
By 

U. M. R. CH. SEKHAR BOL 

FPGA IMPLEMENTATION OF DISCRETE WAVELET 
TRANSFORM BASED IMAGE COMPRESSION 

A DISSERTATION 
Submitted in partial fulfillment of the 

requirements for the award of the degree 

of 

MASTER OF TECHNOLOGY 
in 

ELECTRONICS AND COMMUNICATION ENGINEERING 
(With Specialization in Control and Guidance) 

DEPARTMENT OF ELECTRONICS AND COMPUTER ENGINEERING 
INDIAN INSTITUTE OF TECHNOLOGY ROORKEE 

ROORKEE - 247 667 (INDIA) 
JUNE, 2009 



Dr. M.J.Nigam, Associate Professor, 
Department of Electronics & Computer, 

Indian Institute of Technology Roorkee 

CANDIDATE'S DECLARATION 

I hereby declare that the work presented in this dissertation entitled "FPGA 
Implementation of Discrete Wavelet Transform based Image Compression" 
being submitted in partial fulfillment of the award of the degree of Master of 
Technology with specialization in Control & Guidance in the Department of 
Electronics & Computer Engineering, Indian Institute of Technology, Roorkee, 
under the guidance of Dr. M. J. Nigam, Associate Professor, Department of 
Electronics & Computer Engineering, Indian Institute of Technology Roorkee. 

The results embodied in this dissertation have not submitted for the award of any 
other Degree or Diploma. 

Date : aftfocj awl 
Place : Roorkee 

Z.31.,00.91 
U M R Ch Sekhar Bollam 

CERTIFICATE 

This is to certify that the statement made by the candidate is correct to best of my 
knowledge and belief. 

Date: 	. 0 6 -07 
Place: Roorkee 



ACKNOWLEDGEMENT 

I express my foremost and deepest gratitude to Dr. M. J. Nigam, Associate Professor, 
Department of Electronics & Computer Engineering, Indian Institute of Technology 

Roorkee for his valuable guidance, support and motivation throughout this work. The 

valuable hours of discussion and suggestions that I had with him have undoubtedly 
helped in supplementing my thoughts in the right direction for attaining the desired 
objective. I consider myself extremely fortunate for having got the opportunity to 

learn and work under his able supervision over the entire period of my association 
with him. 

My sincere thanks to all faculty members of Control & Guidance for their constant 

encouragement and suggestions towards the successful completion of this work. My 

sincere thanks to laboratory staff to access the computers and other resources at will 

for completion of this work. I am also thankful to my friends who helped me in many 
different ways at various instances of my work. 

Last but not the least, I'm highly indebted to my parents and family members, whose 
sincere prayers, best wishes, moral support and encouragement have a constant source 

of assurance, guidance, strength, and inspiration to me. 

U M R Ch Sekhar Bollam 

M. Tech. (C&G) 

ii 



ABSTRACT 

Images require substantial storage and transmission resources, thus image 

compression is advantageous to reduce these requirements. 

Wavelet Transform has been successfully applied in different fields, 

ranging from pure mathematics to applied sciences. Pure software implementations of 

the Discrete Wavelet Transform, however, appear to be the performance bottleneck in 

real-time systems and suffer from power requirements. Therefore, hardware 

acceleration of the Discrete Wavelet Transform has become a topic of interest. We 

can reduce the logic and speed up our operations using Application Specific 

Integrated Circuits (ASICs). But main problem with ASICs are they require large time 

to market and initial investments are high. Before developing an ASIC we require to 

prototype our design. Field programmable Gate Arrays (FPGAs) prove to be a better 

solution for rapid prototyping. FPGAs are reprogrammable, have large number of 

logic cells suitable for implementing image Compression applications. We can 

explore the parallelism and pipelining feature of FPGA 

The objective of this dissertation is design, simulation and synthesis of CDF 

biorthogonal Discrete Wavelet Transform on FPGA and developing a prototype of 

CDF biorthogonal Discrete Wavelet Transform processor. Initially, CDF Wavelet is 

studied and the hardware logic is designed. Then this hardware logic is realized and 

Simulated in Matlab Simulink using Xilinx System generator Blockset and 

synthesized on Spartan3E xc3s500e-4fg320 FPGA chip. Then using hardware co- - 

simulation feature of Spartan-3E starter kit, the results obtained in software and 

hardware simulations (i.e. on FPGA kit), are validated. The decomposed image of 512 

x 512 at different levels from Matlab Silmulink using System generator shows good 

decomposition. Decomposed images has been reconstructed by using Matlab code 

and compared with the original images. 

iii 



CONTENTS 

CANDIDATE'S DECLARATION AND CERTIFICATE 
ACKNOWLEDGEMENT 	 ii 
ABSTRACT 	 iii 
CONTENTS 	 iv 
LIST OF FIGURES 	 vi 
LIST OF TABLES 	 viii 
1. INTRODUCTION 	 1 

1.1. Background 	 1 
1.2. Motivation and Scope 	 3 
1.3. Statement of Problem 	 4 
1.4. Organization of the Dissertation 	 4 

2. WAVELET TRANSFORM 	 6 
2.1. Need for wavelet transforms 	 6 
2.2. Short-time Fourier transform Vs wavelet transform 	 7 
2.3. Wave and Wavelet 	 9 
2.4. Continuous Wavelet Transform 	 10 
2.5. Discrete Wavelet Transform 	 10 

2.5.1. Multi-Resolution Analysis Using Filter Banks 	 11 
2.6. Classification of Wavelets 	 13 

2.6.1. Features of Orthogonal Wavelet Filter Banks 	 13 
2.6.2. Features of Biorthogonal Wavelet Filter Banks 	 14 

2.7. Wavelet Families 	 14 
3. WAVELET BASED IMAGE COMPRESSION 	 16 

3.1. Need for Compression 	 16 
3.2. Principles behind Compression 	 17 
3.3. Image Compression model 	 17 
3.4. Image Compression techniques 	 19 

3.4.1. Lossless Compression 	 19 
3.4.2. Lossy Compression 	 19 

3.5. Wavelet Transform as the Source Encoder 	 19 
3.6. 2D Wavelet Analysis 	 20 

iv 



3.7. Features of Image Compression Using Wavelets 	 22 

3.8. Lifting scheme of DWT 	 22 

3.8.1. Direct Form Structure 	 23 

3.8.2. Polyphase Structure 	 23 

3.8.3. Lifting Scheme 	 26 

3.8.3.1. Factoring Wavelet Filters Into Lifting Scheme 	 26 

3.8.3.2. Chohen-Daubechies-Feauvea (CDF)(2,2) Wavelet Using Lifting 

Scheme 	 27 

3.8.3.3. Integer-To-Integer Transform 	 28 

3.8.4. Advantages of Lifting scheme 	 29 

4. INTRODUCTION TO FPGA IMPLEMENTATION 	 30 
4.1. Architectural overview 	 30 

4.2. FPGA design flow using Xilinx System Generator 	 31 
4.3. FPGA Configuration 	 34 

5. HARDWARE IMPLEMENTATION OF CDF LIFTING SCHEME 
ARCHITECTURE 	 36 
5.1. Cohen-Daubechies-Feauveau (CDF)(2,2) Wavelet 	 36 

5.2. CDF Wavelet Simulink model in system generator 	 39 

5.3. Implementation on FPGA 	 40 

6. RESULTS AND DISCUSSIONS 	 43 
6.1. DWT in X and Y directions. 	 43 

6.2. Implementation using Xilinx System Generator in Matlab Simulink 	46 

6.3. Synthesis Results 	 54 
7. CONCLUSIONS AND FUTURE SUGGESTIONS 	 58 

7.1. Conclusions 	 58 
7.2. Future Suggestions 	 58 

REFERENCES 	 59 
APPENDIX-A 	 62 
APPENDIX-B 	 67 



LIST OF FIGURES 

Figure No. 
2.1. 

2.2. 
2.3. 
2.4. 
2.5. 

Title of Figure 
Tiling in time-frequency plane by: (a) Wavelets and (b) 
STFT 
Demonstration of (a) Wave and (b) Wavelet 
Three-level wavelet decomposition tree 
Three-level wavelet reconstruction tree 
Wavelet families (a) Haar (b) Daubechies4 (c) Meyer 

Page No. 

8 
9 
12 
13 

(d) Monet (e) Mexican Hat (f) CDF (2,2) 15 
3.1. Image compression model 18 
3.2. (a)source encoder (b) source decoder 18 
3.3. Sub band decomposition of 2-D image 21 
3.4. 2-D Decomposition of Saturn Image to level 1 21 
3.5. Direct form structure of (a) Analysis filter bank and (b) 

Synthesis filter' 23 
3.6. Polyphase 	structure 	of (a) 	Analysis 	filter bank 	(b) 

Equivalent representation of 	analysis filter bank and (c) 
Synthesis filter bank 25 

3.7. Lifting scheme 26 
3.8. Lifting structure for CDF (2,2) wavelet 28 
4.1. Spartan 3E family architecture 31 
4.2. FPGA based platform design flow 32 
4.3. Spartan-3E Starter Kit 33 
4.4. System genarator token 34 
5.1. Rows and columns of level 1, 2 and 3 decomposition of 

an image 37 
5.2. Simulink model of CDF Wavelet transform. 39 
5.3. System generator token 40 
5.4. JTAG Co-simulation block 41 
5.5. Simulink model with Hardware co-simulation block 42 
6.1. Coefficient Ordering in X (row) direction 43 

vi 



6.2. Original image IITR.TIF of size 512x512 44 

6.3. After level 1 in X direction 45 

6.4. After levell in Y direction i.e after first level of 

decomposition 45 

6.5. 2nd level decomposition of IITR.TIF Image 46 

6.6. 3rd level decomposition of IITR.TIF Image 47 

6.7. JTAG Co-simulation block 47 

6.8. Simulink model of CDF wavelet processor with Hardware 

JTAG co-simulation block 48 

6.9. Original image leena.tif of size 512x512 49 

6.10. 3-level decomposed image of image leena.tif 49 

6.11. Original image cameraman.tif of size 512x512 50 

6.12. 3-level decomposed image of image cameraman.tif 50 

6.13. Original image mandrilla.tif of size 512x512 51 

6.14. 3-level decomposed image of image mandrilla.tif 51 

6.15. Original image fruits.tif of size 512x512 52 

6.16. 3-level decomposed image of image fruits.tif 52 
6.17. Original image flowers.tif of size 512x512 53 

6.18. 3-level decomposed image of image flowers.tif 53 

A.1. Xilinx Blockset in Simulink 63 

A.2. Invoke SBD Builder to Create New Hardware 

Compilation Target 64 

A.3. Specify SBD Builder Options for Spartan-3E board 65 

A.4. Spartan-3E Starter Kit FPGA Configuration Options 66 
B.1. Original image IITR.TIF of size 512x512 70 
B.2. Reconstructed image IITR.TIF of size 512x512 71 

vii 



LIST OF TABLES 

Table No. 	 Title of Table 	 Page No. 

5.1. CDF (2,2) wavelet with lifting scheme (a) Forward 

transform (b) Inverse transform 36 
6.1. Resource utilization on Spartan3s500efg320-4 for first 

level decomposition. 54 
6.2. Resource utilization on Spartan3s500efg320-4 for second 

level decomposition. 55 
6.3. Resource utilization on Spartan3s500efg320-4 for third 

level decomposition. 56 
Al. Spartan.-3E Configuration Mode Jumper Settings 67 

viii 



Chapter 1 

INTRODUCTION 

1.1. Background 

Computer data compression is a powerful, enabling technology that plays a 

vital role in the information age. Among the various types of data commonly 
transferred over networks, image and video data comprises the bulk of the bit traffic 

which is growing day by day. For example, current estimates indicate that image data 

has taken over 40% of the volume on the Internet. The explosive growth in demand 

for image and video data, coupled with delivery bottlenecks has kept compression 

technology at a premium. Although increasing the bandwidth is a possible solution, 
the relatively high cost makes this option less attractive. Therefore, compression is a 

necessary and essential method for creating image files with manageable and 
transmittable sizes. 

Joint Photographic Experts Group (JPEG) [I] and Moving Pictures Experts 

Group (MPEG) are standards for representing images and video. Data compression 

algorithms are used in those standards to reduce the number of bits required to 

represent an image or a video sequence. Compression is the process of representing 

information in a compact form. Data compression treats information in digital form 
that is, as binary numbers represented by bytes of data with very large data sets. Every 

compression algorithm has a corresponding decompression algorithm without which 

it is not employable for usage. Given the compressed file, the original file can be 

reproduced with the help of decompression algorithm. There have been many types of 
compression algorithms developed till date. These algorithms fall into two broad 

categories, which are: lossless algorithms and lossy algorithms. A lossless algorithm 
reproduces the original exactly. A lossy algorithm, as the name implies, loses some 

data but has high compression ratio. Data loss may be unacceptable in many 

applications. For example, text compression must be lossless because a very small 

difference can result in statements with totally different meanings. There are also 
many situations where loss may be either unnoticeable or acceptable. In image 

compression, for example, the exact reconstructed value of each sample of the image 

1 



is not necessary. Depending on the quality required of the reconstructed image, 
varying amounts of loss of information can be accepted. 

The newer standard JPEG2000 is based on the Wavelet Transform (WT). 
Wavelet Transform offers multi-resolution image analysis, which appears to be well 
matched to the low level characteristic of human vision. The Discrete Cosine 
Transform (DCT) is essentially unique whereas WT has many possible realizations. 

Wavelets are the mathematical functions that satisfy a certain requirement (for 

instance a zero mean), and are used to represent data or other functions. In wavelet 
transform, dilations and translations of a mother wavelet are used to perform a 

spatial/frequency analysis on the input data. Recent research on Discrete Wavelet 
Transform (DWT) has focused on a form of lifting which shows excellent 

performance compared to the conventional convolution method for implementation. 
Factoring DWT into lifting steps can reduce the computational complexity by 50% [2] 
and has advantages, including integer to integer transform [3], symmetric forward and 

inverse transforms [4]. Line-based architecture for the direct two-dimensional discrete 
wavelet transform (2D-DWT) is an efficient alternative tradeoff between speed and 

area [5,6]. For image compression using line based architecture, first all the rows are 
processed, intermediate results are stored in buffer and then all the columns of 

intermediate results are processed. The disadvantage of the above method is that, it 
requires intermediate buffer size equal to size of image, high computation time 

besides underutilization of hardware. To overcome these disadvantages, parallel 
architectures are developed in a way to reduce the intermediate buffer size, thus 
reducing computation time almost by half. 

For any image processing system, the important trade-off is time taken to 
process the image. Naturally, the simple solution is to use a microprocessor or a 

Digital Signal Processor to implement the algorithms. But this system suffers from a 
demerit which requires the use of random 'glue logic' to connect large ICs (for 

example, in generating global control signals and data formatting like serial to parallel 
conversion, multiplexing, etc.). An alternative is to use dedicated hardware like 
Application Specific Integrated Circuits (ASICs) built specially for the job, which 
reduced the effect of 'glue logic'. Typically this has always been a far more expensive 

2 



alternative and required more time-to-market. The third solution that presents itself is 

the use of programmable electronics in the form of Field Programmable Gate Arrays. 

Field Programmable Gate Arrays (FPGAs) provide a rapid prototyping 

platform. FPGAs are devices that can be reconfigured [7] to achieve different 

functionalities without incurring the non-recurring engineering costs typically 

associated with custom IC fabrication. In this work, DWT architecture is implemented 

on a reconfigurable FPGA hardware. The target platform is the Xilinx Spartan-3E 

FPGA. The design is based on the multi-level decomposition implementation of the 

Discrete Wavelet Transform. The design utilizes various techniques and specific 

features of the Xilinx Spartan-3E FPGA to accelerate the computation of the 

transform. Performance analysis includes the investigation of performance 

enhancement due to hardware acceleration. It is expected that the proposed design can 

substantially accelerate the DWT and the inherent scalability can be exploited to reach 

a higher performance in the future. The implementation can be easily modified to act 

as a co-processing environment for wavelet compression/decompression or even as a 

part of the algorithms to be used in future mobile devices for image 

encoding/decoding using wavelets. 

1.2. Motivation and Scope 

A majority of today's Internet bandwidth is estimated to be used for images 

and video [8]. Recent multimedia applications for handheld and portable devices 

place a limit on the available wireless bandwidth. The bandwidth is limited even with 

new connection standards. JPEG image compression which is in widespread use today 

took several years to achieve perfection. Wavelet based techniques such as JPEG2000 

[9] for image compression has a lot more to offer than conventional methods in terms of 
compression ratio. Currently, wavelet implementations are still under development 
lifecycle and are being perfected. Flexible energy-efficient hardware implementations that 
can handle multimedia functions such as image processing, coding and decoding are 
critical, especially in hand-held portable multimedia wireless devices. 

As a part of this dissertation, a prototype of Wavelet Transform Processor is 

developed. This developed prototype may be suitable for ASIC implementation. It can 

be used in bio-medical image processing applications, and in many more fields. 



1.3. Statement of Problem 

In modern hardware design, it is a fact that storage resource is more expensive 
than computation resource. So, the key problem in hardware implementation is to 
achieve high performance while maintaining low memory requirement. 

The objectives of this dissertation work are: 

• Study of parallel architectures for image compression using various 
wavelets on FPGA implementation. 

• Developing an improved architecture of 2D-DWT to implement bi-

orthogonal Cohen-Daubechies-Feuvea (CDF) wavelet. 

• Realizing CDF biorthogonal Wavelet Transform hardware logic using 

System generator simulator and to carry out the simulations on standard 
images. 

• Implementation on FPGA kit to be done using hardware co-simulation. 
For hardware co-simulation, we need to model our architecture using 

Xilinx Blockset in Matlab. Then these algorithms are synthesized and the 

Spartan-3E starter kit is setup to enable hardware-in-the-loop verification 
with JTAG co-simulation via the USB configuration port. 

1.4. Organization of the Dissertation 

Chapter 1 gives a background discussion on image compression, wavelet 
based image compression and Field programmable gate arrays. The Motivation and 

Scope of work is discussed. It summarizes the problem statement of this thesis work. 

Chapter 2 reviews the complete discrete wavelet transform in detail. The need 
of wavelet transform in image compression and its features are also discussed. 
Finally, salient features of multi-resolution analysis of DWT are discussed. 

Chapter 3 presents need for compression, principles behind compression, 
compression model, 2D wavelet analysis, direct form structure, polyphase structure 
and lifting structure for implementing DWT. 

Chapter 4 briefly describes FPGA architecture, design flow followed in FPGA 
implementation and FPGA configuration. 

4 



Chapter 5 explains the algorithm for implementing CDF wavelet. CDF 

wavelet Simulink model design in system generator and implementation on FPGA are 

described. 

Chapter 6 discusses the Simulink and synthesis results. 

Finally, chapter 7 concludes this thesis with scope for future suggestions. 

5 



Chapter 2 

WAVELET TRANSFORM 

Many evolving multimedia applications require transmission of high quality 
images over the network. One obvious way to accommodate this demand is to 
increase the bandwidth available to all users. Of course, this "solution" is not without 
technological and economical difficulties. Another way is to reduce the volume of the 

data that must be transmitted. There has been a tremendous amount of progress in the 

field of image compression during the past 15 years. In order to make further progress 
in image coding, many research groups have begun to use wavelet transforms. 

In this chapter, will briefly discuss why wavelet transforms are used for 
image compression, differences between wave and wavelet, continuous and discrete 

wavelet transform, multi-resolution analysis of wavelet transform and wavelet based 
compression and its features. 

2.1. Need for Wavelet Transforms 

In most Digital Signal Processing (DSP) applications, the frequency content of 

the signal is very important. The Fourier Transform is probably the most popular 

transform used to obtain the frequency spectrum of a signal. But the Fourier 
Transform is only suitable for stationary signals, i.e., signals whose frequency content 

does not change with time. The Fourier Transform, while it tells how much of each 

frequency exists in the signal, it does not tell at which time these frequency 
components occur. 

Signals such as image and speech have different characteristics at different 
time or space, i.e., they are non-stationary. Most of the biological signals too, such as, 

Electrocardiogram, Electromyography, etc., are non-stationary. To analyze these 
signals, both frequency and time information are needed simultaneously, i.e., a time-
frequency representation of the signal is needed. 

To solve this problem, the Short-Time Fourier Transform (STFT) was 
introduced. The major drawback of the STFT is that it uses a fixed window width. 

6 



The wavelet transform [10], which was developed in the last two decades, provides a 
better time-frequency representation of the signal than any other existing transforms. 

2.2. Short Time Fourier Transform Vs Wavelet Transform 

The STFT is a modified version of the Fourier transform. The Fourier 
transform separates the waveform into a sum of sinusoids of different frequencies and 
identifies their respective amplitudes. Thus it gives us a frequency-amplitude 

representation of the signal. In SIFT, the non-stationary signal is divided into small 

portions, which are assumed to be stationary. This is done using a window function of 

a chosen width, which is shifted and multiplied with the signal to obtain the small 

stationary signals. The Fourier Transform is then applied to each of these portions to 

obtain the Short Time Fourier transform of the signal. 

The problem with STFT goes back to the Heisenberg uncertainty principle 
which states that, it is impossible for one to obtain which frequencies exist at which 

time instance, but, one can obtain the frequency bands existing in a time interval. This 

gives rise to the resolution issue where there is a trade-off between the time resolution 
and frequency resolution. To assume stationarity, the window is supposed to be 

narrow, which results in a poor frequency resolution, i.e., it is difficult to know the 
exact frequency components that exist in the signal only the band of frequencies that 

exist is obtained. If the width of the window is increased, frequency resolution 

improves but time resolution becomes poor, i.e., it is difficult to know what 

frequencies occur at which time intervals. Also, choosing a wide window may violate 

the condition of stationarity. Consequently, depending on the application, a 

compromise on the window size has to be made. Once the window function is 

decided, the frequency and time resolutions are fixed for all frequencies and all times. 

The wavelet transform solves the above problem to a certain extent. In 
contrast to STFT, which uses a single analysis window, the Wavelet Transform uses 
short windows at high frequencies and long windows at low frequencies. This results 

in multi-resolution analysis by which the signal is analyzed with different resolutions 
at different frequencies, i.e., both frequency resolution and time resolution vary in the 
time-frequency plane without violating the Heisenberg inequality. 

7 



4 4 

— — 

J

I 
- 

I Time 

In wavelet transform, as frequency increases, the time resolution increases; 

likewise, as frequency decreases, the frequency resolution increases. Thus, a certain 

high frequency component can be located more accurately in time than a low 

frequency component and a low frequency component can be located more accurately 

in frequency compared to a high frequency component. 

- - 	- -1 - - -  , 

1  Time — 

(a) 	 (b) 

Fig.2.1. Tiling in time-frequency plane by: (a) Wavelets and (b) STFT [11] 

Fig.2.1(a) shows tiling in time-frequency of wavelets and Fig.2.1(b) shows tiling in 

short-time fourier transform, It is seen that STFT gives a fixed resolution at all times, 

whereas wavelet transform gives a variable resolution. 

The wavelet transform was developed independently in applied mathematics 

and signal processing. It is gradually substituting other transforms in some signal 

processing applications. For example, previously, the STFT was extensively used in 

speech signal processing, and Discrete Cosine Transform (DCT) was used for image 

compression. But now, the Wavelet Transform is substituting these, due to its better 

resolution properties and high compression capabilities. 

8 



2.3. Wave and Wavelet 

A wave as shown in Fig.2.2 (a) is an oscillating function of time or space and 
is periodic. In contrast, wavelets as shown in Fig.2.2 (b) are localized waves. They 

have their energy concentrated in time or space and are suited to analysis of transient 

signals. While Fourier Transform and STFT use waves to analyze signals, the 
Wavelet Transform uses wavelets of finite energy. 

The wavelet analysis is done similar to the STFT analysis. The signal to be analyzed 

is multiplied with a wavelet function just as it is multiplied with a window function in 

STFT, and then the transform is computed for each segment generated. However, 

unlike STFT, in wavelet transform, the width of the wavelet function changes with 

each spectral component. The wavelet Transform, at high frequencies, gives good 

time resolution and poor frequency resolution, while at low frequencies; the Wavelet 

Transform gives good frequency resolution and poor time resolution. 

(a)  

(b)  

Fig.2.2. Demonstration of (a) Wave and (b) Wavelet 

9 



2.4. Continuous Wavelet Transform 

The Continuous Wavelet Transform (CWT) is provided by Eq.2.1, where x(t) 
is the signal to be analyzed. W(t) is mother wavelet or the basis function. All the 
wavelet functions used in the transformation are derived from the mother wavelet 
through translation (shifting) and scaling (dilation or compression). 

Xwr 	1 (T,$) = 	f x(t).w(t —T )dt 	 (2.1) 

The mother wavelet used to generate all the basis functions is designed based 

on some desired characteristics associated with that function. The translation 

parameter i relates to the location of the wavelet function as it is shifted through the 

signal. Thus, it corresponds to the time information in the Wavelet Transform. The 

scale parameter s is defined as 11/frequencyl and corresponds to frequency 

information. Scaling either dilates (expands) or compresses a signal. Large scales 

(low frequencies) dilate the signal and provide detailed information hidden in the 

signal, while small scales (high frequencies) compress the signal and provide global 

information about the signal. Notice that the Wavelet Transform merely performs the 

convolution operation of the signal and the basis function. The above analysis 

becomes very useful as in most practical applications, high frequencies (low scales) 

do not last for a long duration, but instead, appear as short bursts, while low 

frequencies (high scales) usually last for entire duration of the signal. 

The wavelet series is obtained by discretizing CWT. This aids in computation 

of CWT using computers and is obtained by sampling the time-scale plane. The 

sampling rate can be changed accordingly with scale change without violating the 

nyquist criterion. Nyquist criterion states that, the minimum sampling rate that allows 

reconstruction of the original signal is 2co radians, where co is the highest frequency in 

the signal. Therefore, as the scale goes higher (lower frequencies), the sampling rate 

can be decreased thus reducing the number of computations. 

2.5. Discrete Wavelet Transform 

The Wavelet Series is just a sampled version of CWT and its computation may 

consume significant amount of time and resources, depending on the resolution 

required. The Discrete Wavelet Transform (DWT) [10], which is based on sub-band 

10 



coding is found to yield a fast computation of Wavelet Transform. It is easy to 
implement and reduces the computation time and resources required. 

The foundations of DWT go back to 1976 when techniques to decompose 
discrete time signals were devised. Similar work was done in speech signal coding 
which was named as sub-band coding. In 1983, a technique similar to sub-band 
coding was developed which was named pyramidal coding. Later many 
improvements were made to these coding schemes which resulted in efficient multi-
resolution analysis schemes. 

In CWT, the signals are analyzed using a set of basis functions which relate to 
each other by simple scaling and translation. In the case of DWT, a time-scale 
representation of the digital signal is obtained using digital filtering techniques. The 
signal to be analyzed is passed through filters with different cutoff frequencies at 
different scales, which is known as Multi Resolution Analysis (MRA). 

2.5.1. Multi-Resolution Analysis Using Filter Banks 

Filters are one of the most widely used signal processing functions. Wavelets 
can be realized by iteration of filters with resealing. The resolution of the signal, 

which is a measure of the amount of detail information in the signal, is determined by 
the filtering operations, and the scale is determined by upsampling and downsampling 
(sub sampling) operations [11-13]. 

The DWT is computed by successive lowpass and highpass filtering of the 
discrete time-domain signal as shown in Fig.2.3. This is called the Mallat algorithm or 
Mallat-tree decomposition. Its significance is in the manner it connects the 
continuous-time mutiresolution to discrete-time filters. In the figure, the signal is 

denoted by the sequence x[n] , where n is an integer. The low pass filter is denoted by 

Go  while the high pass filter is denoted by I-10 . At each level, the high pass filter 

produces detail information, d[n] , while the low pass filter associated with scaling 

function produces coarse approximations, a[n] . 

11 



Fig.2.3. Three-level wavelet decomposition tree 

At each decomposition level, the half band filters produce signals spanning 

only half the frequency band. This doubles the frequency resolution as the uncertainty 

in frequency is reduced by half. In accordance with Nyquist's rule if the original 

signal has a highest frequency of co , which requires a sampling frequency of 2 co 

radians, then it now has a highest frequency of co/2 radians. It can now be sampled at 

a frequency of co radians thus discarding half the samples with no loss of information. 

This decimation by 2 halves the time resolution as the entire signal is now represented 

by only half the number of samples. Thus, while the half band low pass filtering 

removes half of the frequencies and thus halves the resolution, the decimation by 2 
doubles the scale. 

With this approach, the time resolution becomes arbitrarily good at high 

frequencies, while the frequency resolution becomes arbitrarily good at low 

frequencies. The time-frequency plane is thus resolved as shown in Fig.2.I (b). The 

filtering and decimation process is continued until the desired level is reached. The 

maximum number of levels depends on the length of the signal. The DWT of the 

original signal is then obtained by concatenating all the coefficients, a[n] and d[n] , 

starting from the last level of decomposition. 

12 



[n] 
Th2 --► 

 

— 

  

   

An] • 

      

       

t2 

  

q 

   

  

— -► 

 

       

Fig.2.4. Three-level wavelet reconstruction tree 

Figure 2.4 shows the reconstruction of the original signal from the wavelet 

coefficients. Basically, the reconstruction is the reverse process of decomposition. 

The approximation and detail coefficients at every level are upsampled by two, passed 

through the low pass and high pass synthesis filters and then added. This process is 

continued through the same number of levels as in the decomposition process to 

obtain the original signal. The Mallat algorithm works equally well if the analysis 

filters, Go  and Ho  , are exchanged with the synthesis filters G1 , H1 . 

2.6. Classification of Wavelets 

We can classify wavelets into two classes: (a) orthogonal [8] and (b) 

biorthogonal [9]. Based on the application, either of them can be used. 

2.6.1. Features of Orthogonal Wavelet Filter Banks 

The coefficients of orthogonal filters are real numbers. The filters are of the 

same length and are not symmetric. The low pass filter, G0  and the high pass 

filter, Ho  are related to each other by 

Ho  (z) = z-NG0(_z-1) 	 (2.2) 

The two filters are alternated flip of each other. Also, for perfect 

reconstruction, the synthesis filters are identical to the analysis filters except for a 

time reversal. Orthogonal filters offer a high number of vanishing moments. This 

property is useful in many signal and image processing applications. They have 

regular structure which leads to easy implementation and scalable architecture. 

13 



2.6.2. Features of Biorthogonal Wavelet Filter Banks 

In the case of the biorthogonal wavelet filters, the low pass and the high pass 

filters do not have the same length. The low pass filter is always symmetric, while the 

high pass filter could be either symmetric or anti-symmetric. The coefficients of the 

filters are either real numbers or integers. 

For perfect reconstruction, biorthogonal filter bank has all odd length or all 

even length filters. The two analysis filters can be symmetric with odd length or one 

symmetric and the other anti-symmetric with even length. Also, the two sets of 

analysis and synthesis filters must be dual. The linear phase biorthogonal filters are 

the most popular filters for data compression applications. 

2.7. Wavelet Families 

There are a number of basis functions that can be used as the mother wavelet 

for wavelet transformation. Since the mother wavelet produces all wavelet functions 

used in the transformation through translation and scaling, it determines the 

characteristics of the resulting Wavelet Transform. Therefore, the details of the 

particular application should be taken into account and the appropriate mother 

wavelet should be chosen in order to use the wavelet transform effectively. 

a 

--1 

0 

-1 
2 

a as 

(a) (b) 

14 



0.5 

0 

-0.5 

-5 	0 	5 

(c) 

-8 -6 —4 -2 0 2 4 6 8 

(e)  

0.5 

-0.5 

-8 -6 -4 -2 0 2 4 6 8 

(d) 

(t) 

0.8 
0.6 
0.4 
0.2 

0 
-0.2 

Fig.2.5. Wavelet families (a) Haar (b) Daubechies4 (c) Meyer (d) Morlet 

(e) Mexican Hat (I) CDF (2,2) 

Fig.2.5 illustrates some of the commonly used wavelet functions. Haar wavelet is one 

of the oldest and simplest wavelet. Therefore, any discussion of wavelets starts with 

the Haar wavelet. Daubechies wavelets are the most popular wavelets[l 6]. They 

represent the foundations of wavelet signal processing and are used in numerous 

applications. Haar and Daubechies4 wavelets along with Meyer wavelets are capable 

of perfect reconstruction. The Meyer, Morlet and Mexican Hat wavelets are 

symmetric in shape. The wavelets are chosen based on their shape and their ability to 

analyze the signal in a particular application. CDF (2,2) wavelet is also known as the 

biorthogonal (5,3) wavelet because of the filter length of 5 and 3 for the low and high 

pass filters, respectively. 

15 



Chapter 3 

WAVELET BASED IMAGE COMPRESSION 

Uncompressed multimedia (graphics, audio and video) data requires 
considerable storage capacity and transmission bandwidth. Despite rapid progress in 

mass-storage density, processor speeds, and digital communication system 

performance, demand for data storage capacity and data-transmission bandwidth 

continues to outstrip the capabilities of available technologies. The recent growth of 

data intensive multimedia-based web applications have not only sustained the need 

for more efficient ways to encode signals and images but have made compression of 

such signals central to storage and communication technology[16]. 

In the field of image processing, image compression is the current topic of 

research. Image compression plays a crucial role in many important and diverse 

applications, including televideoconferencing, remote sensing, document & medical 

and facsimile transmission. 

3.1. Need for Compression 

Image data is by its nature multidimensional and tend to take up a lot of space 

• Pictures take up a lot of storage space (either disk or memory). 

• A 1000x1000 picture with 24 bits per pixel takes up 3 megabytes. 

• The Encyclopedia Britannica scanned at 300 pixels per inch and 1 bit per pixel 

requires 25,000 pages x1,000,000 bytes per page = 25 gigabytes. 

• Video is even bulkier: 90 minute movie at 640x480 resolution spatially, 24 bit 

per pixel, 24 frames per second, requires 90 x60x24 x640 x480 x3=120 
gigabytes. 

The examples above clearly illustrate the need for sufficient storage space, large 

transmission bandwidth, and long transmission time for image, audio, and video data. 

At the present state of technology, the only solution is to compress multimedia data 

before its storage and transmission, and decompress it at the receiver for play back. 

For example, with a compression ratio of 32:1, the space, bandwidth, and 

16 



transmission time requirements can be reduced by a factor of 32, with acceptable 
quality. 

• Applications: HDTV, film, remote sensing and satellite image transmission, 

network communication, image storage, medical image processing, fax. 

3.2. Principles behind Compression 

A common characteristic of most images is that the neighboring pixels are 

correlated and therefore contain redundant information. The foremost task then is to 

find less correlated representation of the image. Two fundamental components of 

compression are redundancy and irrelevancy reduction. Redundancy reduction aims at 

removing duplication from the signal source (image/video). Irrelevancy reduction 

omits parts of the signal that will not be noticed by the signal receiver, namely the 

Human Visual System (HVS). In general, three types of redundancy can be identified: 

• Spatial Redundancy or correlation between neighboring pixel values. 

• Spectral Redundancy or correlation between different color planes or spectral 
bands. 

• Temporal Redundancy or correlation between adjacent frames in a sequence 

of images (in video applications). 

Image compression research aims at reducing the number of bits needed to 

represent an image by removing the spatial and spectral redundancies as much as 

possible. Since we will focus only on still image compression, we will not worry 

about temporal redundancy. Different methods for redundancy reduction are 

• Spatial redundancy: DCT, DWT, DPCM 

• Statistical redundancy: Run-Length coding, Variable-Length coding 

3.3. Image compression model 

A typical image compression model consists of source encoder which is 

responsible for reducing or eliminating any coding, interpixel or psychovisual 

redundancies in the input image. Channel is a transmission path and source decoder 

17 



Reconstructed 
image 

Source 
decoder 

eoder 00 se 

Image Mapper Quantizer Symbol 
encoder 

channel 

Channel Symbol 
decoder 

Inverse 	reconstrue ed ima 
mapper 

reconstructs the original image whose function is opposite to that of source encoder. 
The figure.3.1 shows the block diagram of image compression model 171 

Channel Image 

  

Source 
encoder 

   

    

Fig.3.1. Image compression model 

(b) Source decoder 

Fig.3.2. (a) source encoder (b) source decoder 

The source encoder consists of three blocks. The first stage of the source 
encoding process, the mapper transforms the input data into a formate designed to 

reduce interpixel redundancies in the input image. This operation is generally 
reversible and may or may not reduce directly the amount of data required to 

represent the image. 

The second stage, or quantlzer block in figure.3.2 (a), reduces the accuracy of 
the mappers output in accordance with some pre established fidelity criterion. The 
stage reduces the psychovisual redundancies of the input image. This operation is 
irreversible. Thus it must be omitted when error free compression is desired. 

18 



In the third and final stage of the source encoding process, the symbol coder 

block in figure.3.2. (a) creates a fixed- or variable-length code to represent the 

quantizer output and maps the output in accordance with the code. 

The source decoder shown in figure.3.2 (b) contains only two components 

symbol decoder and an inverse mapper. These blocks perform, in reverse order, the 

inverse operations of the source encoder's, symbol encoder and mapper blocks. 

3.4. Image Compression Techniques 

Compression methods can be divided in two classes: lossless and lossy compression 

techniques: 

3.4.1. Lossless compression 

It guarantees that the original signal can be reconstructed without any errors. This is 

important for applications like the compression of text. For images, lossless 

compression is often used as the second step, after the lossy part. 

3.4.2. Lossy compression 

With lossy compression, we can obtain higher compression rates by not 

requiring the exact data to be reconstructed. Indeed, because the human visual system 

is not sensitive to some kinds of errors, the compression potential is much higher 

when we allow for small reconstruction errors. 

Although the integer wavelet transform can be used for lossless compression 

due to its 100% invertible nature (in contrast to floating point wavelet transform 

implementations), image compression will usually be lossy due to the high 

compression rates that are required, except in sensitive applications areas like medical 

imaging where any data loss is not acceptable. 

3.5. Wavelet Transform as the Source Encoder 

The discrete wavelet transform constitutes the function of the source encoder. 

Digital image is represented as a two-dimensional array of coefficients, each 

coefficient representing the brightness level in that point. We can differentiate 

between coefficients as more important ones, and lesser important ones. Most natural 

images have smooth color variations, with the fine details being represented as sharp 

19 



edges in between the smooth variations. Technically, the smooth variations in color 
can be termed as low frequency variations, and the sharp variations as high frequency 
variations. 

The low frequency components (smooth variations) constitute the base of an 
image, and the high frequency components (the edges which give the details) add 

upon them to refine the image, thereby giving a detailed image. Hence, the smooth 
variations are more important than the details. 

Separating the smooth variations and details of the image can be performed in 

many ways. One way is the decomposition of the image using the discrete wavelet 

transform. Digital image compression is based on the ideas of sub-band 

decomposition or discrete wavelet transforms. Wavelets which refer to a set of basis 
functions are defined recursively from a set of scaling coefficients and scaling 

functions. The DWT is defined using these scaling functions and can be used to 

analyze digital images with superior performance than classical short-time Fourier-
based techniques, such as the DCT. The basic difference between wavelet-based and 

Fourier-based techniques is that short-time Fourier-based techniques use a fixed 

analysis window, while wavelet-based techniques can be considered using a short 

window at high spatial frequency data and a long window at low spatial frequency 
data. This makes DWT more accurate in analyzing image signals at different spatial 

frequency, and thus can represent more precisely both smooth and dynamic regions in 

image. The compression system includes forward wavelet transform, a quantizer, and 

a lossless entropy encoder. The corresponding decompressed image is formed by the 

lossless entropy decoder, a de-quantizer, and an inverse wavelet transform. Wavelet-

based image compression has good compression results in both rate and distortion 
sense. 

3.6. 2D Wavelet Analysis 

Images are treated as two dimensional signals, they change horizontally and 
vertically, thus 2D wavelet analysis must be used for images. 2D wavelet analysis 
uses the same 'mother wavelets' but requires an extra step at every level of 

decomposition. The 1D analysis filtered out the high frequency information from the 
low frequency information at every level of decomposition; so only two subsignals 



low pass 
filter on 
rows 

high pass 
filter on 
rows 

—Approximation._ 

MMMMM ••• 

low pass 
filter on 
columns 

high pass 
filter on 
columns low pass 

filter on 
columns 

high pass 
filter on 
columns 

Horizontal 
Detail 

were produced at each level. In 2D, the images are considered to be matrices with N 
rows and M columns. At every level of decomposition the horizontal data is filtered, 
and then the approximation and details produced from this are filtered on columns. 

At every level, four sub-images are obtained; the approximation, the vertical 
detail, the horizontal detail and the diagonal detail. Below the Saturn image has been 
decomposed to one level. The wavelet analysis has found how the image changes 
vertically, horizontally and diagonally. 

Fig. 3.3. Sub band decomposition of 2-D image [29]. 

Approximation 	 Horizontal Detail 

Vertical Detail 
	Diagonal Detail 

Fig. 3.4. 2-D Decomposition of Saturn Image to level 1[29]. 

21 



3.7. Features of Image Compression Using Wavelets 

The key features of wavelet-based compression schemes are: 

• Wavelets provide good compression ratios. Especially for high compression 

ratios, wavelets perform much better than competing technologies like JPEG 

[18], both in terms of signal-to-noise ratio and visual quality. Unlike JPEG, 

they show no blocking effect but allow for a graceful degradation of the whole 

image quality, while preserving the important details of the image. The next 

version of the JPEG standard (JPEG 2000) will incorporate wavelet based 

compression techniques. 

• The wavelet transform is a fast operation (linear to the amount of data), 

especially when implemented using the lifting scheme. The wavelet transform 

is symmetric: both the forward and the inverse transform have the same 

complexity, allowing fast compression and decompression routines. 

• Multi-resolution allows for progressive transmission and zooming, without the 

need for extra storage. One can e.g. first transmit a thumbnail image, and 

gradually transmit and decompress more data to increase the resolution and 

overall image quality. 

• Wavelets can not only be used for image compression, but also for various 

image processing operations. The possibility to combine image processing and 

compression is a very appealing factor. However, image processing cannot be 

done on the final encoded data stream it must be done before the wavelet 

coefficients are quantized or encoded. But even then we win because the 

wavelet transform is a common factor in both image processing and image 

compression. 

3.8. Lifting scheme of DWT 

There are various architectures for implementing a two channel filter bank. A 

filter bank basically consists of a low pass filter, a high pass filter, decimators or 

expanders and delay elements. In this chapter we consider direct form structure, 

polyphase structure briefly before we go into depth analysis of lifting structure. 

22 



xR[n]  

   

T2 

 

Ho 

   

T2 -1111. Go  

    

(b) (a) 

3.8.1. Direct Form Structure 

The direct form analysis filter consists of a set of low pass and high pass filters 
followed by decimators. The synthesis filter consists of up samplers followed by the 
low pass and high pass filters as shown in Fig.3.5. 

Fig.3.5. Direct form structure of (a) Analysis filter bank and 
(b) Synthesis filter' 

In the analysis filter bank, x[n] is the discrete input signal, Go  is the low pass 

filter and Ho  is the high pass filter. 4, 2 Represents decimation by 2 and 

T 2 represents upsampling by 2. In the analysis bank, the input signal is first filtered 

and then decimated by 2 to get the outputs Yo  and Y. . These operations can be 

represented by Eq.3.1 and Eq.3 .2. 

	

Yo  [k] = E X[n] .G 0  [2k — n] 
	

(3.1) 

	

[k] = X[n].Ho  [2k —n] 
	

(3.2) 

The output of the analysis filter is usually processed (compressed, coded or 

analyzed) based on the application. This output can be recovered again using the 

synthesis filter bank. In the synthesis filter bank, Yo  and Yi  are first upsampled by 2 

and then filtered to give the original input. 

3.8.2. Polyphase Structure 

In the direct form analysis filter bank, it is seen that if the filter output consists 

of say, N samples, due to decimation by 2 we are using only N / 2 samples. Therefore, 

23 



the computation of the remaining unused N / 2 samples becomes redundant. It can be 

observed that the samples remaining after downsampling the low pass filter output are 

the even phase samples of the input vector X. convoluted with the even phase 

coefficients of the low pass filter G - ()even and the odd phase samples of the input vector 

Xodd convoluted with the odd phase coefficients of the low pass filter Goodd  . The 

polyphase form takes advantage of this fact and the input signal is split into odd and 
even samples (which automatically decimates the input by 2), similarly, the filter 

coefficients are also split into even and odd components so that Xeven  convolves with 

Goeven  of the filter and Xodd  convolves with Goodd  of the filter. The two phases are 

added together in the end to produce the low pass output. Similar method is applied to 

the high pass filter where the high pass filter is split into even and odd phases H 
()even 

and H
Oodd

. 

The polyphase analysis operation can be represented by the matrix Eq.3.3: 

[
GOeven 

HOeven 

GOoddi[  XI  oven 	Hp  

ZX-17Xenodd = '‘1771-  HOodd Z .Xodd  
(3.3) 

  

The filters with Go. and Goodd  are half as long as Go  , since they are obtained 

by splitting Go  . Since, the even and odd terms are filtered separately, by the even and 

odd coefficients of the filters, the filters can operate in parallel improving the 

efficiency. The Fig.3.6. illustrates polyphase analysis and synthesis filter banks. 

24 



(b) (c) 

Goeven  

Goon 

-PI H

o odd  

(a) 

z-I 

Vr4 

Yri 

X[n] 

Fig.3.6. Polyphase structure of (a) Analysis filter bank (b) Equivalent representation of 

analysis filter bank and (c) Synthesis filter bank 

In the direct form synthesis filter bank, the input is first upsampled by adding 

zeros and then filtered. In the polyphase synthesis bank, the filters come first followed 
by upsamplers which again, reduces the number of computations in the filtering 

operations by half. Since, the number of computations reduced by half in both the 
analysis and synthesis filter banks, overall efficiency is increased by 50%. Thus, the 
polyphase form allows efficient hardware realizations. 

25 



3.8.3. Lifting Scheme Architecture 

In 1994, Sweldens proposed a more efficient way of constructing the 

biorthogonal wavelet bases, which he called the lifting scheme [19]. The basic 

structure of the lifting scheme is shown in Fig.3.7. The input signal s jk  is first split 

into an update function to even and odd samples. The detail (i.e., high-frequency) 

coefficients dj-1k of the signal are then generated by subtracting the output of a 

prediction function P of the odd samples from the even samples. The smooth 

coefficients (the low frequency components) are produced by adding the odd samples 

to the output of an update function U of the details. The computation of either the 

detail or smooth coefficients is called a lifting step. 

even 

Sj,k 
	11.1 Split 

di_Lk 

odd 
, Sj-1 

Fig.3.7. Lifting scheme 

3.8.3.1. Factoring Wavelet Filters Into Lifting Scheme 

Daubenchies and Sweldens [2] showed that every FIR wavelet or filter bank 

can be factored into a cascade of lifting steps that is, as a finite product of upper and 

lower triangular matrices and a diagonal normalization matrix. The high pass filter 

g(z) and low pass filter h(z) can thus be rewritten as 

J-1 
g(z).Eg,z i  

=o 

J-1 
h(z)=E 	. 

=o 

(3.4) 

(3.5) 

26 



where J is the filter length. We can split the high pass and low pass filters into even 

and odd parts: 

g(z) = ge(?)+ go(z 2 ) 

h(z)= he (z 2 )+z-' ho (z 2 ) 

The filters can also be expressed as a polyphase matrix as follows: 

P(z) he {z)ge (z)1 
Lho(z) go(z)] 

(3.6) 

(3.7) 

(3.8) 

Using the Euclidean algorithm which recursively finds the greatest common 

divisors of the even and odd parts of the original filters, the forward transform 

polyphase matrix P(z) can be factored into lifting steps as follows: 

15(z) 
fir 1 	oiri --ti (z-1)1.[7  

IL_s (z--) iiLo 	1 
,m <K 

K01 
(3.9) 

Where s;  (z) and t, (z) are Laurent polynomial corresponding to the update and 

predict steps, respectively, and K is a non zero constant. The inverse DWT is 

described by the following equation: 

m ri s,(z1[1] 0 K 0 1[ p(z)=H[o  0 	t, (z) 	
1 

0 — 
K 

(3.10) 

3.8.3.2. Chohen-Daubechies-Feauvea (CDF) (2,2) Wavelet Using Lifting Scheme 

The analyzing filter pair for the CDF [15] with 2 vanishing moments for 

both primal lifting and dual wavelet function is (up to a normalization factor of h ) 

	

i/(Z)= -1  Z-2  +11 	+ 3  + 1  z — 1  z2  
8 	4 	4 4 8 

(3.11) 

11 	1 k(z)=_z-2 	z-1 + 

4 	2 	4 (3.12) 

27 



Following the above procedure from section 3.8.2 we can factor the analysis 

polyphase matrix of a CDF(2,2) wavelet 

P(z)=[1 
0 1  _1 4.-1 z 	1 	0 

0 _1 	

4  4 	
_ 1 Z _r_1  _1  1 1 —2 0 	1 	_ 2 	2 

(3.13) 

The lifting structure for the CDF (2,2) is shown in Fig.3.8. 

S j,k 

	11111,  di _1 

  

Sj-1,k 

	.J 
Predict 	 Update 

Fig.3.8. Lifting structure for CDF (2,2) wavelet 

3.8.3.3. Integer-To-Integer Transform 

Integer arithmetic is generally much faster than floating-point arithmetic. 

Furthermore, integer numbers are more efficient to encode and take less space to 

store. As a consequence, we prefer to deal with integer numbers and integer 

arithmetic rather than floating-point. In many applications, especially in image 

processing, the input data consists of integer samples. Wavelet coefficients, on the 

contrary, are floating point values. Thus since the filter coefficients are floating-point 

numbers, even if the input data is integer applying the Lifting and Update steps on the 

data will result in floating-point numbers. 

28 



Fortunately the Lifting Scheme can be easily modified to map integers to 

integers, which are in addition fully reversible [3], [20] and thus allows a perfect 

reconstruction of the original image. 

3.8.4. Advantages of Lifting scheme 

Lifting scheme has the following advantages, when compared to other classical filter 

bank algorithm: 

• Lifting leads to a speedup when compared to the classic implementation. 

Classical wavelet transform has a complexity of order n, where n is the 

number of samples. For long filters, Lifting Scheme speeds up the transform 

with another factor of two. Hence it is also referred to as Fast Lifting Wavelet 

Transform (FLWT). 

• All operations within lifting scheme can be done entirely parallel while the 

only sequential part is the order of lifting operations. 

• At every summation point the old stream is replaced by the new one at every 

summation point. 

• Lifting Scheme allows integer-to-integer transform while keeping a perfect 

reconstruction of the original data set. This is important for hardware 

implementation and lossless image coding. 

• Lifting allows adaptive wavelet transforms. This means that the analysis of a 

function can start from the coarsest level, followed by finer levels by refining 

in the areas of interest. 

29 



Chapter 4 

INTRODUCTION TO FPGA IMPLEMENTATION 

For hardware implementation Spartan 3E (xc3s500e-4fg320) FPGA kit is 

used. Spartan 3E FPGA kit is most widely used FPGA kit because of its advantages 

like low power, low cost etc. In this thesis, The FPGA implementation was developed 

using the Xilinx System Generator for DSPTM  , a Simulink-based tool for FPGA 

design. Design flow based on System Generator tool derives a hardware realization 

directly from the system model via automatic code generation. This methodology is 

sometimes referred to as 'model-based design' [21] such high level design approaches 

aim to increased productivity (from higher levels of abstraction) and reliability (from 

automatic code generation and more robust test methodologies). 

In this chapter we look at the overview of Spartan 3E architecture, FPGA 

design flow using Xilinx system generator tool. 

4.1. Architectural Overview 

The Spartan-3E family architecture [22] consists of five fundamental 
programmable functional elements: 

CONFIGURABLE LOGIC BLOCKS (CLBs) contain flexible Look-Up Tables (LUTs) 

that implement logic plus storage elements used as flip-flops or latches. CLBs 

perform a wide variety of logical functions as well as store data. 

INPUT/OUTPUT BLOCKS (I0Bs) control the flow of data between the I/O pins and the 

internal logic of the device. Each IOB supports bidirectional data flow plus 3-state 

operation. Support a variety of signal standards, including four high-performance 

differential standards. Double Data-Rate (DDR) registers are included. 

BLOCK RAM provides data storage in the form of 18-Kbit dual-port blocks. 

MULTIPLIER BLOCKS accept two 18-bit binary numbers as inputs and calculate the 
product. 

DIGITAL CLOCK MANAGER (DCM) BLOCKS provide self-calibrating, fully digital 

solutions for distributing, delaying, multiplying, dividing, and phase-shifting clock 
signals. 

These elements of Spartan 3E family architecture are shown in Fig.4.1. A ring of 

IOBs surrounds a regular array of CLBs. Each device has two columns of block RAM 

30 



except for the XA3S100E, which has one column. Each RAM column consists of 

several 1 8-Kbit RAM blocks. Each block RAM is associated with a dedicated 

multiplier. The DCMs are positioned in the center with two at the top and two at the 

bottom of the device. 

Block RAM 

Fig.4.1. Spartan 3E family architecture 

4.2. FPGA Design Flow using Xilinx System Generator 

In order for an FPGA to carry out a set of instructions, it must be first 

programmed by loading a design via a bitstream file into the FPGA internal 

configuration memory. The bitstream file contains all of the configuration information 

from the physical design defining the internal logic and interconnections of the 

FPGA, as well as device-specific information from other files associated with the 

target device. 

Simulink/Matlab has been created as a system-level design tool that enabled us to 

exploit visual data flows. Simulink also offers a path to automatically generate an 

FPGA bit stream (program the FPGA) on the target development board through third- 

31 



Simulink System Model 

Syntax Verification 

Simulink Simulation 

4— - System Generator 
Blocks 

- Simulink Blocks 
- HDL Code 
- Matlab Code 
- IP Cores 

System Design 

Verification 
& Simulation 

Syntax Verification I 

Implementation 
Synthesis 

	

Place & 	Route 

	

+ 	" 

Configuration 
Bit Stream 	 

Bit Stream Load 	I 

Fig.4.2. FPGA based platform design flow 

party tools such as Xilinx System Generator [23]. Therefore, Xilinx System Generator 

software has been chosen to exploit a fast route to programming FPGAs. 

Figure.4.2. Shows the FPGA design flow methodology used in this work. It consists 

on a basic four-step methodology for implementing FPGA applications: 1) system 

design, 2) verification and simulation, 3) implementation and 4) configuration. 

1. SYSTEM DESIGN. This first step describes the model design that has to be 

implemented onto the FPGA device. In our case, we create the designs using System 

Generator which is a visual programming environment [23]. 

2. VERIFICATION AND SIMULATION. Functional verification and simulation checks 

the logical correctness of FPGA design. Once any form of design entry has 

32 



represented a design, it is necessary to verify if such a description satisfies the design 

specifications. 

3. IMPLEMENTATION. This step includes the synthesis and place & route processes. 

Synthesis converts design entry into actual gates/blocks specified in FPGA devices. 

This is a very important step of the whole design procedure. A lot of efforts have been 

put into the improvement of the synthesis algorithms. On the other hand, the place & 

route tool selects the optimal position for elementary design blocks and minimizes 

length of interconnections on FPGA devices. 

4. CONFIGURATION. This final step implies downloading bit stream codes onto the 

FPGA device. The Xilinx system development provides with the Project Navigator 

software which includes the iMPACT tool. iMPACT works as the programming 

interface between a PC (host) and the FPGA. 

Spartan-3E Starter Kit shown below in Fig. 4.3 is for hardware implementation 

XILINX 

Fig.4.3. Spartan-3E Starter Kit [27] 

33 



4.3. FPGA Configuration 
This section describes the process of loading the configuration bitstream (.bit file) into 

the FPGA. To download the .bit file we will be using iMPACT (part of the Xilinx 

tools Installation) [24]. The following five steps outline this process. 

Fig.4.4. System genarator token 

1. When iMPACT starts up, we select the default choice Configure Devices in the 

first dialog. Next, select Boundary-Scan Mode, and the automatically connect to cable 

and identify Boundary-Scan chain. 

2. iMPACT will then connect to the JTAG adapter cable, and search the JTAG chain 

for devices. If this fails, there is a communication problem with the parallel port on 

the PC, a problem with the JTAG cable, or a problem with the JTAG scan chain on 

34 



the board. It will not be possible to configure the board until these problems are 

resolved. 

3. Once iMPACT has identified all devices on the JTAG scan chain, we have to 
assign the programming file to each of the devices in the chain, in turn. 

4. In the Assign New Configuration File dialog box for each device, we select the 

configuration file for the type of device and click on Open, or click on Bypass to put 

that device into bypass mode, causing it not to be configured. When prompted to 

select a programming file for the FPGA, we select the configuration bit file for the 

Spartan-3E (choosing the .bit file from the project directory) device. 

5. After configuration files have been assigned to all devices, a device is configured 

by right clicking on its icon in the iMPACT window and choosing Configure from the 

menu. Appropriate options for the device being programmed must be selected from 

the Program Options dialog box. iMPACT will configure the device and then indicate 

whether configuration was successful or not. If HDL code has been created, the 

Xilinx Integrated Software Environment (ISE) can be used to convert a collection 

Verilog or VHDL files into a configuration bitstream (.bit file) for the FPGA 

application. 

35 



Chapter 5 

HARDWARE IMPLEMENTATION OF CDF LIFTING 
SCHEME ARCHITECTURE 

An improved parallel architecture for implementing 2D-DWT of CDF (2,2) is 

proposed in this thesis. First the proposed architecture is designed using System 

generator Simulink, then implemented on FPGA. 

In this chapter, algorithm for CDF (2,2) wavelet is briefly explained, then it is 

designed in System generator Simulink and Finally its hardware implementation on 

FPGA is done. 

5.1. Cohen-Daubechies-Feauveau (CDF)(2,2) Wavelet 

The Cohen-Daubechies-Feauveau (CDF) (2,2) Wavelet [29] is widely used 

for image compression because of its good compression characteristics. The original 

filters have 5 + 3 = 8 filter coefficients as shown in Eq.3.11 and Eq.3.12, whereas an 

implementation with the lifting scheme has only 2 + 2 = 4 filter coefficients. The 

forward and reverse filters are shown in Table 5.1(a) and 5.1(b). Fractional numbers 

are converted to integers at each stage. Though such an operation adds non-linearity 

to the transform, the transform is fully invertible as long as the rounding is 

deterministic. In Table 5.1 x represents the image pixel values and s stands for the 

summing or the low pass coefficients and d stands for the difference or the high pass 

coefficients. 

Table 5.1. CDF (2,2) wavelet with lifting scheme (a) Forward transform (b) Inverse 
transform 

(a) 

s, <--- x2, 
Splitting d,<—x2,1 

1 
Dual Lifting d,<—d,--2-(s,+s„1) 

1 
Primal Lifting Si  <— s, + —

4
(d,_, + d, ) 

36 



(b) 

Inverse Primal Lifting <— s, 	si — 

	

,_ 	di )  

Inverse Dual Lifting d, <— d, + —1 (s1 +s,.0 ) 
4 

x21  <- Si  
Merging 

di X2i+1 <- 

In image compression, one row or column of an image is regarded as a signal. 

Fig.5.1 shows the row and column formation at level 1, level 2 and level 3 for a 512 X 

512 pixel image. 

Fig.5.1. Rows and columns of level 1, 2 and 3 decomposition of an image 

37 



Every row or column is arranged and assigned in the following manner: 

So  Do  Si  Di  S2  D3  S3  D4  S4 	 

In this algorithm, in case of rows it is for row processor whereas in case of 
column it is for column processor in the parallel architecture of lifting based CDF 
(2,2)[l 5] wavelet. The odd pixels should be processed first, then the even pixel due to 
the data dependency. There are a total of three levels based on the 3-level 
decomposition wavelet transform algorithm discussed above. In each level, the rows 
are processed first then the columns. Each level's signal length (amount of each 
row/column pixels) is half of the previous level. 

Algorithm 
For every row or column: 

Repeat until end of row or column: 

If begin or end of row or column 

begin 

Do  = Do  + Do  — — S 0  

So  = So + (2* Do  / 8) 

End 

Else 

begin 

Di = Di + Di —S1 —S, 

Si  = Si +((1),_1 + Di )18) 

38 



5.2. CDF Wavelet Simulink model in system generator 

The input image, which is in matrix format must be converted to a single 

column matrix, this is called Raster scanning. So, we use Matlab coding to obtain a 

Raster scan image. The input image is taken from Matlab of 512x512 grayscale 

image. 

A prototype CDF biorthogonal Wavelet processor is modeled and 

implemented in Matlab Simulink using Xilinx System Generator Blockset. Xilinx 

system generator has a feature of hardware co-simulation, in which we can validate 

software and hardware implementation simultaneously, i.e. design developed in 

software using Xilinx blockset and design implemented on FPGA chip are validated 

simultaneously. Figure 5.2 shows the schematic diagram of Simulink model of CDF 

biorthogonal Wavelet transform. 

Fig.5.2. Simulink model of CDF Wavelet transform. 

39 



5.3. Implementation on FPGA 

Having reached the desired performance throughout the verification and 

simulation processes, source design can be implemented. Basically, this is 

accomplished by translating the block model in Figure 5.2 into an HDL code or a .bit 

configuration file. This step is the combination of several process chained 

automatically. First, double-click is pressed on the System Generator token in the top 

level of the model to open the hardware generation GUI that lets you specify FPGA 

family and device, netlist type, Simulink clock rate, and whether a testbench is 

needed. Clicking Generate produces a cycle and bit accurate HDL netlist that can be 

synthesized and placed-and-routed using Xilinx ISE Foundation FPGA 

implementation software. Figure 5.3 illustrates the configuration options environment 

from the System Generator block. This block generates all necessary files for the 

FPGA application. 

Fig.5.3. System generator token 

40 



After HDL conversion, it automatically generates the Hardware co-simulation 
block which is the FPGA equivalent Simulink model and having same number of 

inputs and outputs of previous simulink model. Figure 5.4 shows the Hardware co 
simulation block and also known as JTAG co-simulation block, then connect the 
inputs to JTAG co-simulation block and double click on this block, then invoke the 
cable option and set cable as speed as 12 MHz. Fig. 5.4 and Fig.5.5.shows both 
hardware and software model of CDF wavelet. 

imgcornpresserilevel 
hulmosim 

Fig.5.4. JTAG Co-simulation block 

41 



Fig.5.5. Simulink model with Hardware co-simulation block 

42 



Chapter 6 

RESULTS AND DISCUSSION 

In this chapter, the results of CDF biorthogonal Wavelet transform 

decomposition for different input images are presented. Then simulation and synthesis 

results of Prototype CDF biorthogonal Wavelet Processor modeled in Matlab 

Simulink using Xilinx System Generator Blockset are discussed. Hardware co-

simulation is carried out successfully and simulation of both hardware and software 

are validated successfully. Device utilization summary, which indicates amount of 

logic occupied on the FPGA chip by our design, is discussed. 

The input image, which is in matrix format must be converted to a single 

column matrix, this is called Raster scanning. So, we use Matlab coding to obtain a 

Raster scan image. These codes are given in Appendix-B. The input image is taken 

from Matlab of 512x512 grayscale image. 

6.1. DWT in X and Y directions 

Each pixel in the input frame is represented by 8 bits, accounting for 1 pixel 

per memory word. These 8 bits goes into the higher 8 bits (MSB) of the 16 bit 

memory word. Thus each memory read process brings in one consecutive pixels of a 

row. Thus two clock cycles generates one value each of f and g coefficients. 

0 1 254 255 256 257 510 511 
Pixel data 

DO fl f254 f255 g0 gl 8254 g255 

Coefficeint data 

Fig.6.1. Coefficient Ordering in X (row) direction 

These have to be written back in a Mallot ordering scheme i.e. to write back the 

coefficients in a way to put all the low frequency coefficients f ahead of the high 
frequency coefficients g. This is shown in the coefficient data in Fig. 6.1. It allows 

progressive image transmission/reconstruction. The bulk of the 'average' information 

43 



i.e. low frequency information is ahead followed by the minor 'difference' 

information i.e. high frequency information. Although an in-place write back scheme 

is available, it is not implemented because after the end of one row operation the 

coefficients would have to be ordered again to follow Mallot ordering. Once the filter 

has been applied along all the rows in a stage, the same filter is applied along the 

columns. The column coefficients are also written in the same aforementioned Mallot 
ordering. 

The current hardware implementation processes the 512 x 512 IITR.TIF input 

image frame with 3 level of wavelet transform. Fig 6.2. shows the input image of 

IITR.TIF In this, for 1st  level decomposition 512 pixels of each row are used to 

compute 256 high pass coefficient g and 256 low pass coefficients f, as shown in 
figure 6.1. The coefficients are written back in a rearranged manner such that the low 

frequency ones are ahead of the high frequency ones then the resulting image is 

shown in fig.6.3. Once all the 512 rows are processed, the filters are applied in the Y 

direction. The resulting decomposition after 1st  level is shown in fig.6.4. 

Fig.6.2. Original image IITR.TIF of size 512x512 

44 



Fig.6.3. After level 1 in X direction 

Fig.6.4. After levell in Y direction i.e after first level of decomposition 

45 



6.2. Implementation using Xilinx System Generator 

In this section the results of CDF biorthogonal Wavelet implementation using 

the Prototype CDF Wavelet processor are discussed. A prototype CDF Wavelet 

processor is modeled in Matlab Simulink using Xilinx System Generator Blockset. 

Xilinx system generator has a feature of hardware co-simulation, in which we can 

validate software and hardware implementation simultaneously, i.e. design developed 

in software using Xilinx blockset and design implemented on FPGA chip are 

validated simultaneously. 

The prototype CDF Wavelet processor is validated for software and hardware 

implementation and results for different images inputs are discussed. The Figures 

indicate (6.2) input image, (6.4) 1st level decomposed image (6.5) 2nd level 

decomposed image (6.6) 3rd level decomposed image using system generator 

simulation and For simplicity and ease of implementation the input images are resized 

to 512x512. 

Fig.6.5. 2nd level decomposition of IITR.TIF Image 

46 



Fig.6.6. 3rd level decomposition of IITR.TIF Image 

CDF Wavelet Processor Simulink model for the generation of JTAG hardware co-
simulation block is shown in Fig.6.8. And the generated JTAG hardware co-
simulation block is shown in Fig. 6.7. 

imgaompre  
hilucasim 

Fig.6.7. JTAG Co-simulation block 

47 



`41".g ita  

Fig.6.8. Simulink model of CDF wavelet processor with Hardware JTAG co-simulation block 

48 



Fig.6.9. Original image leena.tif of size 512x512 

Fig.6.10. 3-level decomposed image of image leenalif 

49 

3-level decomposition of different input.tif images are shown below. 



Fig.6.11. Original image cameraman.tif of size 512x512 

Fig.6.12. 3-level decomposed image of image cameraman.tif 

50 



Fig.6.13. Original image mandrilla.tif of size 512x512 

Fig.6.14. 3-level decomposed image of image mandrilla.tif 

51 



Fig.6.15. Original image fruits.tif of size 512x512 

Fig.6.16. 3-level decomposed image of image fruits.tif 

52 



Fig.6.17. Original image flowers.tif of size 512x512 

Fig.6.18. 3-level decomposed image of image floweis.tif 

53 



6.3. Synthesis Results 

Implementation results of the configurations that are used during 

simulation/synthesis are presented here. The logic resources of the FPGA are divided 

in different categories as look up tables (LUT), input/output Blocks (I0B), Flip-flops, 

Multipliers, etc. A specific group of a number of these resources is called 

configurable logic blocks (CLB) and a group of CLBs forms a slice. The routing 

resource usage is not given by the place and route tools - higher device utilization 

implies greater routing resource utilization. The total number of CLBs used is a 

function of the device resources used and how densely they are packed. For example, 

on a CLB only a flip flop could be used, but still it adds to the CLB count. 

A LUT Flip Flop pair for this architecture represents one LUT paired with one 

Flip Flop within a slice. A control set is unique combination of clock, reset, set, and 

enables signals for a registered element. The synthesis details, which indicate amount 

of logic resources used by our design, are discussed for Prototype CDF Wavelet 

processor of 3 levels. 

Device selected: Spartan3s500efg320-4 

Table.6.1. Resource utilization on Spartan3s500efg320-4 for first level 

decomposition 

Slice logic utilization 

Unit Name Number used Total Number Percent 

Slice Flip Flops 484 9,312 5 

4 input LUTs 966 9,312 10 

Logic distribution 

Unit Name Number used Total Number Percent 

Occupied Slices 663 4,656 14 

Slices containing 
only related logic 663 663 100 

54 



Slices containing 
unrelated logic 

0 663 0 

4 input LUTs 1,068 9,312 11 

Number used as logic 966 

Number used as a route-thru 102 

I/O Utilization 

Unit Name Number used Total Number Percent 

Bonded IOBs 1 232 1 

Specific Feature Utilization 

Unit Name Number used Total Number Percent 

RAMB16s 3 20 15 

BUFGMUXs 4 24 16 

BSCANs 1 1 100 

Table.6.2. Resource utilization on Spartan3s500efg320-4 for second level 

decomposition. 

Slice logic utilization 

Unit Name Number used Total Number Percent 

Slice Flip Flops 483 9,312 5 

4 input LUTs 971 9,312 10 

Logic distribution 

Unit Name Number used Total Number Percent 

Occupied Slices 700 4,656 15 

Slices containing 
only related logic 700 700 100 

Slices containing 
unrelated logic 0 700 0 

55 



Number of 4 
input LUTs 1,072 9,312 11 

Number used as logic 971 

Number used as a route-thru 101 

I/O Utilization 

Unit Name Number used Total Number Percent 

Bonded IOBs 1 232 1 

Specific Feature Utilization 

Unit Name Number used Total Number Percent 

RAMB16s 3 20 15 

BUFGMUXs 4 24 16 

BSCANs 1 1 100 

Table.6.3. Resource utilization on Spartan3s500efg320-4 for third level 

decomposition 

Slice logic utilization 

Unit Name Number used Total Number Percent 

Slice Flip Flops 482 9,312 5 

4 input LUTs 968 9,312 10 

Logic distribution 

Unit Name Number used Total Number Percent 

Occupied Slices 666 4,656 14 

Slices containing 
only related logic 666 666 100 

Slices containing 
unrelated logic 0 666 0 

56 



Number of 4 

input LUTs 
1,068 9,312 11 

Number used as logic 968 

Number used as a route-thru 100 

I/O Utilization 

Unit Name Number used Total Number Percent 

Bonded IOBs 1 232 

Specific Feature Utilization 

Unit Name Number used Total Number Percent 

RAMB16s 3 20 15 

BUFGMUXs 4 24 16 

BSCANs 1 1 100 

The numbers given in resource usage above, show that Spartan3s500efg320-4 device 

can easily accommodate the design. Larger practical picture sizes merely require an 

FPGA with more internal or external RAM, i.e., the amount of required logic does not 

grow, as seen in Tables. For cost reduction, one might want to consider using the 

smallest possible FPGA that can accommodate the necessary resources and providing 

an external dual port RAM large enough for the desired picture dimension. Since only 

about 14% of the FPGA is used, wavelet implementations using other filters like the 

Daubechies wavelet filter can also be targeted for implementation on the 

Spartan3s500efg320-4. For any image the resource utilization on FPGA is fixed for 3-

levels because of fixed design. 

57 



Chapter 7 

CONCLUSIONS AND FUTURE SUGGESTIONS 

7.1. Conclusions 

In this thesis, an improved parallel architecture for implementation of lifting 

based CDF Wavelet is proposed. This architecture is first tested using 

MATLAB software, then implemented on Spartan3E xc3s500e-4fg320. 

Initially, CDF biorthogonal Wavelet Transform has been studied and its 

hardware logic has been realized in Matlab simulator using System generator. 

Simulations have been carried out successfully on standard images. The 

software and hardware outputs are validated successfully. 

• 	Compared to previous parallel architecture [26], proposed architecture can 

perform level 1 decomposition of an N x N image in NY working clock 4 
cycles. 

7.2. Future Suggestions 

• The applications of FPGA in different domains are growing rapidly. In the 

Digital Image processing field, Wavelet based Image Compression 

Applications on grayscale images has been discussed. The other image 

processing techniques like, color image processing, Image Enhancement, 

Morphological operations, Video processing can be examined by taking FPGA 
as a platform. 

• Similarly, an inverse Wavelet transform can be implemented for extracting the 

original image from compressed image. 

• Architecture for other wavelets can also be developed similarly with reduced 
clock cycles. 

58 



REFERENCES 

[1] C. Christopoulos, A. Skodras and T. Ebrahimi, "The JPEG2000 still image 

coding system: an overview," IEEE Trans. on Consumer Electronics, vol.46, 

no. 4, pp.1103-1127, 2000. 

[2] I. Daubechies, W. Sweldens, 1998, "Factoring wavelet transforms into lifting 

schemes," J. Fourier Anal. Appl., vol.4, pp.247-269, 2000. 

[3] A .R. Calderbank, I. Daubechies, W. Sweldens, and B.L. Yeo, "Wavelet 

transform that map integers to integers," Applied and Computational Harmonic 

Analysis (ACHA), vol.5, no.3, pp.332-369, 1998. 

[4] K. Andra, C. Chakrabarti and T. Acharya, " VLSI architecture for lifting-based 

forward and inverse wavelet transform", IEEE Trans. on Signal 

Processing,vol.50, no.4,pp.966-977, 2002. 

[5] C. Chrysafis, and A. Ortega, 2000, "Line-based, reduced memory, wavelet 

image compression," IEEE Trans. on Image Processing, vol.9,no.3, pp.378- 

389. 

[6] P. Wu, and L. Chen, 2001, "An efficient architecture for two-dimensional 

discrete wavelet transform," IEEE Trans. on Circuits and Systems for Tech., 

vol.11, no.4, pp.536-545. 

[7] D. Bhatia, 1997, "Reconfigurable computing," 10th  International Conference on 
VLSI Design, Hyderabad, India, pp. 356-359. 

[8] How much information? 2003 By UC Berkeley's School of Information 
Management and Systems. 

http://www.sims.berkeley.edu/research/projects/how-much-info-2003  

[9] Pennebaker, W. B. and Mitchell, J. L. JPEG - Still Image Data Compression 

Standards, Van Nostrand Reinhold, 1993. 

[10] R. Polikar, "Wavelet tutorial", 

http://users.rowan.edut—polikar/WAVELETS/WT partl.html 

59 



[11] A. Abbate, C. M. DeCusatis and P. K. Das, "Wavelets and Subbands: 

Fundamentals and Applications", Brikhauser publications, 2002. 

[12] S. G. Mallat, "A Theory for Multiresolution Signal Decomposition: The 
Wavelet Representation," IEEE Trans. on Pattern Analysis and Machine 

Intelligence, vol.11, no.7, pp. 674-693, 1989. 

[13] S. G. Mallat, "Multifrequency Channel Decompositions of Images and Wavelet 

Models," IEEE Trans. on Acoustics, Speech and Signal Processing, vol.37,no. 

12, pp. 2091-2110, 1989. 

[14] I. Daubechies, "Orthonormal Bases of Compactly Supported Wavelets," 

Communications on Pure and Applied Mathematics, John Wiley and Sons, pp. 

909-996, 1988. 

[15] I. Daubechies, "Biorthogonal Bases of Compactly Supported Wavelets," 

Communications on Pure and Applied Mathematics, John Wiley and Sons, pp. 

485-560, 1992. 

[16] David Salomon, "Data Compression" spinger, Fourth Edition2007. 

[17] R. C. Gonzalez, R. E. Woods, "Digital Image Processing," Pearson Education, 

II Edition, 2003. 

[18] T. Archarya, P. S. Tsai, "JPEG 2000 Standard for Image Compression: 

Concepts, Algorithms and VLSI Architectures," Wiley Interscience, 2005. 

[19] W. Sweldens, "The lifting scheme: A new philosophy in biorthogonal wavelet 

constructions," in Proc. SPIE, vol.2569, pp.68-79, 1995. 

[20] M. D. Adams, F. Kossentine, "Reversible Integer-To-Integer Wavelet 

Transform of Image Compression: Performance Evaluation and Analysis," 

IEEE Trans. on Image Processing, vol.9, pp.1010-1024, 2000. 

[21] Mathworks URL: http://www.mathworks.corn  

[22] Xilinx. "Spartan-3E FPGA Family: Complete Data Sheet". 

[23] Xilinx 	Inc., 	"System 	Generator 	User 	Guide", 	URL: 

http://www.xilinx.com/products/software/sysgen/app does/user guide.htm  

60 



[24] G.E. Martinez-Torres, J.M. Luna-Rivera and R.E. Balderas-Navarro, "FPGA-
Based Educational Platform for Wireless Transmission Using System 
Generator," Proc. of IEEE International Conference on Reconfigurable 
Computing and FPGA's, ReConFig 2006, vol., no., pp.1-9, Sept. 2006. 

[25] Luiz Pires and Deepa Pandalai, Honeywell Technology Center, Minnepoli, MN 
55412, "compress.c, " October 1988. 

[26] C. Xiong, J. Tian and J. Liu, "Efficient parallel architecture for lifting-based 
row-dimensional discrete wavelet transform," IEEE Int. Workshop VLSI 
Design and Video Tech., Suzhou, China, pp.75-78, 2005. 

[27] System Generator for DSP performing Hardware-in-the-Loop with Spartan-3E 
starter kit, available at: www.xilinx.com, date: 19/06/2009. 

[28] Spartan-3E starter Kit/Board, User guide available at: 
http://www.digilentinc.com. 

[29] G. K. Kharate, A. A. Ghatol and P.P. Rege, "Image Compression Using 
Wavelet Packet Tree", ICGST-GVIP Journal, Volume (5), Issue (7), July 2005, 
pp. 37-40. 

61 



APPENDIX-A 

1. Procedures for System Generator software installation 

Software installation is important stage as incorrect installation may result in errors 

during synthesis. The order shown below must be followed for successful installation. 

Steps 

> Windows XP is installed in PC (some Xilinx tools do not work in vista 

environment). 

> Matlab R2006b or above versions is installed. 

> Then Xilinx ISE 9.2i is installed. 

> Xilinx ISE 9.2i is updated to service pack 2 to using Xilinx service pack 2. 

> Then Xilinx System Generator for DSP 9.2i is installed. 

Xilinx Blockset is configured to Matlab Simulink. 

> Next, in order for setting up the SpartanTm-3E starter kit to enable hardware-

in-the-loop verification with JTAG co-simulation via the USB configuration 

port, we must install Xilinx System Generator Board Description Builder. 

62 



CI 
Basic Et nts Basic dares 	 , des. constant,end tt 	 System 
Generatot eierrients: B 	Bcm. and 	Sjstern G 	ator function 

SimutinkParameter Estimation 
Optimization 

%wink %fellation and Vaiidation 

Fig.A.1. Xilinx Blockset in Simulink 

63 



The steps for installing the Xilinx System Generator Board Description Builder are 

• Double click on system generator token and select new compilation 

target as show below. 

Fig.A.2. Invoke SBD Builder to Create New Hardware Compilation Target 

• Enter target board information and clock sections as below. 

64 



orI ccitin Builder 

Fig.A.3. Specify SBD Builder Options for Spartan-3E board 

• Click the Save Files button and save the zip file and exit SBD Builder. 

• Now the kit is ready for hardware-in-the-loop verification with JTAG 

co-simulation via the USB configuration port. 

2. FPGA configuration options 128] 

A few system-level design trade-offs were required in order to provide the 
Spartan-3E Starter Kit board with the most functionality. 

➢ Download FPGA designs directly to Spartan-3E FPGA via JTAG (Joint Test 
Action Group (JTAG) is the usual name used for the IEEE 1149.1 standard), 
using the onboard USB interface. .The on-board USB-JTAG logic also 
provides in-system programming for the on-board platform Flash PROM and 
the Xilinx XC2C64A CPLD. 

65 



U based Download/Debua Port 
U siandard US8 table 

ml 

coal 	1on Qations 
not Flash P 

11111131t 	lash 
%rind NOR 	memory 
By* Periphinal kitodia (BPI} mods 

uOMMIPUIL.Altrag 

> Program the on-board 4Mbit Xilinx XCF04S serial Platform Flash PROM, 

then configure the FPGA from the image stored in the Platform Flash PROM 

using Master Serial mode. 

> Program the on-board 16 Mbit ST Microelectronics SPI serial Flash PROM, 

then configure the FPGA from the image stored in the SPI serial Flash PROM 

using SPI mode. 

> Program the on-board 128Mbit Intel StrataFlash parallel NOR Flash PROM, 

then configures the FPGA from the image stored in the Flash PROM using 

BPI Up or BPI Down configuration modes. Further, an FPGA application can 

dynamically load two different FPGA configurations using the Spartan-3E 

FPGA's MultiBoot mode. 

Fig.A.4. Spartan-3E Starter Kit FPGA Configuration Options 

66 



APPENDIX-B 

1. M-code for Raster scanning image of size m x m 

tic 

cic; 

clear all; 

I=imread 

I=rgb2gray(I); 

img_res=imresize(I,[512 512],rbicubic 1 ); 

figure,imshow(img_res) 

k=0; 

b=zeros(512*512,1); 

c=zeros(512*512,1); 

[m n]=size(img_res); 

for i=1:512 

for j=1:512 

k=k+l; 

b(k)=b(k)+img_res(i,j); 

c (k) =c (k) +k; 

end; 

end; 

pvtin= [c b]; 

disp(pvtin); 

toc 

2. M-code to display output image 

as=zeros(512,512); 

as1=zeros(512,512); 

k=516; 

for i=1:512 

for j=1:512 



k=k+1; 

as(i,j)=as(i,j)+row4(k); 

end; 

end; 

for i=1:512 

m=1;n=2;96flag=0; 

for j=1:512 

if j<=256 

asl(i,j)=as(i,m); 

m=m+2; 

else 

asl(i,j)=as(i,n); 

n=n+2; 

end 

end 

end 

% disp(as) 

%as=uint8(row3); 

figure,imshow(as/255) 

figure,imshow(as1/255) 

68 



3. Reconstructed images 

The decomposed image of CDF wavelet transform is reconstructed using 

Matlab code and compared with original image and the reconstructed image is 

having good clarity as original image. 

Fig.B.1. Original image IITR.TIF of size 512x512 

69 



Fig. B.2. Reconstructed image IITR.TIF of size 512x512 

70 


	Title
	Abstract
	Chapter 1
	Chapter 2
	Chapter 3
	Chapter 4
	Chapter 5
	Chapter 6
	Chapter 7
	References
	Appendix

