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Abstract 

In a Mobile ad-hoc network (MANET), because of its dynamic nature, all the nodes must 

cooperate with each other and participate in routing. Most existing routing protocols for 

Ad-hoc networks rely on this cooperation. Wormhole attacks are among the most severe 

attacks on MANETs, in which two or more colluding attackers tunnel packets from one 

place to another. In particular, if attackers selectively tunnel control packets, the nodes 

near the attackers choose this tunnel and are prevented from using alternative routes. 

In this thesis, we have proposed a multi-path routing protocol, which is a modified 

version of single-path Dynamic Source Routing (DSR) protocol. A multi-path routing 

protocol provides good defense against an attack like traffic analysis, which can be 

performed after a wormhole has been established. Another important effect of a 

wormhole attack is packet dropping. To address this problem, we have proposed a 

security extension to this multipath routing protocol. This extension is based on fixed size 

RREPLY messages. With such a multipath routing and its security extension, we can 

detect and mitigate in-band wormhole attacks in MANETs and Sensor networks. The 

proposed technique has less overhead on source and destination nodes as well as on 

intermediate nodes. It is also possible to isolate the attackers from the network and 

prevent throughput of the network from dropping. 

The proposed technique has been simulated on the java based Jist-Swans simulator using 

various scenarios. The results are shown using the animator Inspect a network 

visualization tool for ns2, using open source libraries g++ 4.2.1, gtkglext 1.2.0, and 
OpenGL 2.0 on a Linux based core2quad desktop. 
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1. INTRODUCTION 

1.1 Introduction and Motivation 

Mobile Ad-Hoc networks (MANETs), are networks which requires very minimal or no 

infrastructure. These networks can be formed very quickly using wireless mobile hosts 

(MH). MANET is one that comes together as needed, not necessarily with any support 

from the existing infrastructure or any other kind of fixed stations. A MANET consists of 

mobile platforms (e.g., a router with multiple hosts and wireless communications 

devices) herein referred to as "nodes" which are free to move about arbitrarily [1]. 

MANETs have a wide range of applications, especially in military operations, 

emergency and disaster relief efforts. However MANETs are more vulnerable to security 

attacks than conventional wired and wireless networks due to the dynamic topology, 

distributive and co-operative sharing of channel and power and computation constraints 

[2].  

Wormhole attacks are one of the most powerful attacks in MANETs since they involve 

the cooperation between two or more malicious nodes that participate in network routing 

[3]. One attacker, say node Ml, captures routing traffic at one point of the network and 

tunnels them to another point in the network, say node M2. Node M2 then selectively 

injects tunneled traffic back into the network. The connectivity of the nodes that have 

established routes over the wormhole link is completely under the control of the 

colluding attackers [4]. 

1.2 Problem statement 

The main difference between MANET and other wireless networks occurs at the network 

layer. This is because in a MANET all the nodes participate in routing. In order to widely 

deploy Mobile Ad hoc networks, a good routing protocol is very important. In this thesis 

work, we analyze the effects of different wormhole attacks and propose a multipath 

routing protocol with an extension to detect and mitigate wormhole attacks. 
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1.3 Organization of thesis 

Including this introductory chapter, this report contains 7 chapters 

In chapter 2 we present an overview of MANET and their routing protocols and also 

discuss Dynamic Source Routing Protocol and various attacks that are possible on 

MANET. 

In chapter 3 we discuss the Wormhole attacks in detail. We also discuss why the 

wormhole attack is hard to detect and present existing techniques to mitigate wormhole 

attacks, and also their limitations. 

In chapter 4 we present our proposed modifications to DSR to make it multi-path and 

analyze the modifications. 

In chapter 5 we discuss an extension to the proposed multipath DSR to detect and 

mitigate in-band wormhole attacks. 

Chapter 6 presents the simulation parameters and scenarios and also the simulation 

results obtained in detail. 

Chapter 7 concludes this thesis by giving limitations of work done and suggestions for 

further work. 



2. Introduction to Mobile Ad-hoc Networks 

2.1 Overview 

A Mobile ad hoc network (MANET) is a collection of wireless mobile nodes. 

dynamically forming a temporary network without the use of any existing network 

infrastructure or centralized administration. The nodes are free to move randomly and 

organize themselves arbitrarily; thus, the network's wireless topology may change 

rapidly and unpredictably. Such a network may operate in a stand-alone fashion, or may 

be connected to the Internet. Multi hop, mobility, large network size combined with 

device heterogeneity, bandwidth, and battery power constraints make the design of 

adequate routing protocols a major challenge for MANETs [1]. Figure 2.1 shows a 

typical MANET. 

o 0 
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0 o 	__1 

000 
 0 0 

d  ~~ ~ Source ; ' Destination 
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t  1  

Intermediate node 

Figure: 2. I Mobile Ad-hoc Network 

In Figure 2.1, source node is shown transmitting the data to a destination node with the 

help of intermediate nodes. All the intermediate nodes must cooperate with the sender 
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and receiver to transfer data. This means that each intermediate node has full access to 

the packets flowing through it. 

There are mainly 3 types of routing protocols [ 15] in MANETs. 

1. Proactive routing protocols 

2. Reactive routing protocols and 

3. Hybrid routing Protocols 

The Proactive routing protocol always maintains a route to each and every node in the 

network. Route creation and maintenance are performed through both periodic and event-

driven messages. Various proactive protocols are Destination-Sequenced Distance-Vector 

(DSDV), Optimized Link State Routing (OLSR), and Topology Dissemination Based on 

Reverse Path Forwarding (TBRPF). Proactive routing protocols suffer from scalability 

because of periodic messages [1], which needs to be sent even if the network is static. 

These messages consume a lot of bandwidth and power. 

The Reactive routing protocol reduces overhead as the route between two nodes is 

discovered only when it is needed. There are different reactive routing protocols such as 

Dynamic Source Routing (DSR) [2], Ad Hoc On-Demand Distance Vector (AODV). 

Temporally Ordered Routing Algorithm (TORA), Associativity Based Routing (ABR), 

and Signal Stability Routing (SSR). Reactive routing protocols mainly use route 

discovery and route reply messages to find routes between two nodes whenever it is 

necessary. Route discovery messages are broadcast. 

In addition to proactive and reactive routing protocols, another class of unicast routing 

protocols that can be identified is hybrid protocols. The Zone-Based Hierarchical Link-

State Routing Protocol (ZRP) is an example of a hybrid protocol that combines both 

proactive and reactive approaches, thus trying to bring together the advantages of the two 

approaches. 

In this thesis work we use DSR as our routing protocol because of its scalability, low 

overhead and the ability to adapt to mobility. 
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2.2 Dynamic Source Routing protocol (DSR) 

The Dynamic Source Routing protocol (DSR) [2] is a simple and efficient routing 

protocol designed specifically for use in multi-hop, wireless ad hoc networks of mobile 

nodes. DSR allows the network to be completely self-organizing and self-configuring, 

without the need for any existing network infrastructure or administration. The protocol 

is composed of the two main mechanisms of "Route Discovery" and "Route 

Maintenance", which work together to allow nodes to discover and maintain routes to 

arbitrary destinations in the ad hoc network. 

All aspects of the protocol operate entirely on demand, allowing the routing packet 

overhead of DSR to scale automatically to only what is needed to react to changes in the 

routes currently in use. Other advantages ofthe DSR protocol include easily guaranteed 

loop-free routing, operation in networks containing unidirectional links, use of only "soft 

state" in routing, and very rapid recovery when routes in the network change. The DSR 

protocol is designed mainly for mobile ad hoc networks of up to about two hundred 

nodes and is designed to work well even with very high rates of mobility [2]. 

When some source node originates a new packet addressed to some destination node, it 

places in the header of the packet a "source route" giving the sequence of hops that the 

packet is to follow on its way to the destination. Normally, the sender will obtain a 

suitable source route by searching its "Route Cache" of routes previously learned; if no 

route is found in its cache, it will initiate the Route Discovery protocol to dynamically 

find a new route to this destination node. 

Eid 	 „A,  B., 	E"A,C„ id  1 I 
A 	 B 	c_ 	 D 	 E 1 

Figure 2.2 RREQ broadcasting from node `A' to node `E' to discover route 

For example, in Figure 2.2, node A is attempting to discover the route to node E, A 

broadcasts a packet called RREQ. All the nodes that are within the transmission range of 
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A receive this broadcast packet. Node sends route reply message if it is the intended 

destination node, otherwise it checks whether it has already seen a route request from this 

source with the same ID. If yes, it drops the packet, otherwise it forwards it. In the above 

example, nodes B, C, D forward the RREQ packet. Node E sends a route reply 

(RREPLY) by placing the route information that is identified with RREQ message. 

When originating or forwarding a packet using a source route, each node transmitting the 

packet is responsible for confirming that data can flow over the link from that node to the 

next hop. For example, in the situation shown in Figure 2.2, node A has originated a 

packet for node E using a source route through intermediate nodes B, C, and D. In this 

case, node A is responsible for the link from A to B, node B is responsible for the link 

from B to C, node C is responsible for the link from C to D, and node D is responsible for 

the link from D to E. The nodes fulfill this responsibility either using built-in 

acknowledgments like MAC layer CTS (clear to send) or using promiscuous mode if 

available. Otherwise the node can explicitly request DSR software to send an ACK 

message. If a node fails to receive an ACK for a fixed period of time, it sends a route 

error messageback to the source, stating that the link is broken. In this case, the source 

chooses another path from the cache or broadcasts a RREQ message. 

In addition to the basic mechanism DSR RFC [2] mentions the following optimizations. 

I. Caching overheard Routing information 

2. Replying RREQs with cached routes. 

3. RREQ by hop limits 

4. Packet salvaging 

5. Queued packets destined over a broken link 

6. Automatic route shortening 

7. Increased spreading of route error messages 

8. Flow state extension 

In our thesis work we propose a multi-path routing protocol based on DSR. DSR by itself 

gives the source node options in route paths. With our proposed modifications, the 

number of available distinct paths will increase. 



2.3 Differences with traditional networks 

Different types of devices are used as nodes in ad hoc networks. For example, we can 

have PDA-like devices,. mobile phones, two-way pagers, sensors, or laptop computers 

with different capabilities in terms of maximum transmission power, energy availability, 

mobility patterns, and QoS requirements. Thus Ad hoc networks are generally 

heterogeneous in terms of nodes and services offered. In terms of energy and power, one 

has to consider not only node heterogeneity, but also varying communication ranges, 

such as sleeping or active modes and the existence of energy supplies. Ad hoc networks 

also raise new issues concerning security and privacy [5]. 

Infrastructure networks 	 Infrastructure less networks 

Fixed pre allocated cells and base stations 	No base station and rapid deployment 

Routing decisions taken by Iimited number Routing decisions taken by all the nodes in f 

of trusted nodes. 	 the network. 

Static backbone network topology 	Highly dynamic network topology 

Stable connectivity 	 Irregular connectivity 

Detailed planning before backbone network Ad-hoc networks automatically forms and 

installed 	 adopt to the changes 

High setup cost 	 Cost-effective 

High setup time 	 Very less setup time 

Table 2.1: MANET vs. Traditional wired and cellular networks 

Table 2.1 lists some of the main differences of MANETs with wired and cellular 

networks. 

Wireless multiple accesses can be categorized into random access (e.g., CSMA and 

CSMA with Collision Detection [CSMA/CD]) and controlled access. Random access is 

suitable for ad hoc networks because of lack of infrastructure support [I]. 
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The main functionalities of networking protocols need to be redesigned for MANETs. 

Current solutions like Mobile IP, generally adopted to manage mobile terminals in 

infrastructure networks, are inadequate and new approaches need to be found for mobile 

management. 

Moreover, very minor changes are required in the transport layer. The main changes 

occur in the network layer. 

2.4 Possible attacks 

Figure 2.3 shows different attacks possible on MANETs. Among different attacks, 

attacks on MAC layer are common to all wireless networks. Attacks on transport layer 

and application layer are common to all wired and wireless networks. 

Attacks on routing protocols are unique to MANETs. Among different attacks on 

network layer colluding attacks are hard to detect. In colluding attack two or more 

attackers cooperate to launch the attack. 

Some of the attacks can be launched by outsider nodes and some of the attacks can be 

launched only by insider nodes. Attacks in which attackers does not require to alter 

packets can be launched by outsider nodes. This is possible because, MANETs operate 

on wireless medium, in which every node can overhear the transmission if the node is 

within the transmission range of transmitting node. 

In this thesis work we concentrate on wormhole attacks. These are colluding attacks and 

can be launched by outsider nodes without altering the packet. Wormhole attack can be 

launched against all the routing protocols of MANET. In the next chapter we study more 

about the wormhole attacks. 

E 
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Figure 2.3: Possible attacks in MANETs 



3. WORMHOLE ATTCKS 
3.1 Overview 

Among the different attacks on MANETs, colluding attacks, where two are more nodes 

cooperate to execute the attack, are more difficult to detect. Among colluding attacks, a 

wormhole attack is a particularly severe attack on MANET routing, where two or more 

attackers, connected by a high-speed off-channel link or logical tunnel through other 

nodes [6]. These attackers then record the wireless data they overhear, forward it to each 

other, and replay packets at the other end of the network. By replaying valid network 

messages at improper places, wormhole attackers can make far apart nodes believe they 

are immediate neighbors, and force all communications between affected nodes to go 

through them. 

0 000   0 	0 
,00  

O 9- - - -  

O Normal nodes in the 
network 

Malicious 

Tunnel 

Figure 3.1: MANET with two malicious nodes forming a tunnel 

Figure 3.1 shows a MANET with two attacker nodes. If the attacker nodes are placed 

well in the network then they can attract more traffic. If used well, an off-link tunnel may 

help other nodes in routing the information easily by saving power consumption and 

delay. But this keeps the attacker in an excellent position in the network where he can 

hear the traffic and analyze it or drop critical information to distract the other nodes in the 

network. 

10 



3.2 Types of wormhole attacks 

Based on the wormhole tunnel, two different types of wormhole attacks are possible. 

1. In-band wormhole attacks 

2. Out-band wormhole attacks 

In in-band wormhole attack, the wormhole tunnel is established through other nodes in 

the network. 

D' 

8  0 	
G 

S" 	 A  

0 (E)  

nit Malicious 	 Source 	 Destination 

Figure 3.2: In-band wormhole attack 

In Figure3.2, S sends the data packets to D through the malicious nodes Ml and M2. But 

nodes S and D assume that Ml and M2 are direct neighbors. In fact, the transmission 

between M1 and M2 goes through some other nodes. This is possible in DSR if node Ml 

tunnels all the RREQ packets to node M2 and node M2 rebroadcasts the packets. if any 

RREPLY comes to node M2, it tunnels it back to M I and M I sends it to source node S. 

Node S assumes the path length to be 2 hops. So it selects this path S-M l-M2-D node 

sends the data packets. M1 can analyze this traffic or it can drop all the data packets. 
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In out-band wormhole attack; the tunnel is established using a dedicated wired 

connection between the attackers or using a high frequency wireless transmission. In out-

band wormhole attacks the attackers are actual neighbors. They do not need to depend on 

other nodes for their communication. 

In both in-band and out-band wormhole attacks, it is possible to hide or expose the 
malicious nodes. 

In hidden wormhole attack, after receiving the RREQ packet, the malicious node simply 

tunnels it without altering the packet. So the source node does not know that MI is in the 

path. In Figure 3.2 with hidden wormhole attack, node S assumes that node D is its direct 

neighbor. 

In exposed wormhole attack after receiving the RREQ packet the malicious nodes adds 

itself to the end of the list and tunnels the packet to the other malicious node. The other 

node also appends itself to the list and broadcasts the packet. In Figure 3.2, with exposed 

wormhole attack, node S assumes the path to D as S-M 1-M2-D. 

3.3 Wormhole attack effects 

To form a wormhole tunnel, an attacker places the first malicious node near the 

destination node and the second malicious node near the source node. This placement of 

wormhole attack nodes has severe effects on route discovery process. 

In case of out-band wormhole attacks due to the use of high frequency bands for 

communication; assist the wormhole nodes to propagate the RREQ speedily through the 

wormhole tunnel to destination, resulting RREQ through other legitimate paths to be 

discarded. After receipt of RREQ, destination processes RREQ and replies with 

RREPLY message. 

Now the type of attack formed depends on the processing of received RREPLY from 

destination node at wormhole attacker node near destination. Following attacks could be 
possible. 
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3.3.1 DoS attack 

If the received RREPLY from destination node is discarded at wormhole node, then 

routes are not discovered at the source node and resulting in repeated route discovery 

process at source node, forming a Denial of service attack [3]. 

3.3.2 Cache poisoning 

If the received RREPLY from destination node are tunnelled back to source node through 

formed wormhole tunnel, then a shorter path though the wormhole tunnel is recorded by 

source node and nodes surrounding source node. This shorted path between source and 

destination nodes may be communicated to other nodes of network using an optimisation 

of DSR called Automatic Route Shortening. Resulting in an attack called cache poisoning 

[4]. 

3.3.3 Sinkhole attack 

After successful formation of a path through the wormhole tunnel, between source and 

destination nodes, the attacker node may selectively drop the data packets, resulting in an 

indirect sinkhole attack [7]. 

3.3.4 Traffic analysis 

After successful formation of a path through the wormhole tunnel, between source and 

destination nodes, the attacker node gets to see every packet destined to other nodes. 

Hence they can analyse the traffic [7]. 

In our thesis work, we will address all these different effects of wormhole attacks. . 

3.4 Difficulties in detection 

Wormhole attack is a colluding attack, which means two or more malicious nodes 

cooperate to execute the attack. So it is not possible to detect this attack with ordinary 

intrusion detection systems (IDS) like pathrator or ex-pathrator [8]. Pathrator requires all 

the nodes to be in promiscuous mode, when node A propagates a packet to node B, it 

listens to B to know whether it is forwarding the packet or not. If B is not forwarding the 
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packet, it is treated as a malicious node. While analyzing the traffic, wormhole attacks do 

not drop packets. Thus IDS cannot detect the attack. Furthermore even it is possible to 

drop packets, the attacker need to drop packets at the malicious node which is close to the 

destination. 

It is possible to execute the attack even when all the information, including routing 

information, is encrypted or digitally signed. This can be achieved because even outsider 

nodes can create out-band wormhole attack without altering the packets, simply by 

tunneling the control packets, If it is difficult to identify control packets they tunnel all 

packets. This is possible because MANETs operate in an open medium, where any node 

can hear the transmission, if the transmitting node is within its range. 

It is practically not possible to propose a completely software based solution for detecting 

out-band wormhole attacks [2]. This is because, in out-band worm hole attacks, the 

attackers are actual neighbors, and they use other dedicated medium for communication 

between themselves. It is not possible for other nodes to detect this communication. 

3.5 Existing prevention techniques 

3.5.1 Packet leashes: 

A leash is any information that is added to a packet designed to restrict the packet's 

maximum allowed transmission distance. In [2] [3], authors proposed two different types 

of leaches geographical leashes and temporal leashes. A geographical leash ensures that 

the recipient of the packet is within a certain distance from the sender. A temporal leash 

ensures that the packet has an upper bound on its lifetime, which restricts the maximum 

travel distance, since the packet can travel at most at the speed of light. Either type of 

leash can prevent a wormhole attack, because it allows the receiver of a packet to detect 

if the packet traveled further than the leash allows. 

To construct a geographical leash, in general, each node must know its own location and 

all nodes must have loosely synchronized clocks. When sending a packet, the sending 

node includes in the packet its own location, ps, and the time at which it sent the packet tS. 

If the clocks of the sender and receiver are synchronized to within +-A, and v is an upper 
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bound on the velocity of any node, then the receiver can compute an upper bound dsr  on 

the distance between the sender and itself. 

To construct a temporal leash, in general, all nodes must have tightly synchronized 

clocks, such that the maximum difference between any two nodes' clocks is A. The value 

of the parameter A must be known by all nodes in the network, and for temporal leashes, 

generally must be on the order of a few microseconds or even hundreds of nanoseconds. 

To use temporal leashes, when sending a packet, the sending node includes in the packet, 

the time at which it sent the packet, ts; when receiving a packet, the receiving node 

compares this value to the time at which it received the packet, tr. The receiver is able to 

detect if the packet traveled too far, based on the claimed transmission time and the speed 

of light. 

3.5.2 Delay based: 

In [5], the authors proposed a mechanism which uses link delays to identify wormholes. 

This detection mechanism works for proactive routing protocols like OLSR. To maintain 

network topology, all the nodes in the network broadcast periodical HELLO messages to 

their neighbours. After receiving the neighbour's reply for HELLO messages. attackers 

tunnel this HELLO messages to construct wormholes. After receiving all reply messages. 

a node calculates the delay. If the delay is longer this link is identified as a suspicious 

link. For all suspicious links, a node sends a Probe packet. Once a node receives a probe 

packet, it responds to it by stopping all other transmissions. Using this information a node 

finds wormholes. 

In [9], the authors proposed a per hop delay based technique to identify a wormhole 

attack. Where, each node sends a RREQ message and waits for RREPLY message before 

sending the actual data. All the intermediate nodes attach a time stamp to it; the 

destination copies the path and time stamps and sends back to source. The source 

calculates the delays and suspects the links with large delays. 
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3.5.3 Statistical methods: 

In [10], the authors proposed a statistical mechanism for detecting wormholes. This 

mechanism works for reactive routing protocols in which each node sends RREQ before 

sending the data to a node if it does not have the route to it, and the destination sends 

route reply messages. After receiving all the route reply messages, the source calculates 

the frequency of each link. If the difference between first and second frequency is very 

high, then the first link is a wormhole link. 

In [6], each node collects information from 3-hop neighbors and sends it to the 

coordinator. The coordinator analyses and takes decisions based on this information. 

3.5.4 Neighbor List: 

Khalil et al [11] [12] propose a protocol for wormhole attack discovery in static 

networks, called LiteWorp. In LiteWorp, nodes obtain full two-hop routing information 

from their neighbors. While in a standard ad hoc routing protocol, the nodes usually keep 

track of who their neighbors are; in LiteWorp they also know who the neighbor's 

neighbors are. They can take advantage of two-hop, rather than one-hop, neighbor 

information. This information can be exploited to detect wormhole attacks. 

After authentication, nodes do not accept messages from those they did not originally 

register as neighbors. Also, nodes observe their neighbor's behavior to determine whether 

data packets are being properly forwarder by the neighbor, - a so-called `watchdog' 

approach. LiteWorp adds an interesting wormhole-specific twist to the standard 

watchdog behavior: nodes not only verify that all packets are forwarded properly, but 

also make sure that no node is sending packets it did not receive (as would be the case 

with a wormhole) 

3.5.5 Wormhole detection based on packet dropping: 

Several researchers worked on the wormhole attack problem by treating a wormhole as a 

misbehaving link. In such approaches, a wormhole attack is not specifically identified. 

Rather, the wormhole's destructive behaviour is mitigated. 
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Baruch [13] and Chigan [8] use link rating schemes to prevent black hole and wormhole 

attacks. They rely on authenticated acknowledgements of data packets to rate links: if a 

link drop packets, the acknowledgements do not get through; such a link is rated low and 

avoided in future. 

3.5.6 Network visualization: 

Wang and Bhargava [14] introduce an approach in which network visualization is used 

for discovery of wormhole attacks in stationary sensor networks. In. their approach, each 

sensor estimates the distance to its neighbors using the received signal strength. During 

the initial sensor deployment, all sensors send this distance information to the central 

controller, which calculates the network's physical topology based on individual sensor 

distance measurements. With no wormholes present, the network topology should be 

more or less flat, while a wormhole would be seen as a `string' pulling different ends of 

the network together. 

3.5.7 Directional Antennas: 

Directional antennas have been extensively studied in the general literature [ 16]. When 

directional antennas are used, nodes use specific `sectors' of their antennas to 

communicate with each other. Therefore, a node receiving a message from its neighbor 

has some information about the location of that neighbor. It knows the relative orientation 

of the neighbor with respect to itself. This extra bit of information makes wormhole 

discovery much easier than in networks with exclusively Omni directional antennas. 

In [16], Hu and Evans propose a solution to wormhole attacks for ad hoe networks in 

which all nodes are equipped with directional antennas. Wormholes introduce substantial 

inconsistencies in the network, and can easily be detected. 

In SERLOC [7], Lazos et al use a slightly different approach. Here, only a few nodes 

need to be equipped with directional antennas, but these nodes also have to be location-

aware. These nodes then send out localization beacons, based on which, regular network 

nodes determine their own relative Iocations. 
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3.6 Limitations of existing techniques 

The various existing techniques studied in the previous section have many limitations, 

these are discussed below 

• The level of time synchronization required for temporal leashes [3] (on the order 

of Nanoseconds) entails the use of specialized hardware not currently practical in 

wireless ad hoc networks. In sensor networks, such level of synchronization is 

impossible [13] at this time. Temporal packet leashes thus offer an elegant but not 

practical solution to Wormhole attacks. 

• Geographical leashes work fine when GPS coordinates are practical and available. 

However, modern GPS technology has significant limitations that should not be 

overlooked. While the price of GPS devices is going down, it remains substantial. 

Besides, GPS is somewhat of a nuisance for personal laptops. Also, while it is 

possible to achieve GPS precision of about 3m with state-of-the-art GPS devices 

[13], consumer-level devices do not get (and do not require) this level of 

resolution. Finally, GPS systems are not versatile, as GPS devices do not function 

well inside buildings, under water, in the presence of strong magnetic radiation, 

etc. 

• RTT-based approaches [5][10][17] are incompatible with the standard 802.11 

MAC protocol. Thus, on top of possibly requiring specialized hardware, these 

approaches also prohibit the use of the standard MAC protocol, and, overall, do 

not seem practical. 

• Some approaches [13][8] are geared towards discovery and prevention of only 

one kind of wormhole behavior: packet loss. Wormholes can do much more than 

that. They can send packets out of order, confuse location-based schemes, or 

simply aggregate packets for traffic analysis. Even the distortion of topology 

information that a wormhole introduces can be a significant problem in particular 

networks. 
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• The methods proposed by [4] and [7] are both viable, and could be easily applied 

to networks that use directional antennas. Currently, such networks are mostly in 

research stage, and their future prominence is not clear [14]. 

• Methods given in [11][12] are interesting, but would not work at all in a scenario 

where node mobility is a factor. Since a node's neighbors are determined and 

detected only once [18], and the packets from non-neighboring nodes are rejected, 

no node movement is allowable. Therefore, these are applicable to static networks 

only. 

• Methods given in [10] [17] are somewhat limited in scope as they apply only to 

routing protocols that are both on-demand and multipath. Non-multipath on-

demand protocols do not provide enough information for the determination of link 

frequencies. While on-demand routing protocols keep complete information about 

routes they discover, proactive ones rely on next-hop information, which does not 

allow the calculation of link frequencies 

Overall, while a number of techniques have been proposed to combat wormhole 

attacks, an easy lightweight solution is still lacking. The following are some of the 

issues we have addressed in this work. 

I. No solution addressed DOS attack created by out-band wormhole in reactive 

protocols. 

2. All the solutions that are proposed are applicable for either proactive or reactive 

protocols. We need a solution works for both proactive and reactive protocols. 

3. All the solutions work for either multi-hop, single path or multi-hop, multipath 

protocols. We need a solution works for both types of protocols. 

4. Most of the solutions use additional hardware for maintaining time 

synchronization or to know the exact position of the node. Our solution should do 

not require any additional hardware. 

5. In this work we do not assume any restrictions on node mobility and on the 

topology of the network. 

6. We need a solution that works for both hidden and exposed wormhole attacks. 
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4. MULTIPATH DSR PROTOCOL 

4.1 Introduction 

In this chapter we present our proposed multi-path routing protocol based on DSR, called 

Multipath DSR (MDSR). The main objective of the proposed MDSR is to minimize the 

effects of in-band and out-band wormhole attacks. In the next chapter, we propose a 

security extension to MDSR to detect and isolate hidden and exposed in-band wormhole 

attacker nodes. 

Multipath routing protocols, due to the existence of multiple routes between 

communicating nodes, have the following advantages over unicast protocols [19]. 

1. Increases the aggregated throughput of the network 

2. Achieves load balancing and resource preservation. 

3. Good resistance against attacks like repudiation, eavesdropping and traffic 

analysis. 

Our proposed MDSR, like any other existing multi-path routing protocol, based on 

reactive routing protocols like DSR and AODV has following three phases. 

1. Finding the routes to destination 

2. Selecting the route to use 

3. Maintaining the routes 

Before stating the actual changes needed to DSR, let us closely observe the RREQ 

propagation in DSR, to point out the loopholes that are exploited by wormhole attacker to 

form a wormhole tunnel with the help of Figure 4.1. 

Suppose node 0 broadcasts a RREQ packet to node 30 with RREQ ID=I . All the nodes in 

the transmission range of 0 will receive this RREQ. From Figure 4.1 nodes 1, 8 and 9 

receives the RREQ. Since these nodes are not the intended recipients and this is the first 

RREQ they are seeing from node 0 with this RREQ ID, they will forward this RREQ to 
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their neighbor nodes 2, 10, 18, 16, 17. This process continues until the RREQ reaches the 

destination node 30. 

Out-band wormhole attack uses the fact that all intermediate nodes forward a RREQ 

packet only once if it is not seen it earlier. If some parts of the network are congested or 

highly mobile or out-band wormhole attack is launched at the time of RREQ propagation, 

we observed two problems. They are described as fallows 

1. RREQ from the non congested paths arrive quickly compared to the paths with 

congested or highly mobile or out-band wormhole formed areas of network. This 

results no paths through congested or highly mobile area. It is ok, if the area is 

congested or under high mobility for long time. But if the area recovered quickly 

and if through that area, a shorter path exists, and then the shorter path may be not 

utilized. 

2. The 1-hop neighbors of destination after receiving first RREQ propagate to 

destination and also among them. Then this results in discarding the RREQ 

packets from most of the other paths to the destination node. This problem can be• 

visualized using Figure 4.1. Suppose among the 1-hop neighbors of node 30, node 

22 receive RREQ early, and it forwards this RREQ to nodes 21, 23, 30, 29 and 

31. All the nodes receive this RREQ and drop all the consequent RREQ packets. 

This will result formation of only I path between source and destination. 

In our proposed MDSR, we took care to overcome above problems in forwarding RREQ 

in the process of finding the routes to destination, as these problems are exploited by 

wormhole attacker to form wormhole tunnels. 

Selecting the route to use depends on the needs of the application. If the application 

requires robustness, it can send same packet through multiple paths. If the application 

requires load balancing among the network it can choose different paths to send data 

packets. 

Maintaining routes is same as normal DSR. 
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Figure 4.1 RREQ propagation in DSR 

4.2 Modifications to DSR 

To address the above problems, we proposed following modifications. 

1. Route discovery at source node. 

2. Processing and forwarding of RREQ at the intermediate node. 

3. RREPLY at destination and intermediate nodes. 

4.2.1 Route Discovery at source node 

• When a source node wants to transmit a data packet to a destination node, to 

which it does not have a known path, it initiates the route discovery process by 

broadcasting a RREQ packet. 

• After broadcasting the RREQ packet, the source node sets a timer whose time 

period T is determined by using formula given below. 

2*R 
T=  V  +C 

Where R = Maximum Transmission range. 
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V= Speed of the wireless signal. 

C= Constant value, R/2*V as used in our simulations. 

The time value of timer indicates the time needed to receive a RREPLY from 1-

hop neighbor. 

• Acceptance of RREPLY depends on the arrival time and the path length between 

source and destination node. 

• The possible arrivals for RREPLY packets could be as follows. 

	

case i. 	Arrival of RREPLY before timer expires and 

a. if path length is equal to 1, then accept the RREPLY. 

b. else reject RREPLY, as RREPLY received may be a forged reply 

from a malicious node. 

	

case ii. 	Arrival of RREPLY after the timer expires and 

a. if path length is equal to 1, then reject the RREPLY, because it 

may be a RREPLY received from a malicious wormhole tunnel. 

b. else path length greater than 1, accept the RREPLY, RREPLY has 

been travelled along the path containing only legitimate nodes 

from destination to source. 

This is shown in Table 4.1 

With in time period of Timer After the Timer expires 

Path length = I Accept, as RREPLY Reject, May be from 

received satisfies the 1-hop WORMHOLE TUNNEL. 

Roundtrip time. 

Path length > I Reject. May be a forged Accept (path having only 

reply. legitimate nodes). 

Table 4.1 RREQ at source node 

4.2.2 RREQ processing at intermediate nodes 

The main purpose of this modified RREQ processing at intermediate nodes is to make 

each intermediate node forward the RREQ more than once if it is from a congested area. 

And also make all 1-hop neighbors of destination forward the RREQ packets received 
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through different paths by discarding the RREQ coming from other 1 -hop neighbors of 

destination. In order to achieve this each node in MANET maintains two Tables, Seen-

RREQ and the other is Neighborhood table. 

Seen-RREQ Table is the same as RREQ Table in DSR, which consists of source node, 

RREQ ID, TTL value. For example Table 4.2 shows the Seen-RREQ Table at node 1 in 

Figure 4.1, after node 1 broadcast RREQ packet that is received from node 0. 

Source Node RREQ ID TTL 

0 1 225 

Table 4.2 Seen-RREQ Table 

Table 4.3 shows a sample Neighborhood Table at node 22 in Figure4.1. 

Destination ID 1-hop neighbors 

30 29 

30 21 

Table 4.3 Neighborhood Table 

The procedure for filling the entries in both tables and taking decision about forwarding 

or discarding RREQ packet at intermediate nodes is given in detail in the fallowing steps. 

• When RREQ is received at an intermediate node, itneeds to know whether 

destination is within 1-hop neighborhood. 

• To confirm the presence of the destination in 1-hop neighborhood, the following 

procedure is followed. 

1. Each intermediate node after receiving the RREQ packet, delays the 

forwarding of RREQ by time equal to 1-way propagation delay calculated 

using formula given below. 

R 
T =v+ C 

Where, R = Maximum Transmission range. 

V= Speed of the wireless signal. 

C= constant value, as used R/2*V in our simulations. 
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2. If the intermediate node overhears a RREPLY with Hop count equal to 1, 

before timer expires, the intermediate node and the node that forwarded the 

RREQ are in 1-hop neighborhood destination. 

3. If the node that forwarded the RREQ is not in the 1-hop neighborhood of the 

destination, the intermediate node forwards RREQ's as follows 

a. If the path in the RREQ except source contains a node in the 

neighborhood table with destination ID equal to destination of RREQ, 

then discard the RREQ, as it is already forwarded by one of the 1-hop 

neighbors of destination. 

b. Else if the received RREQ has no entry in the table, then the node follows 

the source node RREQ forwarding procedure described in section 4.2.I 

and adds an entry to the Seen-RREQ table. 

c. Else if received RREQ has higher TTL value than in the stored entry, 

then it.updates the TTL of store entry and forward as described in section 

4.2.1 

d. Else discards the RREQ, as it is already seen. 

4. If the intermediate node and node that forwarded the RREQ are in the I-hop 

neighborhood of the destination node, the intermediate node forwards 

RREQ's as follows 

a. If the received RREQ has no entry in the Neighborhood table, add an 

entry into the table with destination ID equal to destination node of 

RREQ and 1-hop neighbor as the last hop node from which it received 

this RREQ. Discard the RREQ. 

b. Else discard the RREQ. 

Figure 4.2 gives the flow chart for processing RREQ at intermediate nodes. By delaying 

RREQ propagation by RN time, 1-hop neighbors of the destination learn about other 1-

hop neighbors of the destination and add them to neighborhood table. With the help of 

this neighborhood table, 1-hop neighbors of destination discard the RREQ packets from 

other 1-hop neighbors of destination. With the help of TTL value and RREQ ID in the 

seen-RREQ table, each intermediate node forwards RREQ packet more than once. 
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Figure 4.2 Flow chart of RREQ processing at intermediate nodes 



To understand the process of updating Neighborhood table at intermediate nodes, the 

following section presents three scenarios with examples. 

4.2.3 Example Neighborhood table updating scenarios 

We have presented three different scenarios to understand the neighborhood table 

updating process by intermediate nodes which are 1-hop neighbors of destination. 

4.2.3.1 Scenario 1 

This scenario is shown in Figure 4.3. In which there are two intermediate nodes 1 and 2, 

both are 1-hop neighbors of each other. And only one of them node 2 is in 1-hop 

neighborhood of destination. 

Destination Node O Intermediate Node 

Figure 4.3 Scenario I 

Suppose node I forwarded the RREQ sent by some other node. Node 2 receives this 

RREQ and waits 1-hop propagation time. In Figure 4.3 node D is not in the 	radio 

propagation range of 1, so node 2 will not receive RREPLY. After 1-hop propagation 
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time expires, node 2 forwards this RREQ by adding an entry into its Seen-RREQ table. In 

this example scenario no entry will be added to Neighborhood table. 

4.2.3.2 Scenario 2 

This scenario is shown in Figure 4.4, in which there are two intermediate nodes I and 2. 

Both are 1-hop neighbors of each other. Also, both nodes are 1-hop neighbors of 

destination. 

Destination Node O Intermediate Node 

Figure 4.4: Scenario2 

Suppose node 1 forwards RREQ packet sent by some other node. Both destination and 

node 2 receive this RREQ. Destination sends RREPLY immediately. Node 2 waits for I - 

hop propagation time. Before timer expires node 2 receives the RREPLY from node D 

which is 1-hop distance and also originated at D. So node 2 by observing RREPLY finds 
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that this RREPLY is sent to the source node through node 1. It adds node I to its 

Neighborhood table and discards this RREQ, and consequent RREQ with same ID 

containing node I in its path. 

4.2.3.3 Scenario 3 

This scenario is shown in Figure 4.5, in which there are two intermediate nodes I and 2. 

Both are 1-hop neighbors of destination, but not each other. 

Destination Node 	O Intermediate Node 

Figure 4.5: Scenario3 

Suppose node I forwards RREQ packet sent by some other node. Destination receives 

this RREQ. It sends RREPLY immediately. Node 2 receives a RREPLY from D which is 

1-hop distance, and also originated at D. So node 2 by observing the RREPLY finds that 

this RREPLY is sent to the source node through node 1. It adds node I to its 



Neighborhood table and discards this RREQ, and consequent RREQs with same ID 

containing node 1 in its path. 

4.2.4 RREPLY at destination and intermediate nodes 

• As and when the destination node receives the RREQ, it immediately sends 

RREPLY. This can be achieved by giving the processing and sending of RREQ 

and RREPLY packets highest priority in the network. 

• If an intermediate node receives a RREPLY, it checks if it is the intended next 

recipient. If yes, it forwards the RREPLY back to source along the route given in 

RREPLY. 

• If an intermediate node overhears a RREPLY and if it is not the intended next 

recipient, then it adds the first node in the path from destination to source to 

Neighborhood table. The first node in the path can be found from the RREPLY 

message itself because RREPLY messages carry the entire path from source to 

destination. 

Suppose in Figure 4.1, destination node 30 is sending a RREPLY with the following 

route 30-21-20-11-2-1-0 to source node 0. All the 1-hop neighbors of 30 overhear this 

RREPLY. They add node 21 to their neighbor list and discards all the RREQ with same 

ID, coming to'destination 30 through node 21 from the source node 0. 

4.3 Mitigation of wormhole attack effects 

4.3.1 Dos attack 

We described the formation of Dos attack in section 3.3. Our proposed modifications 

allow forming of the paths through legitimate nodes. 

This problem solution can be visualized using Figure 4.1. Suppose among the 1-hop 

neighbors of node 30 (destination), node 22 receives RREQ early, and it forwards this 

RREQ to nodes 21, 23, 30, 29 and 31. After receiving RREQ, each node except node 30 

(destination) waits for R/V time to allow overhearing of RREPLY, to know the 

possibility of presence of destination in their 1-hop neighborhood. 
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After reception of RREQ at destination, it sends RREPLY, which is overheard by nodes 

21, 22, 29 and 31, and they will add node 22 to their neighborhood table, stating node 22 

as 1-hop neighbor of node 30 (destination). All 1-hop neighbors of node 30 (destination) 

will not forward RREQ with the seen RREQ ID coming from node 22 but forward 

RREQs from other paths, forming a path only through legitimate nodes. Hence Dos 

attack can be mitigated. 

4.3.2 Cache poisoning, indirect Sinkhole attack and Traffic analysis 

The use of timer for accepting RREPLY at source and intermediate nodes, results in no 

tunneling of RREPLY through the in-band wormhole tunnel, resulting in no path through 

the wormhole tunnel. Hence all these attacks are mitigated. 
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5. SECURITY EXTENSION 

In this chapter we propose a security extension to the multi-path DSR (MDSR) protocol 

to pinpoint and isolate the in-band wormhole attacker nodes. This security extension is 

applicable to all reactive and proactive routing protocols. 

We considered following assumptions in the design of this security extension. 

1. All the RREPLY messages are authenticated by using digital signature. 

2. The attacker can only encapsulate the original packet and transfer it to other 

attacker. 

3. The attacker cannot change the contents of the packet. 

4. All the nodes know the maximum transfer unit (MTU) of the network. This 

information is also available at the network layer. 

5. Attacker nodes cannot fragment and reassemble the packets, without losing the 

digital sign. 

6. All links are bi-directional. 

5.1 Extension to proposed MDSR 

The extensions for the proposed MDSR are as follows. 

• Use of fixed RREPLY message size. 

• A table called suspicious node table containing entries listing malicious nodes is 

maintained at each node. 

5.1.1 Fixed RREPLY message size 

As we know the MTU of the network, we fix the size of RREPLY message to be 40 bytes 

smaller than MTU of the network. All other messages/ packets are of size less than 

RREPLY size. This can be seen in Figure 5.1: 
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t Maximum size of RREPLY/ Minimum size of tunneled RREPLY 

Minimum size of RREPLY/ Maximum size of other packets 

DATA/ ACK/ RREQ/ Route ERROR packets 

RREPLY Packet  

Tunneled RREPLY (illegal) Packet 

Figure 5.1 Restricted packet sizes in the network 

5.1.2 Suspicious table 

Each node in network maintains a table listing the malicious nodes found during 

operation of the network. 

5.2 Mechanism 

• After receiving the RREQ, the destination node forms a RREPLY message. 

a Before sending the RREPLY, the destination calculates the size of the RREPLY 

packet. If the size is less than some predefined maximum SIZE, it pads the 

RREPLY. Then it digitally signs the RREPLY packet and sends it. 

• Figure 5.1 shows the mechanism In the proposed extension,. Any intermediate 

node tunnels the RREPLY, and then the new packet will exceed allowable 

maximum packet size of the network. 

• Any intermediate node that sees the packet with more than the allowable 

maximum size simply discards that packet and makes a note of the node which 

tunnels the packet as malicious node in Suspicious table 
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• The nodes discard all the packets coming from or destined to the nodes in 

suspicious table. 

• If RREPLY messages are not tunneled, it is not possible to establish a connection 

through the tunnel. This will avoid the formation of wormhole tunnel. 

5.3 Analysis 

With this security extension we can detect the wormhole attacker nodes at the first place, 

so no data packets go through the wormhole tunnel. Our assumptions make sure that the 

sending of packets of size greater than the allowed .size is impossible. Hence this 

mechanism does not require any threshold value as is required by some mechanisms. 

Once an illegal packet is received, the source of the received packet is considered as 

malicious and added to the Suspicious table to avoid formation of wormhole tunnel and 

isolate the node from the network. 

Applications like Mobile IP need packets to be encapsulated for their operation. In such 

applications, due to the use of our security extension, nodes of the network add agent 

nodes which use encapsulation to their suspicious table. To avoid this, an exception can 

be added to allow encapsulation for agent nodes. 

For proactive routing protocols, instead of RREPLY messages, periodic hello messages 

can be set to maximum size. 
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6. Simulation 

6.1 JiST-swans 

Java in Simulation Time (JiST): AST is a new Java-based discrete-event simulation 

engine, with a number of novel and unique design features [20]. It is a prototype of a new 

general-purpose approach to building discrete event simulators, called virtual machine-
based simulation that unifies the traditional systems and language-based simulator 

designs. The resulting simulation platform is more efficient. It out-performs existing 

highly optimized simulators both in time and memory consumption. 

The JiST system architecture, depicted in Figure 6.1, consists of four distinct 

components: a compiler, a byte code rewriter, a simulation kernel and a virtual machine. 

JiST simulation programs are written in plain, unmodified Java and compiled to byte 

code using a regular Java language compiler. These compiled classes are then modified. 

via a byte code-level rewriter, to run over a simulation kernel and to support the 

simulation time semantics described shortly. The simulation program, the rewriter and 

the JiST kernel are all written in pure Java. Thus, this entire process occurs within a 

standard, unmodified Java virtual machine (JVM).  The benefits of this approach to 

simulator construction over traditional systems and languages approaches are numerous 
[20]. 

Embedding the simulation semantics within the Java language allows reuse of a large 

body of work, including the Java language itself, its standard libraries and existing 

compilers. JiST benefits from the automatic garbage collection, type-safety, reflection 

and many other properties of the Java language. This approach also lowers the learning 

,curve for users and facilitates the reuse of code for building simulations. The use of a 

standard virtual machine provides an efficient, highly-optimized and portable execution 

platform and allows for important cross-layer optimization between the simulation kernel 

and running simulation. Furthermore, since the kernel and the simulation are both 

running within the same process space it reduces serialization and context switching 
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overheads. In summary, a key benefit of the JiST approach is that it allows for the 

efficient execution of simulation programs within the context of a modern and popular 

language. JiST combines simulation semantics, found in custom simulation languages 

and simulation libraries, with modern language capabilities. This design results in a 

system that is convenient to use, robust and efficient. 

Compile 
r Rewriter 

Simulatio 

1 n 

L---~ Kernel 

i 	i Virtual 

i 	L Machine 

Java source code Java byte code Modified 

Figure 6.1: JiST system architecture 

Scalable wireless network simulator (SWANS) [20] is a scalable wireless network 

simulator built atop the JiST platform. It was created primarily because existing network 

simulation tools are not sufficient for current research needs, and its performance serves 

as a validation of the virtual machine-based approach to simulator construction. SWANS 

are organized as independent software components that can be composed to form 

complete wireless network or sensor network configurations. Its capabilities are similar to 

ns2 and GloMoSim, but are able to simulate much larger networks. SWANS leverages 

the JiST design to achieve high simulation throughput, save memory, and run standard 

Java network applications over simulated networks. In addition, SWANS implements a 

data structure, called hierarchical binning, for efficient computation of signal 

propagation. 

Every SWANS component is encapsulated as a JiST entity: it stores it own local state and 

interacts with other components via exposed event-based interfaces. A SWAN contains 
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components for constructing a node stack as shown in Figure 4.2, as well components for 

a variety of mobility models and field configurations. It allows components to be readily 

interchanged with suitable alternate implementations of the common interfaces and for 

each simulated node to be independently conFigured. Finally, it also confines the 

simulation communication pattern. For example, Application or Routing components of 

different nodes cannot communicate directly. They can only pass messages along their 

own node stacks. Consequently, the elements of the simulated node stack above the 

Radio layer become trivially parallelizable, and may be distributed with low 

synchronization cost. In contrast, different Radios do contend (in simulation time) over 

the shared Field entity and raise the synchronization cost of a concurrent simulation 

execution. To reduce this contention in a distributed simulation, the simulated field may 

be partitioned into non-overlapping, cooperating Field entities along a grid. 

6.2 Simulation parameters 

In this section we list the various simulation parameters we used in our simulation 

scenarios. These are given in Table 6.1, Table 6.2 and Table 6.3 for field parameters, 

physical layer parameters and protocols used respectively. 

Field parameters 

Field width 

Field height 

Signal •Propagation Model 

Signal Interference Model 

Path Loss 

Fading 

Placement" 

Mobility 

l I00int . . 

1100mt 

Hierarchical binning 

RadioNoiseAdditive 

TwoRay 

None 

Scenario specific 

Static/ Random Walk 

Table 6.1 Field Parameters 
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Physical layer parameters 

Transmit Power 	 15.0 db 

Band Width 
	

2Mb/s 

Transmission Range 	 13 0mt 

Temperature 	 290 c 

Table 6.2 Physical layer parameters 

Protocols 

Mac Protocol 
Routing Protocol 
Transport protocol 
Application 

IEEE 802.11 
Dynamic Source Routing (DSR) 
User datagram protocol (UDP) 
Constant Bit Rate (CBR) 

Table 6.3 Protocols used 

6.3 Simulation network 

In order to simulate the proposed protocols, we created the network shown in Figure 6.2. 

In this network there are two attacker nodes which are placed near the source and 

destination initially and moved away as the simulation progress. We have created two 

different types of attacker nodes. 

Typel attacker nodes create an in-band hidden wormhole attack. This can be done by 

tunneling all the RREQ to the partner attacking node. The other attacker node broadcast 

the RREQ to places of the network near the destination. After it receives a RREPLY it 

tunnels back the RREPLY to the first attacker, which sends this RREPLY to the source. 

After the successful creation of wormhole, successive data- packets will be dropped 

causing the throughput of the network to decrease. 

Type2 attacker nodes create an out-band hidden wormhole attack. This is achieved by 

placing one attacker near the source and other attacker near the destination. If any RREQ 

packet is received by the attacker near the source, it gives this packet to other attacker. In 



this type of attack attackers introduce only propagation delay on the packet, no MAC 

layer delays. 
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Figure 6.2 Simulation network with 64 nodes of which 2 are malicious 
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6.4 Metrics for Evaluation 

In order to evaluate the simulation results the fallowing parameters are considered. 

1. Overhead: In a proactive routing protocol like DSR the main overhead comes 

while transmitting the RREQ packet. The number RREQ packets transferred 

during the simulation gives the overhead of the network. 

2. Throughput: Throughput is calculated as the ratio to the number of data packets 

transmitted to the number of data packets successfully received at the destination. 

In order to eliminate duplicate packets, we have modified DSR to check for 

duplicates and remove them. 

3. Connectivity among attackers: This is defined as the number of RREPLY 

packets successfully tunneled by the attackers. This is an important parameter in 

in-band wormhole attacks. A decrease in the number of RREPLYs tunneled 

shows the isolation of attackers from network. 

6.5 Analysis of results 

Figure 6.3 shows the number of RREQ packets forwarded by traditional DSR and 

proposed Multipath DSR (MDSR). From Figure 6.3 we can observer that the proposed 

MDSR introduces very less additional overhead on traditional DSR in the network. This 

is as we have discussed in section 4.2. 

Figure 6.3 No. of RREQ forwarded by intermediate nodes. 
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Next simulated different static network topologies, uniformly distributed, clustered and 

linear by varying number of nodes and their positions in the simulation field. With both 

DSR and MDSR obtained the throughput Figure 6.4 shows the results. As we can see in 

Figure 6.4 through put of MDSR is high compared to traditional DSR. Especially when 

we have simulated with linear network like in case 2 the throughput increased well. 
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■ DSR 

MDSR 

Figure 6.4 Throughput comparisons, DSR vs. MDSR under no attack 

Then we have introduced two attackers of type2 in to the network as shown in the Figure 

6.2. The attackers establish out-band hidden worm hole and performs DOS attack as 

described in section 3.3. 

As we can observe from the graph shown in Figure 6.5, the throughput of the traditional 

DSR is very low (equal to 0) when the attackers are near the source and destination. This 

is because in traditional DSR once a node sees a RREQ packet with particular ID from a 

node it doesn't forward any subsequent packets. The attackers are exploiting this. That is 

why the throughput is nearly zero when the attackers are close. But with MDSR the 

RREPLY is coming through alternate legitimate paths so there is through put even if the 

attackers are at 1-hop neighbors of both source and destination. 
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Figure 6.5 Throughput comparisons under out-band hidden wormhole attack. 

Next we added the security extension to the MDSR (MDSR-Se). We removed type2 

attackers from the network and added two typel attackers. Typel attackers perform 

traffic analysis and packet dropping attacks. Figure 6.6 shows the throughput of the 

network with DSR, MDSR and MDSR-Se. MDSR-Se has very good throughput even 

when the attackers are too close. This is because the security extension isolates the 

attackers from the network and completely eliminates the wormhole tunnel. 

1 
0.9 

0.8 

0.7 

a 0.6 

0.5 
0 
- 0.4 

0.3 
0.2 
0.1 

0 

■ Normal DSR 

MDSR 

® MDSR-Se 

1 	 2 	 3 	 4 

Number of hops from attacker 

Figure 6.6 DSR vs. MDSR vs. MDSR-Se throughput comparison 
under in-band wormhole attack 
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To show the connectivity we have simulate the network with in-band wormhole. Figure 

6.7 shows the percentage of RREPLYs tunneled with DSR and MDSR with security 

extension. The higher rate of percentage RREPLYs tunneled the higher connectivity 

between attackers. In Figure 6.7 with MDSR-Se the percentage of RREPLYs tunneled 

greatly reduced. 

0 

V 1.2 
a 
c 
c 

0.8 

0.6 
■ Normal DSR 

0.4  — 
:3 MDSR-Se 

~° 0.2 c 

• a 0 
1 	2 	3 	4 

Number of hops from attacker 

Figure 6.7 Percentage of RREPLYs tunneled with DSR and with MDSR-Se 

Isolation of attackers from network not only means reducing the percentage of RREPLYs 

tunneled. But also the communication between the attackers must be broken. It is not 

possible to intercept the communication of attackers when they have out-banded 

communication. If the attackers are using in-band to communicate, it is possible to isolate 

the attackers by stopping most of the packets flowing between them. The packets include 

tunneled RREQ. Figure 6.8 shows the number of RREQ packets successfully tunneled 

with DSR and with MDSR-Se. 
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Figure 6.8 number of RREQ successfully tunneled under DSR and 

MDSR-Se 

From Figures 6.7 and Figure 6.8 it is clear that with the MDSR-Se it is possible to isolate 

the in-band wormhole attackers from the network. 



7. CONCLUSION 

7.1 Summary of work done 
Secure routing protocols for ad-hoc networks that are designed to minimize the route 

falsification attacks, fail against in-band worm-hole attacks created by the insider nodes 

without any special hardware. Even though these attacks are less powerful compared to 

traditional out-band worm-hole attacks, they can be launched very easily.. In multipath 

routing protocols there is a higher chance that these attackers succeed in gaining 

transmission. 

Our proposed mechanism, with fixed size RREPLY messages to complement the existing 

source routing protocols like (DSR), resist the creation of in-band worm-hole tunnels with 

very less additional overhead. We have investigated the effectiveness of our proposal 

using simulation. Simulation results confirm that in-band wormhole attacks can be 

detected and isolated completely from the network. 

Even though it is practically not possible to pinpoint and isolate hidden out-band 

wormhole attacks, our proposed MDSR with Neighborhood table and timer at source and 

intermediate nodes, minimizes DOS attacks of hidden out-band wormhole, by allowing 

legitimate RREQ to reach the destination through alternate paths. 

7.2 Suggestions for further Work 

• The MDSR-Se can be simulated with proactive routing protocols like DSDV and 

OLSR. In order to simulate MDSR-Se, instead of RREPLY, periodic HELLO 

messages should be used. 

• In order to further minimize the sinkhole attack with out-band wormholes; one 

can combine our proposed MDSR with path rating mechanisms. In the Path rating 

mechanisms, destination send periodic messages to source node about the quality 

of different paths. This can be used to select paths to communicate. In order to do 
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this, one needs to use our MDSR to find different paths between source and 

destination and rate the paths for communication. 

• One can also place the time stamps in RREQ and RREPLY messages at 

intermediate nodes. This time stamps include time difference. between two 

successive RREQ of same ID received at each intermediate node, and time gap 

between RREQ forwarded and RREPLY received along the path. By simulating 

with various wormhole lengths, one can obtain different values. After obtaining 

these values one can use Data mining techniques to eliminate the possible 

tunneled paths at first place. 

7.3 Contributions 

Papers selected 

[1] Tirumalesh .C, kumkum Garg, "Secure Multipath Routing Protocol for detecting and 
avoiding worm-hole attacks", ICCNT 2009, Volume 23, May 2009. r e-v,adio I 
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1. Integrated Inspect animation support into JiST-Swans code. 
2. Added statistical collection to DSR implementation. 

3. Modified DSR to eliminate duplicate messages. 
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*The following are some of the main functions to create out-band hidden wormhole attacks.... 

**/ 

public void takepack(Ip send) { 

System.out.println(localAddr+"One RREQ received from partner out-band.......... 

JistAPI.sleep((long)(Math.randomO * BROADCAST_JITTER)); 

netEntity.send(send, Constants.NET_INTERFACE_DEFAULT, MacAddress.ANY); 

} 

private void ProcessOptions(RouteDsrMsg msg, NetAddress src, NetAddress dst, 

short protocol, byte priority, byte til, 

short id, short fragOffset) 

{ 

Iterator iter = msg.getOptions().iterator(); 

RouteDsrMsg.OptionAckRequest ackRequest = null; 

RouteDsrMsg.OptionSourceRoute sourceRoute = null; 

while (iter.hasNext()) 

{ 

byte[] optBuf = (byte[])iter.next(); 

RouteDsrMsg.Option opt = RouteDsrMsg.Option.create(optBuf, 0); 

if (opt == null) 

{ 

// This should never happen in the simulation 

throw new RuntimeException("Unrecognized DSR Option"); 

} 

switch (opt.getType()) 

{ 



case RouteDsrMsg.OPT_ROUTE_REQUEST: 

HandleRequest(msg, (RouteDsrMsg.OptionRouteRequest)opt, optBuf, src, 

dst, protocol, priority, ttl, id, fragOffset); 

break; 

} 

} 

private void ForwardRequest(RouteDsrMsg msg, RouteDsrMsg.OptionRouteRequest opt, 

byte[] optBuf, NetAddress src, NetAddress dst, 

short protocol, byte priority, byte til, 

short id, short fragOffset) 

// If I've already forwarded this request, ignore it 

for (int i = 0; i < opt.getNumAddresses(); i++) 

{ 

if (localAddr.equals(opt.getAddress(i))) return; 

} 

RouteDsrMsg newRequest = (RouteDsrMsg)msg.clone(); 

List newOptions = newRequest.getOptionsO; 

n ewOpt i on s. r em ove(optB u f); 

NetAddress[] newAddresses = new NetAddress[opt.getNumAddresses()]; 

for (int i = 0; i < newAddresses.length; i++) 

newAddresses[i] = opt.getAddress(i); 

} 

newRequest.addOption(RouteDsrMsg.OptionRouteRequest.create(opt.getl dO, 

opt.getTargetAddressO, newAddresses)); 

NetMessage.Ip newRequestlp = new NetMessage.Ip(newRequest, src, dst, 

protocol, priority, (byte)(ttl - 1), id, fragOffset); 



System. out.println(locaIAddr+"One RREQ tunneled to partner out-band........ from "+src); 

partner.takepack(n ewRequestl p); 
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private void ProcessOptions(RouteMDSRMsg msg, NetAddress src, 

NetAddress dst, short protocol, byte priority, byte ttl, short id, 
short fragOffset) { 

Iterator iter = msg.getOptionsQ.iterator(); 
RouteMDSRMsg.OptionAckRequest ackRequest = null; 
RouteMDSRMsg.OptionSourceRoute sourceRoute = null; 
while (iter.hasNext()) 
{ 

byte[] optBuf = (byte[])iter.next(); 
RouteMDSRMsg.Option opt = RouteMDSRMsg.Option.create(optBuf, 0); 
if (opt == null) 
{ 
// This should never happen in the simulation 
throw new RuntimeException("Unrecognized MDSR Option"); 

switch (opt.getType()) 
{ 
case RouteMDSRMsg.OPT ROUTE_REQUEST: 
HandleRequest(msg, (RouteMDSRMsg.OptionRouteRequest)opt, optBuf, src, 
dst, protocol, priority, ttl, id, fragOffset); 

break; 

case RouteMDSRMsg.OPT ROUTE_REPLY: 
HandleReply(msg, (RouteMDSRMsg.OptionRouteReply)opt); 
break; 

case RouteMDSRMsg.OPT_SOURCE ROUTE: 
sourceRoute = (RouteMDSRMsg.OptionSourceRoute)opt; 

if (localAddr.equals(NextRecipient(sourceRoute, dst))) 
{ 
ForwardPacket(msg, sourceRoute, optBuf, src, dst, protocol, 
priority, ttl, id, fragOffset); 

} 
else 
{ 

Perform RouteSh orten ing(sourceRoute, src, dst); 

break; 

case RouteMDSRMsg.OPT_ACK_REQUEST: 



ackRequest = (RouteMDS RMsg. Option AckRequest) opt; 
break; 

case RouteMDSRMsg.OPT_ACK: 
Hand IeAck((RouteMDSRMsg.OptionAck)opt, dst); 
break; 

case RouteMDSRMsg.OPT_ROUTE ERROR: 
HandleError((RouteMDSRMsg.Option RouteError)opt); 
break; 

case RouteMDSRMsg.OPT_PADI : 
case RouteMDSRMsg.OPT_PADN: 

break; 

default: 
// Possible problem: The processing of unrecognized options should 
// probably occur *before* the processing of any other options. 
// This will never arise in the simulation, though. 
switch ((opt.getType() & 0x60) >> 5) 
{ 

case RouteMDS RMsg. UNRECOGNIZED_OPT_IGNORE: 
// Ignore this option 
break; 

case RouteMDSRMsg.UNRECOGNIZED_OPT_REMOVE: 
{ 

// Remove this option from the packet 
RouteMDSRMsg newMsg = (RouteMDSRMsg)msg.clone(); 

List options = newMsg.getOptionsO; 
opt i on s.rem ove(optB u f) ; 
msg = newMsg; 
break; 

case RouteMDSRMsg.UNRECOGNIZED_OPT_MARK: 
{ 
// Set a particular bit inside the option 

RouteMDSRMsg newMsg = (RouteMDSRMsg)msg.clone(); 
byte[] newOptBuf = new byte[optBuf.length]; 
System.arraycopy(optBuf, 0, newOptBuf, 0, optBuf.length); 
newOptBuf[2] 1= 0x80; 

List options = newMsg.getOptionsO; 
option s.rem ove(optBu f) ; 
options.add(newOptBuf); 
msg = newMsg; 
break; 

} 

case RouteMDSRMsg.UN RECOGNIZED_OPT_DROP: 
// Drop the packet 
return; 

default: 
throw new RuntimeException("Should never reach this point"); 
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break; 
} 

if (ackRequest != null) 
{ 

HandleAckRequest(msg, ackRequest, src, dst, sourceRoute); 
} 

} 
NetAddress partners; 
int type; 
/** 

* Creates a new RouteMMDSR object. 
* 
* @param localAddr local node address 
*/ 
public RouteMMDSR(NetAddress localAddr,NetAddress partners,int type) 
{ 

this.IocalAddr = localAddr; 
this.partners=partners; 
this.type=type; 
InitRouteCache(); 
InitBuffer(); 
InitRequestTable(); 
Ini tRouteReplyTabl e(); 
Ini tMainten an ceB uffer(); 
intilizeStatisticCollector(); 
nextRequestld = 0; 
nextAckld = 0; 
activeRequests = new HashSetQ; 
activeAcks = new HashSet(); 

self = (Routelnterface.Dsr).listAP1.proxy(this, Routel nterface. Dsr. class); 
//*****************************Logger place 

stats.logger,printf{"%s Node Succesfully intilized..\n",IocalAddr); 
stats.I ogger. flush (); 

The following are some of the main methods in proposed MDSR 

private void ForwardRequest(RouteDsrMsg msg, RouteDsrMsg.OptionRouteRequest opt, 

byte[] optBuf, NetAddress src, NetAddress dst, 

short protocol, byte priority, byte ttl, 

short id, short fragOffset) 



// If I've already forwarded this request, ignore it 

for (int i = 0; i < opt.getNumAddresseso ; i++) 

{ 

if (localAddr.equals(opt.getAddress(i))) return; 

} 

// To do in future: Check the Route Cache to see if we know a route to the 

// destination 

// Clone the message, add this node's address to the Source Route option, 

// and retransmit it. 

RouteDsrMsg newRequest = (RouteDsrMsg)msg.cloneO; 

List newOptions = newRequest.getOptions(); 

newOptions. remove(optBuf); 

NetAddress[] newAddresses = new NetAddress[opt.getNumAddresses() + 1]; 

for (int i = 0; i < newAddresses.length-1; i-++) 

{ 

newAddresses[i] = opt.getAddress(i); 

} 

newAddresses[newAddresses. length - 1] = localAddr; 

newRequest, addOpti on (RouteDsr Msg.Option Rout eRequest.create(opt.get I d(), 

opt.getTargetAddressO, newAddresses)); 

maintainencebuffer.add (n ewRequest); 

JistAPI.sleep((long)(Math.random() * BROADCAST JITTER)); 

self.clearMBuf(src,dest, opt); 
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Public void clearMBuf(NetAddress src,NetAddress dest, OptionRouteRequest opt) 

{ 

If( maintainencebuffer.exists(src,dest,opt)) 

{ 

RouteDsrMsg newReques= Maintainencebuffer.get(src,dest,opt); 

NetMessage. Ip newRequestlp = new NetMessage. Ip(newRequest, src, dst, 

protocol, priority, (byte)(ttl - 1), id, fragOffset); 

if(neughbourhoodtable.checkthis(n ewReques)) 

netentity.send(newRequestl p); 

//nothing to d000000000000000 

} 

private void HatndleReply(RouteDsrMsg msg, RouteDsrMsg.OptionRouteReply reply,int ttl) 

{ 

if(isforMe(msg)) 

{ NetAddress dest; 

RouteRequestTableEntry entry; 

OutbandHidden Statistics.n oofrreplyreceived++; 

System -out, println(localAddr+" received one route reply......... 

// Update the Route Request Table 

dest = reply.getAddress(reply.getNumAddresses() - 1); 

entry (RouteRequestTableEntry)routeRequestTable.get(dest); 

if (entry != null) entry.numRequestsSinceLastReply = 0; 

} 

else 

{ 
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activeRequests.remove(dest); 

// Add the route to our Route Cache 

for (int i = 0; i < reply.getNumAddresses(}-1; i++) 

{ 

if (localAddr.equals(reply.getAddress(i))) 

{ 

NetAddressfl route = new NetAddress[reply.getNumAddresses() - 2 - i]; 

for (int j = i; j < i + route.length; j++) 

{ 

route[j - i] = reply.getAddress(j+l ); 

System. out.println(route[j-i]); 

} 

InsertRouteCache(dest, route); 

break; 

} 

} }else{ 

If(ttl=Constants.TTL_DE F UALT) 

{ 

//jam at one hop neighborhood and jam not intended next recipient add entry to 
neighborhood table 

ntable.addfrom(msg); 

} } 

private void SendRouteRepIy(OptionRouteRequest opt, NetAddress src) 

NetAddress[] routeToHere = new NetAddress[opt.getNumAddresses() + 2]; 

routeToHere[O] = src; 

for (int i = 1; i < routeToHere.length-1; i++) 

{ 
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routeToHere[i] = opt.getAddress(i- 1); 

routeToHere[routeToHere.length - 1] = localAddr; 

NetAddress[] routeFromHere = new NetAddress[routeToHere.length - 2]; 

for (int i = 0; i < routeFromHere.length; i++) 

{ 

routeFromHere[i] = routeToHere[routeToHere.length - i - 2]; 

} 

// Add a Route Reply option indicating how to get here from the 

// source and a Source Route option indicating how to get to the 

// source from here. 

RouteMDSRMsg reply = new RouteMDSRMsg(null); 

reply.addOption(RouteMDSRMsg.Option RouteReply.create(routeToHere)); 

if (routeFromHere.length > 0) 

{ 

reply. addOption (RouteMD S RMsg.Option SourceRoute.create(0, 

routeFromHere.length, routeFromHere)); 

} 

int nsize=reply.getSizeO; 

byte[] data = new byte[ 1000-nsize]; 

Message payload = new MessageBytes(data); 

RouteMDSRMsg replyreal=new RouteMDSRMsg(payload); 

replyreal. add Option(RouteMDS RMsg.Option RouteRepI y.create(routeToHere)); 

if (routeFromHere.Iength > 0) 
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replyreal.addOpti on (RouteM DS RM sg.Opt ion Sour ceRoute. create(0, 

routeFromHere.length, routeFromHere)); 

} 

// RouteMDSRMsg.OptionPadN.create(bb); 

System.out.println("SIZE OF ROUTE REPLY IS ::::::::::"+rep]yreal.getSize()); 

NetMessage.Ip replyMsg = new NetMessage.Ip(replyreal, localAddr, 

src, Constants.NET PROTOCOL DSR, Constants.NET PRIORITY NORMAL, 

Constants . TT L_D E F A ULT ); 

JistAPI.sleep((Iong)(Math.random() * BROADCAST_JITTER)); 

Transmit(replyMsg); 

/** ....................logger place.........*/ 

// stats.Iogger.printf("RREPLY : to : %s \t lasthop : %s1n",src,opt.getIastHopAddress()); 

// stats. I ogger. flush (); 

/** 	......................*/ ...................... 

} 

private void AddRequestld(NetAddress src, short id,int length) 

{ 

// Do nothing if it's already in the table 

if (SeenRequestLately(src, id,length)) return; 

// Otherwise add this id to the table 

RouteRequestTableEntry entry = (RouteR equestTableEntry)routeRequestTable.get( src); 

if (entry == nul I) 
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{ 

entry = new RouteRequestTableEntry(); 

routeRequestTable.put(src, entry); 

} 

entry. ids.addFirst(new RID(id,length)); 

if (entry.ids.sizeO > MAX_REQUEST_TABLE_I DS) 

{ 

// Make sure the list doesn't grow too large by removing the least 

// recently seen id number 

entry.ids.removeLast(); 	} 

* Route request ID with length 

*/ 

public class RID 

{ 

short id; 

int length; 

public RID(short id,int length) 

{ 

this.id=id; 

this. length=length; 

} 
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public void receive(Message msg, NetAddress src, MacAddress lastHop, 

byte macld, NetAddress dst, byte priority, byte ttl) { 

if (!(msg instanceof RouteMDSRMsg)) 

{ 

throw new RuntimeException("Non-DSR message received by DSR"); 

} // Don't process any options here -- that's all done by peek. Just forward 

// any content on to the transport layer (or whatever). 

RouteMDSRMsg dsrMsg = (RouteMDSRMsg)msg; 
RouteMDSRMsg.OptionSourceRoute sourceRoute = GetSourceRoute(dsrMsg); 

if (sourceRoute != null) 

{ 

// Strange as it may seem, we will discard this packet, which is 

// in fact intended for us, if it arrives here before traversing 

// the other links in the intended route. (Route shortening should 

// prevent this from happening too often.) 

if (! localAddr.equals(NextRecipien t(sourceRoute, dst))) return; 

} 

if (dsrMsg.getContentO != null) 

{ 

boolean ok=false; 

Iterator iterl = dsrMsg.getOptions().iterator(); 

wh i le(i ter l . h asNextO) 

{ 

byte[] optBufl = (byte[])iter l .nextO; 

RouteMDSRMsg.Option opt] = RouteMDS RMsg.Option .create( optBufl, 
0); 
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if (optl == null) 

{ 

//This should never happen in the simulation 

throw new RuntirneException("Unrecognized DSR Option"); 

} 

if(opt I .getType()==RouteMDS RMsg.OPT—ROUTE—RE PLY) 

{ 

ok=true; 

break; 

} 

}if(!ok){ 

//Now go through some strange contortions to get this message received by 

// the proper protocol handler 

NetMessage.Ip newlp = new NetMessage.Ip(dsrMsg.getContent(), src, dst, 

dsrMsg.getNextHeaderType(), priority, ttl); 

netEntity.receive(newlp, lastHop, macld, false); 

/** ......................logger place.........................................*/ 

stats.Iogger.printf("RECV : from : %s \n",src ); 

stats.I ogger. fl ush (); 

stats.packetRecevied(); 

/** 	 */ .......................................................................... 

} 



/* 
*this is driver file to create field and nodes for simulation. 

* */ 
package driver; 

public class MainDriver { 
private Location.Location2D location;; 

private Random rand; 
@Suppress Warn ings(" unchecked") 

private Vector sources; 
private Vector malnodes; 
private Mobility rmobility; 
private Path Loss p1; 
private Field field; 
private RadioInfo.RadioInfoShared radiolnfo; 
private Placement place; 
private Mapper protMap; 
private PacketLoss outloss,inloss; 
private Vector nodes; 

public MainDriver() 
{ 

sources=new Vector(); 
malnodes=new VectorO; 
nodes=new Vector(); 

} 
private void addNode(int i, int x,int y) { 

RadioNoise radio = new RadioNoiseAdditive(i, radiolnfo); 
Location location = new Location. Location2D(x,y); 
if(location==null) 
{ 

System.out.println("Location is NUI I ......................... 
return; 

} 
Maclnterface macProxy = null; 
Mac802_1 I mac = new Mac802_I 1(new MacAddress(i), radio.getRadiolnfo()); 
mac.setRadioEntity(rad i o.getProxy()); 
macProxy = mac.getProxy(); 
// network 
final NetAddress address = new NetAddress(i); 
NetIp net = new NetIp(address, protMap, inloss, outloss /*, ipStats*/); 

// transport 
TransUdp udp = new TransUdp(); 

System.out.println("Node "+i+" is added at locatio "+x+";°+y)• 

field.addRadio(radio.getRadiolnfo(), radio.getProxy(), location); 
field.startMobility(radio.getRadiolnfo().getUnique().getlD()); 

// node entity hookup 
radio.setFieldEntity(field.getProxy()); 



radio. setMacEntity(mac.getProxyO); 

mac.setRadioEntity(radio.getProxy()); 
byte intld = net.addlnterface(mac.getProxy(),new 

MessageQueue.NoDropMessageQueue(Constan ts.NET_PRI ORITY_N UM, 
(byte)200)); 

mac. setNetEntity(net.getPr oxy(), 
intId); 

net.setProtocolHandler(Constants.NET_PROTOCOL_UDP, udp.getProxy()); 
udp. setNetEntity(net.getProxy()); 

Routelnterface route = null; 

// routing 
igi!=8 && i!=37){ 

RouteMDSR dsr = new RouteMDSR(address); 
dsr. setNetEntity(n et. getProxy()); 
//d sr . get Proxy() . startQ; 
route = dsr.getProxy(); 

net.setProtocol Handler(Con stants.NET_PROTOCOL_DS R, route); 
net. setRouting(route); 
nodes.add(dsr); 

} 
else if (i=8) 
{ 

RouteMMDSR dsr=new RouteMMDSR(new NetAddress(8),new NetAddress(37), I); 
dsr.setNetEntity(n et.getProxy()); 

//dsr. getProxy(). start(); 
route = dsr.getProxy(); 

net.setProtocolHandler(Constants.NET_PROTOCOL_DSR, route); 
net.setRouting(route);  

} 
else if(i==37) 
{ 

RouteMMDSR dsr=new RouteMMDSR(new NetAddress(37),new NetAddress(8),2); 
dsr. setNetEn tity(n et. getProxy()); 

//dsr. getProxyO. st artO; 
route = dsr.getProxy(); 

net.setProtocolHandler(Constants.NET_ PROTOCOL _DSR, route); 
net.setRouting(route); 

} 

private void generateCBRTraffic() { 
. int etime = Integer.parseInt(ss.endtime); 
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long delaylnterval = (long) (((double) 1024 /512) * 1 * Constants.SECOND);//delay interval between 
packets. 

long iterations = (long) Math.ceil(((double) etime * (double) Constants.SECOND) / delaylnterval); 

int nocon = Integer.parseInt(ss.nooftransmissions); 

System. out.printIn("No. of iterations of transfer :" + iterations); 
StatisticCollector.total=(int) iterations; 

byte[] data = new byte[512]; 
Message payload = new MessageBytes(data); 

long currentTime = 0; 

Vector desti=new Vector (); 

int kh=31; 
desti.add(kh); 
kh=30; 
desti.add(kh); 
System.out.print("Chosen "+ nocon + " Sources are: "); 
for (int i = 0; i < sources.size(); i++) { 

System. out.print(sources.get(i) + ": 
} 
System . out, println (); 

System.out.print("Chosen "+ nocon + " destinations are: 
for (int i = 0; i < desti.size(); i++) { 

System. out.print(desti.get(i) + ":")• 
} 
System. out.println(); 

for (int i = 0; i < iterations; i++) { 
for (int j = 0; j <2;j-H-)  { 

NetMessage msg; 
TransUdp.UdpMessage udpMsg = new TransUdp.UdpMessage(4010, 4010, payload); 

int src = ((Integer) sources.get(j)).intValue(); 
int dest = (Integer)desti.get(j); 

Routelnterface srcRoute = (Routelnterface) nodes. elementAt(src); 
//System.out.println("Sending ............. 

msg = new NetMessage.Ip(udpMsg, 
new NetAddress(src), 
new NetAddress(dest), 
Con stants.NET_PROTOCO L_ U D P, 
Constants.NET_PRI ORI TY_N ORM A L, 
(byte) Constants.TTL_DEFAULT); 

sreRoute.send(msg); 

} 
3istAPI.sleep(delayInterval);//packet delay for each source. 
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currentTime += delaylnterval; 
} 

/** 

* builds the simulation field 

*/ 

public void buildField() 
{ 

rand=new Random(Long.parseLong(ss.seed)), 
makeSourcesO; 
makemaliciousNodes(); 

rmobility=new Mobility. Static(); 

int x=1100; 
int y=1100; 
Location.Location2DO corners = new Location.Location2D[4]; 
corners[0] = new Location.Location2D(0, 0); 
corners[1] = new Location.Location2D(1 100, 0); 
corners[2] = new Location.Location2D(0, 1100); 
corners[3] = new Location.Location2D(1100, 

1100); 
Spatial spatial = spatial = new Spatial. LinearList(corners[0], corners[]], 

corners[2], corners[3]); 

pl=new PathLoss.TwoRay(); 
/// rmobility. 
field = new Field(spatial, new Fading.None(), pl, 

rmobi lity,Constants.PROPAGATION_LI M IT_DEFA ULT); 

radiolnfo = Radiol nfo.createShared(Constants. FREQUENCY_DEFAULT, 
Constants.BAND WIDTH _DEFAULT, Constants.TRANSMIT_DEFAULT, 

Constants.GAIN_DEFAULT, Uti1.fromDB(Constants.SENSITI VITY_DEFAULT), 
Util.fromDB(Constants.THRESHOLD_DEFAULT), Constants.TEMPERATURE_DEFAULT, 
Constants.TEMPERATURE_FACTOR_D E FAULT, 

Constants.AMBIENT_NOI SE_DEFAULT); 
protMap = new Mapper(new int[]{ 

Constants.NET_PROTOCOL_UDP, 
Constants.NET PROTOCOL DSR, 

}); 

outloss = new PacketLoss.Zero(); 
inloss = new PacketLoss.Zero(); 
//inloss=outloss; 
place = new Placement. Random(]ocation); 
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int tonodes=Integer.parselnt(ss.noofnodes); 

int xx=25; 
int m=0; 
int yy=25; 

for (inti=0;i<8;i++){ 
xx=25; 
for(int j=0;j<8;j++){ 

addNode(m,xx,yy); 
m±+; 
xx+=150; 

} 
yy+= 150; 

} 
generateCBRTrafficO; 

* Creates location object 
*1 

private void createfield() 
{ 

float x=1100; 
float y=1100; 
location=new Location.Location2D(x,y); 

} 
1** 
* 
* get Sources for transmission 
* 
*1 

private void makeSources() 
{ 

int i=0; 
sources.add(i); 
i=2; 
sources.add(i); 

} 
/** 
* 
* get malicious nodes which are not original transmission sources and destinations 
* 
*1 

private void makemaliciousNodes() 
{ 

int i=9; 
malnodes.add(i); 
i=36; 
malnodes.add(i); 

} 

public static void main(String args[]) 
{ 
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MainDriver ma=new Main Driver(); 

try 
{ 

File ff=neW File(argsj0]); 
ObjectInputStream oin=new ObjectInputStream(new FilelnputStream(ff)); 
mass=(Sim pl eState)oin.readObject(); 

} 
catch(Exception ex) 
{ 

ex. printStackTraceQ; 
} 
long time = Long.parseLong(ma.ss.endtime); 
System. out. println ("»»»»»»»»»»»»»»"+tim a *Constants. SECOND); 

JistAPI.endAt(time * Constants. SECOND); 
StatisticCol lector sc=new StatisticCoI Iector(ma.nodes); 

JistAPl.runAt(sc, JistAPI.END); 

ma.rand=new Random(Long.parseLong(ma.ss.seed)); 
Constants.random = ma.rand; 

ma. createfieldO; 
ma. buildFieldO; 

} 

SimpleState ss=null; 

*This calss is used to collect some statistics. 

**/ 
package driver; 
import java.io.File; 
import java. io.PrintWriter; 
import java.util.Vector; 
import jist. swans .net.NetAddress; 
import j ist. swans. route. RouteDsr; 
import j ist. swans. route. RouteM DS R; 
public class StatisticCollector implements Runnable{ 
/** logger for this entity*/ 
public PrintWriter logger; 
/** total number of packets send by this node*/ 
private int numberofpacketssend; 
/** number of packets received by this node*/ 
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private int numberofpacketsreceived; 
/**number of route requests send by this node*/ 
private int noofrouterequestssend; 
public static int total; 
public static int totalmal=0; 
public StatisticCollector(NetAddress localAddr) 
{ 
try{ 
File sfile=new File("logs/"+localAddr); 
sfi le. createNewF i le O; 
logger=new PrintWriter("logs/"+IocalAddr); 
numberofpacketssend=0; 
numberofpackets rece ived=0; 
} catch (Exception ex) { 
System.err.println("Statistic Collector :"+ex); 
} 
} 
Vector nodes; 
public StatisticCollector(Vector nodes) 
{ 
this. nodes=nodes; 
ix 
} 
public void packetRecevied() 
{ 
numberofpacketsrece ived++; 
} 
public void packetSend() 
{ 
numberofpacketssend++; 
} 
public PrintWriter getLogger() { 
return logger; 
} 
public void setLogger(PrintWriter logger) { 
this. logger = logger; 

public void sendRREQ() 

noofroutereq u estssend++; 
} 
@Override 
public void run() { 
int totalRREQ=O; 
int totalDataSEND=O; 
int tota1DATARECEIVE=O; 
for(int i=0;i<nodes.sizeQ;i++) 

if(nodes.get(i) instanceof RouteMDSR) 
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{ 
RouteMDSR mdsr=(RouteMDSR)nodes.get(i); 
mdsr.getStatso. logger. print 	 PRIN TING FINAL 
STATISTICS OF THIS NODE»»»»»»»»»»\n"); 
mdsr.getStats(). logger. printf("Total RREQ Send: 
%d\n",mdsr.getStats().noofroute requests send ); 
mdsr.getStatsO.logger.printg"Total DATA SEND : %d\n", 
mdsr.getStats().numberofpacketssend); 
x 
mdsr.getStatsO.logger.printf("Total DATA RECEIVE : %d\n", 
mdsr. getStatsO. numberofpac kets received); 
mdsr. getStats(). logger. Flush(); 
totaIRREQ+=mdsr.getStats().noofrouterequestssend; 
totalDataSEN D+=mdsr. getStats(). nu m berofpacketss end; 
totaIDATAREC E IV E+=mdsr.getStats(). numberofpacketsreceived; 
} 
else if(nodes.get(1) instanceof RouteDsr) 
{ 
RouteDsr mdsr=(RouteDsr)nodes. get( i); 
mdsr.getStats(). logger.printf("»»»»>PRINTING 
FINAL STATISTICS OF THIS NODES»»»»»»»»»>\n"); 
mdsr. getStats(). logger. printf("Total RREQ Send: 
%d\n",mdsr.getStatsQ.noofrouterequestssend ); 
mdsr. getStatsO. logger. printf( "Total DATA SEND : %d\n", 
total); 
mdsr.getStats().logger.printf("Total DATA RECEIVE: 
%d\n", mdsr.getStats().numberofpacketsreceived); 
mdsr.getStats(). logger. flush(); 
totalRREQ+=mdsr.getStats().noofrouterequestssend; 
totalDataS EN D+=mdsr. getStats(). nu m berofpac ketssend; 
totaIDATARECEIV E+=mdsr.getStats(). numberofpacketsreceived; 
} 
} 
System. out. printIn("»»»»»»»»»»»»»»»» FIN AL 
SIMULATION STATISTICS»»»»»»»»»»»»»»'); 
System. out.println("DATA SEND :"+totalDataSEN D); 
System.out.println("DATA RECEIVED : "+totaIDATARECEIVE); 
System.out.println("RREQ SEND: "+totaIRREQ); 
float through=totaIDATARECEIVE/(float)total; 
System.out.println("THROUGHPUT : "+through); 
System.err.println("THROUGHPUT : "+through); 
float totaltunnel—totalmal/(float)total; 
System. out.println("IAM OF DATA TUNNELED"+totaltunnel); 
} 
} 
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