
INCREMENTAL APPROACH FOR
TEXT CLASSIFICATION

A DISSERTATION
Submitted in partial fuffillmant of th•

requirements for the award of the degree
of

MASTER OF TECHNOLOGY
in

INFORMATION TECHNOLOGY

SHWETA MODI

¶s.s. 1JJ±tS

I

DEPARTMENT OF ELECTRONICS AND COMPUTER ENGINEERING
INDIAN INSTITUTE OF TECHNOLOGY ROORKEE

ROORKEE -247 667 (INDIA)
JUNE, 2009

CANDIDATE'S DECLARATION

I hereby declare that the work, which is being presented in the dissertation entitled

"INCREMENTAL APPROACH FOR TEXT CLASSIFICATION" towards the

partial fulfillment of the requirement for the award of the degree of Master of

Technology in Information Technology submitted in the Department of Electronics

and Computer Engineering, Indian Institute of Technology Roorkee, Roorkee (India)

is an authentic record of my own work carried out during the period from July 2008

to June 2009, under the guidance of Dr. Durga Toshniwal, Assistant Professor,

Department of Electronics and Computer Engineering, IIT Roorkee.

I have not submitted the matter embodied in this dissertation for the award of any

other degree or diploma.

Date: 	/o/o5

Place: Roorkee (SHWETA MODI)

CERTIFICATE

This is to certify that the above statement made by the candidate is correct to the best
of my knowledge and belief.

Date: 15/06/05
Place: Roorkee brz-

fq~
(Dr. Durga Toshniwal)

Assistant Professor

E & CE DEPT.

IIT Roorkee — 247 667

i

ACKNOWLEDGEMENTS

I would like to extend my heartfelt gratitude to my guide Dr. Durga Toshniwal,

Assistant Professor, Department of Electronics and Computer Engineering, Indian

Institute of Technology Roorkee, for her able guidance, regular source of

encouragement and assistance throughout this dissertation work. It is her vision and

insight that inspired me to carry out my dissertation in the upcoming field of `Text

Document Mining'. I would state that the dissertation work would not have been in

the present shape without her umpteen guidance and I consider myself fortunate to

have done my dissertation under her.

I also extend my sincere thanks to Dr. S. N. Sinha, Professor and Head of the

Department of Electronics and Computer Engineering, Indian Institute of Technology

Roorkee for providing facilities for the work.

I also wish to thank my brother and all my friends for their valuable suggestions and

timely help.

Finally, I would like to say that I am indebted to my parents for everything that they

have given to me. I thank them for the sacrifices they have made so that 1 could grow

up in a learning environment. My, family always stood by me in everything I have

done, providing constant support, encouragement and love.

SHWETA MODI

ABSTRACT

Text documents are generated from various businesses, research, government and

other organizations as they store data in digital form. Classification is a supervised

grouping of data. Text classification is a method of associating one (or more)

predefined categories to a particular document. In many applications the data keeps

getting generated over time. Under these circumstances, the traditional text

classification methods may be incapable to deal with. Therefore, incremental

classification techniques are required in such cases.

In this thesis, we propose an algorithm for incremental text classification. The text

documents have been preprocessed before applying classification techniques to them.

Preprocessing, involves stopwords removal and stemming of words. The porter's

stemming analyzer has been used for the purpose of word stemming. After stopwords

removal and stemming of words, the documents are converted into vectors on the

basis of term frequencies and inverse document frequencies. To obtain the class

labels for the classifier, we have applied k-means clustering to the dataset. The

clustering also results into extraction of relevant terms for the dictionary. With each

increment, new terms get added to the dictionary. The newly added terms are

assigned unit weights whereas the weight for the terms.in the dictionary is reduced.

This process continues as more and more data keeps getting generated. The idea of

weights is used to show the incremental evolution of dictionary. The proposed

algorithm is applied on real case data collected from Google sports news collected

over fixed interval of 1 month.

In

CONTENTS

CANDIDATE'S DECLARATION 	i

ACKNOWLEDGEMENTS 	ii

ABSTRACT ...

LIST OF FIGURES ... vi

1. Introduction ... 	1

1 .1 	Introduction ... 	1

1.2 	Motivation for work ... 	2

1.3 	Problem Statement .. 	5

1.4 	Organization of the Thesis .. 5

2. Literature Review 	6

2.1 	Preprocessing ... 	6

2.1.1 Document Representation 	6

2.1.2 Feature Selection ...: 	8

2.1.3 Dimension Reduction .. 	12

2.2 	Text Classification ..15

2.3 	Research Gaps .. 	19

3. Proposed Work 	20

3.1 	Overall Architecture for Proposed Algorithm 	20

3.2 	Preprocessing ... 	21

iv

	

3.3 	Clustering and Term Extraction .. 	24

	

3.4 	Term Dictionary .. 	25

	

3.5 	TF-IDF Vector Generation ..26

	

3.6 	Classifier Model Generation ... 	26

	

3.7 	Classifier .. 	27

4. 	Implementation Details 28

4.1 Code Platform 	.. 28

4.2 Dataset Description 	.. 28

4.3 Class Hierarchy 	.. 28

4.4 Training Procedure ... 29

4.5 Testing Procedure 	... 34

5. Result and Discussion37

5.1 	Results and Discussion ... 	37

5.2 	Analysis ... 	4 1

6. Conclusion... 	... 	42

6.1 	Conclusion 	42

6.2 	Suggestions for further work .. 	43

REFERENCES .. 44

APPENDIX A: SOURCE CODE LISTING 	47

V

List Of Figures

Figure No. 	 Description 	 Page No.

	

1.1 	Process of Text Mining ... 2

	

3.1 	The overall architecture for proposed algorithm 20

	

3.2 	Flowchart for Preprocessing Text Documents 21

	

3.3 	Input document to preprocessing module ... 22

	

3.4 	Output Term frequency document of preprocessing module 23

	

3.5 	Output Dictionary of preprocessing module 23

	

3.6 	Flowchart for Clustering Module ... 24

	

3.7 	Output centroids of clustering module ... 25

	

3.8 	TF-IDF Vector Generation ... 26

	

3.9 	Classifier Model Generation and Result Validation 27

	

3.10 	Classifier ... 27

	

4.1 	Class hierarchy of training module .. 29

	

4.2 	Class hierarchy of testing module .. 29

	

5.1 	Entropy weighted sum on timestamp4 dataset37

	

5.2 	Classification Accuracy with static dictionary 38

	

5.3 	Classification Accuracy with dynamic dictionary 39

	

5.4 	Classification Accuracy with weighted terms in dynamic dictionary 39

	

5.5 	Linear Decrement of Term Weights by 5%, 10% and 15% 40

vi

CHAPTER 1

INTRODUCTION

1.1 	Introduction

Data mining or knowledge discovery from data is a process of extracting or mining

knowledge from large amount of data. It extracts the hidden, unknown but very

useful information from the abundant, incomplete, noisy and stochastic data obtained

over time [1]. Text mining is analogous to data, mining as it extracts useful

information from data sources through the identification and exploration of

interesting patterns [2].

A substantial portion of the available information is stored in text databases which

consist of large collections of electronic documents like news articles, e-mail

messages, research papers, e-books, digital libraries and web pages. Nowadays most

of the information in research, industry, business, government and other organization

are stored as electronic documents.

Text mining consists of four main areas:

• Pre-processing task include all the processes required to prepare data for text

mining system's core mining operations.

• Core mining operations are most important in text mining system which includes

pattern discovery, trend analysis and incremental knowledge discovery

algorithms.

• Presentation layer components include GUI and pattern browsing functionality as

well as access to query language. Visualization tools and user-facing query

editors and optimizers also come under this category.

• Refinement technique or post-processing include methods that filter redundant

information and cluster closely related data in a given text mining system, to

I

represent a full, comprehensive suite of suppression, ordering, pruning,

generalization and clustering approaches aimed at discovering optimization [2].

Text 	Hhh1 Document

Preprocessing
Tasks

(Categorization,
Feature/Term
Extraction)

Processed
Document
Collection

(Categorization,
keyword-labeled,

time-stamped)

LIJ
Knowledge

Presentation
(Browsing,

Visualization)

Core Mining
Operations

(Pattern
Discovery, Trend

Analysis)

Figure 1.1: Process of Text Mining

1.2 Motivation

Text databases are rapidly growing due to the increasing amount of information

available in electronic form, such as electronic publications, various kinds of

electronic documents, e-mail, and the. World Wide Web (which can also be viewed as

a huge, interconnected, dynamic text database) [1]. In data mining it is assumed that

the data to be mined is structured whereas the data stored in text databases is mostly

semistructured means neither completely unstructured nor completely structured. It is

important to organize such a large collection of documents into structured ontology.

The organization of documents facilitates navigation and search and simultaneously

provides a framework for continual maintenance as document repository grows in

size. Manual construction of structured ontology is one possible solution and has

been adopted by Yahoo to organize the internet to structure library content. However _

2

it has the obvious disadvantage of being too labor intensive and is viable only in large

corporations. Thus it is desirable to seek automatic methods for organizing document

collection [3].

One important area of text mining is the automatic classification of the text

documents. The goal of text categorization methods is to associate one (or more)

predefined categories to a particular document based on the likelihood suggested by a

training set of labelled documents. Automatic text categorization technology can be

applied to many application problems including finding answers to similar questions

or queries, classifying news by subject or newsgroup, categorizing - web pages,

organizing e-mail messages, etc. Text document classification presents many

challenges like it is difficult to capture high level semantics and abstract concepts of

natural languages by simply looking at a few words, since words have semantic

ambiguity such as polysemy and synonymy. In various text documents like emails,

engineering or medical diagnostic documents, the sentences and phrases do not

follow standard grammar rules as the text contain many typos and self invented

acronyms. 	For the machine learning research community, text document

classification faces two additional challenges: high dimensions in feature space, large

number of text categories, enormous amount of training data, and new training data

can emerge at later time. Some of these issues can be overcome by incremental

learning approach. Incremental learning refers to the process of accumulating and

managing knowledge over time [4].

An important research issue for text classification is the representation of feature

space in compact form and the discovery of the complex relationships that exist

between features, documents and classes. There are several approaches that try to

quantify the notion of information for the basic components of a text classification

problem. A characteristic valuation function like information gain or expected cross

entropy or the weighted evidence for text, word frequency can also be used for

dimensionality reduction. Clustering is one of the approaches used in this context.

Thus clustering is an important area of research where it is used to aid text

classification for dimensionality reduction. In clustering, features are clustered into

groups based on selected clustering criteria, where it creates new, reduced-size event

spaces by joining similar features into groups. A similarity measure between features

is defined like cosine similarity and similar features are combined into single cluster

that no 'longer distinguish among their constituent features. Clustering is also used

for sample reduction. A number of documents are grouped into clusters and each

cluster is assigned a class label.

A typical example in text classification where incremental learning can be of great

importance is in the field of sports world. In case of sports news documents, it is not

possible that all types of news documents can be covered for training in one

timestamp. The types of articles change with time in sports world and the features

important for categorization also changes simultaneously. It is possible that a

particular category was not in existence at one timestamp can be present in a future

timestamp. Therefore there can be increment of categories with time. It can also be

seen that some feature which were important previously are not presently important

for classification and even some features did not exist before or were of no

importance before are presently important. So there can be increase of features or

change in the weights of features in a category with time by giving more weights to

recent terms.

An incremental learning system updates its hypotheses, when necessary, in response

to newly available training data without re-examining the old data. Such a learning

strategy is both spatially and temporally economical, because it removes the need to

store and reprocess old instances, it is most appropriate for learning tasks in which

training data sets become available over a long period of time. The incremental

learning learn new knowledge from a new batch of training examples without

referring to the previously used training data nor forgetting the knowledge learnt from

the previous training data [4].

n

1.3 Problem Statement

The aim of proposed research work is given as follows: "To design an incremental

algorithm for classifying text documents." The following aspects are considered in the

designing of the algorithm:

1. The data increments have been considered over equal intervals of time.

2. The proposed work is suitable for applications wherein the frequency at

which increments are considered is known. This means that the changes in

the dataset are not very abrupt and unexpected in terms of time of

occurrence.

1.4 Organization of the Thesis

The report is divided into six chapters including this introductory chapter. The rest of

this thesis report is organized as follows:

Chapter 2 contains a brief description of text classification. A literature review on

feature selection methods and dimension reduction methods is done.

A detailed description of proposed work is described in Chapter 3. Various modules

for the work are discussed in detail.

In Chapter 4, the details of the code platform used and a brief description of dataset is

given. The class hierarchy for training module and testing module built for the work

is shown. The training procedure and testing procedure are also described.

Chapter 5 describes the results and discussion on the results. It also provides an

analysis on the correctness of the proposed work.

Finally the thesis is concluded in Chapter 6. Some suggestions for future work are

given.

5

CHAPTER 2

Literature Review

In this chapter, we briefly discuss about text classification. A literature review on

feature extraction, dimension reduction and text classification is done.

2.1 Preprocessing

Preprocessing include all the processes required to prepare data for text mining

system's core mining operations.

2.1.1 	Document Representation

A classifier cannot directly process the text documents in their original form.

Therefore, during a preprocessing step, the documents are converted into a structured

representation. Typically, the documents are represented by feature vectors. A

document is represented as a vector in this feature space, which is a sequence of

features and their weights. The most common vector space model (VSM) [3, 4, 5, 6,

7, 8, 9, 10, 11, 12, 13] assumes that the objects are vectors in the high-dimensional

feature space. A common example is the bag-of-words model, which simply uses all

words in a document as the features, and thus the dimension of the feature space is

equal to the number of different words in all of the documents.

The methods of giving weights to the features may vary. The simplest method is the

binary, in which the feature weight is either one or zero, if the corresponding word is

present in the document than it is weighed as one otherwise zero. Another more

complex weighting scheme is to take into account the frequencies of the word in the

document, in the category, and in the whole collection. It is known as Term

Frequency Inverse Document Frequency (TF-IDF) scheme [4, 5, 7, 11], which gives

the word w in the document d the TF-IDFWeight(w, d) as in Eq. (1).

TF — FDFWeight(w, d) = TermFreq(w, d) • log (ITT/DocFreq(w)] 	(1)

where TermFreq(w, d) is the frequency of the word in the document, N is the number

of all documents, and DocFreq(w) is the number of documents containing the word w

[2]•

Another popular method is the Normalized Term Frequency Inverse Document

Frequency. Let the number of occurrences of word j in document i, is f;;, and the

number of documents which contain the word j, is d~. Using these counts, the i`h

document as a w-dimensional vector x; can be represent as follows. For I < j < w, set

the j`h component of x;, to be the product of three terms as given in Eq. (2).

Xjt = ti , 9 'Si
	

(2)

where t11 is the term weighting component and depends only on f ;, while gj is the

global weighting component and depends on d~, and s; is the normalization

component for x,. Intuitively, t~; captures the relative importance of a word in a

document, while g; captures the overall importance of a word in the entire set of

documents. In such weighting schemes the objective is to enhance discrimination

between various document vectors for better retrieval effectiveness. There can be

various schemes for selecting the term, global, and normalization components, and

one popular scheme is the normalized term frequency inverse document frequency.

In this scheme tj; =j, gj = log(d/dj) and s; as in Eq. (3).

• -1 2
(>(t)2)

(3)

The effect of normalization is only to retain the proportion of words occurring in a

document which ensures that documents dealing with the same subject matter, but

differing in length lead to similar document vectors [3, 12].

Another" method used in [10] is described as follows. The web page is regarded as a

set of lemma form of (TI, T2,..., T,) in the VSM. Each lemma is endowed with certain

authority value Wi. Each -web page can be expressed by a web page characteristic

vector (T j, WI; T2, WZ;...; T,,, W„) to express. The formula used to calculate each

7

lemma authority value W;k for all web pages in each web page training set Dk is given

in Eq. (4).

TN fk = (1 + In tf k) ln(N/Nk)

where fk means lemma emergence frequency in Dk, N means classification system

number, Nk means lemma web page frequency.

2.1.2 	Feature Selection

The number of different words is large even in relatively small documents such as

short news articles or paper abstracts. The dimension of the bag-of-words feature

space for a big collection can reach hundreds of thousands; moreover, the document

representation vectors, although sparse, may still have hundreds and thousands of

nonzero components. Most of the words irrelevant to the categorization task can be

dropped without harming the classifier performance and may even result in

improvement owing to noise reduction. The preprocessing step that removes the

irrelevant words is called feature selection [1, 3, 5]. Most text classification systems

at least remove the non-content bearing stopwords.

Some systems perform stemming of words [5, 11, 14]. Stemming reduces the amount

of dimensions and enhances the relevancy between word and document or categories.

For example, "development", "developed" and "developing" will be all treated as

"develop" after stemming.

Part-of-Speech Tagging (POS) tagging [2] is the annotation of words with the

appropriate POS tags divide words into categories based on the role they play in the

sentence in which they appear. POS tags provide information about the semantic

content of a word. Nouns usually denote "tangible and intangible things," whereas

prepositions express relationships between "things." Most POS tag sets make use of

the same basic categories like Article, Noun, Verb, Adjective, Preposition, Number,

and Proper Noun. Some systems contain a much more elaborate set of tags.

n

To filter the features, a measure of the relevance of each feature needs to be defined.

The simplest measure is the document frequency. Experiments have suggested that

by using only the top 10 percent of the most frequent words does not reduce the

performance of classifiers. This contradicts the law of information retrieval,

according to which the terms with low-to-medium document frequency are the most

informative. There is no contradiction, however, because the large majority of all

words have a very low document frequency, and the top 10 percent do contain all

low-to-medium frequency words [1, 6].

Another measure of feature relevance that takes into account the relations between

features and the categories is the information gain [l, 6, 9, II] given in Eq. (5).

IG (w) _ 	 F(f, c)• log P(ccf)

c E Guc 	f E{w,v✓r)
	

(5)

measures the number of bits of information obtained for the prediction of categories

by knowing the presence or absence in a document of the feature f. The probabilities

are computed as ratios of frequencies in the training data. IG is a measure based on

entropy. Features that reduce the entropy the most are favoured for this method.

The IG measure can also be used in some other way for feature reduction task. To

find a new word set W' = {w ' j, w 2..., w ',}, r <f where f is the number of features

before reduction. W and W' should work equally well for all the desired properties

with D. After feature reduction, each document d; is converted to a new

representation d', =< w'ij, W',Z,..., w"r > and the converted document set is D' =

d'2,..., d'„}. If r is very much smaller than f, computation cost can be drastically

reduced. This approach uses IG to select W' from W, and W' is a subset of W. This

approach only uses the selected features as inputs for classification tasks. It measures

the reduced uncertainty by an information-theoretic measure and gives each word a

weight. The bigger the weight of a word is, the larger is the reduced uncertainty by

the word. Let {Cl, c2......., cp} denote the set of classes. The weight of a word w; is

calculated as in Eq. (6).

0

G() ` — E 1 P c~ 10g PrCct)

+ P,(WO E.' 1r (c~ I w3 tagP7(cz Iwi) 	 (6)

+ Pr w+3 E, 1Pr (c11 w'i) logI (c~ Iw'i)

The words of top r weights in W are selected as the features in W'. Information gain

is applied to compress the complexity of the document set from O(nJ) to O(nr). If r is

much smaller than f, the computation cost associated with document processing can

be drastically reduced [8].

Another good measure is the chi-square[I, 6, 11] given in Eq. (7).

x2 r.~
)

max
max L1 	c E C

IT,I - CP(f, c) • P(f', Cl) — F(f, c') • P(f',c))2
P(f) • P(f') - P(c) - P(c1) (7)

which measures the maximal strength of dependence between the feature and the

categories. Chi-square ranking favours features that are strongly dependent on

relevant or irrelevant classes. One problem with this method is that it may give a

high score, to a rare feature. For example, a feature may only appear in 5 documents

in a collection of 100,000 documents, but if all these 5 documents belong to the

relevant class, the feature may still get a high score, which is counter-intuitive;

Likelihood ratio attempts to address the issue of assigning high scores to rare features

in ranking. For a large sample size, it tends to behave similarly to chi-square ranking,

but it also works well for a small sample size [6].

Mutual Information only measures the dependency between a feature and its relevant

class, and as a result, it tends to favour rare terms if they are mostly used for relevant

documents [6, 11].

Term Discrimination tries to measure the ability of a feature for distinguishing one

document from the others in a collection. A very popular feature often has a negative

discrimination value, since it tends to reduce the differences between documents,

while a rare feature usually has a close-to-zero value, since it is not significant

enough to affect the space density [6].

10

I

In ranking features, Count Difference (CD), tries to reflect that a feature whose

document frequency for one class is higher than that for the other class is desirable

since it helps distinguishing between the two classes and if a feature is rare in the

training documents, its use will be limited since it only affects a small number of

documents. Given a feature, we can partition the set of training documents into four

regions in the following contingency Table 1.

Relevant Irrelevant

Feature Used A B

Feature Not Used C D

Table 1. Feature-CIass Contingency Table

The relative document frequency, which is the ratio of the document frequency of a

feature for one class over the average document frequency for the same class is

defined in Eq. (8).

relative DF(t, u) = ar /ao and
	

(8)
relative DF(t,u) = bt fb'

Here, a and b denote the average document frequencies for the relevant and irrelevant

classes, which are computed in Eq. (9).
M

a'= 	a, and
t=1 	 (9)

where M is the number of original features before the selection process. Using the

relative document frequencies, count difference score of a feature can be defined as

the difference between its two relative document frequencies given by Eq. (10).

CD (t) = (ar f a _ bz/b') 2
	

(10)

Intuitively, the relative document frequency measures the importance of a feature

against the average feature for one class. If a feature is rare, its relative document

frequency will be low, whereas if a feature is popular, its relative document frequency

11

will be high. The count difference tends to favour features whose relative document

frequencies for one class are higher than those for the other class. If a feature is

popular for both classes, its count difference score will be reduced [6].

2.1.3 	Dimension Reduction

Dimensions of document spaces are always too high to deal with directly for many
1

classification algorithms. Many collections of documents only contain a very small

vocabulary of words that are really useful for classification. Dimensionality

reduction techniques are a successful avenue for solving the problem. Dimensionality

reduction techniques can be divided into two kinds: attribute reduction and sample

reduction [9]. The feature selection methods discussed above are attribute reduction

methods.

Clustering is used as a down-sampling pre-process to classification, in order to reduce

the size of the training set resulting in a reduced dimensionality and a smaller, less

complex classification problem, easier and quicker to solve. However, it should be

noted that dimensionality reduction is not accomplished directly using clustering as a

feature reduction technique, but rather in an indirect way through the removal of

training examples that are most probably not useful to the classification task and the

selection of the most representative redundant training set. In most of the cases this

involves the collaboration of both clustering and classification techniques [15, 16].

Clustering can also be used as feature reduction technique by clustering similar

features as discussed in [17].

Several different variants of clustering exist. A flat (or partitional) clustering

produces a single partition of a set of objects into disjoint groups, whereas a

hierarchical clustering results in a nested series of partitions. Each of these can either

be a hard clustering or a soft one. In a hard clustering, every object may belong to

exactly one cluster. In soft clustering, the membership is fuzzy — objects may belong

to several clusters with a fractional degree of membership in each.

12

Irrespective of the problem variant, the clustering optimization problems are

computationally very hard. The brute-force algorithm for a hard, flat clustering of n-

element sets into k clusters would need to evaluate 1!'/k! possible partitioning. Even

enumerating all possible single clusters of size I requires n!/Z!(n — 1)!, which is

exponential in both n and 1. Thus, there is no hope of solving the general

optimization problem exactly, and usually some kind of a greedy approximation

algorithm is used.

Agglomerative algorithms begin with each object in a separate cluster and

successively merge clusters until a stopping criterion is satisfied. Divisive algorithms

begin with a single cluster containing all objects and perform splitting until a stopping

criterion is met. "Shuffling" algorithms iteratively redistribute objects in clusters.

The most commonly used algorithms are the k-means (hard, flat, shuffling) [3, 9], the

EM-based mixture resolving (soft, flat, probabilistic), and .the HAC (hierarchical,

agglomerative) [2].

K-Means Clustering is used in [3, 8, 12, 14, 13, 18]. The method is described as` Let

(P1}' 1 be a partition of D where k is a user-specified constant. The goal of the k-

means clustering algorithm is to maximize the objective function in Eq. (11).
k

Y Y Sim(d j, P3)
i=I d,EPJ 	 (11)

where Sim(d;, P1) is the similarity measure between document d; and P3. A popular

similarity measure is defined in Eq. (12).

Sim(di , Pl) = cos(d,, m) = I d"l~ III II 	
(12) ~I 1

where mm is the centroid of P3 is defined in Eq. (13).
i r

m3 = p. L,aepjd
a

Cosine similarity [3, 12] is easy to interpret and simple to compute for sparse vectors

[9]. Another similarity measure that can be used is Eucleadean Distance [12] which

is defined in Eq. (14).

(13)

13

DCxi' x31 	 Lxik — xjk)Z

k 	 (14)

which is a particular case with p = 2 of Minkowski metric is given in Eq. (15).

}zp D p(xi,x)
(15)

There are many other possible similarity measures suitable for their particular

purposes.

To evaluate the performance of k-means clustering algorithm, entropy based cluster

validity measure can be used. Let k be the number of clusters obtained by clustering

approach and L is the number of classes given by the data source. For each cluster i,
calculate an entropy e; of the cluster using Eq. (16).

L

ei = — 	~7 ij 1092Pi,j
j =1 	 (16)

where p,, = milm; is the probability that a member of cluster i belongs to class]. Note

that mi is the number of objects in cluster i and m is the number of objects of class]
in cluster i. The entropy weighted sum E is defined as the sum of the entropies of

each cluster weighted by the size of each cluster as shown in Eq. (17)
K

E_`ei
i=1
	

(17)

where M is the total number of data points. If E is smaller, the performance of a

clustering method is better [8].

A Difference Similitude Matrix (DSM) based approach in [9] is used to reduce the

dimensionality of item-by-document matrix which represents pre-specified

collections of document, and generate rules for text classification.

Suppose IS is an information system, and IS = <0, C, D, V. f>, where 0 denotes the

system object set; C denotes the condition attribute set; D denotes the decision

attribute set; V = U (Va. : aE(C UD)) denotes the attribute value set; f : O x (CUD)—~ V

14

is the function that specifies the attribute values. As for the objects in information

system, we can define a m xm difference-similitude matrix MDS to represent their

attributes and values. The matrix has two types of elements, similarity item ms;, and

difference md~, which is defined in Eq. (18).

MS 	f (qE c:f(q,x) = f(grXj)}. .D`x1) =D(x1) 	
a = 1,G

m•• = 	; j = 1,2,.....,rrz 	(18)
qe c:f(gxj xf(grxj)J, D(x) n(x) m 	 5i 	5 	Dx~=1,2,...., ~~ 	 fr:v(f(q,x)=f(q_,) , D(X 	D(x1)

where m is the number of condition attributes and n is the number of instances in

dataset. Sigp(D) similarity significance and Sigq(D) difference significance are

essential to define similarity significance and difference significance respectively.

Though these concepts are used during reduction. The principle that DSM-based

reduction conforms is to get the following things without losing information of the

original system after reduction:

- Minimum number of remained attributes to describe rules;

- Minimum number of classification rules.

2.2 Text Classification

Text classification (TC - also known as text categorization, or topic spotting) is the

task of automatically sorting a set of documents into categories (or classes, or topics)

from a predefined set [19]. The general text classification task can be formally

defined as the task of approximating an unknown category assignment function F.

Dx C — {0,1), where D is the set of all possible documents and C is the set of

predefined categories. The value of F(d, c) is 1 if the document d belongs to the

category c and 0 otherwise. The approximating function M.• Dx C -~ {0, 1) is called

a classifier, and. the task is to build a classifier that produces results as "close" as

possible to the true category assignment function F [2].

Rule-based methods in [9] and distance-based methods [7, 10] are the two most

popular approaches for text classification. Rule-based methods use small subsets of

keywords as condition attributes of decision rules, which means only part of the

15

keywords need to be examined by rules and the speed of classifying new document is

faster than distance-based methods [9].

Text classification is a kind of typical model directive machine learning problem. It

is generally divided into training and categorizing two stages. Its concrete algorithm

described in [7, 10] is as follows:

Training stage:

(1) C = {c1, c2. c„} // Define the category set, n is the total no. of categories

(2) S = {sl, S2., s„2} // Give training text set, m is the total no. of documents

For i =1 to m

Training text s; is marked as the sign c~ that is belonged to category

Endfor

(3) For i =1 to m

X[sj F characteristic vector of s;

X[cj -characteristic vector is representative of each category c1 of

corresponding s;

Endfor

Categorizing stage:

(4) Tree E- information classification tree

N F leaf node total number of the tree

X[I... n] F characteristic vector of each leaf node

Threshold[]...nJ F threshold of information similitude degree for each leaf

node

Info 4- information to wait for classification

(5) For i=1 to n Do

Deg F information similitude degree between Info and X[i]

If Deg> Threshold[iJ Then

Add Info and Deg to classification form of corresponding X[iJ sort

For each node P from X[i] node to Tree root path Do

16

Add Info and Deg to classification form of corresponding P

sort

Endfor

Endif

Endfor

The text classification method is based on the concept of representing the training

datasets in the form of category characteristic vectors.

As described in [9], text classification means selecting a small number of keywords to

present document content and to describe classification rules, and the rules should be

as few as possible. Keywords are taken as attributes to denote words or phrases those

are important for classification. The Difference Similitude Matrix (DSM) based

methods take both differences and similarities of objects into account, and can get

good reduced attributes and rules without complex mathematical operations. In this

method, a DSM based approach is applied to reduce the dimensionality of item-by-

document matrix which represents pre-specified collections of document, and

generate rules for text classification. The generated rule is written in Eq. (19).

rCk : (h1= a1) A Ch2 = a2) A A (hp = aj => dj --~ C 	 (19)

where r lk is the kt rule to decide whether d1 belongs to c j, h,r is the word frequency of

remained keyword t, after DSMreduction and as, is the corresponding value.

When a new document comes to be classified, count and discretize the item

frequencies of attributes, then use the discretized results as condition attributes to try

to'match the rules defined while training the classifier. If any successes, then put the

document into the category that rule describes.

K Nearest-Neighbour classifier described in [20] does not require model building. In

this approach, all the training examples those are relatively similar to the attributes of

the test example are found. These examples are known as .nearest-neighbours, are

used to determine the class label of the test example. A nearest-neighbour classifier

represents each example as a data point in a d-dimensional space, where d is the

17

number of attributes. In this approach k is the number of nearest-neighbours used to

determine the class label of the test example. If k is too small, then the nearest-

neighbour classifier may be susceptible to overfitting because of noise in the training

data. On the other hand, if k is too large, the nearest-neighbour classifier may

misclassify the test instance because its list of neighbours may include data points

that are located far away from its neighbourhood.

This classification algorithm computes the distance (or similarity) between each test

example z = (x', y) and all the training examples (x, y) ❑ D to determine its nearest-

neighbour list, D. The algorithm is described as follows:

1. Let k be the number of nearest-neighbours and D be the set of training examples.

2. for each test example z = (x', y) do

I. Compute d(x', x), the distance between z and every example, (x, y) ❑ D.
ii. Select D: C D, the set of k closest training examples to Z.

iii. y' = acrgmax 	I(v = y~)
txi y)EDp

3. end for

Such computation can be costly if the number of training examples is large. The k

nearest-neighbour classifier is used in [11] for classification.

A confusion matrix in table2 provides the information needed to determine, how well

a classification model performs.

Prediction Class

Class = 1 Class = 2

Feature Used fii f o

Feature Not Used foi foo

Table 2. Confusion matrix for a 2-class problem

The performance metric accuracy defined in [20] is given in Eq. (20).
Number of correct predictions 	iii + foa Accuracy =

	

	 -
Total Number of predictions fii + flo + foi + foo 	(20)

18

2.3 Research Gap

In many applications it is not possible to build the dictionary beforehand because of

lack of domain knowledge. Most of the works uses a predefined dictionary which is

also a time consuming and tedious task.

The traditional text classification methods are incapable for applications, where the

data keeps getting generated over time. Therefore, incremental classification

techniques are required under such circumstances.

Most of the work treats all the terms in the dictionary as equal. As the terms evolve

over time, some old terms become irrelevant and therefore terms should be given

unequal weights in the dictionary.

19

,.- -., (,ij :i 	0

CHAPTER 3

Proposed Work

3.1 Overall Architecture for Proposed Algorithm

Centroids

Training

	

Text Database I 	 data
getting updated
over increments

of time 	I 	 i
Preprocessing

(stemming and
stopwords

Training 	 removal)
Dataset

Training/

Test Dataset 	 Test/ unseen
data

-----------------------------_
1 	 1

Clustering and
Term Extraction

Relevant
Terms

3 	 r - -
Term Dictionary

4
TF-IDF vector

I
generation

Unseen data
TF-IDF vector
	 Training+Test

TF-I DF
vector

6
Classifier 5

Classifier Model
Generation

L ----------------------------
Prediction

Increment at each timestamp

- - - - - - Feedback from previous timestamp

Figure 3.1: The overall architecture for proposed algorithm

The overall architecture for proposed algorithm is shown in Figure 3.1. It consists of

six phases. The input data keeps getting updated with time and it is fed into the

preprocessing phase represented as block 1. Then the training data is fed for

clustering and term extraction in block 2. This block is part of the incremental

approach and it is processed at each timestamp. The centroids obtained at a

timestamp are sent to the next timestamp clustering process for initializing the•

centroids. The relevant terms are sent to the term dictionary in block 3. In block 4

the preprocessed data and term dictionary are used to generate TF-IDF vectors for

training, test, and unseen data. The training and test data are used to generate the

classifier in block 5. Block 6 shows the classifier which is used for prediction. The

unseen data TF-IDF vectors are sent from block 4 to block 6 for prediction. The

details of each block are discussed in following sections:

3.2 Preprocessing

Block 1 is for preprocessing documents. The flowchart for the preprocessing every

document in the training dataset, test dataset and unseen data is drawn in Figure 3.2.

The algorithm is described just after the flowchart.

Text 	 Part Of Speech
Documents 	 Tagger

Porter Stemming
Analyzer

Noun Stopwords

A non-content
bearing word /

stopword

No

Document
Frequency
vectors and

Unique
Terms IDF

Vector

Figure 3.2: Flowchart for Preprocessing Text Documents

21

Preprocessing Algorithm:

1. Use POS tagger to get the information about the semantic content of a word and

create a noun stopwords file.

2. Ignore cases, stem words and extract all unique words from all documents.

3. Eliminate non-content bearing stopwords and noun stopwords.

4. For each document, count the word frequency.

5. Create a global dictionary of all unique words and assign them a unique Id.

6. Store every document's unique words Ids with their frequencies in different

files.

7. Store global dictionary word Ids along with words and word IDF in different

files for each training subset.

A document as input for the preprocessing module is shown in Figure 3.3.

trc4.txt - Notepad
	

I11
File Edit Format View Help

(Australia builds big lead over India in first cricket test 	-
Dec 27, 2007
MELBOURNE, Australia - Stuart Clark and fellow paceman Brett Lee
claimed four wickets apiece as Australia dismissed India for 196 runs
to take a big lead after the second day of the first cricket Test 	-_
Thursday.
Clark (4-28) took two wickets from three balls either side of the tea
break and Lee (4-46) cleaned up the tail end to close out an
outstanding innings for the Australian bowlers on a deteriorating
Melbourne cricket Ground wicket.
After having Yuvraj Singh caught behind for a duck on the last ball
before tea, Clark completed his over after the break by trapping
Mahendra Dhoni lbw without conceding a run.
Matthew Hayden was unbeaten on 22 and Phil Jaques had 10 at stumps to
give Australia a second-innings total of 32 and a lead of 179 after
ending the first innings on 343 earlier Thursday.
"we definitely should have played better, but it's all part and
parcel," said star India batsman Sachin Tendulkar. "The match is not
over yet and we'll continue to fight."
Clark took the vital wicket of Tendulkar for 62 shortly before tea to
break up a promising 65-run, fourth-wicket partnership with Saurav
Ganguly.
"If we had converted that into a big partnership, it could have really

Figure 3.3: Input document to preprocessing module

The Term Frequency Vector of the input document is stored in a document shown in

Figure 3.4 and a Global Dictionary containing all the unique terms in a training

document subset are shown in Figure 3.5. 	These documents are the output of

preprocessing module. The Term Frequency Vector document consists of the term

22

IDs and the their frequencies. The Global Dictionary document consists of the term

IDs, terms and their IDF value.

Newtrc4.txt - Notepad

File Edit Format View Help

6 1 15 9 19 1 25 2 27 1 42 2 44 1 47 1 50 2 56 1 68 3 79 3 97 2 101 10
105 8 127 1 128 1 132 1 133 1 143 1 144 3 147 1 153 1 161 1 168 1 175
1 176 1 181 1 183 1 185 1 187 2 203 5 207 1 213 1 214 2 225 3 234 1
254 3 261 1 269 1 282 1 283 1 334 1 344 1 358 1 364 1 395 1 407 1 433
1 445 1 467 2 477 3 478 1 498 3 586 1 593 1 614 1 616 1 621 1 643 4
681 1 726 1 745 1 783 1 818 2 848 1 887 1 926 2 1006 1 1016 1 1035 1
1052 1 1069 1 1103 1 1146 2 1150 1 1165 1 1176 1 1243 1 1133 1 1601 1
1603 1 1615 2 1663 1 1743 1 1751 2 1753 2 1766 1 1807 3 1922 1 1951 1
1962 2 1973 1 1974 1 1975 12 1976 1 1977 3 1978 1 1979 1 1980 1 1981 1
1982 1 1983 2 1984 1 1985 1 1986 1 1987 1 1988 1 1989 4 1990 1 1991 1
1992 1 1993 1 1994 1 1995 1 1996 1 1997 1 1998 2 1999 1 2000 1 2001 1
2002 1 2003 1 2004 1 2005 1 2006 1 2007 1 2008 1 2009 1

Figure 3.4: Output Term frequency document of preprocessing module

GlobalTerms5.txt - Notepad
	 Li & 	'

File Edit Format View Help

0 Packer 2.531426665422893 1 stai 1.9123874570166697 4 green
2.531426665422893 5 mind 2.531426665422893 6 short 1.8382794848629478
7 postseason 2.6855773452501515 8 experi 2.3978952727983707 9 coach
0.9509762898620452 10 youth 3.378724525810097 11 team
0.43428554664365626 12 lost 1.2584609896100056 13 composur
3.378724525810097 14 down 1.1451323043030026 15 over
0.4168938039317871 16 nfc 2.8678989020441064 17 playoff
1.9123874570166697 18 game 0.33420208808667373 19 against
0.488352767913932 20 resist 2.8678989020441064 23 turnov
2.8678989020441064 24 histori 1.4328143767547836 25 side
1.586965056582042 26 victori 1.1814999484738773 27 realli
1.1814999484738773 28 worri 3.378724525810097 29 control
1.7047480922384253 30 gui 1.8382794848629478 31 weren
3.378724525810097 32 grow 2.6855773452501515 34 dure
1.1814999484738773 35 cours 2.0794415416798357 36 week
0.7637647477738987 37 address 2.8678989020441064 38 footbal
0.9808292530117262 39 reason 1.992430164690206 40 good
0.9509762898620452 41 improv 2.3978952727983707 42 think
0.8938178760220965 43 best 0.81377516834856 44 foot 2.3978952727983707
45 forward 1.8382794848629478 46 certainli 2.6855773452501515 47
better 1.6441234704219905 48 field 1.4816045409242156 49 turn
1.3862943611198906 50 out 0.35020242943311497 51 brutal
3.378724525810097 53 fell 2.3978952727983707 54 wild

Figure 3.5: Output Dictionary of preprocessing module

0*3

3.3 Clustering and Term Extraction

For clustering each training time-stamped subset, use k-means clustering. The terms

are extracted from the centroids, as all the relevant term for categories are in the

centroids. The flowchart for the clustering module is drawn in Figure 3.6. The

algorithm is described just after the flowchart.

Initialize TF-IDF sparse
Document 	 matrix
Frequency
vectors and

Unique Terms
IDF Vector 	

Initialize k centroids

Assign every document to
a cluster using cosine

similarity measure

Re-compute the centroids
and reassign the documents

to new centroids.
No

Yes 	Cent or d as
stopping criteria 	 Category

characteristic
vector

Figure 3.6: Flowchart for Clustering Module

K-means Clustering Algorithm:

1. Initialize the TF-IDF document-word matrix as sparse matrix.

2. Initialize k centroids where k is the no. of centroids is a user specified constant.

24

3. Assign n documents in D to clusters using cosine similarity measure between

document d, and centroid c,, where 1 < i >_ n and 1 <. j ? k.

4. Re-compute the centroids and reassign the documents to the centroids.

5. Repeat step 4 until there is no change in the 2 consecutive re-computed

centroids.

The input of the clustering documents is shown in Figure 3.4 and Figure 3.5. The

output of the clustering module is the centroids of clusters and they are stored in a

document as shown in Figure 3.7. The Centroid of Clusters document consists of the

features in the centroid and their TF-IDF values.

. CentroidOfClusters5.txt - Notepad 	 Lc 1 0

File Edit Format View Help

packer 1.8184824186132698 stai 2.7136021011998737 green ~
2.3539293971054818 mind 2.0 short 2.6457513110645907ostseason
2.3094010761758503 coach 3.928571428571429 youth 1.4142135623730951
team 4.629019992067058 lost 3.1235807588017885 down 3.086974532565159
nfc 1.975658322294524 playoff 2.8323527714997336 game
4.354938713534976 turnov 1.3130643285972257 histori 3.127716210856122
realli 3.8013155617496435 worri 1.4142135623730951 gui
2.6261286571944513 tours 2.333333333333334 week 3.54474503897027
footbal 4.873672965232997 reason 2.333333333333333 good
3.8497419160916238 think 3.3113308926626095 best 3.6829475375170038
forward 2.5298221281347035 certainli 1.7320508075688772 better
2.7136021011998723 field 3.0532901344551733 turn 3.1529631254723287
out 4.923659639173307 brutal 1.4142135623730951 fell
2.3333333333333326 wild 2.23606797749979 card 1.4142135623730951 left
2.8284271247461907 right 3.0508510792387606 tack] 2.309401076758503
situat 2.449489742783178 aren 1.4142135623730951 bounc
1.7320508075688772 kind 2.840187787218772 tight 1.5075567228888183
nobodi 1.7320508075688774 young 2.334868926348074 respond
1.4142135623730951 score 2.941742027072761 drive 1.666666666666667
certain 2.0 threw 2.138089935299395 touchdown 2.5999999999999996 pass
2.612789058968721 ran 1.7320508075688774 gain 1.6666666666666667 yard
2.398852020855824 offens 2.9999999999999996 fire 1.8898223650461363
season 4.451145741570189 group 2.1213203435596424 train 2.0 often

Figure 3.7: Output centroids of clustering module

3.4 Term Dictionary

In block 3 the dictionary of terms relevant to categories is build. With each increment

the terms in the dictionary are updated and weights are allotted to the terms based on

the timestamps. The newly added terms are assigned unit weights whereas the weight

for the terms in the dictionary is reduced. This process continues as more and more

data keeps getting generated. As time passes, very old irrelevant terms get removed

from the dictionary.

25

3.5 TF IDF Vector Generation

In block 4 the TF-IDF vectors for all training, test and unseen documents is

generated. The terms generated by block 3 are stored in the terms dictionary and only

those terms are considered for generating vectors. The IDF for the terms is obtained

from the unique terms IDF vector obtained after preprocessing documents. The TF-

IDF vectors are stored in files for the block 5 and block 6. The TF-IDF vector

generation is shown in Figure 3.8.

Unique Terms
IDF Vector

Terms in the
Dictionary

Calculate TF-IDF
for all Documents

TF-IDF
Vector of all
Documents

Figure 3.8: TF-IDF Vector Generation

3.6 CIassifier Model Generation

Block 5 is for classifier model generation. The TF-IDF vectors of test documents and

the category characteristic vectors are fed as input to calculate the cosine similarity

between each of them. The maximum cosine similarity of a document with all the

category characteristics vector is calculated and if it is above threshold then the

category with maximum cosine similarity is assigned to the document. The results

obtained from the classifier are validated with the original results and the classifier

model is validated. The Process of classifier model generation is shown in Figure

3.9.

26

Class Labels
Category 	 Cosine similarity of

characteristic I 	all Test Vector with
vector 	 each Category

Characteristic Vector

TF-IDF Test
Vectors 	Maximum Cosine similarity

for each Test Vector

Max Cosine
Similarity >

No 	 Threshold limit 	 Yes

Document
	 Document is assigned

cannot be
	 the category with max

categorized
	 cosine similarity

Result Validation

Figure 3.9: Classifier Model Generation and Result Validation

3.7 Classifier

The classifier generated in block 5 is used for prediction of class labels of unseen

documents. The TF-IDF vectors for unseen data are obtained from block 4. The

classifier is used for prediction is shown in Figure 3.10.

Unseen data
TF-IDF
Vectors

Classifier Assigned
Class Label

Figure 3.10: Classifier

27

CHAPTER 4

IMPLEMENTATION DETAILS

The implementation details of the proposed algorithm are listed as follows:

4.1 Code Platform

The programming language Java has been chosen and it is platform independent. The

environment used is Eclipse 3.3 IDE which is a open source IDE for Java/J2ee

Development applications. I have developed the code using JDK 1.5. The Part Of

Speech Tagger JTextPro is available as a Java utility in [22] and it can be easily

added in the library for use as java is used for coding. The code for Porter Stemming

Analyzer is also available in java in [23].

4.2 Dataset Description

The text documents data has been taken from [21]. It comprises of a collection of

sports documents from various sports categories, like cricket, football, tennis, boxing,

swimming and chess. The data has been collected on a monthly basis. The number

of text documents collected in each month is variable. For our purpose, we have

assumed each increment to be made up of text documents pertaining to 3 months

period. 3 months is chosen because it represents business quarter. However any

suitable interval period can be chosen.

The training documents are chosen randomly from all the documents in a time-stamp

and rest of the documents are taken for testing.

4.3 Class Hierarchy

The class hierarchy used to implement the proposed work is shown as follows:

WV

TextClassifier Java

Tagger. j ava
	

I 	Preprocessing. java 	 Clustering.java

JTextProcessor.ja
	CreateStop WordsDic.java 	

WriteToFile.java
va 	 Porter. j ava

	

ConvertDocIntoTerm s. j ava 	ReadFromFile Java

Figure 4.1: Class hierarchy of training module

I TestingDocuments. j ava

I GetTestVector.java

Figure 4.2: Class hierarchy of testing module

4.4 Training Procedure

TextClassifier.java

This class is used to train the model. This class initializes the global variable used for

building the classifier like the file name of text files containing training documents

path and the file name of the text files containing documents path for storing the word

frequency vector. File name storing dictionary at each increment and storing

centroids obtained at each increment is also initialized.

String TrainDocFile1 = "TrainingDocs1.txt";

String TermFregFilel = "TermFrequencyDocs 1 .txt";

String GlobalFilel = "GlobalTermsl.txt";

29

String CentroidOfClusters1 = "CentroidOfClusters 1 .txt";

The main() function of class Tagger.java is called to tag each word in the documents.

The function ConvertIntoUniqueTerms() of class PreprocessData Java is called here

for preprocessing training documents. The main function of class Clustering.java is

called for clustering the documents.

Tagger tg = new Tagger();

tg.main();

PreprocessData ppd = new PreprocessData();

ppd .ConvertIntoUniqueTerms(docList 1,TermFregDocList 1,GlobalFile 1,docList2,Ter

mFregDocList2,GlobalFi le2,docList3,TermFregDocList3,GlobalFile3,docList4,Term

FregDocList4,GlobalFile4,docList5,TermFregDocList5,GlobalFile5);

Clustering c1= new Clustering ;

cl.main(TermFregDocList1,GlobalFile 1,centroid 1 l ,centroid 12,CentroidOfClusters 1);

PreprocessData. java

This class is used to convert documents into unique terms using the

ConvertlntoUniqueTerms() function.

public 	static 	void 	ConvertlntoUniqueTerms(String[] 	DocList 1 ,String[]

StemDocList 1 ,String G1obalFile1,String[] DocList2,String[] StemDocList2,String

GlobalFile2,String[] DocList3,String[] StemDocList3,String ' GlobalFile3,String[]

DocList4, String[] StemDocList4,String GlobalFile4,String[] DocList5,String[]

StemDocList5,String GlobalFile5)

First it create the noun stopwords CreateStopWordsDic.java class using and then stem

the words using Porter.java class and store them in a text file using WriteToFile.java

class.

CreateStopWordsDic cswd 1 = new Create StopWordsDic();

30

cswd l .main(TagdocList5,StopWordsFile5);

Porter p = new Porter();

String StemmedStop Words 1 = p. StemmedDoc(StopWordsFile1);

WriteToFile wtf = new WriteToFile();

wtf. WriteToFl(Stop WordsFi leNew3, StemmedStopWords3);

Stem each training document using Porter.java class and convert each document into

word frequency vector using ConvertDocIntoTerms.java class

StemmedDoc 1 [i] = p.StemmedDoc(DocListI [i]);

ConvertDoclntoTerms cdtl = new ConvertDocIntoTermsO;

cdt 1 .main(StemedDoc 1, StemDocList1, GlobalFile1, Stop WordsFileNew1);

CreateStopWordsDic. j ava

The stopwords dictionary is initialized using Create StopWordsDic() constructor. For

each training document the function getTermsO is called to get the nouns in the

documents. Print and write the unique stopwords in all documents in a common

stopwords dictionary using PrintAndWriteDictionary() function.

public CreateStopWordsDico

{

zero = "0";

for(int'i = 0; i<DicSize; i++)

dictionary 1 [i] = "0";

}

public void getTerms(String FileName){}

public void PrintAndWriteDictionary(String StopWordsFile) {}

31

Porter.java

This class transforms a word into its root form. The function stem() calls many

function step 1O, step2O, step3O, step4, step5() and step6(} to stem the words.

In step 10 the word gets rid of plurals, -ed, -ing. For example

bowled -> bowl

players -> player

agreed -> agree

step2() turns terminal y into i when there is another vowel in the stem.

step3() maps double suffices to single ones_ so -ization (_ -ize plus -ation) maps to -

ize etc.

step4() deals with -ic-, -full, -ness etc. similar strategy to step3.

steps() takes off -ant, -ence etc.

step6() removes a final -e if mO > 1.

mo measures the number of consonant sequences between 0 and j.

private final void step I() { }

private final void step l () { }

private final void step3() { }

private final void step4() { }

private final void step5() { }

private final void step6() { }

WriteToFile. java

This class has a function WriteToFlO which writes the data in the text file FileName.

public void WriteToFl(String FileName, String data) {}

32

ConvertDoclntoTe rms. j ava

This class takes as input the stemmed words of all documents in a training subset and

converts them into word frequency vectors and also create a Globalvector containing

all the unique words in this dataset and write this vector in a file named GlobalTerms.

In main(), first the noun stopwords file is read and stored in an array.

String[] StopWords2 = Readf[O].split(" ", -1);

A string array Global Vector is created to store all the unique words and initialized to

zero. For every stemmed document's data getTermNFreq() function is called. In this

function noun stopwords and non-content bearing words are eliminated. And all the

unique words are identified and their frequency (number of documents the word

occurs) is calculated.

String TermNFreq = c.getTermNFreq(StemmedDoc[l], StopWords2);

All the words are read and if not in the global vector then they are added to it and if

already in the global vector then their occurrence (number of times the word is

present in all) is incremented.

Sort the words on the basis of their unique Ids in global vector. For every document,

store the word's Ids along with their frequencies in a file. Store the Global dictionary

word Ids along with the words an their IDFs (Inverse Document Frequency).

ReadFromFile.java

This class has a function ReadFromFl() which reads from the text file FileName and

returns a string array.

public String[] ReadFromFl(String Filename, int StringLength)throws IOException{}

33

Tagger.java

In this class the JTextProcessor.java main() function is called. This class is a part of

JTextPro which is a utility that helps in tagging.

String[] args 1 = {"models", "DEC07_FEB08_FOOTBALL/trfii l .txt" };

JTextProcessor.main(args 1);

Clustering.java

This class is used to cluster a dataset into k clusters, where k is constant for-

clustering. A hash map is used as sparse matrix is created to store the centroids and

TFIDF vectors of training documents. Another hash map is created to store the term

Ids along with their IDFs. Another hash map is created to store the term Ids along

with the terms.

HashMap<String, Double> map = new HashMap<String, Double>();

HashMap<Integer, Double> global map = new HashMap<Integer, Double>O;

HashMap<Integer, String> global_Terms_map = new HashMap<Integer, String>();

A function CreateClusters() is called to create the cluster of the dataset and the cluster

result is printed in the form of, which document fall in which cluster and the centroids

are stored as category characteristics vectors.

public void CreateClusters(int[] TermlDs, String CentroidOfC lusters) { }

4.5 Testing Procedure

TestingDocument.java

This class is used to test the model. This class initializes the global variable used for

building the classifier like the file name storing dictionary of each increment and

storing centroids obtained at each increment.

34

String GlobalFile1 = "GlobalTerms 1 .txt";

String CentroidOfClustersl = "CentroidOfClusters I .txt";

The function GetIDF() is called to get the Terms and their IDFs stored in the

GlobalTerms File. Then the function GetDictionary() is called for creating the

Dynamic dictionary and get category characteristic vectors with their TFIDF. The

dictionary is created with words having different weights giving more weight to more

recent words.

String[][] TermNIDFs1 = td.GetIDF(GlobalFileI);

td.GetDictionary(CentroidOfC lusters 1,1,TermNIDFs 1);

The file storing the names of the test documents is initialised.

String TestDocFileNames = "TestDocument.txt";

For each test document, the function getTermFrequency() of class GetTestVector.java

is called to get the word frequency vector of the document.

GetTestVector gtv = new GetTestVectorO;

double[] WtTfldf = td. Get WtTfldfVector(TermFreq);

Then the weighted TF-IDF Vector for each test document is created using the

GetTfldfVector() function.

double[] WtTfldf = td. Get WtTfidfVector(TermFreq);

This WtTfldf Vector is matched with all the category characteristic vectors using

CosineSimilarity() function.

double CosSim I = td.CosineSimilarity(WtTfldf, 1);

061

The maximum cosine similarity is found and the CosSim having maximum value is

checked with the threshold limit, if it is above threshold then it is classified under that

category else the document cannot be classified.

GetTestVector.java

This class reads the test document and returns the word frequencies of the words in

the dictionary.

public int[] getTermFrequency(String FileName, String[] Dictionary){}

36

0.6

0.4

0.2

0 -

CHAPTER 5

RESULTS AND DISCUSSION

5.1 Results and Discussion

The model is trained with 522 training documents. Initially for the first quarter, the

number of documents in training dataset was 87. In the next quarter 129 documents

were taken, and in the third quarter the number of documents in the training dataset

was 111. In fourth and fifth quarters the datasets were 119 and 76 documents

respectively. And testing of classifier is done with 372 documents. The test dataset

is build from 5 timestamps and 6 categories that evolve over time while training

model is build. The number of test documents for first quarter was 53. In the next

quarters, the number of test documents were 66, 99, 86, 68. The training and testing

documents are selected randomly from all the 3 months in a quarter.

To evaluate the performance of k-means clustering algorithm used in our work,

entropy based cluster validity measure is adopted.

1 	2 	3 	4 	5 	6

Number of Partitions (k)

Figure 5.1: Entropy weighted sum on timestamp4 dataset

37

100

90

80

70

60

50

40

30

20

10

The entropy is calculated using Eq. (16). The entropy weighted sum E is defined in

Eq. (17). The entropy weighted sum of the k-means clustering algorithm is shown in

Figure 5.1.

The classifier is validated by testing the test dataset at all the timestamps. The

accuracy is calculated using Eq. (20).

A static dictionary does not change with time as there is no incremental approach.

The dictionary was created using dataset of first timestamp. The test documents

taken for first timestamps consists of documents from first timestamp. And then in

second timestamp, the test documents consist of documents from second timestamp.

And same is done for third, fourth and fifth timestamps. The accuracy of classifier is

shown in Figure 5.2. It can be seen that the accuracy is highest for the first

timestamp, as the classifier was build using first quarter training dataset.

f---73.58491 71.21212121 	 68.60465116 67.64705882

53.53535354

1
	

2 	3
	n 	5

Timestamp (in quarters)

Figure 5.2: Classification Accuracy with static dictionary'

In the incremental approach the training model gains new information over time. The

test documents are taken in the same way as taken in case of static dictionary. The

model is tested at each timestamp and the accuracy of classifier is calculated. The

m

terms in the dictionary are of equal weights. The accuracy of classifier is shown in

Figure 5.3. It can be seen that the accuracy increases in incremental approach.

	

100.00 	 -

90.00

80.00 73.58491 71.2121212174.74747475

70.00

60.00

	

50.00 	-

40.00

30.00

	

20.00 	-

10.00

0.00

81.39535 82.35294-

1 	2 	3
	

5

T imesta mp (in quarters)

Figure 5.3: Classification Accuracy with dynamic dictionary

Another result can be shown with classification accuracy for classifier having

dynamic dictionary and terms with different weights in dictionary, more recent terms

are given more weights. The classification accuracy is shown in Figure 5.4.

100

90

80

70

60

50

40

30

20

10

0

83.72093023 85.29412

73.58491 74.24242424 76.76767676 	-

1 	2 	3 	4 	5

Tiniestamp (in quarters)

Figure 5.4: Classification Accuracy with weighted terms in dynamic dictionary

39

It can be seen that the classification accuracy increases with each timestamp. For

each timestamp, the classification accuracy is lowest in case of static dictionary and is

higher in case of dynamic dictionary.

In case with dictionary having different weights for terms the classification accuracy

is higher in comparison to dictionary with equal weighted terms for each timestamp.

The term weights are chosen using a linear function. The most recent terms have unit

weight and other term's weights decreases linearly using Eq. (21).

Win = ((100-nD);100) Wt r , 	 n=1,2,3... 	 (21)
where Wtr is the weight of most recent quarter terms, and Wt„ is weigth of terms in
previous quarter. The just previous quarter has n= 1, and n increases with the quarter

having older timestamp. D is the percentage decreasing rate like 5, 10, 20, 25, etc.

Figure 5.5 shows the classification accuracy at 5 timestamps. The 3 results are for the

linear decrease of 5%, 10% and 15% in the term weights represented by blue, red and

green colors respectively. As D =10 has the highest accuracy, so it is chosen for the

function shown in Eq. (21).

90

85

80

75 	- 	-

70 	--

65

60 	-

1 2 	 3
	

El
	

5

Timestamp (in quarters)

Figure 5.5: Linear Decrement of Term Weights by 5%, 10% and 15%

.N

5.2 Analysis

The incremental approach text classification gives better results in comparison to text

classification algorithm without increments. As time passes the information gained

from classifier gives better classification accuracy. The cost of building the

incremental text classifier will be more in comparison to classifier without increments

but the greater accuracy is achieved in incremental approach. In case of classifier

build on all the timestamp documents, the accuracy would be highest but the cost of

training such a model will also be highest due to high dimensionality.

It is also seen that more weights to more recent terms in the dictionary gives better

results than the dictionary with equal weights to all terms. Irrelevant terms get less

weight in the dictionary of different weights and so the accuracy is higher in such

case.

M

CHAPTER 6

CONCLUSION

6.1 Conclusion

Text documents are obtained from various sources like businesses, research,

government and other organizations, as they store data in digital form. Classification

is a supervised approach used to assign class labels to unseen data. When

classification techniques are applied to text documents, then this process is known as

text classification. Many applications use the data that keeps getting generated over

time. For such applications, the traditional text classification methods may be

incapable to deal with. Therefore, incremental approaches for text classification are

required in these circumstances. One such application is the sports news documents

which keep getting generated over time.

We focus our attention on incremental approach for text classification. First the text

documents are preprocessed before applying classification techniques to them. While

preprocessing, stopwords are removed and stemming of words are done. The porter's

stemming analyzer has been used for the purpose of stemming words. After

preprocessing, the documents are converted into vectors on the basis of term

frequencies and inverse document frequencies. K-means clustering is applied to the

training dataset, to obtain the class labels. The clustering also results into extraction

of relevant terms for the dictionary. With each increment, new terms get added to the

dictionary. The newly added terms are.assigned unit weights whereas the weight for

the terms in the dictionary is reduced linearly. This process continues as more and

more data keeps getting generated. The idea of weights is used to show the

incremental evolution of dictionary. As time passes, very old terms are removed

from the dictionary as they get zero weights. We have applied our algorithm on real

case data collected from Google sports news collected over fixed interval of 1 month

and the increments are done quarterly. The proposed work has been verified on the

42

dataset as shown in the results and this work can also be used in other applications

like e-mails.

6.2 Suggestions for further work

In our proposed work, we had used words as features. The semantic relation of words

is not considered and we will use them in extension of the work.

Feature Clustering for dimension reduction can be applied along with the documents

clustering for dimension reduction.

We can apply this approach on different applications and check whether it is useful

for improving the classification accuracy in those applications.

This approach can be applied to applications in which abrupt changes occur. For

handling abrupt and sudden changes, some enhancements in the algorithm needs to be

done.

43

REFERENCES

[1] J. Han and M. Kamber, "Data mining: concepts and techniques," Second
Edition, Elsevier Inc., 2006, pp. 614-628.

[2] R. Feldman and J. Sanger, "Text mining hand book, advanced approaches in
analyzing unstructured data," Cambridge University Press, 2007, pp. 13-15.

[3] .I. S. Dhillon, J. Fan and Y. Guan, "Efficient clustering of very large document
collections," In V. Kumar and C. Kamath and R. Grossman, Data mining for
scientific and engineering applications, Dordrecht; Boston, 2001, pp. 1-25.

[4] Z. Chen, L. Huang and Y. L. Murphey, "Incremental learning for text document

classification," Proc. of International Joint Conference on Neural Networks

(IJCNN 2007), Orlando, Florida, USA, August 12-17, 2007, pp. 2592-2597.

[5] Z. Yun-tao, G. Ling and W. Yong-cheng, "An improved TF-IDF approach for

text classification," Journal of Zhejiang University Science, Vol. 6A, No. 1,
August 2005, pp. 49-55.

[6] J. Cai and F. Song, "Maximum entropy modeling with feature selection for text

categorization," 4th Asia Information Retrieval Symposium (AIRS 2008),

Harbin, China, Vol. 4993, January 15-18, 2008, pp. 549-554.

[7] S. Yin, Y. Qiu and J. Ge, "Research and realization of text mining algorithm on

web," Proc. of International Conference on Computational Intelligence and
Security Workshops 2007 (CISW 2007), 15-19 Dec. 2007, pp. 413-416.

[8] J. Y. Jiang, J. W. Chen and S. J. Lee, "A clustering scheme for large high=
dimensional document datasets," Proc. of Advances in Computation and
Intelligence, Second International Symposium (ISICA 2007), Wuhan, China,
Vol. 4683, September 21-23, 2007, pp. 511-519.

[9] X. Huang, M. Wu, D. Xia and P. Yan, "Difference similitude matrix in text
classification," Proc. International conference on Fuzzy systems and knowledge
discovery, Changsha, CHINA, Vol. 3614, 2005, pp. 21-30.

[10] S. Yin, G. Wang, Y. Qiu and W. Zhang, "Research and implement of
classification 	algorithm on web text mining," Proc. Third International
Conference on Semantics, Knowledge and Grid, 29-31 Oct. 2007, pp. 446-449.

[I1] L. W. Lee and S. M. Chen, "New methods for text categorization based on a

new feature selection method and a new similarity measure beiween
documents," Proc. of the 19th International Conference on Industrial,

Engineering, and Other Applications of Applied Intelligent Systems, Annecy,
France, Vol. 4031, June 2006, pp. 432-441.

[12] I. S. Dhillon and D. S. Modha, "Concept decompositions for large sparse text

data using clustering," Machine Learning, Vol. V42, No. 1, 1 January 2001, pp.

143-175.

[13] 1. Dhillon, J. Kogan, C. Nicholas, "Feature selection and document clustering,"

Survey of Text Mining 2004, pp. 73-100.

[14] M. F. Porter, "An algorithm for suffix stripping," Program, 14(3), 1980, pp.

130-137.

[15] A. Kyriakopoulou, "Text classification aided by clustering: a literature review,"

I-Tech Education and Publishing KG, Vienna, Austria, 2008, pp. 233-252.

[16] A. Kyriakopoulou, T. Kalamboukis, "Text classification using clustering,"

Proc. of ECML-PKDD Discovery Challenge Workshop (2006), Berlin,

Germany, September 22, 2006,

[17] N. Slonim, N. Tishby, "The power of word clusters for text classification,"
Proc. of 23rd European Colloquium on Information Retrieval Research,
Darmstadt (ECIR-01), 2001, pp. 1-12.

[18] Z. Minier, L. Csat'o, "Kernel PCA based clustering for inducing features in text
categorization," Proc. of European Symposium on Artificial Neural Networks,
Bruges, Belgium, April 25-27, 2007, pp. 349-354.

[19] F. Sebastiani, "Text categorization," WIT Press, Southampton, UK, 2005, pp.
1 09-129.

[20] P.N. Tan, M. Steinbach, V. Kumar, "Introduction to data mining," 2007,
pp.50-55..

[21] http://www.news.goog1e.com [accessed on 30 May, 2009].

[22] http://sourceforge.net/projects/jtextpro/ [accessed on 1 May, 2009].

[23] http:/ltartarus.org/martin/PorterStemmer/iava.txt [accessed on I May 2009].

APPENDIX: SOURCE CODE LISTING

TextClassifier..java

import java.io.IOException;
/*
* The Text classifier class is to build the classification module
*/
public class TextClassifier {

public static void main(String[] args)throws IOException {

//Original Input Training Document list
String TrainDocFile I = "TrainingDocs I .txt";

//Training Document list consisting TFIDF
String TermFregFile 1 = "TermFrequencyDocs l .txt";

//Document with all the unique terms with their IDs and IDF
String GlobalFileI = "GlobalTermsl.txt";

//File containing all the centroids of a cluster
String CentroidOfClusters 1 = "Centroi dOfClusters I .txt";

//File conataining category characteristics vectors
String CatCharVectl = "CategoryCharVectorl.txt";

//Total number of documents to be trained in each increment
_int NumTrainingDocsl = 76;

String[] docListl = new String[NurnTrainingDocs 1];
String[] TerinFregDocList1 = new String[NumTrainingDocs 1];

ReadFromFile rf = new ReadFromFile();
try{

docListl = rf.ReadFromFl(TrainDocFilel, NumTrainingDocs1);
TermFreqDocListl= rf.ReadFromFl(TermFregFilel,NumTrainingDocs 1);

} catch (IOException e) {
System.out.println("Cannot read File");

//POS Tagging is done to convert the documents in tagged form
Tagger tg = new Tagger();
tg.main(};

//Preprocess the documents before clustering
PreprocessData ppd = new PreprocessData();

47

ppd. Convertlnto Unique Terms(docList 1,TermFregDocList 1,GlobalFile 1);

int[][] centroidl I = 	{ 	 //football
{1,3},
{215,3},

. {300,3},
{613,3},

int[][] centroid12 = 	{ 	 //cricket
{1979,3},
11989,31,
{ 1996,3 },
{2014,3},

int[][] centroid10 = 	{ 	 //blank centroid
{4,0},
{4,0},
{4,0},
{4,0},

//Cluster the documents on the basis of their Term's TFIDF to find the terms for
//categorization
Clustering c1= new ClusteringQ;
cl.main(TermFregDocListl ,GlobalFile 1,centroid l 1,centroid 12,centroid l 0,cerltro
id I O,centroid I O,centroid 10,CentroidOfClusers 1,CatCharVect 1,6);

PreprocessData. j ava

import java.io.File;
import java.io.IOException;
/*
* This class remove stopwords, stem words and convert documents into words
*/

public class PreprocessData {

public PreprocessData(){}

public static void ConvertIntoUniqueTerms(String[] DocLi st 1 ,String[]
StemDocListl ,String GlobalFilel)

CreateStopWordsDic cswd I = new CreateStopWordsDic();
Porter p = new Porter();
WriteToFile wtf = new WriteToFileO;

String StopWordsFilel = new String("StopWordsDicl .txt");
String StopWordsFileNewl = new String("NEWStopWordsDicl.txt");

String[] TagdocListl = new String[StemDocList1.length];

//Read documents to be tagged
ReadFromFile rf = new ReadFromFile();
try {

TagdocList] = rf.ReadFromFl("FromTaggerI .txt", StemDocList 1. length);
} catch (IOException e) {

System. out. println(" Cannot read File");

//creating dictionary of stop words
cswd l .main(TagdocListl,StopWordsFile 1);

//creating new stemmed dictionary of stop words(MANNUAL CHANGES ARE
//REQUIRED)
String StemmedStopWordsl = p.StemmedDoc(StopWordsFile I);
String[] StopWordsstrl = StemmedStopWordsl.split(" ", -1);
String[] dictionary] = new String[StopWordsstr1.length];
StringBuffer strl = new StringBuffer(");

for(int j=0; j<StopWordsstr1.length;j++)
dictionaryl [j] = "0";

for(int j=0;j<StopWordsstrl .length;j++)
for(int i=0 ;i<Stop Wordsstr 1. length; i++)

if(StopWordsstrl [j].length()<3)
break;

if(StopWordsstrl 0]. equalslgnoreCase(dictionaryl [i]))
break;

if(dictionaryl [i].equals("0"))

dictionary) [i]=StopWordsstrl [j];
str 1. append(dictionary 1 [i]);
strl.append(" ");
break;

StemmedStop Words I = strl .toString();
File flu = new File(StopWordsFileNew1);
boolean exists I = fl] .existsO;
if(existsl == true)

fl 1.deleteQ;
wtf.WriteToFl(StopWordsFileNewl, StemmedStopWordsl);

String[] StemedDocl = new String[StemDocListl.length];

int i=0;
int NumTrainingDocs 1 = DocList l .length;

for(i=0;i<NumTrainingDocs l ;i++)

//System. out. print(" IPdoc "+ DocListl [i]+" OPdoc " +StemDocListl [i]);
StemedDocl [i] = p.StemmedDoc(DocListl [i]);

}
ConvertDoclntoTerms cdtl = new ConvertDoclntoTerms();
cdtl .main(StemedDoc 1 ,StemDocListl ,GlobalFile I,Stop WordsFileNew 1);

CreateStopWordsDic. iava

import java.io.BufferedReader;
import java.io.File;
import java.io.FileNotFoundException;
import java.io.FileReader;
import java.io.IOException;
/*
* The class is used to convert documents into words
*/

public class CreateStopWordsDic {

int DicSize=3000;
String zero;
String[] dictionaryl = new String[DicSize];

public CreateStopWordsDic()
{

zero = "0";
for(int i = 0; i<DicSize; i++)

dictionary 1 [i] = "0";

public void PrintAndWriteDictionary(String StopWordsFile)
{

System. out. println("Dictionary");
for(int i=0;i<DicSize;i++)

if(dictionaryl [i].equals(zero))

System. out.println("TotalTerms = "+ i);
break;

}
else

System.out.println(" 	" + dictionary I [i]);

//writing to a file
StringBuffer sbuf = new StringBuffer(");
String str = "";

50

for(int 1=0; 1<DicSize; 1++)
{

if(dictionary I [1J.equals(zero))
break;

sbuf.append(dictionary1 [1]);
sbuf.append(" U);

}
str = sbuf.toString();
WriteToFile wf = new WriteToFile();
File flu = new File(StopWordsFile);
boolean exists 1 = fl l .exists();
if(existsl == true)

flu .delete();

wf.WriteToFl(StopWordsFile, str);
System.out.println("Dictionay of stop Words created");

}

public void getTerms(String FileName)
{

String readf = ";
String SplitWords = "
String splitWords2 = "[I]";
File filel = new File(FileName);
FileReader frd = null;

try
{

frd = new FileReader(filel);
BufferedReader bfrd = new BufferedReader(frd);
try
{

while ((readf= bfrd.readLine())!= null)
{

String[] strr = readf.split(SplitWords, -1);

for(int i=0;i<strr.length;i++)
{

String temp =
if(strr[O] . isEmpty())

break;
if(strr[i].contains("NNP"))
{

String[] St = strr[i].split(splitWords2, -I);
temp = st[0];

}
else

continue;
for(int j=0;j<DicSize;j++)
{

51

if(temp. equalslgnoreCase(dictionary1 [j]))
break;

if(dictionary1 [j].equals(zero))

dictionary) [j]=temp;
break;

catch (IOException e)

System. out. println("\nSorry, an IOException occurred.
Returning intermediate matrix.");

e.printStackTrace();
}

catch (FileNotFoundException e)

System. out.println("\nSorry, file not found. Returning intermediate
matrix.");

e. pri ntStackTrace();

public static void main(String[] ListOfDocs, String StopWordsFile)
{

CreateStopWordsDic c = new CreateStopWordsDic();
for(int i=0;i<ListOfDocs.length;i++)

c.getTerms(ListOfDocs[i]);

c.PrintAndWriteDictionary(StopWordsFile);

ConvertDocIn toTerms. i ava

import java.io.BufferedReader;
import java.io.File;
import java.io.FileNotFoundException;
import java.io.FileReader;
import java.io.IOException;

public class ConvertDoclntoTerms {

int VectorSize=1000;
String zero;
String[] Local Vector = new String[VectorSize];
int[] TermsFreq = new int[VectorSize];

52

public void Initialize()
{

zero = "0";
for(int i = 0; i<VectorSize; i++)

LocalVector[i] = zero;
TermsFreq[i] = 0;

public void printDictionary()
{

System. out.println("Term Frequency");
for(int i=0;i<VectorSize;i++)
{

if(Local Vector[i] .equals(zero))

System. out.println("TotalTerms = "+ i);
break;

else
System. out.println(LocalVector[i] + " " + TermsFreq[i]);

public String getTermNFreq(String SternmedFileData, String[] StopWords2)
{

Initialize();
String SplitWords = "[!]*[!]*[,]*[,]*[]*[]*[-]*[-]*[1'!]*[\°]*[;]*[;]*[\']*[\'

]*[:]*[]*[/]*[/]*[(]*[(]*D]*[)]*[J*L]";
String[] StopWords = 	{

"almost", "also","among", "awai ", "and", "any",
"although","are","anoth","an i ","anyth","al wai",
"becaus" "but" "been" "becom" "becam"
"sundai" "mondai" "tuesdai" "wednesdai"
"j anuari","februari", "j un","j u l i ","mai", "sept",

Boolean AStopWord = false;
int i= 0,j=0;
String[] strr = StemmedFileData.split(SplitWords, -1);
for(i=0;i<strr.length;i++)

if(strr[0].isEmpty())
break;

AStopWord = false;
for(j=0;j<StopWords. length ;j++)

if(strr[i]. equalslgnoreCase(Stop Words[j]))
AStopWord = true;

53

for(j=0;j <Stop Words2. length ;j++)
{

if(strr[i}.equalsIgnoreCase(Stop Words2 [j}))
AStopWord = true;

}

if(strr[i] . lengthO<3 J J strr[i] .1 engthO>20)
AStopWord =true;

ford=0; j <VectorS ize;j++)
{

if(AStopWord.equals(true))
break;

if(strr[i].equalsIgnoreCase(LocalVector[j1))
{

TermsFreq[j]++;
break;

}

if(Local Vector[j].equals(zero))
{

Local Vector[j}=strr[i];
TermsFreq[j]++;
break;

}
}

StringBuffer sbuf = new StringBuffer("")•
String str =
for(int 1=0; 1<VectorSize; l++)
{

if(Local Vector[]]. equal s(zero))
break;

sbuf. append(Local Vector[1]);
sbuf.append(" ");
sbuf.append(TermsFreq [l]);
sbuf.append(" ");

}
str = sbuf.toString();
return str;

public static void main(String[] StemmedDoc, String[] TermFreqDocs, String
GlobalTermsFile, String StopWordsFile)

{
WriteToFile wf = new WriteToFile();

ReadFromFile rfl 1 = new ReadFromFile();
String[] Readf = new String[1];
try {

Readf = rfl 1.ReadFromF1(StopWordsFile, 1);
} catch (IOException e) {

System.out.println("Cannot Read File" + StopWordsFile);
}
String[] StopWords2 = Readf[O].split(" ", -1);

int i=0;
//creating a global vector
String zero = "0";
int GlobalVectorSize = 10000;
String[] Global Vector = new String[GlobalVectorSize];
//The presence of term in all documents
int[] TermOccurs = new int[GlobalVectorSize];

for(i =0; i<GlobalVectorSize; i++)
{

GlobalVector[i] = zero;
TermOccurs[i] = 0;

}
//converting documents into unique terms with their respective frequencies
ConvertDoclntoTerms c = new ConvertDocIntoTermsO;
String splitpattern = " ";
int TotalDocs = StemmedDoc.length;
double[] IDF = new double[GlobalVectorSize];

for(int 1=0;1<StemmedDoc. length; l++)
{

String TermNFreq = c.getTermNFreq(StemmedDoc[l], StopWords2);
String[] Terms = TermNFreq.split(splitpattern);

for(i=0; i<Terms. length; i=i+2)
{

for(int j=0;j<GlobalVectorSize;j++)
{

if(GlobalVector[j].equals(zero)) 	V

{
Global Vector[j]=Terms[i];
TermOccursU]++;
Terms[i] = Integer.toString(j);
break;

}
if(Terms[i].equals(Global Vector[j]))
{

TermOccurs o]++;
Terms[i] = Integer.toString(j);
break;

55

//Sorting the terms on the basis of their Ids in global vector
String temp ="";
for(i=0; i<Terms. length; i=i+2)

for(int j=i+2;j<Terms.Iength;j j+2)
{

if(Integer. parselnt(Terms[i])>Integer.parselnt(Terms[j]))
{

temp = Terms[i];
Terms[i] = Terms[j];
Terms [j]=temp;
temp = Terms[i+1];
Terms[i±1] = Terms[j+1];
Terms[]+1] = temp;

StringBuffer sb = new StringBuffer(");
String sss = "";
System. out.println("no. of terms in doc " + I + " is: " + Terms.length);

for(i=0;i<Terms.length;i=i+2)
{

sb. append(Terms [i]);
sb.append(" ");
sb.append(Terms[i+1]);
sb.append(" ");

}
sss = sb.toStringO;

File flu = new File(TermFregDocs[l]);
boolean existsl = fll.exists();
if(existsl = true)

fl 1.delete();

wf. WriteToFl(TermFregDocs[1], sss);

//System.out.println("I is = " + 1 +"OPDoc" + TermFregDocs[l]);

StringBuffer sbuff = new StringBuffer(" ");
String globalstr =

Pitt;

int j=0;
for(i=0;i<GlobalVectorSize;i++)

if(GlobalVector[i].equals(zero))
{

56

System. out.println('total unique terms are " + (i-1));
break;

if(TermOccurs[i]==0)
IDF[i]=0.0;

else
IDF[i] = Math.log((]+TotalDocs)/(double)TermOccurs[i]);

if(TermOccurs [i]>Math.round(TotalDocs*.02))

System. out.println(j++ +" Term "+ Global Vector[i]+ " Freq " +
TermOccurs[i] +" IDF " + IDF[i]);

sbuff.append(i);
sbuff.append(" ");
sbuff.append(GlobalVector[i]);
sbuff.append(" ");
sbuf£append(IDF[i]);
sbuff.append(" ");

globalstr = sbuff.toString();
File fl2 = new File(GlobalTermsFile);
boolean exists2 = fl2.exists();
if(exists2 == true)

fl2.delete();

wf. WriteToFl(GlobalTermsFi le, globalstr);

WriteToFile. iava

import java.io.BufferedWriter;
import java.io.File;
import java.io.FileWriter;
import java.io.IOException;

public class WriteToFile {
public void WriteToFl(String FileName, String data)
{

File filel = new File(FileName);

try

boolean DoesExist = file l .exists();
if(DoesExist == false)

boolean success = filel.createNewFile();

57

//if(success)
//System. out.println("\nCreating new file \" + FileName +
//I'\..

.........Done.");

catch (IOException e)

System. out. println("\nSorry, an IOException occurred.
Returning.");

e.printStackTrace();
return;

FileWriter fwrl = null;
try
{

fwrl = new FileWriter(filel, true);
BufferedWriter BufWr = new BufferedWriter(fwrl);
BufWr.write(data);
BufWr.closeO;

} 	catch (IOException e)

System. err. println("\nSorry, an IOException occurred.
Returning.");
e. printStackTrac e();
return;

ReadFromFile. lava

import java.io.BufferedReader;
import java.io.File;
import java.io.FileReader;
import java.io.IOException;

public class ReadFromFile {
public String[] ReadFromF1(String Filename, int StringLength)throws IOException
{

String readf = ";
File filel = new File(Filename);
FileReader frd = new FileReader(filel);
BufferedReader bfrd = new BufferedReader(frd);

String[] ss = new String[StringLength];
int i=0;
while ((readf = bfrd. readLine())!= null)

ss[i] = readf.toString();

H 	;

return ss;

Tagger. lava

import jtextpro.*;
/*
* The Tagger is used to tag all the documents like seperating nouns, verbs,.. etc.
*/

public class Tagger {

public static void main() {

String[] argsl = {"models", "JUN08_AUG08_BOXING/trl.txt"};
JTextProcessor.main(args 1);

Clustering.iava

import java.io.BufferedReader;
import java.io.File;
import java. io. FileReader;
import java.io.IOException;
import java.utiI.HashMap;

public class Clustering {
//It contains centroid and TFIDF of all documents
HashMap<String, Double> map = new HashMap<String, Double>();
//It contains the Term IDs and IDF
HashMap<Integer, Double> global_map = new HashMap<lnteger, Double>();
//It contains the Term IDs and Terms
HashMap<Integer, String> global_ Terms_ map = new HashMap<Integer, String>();
HashMap<String, Double> Char_Vector_map = new HashMap<String, Double>(;
int Total Vectors = 0;

public int[] ReadGlobalFile(String GlobalTermsFile)throws IOException
{

int i=0,j=0;
String readf = ";
String SplitPattern = " ";
File filel = new File(GlobalTermsFile);
FileReader frd = new FileReader(filel);
BufferedReader bfrd = new BufferedReader(frd);
readf = bfrd.readLineQ;
String[] ss = readfsplit(SplitPattern, -1);
int TotalTerms=ss.length/3;

59

int[] TermIDs = new int[TotalTerms];

j=0;
fo r(i=0; i<s s.l ength-2; i=i+3)

Integer vail = Integer.parselnt(ss[i]);
String val2 = ss[i+l];
Double val3 = Doubl e.parseDouble(ss[i+2]);
TermIDs[j] =va11;
global_map.put(new Integer(val l), new Double(val3));
global_Terms_map. put(n ew Integer(val1), new String(va]2));
j++;

return. TermlDs;

public int[] ReadTFFile(String TFFileName)throws IOException
{

String readf = ""•
String SplitPattern ="
File filel = new File(TFFi]eName);
FileReader frd = new FileReader(filel);
BufferedReader bfrd = new BufferedReader(frd);
readf = bfrd.readLineO;
String[]. ss = readf.split(SplitPattern, -1);
int[] sss = new int[ss.length];
for(int. i=0;i<ss. length- I ;i++)

sss[i] = Integer.parselnt(ss[i]);
return sss;

public void CalculateTFIDF(String[] TFDocs, int[] TermlDs, int[][] centroid1, int[][]
centroid2, int[][] centroid3, int[][] centroid4,int[][] centroid5,int[][II
centroid6,int NoOfCl usters)th rows JOException

int i=0,j=0,row=0;
double Tfldf = 0.0;

System. out.println("centroid I ");
for(j=0;j<4;j++)

for(i=0;i<TermIDs.length;i++)
if(centroidl [j][0]==TermlDs[i])

Double k = global_map.get(TermlDs[i]);
Tfldf = centroid1 [j][1]*k.doubleValue();
map.put(row+"_"+TermlDs[i], new Double(Tfldf));
System.out.println("map = "+ row + "" + TermlDs[i] ±":"

+ map.get(row+"_"+TermlDs[i]));
break;

•1

map.put(row+"_cat", new Double(" 1"));
row++;

int[] [] TFvector = new int[TFDocs.length] [];
for(i=0;i<TFDocs.length;i++) //each document in the training set
{

TFvector[i] = ReadTFFile(TFDocs[i]);
row++;

for(j=0;j<TFvector[i].length-1;j j+2) //each term in the document
{ 	//each term present in the global vector

for(int 1=0;1<TermlDs.length;]++)

if(TFvector[i] [j]=--TermIDs[l])

Double k = global_map.get(TFvector[i][j]);
Tfldf = TFvector[i][j+l]*k.doubleValue();
map.put(row+"_"+TFvector[i] [j], new

Double(Tfldf));
break;

}
map. put(row+"_cat", new Double("O"));

}
Total Vectors = row;

public void CreateClusters(int[] TermlDs, String CentroidOfClusters, int
NoOfClusters)

WriteToFile wfl = new WriteToFileO;

boolean ClusterAgain = true; //checking whether next iteration needed or not
double numerator1=0, numerator2=0, numerator3=0, numerator4=0,

numerator5=0, numerator6=0;
double denominator1=0, denominator2=0, denominator3=0, denominator4=0,

denominator5=0, denominator6=0, denominator?=0;
double CosSiml=O, CosSim2=0, CosSim3=0, CosSim4=0, CosSim5=0,

CosSim6=0;
double Cat = 0;
int loopcounter=1;

while(ClusterAgain == true)

System. out.println("counter = "+ loopcounter);
ClusterAgain = false;
for(int row=NoOfClusters;row<TotaIVectors+l ;row++)

61

numeratorl =0 ;numerator2=0; numerator3 =0; numerator4=0;
numerator5=0; numerator6=0;
denominator I =0;denominator2=0;denominator3=0;denominator4=
0;denominator5=0;den ominator6=0;denominator7=0;

System.out.println("The row is " + (row-NoOfClusters) +" cat ='
+ map.get(row+"_cat"));

for(int col=O; col<TermlDs.length;col++)
{

Double dl = map. get(row+"_"+TermlDs[col]);
Double catl = map. get(0+"_"+TermIDs[col]);
if(dl !=null)

denominatorl = denominatorl +
(dl. doubleValueO* dl.doubleValue());

if(catl !=null) .
denominator2 =denominator2 +

(cat] .doubleValue()*cat 1.doubleValue());
if(d 1==null)

continue;
if(catl ==null)

continue;
//System. out.println("TermIDs = "+ TermlDs[col]);
numerator1 = numerator] +

dl .doubieValueQ*cat l .doubleValue();
}
for(int col=0; col<TermIDs.length;col++)
{

Double d2 = map.get(row+'~_"+TermIDs[col]);
Double cat2 = map.get(I+"_"+TermIDs[col]);
if(cat2!=null)

denominator3 =denominator3 +
(cat2.doubleValueO*cat2.doubleValueO);

if(d2==null)
continue;

if(cat2 =null)
continue;

//System, out. println("TermlDs = "+ TermlDs[col]);
numerator2 = numerator2 +

d2.doubleValueO*cat2.doubleValueO;
}
for(int col=0; col<TermlDs.Iength;col++)
{

Double d3 = map.get(row+"_"+Term IDs [col]);
Double cat3 = map.get(2+"_"+TermlDs[col]);
if(cat3 !=null).

denominator4 =denominator4 +
(cat3.doubleValue()* cat3 .doubleValue());

if(d3==nul1)
continue;

if(cat3 ==null)

62

continue;
//System. out. println("TermlDs = "+ TermlDs[col]);
numerator3 = numerator3 +

d3.doubleValueO*cat3.doubleValueO;
}
for(int col=0; col <TermlDs.length;col++)
{

Double d4 = map.get(row+"_"+TermlDs[col]);
Double cat4 = map.get(3+"_"+TermIDs[col]);
if(cat4 ! =null)

denominator5 =denominator5 +
(cat4.doubleValueO*cat4.doubleValueO);

if(d4==null)
continue;

if(cat4 ==null)
continue;

//System.out.println("TermlDs = "+ TermlDs[col]);
numerator4 = numerator4 +

d4.doubleValue()* cat4.doubleValue();
}
for(int col=0; col<TermlDs.length;col++)
{

Double d5 = map.get(row+"_"+Term IDs [col]);
Double cat5 = map. get(4+"_"+TermlDs[col]);
if(cat5!=null)

denominator6 =denominator6 +
(cat5.doubleValueO*cat5.doubleValueO);

if(d5==null)
continue;

if(cat5 ==null)
continue;

//System.out.println("TermIDs = "+ TermiDs[col]);
numerator5 = numerator5 +

d5. doubleValue() * cat5. doubleValue();
}
for(int col==O; col<I'ermlDs.length;col++)
{

Double d6 = map.get(row+"_"+TermlDs[col]);
Double cat6 = map.get(5+"_"+TermlDs[col]);
if(cat6!=null)

denominator7 =denominator? +
(cat6.doubleValue()*cat6.doubleValue());

if(d6==null)
continue;

if(cat6 ==null)
continue;

numerator6 = numerator6 +
d6.doubleValueO*cat6.doubleValueO;

}
CosSim l = numerator] / (Math.sgrt(denominatorl)*

63

Math.sgrt(denomi nato r2));
double MaxCosSim = 0.0;
double ThreshLimit = 0.0;
Cat =0;
if(CosSim 1 >MaxCosSim&&CosSim I>ThreshLimit)
{

MaxCosSim = CosSiml;
Cat = 1;

}

Double category = map.get(row+"_cat");
if(category. doubleValue() !=Cat)
{

ClusterAgain = true;
map.remove(row+"_cat");
map.put(row+"_cat", new Double(Cat));

}
}
//calculate centroids
double centroidl =0;
double num 1=0, den 1=0;

for(int col=0;col<TermlDs.length;col++)
{

num I = 0;den 1=0;
for(int row =NoOfClusters; row<TotalVectors+];row++)
{

Double category = map.get(row+"_cat");
Double dl = map.get(row+"_"+Term IDs [col]);

if(category.doubleValueO =1)
{

if(d I =nulll)
continue;

numl = numl + dl.doubleValue();
denl = denl + (dl.doubleValueO*dl.doubleValueO);

}
}
if(den 1 == 0)

centroid 1 = 0;
else

centroid 1 = num 1 /(Math.sgrt(den 1));

map.remove("0 "+TermlDs[col]);
map.remove(" 1 ̂_" +Term IDs [col]);
map. remove("2_" +Term IDs [coil);
map.remove("3 "+TermIDs[coi]);
map.remove("4_ "+TermlDs[col]);
map. remove(".5_" +Term IDs [coil);

if(centroid l !=0.01 Icentroid2!=0.01Icentroid3 !=0.01 Icentroid4!=0.0Ilce
ntroid5 !=O.011centroid6!=0.0)
{

if(centroid 1>centroid2&¢roid I >centroid3&¢roid I
>centroid4&¢roid I >centroid5&¢roid I >centroid6)

map.put("0_"+TermIDs[col], new
Double(centroid 1));

elseif(centroid2>centroid3&¢roid2>centroid4&¢ro
•id2>centroid5&¢roid2>centroid6)

map.put(" 1 _"+TermIDs[coI], new
Double(centroid2));

elseif(centroid3>centroid4&¢roid3>centroid5&¢ro
id3>centroid6)

map.put("2_"+TermIDs[col], new
Double(centroid3));

else if(centroid4>centroid5&¢roid4>centroid6)
map.put("3_"+TermlDs[col], new

Double(centroid4));
else if(centroid5>centroid6)

map.put("4_"+TermIDs[col], new
Double(centroid5));

else
map.put("5_"+TermlDs[col], new

Double(centroid6));
}

}
loopcounter++;
}

boolean[] CentroidsExist = new boolean[NoOfClusters];

for(int row =0; row<NoOfClusters;row++)
{

CentroidsExist[row] = false;
for(int col=0;col<TermlDs.length;col++)
{

Double dl = map.get(row+"_"+Term IDs [col]);
if(dl != null)
{

CentroidsExist[row] = true;
break;

}
}

}

StringBuffer sbufl = new StringBuffer(");
String ss =

for(int row =0; row<NoOfClusters; row++)

C

if(CentroidsExist[row] = false)
continue;

for(int col=0;col<TermlDs.length;col++)
{

Double ddl = map.get(row+°_"+TermlDs[col]);
String ssl = global_Terms map.get(TermIDs[col]);

if(ddl = null)
continue;

else
{

sbufl .append(ss 1);
sbufl.append(" ");
sbufl .append(dd 1);
sbufl.append(" ");

}
sbufl .append("\n");

}
File ill = new File(CentroidOfClusters);
boolean exists I = fl l .exists();
if(existsl == true)

fl l .deleteO;

ss = sbufl .toString();
wfl . WriteToFl(CentroidOfClusters, ss);

public static void main(String[] TFDocs, String GlobalTermsDoc, int[][] centroid1,
int[][] centroid2, int[][] centroid3, int[][] centroid4,int[][]
centroid5,int[][] centroid6,String CentroidOfCIusters, String
CatCharVect, int NoOfCl usters)th rows IOException

Clustering cl = new ClusteringO;
int[] TermIDs = cl.ReadGlobalFile(GlobalTermsDoc);

cl. Calcul ateTFIDF(TFDocs, TermlDs,centroid 1, centroid2,centroid3,centroid4,centroid
5,centroid6,NoOfClusters);

cl.CreateClusters(TermlDs,CentroidOfClusters,NoOfClusters);

TestingDocuments. lava

package ReportCode;
import java.io.BufferedReader;
import java.io.File;
import java.io.FileNotFoundException;
import java.io.FileReader;

import j ava.io. IOException;

public class TestingDocument {

int TotalTermslnDic =5000;
int CatVectorSize = 550;
String[][] catvl = new String[CatVectorSize][2];
String[][] catv2 = new String[CatVectorSize][2];
String[][] catv3 = new String[CatVectorSize][2];
String[][] CommonDictionary = new String[TotalTermslnDic][3]; //Terms IDFWts

public TestingDocument()
{

for(int i=0;i<TotalTermsInDic;i++)
for(int j=0;j<3;j++)

CommonDictionary[i][j]
for(int i=0;i<CatVectorSize;i++)

for(int j=0;j<2;j++)

catvl [i][j] = "0";
catv2[i][j] = "0";
catv3[i]o] = "0";

//This function creates dictionary and get category characteristic vectors eith their
//TFIDF not weighted
public void GetDictionary(String CentroidOfClustFile,int TrainingDataSet, String[][]

TermNIDFs)

int i= 0,j=0;
ReadFromFile rfl = new ReadFromFile();
String[] SSI = new String[6]; 	 //reading file content in SS1
String[] vectI = new String[1100];
String[] vect2 = new String[1100];
String[] vect3 = new String[I 100];

String[][] TempCatvl = new String[CatVectorSize][2]; //Training set vector
String[][] TempCatv2 = new String[CatVectorSize][2]; //Training set vector
String[][] TempCatv3 = new String[CatVectorSize][2]; //Training set vector

for(i=0;i<CatVectorSize;i++)
fora=0;j<2;j++)

TempCatvl [i][j] _ "0";
TempCatv2[i][j] = "0";
TempCatv3[i][j] = "0";

for(i=0;i<1100;i++)

Gem

{
vectl [i] = "0";
vect2[i] = "0";
vect3[i] = "0";

int NoOFCategories = 0;
String Wt = I1";

if(TrainingDataSet =5)
{

try {
SS 1 = rfl .ReadFromFI(CentroidOfClustFile, 3);

} catch (IOException e) {
System.out.println("File cannot be read");
e.printStackTraceO;

}

NoOFCategories=3;
vectl = SS1[O].split(" ", -1);
vect2 = SS 1 [l].split(" ", -1);
vect3 = SS I [2].split(" ", -1);

System. out.println("vectl size is "+ vectl .length);
System. out.println("vect2 size is "+ vect2.length);
System. out.println("vect3 size is " + vect3.Iength);

Wt = "0.6";

for(i=0; i<vect 1. length- I ;i=i+2)
{

TempCaty 1 [i/2] [0] = vect 1 [iJ;
TempCatvI [i/2] [1] = vectl [i+1];
for(int k = 0; k<TotalTermsInDic;k++)
{

if(vect 1 [i]. equals IgnoreCase(CommonDictionary[k] [0]))
{

	

	 V
CommonDictionary[k][2] = Wt;
for(int counter-0;counter<TermNIDFs. length; counter++)
{

if(vectl [ii .equalsIgnoreCase(TermNIDFs[counter][0]))
{

CommonDictionary[k][1] _
TermNIDFs[counter][1];

break;
}
else

continue;

}
break;

} 	 -
if(CommonDictionary[k] [0].equals("O"))
{

CommonDictionary[k] [0] = vectl [i];
CommonDictionary[k][2] = Wt;
for(int counter=0;counter<TermNIDFs.length; counter++)
{

if(vectl [i]. equals IgnoreCase(TermN IDFs [counter] 10]))
{

CommonDictionary[k][l] _
TermNIDFs[counter][1];

break;
}
else

continue;
}
break;

}
}

}

if(TrainingDataSet = 5)
{

for(i=0; i<CatVectorSize; i++)
for(j=O;j<2;j++)
{

if(TempCaty l .equals("O"))
break;

else
caty 1 [i][j]=TempCatv I [i][j];

}
for(i=0; i<CatVectorS i ze; i++)

for(j=0;j<2;j++)
{

if(TempCatv2.equals("O"))
break;

else
catv2 [i] [j]=TempCatv2[i] [j];

}
for(i=0; i<CatVectorSize;i++)

for(j=0;j<2;j++)
{

if(TempCatv3 . equals("0"))
break;

else
catv3 [i] [j]=TempCatv3 [i][j];

}

public void PrintDic()
{

int i=0;
System.out.println("dictionary is");
fo r(i=0; i<TotalTerms InD i c; i++)
{

if(CommonDictionary[i] [0]. equals("O"))
break;

I
TotalTermslnDic = i;

public String[] GetDicTermsO
{

String[] DicTerms = new String[TotalTermslnDic];
System. out.println("total terms "± TotalTermsInDic);
for(int i=0;i<TotalTermsInDic;i++)

DicTerms[i] = CommonDictionary[i][0];

return DicTerms;
)

public String[][] GetIDF(String GlobalTermsFile)
{

int i=0,j=0;
String readf = ";
File fuel = new File(GlobaITermsFile);
FileReader frd;
try {

frd = new FileReader(filel);
BufferedReader bfrd = new BufferedReader(frd);
readf = bfrd.readLine();

catch (FileNotFoundException e) {
System.out.println("File not found "± GlobalTermsFile);

catch (IOException e) {
System.out. println(" IOException");

String[] ss = readf.split(" ", -1);
int TotalTerms=ss.length/3;
String[][] TermWithIDFs = new String[TotalTerms][2];

j=0;
for(i=0; i<ss.length-2;i=i+3)

TermWithIDFs[j][0] = ss[i+l];

70

TermWithIDFs[j][1] = ss[i+2];
j++;

}
return TermWithIDFs;

public double[] GetWtTfldfVector(int[] TermFreq)
{

double[] Tfldf = new double[TotalTermsInDic];
for(int i=O;i<TotalTermsInDic;i++)

Tfldf[i] = TermFreq[i]*Double.parseDouble(CommonDictionary[i] [1])
*Double.parseDouble(CommonDictionary[i] [2]);

return Tfldf;

public double CosineSimilarity(double[] WtTfIdfl, int CatVectorNo)
{

int VectorSize = 0;
double numerator 1 =0;
double denominator] =0,denominator2=0;
double CosSim = 0;

String[][] CategoryVector = new String[CatVectorSize][2];
double[] TestDoc = new double[CatVectorSize];
double[] Weight = new double[CatVectorSize];

for(int i=0;i<CatVectorSize;i++)
for(int j=0;j<2;j++)

if(CatVectorNo == 1)
CategoryVector[i] []= catv 1 [i] [j];

else if(CatVectorNo = 2)
CategoryVector[i][j]= catv2[i][j];

for(int i=O;i<CatVectorSize;i++)

if(CategoryVector[i][0].equals("O"))

VectorSize = i;
break;

}
for(int j=0;j<TotalTermsInDic;j++)

if(CategoryVector[i] [0] .equalslgnoreCase(CommonDicti onary[j] [0]))
{

71

TestDoc[i] = WtTfldfl [j];
Weight[i] = Double.parseDouble(CommonDictionary[j][2]);
break;

for(int i=0;i<VectorSize;i++)

double CatVectValue = Double.parseDouble(CategoryVector[i][1])
* Weight[i];

denominator2 = denominator2 + Math.pow(CatVectValue,2);

if(TestDoc[i]=0.0)
continue;

else
{

numerator) = numerator1 + TestDoc[i]*CatVectValue;
denominatorl = denominatorl + TestDoc[i]*TestDoc[i];

}
CosSim = numerator I/(Math.sgrt(denominatorI)*Math.sgrt(denominator2));
return CosSim;

public static void main(String[] args) {

TestingDocument td = new TestingDocument();
GetTestVector gtv = new GetTestVector();

//File conaitining Terms IDs, Terms, IDFs
String GlobalFile1 = "GlobalTermsl.txt";

//File containing all the centroids of a cluster
String CentroidOfClusters1 = "CentroidOfClustersl.txt";

//Timestamp 1
System.out.println("File = " + CentroidOfClustersl);
String[][] TermNIDFsI = td. GetIDF(G1obalFileI);
td.GetDictionary(CentroidOfClusters 1,1,TermNIDFs 1);

td.PrintDic();

String TestDocFileNames = "TestDocument2.txt";
int TotalTestDoc = 86;

String[] DicTerms = td.GetDicTerms();

String[] Testdoc = new String[TotalTestDoc];

72

ReadFromFile rf = new ReadFromFile();
try {

Testdoc = rf. ReadFromFl (TestDocFileN ames, TotalTestDoc);
} catch (IOException e) {

System. out.println("Cannot read File" + TestDocFileNames);

double MaxCosSim = 0.0;
double Thresholdlimit = 0.05;

int CorrectCategories = 0;
for(int i=O;i< otalTestDoc;i++)

System.out.println("Document is "+ Testdoc[i]);
//only term freq, the terms are identified' as index of the array
int[] TermFreq = gtv.getTermFrequency(Testdoc[i], DicTerms);
double[] WtTfldf = td. GetWtTfldfVector(TermFreq);

String Category = "null";
double CosSimI = td.CosineSimilarity(WtTfldf, 1);

MaxCosSim =0.0;
if(CosSiml>MaxCosSim)

MaxCosSim = CosSim 1;
if(MaxCosSim>Thresholdlimit)

Category = "Football";

if(MaxCosSim<Thresholdlimit)
System.out.println("Test Document is not classified in any

category.");
else

System.out.println("Test Document Belongs to" + Category ±"
category And " + "MaxCosSim= "+ MaxCosSim);

GetTestVector.iava

package ReportCode;
import java.io.BufferedReader;
import java.io.File;
import java.io.FileNotFoundException;
import java.io.FileReader;
import] ava.io.IOException;

public class GetTestVector {
public int[] getTermFrequency(String FileName, String[] Dictionary)

73

String SplitWords = "[!]*[!]*[,]*[,]*[]*[]*[-]*[-]*[\"]*[\"]*[;]*[;]*[\']*[\'
]*[:]*[:]*[/]*[/]*[(l*[(l*[)l*[)]*L]*L l";

ReadFromFile rf = new ReadFromFile();
Porter p = new Porter();
String StemmedData = p.StemmedDoc(FileName);
int i= 0,j=0;
String[] strr = StemmedData.split(SplitWords, -1);

int DicSize = Dictionary. length;
int[] TermFrequency = new int[DicSize];
for(i=0;i<strr.length;i++)

if(strr[O].isEmpty())
break;

for(j =0; j <D i cS i ze; j ++)

if(strr[i].equalsIgnoreCase(Dictionary[j]))
{

TermFrequency[j]++;
break;

return TermFrequency;

74

	Title
	Abstract
	Chapter 1
	Chapter 2
	Chapter 3
	Chapter 4
	Chapter 5
	Chapter 6
	References
	Appendix

