS(3), 

3AAA(6,6),CCC(6),AA(6,6),SSUM(6),CONV(3) 

open(UNIT=2,FILE='ASTREAMA2.OUT',STATUS='UNKNOWN') 

open(3,status='old',file='GAUSS.DAT') 

read(3,*) (gw(i),i=1,96) 

read(3,*) (gx(i),i=1,96) 

PAI=3.14159265 
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C GENERATION OF KERNEL COEFFICIENTS 
C UNIT TIME IS ONE HOUR 

TRANS=100. 

PHI=0.02 

E=105. 

DELT=1. 

NTIME=100 

WIDTH=50. 

DELX=2000. 

WRITE(2,*)'TRANSMISSIVITY=',TRANS,'VALUE OF PHI =',PHI,'DEPTH OF 
1DATUM FROM BED=',E,'TIME STEP DURATION=',DELT,'WIDTH OF RIVER 

2WIDTH,'LENGTH OF STREAM=',DELX 

C COMPUTATION OF KERNEL COEFFICIENT 
A=WIDTH/2 

B=DELXl2. 

XX=0.+4.5 *WIDTH 

C XX=0. 

YY=O. 

DO N=1,NTIME 

AN=N 

TIME=AN*DELT 

CALL HANTUSH(TRANS,PHI,GW,GX,XX,YY,TIME,A,B,RES) 

USTEP(N)=RES 

END DO 
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HDKER(1 , 1, 1)=USTEP(1)/(DELI* 4. * A* B) 

HDKER(2,2,1)=HDKER(1,1,1) 

HDKER(3,3,1)=HDKER(1,1,1) 

DO N=2,NTIME 

HDKER(1,1,N)=(US TEP (1}-U S TEP (N-1))/DELT 

HDKER(1,1,N)=HDKER(I,1,N)/(4. *A*B) 

HDKER(2,2,N)=HDKER(1,1,N) 

HDKER(3,3,N)=HDKER(1,1,N) 
C 	WRITE(2,*)HDKER(3,3,N) 

END DO 

YY=DELX 

DO N=1,NTIME 

AN=N 

TIME=AN*DELT 

CALL HANTUSH(TRANS,PHI,GW,GX,XX,YY,TIME,A,B,RES) 

USTEP(N)=RES 

END DO 

HDKER(1 ,2, 1 )=USTEP(1 )/(DELT*4.  *A*B) 

HDKER(2, 1,1 )=HDKER( 1,2,1) 

HDKER(2,3, 1 )=HDKER(1 ,2, 1) 

HDKER(3,2,1)=HDKER(2,3,1) 

DO N=2,NTIME 

HDKER(1,2,N)=(USTEP(N)-USTEP(N-1))/DELT 
C 	WRITE(2,*)'CHECKI=',HDKER(1,2,N) 

HDKER(1,2,N)=HDKER(1,1,N)/(4. * A * B) 
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HDKER(2,1,N)=HDKER(1,2,N) 

HDKER(2,3,N)=HDKER(1,2,N) 

HDKER(3,2,N)=HDKER(2,3,N) 
C 	WRITE(2,*)'3,2=',HDKER(3,2,N) 

YY=DELX*2. 

DO N=1,NTIME 

AN=N 

TIME=AN*DELT 

CALL HANTUSH(TRANS,PHI,GW,GX,XX,YY,TIME,A,B,RES) 

USTEP(N)=RES 

END DO 

HDKER( 1,3,1 )=USTEP(1 )/(DELT*4. *A*B) 

HDKER(3,1,1)=HDKER(1,3,1) 

DO N=2,NTIME 

HDKER(1,3,N)=(USTEP(N)-USTEP(N-1))/DELT 

HDKER(1, 3,N)=HDKER(1,3 ,N)/(4. * A * B) 

HDKER(3,1,N)=HDKER(1,3,N) 
C 	WRITE(2,*)'3,1=',HDKER(3,1,N) 

END DO 

C COMPUTATION OF SURFACE FLOW TILL INFLUENT REACH 
NREACH=10 

IREACH=4 

DO N=O,NTIME 
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DO I=1,NREACH 

QR(I,N)=0. 

END DO 
END DO 

S0=0.0002 

CMAN=0.02 

Q0=100. 

PEAKQ=1000. 

C 	QO and PEAKQ are in m**3/sec 
C 	TP is in hour 

TP=10. 

GAMA=1.15 

C 	Q3 AND PEAKQ ARE CONVERTED INTO m**3 per hour 

PI=PEAKQ*3600. 

Q3=Q0* 3600. 

BI0=Q3 
C 	INITIAL CONDITION 

DO I=O,NREACH 

Q(I,0)=Q3 

END DO 
C. BOUNDARY CONDITION 

DO N=1,NTIME 

TIME=N*DELT 

Q(0,N)=Q3 +(PI-Q3 ) * (TIME/TP)* * (1 ./(GAMA- 1.)) 
1 * EXP((1.-TIME/TP)/(GAMA-1.)) 

C Q(O,N)=Q3 
END DO 
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C 	INITIAL GUESS OF CMK, THETA 
QQ3=Q3 
CALL STAGEYM(QQ3,WIDTH,CMAN,SO,YM) 

C 
C 
C 

HBASE=YM 

110=7 

WRITE(2,*)'TOTAL NO OF REACH=',NREACH,'FIRST INTERACTION 
REACH=', 

1IREACH,'VALUE OF BED SLOPE=',SO,'MANNINGS ROUGHNESS 
COEFICIENT=', 

2CMAN,' DEPTH OF INITIAL WATER TABLE=',HO 
C 
C 
C 

C MUSKINGUM PARAMETERS ARE NOW PREDICTED 

Y3=YM 

V3 = Q3/(WIDTH*Y3) 

THETA=0.5-0.5*Q3/( S0*WIDTH* 
1(1.+2.*WIDTH/(3.*(WIDTH+2.*Y3)))*V3*DELX ) 

CMK=DELXI(( 1 .+2. * WIDTH/(3. *(WIDTH+2. * y3 )))*\13) 
C 
C 
C 
C 	GAMAR=(TRANS/E)*(2*HBASE+E+0.5*WIDTH)/(4.25*WIDTH+.5*E)*DELX 

C 	QRI=GAMAR*(HBASE+HO) 

C DOI=I,NREACH 

C 	QR(I,0)=QR1 

C END DO 

C 
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C 
IF(IREACH.LE.NREACH-2) THEN 

DO 100 N=1,NTIME 

C XXXXXXXXXXXXX 
DO 200 I=1,IREACH-1 

DO 300 ITER=1,2 

C =CMK*(1.-THETA) + 0.5*DELT 

Cl = (-CMK*THETA + 0.5*DELT)/C 

C2 = (CMK*THETA+ 0.5*DELT)/C 

C3 = (CMK*(1.- THETA) - 0.5*DELT)/C 

Q(I,N)=C 1 * Q(I-1,N)+C2* Q(I-1,N- I)+C3 * Q(I,N-1) 

Q3=THETA*Q(I-1,N)+(1-THETA)* Q(I,N) 
QQ3=Q3 

CALL STAGEYM(QQ3,WIDTH,CMAN,S0,YM) 

C 	WRITE(2,*)'THE VALUE OF YM =',YM 

QM=(Q(I- I ,N)+Q(I,N))/2.0 

VM=(QM/(WIDTH*YM)) 

Y3=YM+((Q3-QM)/(WIDTH*(1.+(((2./3.)*WIDTH)/(WIDTH+2.0*YM)))*VM)) 

A3=WIDTH*Y3 

V3=Q3/A3 

THETA=0.5-0.5*Q3/( S0*WIDTH* 
1(1.+2.*WIDTH/(3.*(WIDTH+2.*Y3)))*V3*DELX ) 

CMK=DELX/((1 .+2. * WIDTH/(3. * (WIDTH+2. * Y3)))* V3) 

C 	COMPUTATION UP TO I-1TH REACH 
C COMPUTATION OF DISCHARGE AND STAGE 
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300 CONTINUE 

C XXXXXXXX 
C 	WRITE(2,*)'RESULT AT SECTIONS PRIOR TO RECHAREGE' 
C 	WRITE(2,*)I,Q(I,N),N 
200 CONTINUE 

C COMPUTATION OF INFLUENT SEEPGE AND FLOW 
C TERM1= PREVIOUS STREAM STAGE 

THETAI=THETA 

THETA2=THETA 

THETA3=THETA 

CMKI=CMK 

CMK2=CMK 

CMK3=CMK 

C 	DO 303 ITER=1,2 

MMM=6 

DO I=1,6 

DO J=1,6 

AAA(I,J)=0 

END DO 
END DO 

AAA( 1,1)=1. 

AAA(1,4)=1.+2.*CMKI *(1.-THETAI)/DELT 

AAA(2,2)=1. 

AAA(2,4)=2. * CMK2* THETA2/DELT-1. 

AAA(2, 5)=1.+2. * CMK2 * (1.-THETA2)/DELT 
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AAA(3,3)=1. 

AAA(3,5)=2.*CMK3 *THETA3/DELT-1. 

AAA(3,6)=1 .+2.*CMK3 *(1.-THETA3)/DELT 

TERMI=CMK1 * (THETA 1 * Q(IREACH-1,N-1)+ 
1(1.-THETA1)*Q(IREACH,N-1)-BIO)/(WIDTH*DELX)+HBASE 

GAMARI =(TRANS/E)* (2*TERM 1+E+0.5 * WIDTH)/(4.25 *WIDTH+.5 *E)*DELX 

TERM2=CMK2* (THETA2* Q(IREACH,N-1)+ 
1(1.-THETA2)*Q(IREACH+I,N-1)-BIO)/(WIDTH*DELX)+HBASE 

GAMAR2=(TRANS/E)*(2*TERM2+E+O. 5 * WIDTH)/(4.25 * WIDTH+.5*E)*DELX 

TERM3=CMK3 *(THETA3 * Q(IREACH+I ,N-1)+ 
1(1.-THETA3)*Q(IREACH+2,N-1)-BIO)/(WIDTH*DELX)+HBASE 

GAMAR3=(TRANS/E) *(2* TERM3+E+0.5 *WIDTH)/(4.25 * WIDTH+.5 *E) *DELX 

C 	GAMAR1=0.001 
C GAMAR2=0.001 
C GAMAR3=0.001 
C WRITE(2,*)'GAMAI=GAMA2=GAMA2=',GAMARI 

AAA(4,1)=HDKER(1,1,1)+1./GAMAR1 

AAA(4,2)=HDKER(2,1,1) 

AAA(4,3)=HDKER(3,1,1) 

AAA(4,4)=-CMK1 *(1.-THETAI)/(WIDTH*DELX) 

AAA(5,1)=HDKER(1,2,1) 

AAA(5,2)=HDKER(2,2,1)+1./GAMAR2 

AAA(5,3)=HDKER(3,2,1) 

AAA(5,4)=-CMK2* THETA2/(WIDTH*DELX) 
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AAA(5,5)=-CMK2 *(1.-THETA2)/(WIDTH*DELX) 

AAA(6,1)=HDKER(1,3,1) 

AAA(6,2)=HDKER(2,3,1) 

AAA(6,3)=HDKER(3,3, 1)+1 ./GAMAR3 

AAA(6,5)=-CMK3 *THETA3/(WIDTH*DELX) 

AAA(6, 6)=-CMK3 * (1.THETA3)/(WIDTH * DELX) 

C 	WRITE(2,*)'MATRIX ELEMENT' 
C 
C 	DO I=1,6 
C 	WRITE(2,222)(AAA(I,J),J=1,6) 
C222 FORMAT(6F 10.5) 
C END DO 

C 	DO 1=1,6 
C 	DO J=1,6 
C 	AA(I,J)=AAA(I,J) 
C END DO 
C END DO 
C 

CALL MATIN(AAA,MMM) 
C 	WRITE(2,*)'CHECK' 
C 	TERMII=AA(1,1)*AAA(1,1)+AA(1,2)*AAA(2,1)+AA(1,3)*AAA(3,1) 
C 	I+AA(1,4)*AAA(4,1)+AA(1,5)*AAA(5,1)+AA(1,6)*AAA(6,1) 
C WRITE(2,*)TERM11 

IF (N-1)13,13,14 

13 CONTINUE 

CONVS(1)=0. 

CONVS(2)=O. 

CONVS(3)=0. 

GO TO 15 

14 CONTINUE 
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DO JOB=1,3 

CON V S(JOB)=0. 

DO IPER=1,3 

DO NGAMA=I,N-1 

CONVS(JOB)=CONV S(JOB)+QR(IREACH-1+IPER,NGAMA) 
1 *HDKER(IPER,JOB,N-NGAMA+1) 
END DO 
END DO 
END DO 

15 CONTINUE 

CCC(1)=Q(IREACH-1,N)+Q(IREACH-1,N-1)-QR(IREACH,N-1)-Q(IREACH,N-1) 
1-(2*CMKI /DELT)*(THETAI * (Q(IREACH- I,N)-Q(IREACH-1,N-1))-(1-

THETAI)* 
2Q(IREACH,N-1)) 

CCC(2)=Q(IREACH,N- 1)-QR(IREACH+1 ,N- 1 )-Q(IREACH+ 1,N-1) 
1-(2 * CMK2/DELT) * (THETA2 * (- Q (IREACH,N-1))- (1-THE TA2) * 
2Q(IREACH+I,N-1)) 

CCC(3)=Q(IREACH+I,N-1)-QR(IREACH+2,N-1)-Q(IREACH+2,N-1) 
1-(2*CMK3/DELT)*(THETA3 *(-Q(IREACH+I,N-1))-(1-THETAS)* 
2Q(IREACH+2,N-1)) 

CCC(4)=CMK1 *(THETAI *Q(IREACH-1,N)-BIO)/(WIDTH*DELX)+HO-
CONVS(1) 

1+HBASE 

CCC(5)=HBASE-CMK2*BIO/(WIDTH*DELX)+HO-CONVS(2) 

CCC(6)=HBASE-CMK3 *BIO/(WIDTH*DELX)+HO-CONVS(3) 

DO II=1,6 

SSUM(II)=0. 

DO M=1,6 
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S SUM(II)=S SUM(II)+AAA(II,M) * C CC(M) 

END DO 
END DO 

QR(IREACH,N)=SSUM(1) 

QR(IREACH+I,N)=S SUM(2) 

QR(IREACH+2,N)=S SUM(3 ) 

Q(IREACH,N)=S SUM(4) 

Q(IREACH+I,N)=SSUM(5) 

Q(IREACH+2,N)=S SUM(6) 

Q3=THETA 1 * Q(IREACH-1,N)+(1 -THETA I)*Q(IREACH,N) 
QQ3=Q3 

CALL STAGEYM(QQ3,WIDTH,CMAN,SO,YM) 

C 	WRITE(2,*)'THE VALUE OF YM = ',YM 
QM=(Q(IREACH-1,N)+Q(IREACH,N))/2.0 

VM=(QM/(WIDTH* YM)) 

Y3=YM+((Q3-QM)/(WIDTH* (1.+(((2./3.)*WIDTH)/(WIDTH+2.0* YM)))* VM)) 

A3=WIDTH*Y3 
V3=Q3/A3 

THETA1=0.5-0.5*Q3/( SO*WIDTH* 
1(1.+2.*WIDTH/(3.*(WIDTH+2.*Y3)))*V3*DELX ) 

CMK 1 =DELX/(( 1 .+2. * WIDTH/(3. * (WIDTH+2. *Y3)))*V3) 
C 	WRITE(2,*)'CMK=',CMK, 'THETA=', THETA 

Q3 =THETA2 * Q(IREACH,N)+( 1 -THETA2) * Q(IREACH+ 1,N) 
QQ3=Q3 

CALL STAGEYM(QQ3,WIDTH,CMAN,SO,YM) 
C 	WRITE(2,*)'THE VALUE OF YM =',YM 

QM=(Q(IREACH,N)+Q(IREACH+I,N))/2.0 
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VM=(QM/(WIDTH* YM)) 

Y3=YM+((Q3 -QM)/(WIDTH* (1.+(((2./3 .)* WIDTH)/(WIDTH+2.0* YM))) * VM)) 

A3=WIDTH*Y3 

V3=Q3/A3 

THETA2=0.5-0.5*Q3/( S0*WIDTH* 
1(1.+2.*WIDTH/(3.*(WIDTH+2.*Y3)))*V3*DELX ) 

CMK2=DELX/(( 1 .+2. * WIDTH/(3. * (WIDTH+2. * Y3)))* V3) 

Q3=THETA3 * Q(IREACH+I,N)+(1-THETA3)*Q(IREACH+2,N) 
QQ3=Q3 

CALL STAGEYM(QQ3,WIDTH,CMAN,S0,YM) 
C 	WRITE(2,*)'THE VALUE OF YM =',YM 

QM=(Q(IREACH+1,N)+Q(IREACH+2,N))/2.0 

VM=(QM/(WIDTH* YM)) 

Y3=YM+((Q3-QM)/( WIDTH*  (1.+(((2./3.)* WIDTH)/(WIDTH+2.0*YM)))*VM)) 

A3=WIDTH*Y3 

V3=Q3/A3 

THETA3=0.5-0.5*Q3/( S0*WIDTH* 
1(1 .+2.*WIDTH/(3 . * (WIDTH+2. *Y3)))*V3*DELX) 

CMK3=DELX/((1.+2. * WIDTH/(3.*(WIDTH+2.*Y3)))*V3) 

C303 CONTINUE 

DO JOB=1,3 

CONV(JOB)=0. 

DO IPER=1,3 

DO NGAMA=I,N 

CONV(JOB)=CONV(JOB)+QR(IREACH-1 +IPER,NGAMA) 
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1 *HDKER(IPER,JOB,N-NGAMA+1) 
END DO 
END DO 
END DO 

STAGER(IREACH,N)=CMK1 *(THETA1 *Q(IREACH-1,N)+(1-
THETAI)*Q(IREACH, 

1N)-BI0)/(WIDTH*DELX)+HBASE 

STAGEA(IREACH,N)=(H0-CONV(1)) 

STAGER(IREACH+I,N)=CMK2* (THETA2* Q(IREACH,N)+( 1 -THETA2) 
1 *Q(IREACH+l,N)-BIO)/(WIDTH*DELX)+HBASE 

STAGEA(IREACH+1,N)=(HO-CONV(2)) 

STAGER(IREACH+2,N)=CMK3 * (THETA3 * Q(IREACH+ 1 ,N)+( 1 -THETA3) 
1 *Q(IREACH+2,N)-BIO)/(WIDTH*DELX)+HBASE 

STAGEA(IREACH+2,N)=(HO-CONV(3)) 

THETA=THETA3 
CMK=CMK3 

C 	WRITE(2,*)'FLOW AT INFLUENT SECTION',N,Q(IREACH,N),QR(N) 
C 	TERMI=AA(1,1)-AA(2,1) 
C TERM2=CCC(1)-CCC(2) 
C CHECK1=TERM2/TERM1 
C 	CHECK2=CCC(1)-CHECK1 *AA(1,1) 
C 	WRITE(2,*)'CHECKI=',CHECK1,'CHECK2=',CHECK2 
C COMPUTATION BEYOND I= IREACH 

DO 20 I=IREACH+3,NREACH 
C XXXXXXXX 

DO 30 ITER=1,2 

C =CMK*(1.-THETA) + 0.5*DELT 

Cl = (-CMK*THETA + 0.5*DELT)/C 

C2 = (CMK*THETA+ 0.5*DELT)/C 
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C3 = (CMK* (1.- THETA) - 0.5 * DELT)/C 

Q(I,N)=C 1 * Q(I-1,N)+C2 * Q(I-1 ,N- 1 )+C3 * Q(I,N-1) 

Q3=THETA* Q(I-1,N)+(1-THETA) * Q(I,N) 
QQ3=Q3 
CALL STAGEYM(QQ3,WIDTH,CMAN,SO,YM) 

C 	WRITE(2,*)'THE VALUE OF YM = ',YM 
QM=(Q(I-1,N)+Q(I,N))/2.0 

VM=(QM/(WIDTH*YM)) 

Y3=YM+((Q3-QM)/(WIDTH* (1.+(((2./3 .) *WIDTH)/(WIDTH+2.0* YM)))* YM)) 

A3=WIDTH* Y3 

V3=Q3/A3 

THETA=0.5-0.5Q3/( S0*WIDTH* 
1(1.+2.*WIDTH/(3.*(WIDTH+2.*Y3)))*V3*DELX ) 

CMK=DELX/((1.+2.* WIDTH)(3.*(WIDTH+2.*Y3)))*V3) 

30 CONTINUE 

20 CONTINUE 

100 CONTINUE 

DO N=O,NTIME 
C 	WRITE(2,556)N,QR(IREACH,N),Q(IREACH,N) 
C556 FORMAT(1I5,5X,1F10.2,5X,1F10.2) 

WRITE(2,555)N,(Q(I,N),I=O,NREACH,2 ) 

555 FORMAT(1I5,5X,8F15.2) 

END DO 

DO N=O,NTIME 

WRITE(2,556)N,QR(IREACH,N),QR(IREACH+I,N),QR(IREACH+2,N),Q(IREA 
CH, 

1N),Q(IREACH+I,N),Q(IREACH+2,N) 
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556 FORMAT(1I5,5X,1F10.2,5X,1F10.2,5X,1F10.2,5X,F10.2,5X,F10.2,5X, 
1F10.2) 

END DO 

DO N=O,NTIME 

WRITE (2,111)N, S TAGER(IREACH,N), S TAGER(IREAC H+ 1,N), 
1 STAGER(IREACH+2,N),STAGEA(IREACH,N),STAGEA(IREACH+I,N), 

2STAGEA(IREACH+2,N) 

111 	FORMAT(1I5,5X,1F10.5,5X,1F10.5,5X,1F10.5,5X,F10.5,5X,F10.5,5X, 
IF10.5) 

END DO 

ELSE 
IF (IREACH.GT.NREACH) THEN 
DO 101 N=1,NTIME 

C XXXXXXXXXXXXX 
DO 201 I=1,IREACH-1 

DO 301 ITER=1,2 

C =CMK*(1.-THETA) + 0.5*DELT 

Cl = (-CMK*THETA + 0.5*DELT)/C 

C2 = (CMK*THETA+ 0.5*DELT)/C 

C3 = (CMK*(1.- THETA) - 0.5*DELT)/C 

Q(I,N)=C 1 *Q(I-1,N)+C2*Q(I-1,N-1)+C3 *Q(I,N-1) 

Q3=THETA* Q(I-1,N)+(1-THETA)* Q(I,N) 
QQ3=Q3 

CALL STAGEYM(QQ3,WIDTH,CMAN,S0,YM) 
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C 	WRITE(2,*)'THE VALUE OF YM =',YM 

QM=(Q(I- 1 ,N)+Q(I,N))/2.0 

VM=(QM/(WIDTH* YM)) 

Y3=YM+((Q3-QM)/(WIDTH* (1 .+(((2./3 .)*WIDTH)/( WIDTH+2 .0*YM)))*VM)) 

A3=WIDTH*Y3 

V3=Q3/A3 

THETA=0.5-0.5*Q3/( S0*WIDTH* 
1(1.+2.*WIDTH/(3.*(WIDTH+2.*Y3)))*V3*DELX ) 

CMK=DELX/((1.+2. * WIDTH/(3. * (WIDTH+2. * Y3)))* V3) 

C 	COMPUTATION UP TO I-1 TH REACH 
C COMPUTATION OF DISCHARGE AND STAGE 
301 CONTINUE 

C XXXXXX 
C 	WRITE(2,*)'RESULT AT SECTIONS PRIOR TO RECHAREGE' 
C 	WRITE(2,*)I,Q(I,N),N 
201 CONTINUE 
101 CONTINUE 

DO N=O,NTIME 
C WRITE(2,556)N,QR(IREACH,N),Q(IREACH,N) 
C556 FORMAT(1I5,5X,1F10.2,5X,IF10.2) 

WRITE(2,5 11 )N,(Q(I,N),I=O,NREACH,2) 

511 FORMAT(1I5,5X,8F15.2) 

END DO 

ELSE 
WRITE(*,*)'CHECK UR INTERACTION REACH NO.' 
END IF 
END IF 

STOP 
END 
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