
jØØhJl

PARALLELIZATION OF VIDEO ENCODING
ALGORITHMS ON MULTI-CORE PROCESSORS

A DISSERTATION
Submitted in partial fulfillment of the

requirements for the award of the degree
of

MASTER OF TECHNOLOGY
in

COMPUTER SCIENCE AND ENGINEERING

DEPARTMENT OF ELECTRONICS AND COMPUTER ENGINEERING
INDIAN INSTITUTE OF TECHNOLOGY ROORKEE

ROORKEE -247 667 (INDIA)
JUNE, 2009

Candidate's Declaration

I hereby declare that the work being presented in the dissertation report titled

"Parallelization of Video Encoding Algorithms on Multicore Processors" in partial

fulfillment of the requirement for the award of the degree of Master of Technology in

Computer Science and Engineering, submitted in the Department of Electronics and

Computer Engineering, Indian Institute of Technology Roorkee, is an authentic record of

my own work carried out under the guidance of Dr. Ankush Mittal, Associate Professor

and Dr. Rajdeep Niyogi, Assistant Professor in Department of Electronics and Computer

Engineering, Indian Institute of Technology Roorkee. I have not submitted the matter

embodied in this dissertation report for the award of any other degree.

Dated: 	 (Nam Parakh)

Place: IIT Roorkee

Certificate
This is to certify that above statements made by the candidate are correct to the best of

my knowledge and belief.

Dated: 	 Mittal. 	 Dr. Rajdeep Niyogi

Place: LIT Roorkee 	Associate Professor. 	 Assistant Professor.

Department of Electronics

& Computer Engineering,

ITT Roorkee, Roorkee,

247667 (india).

Department of Electronics

& Computer Engineering,

IIT Roorkee, Rooekee.

247667 (India)

0

ACKNOWLEDGEMENTS

I am thankful to Indian Institute of Technology Roorkee for giving me this opportunity. It

is my privilege to express thanks and my profound gratitude to my supervisor Dr. Ankush

Mittal, Associate Professor for his invaluable guidance and constant motivation

throughout the dissertation. I was able to complete this dissertation in time due to the

constant motivation and support received from him.

I am also grateful to Dr. Raj deep Niyogi, Assistant Professor for his continuous

encouragement. His valuable help and constant support proved immensely beneficial for

my work so did his ability to motivate me. I am grateful to Mr. Khalil Sawant, Mr. Kshitiz

Gupta, Mr. Salil Shirish Sahasrabudhe, Mr. Tarun Kumar and Mr. Payas Goyal. my

colleagues, for being excellent peers and creating a congenial environment for work. I am

also thankful to all my friends who helped me directly and indirectly in completing this

dissertation.

Most importantly, I would like to extend my deepest appreciation to my family for their

love, encouragement and moral support.

(Nityam Parakh)

11

ABSTRACT

Scope of high quality videos is not just limited to entertainment industry, but they are

used widely in E-learning and health care applications. To reduce the space and

bandwidth requirements of these videos MPEG standards are widely used. As the task of

encoding videos in MPEG standards is computationally intensive and time consuming, it

cannot be achieved in real time. In this thesis, we present parallel implementation of

video encoding algorithms by using economical processing model i.e. multicore

processors.

In this work we have explained how the IBM Cell B. E. and NVidia CUDA architecture

can be exploited to attain a fast video encoding system. In this thesis, we also explain

various approaches that can be used to parallelize the MPEG encoder and address various

problems faced during implementation.

The encoder discussed using Cell B. E. is a real time MPEG encoder for a frame size up

to 384 * 288. The encoding rate of the encoder is above 26 frames per seconds.

iii

Table of Contents

Candidate's declaration ..i
Acknowledgements ...ii
Abstract...iii
Contents.. iv
Listof figures ..vi

Listof tables ...vii

1. Introduction 	 1

1.1 Motivation 	 2

1.2 Problem Statement 	 2

1.3 Organization of Report 	 3

2. Video Encoding Basics 	 5

• 2.1 Evolution of MPEG
	 5

2.2 Video Fundamentals 	 5

2.3 Bit Rate Reduction Principles 	 6

2.4 MPEG —2 details 	 9

2.5 Motion JPEG
	 11

3. Multi-core Processors
3.1 The CELL B. E. Processor 	 12

3.2 CUDA (Compute Unified Device Architecture)
	

19

4. Parallel Implementation of MPEG
	

23

4.1 Overview of MPEG Encoding process 	 - 23

4.2 Parallelization of MPEG Encoder 	 24

iv

4.3 Porting MPEG Encoder on CELL B. E. 	 28
4.4 Implementation of MPEG Encoder on CUDA

	 32

4.5 Implementation of MJPEG Encoder on Cell B. E. 	 34

5. Results 	 36

6. Conclusion and Future Work
	

40

References 	 41

YA

List of Figures

Fig.2.1 Frame dependencies in MPEG encoding ...10

Fig 2.2 Organization of frames in a GOP ..10
Fig 3.1 Architecture of the Cell B. E. Processor ...13
Fig 3.2 Implementation of double buffering ..18
Fig 3.3 Transistor division in CPU and GPU ...20

Fig 3.4 GPU architecture 	..21

Fig4.1 MPEG encoder ..23

Fig 4.2 Profiling of MPEG-2 encoder

Fig 4.3 Architecture of Parallel MPEG encoder ... 25

Fig 4.4 Architecture implementing frame level parallelism26

Fig 4.5 Motion estimation in MPEG encoding ...27

Fig 4.6 Implementation of MPEG encoder on Cell B. E29

Fig 4.7 Implementation of motion estimation routine using GPUs33

Fig 4.8 MJPEG frame encoding ...34

Fig 4.9 MJPEG parallel encoding architecture ..35

Fig 5.1 Comparison between performances of encoder over various platforms39

vi

List of Tables

Table 5.1 	Comparison between Intel processor and Cell processor 36

Table 5.2 Comparison between Intel processor and Cell processor

for MPEG encoder ..3 7

Table 5.3 	Comparison between Intel processor and Cell processor for

MJPEG encoder ...37

Table 5.4 Comparison for motion estimation routine between GPU

using and non GPU using Intel machine38

Table 5.5 	Comparison between GPU using and non GPU using Intel machine........38

Table 5.6 	Comparison between GPU and Cell B. E. machine39

vii

Chapter 1 	 Introduction

Multimedia applications have changed the way computers were used. People prefer

using these applications as they empower them to present their views in a variety of

formats. They also offer them the flexibility to address different types of audiences in

addition to their being easy to use. Recent advancements in the field of digital

imaging and video compression have enabled people to use this highly effective

means of communication in a more cost effective way. Digital video technology has

its scope not only in the entertainment industry but also in areas such as health care

and e-learning having the potential to bring a revolutionary change in the way these

services are offered presently. However, high quality video requires more storage

space and communication bandwidth than traditional data [1]. This fact alone act as a

bottleneck which has prevented the widespread use of video technology in different

fields.

To deal with this problem, most of the digital video encoding techniques use a

compression scheme [2]. The MPEG committee has defined widely used standards for

digital video encoding that provides high quality images and high compression rates.

MPEG encoding, however, also demands high computational power. As a result, the

compression of such data on traditional sequential machines requires lot of time.

Thus, various applications that require the video to be compressed at a fast rate either

cannot be deployed altogether, or if deployed are unable to yield satisfactory

performance. There is thus a need to come up with methods or techniques which can

render faster video compression to meet the demand posed by these applications.

Video compression techniques can either be hardware-based or software-based [2]. A

software solution is more flexible, and thus allows algorithmic improvements.

However, there are various hardware devices that can be used for this purpose, but

they are far expensive besides being obsolete. Although there are other approaches of

-achieving a fast encoding, like using multiprocessing systems, grids etc. but, these

options introduce problems such as communication overhead, besides being

expansive.

I

Thus, we focus on addressing the problem and generating an efficient and cost
effective solution by the use of new trend growing in the market, i.e. the multicore
processors. These processors have multiple computing cores that work

simultaneously. The clock frequency of the cores might be less but the overall

throughput that can be generated by using the cores properly is quite high. These
processors are comparatively cheap and easily affordable. The performance factor that
can be achieved by using such a parallel processing model depends more on how
different processing units are used i.e. quality of the software is responsible to draw
maximum performance from the architecture.

In order to attain maximum performance from multicore processor we need to

develop architecture centric applications. In this work, we discuss • how . video
compression can be implemented on Cell B.E. and CUDA architecture. We have

achieved significant performance improvement in MPEG 2 and MJPEG compression

routine on Cell B.E. processor and GPUs. The focus of the work is to parallelize the

encoder in such a way that it suits the underlying architecture, as there are different

programming and implementation constraints with these architectures which restricts

simple implementation of applications.

1.1 Motivation

Video compression may vastly enhance the bandwidth utilization over a network. In

most of the developing countries, network bandwidth is a huge obstacle in deploying

applications that require transmission of high quality video. Even if networking

resources are improved to transmit compressed video, real time video encoding is a

major challenge. Solutions that are available in the market are either quite expansive

or they require networking infrastructure. Another problem with hardware solutions is

that they become worthless with a slight change in standard. Although there is a need

for software based video encoder that uses a low cost resource and can achieve video

encoding at a better rate, yet not much have been done in this field after 1998. All the

system developed in past 10 years capable of fast video encoding uses special

hardware for this purpose.

2

Multicore architecture seems to be a good option for porting such applications. When
comparison is made on basis of cost multicore systems are cheaper than
multiprocessing systems or even grids. They consume less power and can be used for
a wide variety of applications. CUDA devices can be used as add on in most of
existing systems and can perform various task. Thus, to make use of such devices and
boost up performance of multimedia applications is highly beneficial.

1.2 Problem Statement
In this dissertation work we propose and implement a model that improves a
computationally intensive application i.e. video encoders system using parallel
processing architectures such as Cell Broadband Engine and NVidia Graphics
Processing Units. The objective of the model is to achieve a significant improvement

in performance over the linear version.

1.3 Organization of the Report
This dissertation proposes a model for implementing Video Encoding model on
Multicore architectures. The organization of the report is as follows:

Chapter 2 discusses the background of MPEG-2 and MJPEG standards and their

evolution, working principle and bit rate reduction process.

Chapter 3 discusses the hardware architecture of the STI Cell Broadband Engine and

CUDA. It also describes the usage, advantages, constraints and limitations of these
platforms.

Chapter 4 describes parallel implementation of MPEG and MJPEG encoders on
different multicore architectures and discusses different approaches in their

parallelization. We also address issues and challenges in these approaches and how

various problems can be dealt with in such application. A novel method of -------
parallelization of Motion Estimation routine in MPEG encoding is also described in

this chapter.

3

Chapter 5 compares the performance of the MPEG encoder on Cell Broadband
Engine, and NVidia GTX 280 card, it also presents the performance improvement of
MJPEG encoder on Cell processor.

Chapter 6 concludes the dissertation work and gives suggestions for future work.

0

Chapter 2 	 Video Encoding Basics

2.1 Evolution of MPEG
With growing rate in technology usage compressed video has created a widespread
scope. Thus, a need of standardization was very important to allow the use of
common compression methods in new services. Standardization not only facilitates
the development of new products and services but also it creates a platform where
different services can interoperate. To establish digital video standards MPEG
(Moving Picture Experts Group) was started in 1988. MPEG's first project was
MPEG-1 and was published in 1993. The standard itself can be divided in to three
parts defining audio and video compression methods and multiplexing techniques so
that they can be played together.

A need for another standard was felt by MPEG group in order to encode formats of
higher data rate as MPEG1 was limited to 1.5 Mbps. The MPEG-2 standard [2] is
capable of coding standard-definition television at bit rates from about 3-15 Mbit/s

and high-definition television at 15-30 Mbit/s. MPEG-2 aims to be a generic video
coding system supporting a diverse range of applications. To implement all the

features of the standard in all decoders is unnecessarily complex and a waste of

bandwidth, so a small number of subsets of the full standard, known as profiles and

levels, have been defined: A profile is a subset of algorithmic tools and a level

identifies a. set of constraints on parameter values (such as picture size and bit rate). A

decoder which supports a particular profile and level is only required to support the
corresponding subset of the full standard and set of parameter constraints.

2.2. Video Fundamentals

A video stream is a sequence of video frames. Each frame is a still image. A video

player displays one frame after another, usually at a rate close to 30 frames per
second. Frames are digitized in a standard RGB format, 24 bits per pixel (8 bits each

for Red, Green, and Blue). The MPEG algorithm operates on images represented in

YUV color space (Y Cr Cb). If an image is stored in RGB format, it must first be

converted to YUV format.

5

Television services in Europe currently broadcast video at a frame rate of 25 Hz. Each

frame consists of two interlaced fields, giving a field rate of 50 Hz. American

television is similarly interlaced but with a frame rate -of just 30 Hz. In video systems

other than television, non-interlaced video is commonplace (for example, most

computers output non-interlaced video). In non-interlaced video, all the lines of a
frame are sampled at the same instant in time. Non-interlaced video is also termed
'progressively scanned' or 'sequentially scanned' video. The red, green and blue
(RGB) signals coming from a color television camera can be equivalently expressed
as luminance (Y) and chrominance (UV) components. The chrominance bandwidth

may be reduced relative to the luminance without significantly affecting the picture

quality. For standard definition video, MPEG-2 defines how the component (YUV)
video signals can be sampled and digitized to form discrete pixels. Using 8 bits for

each Y, U or V pixel, the uncompressed bit rates for 4:2:2 and 4:2:0 signals are
therefore:

4:2:2: 720 x 576 x 25x 8 + 360 x 576 x 25 x(8+8)= 166 Mbit/s

4:2:0:720x576x25x8+360x288x25 x(8+8)= 124Mbit/s

MPEG-2 is capable of compressing the bit rate of standard-definition 4:2:0 video

down to about 3-15 Mbit/s. At the lower bit rates in this range, the impairments

introduced by the MPEG-2 coding and decoding process become increasingly

objectionable. For digital terrestrial television broadcasting of standard-definition

video, a bit rate of around 6 Mbit/s is thought to be a good compromise between

picture quality and transmission bandwidth efficiency.

2.3 Bit Rate Reduction Principles

A bit rate reduction system works on the principle of removing redundant information

from the frames at the coder before transmission and re-inserting it at the decoder. A

coder and decoder pair is referred to as a 'codec'. In video signals, two distinct kinds

of redundancy can be identified.

2.3.1 Spatial and Temporal Redundancy: Pixel values are not independent, but are

correlated with their neighbour both within the same frame and across frames. So, to

some extent, the value of a pixel is predictable given the values of neighbouring

pixels.

2.3.2 Psycho Visual Redundancy: The human eye has a limited response to fine
spatial detail, and is less sensitive to detail near object edges or around shot-changes.
Thus, a little distortion introduced into the decoded picture by the bit rate reduction
process should not be visible to a human observer.

Two key techniques employed in an MPEG codec are intra-frame Discrete Cosine
Transform (DCT) coding and motion-compensated inter-frame prediction.

2.3.3 Intra-Frame DCT Coding
DCT is performed on small blocks (16 pixels * 16 lines) of each component of the
picture to produce blocks of DCT coefficients. The magnitude of each DCT
coefficient indicates the contribution of a particular combination of horizontal and
vertical spatial frequencies to the original picture - block [4]. The coefficient
corresponding to zero horizontal and vertical frequency is called the DCT coefficient.
Equation 2.1 is used to calculate DCT of a block.

N-1 N-1
2 	 . 	~2x 2 	

(2
1

)nr F (x,y) — C u ~(z')

	

	'(c,v) cos(N) cos(T
x=O y=0

3
C(u), c(v) = 	for u, 'v =

I otherwise

Eq 2.1

The DCT doesn't directly reduce the number of bits required to represent the block. In
fact for an 8x8 block of 8 bit pixels, the DCT produces an 8x8 block of 11 bit
coefficients (the range of coefficient values is larger than the range of pixel values.)

The reduction in the number of bits follows from the observation that, for typical
blocks from natural images, the distribution of coefficients is non-uniform. The
transform tends to concentrate the energy into the low-frequency coefficients and
many of the other coefficients are near-zero. The bit rate reduction is achieved by not
transmitting the near-zero coefficients and by quantizing and coding the remaining
coefficients as described below. The non-uniform coefficient distribution is a result of

the spatial redundancy present in the original image block. MPEG-2 video
compression distribution is a result of the spatial redundancy present in the original
image block.

7

2.3.4 Quantization
The function of the coder is to transmit the DCT block to the decoder, in a bit rate
efficient manner, so that it can perform the inverse transform to reconstruct the image.
It has been observed that the numerical precision of the DCT coefficients may be
reduced while still maintaining good image quality at the decoder. Quantization is
used to reduce the number of possible values to be transmitted, reducing the required
number of bits. The degree of quantization applied to each coefficient is weighted
according to the visibility of the resulting quantization noise to a human observer. In
practice, this results in the high-frequency coefficients being more coarsely quantized

than the low-frequency coefficients. The quantization noise introduced by the coder is
not reversible in the decoder, making the coding and decoding process 'lossy'.

2.3.5 Motion Compensated Inter-Frame Prediction
This technique makes use of temporal redundancy by attempting to predict the frame

to be coded from a previous 'reference' frame [4]. The prediction cannot be based on a

source picture because the prediction has to be repeatable in the decoder, where the
source pictures are not available. Consequently, the coder contains a local decoder

which reconstructs pictures exactly as they would be in the decoder, from which

predictions can be formed. The simplest inter-frame prediction of the block being

coded is that which takes the co-sited (i.e. the same spatial position) block from the

reference picture. Naturally this makes a good prediction for stationary regions of the

image, but is poor in moving areas.

A more sophisticated method, known as motion-compensated inter-frame prediction,

is to offset any translational motion which has occurred between the block being

coded and the reference frame and to use a shifted block from the reference frame as

the prediction. One method of determining the motion that has occurred between the

block being coded and the reference frame is a 'block-matching' search in which a

large number of trial offsets are tested by the coder using the luminance component of

the picture. The 'best' offset is selected on the basis of minimum number of errors

between the block being coded and the prediction. The bit rate overhead of using

motion-compensated prediction is the need to convey the motion vectors required to

predict each block to the decoder. For example, using MPEG-2 to compress standard

definition video to 6 Mbit/s, the motion vector overhead could account for about 2
Mbit/s during a picture making heavy use of motion-compensated prediction

2.4 MPEG-2 Details

2.4.1 Picture Types
In MPEG-2, three . 'picture types' are defined. The picture type defines which
prediction modes may be used to code each block. 'Intra' pictures (I-pictures) are
coded without reference to other pictures. Moderate compression is achieved by
reducing spatial redundancy, but not temporal redundancy. They can be used
periodically to provide access points in the bit stream where decoding can begin.

'Predictive' pictures (P-pictures) can use the previous I- or P- picture for motion

compensation and may be used as a reference for further prediction. Each block in a

P-picture can either be predicted or intra-coded. By reducing spatial and temporal
redundancy, P-pictures offer increased compression compared to I-pictures.

'Bi-directionally-predictive' pictures (B-pictures) can use the previous and next I- or

P-pictures for motion-compensation, and offer the highest degree of compression.

Each block in a B-picture can be forward, backward or bi-directionally predicted or

intra-coded [5]. To enable backward prediction from a future frame, the coder
reorders the pictures from natural 'display' order to 'bit stream' order so that the B-

picture is transmitted after the previous and next pictures it references. This

introduces a reordering delay dependent on the number of consecutive B-pictures. The

different picture types typically occur in a repeating sequence, termed a 'Group of
Pictures' or GOP.

A typical GOP in display order is:

B 1 B2 I3 B4 B5 P6 B7 B8 P9 B 10 B 11 P12

The corresponding bit stream order is:

I3B1 B2P6B4B5P9B7B8P12B10BI1

0

A regular GOP structure can be described with two parameters: N, which is the

number of pictures in the GOP, and M, which is the spacing of P-pictures. The GOP

given here is described as N=12 and M=3. MPEG-2 does not insist on a regular GOP
structure. For example, a P-picture following a shot-change may be badly predicted

since the reference picture for prediction is completely different from the picture

being predicted. Thus, it may be beneficial to code it as an I-picture instead.

2.4.2 Frame Dependencies in a GOP

Figure 2.1 Frame dependencies in MPEG encoding

Figure 2.1 shows the dependencies among various types of frames in a GOP. The

arrows represent the inter-frame dependencies. Frames do not need to follow a static

IPB pattern. Each individual frame can be of any type. Often, however, a fixed IPB

sequence is used throughout the entire video stream for simplicity. I frame is encoded

independently, whereas P frames are encoded on basis of previous I and P frame. B

frames are encoded on basis of previous and next P frame and I frame.

2.4.3 Frame Structure in a GOP

B i.di=tiaml

rcc u®

Figure 2.2 Organization of frames in a GOP

10

Figure 2.2 shows a typical GOP giving a basic idea of how frames are sequenced in a

GOP. Each GOP starts with I frame then a fixed number of B frames are inserted

followed by a P frame. This structure is repeated again and again but instead of I

frame P frame is inserted. There is only one I frame in a GOP.

2.5 Motion JPEG

MPEG standards are quite optimistic when it comes to reduction of video file size, but
if there is a requirement for real time video transmission over an unreliable network

the standard will not hold its utility as loss in a single reference frame will pause the

playback of complete GOP. Also, a real time processing of MPEG videos is very
difficult as MPEG decoding is also a computationally intensive process.

To overcome these problems a new standard using intra-frame coding technology that

is very similar in technology to the I-frame part of MPEG standard, but does not

use inter-frame prediction. The lack of use of inter-frame prediction results in a loss

of compression capability, but eases video editing, since simple edits can be

performed at any frame when all frames are I-frames [6]. Video coding formats such

as MPEG-2 can also be used in such an I-frame only fashion to provide similar

compression capability and similar ease of editing features. As each frame is an I

frame any packet loss in transmission will not hamper the playback of the whole

video.

Using only intra-frame coding technology also makes the degree of compression

capability independent of the amount of motion in the scene, since temporal

prediction is not being used. However, although the bit rate of Motion JPEG is

substantially better than completely uncompressed video, it is substantially worse than

that of video standards which use inter-frame motion compensation.

In this thesis we also implement a model capable of encoding raw frames to Motion
JPEG format using parallel Cell B. E. architecture.

11

Chapter 3 	 Multicore Architecture

Multi-core technology is a reality of today. The era of the single processor system has
passed; multi-core is real as applications can no longer count on increased processor

clock speeds to improve performance. Multicore architecture, as said before is the

solution for the ever growing demand of more and more computational power. As the

trend is growing in the market more and more varieties of multicore chips are
developed. Examples of some such multicore architecture are

• Intel Dual core, Xeon quad core

• Cell B. E.

• NVidia CUDA

In this work we have used Cell B. E. and NVidia CUDA architecture to attain

performance improvement over sequential machines. Let us see these architecture in

detail.

3.1 The Cell B. E. Processor
The Cell architecture addresses three major bottlenecks of modem microprocessors,

namely power wall, memory wall, and frequency wall as discussed in [7]. The Cell

broadband engine architecture addresses these problems by heterogeneous

multiprocessing. The cell architecture has one Power Processor Element (PPE) and

eight Synergistic Processor Elements (SPEs). The PPE is specialized for control-

intensive codes while the SPEs are specialized for computationally intensive codes.

The SPEs have very simple hardware logic and not use complicated logic for branch

prediction, out-of-order execution and register renaming. Therefore the SPEs can

operate at higher frequency without much of power dissipation. The SPE area is only

14.5 mm2 and dissipates only a few Watts even when operating at 3.2 GHz [7] . The

Cell architecture addresses the problem of memory wall by making programmers

manage the SPEs local memory using explicit direct memory access (DMA) transfers.

Each SPE can give a request for 16 DMA transfers simultaneously, and hence a total

of 128 simultaneous transfers could be issued between the SPEs and main memory.

This asynchronous DMA transfer can be used by programmers to overlap memory

latency time with computation. Memory latency in the SPEs is further reduced by

12

larger register size. The following section describes the different components of the
Cell broadband engine architecture.

- SPE
(Synergistic 	SPE 	SPE 	SPE
Processor

Element) 	 ! 	 !

T 	j
PPE

(PowerPC
Proc

c
ess

s
or

or 	 Element Interconnect Bus (EIB)

Element)
fi

Memory Interface
Controller (MIC)~

Broadband Engine
Interface (BEI)

SPE SPE J 	SPE SPE

Figure 3.1 Architecture of Cell B. E. processor

3.1.1 Power Processing Element (PPE)

The PPE implements a 64-bit, dual-thread PowerPC architecture. In addition to the

general PowerPC floating point units (FPU), the PPE is also equipped with a small

SIMD engine to perform fast vector operations. The PPE's register set includes 32 64-

bit general purpose registers, 32 64-bit floating-point registers and 32 128-bit vector

registers. The PPE operates at 3.2 GHz and can perform four matrix-add operations in

a single clock cycle resulting in 8 floating point operations per cycle delivering a peak

performance of 25.6 GFLOPS. The PPE is mostly used for running the operating

system and for managing the SPE threads and system resources. The primary function

of the PPE is the management and allocation of tasks for SPEs in a system. When data

enters the PPE, this element then distributes it among SPEs, schedules them to be

processed on one or more of the SPEs, controls and synchronizes them. PPE can also

handle task of user interaction, resource utilization etc. Mailboxes and signals are the

two mechanisms that can be used for synchronization of the PPE and the SPEs.

Mailboxes and signals are explained below.

3.1.2 Synergistic Processing Elements (SPEs)

The SPEs are single-instruction, multiple-data (SIMD) .processor elements. Each SPE

contains a 256 KB software-controlled private memory referred to as the local store

13

(LS) and is shared between instructions and data. The local store memory is managed

by software through explicit DMA transfers. The SPEs register set includes a 128-bit,

128-entry unified registers. The SPEs implements a new instruction set architecture

(ISA) optimized for power and high performance on compute-intensive applications.

These instructions can be performed on 128 bits vectors of eight floating-point values.

The vector registers can even contain variables of 8, 16, 32 and 64 bits and thus can

operate simultaneously on two 64-bit double precision values, four 32-bit single

precision values, eight 16-bit integer values or sixteen 8-bit character values. The SPE

does not have separate register support for scalar operands or addresses and thus the

scalar operations are executed by pushing the scalar values to the preferred slot in the

vector register. The SPEs can execute four fused multiply-add (single-precision)

instructions per cycle resulting in eight floating point operations per cycle. Operating

at 3.2 GHz, the SPE delivers a maximum performance of 25.6 GFLOPS. With eight

processors the peak performance of the Cell processor is 204.8 GFLOPS. Techniques

to get maximum performance from the SPEs will be discussed in the next sections.

3.1.3 Memory Flow Controller
Each SPE can execute code residing in its local store and operate on data residing in

its local store. Explicit DMA commands are needed to transfer data and code between

the local store and the main memory. Other than this, the SPEs need to communicate

with other processing units and the I/O controllers to do synchronization. Both of

these purposes are fulfilled by the memory flow controller (MFC). Each SPE is

connected to the main memory, other processing units and the I/O devices by means

of the element interconnect bus (BIB) through its MFC. The main function of the

MFC is to interface the SPEs' local store with the main memory. The SPEs

communicate explicitly with other entities (main memory, I/O Device, other SPEs and

PPE) in the system using the following three primary communication mechanisms

provided by the MFC of an SPE. An MFC supports naturally aligned DMA transfers

with sizes 1, 2, 4, 8, and 16 bytes and multiples of 16 bytes.

3.1.3.1 DMA Transfers
DMA transfers are used to move data and instructions between main memory and

local stores. Transfers can be initiated by the SPEs, or the PPE. SPE-initiated DMA is

fastest and is mostly used. DMA transfers can be done in two ways. First, DMA

14

transfers move up to 16 KB of data between a local store of SPE and continuous

address space of main memory. Second, a DMA list is a sequence of eight-byte list

elements, stored in an SPE's local store, each of which describes a DMA transfer.

Each entry in the DMA list species the main memory address space location and the

amount of data to be. transferred. A DMA list can have 2048 entries with each entry

capable of issuing a transfer command of 16 KB in length. Thus, 2048 * 16KB =

32MB of data can be transferred through a DMA list, which is much larger than the

local store size of 256KB. One of the biggest advantages of DMA list is that the data

can be gathered from different address regions in the main memory and can be

accumulated in a continuous address range in the local store.

3.1.3.2 Mailboxes
Mailboxes are queues which are used to send and buffer 32-bit messages between an

SPE and other processing units. Each SPE has 3 mailbox registers connected through

SPE's MFC. Two one-entry mailboxes namely, SPU Write Outbound Mailbox and

SPU Write Outbound Interrupt Mailbox, is used for sending messages from the SPEs

to other processing unit. One four entry SPU Read Inbound Mailbox is used for

sending messages from PPE or other SPEs to an SPE.

3.1.3.3 Signal Notification
An SPE has two 32-bit signal-notification registers, each of which has the

corresponding MMIO (Memory mapped I/O) registers that can be written with signal

notification data by all SPEs and the PPE. There are two SPE signal-notification

channels, namely, SPE Signal Notification I and SPE Signal Notification 2,

corresponding to each of the signal notification registers. An SPE's read operation

from a signal-notification channel will be stalled if no signal is pending at the time of

read until a signal is sent. Reading the pending signals automatically resets the

register to 0. Signal-notification registers can operate either in OR mode or overwrite

mode. In OR mode a new value added is ORed with the old one while in overwrite

mode, the old value is overwritten.

3.1.4 Element Interconnect Bus (EIB)
All the processing units, the memory controllers and the I/O controllers are connected

to each other with the coherent on-chip element interconnect bus (EIB). EIB operates

15

at 1.6 GHz. The EIB consists of four _16-byte-wide unidirectional data rings (two on

either direction). Each ring transfers 128 bytes (one PPE cache line) at a time. Each
ring at maximum concurrency can have three active transactions, which result in

EIB's internal maximum bandwidth of 96-bytes per processor-clock cycle. Each

processor element and 1/0 controller is connected to the EIB with one 16 byte read

port and one 16 byte write port. SPEs can compute and receive data simultaneously.

3.1.5 Memory Interface Controller and Interface Unit

The memory interface controller provides the interface between EIB and main

memory. The IBM Blade Center supports one or two RAMBUS XDR memory.

interface. Two 32-bit channels together over a data transfer bandwidth of 25.6 GB/s.

Memory accesses on each interface are of size I to 8, 16, 32, 64, or 128 bytes. A

maximum of 64 reads and 64 writes can be queued.

3.1.6 Optimization Techniques
The Cell architecture, as explained above, can offer a maximum of 204.6 GLOPS.

One of the biggest advantages of the Cell architecture is that it is very much possible

to get close to the maximum performance offered by the Cell. However, to get good

performance on the Cell, one has to be aware of the architectural details of Cell

processor. This chapter describes some of the optimization techniques that should be

used to design and implement high-performance algorithms on the cell.

3.1.6.1 Huge Pages
If the program uses large datasets, it is recommended to use huge pages to avoid TLB

misses. In the SPEs TLB misses occur when the DMA transfer involves a page that is

not present in the TLB. If huge pages are used, they will never be paged-out of the

TLB. DMA transfers involving an address in the huge pages will enjoy TLB hits and

will decrease the DMA time significantly.

3.1.6.2 Uniform Memory Access across Memory Banks
If accesses to the main memory banks are not uniformly distributed a large number of

conflicts can lead to very poor performance of the DMA operations. The Cell

processor's memory subsystem has 16 banks and the banks are interleaved at the

cache block boundaries of size 128 bytes. Addresses that are 2 KB apart access the

16

same bank and hence if accessed simultaneously will result in bank conflicts. To

reduce this problem, all the memory banks should be used uniformly so that bank

conflict bottleneck can be reduced to increase performance.

3.1.7 SPE Optimization Techniques
The Cell's computational power resides in the SPEs. The end-performance. of any
application on the Cell processor is determined by the efficiency of the program

executing on the SPEs. To efficiently utilize the power of the SPEs, it is required to

understand the strength and weakness of the SPEs. In the following, we discuss some

of the optimization techniques for SPE programming.

3.1.7.1 SIMD Programming

SIMD stands for single instruction multiple data. The SPEs are vector processors and

have very efficient SIMD engines. The SPEs can execute four single precision

floating-point operations in one cycle. SPE instruction set also introduces vector

operations which perform two operations in single cycle. For example multiplication

of two vectors and its addition with the third can be done by a single instruction. But,

the SPEs are not as efficient in performing scalar operations. Scalar operations are

executed by shifting scalar values to the preferred slot in the vector and then shifting

it back to its original location after the operation is completed, which introduce costly

overhead. Therefore, our goal while programming the Cell should be to eliminate as

many scalar operations as possible and replace them by vector operations.

3.1.7.2 Loop Unrolling
In SPEs, branches are very expensive, and when mispredicted, results in a loss of 18

cycles. The branches can be reduced by unrolling loops. By unrolling, a long stretch

of instructions can be executed on the SPEs without any branch instruction. The SPEs

have sufficient number of registers to allow deep unrolling.

3.1.7.3 Efficient Utilization of Local Store Memory

One of the biggest challenges of Cell programming is due to the limited local store

memory. The local store LS is only 256 KB, shared between code and data.

Optimization techniques discussed like loop unrolling and inline functions increases

the code size significantly. With small memory available it may not be possible to do

17

all the optimizations. Code partitioning techniques as proposed in [8] can be used to

reduce the impact of local store limitations by partitioning the code in multiple

partitions. Partitions are created such that the SPEs execution could be possible by

keeping a small set of partitions in the SPE, keeping the rest of the partitions in the

main memory. Programmers can explicitly specify the program partitioning strategy

using code overlays.

3.1.7.4 Double Buffering
Figure 3.2 shows how double and triple buffering are implemented for a simple

problem.

Computation Communication

No Computation
Initialize three Buffers
Read Data in Buffer[1]

Process Buffer[l]
i=2 Read Data in Buffer[2]

if (i<N)

Process Buffer[i mod 3]
i = i+1

Write Buffer [(i-1) mod 3]
Read Data in Buffer[(i+1)mod3]

Process Buffer[N mod 3] Write Buffer [(i-1) mod 3]

No Computation Write Buffer[N mod 3]

Figure 3.2 Implementation of'double buffering

Using the asynchronous DMA transfers, the SPEs can inject outstanding DMA

transfer. commands. The SPEs can receive data from main memory and at the same

time can do computation thus overlapping communication time with the computation.

Double buffer is generally needed when data is only read from main memory. In

double buffering while one buffer of data is read from the memory, the other buffer is

used for computation. But if the buffer of data being read also needs to be written

18

back to the memory, triple buffering is used. -In triple buffering while the i th buffer is

being used for computation, the (i - 1)th buffer is written back into the memory and the

(i+I)th buffer is read from the main memory.

3.2 CUDA (Compute Unified Device Architecture)

NVidia is a name known mainly for developing powerful graphics cards. These" cards

are used as add on computational device in desktop computing. Primarily the focus of

such cards was to provide accelerated graphics to end users by using GPUs or

Graphics Processing Units. As the use of computer has been redefined and the

demand for processing capabilities has raised and hardware industries have shifted to

multiple processors on a chip, the power of Graphics Cards have also been raised by

similar method.

Modern graphics cards are built with multiple processing units. The number of cores

is not limited in order of I Os but they have crossed the order of 100s. This scenario

gives rise to a highly capable parallel processing unit having hundreds of cores

working simultaneously. Having such a powerful device is not enough to achieve

performance improvement.as the challenge is to develop application software that

transparently scales its .parallelism to leverage the increasing number of processor

cores, much as 3D graphics applications transparently scale their parallelism to many

core GPUs with widely varying numbers of cores [9].

CUDA is a parallel programming model and software environment designed to

overcome this challenge while maintaining a low learning curve for programmers

familiar with standard programming languages such as C.

3.2.1 CPU versus GPU

GPUs are highly parallel, multithreaded multicore processor with tremendous

computing power and high memory bandwidth. They are designed to handle

computationally intensive highly parallel task. Thus, it contains more dedicated

registers for data processing rather than data caching and flow control. More

specifically, the GPU is well suited to address problems that can be expressed as data

parallel computations [9]. Multiple threads are created that works on different data

elements in parallel. As the same work has to done on different data there is a lower

ILA

requirement for complicated flow control. Thus more registers can be dedicated to

data processing. Let us compare the number of dedicated transistors in a GPU and a

CPU. This comparison is shown in figure 4.3.

Control 	ALU ALU 	
U

ALU ALU

r

DRAM
	

DRAM

CPU
	

GPU
Figure 3.3 Transistor division in CPU and GPU

3.2.2 GPU architecture

A GPU consists of a number of multiprocessors each containing 8 cores each. The

multiprocessor creates, manages, and executes concurrent threads in hardware with

zero scheduling overhead.

To manage hundreds of threads running several different programs, the

multiprocessor employs a new architecture we call SIMT (single-instruction,

multiple-thread). The multiprocessor maps each thread to one scalar processor core,

and each scalar thread executes independently with its own instruction address and

register state. The multiprocessor SIMT unit creates, manages, schedules, and

executes threads in groups of 32 parallel threads called warps. Individual threads

composing a SIMT warp start together at the 	Grass but are otherwise

free to branch and execute independently. 	
~u1~L4

20

Figure 3.4 GPU architecture

When a multiprocessor is given one or more thread blocks to execute, it splits them.

into warps that get scheduled by the SIMT -unit. The way a block is split into warps is

always the same; each warp contains threads of consecutive, increasing thread IDs

with the first warp containing thread 0. Every instruction issue time, the SIMT unit

selects a warp that is ready to execute and issues the next instruction to the active

threads of the warp. A warp executes one common instruction at a time, so full

efficiency is realized when all 32 threads of a warp agree on their execution path. If

threads of a warp diverge via a data dependent conditional branch, the warp serially

executes each branch path taken; disabling threads that are not on that path, and when

all paths complete, the threads converge back to the same execution path. Branch

divergence occurs only within a warp; different warps execute independently

21

regardless of whether they are executing common or disjointed code paths. The GPU

hardware model is shown in figure 3.4.

CUDA threads may access data from multiple memory spaces during their execution.

Each .thread has a- private. local memory, which is akin to local variable declaration for

any normal CPU code. Each thread block has a shared memory visible to all threads

of the block and with the same lifetime as the block. Finally, all threads have access to

the same global memory. CUDA assumes that both the host and the device maintain

their own DRAM, referred to as host memory and device memory respectively. The

global memory is persistent across kernel launches by the same application and is

allocated in the device memory.

Memory management at runtime on the GPU RAM is done using CUDA API

equivalents. The general procedure is to allocate memory on both host and device

RAM, using cudaMalloc function call for the device memory. The data contents are

copied from host memory to device memory using cudaMemcpy function. Writing

data directly onto device memory from CPU code is not possible. The kernel calls are

then made to do appropriate processing on the data. The processed data contents are

copied back from the device to the host using cudaMemcpy function.

22

CHAPTER 4 	Parallelization Implementation of MPEG

4.1 Overview of MPEG Encoding Process
As discussed in the previous chapters MPEG encoding is a computationally intensive

process. Figure 4.1 shows the architecture of a MPEG encoder.

Figure 4.1 MPEG encoder

The process starts with reading parameter file from the hard disk. The parameter file

tells the encoder about the resolution of the frame, profiles to be used for encoding,

input frame type, number of frames in the GOP etc. After which different parameters

such as quantization matrix, frame and GOP headers are initialized. Once the•

parameters are initialized a loop is executes for all the frames. In this loop, each frame

is passed through different stages of encoding, such as motion estimation, prediction,

discrete cosine transformation etc. Once a reference is encoded the reference frames

are passed through inverse quantization process and the reconstructed frames are used

as reference frames, because original frames will not be available at the decoder only

reconstructed frames will be available. Signal to noise ratio is calculated which

specifies the output quality.

23

All the routines in this encoding process contribute to the time required for the

encoding process. If we compute the time required by the different stages of the

process i.e. we conduct profiling of the encoder, we obtain results shown in figure 4.2.

The figure shows different modules of the encoding process along with their

percentage of total time that each module requires.

Motion Estimation. (75.3%)

Calculate Prediction (0,9 %)

Thus, from the figure it is clear that calculation of motion vectors is the most lengthy

or time consuming part of the algorithm. Therefore our focus for optimization is to

calculate the motion vectors in parallel and save the overall computation time.

4.2 Parallelization of MPEG encoder
To achieve parallelism in any algorithm data dependencies have to be resolved. For

video encoding, data dependencies turn in to frame dependencies. Data parallelism in

an MPEG encoder can be exploited at various levels:

1. Data per GOP

2. Data per Frame

24

3. Data per Macro block

The above levels can be achieved in one of the following ways:

• Encoding GOPs in parallel.

• Encoding different frames of a GOP in parallel.

• Encoding macro blocks in a frame in parallel.

These levels can be compared if we have a look at the profiling of the encoder. The

simplest approach for parallelization is the one wherein the frames in a GOP can be

encoded in parallel. This approach has been used in most of the previous parallel

architecture work to attain considerable speed up. A simple phenomenon is to exploit

the number of processing units and assign them totally independent work that can be

executed in parallel. As the task size is large enough various distributed architectures

can also be used. Even network transmission delay is compensated if the degree of

parallelization is high. Instead of using distributed. environment such as ATM

networks or clusters, parallel processing models such as multiprocessing systems can

also be used with this level of parallelization. Figure 4.3 shows the architecture of

such a encoder which can be deployed on any parallel processing environment.

GOP 	 GOP 	• • • 	GOP

i 	 1 	 til •

	

rrsi.~r+W .sria:.na~~:va rcus 	-a.)r:a.ws..)r 1f.)[a...fl. 	'

r 	i 	i 	r 	r 	i 	... 	r 	r 	i 	r 	1 	r

Write buffer

write

Figure 4.3 Architecture of a parallel MPEG encoder

At second level of parallelism, multiple processing units can be assigned encoding of

different frames. Figure 4.4 describes how the encoder can be implemented exploiting

25

this type of parallelism. First the server or the main program is assigned the

responsibility to encode the reference frame and then it distributes the frames to be

encoded among the processing units. A major problem with this approach arises if the

number of processing units is more. This might sound a bit unusual but the problem

arises due to the frame structure in a GOP. We have explained earlier about the

dependencies of the frames in a GOP. To enable a processing unit to encode a frame it

should be supplied with all reference frames are required, but in a typical GOP

structure a P frame is inserted after every 3 — 4 frames. Thus, in order to be able to

encode any frame reference frames need to be encoded first. This will create a huge

problem as more number of processing Will not be able to work together because due

to absence of reference frames. However, with limited no of processing units working

some speedup is possible but synchronization issues will again depreciate the

performance.

IReference frame

Pic

input Video; Input Video Input Video

Main

Figure 4.4 Architecture implementing frame level parallelism

If we have a careful look at the profiling of the encoder shown in figure 4.2 we see

that maximum portion of the time required for encoding is consumed in finding

motion vector, i.e. 75% of the time is consumed in motion estimation routine. Let us

have a look at motion estimation process for a frame.

Figure 4.5 Motion estimation in MPEG encoding

From figure 4.5 it is clear that the computationally intensive part of the algorithm is

the loop that calculates motion vector for each macro block. Hence, in order to exploit

parallelism at macro block level the loop through all macro blocks should be split into

different threads and different. blocks can be assigned to different processing units.

Although, this statement explains that there are enough components to be executed in

parallel yet parallelism at this level has not been implemented so far. The prime

reason why this level parallelism is not being extensively used is because the parallel

processing models such as clusters or grids might not justify the cost of network

communication. Although the size of a macro block is small still the time required for

detection of motion vectors for a single a macro block takes less than a millisecond

which is a small fraction of the transmission time required. Even in multiprocessing

environment the cost of non uniform memory access is much expensive.

Thus it is clear that the best way by which maximum performance gain can be

achieved by parallelization is by data parallelization at GOP level.

27

4.3 Porting MPEG Encoder on Cell B. E.
We have described earlier how MPEG encoder can be parallelized. In this section we

focus on describing how the Cell B. E. architecture can be utilized in order to attain

maximum performance improvement in MPEG encoding process.

4.3.1 Problems in Porting MPEG Encoder on Cell B. E.
Implementation of MPEG encoder on Cell B. E. becomes quite difficult due to certain

limitations in the architecture. These limitations are:

• Small SPU local storage size does not permits storing all the reference frames

and the encoded frames together

• Maximum possible DMA transfer in one go is 16 KB which disallows a frame

to be read in the SPU local store once the size of frame surpasses 128 * 128

• Size of the SPU thread should be minimum because the thread are themselves

stored in the SPU local store and the same memory is used by threads to store

data

• If more number of branches are present in the SPU threads a penalty of 18

cycles has to be suffered, which minimizes the performance gain

4.3.2 Implementation of the Encoder Capable of Encoding Frames with

Resolution 128' 128
Implementation of encoder with a capability to encode frames of dimensions 128* 128

strictly follows the design discussed in figure 4.3. Program starts with invoking 8

threads which are assigned the responsibility to encode a GOP each. Each thread is

assigned a number that signifies which GOP of the sequence has to be encoded by it.

The frames are read accordingly i.e. if a thread is assigned a number 4 and there are

12 frames in every GOP then the thread will encode frames 49 — 60.

The threads discussed in the above paragraph are created on PPU. These threads start

the encoding process and when motion estimation has to be done they create a SPU

thread which starts the motion estimation process and the PPU is made to wait after

reading the next frame from the hard disk. The SPU then reads the frames from main

memory and store the motion vectors for each macro block in the corresponding

W

memory once the procedure for motion estimation is complete the motion vectors are

written back on to main memory and PPU is notified by mailbox that the motion

vectors have been found. The PPU the notifies the SPU that next frame has been read

and it can find motion vectors for that frame and then PPU starts DCT calculation,

prediction with motion compensation and other routines mentioned above to complete

the encoding of the frame. This process is followed until all the fames in the GOP are

completely encoded. The above process will be clearer from the figure 4.6.

PPU
	

SPU

•~-Initialize _..
. 	Parameters

-Read
Frames

Motion
.,, ~Estimatlon" ..

Write back
Motion vector

Write
Frame

Figure 4.6: Implementation of MPEG encoder on Cell B. E.

Thus each thread utilizes ,1 SPU at a time and hence all the SPUs are utilized. AIso,

other concepts specific to Cell B. E. architecture can be implemented. Double

buffering is implemented by a simple method in which every time when motion

estimation routine is invoked a request to read the next frame is also made. Thus,

before detection of motion vectors of one frame next frame is already in memory.

This architecture does not work when size of frames becomes large because SPU

local store will not be able to store all the frames as discussed earlier. Higher

resolution frames can be encoded as discussed in next section.

29

4.3.3 Implementation of the Encoder Capable of Encoding Frames with Higher

Resolution

Major problem in implementing the encoder is the small size of SPU local store, thus

motion estimation should be done in such a way that there is no requirement of

keeping the complete frame in the local store. For example let us consider a small

example of the routine that calculates variance of a macro block that is required for

encoding all the frames in each GOP.

int variance(unsigned char *p, int Ix)

{

int i, j;

unsigned int v, s, s2;

s=s2=0;

for (j=0; j<16; j++)

{

for (i=0; i<16; i++)

V 	{

s+= v;

s2+= v*v;

}
p+= lx-16;

}
return s2 - (s*s)/256;

}

........ (1)

This is a simple routine that calculates the variance in a macro block here p is the

pointer to the first element of the macro block and lx specifies the width of the frame.

Now, we consider the scenario as the frame is not in the SPU local store. First of all

we align the frames with 128 bit alignment. This will enable us to read any line in a

macro block as every line in a macro block contains 16 characters or 128 bits. Now, in

the above routine we see that in the first loop (1), characters in every line of the macro

30

block are used in computation of the variance of the macro block. Thus, if the line of

macro block is ready before next iteration of the loop, variance can be calculated

successfully. Let us see the sample code for calculation of variance that can be

executed on SPU.

int variance(unsigned char *p, int lx)

{
inti,j;

unsigned int v, s, s2;

unsigned char *p1, * p2, *p3;

int tag= 1 ,tag _mask =1 <<tag;

p2 = malloc_align(16, 7);

p3 = malloc_align(16, 7);

s = s2 = 0;

mfc get(p2, (unsigned char)p, 16, tag, 0, 0);

p1 =p2;

for (j-0; j<16; j++) 	 (1)

mfc_write tag_mask(tag_mask);

mfc_read tag_status_any();

if(j<15)

mfc_get(p3, (unsigned char)p, 16, tag, 0, 0);

for (i=0; i<16; i++)

{

v=*pl++;

s+= v;

s2+= v*v;

}

p2 = p3;

p3 = pi;

P1 =p2;
p+= lx-16;

31

return s2 -. (s*s)/256;

}

This example shows how variance can be calculated from SPU even without the

frames being present in the SPU local store, also this code shows how double

buffering can be implemented in routine used to find variance in a block. In loop (I),

every time when the content of one line is used to calculate the variance a request to

read the next line has already been made. Thus, before the calculation starts next line

is already in memory and thus, the time required for calculation and the time required

to read the macro block line from main memory are interleaved. Hence, double

buffering is implemented and an optimized routine is achieved.

Similarly, lines of macro block are read in SPU local store and other routines such as

full search block matching and interpolation are also implemented.

4.4 Implementation of MPEG Encoder on CUDA

We have already seen how parallelism can be exploited at various levels while

implementing MPEG encoder, but due to various architectural and programming

constraints, same approach cannot be implemented on CUDA architecture. Various

constraints that were encountered while implementation of the encoder on CUDA are:

• Size of threads that will run on GPUs cannot exceed 1 million instructions and

as the motion estimation routine is lengthy enough it easily exceeds the length

limit.

• Slower clock in CUDA architecture redefines how processing units should be

used. The architecture suggests attaining performance gain by massive

parallelization, but parallel encoding of a very large number of GOPs will not

be useful as initialization of parameters in so many GOPs will make CPU so

slow that CPU will not be able to make use all the processing units or cores

present.

• Limited registers and cache space does not allows significant performance

gain thus size of threads need to be very small and no of threads needs to be

very large.

32

• No space for branch prediction table for any thread is present in CUDA

architecture. Also, threads which opts different branches are blocked and

cannot run in parallel.

To overcome these limitations we describe in next section how motion estimation

routine can be implemented in order to attain speed up in CUDA architecture.

4.4.1 Implementation of Block Level Parallelism of MPEG Encoder on CUDA

As mentioned above size of the thread has to be kept as small as possible for

successful implementation of an algorithm on CUDA. Thus, we choose the smallest

unit which can be processed in parallel i.e. macro blocks.

Figure 4.7 Implementation of motion estimation routine using GPUs

In this approach, we implement the third level of parallelism discussed, because the

first two levels of parallelism do not suits the CUDA architecture. The motion

estimation routine loops through all the macro blocks of a frame and calculate motion

33

vectors for each block. Instead of doing this process sequentially we create threads in

such a way that each thread is assigned the responsibility to find out the motion vector

for a macro block assigned. Therefore the number of threads to be created is same as

the number of macro block present in the frame. For example frames with a resolution

128 * 128 will contain 128/16 * 1.28/16 = 64 macro blocks with a size 16 * 16 pixels.

The threads created runs independently on GPU and write the motion vectors on GPU

memory. These vectors can be read back on to the CPU memory and the encoding

procedure should be continued. Figure 4.7 gives a graphical representation of the

approach discussed.

4.5 Implementation of MJPEG encoder on Cell B. E.

4.5.1 MJPEG Encoding Process

A major advantage with MJPEG standard is its flexibility in representation of frames.

One of the commonly used representation of frames is similar I frame representation

in MPEG encoding [6]. The encoding process of the frames if as follows:

Loop through. frames

Input Frames
(YUV format),.

Tiling .; 	I

Write Frames

Figure 4.8 MJPEG frame encoding

34

Figure 4.8 shows how frames are encoded in MJPEG sequence. First of all a frame is

divided in to tiles (macro block). Then they are passed through transformation

process. Transformation may be either wavelet transformation or discrete cosine

transformation. Once transformation is complete then the frames can be encoded after

quantizing the obtained transformation coefficients.

4.5.2 Parallel Implementation of MJPEG Encoder

MJPEG encoder can*be parallelized-by using second level of parallelism as discussed

in previous section. The simple way. of parallelizing the encoder is to assign I frame

to each SPU and encode 8 frames together. As each frame has to be encoded

independently the implementation will not face any problem discussed above. Figure

4.9 shows the architecture of the encoder.

Figure 4.9 MJPEG parallel encoding architecture

35

CHAPTER 5 	 Results

The parallelization approach described in chapter 4 were implemented on Cell SDK

2.0 simulator running on windows based platform VMware and NVidia GTX 280

graphics card (having 30 multiprocessors and 8 cores per processor).

5.1 Results on Cell B. E. for Frame Size 128 * 128
First of all the program was executed to encode 8 GOPs having 6 frames per GOP

with a resolution of 128 * 128 pixels. The programs were repeatedly executed on

different platforms such as Intel P4 HT based Windows machine, Intel Xeon based

LINUX machine and Cell SDK 2.0. The average timings obtained are shown in table
5.1.

Platform used Processing time taken

Intel Pentium 4 HT based 1809 milliseconds windows machine

Intel Xeon based LINUX machine 1312 milliseconds

Simulated Time using Cell SDK 204 milliseconds 2 0

Speedup 8.8 X

Table 5.1: Comparison between Intel processor and Cell processor

Thus, a speed up of 9 times is obtained by implementing the architecture discussed in

section 4.2.3.

5.2 Results on Cell B. E. for Frame Size 384 * 288
Now the program was executed to encode 8 GOPs having 6 frames per GOP with a

resolution of 384 * 288 pixels. The programs were repeatedly executed on different

platforms such as Intel P4 HT based Windows machine, Intel Xeon based LINUX

machine and Cell SDK 2.0. The average timings obtained are shown in table 5.2.

Platform used Processing time taken

Intel Pentium 4 HT based
windows machine 12864 milliseconds

Intel Xeon based LINUX machine 9476 milliseconds

Simulated Time using Cell SDK
2.0 1893 milliseconds

Speedup 6.8 X

l able 5.2: Comparison between Intel processor and Cell processor

5.3 Results for Parallel MJPEG Encoding on Cell Processor

Parallelization of MJPEG encoder when implemented on Cell processor for encoding

48 frames with a resolution 384 * 288 yields results shown in table 5.3

Platform used Processing time taken

Intel Pentium 4 HT based
windows machine 1968 milliseconds

Intel Xeon based LINUX machine 1744 milliseconds

Simulated Time using Cell SDK
2 0 . 322 milliseconds

Speedup 6.1 X

Table 5.3: Comparison between Intel processor and Cell processor

5.4 Results for Parallel Motion Estimation Routine using NVidia GTX 280

The approach discussed in chapter 4 for implementation of motion estimation routine

on CUDA architecture was implemented on Intel Xeon based Windows machine with

NVidia GTX 280 card. The average time required for executing Motion Estimation

routine for B frames are shown in table 5.4.

37

Platform used Processing time taken Processing time taken
for resolution 128*128 for resolution 384*288

Intel Pentium 4 HT
based windows 48 milliseconds 380 milliseconds

machine

Intel Xeon based 39 milliseconds 291 milliseconds LINUX machine

Intel Xeon using GTX 21 milliseconds 92 milliseconds 280

Speedup 2.3 X 4.1 X

Table 5.4: Comparison for motion estimation routine between GPU and non GPU using Intel machine

Table 5.5 shows the overall performance improvement after using GPUs for motion

estimation on encoding 8 GOPs with 6 frames per GOP.

Platform used Processing time taken Processing time taken
for resolution 128*128 for resolution 384*288

Intel Pentium 4 HT based 1809 milliseconds 12846 milliseconds windows machine

Intel Xeon based LINUX 1312 milliseconds 9476 milliseconds machine

Intel Xeon using GTX 280 1064 milliseconds 5839 milliseconds

Speedup 1.7 X 2.2X.

Table 5.5: Comparison between GPU using and non GPU using Intel machine

5.5 Comparison on MPEG Encoding Time between Cell and CUDA

Architecture

The encoders developed were executed to encode 8 GOPs having 6 frames each with

resolution 128* 128 and 384 * 288. The results obtained are shown in table 5.6

Frames / second Frames / second Platform used for resolution 128*128 for resolution 384*288

Intel Pentium 4 HT based
windows machine 26.53 3.74

Intel Xeon based LINUX
machine 36.59 5.07

Intel Xeon using GTX 280 45.11 8.22

Simulated Time using Cell 235.49 26.10 SDK 2.0
Table 5.6: Comparison between GPU and Cell B. E. machine

The performance comparison between all the different approaches discussed and

implemented on different architecture is shown by figure 5.1.

250

200

Frames per 150

second

100

50

0

■ Intel Pentium 4

■ Intel Xeon

■ Intel Xeon with GTX 280

■ CeII B. E.

128*128 	 384*288

Resolution

Figure 5.1 Performance comparison of MPEG encoder over various platforms

39

CHAPTER 6 	 Conclusions and Future Work

In this thesis we have shown how multicore processors can be used for solving

computationally intensive multimedia problems. We have tried to highlight various

programming and architectural constraints that do not allow proper utilization of the

hardware available. We also focus on how various architectural limitations can be
dealt with.

We presented various approaches, using which video encoders can be parallelized.

We have also shown how parallelization approaches should be selected in order to

utilize the underlying architecture to its potential. The encoders thus presented

perform better than the encoders that run over sequential machine.

Advantages of multicore systems lie not only in performance improvement but also in

terms of cost effectiveness and resource utilization. Thus, the trend of using multicore

systems for solving computationally intensive problems can be viewed as a simple

and highly beneficial means for performance improvement. With the use of video

encoding on multicore processors various applications that require video encoding at

a fast rate can be successfully deployed.

In future we suggest implementation of other video encoding standards such as H.264

and MPEG-4. The parallelization approach suggested in this thesis should be

implemented over other parallel processing architecture in order to achieve a more

beneficial video encoding system.

References

[1] D. M. Barbosa, J. P. Kitajima, W. Weira, "Parallelizing MPEG video

encoding using multiprocessors", Computer Graphics and Image Processing, 1999.

Proceedings. XII Brazilian Symposium on, vol., no., pp.215-222, 1999.

[2] S.M. Akramullah, I. Ahmad and M.L. Liou, "Performance of software-based

MPEG-2 video encoder on parallel and distributed systems", IEEE Trans. Circuits

Syst. Video Tech. 7 4 (1997), pp. 687-695.

[3] K. Shen, L. A. Rowe, E. J. Delp, "A Spatial-Temporal Parallel Approach for

Real-time MPEG Video Compression", Proc. of 1996 International Conf. on Parallel

Processing, vol. 2, 1996, pp. 100-107.

[4] Tudor, P.N., "MPEG-2 video compression", Electronics & Communication

Engineering Journal, vol.7, no.6, pp. 257-264, Dec 1995.

[5] K. Shen, L. A. Rowe, E. J. Delp, "A Spatial-Temporal Parallel Approach for

Real-time MPEG Video Compression", Proc. of 1996 International Conf. on Parallel

Processing, vol. 2, 1996, pp. 100-107.

[6] T. Fukuhara, K. Katoh, S. Kimura, K. Hosaka, A. Leung, "Motion-JPEG2000

standardization and target market," 2000. Proc. of 2000 International Conference

on Image Processing, vol.2, pages.57-60 vol.2, 2000.

[7] J. A. Kahle, " Introduction to the Cell Multiprocessor". In IBM Journal of Research
and Development, 49(4): pages 589 - 604, July 2005.

[8] D. A., Shepherd, Z. Sura Z., A. Wang, T. Zhang, P. Zhao, M. K. Gschwind, R.

Archambault., Y. Gao, R. Koo. "Using advanced compiler technology to exploit the

performance of the Cell Broadband Engine architecture", IBM systems journal, 2006.

[9] CUDA programming Guide 2.0.

http://developer.download.nvidia.com/compute/cuda/2.1 /toolkit/docs/NVIDIA_CUD

A Programming_Guide_2.1.pdf 	last accessed 10/6/09

[10] H. Zhong, S. A. Lieberman, and S. A. Mahlke "Extending multicore

architectures to exploit hybrid parallelism in single-thread applications." In Intl.

41

Symp. on High-Performance Computer Architecture, Phoenix, Arizona, February",

2007.

[11] "Cell Broadband Engine - An Introduction", Cell Programming Workshop;

IBM Systems and Technology Group, April 14-18, 2007.

[12] P. F. Gorder. "Multicore Processors for Science and Engineering", Computing

in Science and Engineering (IEEE), Volume 9 Issue 2, Page(s): 3-7, March-April ",

2007.

[13] A. Douillet and G. R. Gao. "Software-pipelining on multi-core architectures."

In Intl. Con£ on Parallel Architectures and Compilation Techniques (PACT'07),

Brasov, Romania, September, 2007.

[14] P. Symes, "Video Compression", McGraw-Hill, 1998.

[15] I. Agi and R. Jagannathan, "A portable fault-tolerant parallel software MPEG-

1 encoder," Multimedia Tools and Applic, vol. 2, pp. 183-197, 1996.

[16] http://homepages.inf.ed.ac.uk/rbf/CAVIARDATA I / last accessed 10/6/09

[17] http://www.mpeg.org/pub_ftp/mpeg/mssg/mpeg2vI2.zip last accessed 10/6/09

42

Publications

[1] 	N. Parakh, A. Mittal, R. Niyogi, "Optimization of MPEG-2 Encoder on Cell

B. E. Processor", IEEE International Advance Computing Conference, Patiala, March

2009.

	Title

	Abstract
	Chapter 1
	Chapter 2

	Chapter 3

	Chapter 4

	Chapter 5

	Chapter 6

	References

