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ABSTRACT 

The use of Orthogonal Frequency Division Multiplexing (OFDM) for high rate 

data transmission over fading dispersive channels has been of wide interest in recent 

years. OFDM, which already forms a part of several wireless broadcasting standards, is 

being viewed as a potential candidate for design of upcoming 4G systems. When the 

intervening channel is doubly selective, the transmitted signal undergoes impairments due 

to multipath fading and Doppler spreads. In order to facilitate the use of coherent 

modulation techniques, a receiver has to employ efficient channel estimation schemes. 

Channel can be estimated by exploiting the Cyclic prefix (CP) as a training 

sequence in OFDM systems. Although it is appended to ease the equalizer design in the 

OFDM systems and is normally discarded at the receiver. The channel can be modeled as 

autoregressive model of order 2 (AR-2) and it can be estimated using Kalman filter which 

provides an optimal solution when the model parameters, noise characteristics are known 

a priori and Gaussian. For practical filtering applications, noise may not be Gaussian and 

its statistics are not known in advance. In such situations, H-infinity filters provide a 

recursive estimation of the channel in case of unknown noise statistics and it requires the 

knowledge of AR parameters. Dual filtering techniques are used to estimate the fading 

channel as well as its AR parameters recursively. 

In this dissertation work, we have used the state space model approach for 

deriving the different adaptive filtering algorithms namely Kalman, H-infinity, Dual-

Kalman and Dual-H-infinity. The CP based channel estimation is carried out using these 

adaptive filtering techniques in OFDM systems. 

For simulation MATLAB is used and it is demonstrated through simulation results 

that the performance of different adaptive filtering algorithms (H-infinity, Dual-Kalman 

and Dual-H-infinity) approaches to optimal Kalman filtering algorithm with known 

parameters. 
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Chapter 1 

Introduction 

Wireless Communication has undergone a phenomenal growth in the last three 

decades. Wireless systems have evolved through three generations and fourth generation 

is an open area of research. The first generation (1 G) systems were based on analog 

transmission techniques for mostly voice. The most successful standards were Nordic 

Mobile Telephone (NMT), Total Access Communication Systems (TACS), and 

Advanced Mobile Phone Service (AMPS). These protocols were developed during the 

70's and 80's. These protocols supported a data transmission rate between 9.6kbps and 

14.4kbps. The technologies developed during the 90's to 2000 come under the second-

generation (2G) mobile services. The second-generation (2G) mobile cellular systems 

were based on digital transmission. The maximum data rate that can be achieved using 

the 2G protocols is 115kbps. The main advantage of using 2G technologies over the 1 G 

was, increase in the performance due to usage of same channel by several users (either 

by code or time division multiple access). By this time the cell phones were used for both 

voice and data communication. There are four main standards for 2G systems: Global 

System for Mobile (GSM) communication, Digital AMPS (D-AMPS), Code Division 

Multiple Access (CDMA) IS-95, and Personal Digital Cellular (PDC) [1]. 

The emergence of mobile data accessing devices like Personal Digital Assistants 

(PDA's) and internet based data communications, which requires high data transmission 

rates, have led to the developments of more advanced protocols between 2000 and 2003 

and termed as 2.5G protocols. The 2.5G system includes the following technologies: 

High-Speed Circuit-Switched data (HSCSD), General Packet Radio Services (GPRS), 

and Enhanced Data Rates for Global Evolution (EDGE) [1]. The maximum data rates that 

can be achieved using 2.5G protocols is 144kbps, but this is not enough for enhanced 

multimedia and high streaming videos transmissions. Universal Mobile 

Telecommunications System (UMTS), Wideband Code Division Multiple Access 

(WCDMA) and CDMA2000 protocols that also use the Digital Packet Switching, and are 

developed to increase the data transmission rate up to 2Mbps. These protocols were 

developed during 2003 to 2004 and are termed as third generation (3G) protocols. 
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The new IEEE and High Performance Radio Local Area Network (HIPERLAN) 

standards specify bit rates up to 54Mbit/s, although 24Mbit/s will be the typical rate used 

in most applications. Such high data rates impose large bandwidths, thus pushing carrier 

frequencies for values higher than the UHF band. 

As the demand for higher data transmission rate and worldwide roaming in 

cellular devices is increasing, the development of next generation (4G) wireless systems 

using digital broadband is underway. Therefore, enhancing system capacity as well as 

achieving a higher bit rate transmission is an important requirement for the 4G system. 

Fourth generation (4G) aims to provide variable rate multimedia services to the user 

(which include text, voice, data, audio, images or video), over broadband connections in a 

seamless manner. The constraints on power and the paucity of spectrum, together with an 

ever increasing quest for high data rates, poses a challenge to develop efficient 

coding/modulation techniques and signal processing algorithms, so that wireless links 

may be utilized as efficiently as possible..The main task is to investigate and develop a 

new broadband air interface which can deal with high data rates of the order of 100 

Mbit/s, high mobility and high capacity. Since the available frequency spectrum is 

limited, high spectral efficiency is the major task of 4G mobile radio systems. Another 

important target of the new 4G air interface is the ability to provide efficient support for 

applications requiring simultaneous transmission of several bits of streams with possibly 

different Quality of Service (QoS) targets [2]. 

These developments must cope up with several performance limiting challenges that 

include channel fading, multi-user interference, limitations of size/power especially at 

mobile units. Among these challenges, channel fading degrades the performance of 

wireless transmissions significantly, and becomes a bottle-neck for increasing data rates. 

As each path has a different attenuation, time delay & phase shift, the signals from 

different paths add constructively or destructively, resulting in signal strength 

fluctuations. This phenomenon is known as multi-path fading. Channel fading causes 

performance degradation and renders reliable high data rate transmissions; a challenging 

problem for 4G wireless communications. To combat these situations, Orthogonal 

Frequency Division Multiplex (OFDM), a form of Multi-Carrier Modulation (MCM), has 

recently been used as a transmission technique owing to its robustness to frequency 

selective fading and ease of implementation. It carries out simultaneous transmission over 

multiple subcarriers and simplifies the equalization problem to the design of a single tap 

filter. When-  used over rapidly time varying environments, OFDM is prone to errors since 
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Doppler spread causes a loss of subcarrier orthogonality and introduces inter carrier 

interference (ICI). However OFDM is a promising technique to achieve high rate data 

communication over dispersive channels for prospective 4G systems. Coherent 

demodulation and decoding for OFDM requires the availability of channel state 

information at the receiver. The physical layer challenges in the implementation of 

broadband OFDM systems are being addressed recently. These primarily include the 

design of suitable channel estimation techniques over fading channels for OFDM 

systems. 

1.1. Cyclic Prefix Based Channel Estimation 

Bingham [3], was among the first to explore multicarrier modulation (MCM) as an 

effective technique which uses several interleaved bit streams to modulate a set of carriers 

in parallel. Water filling algorithm for adaptive loading of bits on the subcarriers is 

explored; besides this, equalization in presence of channel impairments and phase jitter; 

and the use of trellis codes to exploit additional coding gain has been studied. The key 

concept behind such systems is the use of multiple complex exponentials as information 

bearing carriers that retain orthogonality when propagating over linear dispersive media. 

The scope for MCM techniques, in particular OFDM, has widened and their potential in 

providing high data rate communications. 

Estimation of fading channel is a critical task for the implementation of wireless 

OFDM transceivers, and has been challenging research problem. The use of adaptive 

filters and their variants for efficient estimation of time varying plants has been under 

research for almost two decades. Davidov in [4] propose a modification to the ordinary 

LS algorithm, to track deterministic rapidly time-varying systems. Boroujeny and Gazor 

in [5] have analyzed a family of LMS based adaptive filters, namely the conventional 

LMS, transform domain normalized LMS (TD-LMS), and LMS-Newton algorithm. Their 

performance in tracking a time varying plant is compared in terms of steady state excess 

MSEE. 

The conventional method of channel estimation involves transmission of known 

pilot symbols and LS estimation at pilot tones, followed by suitable filtering/processing at 

the remaining tones. In [6], Beek analyze channel estimation for OFDM, based on time 

domain channel statistics. Performance-complexity tradeoff exhibited by the conventional 

MSEE and LS estimators in demonstrated. In [7], Chen and Zhang study a Kalman filter 
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(KF) based channel estimator in time-frequency-selective fading environment. Based on 

Autoregressive (AR) model of the dynamic channel, a vector Kalman filter of dimension 

equal to the number of subcarriers can be used to track the channel. However, its 

complexity becomes prohibitive as the number of OFDM subcarriers increases. A state 

space model for the fading channel based on Jakes' model is proposed, and a scalar 

Kalman filter is employed at each subcarrier to estimate the channel gain, making use of 

the time-domain correlation of each subchannel. The channel estimate is further refined 

with an MMSE combiner, which explores the frequency-domain correlations between the 

subchannels. This scheme involves two-step processing but offers a performance 

comparable to the high complex vector Kalman estimator [7]. 

Wang and Liu [8],[9] have proposed an RLS based adaptive method for estimating 

digital subscriber line (DSL) channel in an MCM system. The method initializes with a 

pilot based MMSE channel estimate, and subsequently makes use of cyclic prefix (CP) 

part of the received symbols for channel estimation. In [ 10], a CP based frame work for 

estimation of channel in OFDM systems has also been considered. The multipath channel 

is modelled as a tapped delay line filter, while the time varying nature of each tap is 

governed by an autoregressive process of order 2 (AR-2). On the CP based model for 

doubly selective channel, a variety of adaptive filtering algorithms have been used, 

namely, block LMS (B-LMS), modified LMS (M-LMS), least squares (LS) and Kalman 

filter (KF). The Kalman filtering approach gives the optimal solution when the noise 

characteristics are known a priori and the estimation problem is Gaussian [ 1 1 ]. But in 

many situations noise characteristics may not be Gaussian, one of the techniques for 

handling such situations uses H. filtering approach [12]. It is a minimization approach 

where the maximum "energy" of the estimation of overall disturbances is minimized. A 

robust H. channel estimation algorithm can be used to estimate the channel fading in the 

time domain. As in the case of Kalman filtering, the H-infinity filtering also uses the 

state-space model for estimation of the fading channel 

1.2. Statement of Problem 
The work reported aims to develop an Adaptive channel estimation algorithm by 

exploiting the cyclic prefix (CP) in the OFDM system. Cyclic prefix (CP) is a repeated 

part of the transmit data (known) which can be used for the initial estimation of the 

channel by using state variable model for OFDM system. The channel is assumed to be 
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2°a  order AR model where the parameters of the AR model are not known. By using Dual 

H-infinity and Dual-Kalman filtering, we can estimate the channel as well as its AR 

parameters. The main objectives of this Dissertation are 

1. Study of the different Adaptive filtering algorithms 

2. Developing the state variable model for OFDM systems using CP interval. 

3. Using CP based framework, study of a variety of adaptive filters for estimation of 

fading channel with low and moderate Doppler spreads in SISO-OFDM systems. 

1.3 Organization of the Thesis 

Chapter one gives an overview of the evolution of wireless systems through 2G, 

3G and 4G systems and a brief introduction to CP based estimation of fading channels for 

OFDM system. 

Chapter two reviews the wireless channel characteristics and basics of OFDM. To 

estimate the channel information directly from the transmitted data, a CP based channel 

estimation method is considered. 

Chapter three discusses the mathematical models of four different (Kalman, Dual-

Kalman, H-infinity and Dual-H-infinity) algorithms for estimation of AR process of order 

2 and simulation results are presented. 

Chapter four provides a review of SISO-OFDM systems and techniques studied for 

channel estimation. A state-space model based on CP is developed and channel 

estimation is accomplished using adaptive filtering. Thus the CP, whose purpose is to 

render the OFDM subcarriers independent, is used to carry out estimation of fading 

channel in the low and moderate Doppler spreads. The method is compared with several 

variants of adaptive filters namely, Kalman, H-infinity, Dual-Kalman and Dual-H-

infinity. Their steady state mean square estimation error (MSEE) and as well as bit error 

rate (BER), are studied, for different Doppler spreads. Finally simulation results are 

presented. 

Chapter five concludes the thesis which also discusses future work. 
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Chapter 2 

Channel Estimation for OFDM Systems 

2.1 Introduction 

In recent years, the use of OFDM for data transmission over fading wireless 

channels has been widely studied. It has been adopted in several standards like Digital 

Audio Broadcasting (DAB), Terrestrial Digital Video Broadcasting (DVB-T), IEEE 

802.11 a wireless LAN and IEEE 802.16a. Its popularity stems from its efficient 

bandwidth usage, its ability to reduce the inter-symbol interference (ISI) caused by 

multipath fading, and easy implementation through FFT algorithm. When operating over 

a doubly selective fading environment, the channel impairments necessitate equalization 

of the received symbols prior to demodulation. The channel information plays an 

important role in the implementation of multi carrier modulation (MCM) systems. It is 

essential for bit and power allocations and signal detection. Without the knowledge of 

channel parameters, the MCM system either cannot work or may incur significant 

performance loss. Some techniques, such as differential phase-shift keying (DPSK) 

modulation, can be used to eliminate the need for channel information at the receiver, but 

it incurs a 3-4-dB performance loss. On the contrary, coherent modulation necessitates the 

use of suitable channel estimation algorithm. 

There are several channel estimation methods for OFDM systems broadly 

categorized as training based and iterative estimation methods [13]. Training based 

methods require the transmission of explicit pilot sequences followed by suitable filtering 

/ decision feedback operations. This chapter focuses on estimation of fading wireless 

channels for OFDM, using the ideas of Cyclic Prefix (CP) based estimation and adaptive 

filtering. Doubly selective environment with slow to moderate time variations is assumed, 

which facilitates a quasi-static channel model. There are a number of adaptive filtering 

algorithms for tracking time-varying systems namely Least Mean Square (LMS) and its 

variants, the method of Least Square (LS) and Kalman filter (KF) etc. 

In the following section wireless channel characteristics and basics of OFDM are 

presented. In the next section the channel estimation for OFDM using pilot method is 

presented. To estimate the channel information directly from the transmitted data, a CP 

based channel estimation method is discussed. 
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2.2 Wireless Channel Characteristics and OFDM 

In mobile radio communication systems, the signal transmitted on a wireless 

channel is subjected to a number of impairments, notable reflections, attenuations and 

scattering of power. Wireless channels are thus characterized by multipath transmission 

of the signal, i.e. the received signal results from summation of different replicas of the 

original signal. Each replica has its own particular amplitude attenuation and, delay which 

varies with time. This leads to time varying signal strength and signal fading [14]. 

Suppose that the signal s(t) is transmitted on the time variant multipath channel, where 

s(t) = Re[s,(t)e' 2 'J 	
(2.1) 

Then the received band pass signal will be 

x(t) = ~a, (t)s(t — rn (t)) 	 (2.2) 
n 

Where an (t) is the attenuation factor for the signal received on the n''' path and r(  t) is the 

propagation delay for the n'" path. Substitution from (2.1) into (2.2) gives 

x(t)=Re{[yan(t)e-'2,-' c'~s,(t—r„(t))]e'2' "} 
	

(2.3) 
n 

From equation (2.3) equivalent low pass received signal can be written as 

(t)= 1a,(t)e-. i27f,",(')S,
(t — Tn (t)) 	 (2.4) 

Since r,(t) is the response of an equivalent low pass channel to the equivalent low pass 

signal s, (t) , equivalent low pass impulse response of the time variant multipath channel is 

given by 

h(t, z) = I an (t)e-'2-f jT ('>8(t — rn (t)) 
	

(2.5) 
n 

Assume that h(t, r) is a wide-sense stationary uncorrelated scattering (WSSUS), a WSS 

process has a time-invariant mean; and the autocorrelation function is a function of only 

the time lag. Similarly, uncorrelated scattering (US) implies that the scatter contributing 
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to the different multipath components are mutually uncorrelated. The equivalent 

continuous-time low-pass channel impulse response (CIR), h(t,t), modelled as a complex 

valued random process, denotes the channel response at time t to the impulse applied at 

instant t-r. Under the WSS assumption, the autocorrelation function of h(t, r) is given by 

[ 14] 

ch(z,,r2;At) = I E[h*(ri ;t)h(r2 ;t+At)] 
	

(2.6) 

In most of the radio transmission medium, the attenuation and phase shift of the 

channel associated with path delay z, is uncorrelated with the attenuation and phase shift 

associated with path delay zZ , from the US assumption and Eq.(2.6) we obtain 

I E[h`(zl ;t)h(r,;t + At)] =Oh(z,;At)8(ri — T Z ) 	
(2.7) 

By putting At =0 in equation (2.7), we obtain the autocorrelation function O,, (r; 0) = 0,, (r) 

, it is called as multipath intensity profile or the delay power spectrum of the channel. The 

range of values of r over which 0(r) is essentially nonzero is called as the multipath 

spread of the channel and is denoted by T,,, . 

An analogous characterization of the time-variant multipath channel can be done 

in frequency domain. By taking the Fourier transform of h(t, r) we obtain time-variant 

transfer functionH(f;t) where f is the frequency variable. 

oo 
H(f;t) = f h(t,z)e .'21°Tdz 	 (2.8) 

H(f;t) has the same statistics as the h(t,r) . Assuming that channel is wide sense 

stationary, the autocorrelation function of H(f;t) is given by 

OH(f,,f2;At) = 2 EIH'(f ,;t)H(./ ;t+At)] 	 (2.9) 

By substituting Eq. (2.8) into Eq. (2.9) we obtain the relation 

E~ 



oo 

OH(f,.f2;At)=  f 01, (T I ; At )e-.12'rA 
'dry =OH(Af;At) 	 (2.10) 

Where, Af =1 — f, • O,., (Af; At) is the Fourier transform of the multipath intensity 

profile, and is called as the spaced-frequency, spaced-time correlation function of the 

channel or doubly selective channel. By taking At =0 in Eq. (2.10) we get 

0, (Af; 0) = q5 (Af) and 0, (r; 0) = 0 (),the relationship is simply 

00 
Ø11(Af) = f ' (Z)e 2"Af rd r 	 (2.11) 

Ø11(Af)is an autocorrelation function in the frequency variable, it provides with a 

measure of the frequency coherence of the channel. As a result of the Fourier transform 

relationship between ON  (Af) and O,, (r) , the reciprocal of the multipath spread is a 

measure of the coherence bandwidth of the channel. 

(Af) T 
m 

(2.12) 

Where (Af)  is the coherence bandwidth of the channel. When the bandwidth of the 

transmitted signal is larger than the (A/) , then the channel is said to be frequency 

selective. In this case, the signal is distorted by the channel. On the other hand, if the 

bandwidth of the transmitted signal is smaller than the (Af)  , then the channel is said to 

be frequency non selective. . 

Time variation of the channel is measured by the parameter At in 0, (Af; At) . The 

time variations in the channel are seen as Doppler broadening and as Doppler shift of a 

spectral line. In order to relate Doppler effects to the time variations of the channel 

function sH (Of,,t) is defined as 

= f OH  (of; At)e-.i21dAt 	 (2.13) 

When Af is set to zero the above relation becomes 

0 
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sH (2) _ f OH (At)Q J2 dOt 	 (2.14) 

The function sH  (A) is a power spectrum that gives the signal intensity as a function of 

Doppler frequency 2. Hence it is called Doppler power spectrum of the channel. The 

range of values of A over which sH  (2) is essentially nonzero is called Doppler spread 

Bd  of the channel. Since sH  (A) is related to Ø(2) by the Fourier transform, the 

reciprocal of Bd  is a measure of coherence time of the channel. That is 

(At)_!_ 
Bd 

Where (At),. denotes the coherence time. A slowly changing channel has a large 

coherence time or a small Doppler spread. 

2.2.1 OFDM 

Orthogonal frequency division multiplexing(OFDM) is a parallel transmission 

scheme, where a high-rate serial data stream is split up into a set of low-rate sub streams, 

each of which is modulated on a separate sub-carrier (frequency division multiplexing). 

Thereby, the bandwidth of the sub-carriers becomes small compared with the coherent 

bandwidth of the channel, i.e., the individual sub-carriers experience flat fading, which 

allows for simple equalization. This implies that the symbol period of the sub-streams is 

made long compared to the delay spread of the time-dispersive radio channel. That 

improves the robustness of OFDM to channel delay spread. Selecting a special set of 

(orthogonal) carrier frequencies, high spectra of the sub-carriers overlap, while mutual 

influence among the sub-carriers can be avoided as shown in Fig.2. 1. 

At one sub-carrier centre frequency, all other spectra are zero demonstrating the 

sub-carrier orthogonality. One of the most important properties of OFDM transmission is 

its robustness against multipath delay. This is especially true if the signal's sub-carriers 

are to retain their orthogonality through the transmission process. The addition of guard 

period between transmitted symbols can be used to accomplish this. The guard period 

allows time for multipath signals from previous symbol to dissipate before information 
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FiR.2.1.The overlapping spectra(sinc functions) of OFDM sub-carriers. 

from the current symbol is recorded. The guard time is chosen to be larger than the delay 

spread such that multipath components from one symbol cannot interfere with next 

symbol (thus preventing ISI). 

OFDM is thus a multicarrier transmission technique [3], where the spacing 

between two adjacent carriers is identical to the inverse of the symbol period. To generate 

OFDM successfully the relationship between all the carriers must be carefully controlled 

to maintain the orthogonality of the carriers. For this reason, OFDM is generated by 

firstly choosing the spectrum required based on the input data. Each carrier to be 

produced is assigned some data to transmit. The required amplitude and phase of the 

carrier is then calculated based on the modulation scheme typically differential BPSK, 

QPSK, or QAM). The required spectrum is then converted back to its time domain signal 

using an Inverse Fourier Transform. In most applications, an Inverse Fast Fourier 

Transform (IFFT) is used. The IFFT performs the transformation very efficiently, and 

provides a simple way of ensuring that the carrier signals produced are orthogonal. The 

Fast Fourier Transform (FFT) transforms a cyclic time domain signal into its equivalent 

frequency spectrum. Finding the equivalent waveform, generated by a sum of orthogonal 

sinusoidal components, does this. The amplitude and phase of the sinusoidal components 

represent the frequency spectrum of the time domain signal. OFDM has several 

advantages like less inter symbol interference, simplicity of channel equalization, 

efficient use of spectrum, etc. 
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2.3 Channel Estimation for OFDM 

Radio channels in mobile radio systems are usually multipath fading channels, which 

causes inter symbol interference (ISI) in the received signal. Equalizers can remove ISI 

from the signal, but requires channel impulse response (CIR). Adaptive channel 

equalizers utilize channel estimates to overcome the effects of inter symbol interference. 

Diversity techniques (for e.g. the IS-95 Rake receiver) utilize the channel estimate to 

implement a matched filter such that the receiver is optimally matched to the received 

signal instead of the transmitted one. Maximum likelihood detectors utilize channel 

estimates to minimize the error probability. Accurate channel estimation can be used in 

OFDM systems to improve their performance by allowing for coherent demodulation. 

Furthermore, for systems with receiver diversity, optimum combining can be obtained by 

means of channel estimators. Channel statistics can be determined by using pilot 

sequence method or Blind method. 

2.3.1 Pilot —assisted channel estimation: 

The most preferred method to estimate the channel and the offset in frequency is to 

use pilot symbols. Pilot symbols are symbols that are known to the transmitter and 

receiver in advance. The basic idea with pilot symbols is that there is a strong correlation 

between the pilot symbol fading and the fading of information data symbols that are sent 

close to the pilot symbol in time and sub-carrier. If the channel is static then directly use 

the pilots at once and estimate the channel at the receiver, if it is time varying continuous 

transmission of pilot sequences are needed. For that different channel estimation methods 

are used to estimate the channel using pilots. The pilot symbols and the information data 

symbols are typically placed in some kind of pattern on the different sub-carriers and over 

time. Different possibilities exist for allocating pilots in the time-frequency domain of an 

OFDM system. Pilot tone placement has a great impact on the performance of channel 

estimation [15]. For time-invariant frequency-selective channels, the pilot tones should 

minimize the effects of frequency selectivity and equally spaced pilots should be 

optimum on the FFT grid. It is better to transmit a few pilots in each OFDM symbol 

rather than clump them together in one symbol. This allows for better tracking of the 

channel variations. The method in [15] uses the pilots from a block of OFDM symbols to 

estimate the time-varying channel and alleviates the need for interpolating the channel 

frequency response. 
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The relation between transmitted and received signal at the q'" pilot symbol for the k'' 

OFDM symbol is [16] 

Yk(q) = Xk(q)Hk(q)+ Zk(q) 

The received pilot signals {Y(  q)} are extracted from {Y(k)} , the channel transfer 

function { H(k)} can be obtained from the information carried by {Hk  (q)} and with the 

knowledge of the known pilot symbols {X k  (q)} we can calculate the channel estimation 

{HH (q)} at pilots is 

Hk(q)= Y(q) 
 +Z(q) 

 =Hk(q)+Zk(q) X(  q) X(  q) 

Zk (q) is the noise contribution at the q"' pilot sub-carrier, Z'k (q) is a scaled noise 

contribution at that sub-carrier. Different methods can then be applied to estimate the 

channel over all sub-carrier frequencies using pilots. Channel estimation in OFDM is a 

two-dimensional (2-D) problem i.e., channel needs to be estimated in time-frequency 

domain. Due to the computational complexity of 2-D estimators, the scope of channel 

estimators can be limited to one-dimensional (1-D). The idea behind 1-D estimators is to 

estimate the channel in one dimension (may be frequency) and later estimate the channel 

in the second dimension (may be time), thus obtaining a 2-D channel estimate. Different 

approaches for channel estimation are based on minimum mean-squared error (MMSE) 

estimate of pilot signals. Because of the robustness of the MMSE estimator, the AWGN 

and the IC 1 components are reduced significantly in fast or slow-fading noisy radio 

channel environments. The computational complexity of the MMSE estimator can be 

reduced by using a simplified linear minimum mean-squared error (LMMSE) estimator 

with low-rank approximation by singular value decomposition (SVD) [17]. After the 

estimation of the channel transfer functions at pilot tones, the channel responses of data 

tones can be interpolated according to adjacent pilot tones. If the channel is continuously 

times varying continuous transmission of pilot sequences are needed but it is not efficient 

and one of the obvious drawbacks is that it is wasteful of bandwidth. For fast fading 

channels this might not be adequate since the coherence time of the channel might be 

shorter than the symbol time. 
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In digital communication systems, channel equalization and channel estimation 

are essential for successful data transmission. While channel equalization and estimation 

are usually done by pilot assisted-based methods as discussed above, blind methods have 

also been developed which do not require use of pilot symbols and possess desirable 

advantages such as better bandwidth efficiency. But they still have their own drawbacks. 

These methods are extremely computationally intensive and hence are impractical to 

implement in real-time systems. Techniques for blind channel estimation of OFDM 

systems using redundant precoding, subspace-based blind and semi-blind channel 

estimation for OFDM systems have been explored [ 18]. 

The pilot based method for channel estimation in OFDM is effectively used when 

the channel is quasi-static. For the fast varying channels above channel estimation 

methods are not efficient, so an adaptive channel estimation algorithm by exploiting the 

cyclic prefix in the MCM system is proposed in [8]. The cyclic prefix used in MCM 

systems is originally designed to reduce ISI. However, it is nothing but a repeated part of 

the transmit data which can be used for channel estimation. Based on this observation, we 

discuss an adaptive channel estimation algorithm to estimate the channel, adaptively 

exploiting the information in cyclic prefix. The algorithm uses decision directed samples, 

and hence, no extra training is needed. 

2.3.2 Fading Channel Characterization for OFDM Systems 

For band limited channel that causes ISI, it is convenient to develop an equivalent 

discrete time model for the continuous time system. The cascade of analog pulse shaping 

filter at the transmitterh'r(r), assumed to be time-invariant, the time-varying channel 

impulse response h(/, r) from Eq. (2.5), and the matched filter at the receiver with 

impulse response hr".(z) , together with the sampler may be represented by an equivalent 

discrete time transversal filter with coefficients h, (1). We assume a symbol spaced 

sampling of the continuous time channel impulse response (CIR), hence sampling of the 

impulse response is carried out every T.  seconds. The useful OFDM symbol duration 

T = NTH  , where N is the number of data subcarriers. In practice, the noise sequence at 

the matched filter output of the discrete time model is correlated, and it becomes 

necessary to cascade a noise-whitening with the sampler. The result usually referred to as 

equivalent discrete time white noise filter model [10]. 
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hn (1) = [her (r) * h(t, r) * h
Y« (r)j t=n7 r=/i. 	 (2.16) 

here * denotes the convolution operator, and T,. is the signalling interval. 

For an under spread channel whose delay spread is bounded by z„ax , the number of 

discrete channel taps L is determined by Izm T 
J 

, since T,. is the delay resolution of the 

model. Here we consider a low to moderate Doppler environment, which allows for a 

block fading (quasi-static) channel assumption. This implies that the channel tap 

variations within an OFDM symbol duration are negligible, and hence we may define an 

L x I channel tap vector for each OFDM symbol as 

h,, = [hn (0)h,, (1)... h, (L — 1)]T 	
(2.17) 

where h(l) is the l'h channel tap for the n'" OFDM symbol. However, the channel tap 

values change randomly from one OFDM symbol to other. 

The classical time autocorrelation function, according to Jake's model, at a time lag At is 

0, (At) = JO (2~.fdAt) 
	

(2.18) 

where J0 (.) is the zeroth-order Bessel's function of the first kind, and f is the maximum 
a 

Doppler frequency. The classical Doppler spectrum is obtained through Fourier transform 

as 

s(f) = (
) for f < f, 	 (2.19) 

0 	 otherwise 

In actual practice, the aforesaid autocorrelation function is difficult to achieve. An 

autoregressive (AR) process of order p may be used to approximate the Bessel's 

autocorrelation [12] [19]. This implies solving a system of p linear Yule-Walker 

equations. It has been found that for an order as low as 2, a good autocorrelation matching 

is achieved for time lag upto 20. Thus the classical Doppler spectrum for each of the L 

channel taps is approximated by an independent AR-2 process [ 19]. 
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For the 11h  channel tap at n`h  OFDM symbol, we have 

hn (1) = —a,h„_,(1) — azh„-z(1)+ vn(1) 
	

(2.20) 

where a, and a2  are the AR-2 coefficients and v, (1) is the modelling noise for l`" tap at 

symbol n. 

Equating the autocorrelation functions of the Jake's model and the AR-2 model (at a 

discrete lag of m symbol intervals), we have 

0(m) = E[hn(l)h„-„,(1)] = Jo(2'r fdmT) 	 (2.21) 

The poles of the transfer function for Eq. (2.20) are located at [10] 

p = 1— C)d e t jo.7ag” 	 (2.22) 

The.AR-2 coefficients a, and a2  are found as 

a, =-2rdcos(0.7wd) 	 (2.23) 

and 

z a2  = rd 	 (2.24) 

where 

ra  =1 1--i  and w, = 21r fdT 	 (2.25) 

For a close approximation between the AR-2 and Jake's model, the pole radius rd  should 

be close to unity. 
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2.4 CP Based Channel Estimation Method 

Wang and Liu ([8], [9]) have proposed an RLS based adaptive method for 

estimating digital subscriber line (DSL) channel in MCM systems. The method initially 

finds a pilot based MMSE channel estimate, and subsequently makes use of cyclic prefix 

(CP) part of the received symbols for channel estimation. The CP is inherently appended 

to the symbols in MCM systems, for eliminating ISI, and is normally discarded at the 

receiver and it can be viewed as a constantly sent training sequence for channel 

estimation. Hence we can use it to adaptively estimate the channel without additional 

training sequences. 

2.4.1 MCM System Using Cyclic Prefix 

Fig.2.2 shows an OFDM system using cyclic prefix with adaptive channel 

estimation [9]. The system has N data subcarriers. Input data are buffered, converted to a 

parallel stream and modulated to i.i.d. equi-probable symbols X„ (k) , where X„ (k) 

denotes the k" symbol of the n" OFDM symbol. These symbols are drawn from a 

complex constellation, depending upon the underlying modulation scheme, e.g. BPSK, 

QPSK, 16-QAM, 64-QAM ect. OFDM modulation is accomplished by taking N-point 

IDFT of the symbol vector 

X n  = [ X n  (0) X n  (1)... Xn  (N —1)]l 	 (2.26) 

The modulated time-domain signal is 

N-I 
0 S m 5 N- l 	 (2.27) 

A cyclic prefix of length gi i.e. x„1  = [ x„ (0)x„ (1) ... x,, (gi —1)]' is constructed by 

x„ (m) = xn  (N + m), 0 < m < gi —1. The CP is appended to form the transmitted vector as 

x'„ =[x,,(0)x„(1)...x„ (gi —1):x1 (gi)x„ (gi +1)...x, (gi +N-1)]' 	 (2.28) 
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Fig. 2.2. OFDM system with cyclic prefix and adaptive channel estimation 

The channel we may define as an L tap vector for each OFDM symbol as in Eq. (2.17) 

i.e., 

h„ = [hn (0)/i (1)... h„ (L — 1)]' 

where hn (1) is the I" channel tap of the n"OFDM symbol. 

The channel noise z11 (m)is assumed to be independent identically distributed (i.i.d.) real 

Gaussian distribution with zero mean and variance 62 at instant m in the n" OFDM 

symbol. 

The received symbol corrupted by fading channel and AWGN becomes 

yn(m)= hn(l)xn (m—I)+z„(m), 0 — m <— N + gi + L —1 	 (2.29) 
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At the receiver, the prefix part y/ = [ y, (0) y" (1) ... y, (gi —1)17 is discarded. The 

demodulation is performed only on yn = [ y„ (0) y„ (1) ... y„ (N —1)]' by the N -point DFT 

operation. The demodulated received vector is 

Yn = [Y„(0) Yn (1)... Yn (N-1)]%. 
	

(2.30) 

It may be seen from the Eq. (2.29) that there is no interference from the previous blocks 

in the received signal y„ . It shows that the cyclic prefix reduces ISI between X„ 's and the 

subchannels can be viewed as independent with each other, i.e., [9] 

Yn(k)=X n(k)H,(k)+Z,(k) 	 (2.31) 

where H„ (k) is the channel frequency response at the subcarrier k given by 

H,7 (k) = ~1 ~ hn(l)e-J 22nIk ~ N , 0 <_ k <_ N —1 	 (2.32) 

and Z„ (k) is the noise on k" subcarrier of n''' OFDM symbol i.e., 

N-1 
Z(k) = ~1 jz n (m)e

—J2xmk/N ' 0_<k_<N-1 	 (2.33) 
Vf~ nr=0 

For the independent subchannel of Eq. (2.31), only a one-tap equalizer W, (k) as shown in 

Fig. 2.2 is needed to get the estimation of X„ (k) from Y, (k) , i.e., [9] 

X(  k) = Yn (k)•W (k) 
	

(2.34) 

where 

W (k) H(k) 	 (2.35) 

Then the decision is made upon X„ (k) , resulting in X„ (k) = q(X„ (k )) , where q(.) is some 

type of quantization function (decision operation). Then the decoding and de-interleaving 

are done based on X n (k) . 
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2.4.2 Adaptive Filtering for Channel Estimation 

In this section we show that by using cyclic prefix, retraining is not necessary in 

the MCM systems to track the channel variations. Let's first consider the prefix part y n f 

which is originally discarded. The relation between y„f and the transmitted signal is [8] 

ynf  = Anhn  + Zn.f  

x(  O) 	xn-1  (N + gi —1) 

Where A„ = 

 
x(1) 	xn  (0) 

xn  (gi —1) 	xn  (gi — 2) 

xn-,(N +gi —l) 

(2.36) 

xn-1 (N+gi—L+1) 

and 

xn  (gi — L) 

Zn f  = [Zn  (0) Zn  (1) ... Zn (gi — Of 

The lower triangle part of matrix A,, is composed by x,/, while the upper triangle part is 

composed by last (gi — 1) samples of x,-, (previous symbol). However, the last (gi —1) 

samples of x,,_, are also the elements of the prefix xn_,f . Hence, if all cyclic prefix parts 

concatenate together to form a pair of sequence 

{x,n f  } _ {... xn-3 (0) xn-1 (1) ... x 1  (gi -1) x„ (0)...x,, (gi  —1)...} and 

{y,' } = {... Yn- (0 ) Yn-, (1 ) ... Yn-1 (gi — 1) y,, (0)...y,, (gi —1)...} , the relation between these 

two satisfies Eq. (2.36), based on this equation, an adaptive channel estimation algorithm 

is needed to estimate the channel h,, by solving Eq. (2.36). 

The receiver operates in training and decision directed modes. During training, the 

CP of the transmitted symbols x,,1  is assumed to be known at the receiver. The known 

transmitted CP and the CP part of the received OFDM symbol y,,1  form input to the 

channel estimation block. This gives the estimated channel vector (h„) for the OFDM 

symbol under consideration, which is used to equalize and demodulate the received 

symbol. In the decision directed mode, the receiver uses the estimated channel vector 

from the previous OFDM symbol (h„) to demodulate the received symbol and generate 

an estimate of the transmitted CP. This estimated CP, together with the CP of received 
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OFDM symbol, helps the channel estimator to provide an improved channel estimate. 

Using the CP-based model (as discussed above) for channel estimation in OFDM 

systems, a variety of adaptive filtering algorithms, namely Kalman filter (KF) and H-

infinity filter (HF) are considered in chapter (4). 
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Chapter 3 

Adaptive Filtering Algorithms for 

Autoregressive Model Parameter Estimation 

3.1 Introduction 

In numerous applications of signal processing and communication we are faced 

with the necessity to remove noise and distortion from signals. These phenomena are due 

to time-varying physical processes, which sometimes are unknown. One of these 

situations is during the transmission of the signal (message) from one point to another. 

The medium which is unknown, introduces noise and distortion due to the variations of 

its properties. These variations may be slow or fast varying. Since most of the time the 

variations are unknown, it is the use of the "adaptive filtering" that diminishes and 

sometimes completely reduces the signal distortion. 

An adaptive filter is a filter that self-adjusts its transfer function according to an 

optimizing algorithm. Because of the complexity of optimizing algorithms, most adaptive 

filters are digital filters that perform digital signal processing and adapt their performance 

based on the input signal. For some applications, adaptive coefficients are required since 

some parameters of the desired processing operation (for instance, the properties of some 

noise signal) are not known in advance. In these situations it is common to employ an 

adaptive filter, which uses feedback to refine the values of the filter coefficients and 

hence its frequency response (Fig 3.1) [12]. 

x(r 

Fig. 3.1. A generic adaptive filter 
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Generally speaking, the adapting process involves the use of a cost function, 

which is a criterion for optimum performance of the filter (for example, minimizing the 

noise component of the input or error), to feed an algorithm, which determines how to 

modify the filter coefficients to minimize the cost on the next iteration. We need a filter 

that could handle modeling errors and noise uncertainty, estimators that can tolerate such 

uncertainty (robustness) gives optimal state estimation, for that we require adaptive 

filtering algorithms. 

In this chapter we first present the Autoregressive model (AR) and then we 

consider the mathematical models of four different (Kalman, Dula-Kalman, H-infinity 

and Dual H-infinity) algorithms for estimation of AR process of order 2. We discuss the 

comparative study of different parameters for different algorithms. Finally simulation 

results are presented. 

3.2 Autoregressive Model 

In statistics and signal processing, an autoregressive (AR) model is often used to 

predict various types of natural phenomena. It is one of a group of linear prediction 

formulas that attempt to predict a state of the system based on the previous states. In 

general the time domain description of the input-output relation for the stochastic model 

can be described as: 

(Present value of the input) + (linear combination of past values of model output) 

_ (linear combination of present and past values of model input) 

In the AR modeling, the past values of the model input are not considered and so 

the model can be defined by the difference equation [12J 

s(k) +a,s(k —1)+a2 s(k —2) +.. . . + a,,s(k — p) = u(k) 

Where the time series s(k),s(k-1)........s(k p) represents the realization of an autoregressive 

process (AR) of order `p'([l2],[19]). aI,a2.......ap  are constants called the AR parameters 

and u(k) is a white noise which is excitation to the system. To specify an AR model the 

parameters to be specified are the filter coefficients and the variance of the excitation 

signal. For a given set of signal samples, these weights (AR parameters) can be evaluated 
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by solving the Yule-Walker set of equations (derived from the autocorrelation of the 

process) [12]. 

This AR model enables us to predict the tap gain process independently of the 

data based estimator. The system equation from this model and the observation equation 

jointly form a state-space representation of the dynamics of the tap-gain process. This 

state-space representation of the overall process is used to formulate the parameters of a 

Kalman filtering or H,3  filtering as discussed below. This model is used in a broad range 

of applications. It plays a key role in speech processing such as analysis, coding and 

enhancement [22]. In the framework of biomedical engineering, AR spectral analysis is a 

suitable technique. 

3.3 Kalman Filter 

Kalman filter is a linear filter and it can be applied to stationary and non-

stationary environments without any modification and its solution can be computed 

recursively. In particular, each updated estimate of the state is computed from the 

previous estimate and the new input data, so only previous estimate requires storage. In 

addition, to eliminate the need for storing the entire past observed data, the Kalman filter 

is computationally more efficient than computing the estimate directly from all of those 

past data at each step of the filtering process. A distinctive use of Kalman filter is that its 

mathematical formulation is described in terms of state space concepts i.e., a state space 

model based on the auto-regressive (AR) parameters model. 

The signal s(k) can be modeled by a p h̀  order AR process defined by [12] 

s(k) _ —  a.s(k — i) + u(k) 
(3.1) 

where the so-called driving processing u(k) is assumed zero-mean white Gaussian with 

variance a,2  The `a;' are the AR parameters. 

However, in real cases, the signal s(k) is often corrupted by an additive noise v(k) white 

or coloured, yielding the following noisy observations 

y(k) = s(k) + v(k) 
	 (3.2) 
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Our primary aim is to estimate the signal s(k) modeled by a pth order AR process. For this 

we can first have the state space representation of the above equations (3.1) & (3.2) as 

[21] 

x(k) = ~(k)x(k —1) + Fu(k) 	 (3.3) 

y(k) = Hx(k) + v(k) 

where x(k) is the state vector defined as: 

x(k) _ [s(k) s(k-]) ... s(k p+1)]'` 

u(k) corresponds to the error during the estimation of the AR parameters i.e. the process 

noise and v(k) is the observation noise. 

0(k) is the transition matrix which is constructed from the AR parameters as 

—a, ... ... —an 

1 0 0 0 

0 0 1 0 

H and r are the observation vector and the input vector respectively and are defined as 

follows 

H = FT = [ 1 0 0 ... 0] 	 (H has dimensions [lx  p]) 

The solution of the state space model by means of Kalman filtering algorithm gives us the 

estimate of the signal as 

s(k/k)=Hx(k/k) 	 (3.4) 

In the algorithm we use the following values in the intermediate steps: 

a (k) : the innovation sequence or more generally the noise present in the input. 

C(k) 	: the covariance matrix of v(k). 

P(k/k-1) : the priori error covariance matrix 

P(k/k) : the current error covariance matrix. 
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K(k) 	: the Kalman gain. 

The posterior estimate of the state vector can be written as [20],[2 1 ] 

i(k I k) = q$(k)z(k —1 / k —1) + K(k)a (k) 	 (3.5) 

This is the actual estimate of the filtered signal that we make from the noisy signal input. 

The innovation sequence is defined as 

a(k) = y(k) — Hq(k)i(k —1 I k-1) 	 (3.6) 

its covariance matrix is defined as: 

C(k) = HP(k I k —1)H 1 + ~? 	 (3.7) 

The Kalman gain is defined as: 

K(k) = P(k / k -1)HT C(k)-̀  	 (3.8) 

The priori error covariance matrix P(k/k-1) is defined as: 

P(k I k-1) = b(k)P(k -1 I k - 1)0(k)' + ro?P 	 (3.9) 

and the current error covariance matrix P(k/k-1) is defined as: 

P(k I k) = [I P — K(k)H]P(k I k -1) 	 (3.10) 

Kalman filters give a very accurate estimate of the original signal from the noisy 

data provided we have the proper AR parameters available with us. But in real cases we 

cannot have them before we have the signal. But this signal is generally corrupted by 

noise. So it becomes important that we use methods to obtain the AR parameters from the 

noisy signal and then use them to obtain the estimate of original signal. This means that 

the original problem of signal estimation now becomes the problem of signal and 

parameter estimation. This leads to joint parameter and signal estimation problem, also 

referred to the dual-estimation problem. 
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3.4 Dual Kalman Filter 

Kalman Filter gives the best linear estimate of a process under Minimum Mean 

Square Error (MMSE) criterion. But it requires the knowledge of AR parameters of signal 

beforehand. But it is not possible practically, to always have apriori knowledge of AR 

parameters. For the AR parameter estimation, we can use another Kalman Filter to 

estimate it from the noisy signal [21]. The underlying principle behind using the dual 

Kalman filters instead of Kalman filtering revolves around the dependence of the 

autoregressive parameters on the original signal samples. 

Dual-Kalman filter involves two interacting Kalman filters working in parallel. 

Indeed, each time a new observation is available, the signal is estimated using the latest 

estimated value of the parameters, and conversely the parameters are estimated using the 

latest a posterior signal estimate. In case of AR modeling, the AR parameters actually 

define as 0 = [a, a2  ..... a p  ]' from the noisy observations s(k) . Also from equations (3.4) 

and (3.5) we can represent the signal estimate as a function of 0 (AR parameter vector). 

Here s(k / k) = Hx(k / k) 

where I(klk)=O(k)1(k-1/k—l)+K(k)a(k) 

we get 

s(k I k) = H(k)[çt(k)z(k —1 I k —1) + K(k)a(k)] 

_ -x(k -1 I k -1)T  0 + HK(k)a(k) 

=-z(k-l'l k-1)' 0+vo(k) 
	

(3.11) 

When the signal is assumed to be stationary, the AR parameters are time invariant and 

satisfy the following relationship: 

0(k) = 0(k —1) 	 (3.12) 

Therefore using a second Kalman filter in parallel, denoted KF2 in Fig. 3.2 makes it 

possible to estimate the AR parameters from the noisy observations. The corresponding 

state-space representation is based on Eq. (3.11) & Eq. (3.12) and is given by [21 ] 
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0(k) = 0(k —1) 	
(3.13) 

9(k I k) = H0(k)O(k) + vg  (k) 

where v0  (k) = HK(k)a(k) 

and 	HO (k) = —z(k —1 I k —1)' 	 (3.14) 

Using the covariance matrix of a(k) and the expression ofve(k), we can write the 

variance for the ve(k) as 

RB  = E[vs(k)v©' (k)] 
= E[HK(k)a(k)a''(k)K` (k)HT  ] 

= HK(k)E[a(k)aT  (k)]K T  (k)H T  

RB  = HK(k)C(k)K(k)T  H'' 	 (3.15) 

where 

C(k) = E[a(k)aT  (k)] 

The implementation of Dual-Kalman filter can be represented as a flowchart in Fig. 3.2. 

	

y(k-1) 	 y(k) 

Fig. 3.2. Dual Kalman Filter 



Apart from estimating the AR parameters, we also need to estimate the noise 

parameters i.e. variance of u(k) and v(k). This can be done by using the error covariance 

matrices. From Eq. (3.9) and Eq. (3.10) we can write: 

P(k I k) = [O(k)P(k —1 k —1)0(k)1  +Fo rF — K(k)HO(k)P(k —1 I k —1)0(k)7' — K(k)HI'o f T  ] 

Since the innovation variance C(k) is a scalar and the priori covariance matrix 

P(k I k — 1) is real and symmetric, Eq. (3.8) can be rewritten in the following form: 

HF(k I k —1) = C(k)K(k)T  

From the above two equations P(k/k) can be written as 

P(k I k) = [O(k)P(k -1  I k — 1)0(k)7  + Foi FT — K(k)HP(k I k — 1)] 

[P(k k) — O(k)P(k —1 I k —1)0(k)7' + K(k)HP(k I k-1)] = I'ou I''' 

f -' [P(k l k) — q$(k)P(k --1 l k —1)0(k)' + K(k)HP(k l k —1)](T'-' )' = 6; 

Therefore, from the above equation, one can express variance of process noise [u(k)] can 

be written as 

o-, = D{P(k I k) — O(k)P(k —ii  k —1)0(k)'' + K(k)C(k)K(k)7' }D` 	(3.16) 

where D = [FT11-' I,T  is the pseudo inverse of F. 

Using this, we can write a recursive equation to get an estimate of variance oo as follows 

6u (k) = k  k  1  6,Z (k —1) + !DL(k)D' 	
(3.17) 

where L(k) = P(k l k) — q$(k)P(k —1 / k — 1)O(k)T  + K(k)a2  (k)K(k)T  

Similarly variance of v(k) can be estimated using Eq. (3.7) as 

C(k) = HP(k I k — 1)H 1  + a", 

a = C(k) -- HP(k I k —1)H" 



where the variance of the innovation process C(k) is replaced by its instantaneous value 

a2  (k) ,by using this, we can write a recursive equation to get an estimate of variance o 

as follows 

a (k)= kk  c (k-1)+ M(k)  
(3.18) 

where M(k) = a2  (k) — HP(k / k — 1)HT  

The equations of the "Dual-Kalman Filtering" algorithm are summarized as follows [21 ] 

1. Signal Estimation 

ac(kIk—l)= O(k)z(k-1/k-1) 

P(k I k-1) = q$(k)P(k -1 k -1)0(k)' +Foul" 

a(k) = y(k) — Hq(k)z(k —1 I k —1) 

C(k) = HP(k I k —1)H' + u,z 

K(k) = P(k/k-1)HTC(k)-' 

i(k I k) _ ¢(k)z(k —1 / k —1) + K(k)a (k) 

P(k I k) = [I P  - K(k)H]P(k I k -1) 

2. Auto regressive model parameter estimation 

Ha  (k) = —i(k —1 I k —1)" 

v(k) = HK(k)a(k) 

RB  = HK(k)C(k)K(k)' HT  

C0(k) = [H8P9(k -1 / k -1)H©' + 

KB(k) = P(k -1 / k -1)H© r  
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0(k) = 0(k —1) + KB(k)vo (k) 

Po(k/k)=[I P —K0(k)H9 ]PP(k/k-1) 

3. Noise parameters estimation 

L(k) = P(k / k) -O(k)P(k -1 / k - 1)0(k)T + K(k)a2 (k)K(k)7 

D= [rrr]-I FT = [1 0.... 0] 

k k 1 6 (k —1) + I DL(k)D•r 

M(k) = a2 (k) - HP(k / k -1)HT 

k k 1 6~(k-1)+ I M(k) 

The Kalman filtering approach gives the optimal solution when the noise 

characteristics are known a priori and the estimation problem is Gaussian. But in many 

situations noise may not be Gaussian, one of the techniques for handling such situations 

uses H. filtering approach. 

3.5 H-infinity Filter 

The objective of H113 filtering estimators is to minimize the maximum energy gain 

from the disturbances to the estimation errors. This will guarantee that if the disturbances 

are small (in energy) then the estimation errors will be as small as possible (in energy), no 

matter what the disturbances are. In other words the maximum energy gain is minimized 

over all possible disturbances. Since they make no assumption about the disturbances, 

they have to accommodate for all conceivable disturbances, and are thus over-

conservative. Let T(f) denotes the transfer operator that maps the disturbances at the 

input of the recursive estimation strategy to estimation errors at the output [12] 

	

Initial error 	 Transfer operator 
vector 

7'(f) 

	

Disturbances 	 Estimation error 

/.3.3. Transfer operator from disturbances to output prediction error. 
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We may then define the energy gain of the estimator as the ratio of the error 

energy at the output to the total disturbance energy at the input. Clearly, the ratio depends 

on the particular choice of input disturbances. To remove this dependence, we consider 

the largest energy gain over all conceivable disturbance sequence. In so doing we will 

discuss the H0,, norm of the transfer operator T(f) and formulate the optimal H~ 

estimation problem as a causal estimator that minimizes the Hc0 norm of T(f),  where 

T(f) is a transfer operator that maps the disturbances to the estimation error. H. 

optimal estimator that minimizes II T(f) is 

J = IIT(f)II2 

3.5.1 HL Estimation Algorithm 

As in the case of Kalman filtering, the H-infinity filtering also uses the state-space 

model based on the pt" order AR process. Here apart from estimating the signal s(k) we 

also use the current estimated value of the- state to improve the previous values of the 

estimate. 

From Eq. 3.1& Eq. 3.2 the state of the system for H-infinity filtering can be defined as: 

x(k) _ 0(k)x(k — 1) + Fu(k) 	 (3.19) 

y(k) = Hx(k) + v(k) 

We shall not make any assumptions on the disturbances, the driving process noise 

[u(k)] and the measurement noise [v(k)] except that they have finite energy and they may 

have zero mean. The finite energy assumptions is reasonable since in any practical 

system, both u(k) and v(k) are samples of band limited noise process. 

Unlike Kalman filter, the H-infinity filter not only deals with the estimation of the state 

vector x(k), but also makes it possible to focus on the estimation of a specific linear 

combination of the state vector components: 

z(k) = Hx(k) 	 (3.20) 

where H is a 1 xp liner transformation operator. Here, as we aim at estimating the signal 

s(k), this operator is defined as H=[l 0 ...0]. The Eq. (3.19), Eq. (3.20) and Fig. 3.4, the 
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H-infinity filter provides an estimation of the signal s (k/k) = Hx(k/k) , by 

minimizing the H-infinity norm of the transfer operator T(f). This operator maps the 

discrete-time noise disturbances u(k) and v(k) and the unknown initial state error vector 

e0 = (x0 —xo ) to the estimation error e(k) = Hx(k) — H*(k) . 

Rk - Iv(k) 

Qk 1u(k) e(k) 

Fiji. 3.4. Transfer operator T(f) 

For this purpose the standard H-infinity norm (or) objective functions (or) cost function 

used is [20] ,[22]. 

0 

Jll~ = SUP J 	 (3.21) 
v(k),u(k),xp 

where 

N-1 	Z 

_o 	Elle(k)I 
N 1 k

=O 
	 (3.22) 

eH O1) IeU + Z1Rk -I I v(k)II2+ Lk I I ukI z } 
k=0 l 

with N the number of available samples. In addition, Qk >Oand Rk >0 are weighting 

parameters, which often correspond to the instantaneous power of the sequences u (k) and 

v(k) , respectively. In practical systems, the values of Q,~ and R k play the role of 

variances of the noises in the excitation process and the measurement process 

respectively. Furthermore, Pr, > 0 denotes a positive define matrix that reflects a priori 

knowledge on how small the estimation error e0 =(x0 — xo ) is. These weighting 

parameters are usually tuned by the designer to achieve performance requirements. 
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The direct minimization of J is not tractable, so instead a performance bound is 

choosen and seek an estimation strategy that satisfies the threshold. The following 

suboptimal design strategy is usually considered [20] 

IIL = sup J <- y 
	 (3.23) 

v(k),u(k),x0  

where S U  p  stands for supremum (least upper bound) and y  (>0) is a prescribed level of 

noise attenuation. From Eqn. (3.16) Hr,, optimal estimator guarantees the smallest 

estimation error energy over all possible disturbances with finite energy. H Optimal 

estimator so found is of a minimax nature. The performance criterion can be represented 

as 

min max J = min 	max 	— I Y 
 

e y9P0 Leo +_ [Me(k)I2 — y ( Qk i uk  Iz  + Rk  ' Ivk M 2 )1}]  
x(k)  vA.uA..(xn) 	i(k) ["(k)'UM.(xn) 	2 	 2 k=O 

It is proved in [25] that there exists an H-infinity estimator s(k / k) for a given y  >0 if 
a 

there exists a stabilizing symmetric positive definite solution P(k) to the following 

discrete-time Riccati type equation [20], [23] 

P(k) _ q$(k) P(k —1)C(K)-' O(k)T  + rQk f' 	 (3.24) 

where 

C(k) = [I,, — y-'H"HP(k —1)+H Rk -'IIP(k -1)] 	 (3.25) 

and the innovation process and H-infinity gains are respectively given by 

a(k) = y(k) — Hq(k)z(k —1 I k —1) 	 (3.26) 

K(k) = P(k)C(k)-' HT  Rk-' 	 (3.27) 

The necessary and sufficient condition for the existence of the H. estimator is that 

P(k)C(k)-' >0 
	

(3.28) 
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If the condition in Eqn. (3.28) if fulfilled, the H-infinity estimator exists and is defined by 

z(k I k) = q5(k)z(k —1 / k —1) + K(k)a(k)  (3.29) 

s(k/k)=Hz(k/k) 
 

(3.30) 

The equations of the "H-infinity Filtering" algorithm are summarized as follows [20], 

[23] 

i(kIk—l)=c(k)i(k- 1 /k-1) 

a(k) = y(k) — HO(k)z(k — I k-1) 

C(k) =4I, — y-' HT  HP(k — 1) + H' R' HP(k —1)] 

K(k) = P(k — 1)C(k)-' H' Rk -' 

X(k I k) = çb(k)i(k —1 / k —1) + K(k)a(k) 

s(k / k) = HX(k / k) 

P(k) = 0(k)P(k —1)C(K)-' 0(k)1  + FQkr' 	 [P(0)=I =I1 

H-infinity filter is the robust estimation criterion that minimizes the worst possible 

disturbances of the estimation error. 

35 



3.6 Dual H-infinity Filter 

•For the joint estimation of both signal and its AR parameters, we require another 

H-infinity filter. For this joint estimation coupling filter based approaches can be 

considered. This method makes it possible to provide robust estimation of the signal and 

its AR parameters. To estimate the AR parameters 0(k)=[ai a2 ... ap]T from the estimated 

signal s(k I k) we use Eq. (3.29) & Eq. (3.30) to express s(k I k) as a function of AR 

parameters as 

O(k) = 0(k — 1) 

s(k J k) = H0 (k)0(k) + v0(k) 

where 

vo (k) = HK(k)a(k) 

and 	HO (k) = —x(k —1 I k —1)' 

By defining the Autoregressive parameters estimation error as 

e0 (k) = z(k I l k —1)0(k) — z(k —1 l k —1)0(k) , a second H-infinity can be used to 

recursively estimated 0(k) as follows: 

0(k) = 0(k —1) + K©(k)a0(k) 	 (3.31) 

where 

ae(k) = s(k I k)-1(k-1 I k —1)0(k —1) 	 (3.32) 

C©(k) = [I,, — y-~H/ H© P0(k —1) + H©` R,, 'H© P© (k —1 )] 	 (3.33) 

KB (k) = PB (k —1)CB (k)-' H B'.RV -' 	
(3.34) 

P© (k) = PB(k —1)C9(k)-' 	 (3.35) 
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Apart from estimating the AR parameters, we also need to estimate the noise 

parameters. This can be done by using the Riccati equation From Eq. (3.24) we can write: 

P(k) _ çb(k)P(k —1 )C(k)-' O(k)' 

P(k) - q(k)P(k —1)C(k)-' 0(k)7' = FQkI" 

(f)-' [P(k) - b(k)P(k —1)C(k)-' ~(k)r ](r  )i' = Qk 

Therefore, from the above equation, we can write a recursive equation to get an estimate 

of variance Q as follows 

Qk (k)= k k I Qk (k—l)+kDL(k)D~ 	
(3.36) 

where 

L(k) = [P(k) - Ø(k)P(k —1 )C(k)-' q(k)T] 

and D =.[I'TI] ' I'T is the pseudo inverse of F. 

Similarly variance of v0(k) can be estimated as: 

R, = HK(k)a2(k)K(k)'H'' 	 1 (3.37) 

we can write a recursive equation to get an estimate of -R,0 as follows 

Rv (k) = k k I R" (k —1) + k DM( k)Dr 	 (3.38) 

where 

M(k) = HK(k)ci2(k)K(k)T HT 

The equations of the "Dual-H-infinity Filtering" algorithm are summarized as 

follows [23], [24] 

1. Signal Estimation 

z(k I k—l)=O(k)z(k-1 /k-1) 
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a(k) = y(k) — Hq(k)z(k —1 k —1) 

C(k)=[I, -y-'H'HP(k-1)+H7 Rk -' HP(k-1)] 

K(k) = P(k -1)C(k)-' H''Rk-' 

z(k I k) = O(k)z(k —1 / k —1) + K(k)a(k) 

P(k) = q$(k)P(k —1)C(K)-' 0(k)' .  +rQkr' 	 [P(0) = Pn  = I.] 

2. Auto regressive model parameter estimation 

v0(k) = HK(k)a(k) 

ae  (k) = s(k I k) - X(k -1 k -1)0(k -1) 

CB(k)=[1'  -y-'  HG' H0 P0(k-1)+H©"Rv„  'H0 P0(k-1)] 

KB(k)  =  

0(k)= ©(k-1)+K0(k)a0 (k) , [0(0) =01 

P,(k) = P(k -1)C© (k)-' [P0(0) =1,] 

3. Noise parameters estimation 

L(k) = [P(k) - q$(k)P(k —1)C(k)-' 0(k)' ] 

D=[FTF-AFT _ [1 0.... o] 

Qk (k) = k k  Qk (k—I)+ —DL(k)DT 
 

M(k) = HK(k)a2  (k)K(k)T  HT  

k k 1  RN„ ( k-1)+- DM(k)D” 
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where R a >0,  Pe (0) > 0 are the weighting parameters , the values of Q,~ and R k play the 

role of variances of the noises and y is the prescribed noise attenuation level. Remaining 

symbols have the same meaning as those in the Dual-Kalman filter. 

3.7 Simulation Results 

In this section, we present simulation results for estimation of the signal using 

different adaptive filtering algorithms (Kalman,Dual-Kalman,H-infinity and Dual-H-

infinity) in MATLAB environment. To study the performance of the system, we have 

generated an Auto-Regressive process of order 2 with known parameters which remain 

stationery over the entire signal duration and we have studied the filter's convergence 

properties, i.e. how fast the filter adapts to the true values of the AR process. A second 

order AR process can be generated using (3.1) with order, p = 2 [ 19]. 

s(k) = a,s(k —1) + azs(k — 2) + u(k) 

where the AR parameters a, and a2 and the variance of the process noise, 6„2 is chosen to 

make s(k) a process with unit variance. We have generated an AR process of order 2, 

where a, and a2 are -0.975 and 0.95 respectively with r 2 = 0.0731. These values of the 

parameters were also considered in [12]. The zero mean complex Gaussian noise v(k) 

with variance 2 is added to signal to get observations. 

As discussed earlier, Kalman filter gives the best linear estimate under the 

Minimum Mean Square Error (MMSE) criterion. But it requires apriori knowledge of the 

signal parameters. But in practical situations it is difficult to estimate the signal 

parameters. In H-infinity case whatever may be the noise characteristics it can estimate 

the system, but it require the knowledge of AR parameters. Dual filtering is used to 

analyze the convergence of weight vector with an AR process of order 2. The true 

weights in this case are -0.975 and 0.95. The vector is initialized to all zeros in the 

beginning of each experiment. It has been observed that on an average, it takes around 

500 iterations for the algorithm to estimate the weight vector from the noisy signal. 

In Table 3.1, we have given mean square error (MSE) computed as 

N 	2 

MSE = 1 Ile(k)I (3.39) 
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where e(k) is the estimated error and can be written as 

e(k) = s(k) — s(k / k) 

where N is the number of iterations. 

From Table.3.1, it may be observed that the estimated values converge to the true 

values at high SNR and we conclude that the Dual Algorithms successfully estimate the 

AR parameters which are unknown. The estimation error plots of Kalman, H-infinity, 

Dual Kalman and Dual H-infinity algorithms are shown in Fig. 3.5. 

Fig. 3.5 a) shows the MSE performance for Kalman and Dual Kalman filters for 

AR-2 process. It is seen that at low SNR's (below 10 dB) Kalman filter performance is 

better and for high SNR's both algorithms have similar performance. Fig. 3.5 b) shows 

the MSE performance for Kalman and H-infinity filters. Here true values of the AR 

parameters are known, for Kalman filter the noise statistics are also assumed to be known. 

For SNR of 5 dB, H-infinity filter gives MSE=0.2654 where as Kalman filter give 

MSE=0.2179. As expected Kalman filter gives improved performance at low SNR. 

Fig. 3.5 c) compares the MSE performance for H-infinity and Dual-H-infinity 

filters for AR-2 process. It is seen that at low SNR's (below 10dB) performance of H-

infinity filter is better than dual-H-infinity filter. For SNR of 5 dB, H-infinity filter gives 

MSE=0.2485 where as Dual-H-infinity filter give MSE=0.2899. Fig. 3.5 d) shows the 

MSE performance for Dual-Kalman and Dual-H-infinity filters. Here the AR parameters 

as well as noise statistics are estimated. The MSE performances of both filters are mostly 

similar. 

Fig. 3.5 e) shows the MSE performance of all the four filters for AR-2 process. 

The results are as expected and Kalman filter gives the best performance, since the 

knowledge of true parameters will lead to better filtering. But in practical applications, we 

do not have access to signal from which the true parameters can be extracted. Algorithms 

like Dual Kalman, Dual H-infinity have the ability to estimate the parameters of the 

signal from its noisy version and are suitable for real-time applications. According to 

Table.3.1 and Fig. 3.5 d) Dual H-infinity approach provides better estimates as compared 

to Dual Kalman filter. 



SNR 10 dB 20 dB 30 dB 40 dB 

Kalman Filter 
with known MSE = 0.0837 MSE = 0.0093 MSE = 0.001 MSE = 0.0001 
Parameters 

MSE = 0.0907 MSE = 0.0139 MSE = 0.0018 MSE = 0.0005 
Dual Kalman _ -0.534 _ -0.8984 a~ _ -0.946 a = -0.9607 

Filter 
a2 = 0.335 a2 = 0.787 a2 = 0.892 a2 = 0.9214 

2 = 0.3226 6 2 = 0.0442 6 2 = 0.0578 6„2 = 0.0623 

• H-infinity Filter MSE = 0.0886 MSE = 0.0096 MSE = 0.001 MSE = 0.000] 

MSE = 0.0896 MSE = 0.0104 MSE = 0.001 MSE = 0.0001 
_ -0.508 a = -0.9032 a _ -0.9632 = -0.9708 

Dual H-infinity 
Filter a2 = 0.2103 a2 = 0.8246 a2 = 0.927 a2 = 0.9421 

a 2 = 0.2489 aI12 = 0.0386 6 2 = 0.0642 a,1 2 	= 0.07024 

Table 3.1. Comparison of different adaptive filtering algorithms for AR (2) parameters 

and driving process estimates based on 500 realizations. The true values are a1,0.975, 

az=0.95 and c =0.0178112]. 
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Chapter 4 

Applications of Adaptive Filtering Algorithms for 

Channel Estimation in OFDM 

4.1 Introduction 

In OFDM systems, due to user mobility, each carrier is subject to Doppler shifts 

resulting in time-varying fading. Thus, the estimation of the fading process over each 

carrier is essential to achieve coherent symbol detection at the receiver. In that case, 

training sequence/pilot aided techniques and blind techniques are two basic families for 

channel estimation. Training based methods require the transmission of explicit pilot 

sequences followed by suitable filtering. This chapter focuses on estimation of fading 

wireless channels for OFDM, using the ideas of Cyclic Prefix (CP) based estimation and 

adaptive filtering. 

The time-varying fading channels are usually modelled as zero-mean wide-sense 

stationary circular complex Gaussian processes, whose stochastic properties depend on 

the maximum Doppler frequency denoted by fa. According to the Jakes model [26], the 

theoretical Power Spectrum Density (PSD) of the fading process, is band-limited. 

Moreover, it exhibits twin peaks at ± fd. The fading wireless channel statistics can be 

directly estimated by means of the Least Mean Square (LMS) and the Recursive Least 

Square (RLS) algorithms as in [27]. Alternatively, Kalman filtering algorithm combined 

with an Autoregressive (AR) model to describe the time evolution of the fading processes 

and it provides superior performance over the LMS and RLS based channel estimators in 

[28]. In addition, when the AR model parameters are unknown, dual filtering algorithms 

are used to estimate the fading channels. 

In this chapter, for the channel estimation of OFDM, a system model and 

architecture over fading channels are presented. In the next section a CP based model and 

the different channel estimation algorithms (Kalman, Dual-Kalman, H-infinity and Dual-

H-infinity) are discussed. The performance results are discussed in the next section, 

finally simulation results are presented. 
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4.2 System Model 

In the following, we consider a low to moderate Doppler environment, which 

allows for a block fading (quasi-static) channel assumption. This implies that the channel 

tap variations within an OFDM symbol duration are negligible, and hence we may define 

an Lxl channel tap vector for each OFDM symbol as 

h, =[hn(0)hn(1)...h„(L-1)]` 	 (4.1) 

where h(l) is the l`” channel tap for the n`" OFDM symbol. 

The classical Doppler spectrum for each of the L channel taps is approximated by an 

independent AR-2 process [19]. 

For the l" channel tap at n'" OFDM symbol, we have 

h,, (1) =—a,h,,-1(1)—a2h„-2(1)+v,,(l) 
	

(4.2) 

where a1 and a2 are the AR-2 coefficients as defined in the second chapter and v,, (1) is 

the modelling noise for 1h tap at symbol n. 

4.2.1 OFDM architecture over fading channel 

We consider an OFDM system as in Fig. 4.1 with N data subcarriers. Input data are 

buffered, converted to a parallel stream and modulated to i.i.d. equi-probable symbols 

X„(k), where X(k) denotes the kt” symbol of the n`" OFDM symbol. Each symbol mapped 

to some complex constellation points, X„(k), k=0,1,...,N-1 at each n. The modulation is 

implemented by N-point inverse discrete Fourier transform (IDFT) for the symbol vector 

X,, =[X,,(0)X,,(1)...X,,(N-1)]'. (4.3) 

is 

I N-I 
xn(m+g1)= 	E Xn(k)e ,zn,,,k N~ 0<—m<_N-1 	 (4.4) 

CP of length gi is appended to form the transmitted vector as 



x n  _[ x,,(0)x,,(1)...x,(gi-1)x,,(g/)x„(gi+1)...x,,(gi+N-1)]1.  

(4.5) 

where 

x,,(m)=x„(N+m), 0_<m<_gi-1 

The received symbol corrupted by fading channel and AWGN becomes 

Y n (m) = Zh„(1)x„(m—l)+z„(m), 0 _< m <_ N+gi+L-1 
'=o 	 (4.6) 

where n is the OFDM symbol index, 

z(m) is an AWGN sample with zero mean and variance a2  at instant m in the nth 

OFDM symbol. 

Demodulation involves removing the cyclic prefix and taking N-point DFT of the 

received vector to get 

Y,, = [ ç (o) Y, (1)... Y (N —1)]' 	 (4.7) 

In frequency domain, we have over each subcarrier 

Y (k) = Xn  (k)H,, (k) + Z„ (k) 	 (4.8) 

where H(k) is the channel frequency response at subcarrier k given by 

Hn(k) _  1  Y hn(l)e  l2nik/N' 0<k<—N-1 
/-o 	 (4.9) 

and Z„ (k) is the noise on k'” subcarrier of nth  OFDM symbol i.e., 

N-i 
Z(k) = 1  I Z'(M)e-l2'rn,k/N' 0 <_ k <_ N -1 	 (4.10) 

At the receiver, the channel estimator is followed by frequency domain equalizer. A 

description of channel estimation techniques is given in section 4.3. After equalization, 

the estimated symbol at the k`h  symbol becomes [10] 

X„ (k) = Y" (k)  — X(k)H,7(k)    + Z,, (k) 
H(k) 	H,3(k) 	H„(k) 

(4.11) 
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where Hn  (k) is the estimate of H„ (k) defined in Eq. (4.9). The estimated symbols 

X„ (k) are then demapped to output bits. 

Noise Z„ 
CP 

Data 	 Y17  
in 	QpSK 	 P/S 	Channnel h„ 	4 

Modulation 	IDFT 

x  n Training/decision directed 

QPSK 	 Channel 	 Channel 	S/P 
DFT 	Estimation Demodulatio 	Equalization 

Data 
out 

Fig. 4.1. Block schematic ofihe OFDM system. 

4.3 CP Based Channel Estimation Techniques 

This section describes the use of various adaptive filtering algorithms in CP based 

frame work for channel estimation in OFDM systems as discussed in chapter. 2. From 

Eq. (4.6), we know that 

yn  (m) = h„ (0)x(m) + hn  (1)x(m —1) +... + h„ (L —1)x(m — L + 1) + z„ (m) 	 (4.12) 

Gathering the received samples of the n'" received OFDM symbol for time instants 

0<m <gi—l,weobtaina gixl vector 

=[y,,( 0 )y,,(I)y,,( 2 )...y,, (gi —1)]' , 	 ( 4.13) 

which is the CP of the received OFDM symbol, and 

Z n,CP =[zn(0)zn(1)z,,(2)...z,,(gi -1)]7 	 (4.14) 

is the gi x 1 vector of AWGN samples affecting the CP part of the n`" received OFDM 

symbol. 
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4.3.1 Kalman Filtering (KF) algorithm 

When operating in a non-stationary environment, Kalman filter [29] is known to 

yield an optimal solution to the linear filter problem. This subsection describes the 

application of KF to the channel estimation problem in OFDM. For this purpose, the 

system is formulated as a state-space model, with unknown channel taps comprising the 

state of the system. We assume that the state s„ , to be estimated at OFDM symbol index 

n, comprises of channel taps at two consecutive OFDM symbols [10] 

sn = [hn-I hn]z1x1 	 (4.15) 

From Eq. (4.1) and Eq. (4.2) we have 

h,, = Lh„(0 )h„(1 )... h„(L —1)]~.x~ 

h 	= Lh,, (0)h„-1 (1)... h,, (L — l )]~.x~ 

and 

h,, = a,h„-, + azhn_2 +v,, 	 (4.16) 

From above equations we get 

hn-~ _ o 	IL. irh,,71+ v 	 (4.17) 
h„ — a2!1. a,l,. h,,-1 

We observe that Eq. (4.17) provides the basis for forming the process equation as 

s„ = Bs„_, + vn 	 (4.18) 

Here, transition matrix 

B __ [ 011 	1 	 (4.19) 
La2!,. ajI,. 2.x21 

01,xL denotes the L x L matrix of all zeros and t,, is the L x L identity matrix. 
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Process noise vector 

v,, =[OIXL vn(0)vn (l)...v,,(L -1)] 	 (4.20) 

where v„ (l) is the modelling noise as in (4.2) 

From Eq. (4.12), we have 

yn (m) = h„( 0)x(m)+h„(1)x(m-1)+...+hn (L-1)x(m—L+1)+z„(m) 

y„(0) 	x„(0) 	x„_,(N+gi-1) 	... 	x„_,(N+gi—L+1) h„(0) 

Y„( 1 ) 	x,,( 1 ) 	x,,( 0 ) 	x„-1(N + gi —1) 	... 	h,,(1) 

LY„(gi -1 ) 	x„(gi -1 ) 	x,,(gi - 2) 	 ... 	 x„(gl — L) 	h„(L -1 ) 

where 0 s m 5gi—] 

We observe from above that following provides the basis for forming measurement 

equation as 

y n ,CI' = Ans„ + zn  c ,> 	 (4,21) 

where the measurement matrix A„ in Eq. (4.21) is formed from the matrix A„ by 

augmenting it with a null matrix as 

An = [09iXL 	An l gix2L 
	 (4.22) 

Here A„ is a gi x L matrix of transmitted symbols that determine the CP of the received 

OFDM symbol. 

xn-1(N+gi -1) 
x11 (N+gi—L+1) 

xn  (gi — L) gixL 

Considering that the CP appended to an OFDM symbol is a replication of the last gi 

values of that symbol, we may write A„ in terms of transmitted CP value as, 
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xn(0 ) 	xn-1(gi-1) xn-1(gi-2) ... xn-I (gi—L+1) 

A _ x(1) 	x(  O) 	xn_, (gi —1) 	... 	xn-1(gi — L+2) 	
(4.23) n 

xn (gi —1) 	x,,(gi-2) 	... 	... 	x,, (gi —L) 	Xixl. 

A n has gi rows corresponding to gi consecutive time instants of the CP. The L 

elements of each row are the transmitted symbol values affecting the received CP value 

at that instant. This matrix structure assumes that the CP length is at least equal to the 

number of taps in the channel impulse response, i.e. no inter block interference. 

The measurement noise vector Z,,, in Eq. (4.21), comprises the gi x I vector of AWGN 

samples affecting the cyclic prefix part of the OFDM symbol. 

We observe that Eq. (4.18) and Eq. (4.21) provide the basis for forming the process 

equation and measurement equation, respectively for the state space model, as follows 

Sn = Bs,,-1 + Vn 

Yn.CP = Ansn + Z n CP 
	 (4.24) 

A Kalman filter is employed to estimate the unknown state of the system. Cyclic prefix 

of the received OFDM symbol y,,.,-.p is given as input observation to Kalman algorithm, 

the following estimation equations (as discussed in chapter. 3) are given by [12] [21]. 

[P~n—I J2i.X2i. = BP„—Ian—,B
H 

+ QI 	 (4.25) 

[a'n ]gixl = [Y,,C/, — A,Sn-I ] 	 (4.26) 

[Cn ] Aii = AP in-IAA + Q2 	 (4.27) 

[Kn'2l,xgi — Pnln-I An Cn 	 (4.28) 

[Sn ]2LA = BSn-I + K nd'n 	 (4.29) 

[hn I~.xl = Rsn , R = IOL>, IL 1J.x2I. 	 (4.30) 

LF ~2~.xzr. =[12,, —KnAn]l'„in-I 	 (4.31) 
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where K„ is the 2L x gi Kalman gain matrix , 	is the state estimate at the n'" OFDM 

symbol, Q, and Q2  are the covariance matrices of v„ and z„ , 1, respectively, 	is the 

priori covariance matrix of estimation error , and P„ is the current covariance matrix of 

estimation error. When the channel taps are modelled as a zero mean random process, the 

algorithm is initialized with an all-zero state vector. Besides this, the assumption of 

uncorrelated scattering (US) causes the different channel taps to be i.i.d., and the error 

covariance matrix is initialized as an identity matrix. 

so 

 

= So = °21xI 

Po  = E [(So — So)(s0 — So)H  I = In 

The receiver operates in training and decision directed modes. In training mode the 

known transmitted CP (x,,,cp) and CP part of the received OFDM symbol (y,,,c p) form the 

input to the above Kalman filter algorithm, and get the channel estimation H„(k), we get 

Xn(k) 
 

H,( k) 
(4.32) 

In decision directed mode the receiver uses the estimated channel vector from the 

previous OFDM symbol to demodulate the received symbol and generate an estimate of 

transmitted CP (X .,, (k) ). Here the transmitted CP part can be estimated by previous 

estimated channel i.e., 

n.c 	
Hn-1(k) 

	 (4.33) 

This estimated CP and CP of the received OFDM symbol (y,,,) helps to estimate the 

channel. 

The equations from (4.25) to (4.31) can be carried out by providing the AR parameters 

that are involved in the transition matrix B and the driving process variances are 

available. In case, these are unknown, for estimating these parameters Dual-Kalman 

filtering technique is used. 
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4.3.2 Dual-Kalman Filtering algorithm 

To estimate the AR parameters 0, from the estimated fading process In  , Eq. 

(4.30) is firstly represented as an AR-2 model to express the estimated fading process as 

a function of 0„ (AR parameter vector). 

a, 
h„ = [h„-, h„-2] a  + W,l 

z (4.34) 

	

h„- i ( 0 ) 	h-z (0 ) 	ai  

	

= hn1( 1 ) 	hn-2(1) 	 + w 

—1) h„_Z(L—]) I.<2 a2 2xi 

r = HO, + w„ 	 (4.35) 

where r„ is the estimated channel vector, 0„ is the AR parameter- vector defines as 

0 = [a1  a2 ]' and w„ is the L x 1 noise vector as in Eq. (4.20). 

When the channel is assumed to be stationary, the AR parameters are time-invariant and 

satisfy the following relationship 

On  = On_i 	 (4.36) 

As Eq. (4.35) and Eq. (4.36) define a state-space representation for the estimation of the 

AR parameters, a second Kalman filter can be used to recursively estimate 0„ as follows 

[21] 

[PO,,_, ]2x2 = e.,,._. 	 (4.37) 

[a9 1L I = [r — HO„_, ] 	 (4.38) 

[CO,, ]Lxi = HPB„th„_I H
H 
 + Q3 	 (4.39) 

[KB,12x1 = P©,,,, HHC  1 	 (4.40) 
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[On]2X1 '-"- On-] + KB da 	 (4.41) , 

[' ,, ]2x2 = ['2 — K e„ H]PP,,"_ 	 (4.42) 

where Q3 is the covariance matrix of the w„ , the error covariance matrix and the initial 

AR parameter vector are defined as 

00 = 00 = 02x, 

PA.) == E  (0,-60)(00 -6o)
H 
 =I2 

Noise parameters estimation 

Apart from estimating the AR parameters, we also need to estimate the noise parameters 

for the fading channel environment i.e., variance of v„ and z„ CP  . This can be done by 

using the error covariance matrices. From Eq. (4.25) and Eq. (4.31) we can write the 

noise variances recursively as derived in the chapter.3. 

[L,,]2121  = P — BPn- I1n-IB
!1 + K nana.Hn  K !I

n 	 (4.43) 

n 	n 	 (4.44) 

D=[1 0.....011x2 , 

[Mn]g;xgi = anan — AnPnin_IA' 	 (4.45) 

Q2(n)=
n1

Q2(n -1)+ 1 DI M,DIT 

n 	 n 	 (4.46) 

DI  =[l0  ..... 0 ]IxK , 

where Q1 (n) and Q2(n)are the estimated variances of the process noise v„and modelling 

noise z„ cp  respectively. 
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4.3.3 H-infinity Filtering (HF) algorithm 

H-infinity filtering (HF) algorithm is employed to estimate the unknown state of 

the system. Cyclic prefix of the received OFDM symbol y,, c p is given as input 

observation to H-infinity filter and following estimation equations are used as discussed 

in the chapter. 3 [20] 

[CE, ]gixl = [Y,,.cJI — A„s„_I 1 	 (4.47) 

[C]2121 = ['2/. — I An AnP,_I + 	1 	 (4.48) 

[K ,,]2Lxgi = Pn-I C, IA, Qz 	 (4.49) 

[S„ ]2Lxl =B_1  +K„a,, 	 (4.50) 

[h,,]LXI = Rs,, 	 R = [O,.x, IL]Lx2L 	 (4.51) 

[Pn ]2Lx2L = BP _,C„ BH +Q I  , 	 (4.52) 

where K„ is the 2L x gi Kalman gain matrix , s„ is the state estimate at the n" OFDM 

symbol, Q, and Q2  are the weighting parameters , y (>0) is the prescribed level of 

attenuation and P„ is the 2Lx2L positive definite matrix, initialized as identity matrix. 

Po  = I2i 

and the algorithm is initialized with an all-zero state vector. 

sO  = = O2Lxl 

4.3.4 Dual H-infinity Filtering algorithm 

For the joint estimation of both channel and its AR parameter, we require another 

H-infinity filter. This method makes it possible to provide robust estimation of the fading 

channel and its AR parameters. For the channel estimation requires state space model in 
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Eq. (4.24). To estimate the AR parameters 0n [a, a2]' from the estimated channel hn 

requires an AR-2 model as a function of AR parameter vector 0n i.e., 

h,, = a,h,,-1 +a2hn-2 +W n 

hn =L'- h_2][a

,,]
+W, a 

rn =HOn +Wn 

where r„ is the estimated channel vector, 0,, is the AR parameter vector defines as 

r = [hn (0 )h,, (1)...hn (L —1)]~ , 

0n = [a, a2 ]T and W„is the L x I noise vector as in Eq. (4.23). 

When the channel is assumed to be stationary, the AR parameters are time-invariant and 

satisfy the following relationship 

On = en-1 

A state-space representation for the estimation of the AR parameters is 

On = On-1 

rn =HOn +wn 	 (4.53) 

The above state-space representation for the estimation of the AR parameters, a second 

H-infinity filter can be used to recursively estimate of 0,, as follows [23] 

[a8 ],,x, = [r,, — HOn-I ] 	 (4.54) 

1 H  
[C9 ]2x2 = [I2 — 	+ H H Q3 HP,9 ] 	 (4.55) 

[K©~ ]2L = Pe _,C8 
1

~ H
H 

Q3 	 (4.56) 
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Len12x1 0n-1 +KB„ao , 	[00 ` 0] 	 (4.57) 

[ Po„ ]2x2 = P9„_i CO 
	

(4.58) 

where Q3 is the weighting parameter, y (> 0) is the prescribed level of attenuation and 

P©„ is the positive definite matrix, initialized as identity matrix. 

P =12, 

and the initial AR parameter vector are defined as 

00 = 00 = °2x1 

Noise parameters estimation 

Apart from estimating the AR parameters, we also need to estimate the noise 

parameters. This can be done by using the Riccati equation From Eq. (4.52) as derived in 

previous chapter, we can write [23] 

[L,' ]2J.x2L = [ P, — BP,,-,C,-'B" ] 	 (4.59) 

Q1 (n)=  
n 	n 	 (4.60) 

D = [10 ..... 0]1x2. 

[Mn]gixgi =anan1 — A,,I And 	 (4.61) 

Qz (n)=
n-1 Qz (n-1)+ I D A M D e r.  

n 	 n 	 (4.62) 

Dl  40 ..... 0]lx i 

where Q1  (n) and Q2(n) are the estimated variances of the process noise v„ and modelling 

noise z n, cp  respectively. 

59 



4.4. Results and Discussion 

4.4.1 Simulation Environment 

The scheme detailed in the previous section is tested through MATLAB 

simulations. For simulation, 4-QPSK is used as the underlying modulation scheme with 

zero mean, unit variance, equi-probable modulation symbols, drawn from the 

constellation. An OFDM symbol with 128 data subcarriers is assumed. The useful 

OFDM symbol duration T(=NT,) is 0.1 ms. Slow to moderate time variations are 

considered, with mobile velocities 4.5 km/hr to 45 km/hr. These correspond to Doppler 

frequencies of 10 Hz and 100 Hz, i.e., normalized Doppler spreads fdT = 0.001 and 

fdT = 0.01. An L-tap channel is generated where each tap is a complex Gaussian 

random variable, with zero mean and unit variance. The time varying nature of each tap 

is independently governed by an AR-2 process and updated at each OFDM symbol (i.e. 

every T seconds) in accordance with Eq. 4.2. The noise is assumed to be zero mean, 

complex additive white and Gaussian, with variance a2. 

As described in section 4.3, the transmission proceeds in training and decision 

directed modes. The training mode uses the CP part of the OFDM symbol as a known 

training sequence. We use two training patterns in simulation, for low and moderate 

Doppler spreads. The first scheme partitions the transmission into blocks of 100 OFDM 

symbols each, it uses the CP of 10 initial OFDM symbols as training, and operates in 

decision directed mode for the subsequent 90 symbols. The process is repeated after each 

block of 100 symbols. The pattern hereafter denoted as (10, 90). For the system under 

simulation, we have data subcarriers N=128, and the CP length gi =N/8=16. The channel 

estimation algorithm detailed in section 4.3 endeavours to estimate the channel tap vector 

h for each OFDM symbol. In Dual-Kalman and Dual H-infinity algorithms the initial 

AR parameter vector is taken as zeros and initial noise variances are taken as 0.1. For H-

infinity and dual H-infinity algorithms the prescribed level of attenuation y(> 0) is taken 

as 10 within the symbol duration, 

4.4.2 Estimation Error Performance 

Fig. 4.2 and Fig. 4.3 shows the MSEE performance of different adaptive filtering 

algorithms in CP based channel estimation for OFDM systems. Here the fading 



coefficients are modeled as AR-2 processes. We consider a 4-tap channel with low and 

moderate Doppler spreads, (10,90) transmission pattern and a CP length of 16. 100 

independent realizations of the channel are generated for each value of received SNR. 

Fig. 4.2 a) shows the MSEE performance for Kalman and H-infinity filters. Here we 

consider a normalized Doppler spread fdT = 0.001 and the true values of the AR 

parameters are assumed to be known aprior. For the comparison, the MSEE for the 

Kalman at 20 dB is 0.00057 where as H-infinity gives 0.0017. The MSEE shows a steady 

fall from 10" 2  to 10-4, as the received SNR increases from 10 dB to 30 dB for both the 

filters. As SNR increases the performance of both gets similar. 

Fig. 4.2 b) shows the MSEE performance for Dual-Kalman and Dual-H-infinity 

algorithms when the AR parameters are unknown. We observe that Dual-H-infinity filter 

gives slightly better performance as compared to Dual-Kalman filter, the MSEE for the 

Dual-H-infinity filter at SNR= 25 dB is 0.00093 where as Dual-Kalman filter 

MSEE=0.0018. 

Fig. 4.2 c) shows the MSEE performance for four different algorithms. It is found that all 

the schemes perform reasonably well in tracking a low Doppler spread channel. It is 

observed that Dual algorithms successfully estimate the channel when the AR parameters 

are not known and at high SNR's they get closer to Kalman filtering algorithm with 

known parameters. For MSEE=10-3, dual filtering algorithms performs with in 3 dB of 

the Kalman filtering curve. 

Fig. 4.3 a) shows the MSEE performance for Kalman and H-infinity filters. Here we 

consider a normalized Doppler spread fdT = 0.01 and the true values of the AR 

parameters are assumed to be known aprior. Both the algorithms saturates at an MSEE of 

0.0058. It is seen that from SNR of l OdB-2OdB, Kalman filter gives better performance 

when compared to H-infinity filter. For SNR of 20 dB, Kalman filter gives MSEE of 

0.0245 where as H-infinity filter gives MMSE of 0.0356. 

Fig. 4.3 b) shows the MSEE performance for Dual-Kalman and Dual-H-infinity 

algorithms when the AR parameters are unknown. Both algorithms nearly saturates at 

MSEE of 0.0182. It is seen.that from SNR of lOdB-l5dB both performance of both 
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filters are comparable. For SNR of 15 dB, Dual-H-infinity filter gives MMSE= 0.092 

where as Dual Kalman filter gives MMSE= 0.12. For high SNR's both algorithms have 

similar performance. 

Fig. 4.3 c) shows the MSEE performance for four different algorithms for moderate 

Doppler spreads. At low SNR(below 10 dB), the Dual filtering algorithm estimate the 

channel and performs within 4-5 dB to the Kalman filter where channel parameters are 

known, but as the SNR increases, it saturates. 

4.4.3 BER Performance Comparison of Different Estimators 

Fig. 4.4 and Fig. 4.5 shows the BER performance of different adaptive filtering algorithm 

in CP based channel estimation for OFDM systems. We consider a 4-tap channel, at low 

and moderate Doppler spreads. A CP length of g;  = N/816  with a (10, 90) training 

pattern is considered. 

Fig. 4.4 a) shows the BER performance for Kalman and H-infinity filters with known AR 

parameters and normalized Doppler spread fdT = 0.001. The BER shows a steady fall 

from 10 dB to 30 dB for both the filters. It may be seen that the performance of H-

infinity filter is very close to the performance of Kalman filter where noise statistics are 

known. 

Fig. 4.4 b) shows BER performance for the channel estimation in OFDM using Dual-

Kalman and Dual-H-infinity algorithms, when the channel AR parameters are unknown 

and fdT = 0.001, it may be observed that the Dual-H-infinity filter gives better estimate 

of AR parameters as well as noise statistics compared to Dual-Kalman filter. For instance 

at SNR of 20 dB Dual-H-infinity filter gives BER of 0.0026 where as the Dual-Kalman 

filter gives 0.0042. At high values of SNR's both filters give similar performance. 

Fig. 4.4 c) shows the BER performances of four adaptive filters in a CP based channel 

estimation in OFDM systems for low Doppler spread of fdT = 0.001. As the SNR 

increases the BER performance of all the filtering algorithms discussed above are similar. 

For BER=10-3, there is a performance advantage of 5 dB for Kalman filter where AR 

parameters and noise statistic are known i.e., the Dual filtering algorithm tracks the 

channel and performs within 5 dB to the Kalman filter. 
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Fig. 4.5 a) show the BER performance of Kalman and H-infinity filtering algorithms in 

OFDM systems with fading coefficients modeled as AR-2 process and channel statistics 

known with fdT = 0.01. Both the filters saturate at a BER 0.0084. When SNR's changes 

from 15 dB-25 dB Kalman filter gives better BER because of the noise statistics 

(variances of the state and observation noises) are known. It may be seen that for 

SNR=20 dB, Kalman filter gives the BER of 0.0107 while the H-infinity with unknown 

noise statistics gives BER of 0.016. 

Fig. 4.5 b) shows BER performance of Dual-Kalman and Dual-H-infinity filtering 

algorithms in OFDM systems where fading coefficients of an AR-2 process are assumed 

to be unknown. Both the filters saturates at a BER 0.0215. For SNR's below 25 dB the 

graph shows that Dual H-infinity gives better BER performance. 

Fig. 4.5 c) shows the BER performance of all the above filters for CP based channel 

estimation in OFDM systems for moderate Doppler spreads of faT = 0.01. It may be 

seen that there is a close similarity between the Kalman filter and H-infinity filter, both 

the filters saturates a BER 0.0084. The Dual-H-infinity filtering technique provides 

almost 2 dB better performance than Dual-Kalman filtering technique. 

The results demonstrate that the Dual filtering techniques perform well at low Doppler 

spreads and the performances are close to the Kalman filter where the AR model 

parameters are known. 
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Chapter 5 

Conclusions 

In numerous applications of signal processing and communication we are faced 

with the necessity to remove noise and distortion from signal. These phenomena are due 

to time varying processes and most of these time variations are unknown. To estimate the 

signal from its noisy observations a variety of adaptive state estimation filters namely 

Kalman and H-infinity and have found a variety of applications such as speech 

enhancement, linear equalization and channel estimation for wireless communication 

systems. 

The work reported here is aimed at the application of different adaptive filtering 

techniques (Kalman, H-infinity, Dual-Kalman and Dual-H-infinity) for state estimation in 

simple AR-2 model and channel estimation in CP based OFDM systems. The received CP 

of initial OFDM symbols is used as training, and subsequently in the remaining interval it 

operates in decision directed mode. State space formulation of the problem facilitates the 

use of adaptive filters, which helps to find the optimal solution to a linear problem. A CP 

based framework is used to simplify receiver architecture and avoid the need for frequent 

retraining. The conclusion drawn based on the simulation results are as follows: 

Adaptive Filtering Algorithms for AR Model Parameter Estimation 

We have used the Autoregressive (AR) model of order 2 for estimating the state of 

the system from noisy observations using different adaptive filtering algorithms. As 

simulation results show, at high SNR the mean square error (MSE) performance of Dual 

filtering and H-infinity filters are close to the optimal Kalman filter. At low SNR, the 

Dual filtering algorithms perform within 2.5 dB of the Kalman filter. It is seen that H-

infinity filter performs within I dB of the Kalman filter for achieving MSE of 0.2. Dual 

filtering algorithms exhibit very close performance. At low SNR (below 5 dB) Dual H-

infinity filter shows an improvement in performance of I dB compared to Dual-Kalman 

filter. It has been observed that the estimated AR parameters values converge to the true 

values at high SNR and we conclude that the Dual algorithms successfully estimate the 

state, AR parameters and driving process variances. 

76 



Adaptive Filtering Algorithms for Channel Estimation in OFDM 

We have used the state variable model for OFDM systems in CP interval for 

estimating the channel using different filtering algorithms. The results demonstrate that 

the adaptive filtering techniques perform well at low Doppler spread. As the simulation 

show, the MSEE and BER performance of the Dual filtering algorithms and H-infinity 

filtering is close to the optimal Kalman filter. Typically, for fdT = 0.001 the MSEE 

performance of the H-infinity filter is within 1.5 dB of the Kalman filter. The MSEE of 

both the Dual filtering algorithms has similar performance. At high SNR values the 

MSEE saturates below 10" 4  for all the filters. It may be seen that the performance of H-

infinity filter is very close (0.5 to I dB) to the Kalman filter. For BER=10-3, there is a 

performance advantage of 2 dB for Dual-H-infinity filter compared to the Dual - Kalman 

filter. The performance of dual filtering is within 5 dB to the Kalman filter for BER of 

IO-3. 

We have observed that, for moderate SNR (fdT = 0.01) the MSEE of both the H- 

infinity and Kalman filters has similar performance. For SNR of 15 dB, Dual-H-infinity 

filter gives MSEE of 0.092 where as Dual-Kalman filter gives MSEE=0.12. At higher 

SNR the BER saturates below 10-2. The Dual-H-infinity filtering technique provides 2 dB 

improvement in BER performance than Dual-Kalman filtering technique. 

Scope of Future work 

This thesis studies channel estimation for SISO-OFDM systems using different 

adaptive filtering algorithms (Kalman, H-infinity, Dual-Kalman and Dual-H-infinity). It 

is possible to extend the channel estimation method to MIMO-OFDM systems by altering 

the state space model suitably, which is a possible line of future work. CP based channel 

estimation for OFDM using adaptive filtering algorithms perform well at low Doppler 

spreads. However, at moderate Doppler spreads, the methods prove to be inadequate and 

exhibit an error floor, which calls for an improvement. The study of different efficient 

adaptive filtering techniques for channel estimation in OFDM systems over moderate to 

high Doppler spread is a significant topic of interest. 
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