
DETECTION AND MITIGATION OF
WORMHOLE ATTACKS IN MANET

A DISSERTATION

Submitted in partial fulfillment of the
requirements for the award of the degree

of
MASTER OF TECHNOLOGY

in
INFORMATION TECHNOLOGY

By

TIRUMAL£SH. C

0 Aft vWL2 A

DEPARTMENT OF ELECTRONICS AND COMPUTER ENGINEERING
INDIAN INSTITUTE OF TECHNOLOGY ROORKEE

ROORKEE -247 667 (INDIA)
JUNE, 2009

Candidate's Declaration

I hereby declare that the work being presented in the dissertation report titled

"DETECTION AND MITIGATION OF WORMHOLE ATTACKS IN MANET" in

partial fulfillment of the requirement for the award of the degree of Master of Technology

in Information Technology, submitted in the Department of Electronics and Computer

Engineering, Indian Institute of Technology Roorkee, is an authenticate record of my

own work carried out under the guidance of Dr. Kum kum Garg, Professor, Department

of Electronics and Computer Engineering, Indian Institute of Technology Roorkee.

I have not submitted the matter embodied in this dissertation report for the award of any

other degree.

C
Dated: ` c\'\ '\'0 0\ 	 (Tirumalesh .C)

Place: IIT Roorkee.

Certificate
This is to certify that above statements made by the candidate are correct to the best of

my knowledge and belief.

Dated:

Place: IIT Roorke .

Dr. Ku 	arg,
Professor,

Department of Electronics and

Computer Engineering, IIT Roorkee,

Roorkee - 247667 (India).

ACKNOWLEDGEMENTS

I am thankful to Indian Institute of Technology Roorkee for giving me this opportunity. It

is my privilege to express thanks and my profound gratitude to my supervisor Prof. Kum

kurn Garg for her invaluable guidance and constant encouragement throughout the

dissertation. I was able to complete this dissertation in this time due to constant

motivation and support obtained from Prof. Kum kum Garg.

I am also grateful to the staff of Network security laboratory for their kind cooperation

extended by them in the execution of this dissertation. I am also thankful to all my friends

who helped me directly and indirectly in completing this dissertation.

Most importantly, I would like to extend my deepest appreciation to my family for their

love, encouragement and moral support. Finally I thank God for being kind to me and

driving me through this journey.

(TIRUMALESH. C)

Abstract

In a Mobile ad-hoc network (MANET), because of its dynamic nature, all the nodes must

cooperate with each other and participate in routing. Most existing routing protocols for

Ad-hoc networks rely on this cooperation. Wormhole attacks are among the most severe

attacks on MANETs, in which two or more colluding attackers tunnel packets from one

place to another. In particular, if attackers selectively tunnel control packets, the nodes

near the attackers choose this tunnel and are prevented from using alternative routes.

In this thesis, we have proposed a multi-path routing protocol, which is a modified

version of single-path Dynamic Source Routing (DSR) protocol. A multi-path routing

protocol provides good defense against an attack like traffic analysis, which can be

performed after a wormhole has been established. Another important effect of a

wormhole attack is packet dropping. To address this problem, we have proposed a

security extension to this multipath routing protocol. This extension is based on fixed size

RREPLY messages. With such a multipath routing and its security extension, we can

detect and mitigate in-band wormhole attacks in MANETs and Sensor networks. The

proposed technique has less overhead on source and destination nodes as well as on

intermediate nodes. It is also possible to isolate the attackers from the network and

prevent throughput of the network from dropping.

The proposed technique has been simulated on the java based Jist-Swans simulator using

various scenarios. The results are shown using the animator Inspect a network

visualization tool for ns2, using open source libraries g++ 4.2.1, gtkglext 1.2.0, and
OpenGL 2.0 on a Linux based core2quad desktop.

CONTENT S

CANDIDATE DECLARATION ...I

ACKNOWLEDGEMENTS..II

ABSTRACT I I I:.......

LIST OF TABLES ..IV

LISTOF FIGURES ..V

LIST OF ACRONYMS ...VI

1. INTRODUCTION
1.1. Introduction and Motivation .. l
1.2. Problem statement ..1
1.3. Organization of the thesis ...2

2. INTRODUCTION TO MOBILE AD-HOC NETWORKS
2.1. Overview .. 3
2.2. Dynamic Source Routing Protocol (DSR) ...5
2.3. Differences with traditional networks ...7
2.4. Possible Attacks ... 8

3. WORMHOLE ATTACKS
3.1. 	Overview ..10
3.2. Types of wormhole attacks ...1 1
3.3. Wormhole attacks effects...... 	...12

3.3.1. 	DoS 	attack ..13
3.3.2. 	Cache poisoning ...13
3.3.3. 	Sinkhole attack ...13
3.3.4. 	Traffic analysis ..13

3.4. Difficulties in detection ..13
3.5. Existing prevention techniques14

3.5.1. 	Packet leashes ..14
3.5.2. 	Delay based ...15
3.5.3. 	Statistical methods ...16
3.5.4. 	Neighbor List ..16
3.5.5. 	Wormhole detection based on packet dropping16

iv

	

3.5.6. 	Network visualization........ _ ..17

	

3.5.7. 	Directional antennas.................. ...17
3.6. Limitations of existing techniques .. l 8

4. MULTIPATH DSR PROTOCOL
4.1. 	Introduction... 	...20
4.2. 	Modifications to DSR ...22

4.2.1. 	Route discovery at source node ...22
4.2.2. 	RREQ processing at intermediate nodes23
4.2.3. 	Example Neighborhood table updating scenarios27

4.2.3.1. 	Scenario! _ ..27
4.2.3.2. 	Scenario2 ..28
4.2.3.3. 	Scenario3 ..29

4.2.4. 	RREPLY at destination and intermediate nodes30
4.3. Mitigation of wormhole attack effects ..30

4.3.1. 	DoS attack ..30
4.3.2. 	Cache poisoning, indirect Sinkhole attack and Traffic analysis............31

5. SECURITY EXTENSION
5.1. Extensions to proposed MDSR ..32

	

5.1.1. 	Fixed RREPLY messages ..32

	

5.1.2. 	Suspicious table ...33
5.2. Mechanism ... 3 3
5.3. Analysis ..3 4

6. SIMULATION
6.1. JiST-Swans ...35
6.2. Simulation parameters ..37
6.3. Simulation network ..3 8
6.4. Metrics for evaluation ...40
6.5. Analysis of Results ..40

7. CONCLUSION
7.1. Summary of work done ..45
7.2. Suggestions for further work ..45
7.3. Contributions ..46

REFERENCES

APPENDIX: CODE LISTING

V

LIST OF TABLES

2.1 MANET vs. Traditional wired and cellular networks 	 7

4.1 RREQ at Source node 	 23
4.2 Seen-RREQ Table 	 24
4.3 Neighborhood Table 	 24

6.1 Field Parameters 	 37
6.2 Physical layer parameters 	 38
6.3 Protocols used 	 38

vi

LIST OF FIGURES

2.1 Mobile Ad-hoc Network 	 3

2.2 RREQ broadcasting from node A to node E to discover route 	 5

2.3 Possible attacks in MANETs 	 E

3.1 MANET with two malicious nodes forming a tunnel 	 10

3.2 In-band wormhole attack 	 I

4.1 RREQ propagation in DSR 	 22

4.2 Flow chart of RREQ processing at intermediate nodes 	 26

4.3 Scenario 1 	 27

4.4 Scenario2 	 28

4.5 Scenario3 	 29

VII

LIST OF ACRONYMS

MANET Mobile Ad-hoc Network

DSR Dynamic Source Routing

MH Mobile Host

DSDV Destination-Sequenced Distance-Vector

OLSR Optimized Link State Routing

TBRPF Topology Dissemination Based on Reverse Path Forwarding

AODV Ad Hoc on-Demand Distance Vector

TORA Temporally Ordered Routing Algorithm

ABR Associativity Based Routing

SSR Signal Stability Routing

ZRP Zone-Based Hierarchical Link-State Routing Protocol

RREQ Route request Packet

RREPLY Route reply packet

ACK Acknowledgment packet

CSMA/CD Carrier sense multiple access with collision detection

IP Internet Protocol

IDS Intrusion detection system

MDSR Multipath DSR

TTL Time to live

MTU Maximum Transfer unit

MDSR-Se Multipath DSR with security extension

viii

1. INTRODUCTION

1.1 Introduction and Motivation

Mobile Ad-Hoc networks (MANETs), are networks which requires very minimal or no

infrastructure. These networks can be formed very quickly using wireless mobile hosts

(MH). MANET is one that comes together as needed, not necessarily with any support

from the existing infrastructure or any other kind of fixed stations. A MANET consists of

mobile platforms (e.g., a router with multiple hosts and wireless communications

devices) herein referred to as "nodes" which are free to move about arbitrarily [1].

MANETs have a wide range of applications, especially in military operations,

emergency and disaster relief efforts. However MANETs are more vulnerable to security

attacks than conventional wired and wireless networks due to the dynamic topology,

distributive and co-operative sharing of channel and power and computation constraints

[2].

Wormhole attacks are one of the most powerful attacks in MANETs since they involve

the cooperation between two or more malicious nodes that participate in network routing

[3]. One attacker, say node Ml, captures routing traffic at one point of the network and

tunnels them to another point in the network, say node M2. Node M2 then selectively

injects tunneled traffic back into the network. The connectivity of the nodes that have

established routes over the wormhole link is completely under the control of the

colluding attackers [4].

1.2 Problem statement

The main difference between MANET and other wireless networks occurs at the network

layer. This is because in a MANET all the nodes participate in routing. In order to widely

deploy Mobile Ad hoc networks, a good routing protocol is very important. In this thesis

work, we analyze the effects of different wormhole attacks and propose a multipath

routing protocol with an extension to detect and mitigate wormhole attacks.

1

1.3 Organization of thesis

Including this introductory chapter, this report contains 7 chapters

In chapter 2 we present an overview of MANET and their routing protocols and also

discuss Dynamic Source Routing Protocol and various attacks that are possible on

MANET.

In chapter 3 we discuss the Wormhole attacks in detail. We also discuss why the

wormhole attack is hard to detect and present existing techniques to mitigate wormhole

attacks, and also their limitations.

In chapter 4 we present our proposed modifications to DSR to make it multi-path and

analyze the modifications.

In chapter 5 we discuss an extension to the proposed multipath DSR to detect and

mitigate in-band wormhole attacks.

Chapter 6 presents the simulation parameters and scenarios and also the simulation

results obtained in detail.

Chapter 7 concludes this thesis by giving limitations of work done and suggestions for

further work.

2. Introduction to Mobile Ad-hoc Networks

2.1 Overview

A Mobile ad hoc network (MANET) is a collection of wireless mobile nodes.

dynamically forming a temporary network without the use of any existing network

infrastructure or centralized administration. The nodes are free to move randomly and

organize themselves arbitrarily; thus, the network's wireless topology may change

rapidly and unpredictably. Such a network may operate in a stand-alone fashion, or may

be connected to the Internet. Multi hop, mobility, large network size combined with

device heterogeneity, bandwidth, and battery power constraints make the design of

adequate routing protocols a major challenge for MANETs [1]. Figure 2.1 shows a

typical MANET.

o 0
o 'HO 0

0 o 	__1

000
 0 0

d ~~ ~ Source ; ' Destination

0 0
0

00
.^f

t 1

Intermediate node

Figure: 2. I Mobile Ad-hoc Network

In Figure 2.1, source node is shown transmitting the data to a destination node with the

help of intermediate nodes. All the intermediate nodes must cooperate with the sender

3

and receiver to transfer data. This means that each intermediate node has full access to

the packets flowing through it.

There are mainly 3 types of routing protocols [15] in MANETs.

1. Proactive routing protocols

2. Reactive routing protocols and

3. Hybrid routing Protocols

The Proactive routing protocol always maintains a route to each and every node in the

network. Route creation and maintenance are performed through both periodic and event-

driven messages. Various proactive protocols are Destination-Sequenced Distance-Vector

(DSDV), Optimized Link State Routing (OLSR), and Topology Dissemination Based on

Reverse Path Forwarding (TBRPF). Proactive routing protocols suffer from scalability

because of periodic messages [1], which needs to be sent even if the network is static.

These messages consume a lot of bandwidth and power.

The Reactive routing protocol reduces overhead as the route between two nodes is

discovered only when it is needed. There are different reactive routing protocols such as

Dynamic Source Routing (DSR) [2], Ad Hoc On-Demand Distance Vector (AODV).

Temporally Ordered Routing Algorithm (TORA), Associativity Based Routing (ABR),

and Signal Stability Routing (SSR). Reactive routing protocols mainly use route

discovery and route reply messages to find routes between two nodes whenever it is

necessary. Route discovery messages are broadcast.

In addition to proactive and reactive routing protocols, another class of unicast routing

protocols that can be identified is hybrid protocols. The Zone-Based Hierarchical Link-

State Routing Protocol (ZRP) is an example of a hybrid protocol that combines both

proactive and reactive approaches, thus trying to bring together the advantages of the two

approaches.

In this thesis work we use DSR as our routing protocol because of its scalability, low

overhead and the ability to adapt to mobility.

4

2.2 Dynamic Source Routing protocol (DSR)

The Dynamic Source Routing protocol (DSR) [2] is a simple and efficient routing

protocol designed specifically for use in multi-hop, wireless ad hoc networks of mobile

nodes. DSR allows the network to be completely self-organizing and self-configuring,

without the need for any existing network infrastructure or administration. The protocol

is composed of the two main mechanisms of "Route Discovery" and "Route

Maintenance", which work together to allow nodes to discover and maintain routes to

arbitrary destinations in the ad hoc network.

All aspects of the protocol operate entirely on demand, allowing the routing packet

overhead of DSR to scale automatically to only what is needed to react to changes in the

routes currently in use. Other advantages ofthe DSR protocol include easily guaranteed

loop-free routing, operation in networks containing unidirectional links, use of only "soft

state" in routing, and very rapid recovery when routes in the network change. The DSR

protocol is designed mainly for mobile ad hoc networks of up to about two hundred

nodes and is designed to work well even with very high rates of mobility [2].

When some source node originates a new packet addressed to some destination node, it

places in the header of the packet a "source route" giving the sequence of hops that the

packet is to follow on its way to the destination. Normally, the sender will obtain a

suitable source route by searching its "Route Cache" of routes previously learned; if no

route is found in its cache, it will initiate the Route Discovery protocol to dynamically

find a new route to this destination node.

Eid 	 „A, B., 	E"A,C„ id 1 I
A 	 B 	c_ 	 D 	 E 1

Figure 2.2 RREQ broadcasting from node `A' to node `E' to discover route

For example, in Figure 2.2, node A is attempting to discover the route to node E, A

broadcasts a packet called RREQ. All the nodes that are within the transmission range of

5

A receive this broadcast packet. Node sends route reply message if it is the intended

destination node, otherwise it checks whether it has already seen a route request from this

source with the same ID. If yes, it drops the packet, otherwise it forwards it. In the above

example, nodes B, C, D forward the RREQ packet. Node E sends a route reply

(RREPLY) by placing the route information that is identified with RREQ message.

When originating or forwarding a packet using a source route, each node transmitting the

packet is responsible for confirming that data can flow over the link from that node to the

next hop. For example, in the situation shown in Figure 2.2, node A has originated a

packet for node E using a source route through intermediate nodes B, C, and D. In this

case, node A is responsible for the link from A to B, node B is responsible for the link

from B to C, node C is responsible for the link from C to D, and node D is responsible for

the link from D to E. The nodes fulfill this responsibility either using built-in

acknowledgments like MAC layer CTS (clear to send) or using promiscuous mode if

available. Otherwise the node can explicitly request DSR software to send an ACK

message. If a node fails to receive an ACK for a fixed period of time, it sends a route

error messageback to the source, stating that the link is broken. In this case, the source

chooses another path from the cache or broadcasts a RREQ message.

In addition to the basic mechanism DSR RFC [2] mentions the following optimizations.

I. Caching overheard Routing information

2. Replying RREQs with cached routes.

3. RREQ by hop limits

4. Packet salvaging

5. Queued packets destined over a broken link

6. Automatic route shortening

7. Increased spreading of route error messages

8. Flow state extension

In our thesis work we propose a multi-path routing protocol based on DSR. DSR by itself

gives the source node options in route paths. With our proposed modifications, the

number of available distinct paths will increase.

2.3 Differences with traditional networks

Different types of devices are used as nodes in ad hoc networks. For example, we can

have PDA-like devices,. mobile phones, two-way pagers, sensors, or laptop computers

with different capabilities in terms of maximum transmission power, energy availability,

mobility patterns, and QoS requirements. Thus Ad hoc networks are generally

heterogeneous in terms of nodes and services offered. In terms of energy and power, one

has to consider not only node heterogeneity, but also varying communication ranges,

such as sleeping or active modes and the existence of energy supplies. Ad hoc networks

also raise new issues concerning security and privacy [5].

Infrastructure networks 	 Infrastructure less networks

Fixed pre allocated cells and base stations 	No base station and rapid deployment

Routing decisions taken by Iimited number Routing decisions taken by all the nodes in f

of trusted nodes. 	 the network.

Static backbone network topology 	Highly dynamic network topology

Stable connectivity 	 Irregular connectivity

Detailed planning before backbone network Ad-hoc networks automatically forms and

installed 	 adopt to the changes

High setup cost 	 Cost-effective

High setup time 	 Very less setup time

Table 2.1: MANET vs. Traditional wired and cellular networks

Table 2.1 lists some of the main differences of MANETs with wired and cellular

networks.

Wireless multiple accesses can be categorized into random access (e.g., CSMA and

CSMA with Collision Detection [CSMA/CD]) and controlled access. Random access is

suitable for ad hoc networks because of lack of infrastructure support [I].

7

The main functionalities of networking protocols need to be redesigned for MANETs.

Current solutions like Mobile IP, generally adopted to manage mobile terminals in

infrastructure networks, are inadequate and new approaches need to be found for mobile

management.

Moreover, very minor changes are required in the transport layer. The main changes

occur in the network layer.

2.4 Possible attacks

Figure 2.3 shows different attacks possible on MANETs. Among different attacks,

attacks on MAC layer are common to all wireless networks. Attacks on transport layer

and application layer are common to all wired and wireless networks.

Attacks on routing protocols are unique to MANETs. Among different attacks on

network layer colluding attacks are hard to detect. In colluding attack two or more

attackers cooperate to launch the attack.

Some of the attacks can be launched by outsider nodes and some of the attacks can be

launched only by insider nodes. Attacks in which attackers does not require to alter

packets can be launched by outsider nodes. This is possible because, MANETs operate

on wireless medium, in which every node can overhear the transmission if the node is

within the transmission range of transmitting node.

In this thesis work we concentrate on wormhole attacks. These are colluding attacks and

can be launched by outsider nodes without altering the packet. Wormhole attack can be

launched against all the routing protocols of MANET. In the next chapter we study more

about the wormhole attacks.

E

Pas!

MAC layer 	Network laver 	 Tran. nrt 	Ao
Wormhole

Jamming 	 Black hole 	 Session
Information disclosure

Rushing

laver

Repudiation

Figure 2.3: Possible attacks in MANETs

3. WORMHOLE ATTCKS
3.1 Overview

Among the different attacks on MANETs, colluding attacks, where two are more nodes

cooperate to execute the attack, are more difficult to detect. Among colluding attacks, a

wormhole attack is a particularly severe attack on MANET routing, where two or more

attackers, connected by a high-speed off-channel link or logical tunnel through other

nodes [6]. These attackers then record the wireless data they overhear, forward it to each

other, and replay packets at the other end of the network. By replaying valid network

messages at improper places, wormhole attackers can make far apart nodes believe they

are immediate neighbors, and force all communications between affected nodes to go

through them.

0 000 0 	0
,00

O 9- - - -

O Normal nodes in the
network

Malicious

Tunnel

Figure 3.1: MANET with two malicious nodes forming a tunnel

Figure 3.1 shows a MANET with two attacker nodes. If the attacker nodes are placed

well in the network then they can attract more traffic. If used well, an off-link tunnel may

help other nodes in routing the information easily by saving power consumption and

delay. But this keeps the attacker in an excellent position in the network where he can

hear the traffic and analyze it or drop critical information to distract the other nodes in the

network.

10

3.2 Types of wormhole attacks

Based on the wormhole tunnel, two different types of wormhole attacks are possible.

1. In-band wormhole attacks

2. Out-band wormhole attacks

In in-band wormhole attack, the wormhole tunnel is established through other nodes in

the network.

D'

8 0 	
G

S" 	 A

0 (E)

nit Malicious 	 Source 	 Destination

Figure 3.2: In-band wormhole attack

In Figure3.2, S sends the data packets to D through the malicious nodes Ml and M2. But

nodes S and D assume that Ml and M2 are direct neighbors. In fact, the transmission

between M1 and M2 goes through some other nodes. This is possible in DSR if node Ml

tunnels all the RREQ packets to node M2 and node M2 rebroadcasts the packets. if any

RREPLY comes to node M2, it tunnels it back to M I and M I sends it to source node S.

Node S assumes the path length to be 2 hops. So it selects this path S-M l-M2-D node

sends the data packets. M1 can analyze this traffic or it can drop all the data packets.

11

In out-band wormhole attack; the tunnel is established using a dedicated wired

connection between the attackers or using a high frequency wireless transmission. In out-

band wormhole attacks the attackers are actual neighbors. They do not need to depend on

other nodes for their communication.

In both in-band and out-band wormhole attacks, it is possible to hide or expose the
malicious nodes.

In hidden wormhole attack, after receiving the RREQ packet, the malicious node simply

tunnels it without altering the packet. So the source node does not know that MI is in the

path. In Figure 3.2 with hidden wormhole attack, node S assumes that node D is its direct

neighbor.

In exposed wormhole attack after receiving the RREQ packet the malicious nodes adds

itself to the end of the list and tunnels the packet to the other malicious node. The other

node also appends itself to the list and broadcasts the packet. In Figure 3.2, with exposed

wormhole attack, node S assumes the path to D as S-M 1-M2-D.

3.3 Wormhole attack effects

To form a wormhole tunnel, an attacker places the first malicious node near the

destination node and the second malicious node near the source node. This placement of

wormhole attack nodes has severe effects on route discovery process.

In case of out-band wormhole attacks due to the use of high frequency bands for

communication; assist the wormhole nodes to propagate the RREQ speedily through the

wormhole tunnel to destination, resulting RREQ through other legitimate paths to be

discarded. After receipt of RREQ, destination processes RREQ and replies with

RREPLY message.

Now the type of attack formed depends on the processing of received RREPLY from

destination node at wormhole attacker node near destination. Following attacks could be
possible.

12

3.3.1 DoS attack

If the received RREPLY from destination node is discarded at wormhole node, then

routes are not discovered at the source node and resulting in repeated route discovery

process at source node, forming a Denial of service attack [3].

3.3.2 Cache poisoning

If the received RREPLY from destination node are tunnelled back to source node through

formed wormhole tunnel, then a shorter path though the wormhole tunnel is recorded by

source node and nodes surrounding source node. This shorted path between source and

destination nodes may be communicated to other nodes of network using an optimisation

of DSR called Automatic Route Shortening. Resulting in an attack called cache poisoning

[4].

3.3.3 Sinkhole attack

After successful formation of a path through the wormhole tunnel, between source and

destination nodes, the attacker node may selectively drop the data packets, resulting in an

indirect sinkhole attack [7].

3.3.4 Traffic analysis

After successful formation of a path through the wormhole tunnel, between source and

destination nodes, the attacker node gets to see every packet destined to other nodes.

Hence they can analyse the traffic [7].

In our thesis work, we will address all these different effects of wormhole attacks. .

3.4 Difficulties in detection

Wormhole attack is a colluding attack, which means two or more malicious nodes

cooperate to execute the attack. So it is not possible to detect this attack with ordinary

intrusion detection systems (IDS) like pathrator or ex-pathrator [8]. Pathrator requires all

the nodes to be in promiscuous mode, when node A propagates a packet to node B, it

listens to B to know whether it is forwarding the packet or not. If B is not forwarding the

13

packet, it is treated as a malicious node. While analyzing the traffic, wormhole attacks do

not drop packets. Thus IDS cannot detect the attack. Furthermore even it is possible to

drop packets, the attacker need to drop packets at the malicious node which is close to the

destination.

It is possible to execute the attack even when all the information, including routing

information, is encrypted or digitally signed. This can be achieved because even outsider

nodes can create out-band wormhole attack without altering the packets, simply by

tunneling the control packets, If it is difficult to identify control packets they tunnel all

packets. This is possible because MANETs operate in an open medium, where any node

can hear the transmission, if the transmitting node is within its range.

It is practically not possible to propose a completely software based solution for detecting

out-band wormhole attacks [2]. This is because, in out-band worm hole attacks, the

attackers are actual neighbors, and they use other dedicated medium for communication

between themselves. It is not possible for other nodes to detect this communication.

3.5 Existing prevention techniques

3.5.1 Packet leashes:

A leash is any information that is added to a packet designed to restrict the packet's

maximum allowed transmission distance. In [2] [3], authors proposed two different types

of leaches geographical leashes and temporal leashes. A geographical leash ensures that

the recipient of the packet is within a certain distance from the sender. A temporal leash

ensures that the packet has an upper bound on its lifetime, which restricts the maximum

travel distance, since the packet can travel at most at the speed of light. Either type of

leash can prevent a wormhole attack, because it allows the receiver of a packet to detect

if the packet traveled further than the leash allows.

To construct a geographical leash, in general, each node must know its own location and

all nodes must have loosely synchronized clocks. When sending a packet, the sending

node includes in the packet its own location, ps, and the time at which it sent the packet tS.

If the clocks of the sender and receiver are synchronized to within +-A, and v is an upper

14

bound on the velocity of any node, then the receiver can compute an upper bound dsr on

the distance between the sender and itself.

To construct a temporal leash, in general, all nodes must have tightly synchronized

clocks, such that the maximum difference between any two nodes' clocks is A. The value

of the parameter A must be known by all nodes in the network, and for temporal leashes,

generally must be on the order of a few microseconds or even hundreds of nanoseconds.

To use temporal leashes, when sending a packet, the sending node includes in the packet,

the time at which it sent the packet, ts; when receiving a packet, the receiving node

compares this value to the time at which it received the packet, tr. The receiver is able to

detect if the packet traveled too far, based on the claimed transmission time and the speed

of light.

3.5.2 Delay based:

In [5], the authors proposed a mechanism which uses link delays to identify wormholes.

This detection mechanism works for proactive routing protocols like OLSR. To maintain

network topology, all the nodes in the network broadcast periodical HELLO messages to

their neighbours. After receiving the neighbour's reply for HELLO messages. attackers

tunnel this HELLO messages to construct wormholes. After receiving all reply messages.

a node calculates the delay. If the delay is longer this link is identified as a suspicious

link. For all suspicious links, a node sends a Probe packet. Once a node receives a probe

packet, it responds to it by stopping all other transmissions. Using this information a node

finds wormholes.

In [9], the authors proposed a per hop delay based technique to identify a wormhole

attack. Where, each node sends a RREQ message and waits for RREPLY message before

sending the actual data. All the intermediate nodes attach a time stamp to it; the

destination copies the path and time stamps and sends back to source. The source

calculates the delays and suspects the links with large delays.

15

3.5.3 Statistical methods:

In [10], the authors proposed a statistical mechanism for detecting wormholes. This

mechanism works for reactive routing protocols in which each node sends RREQ before

sending the data to a node if it does not have the route to it, and the destination sends

route reply messages. After receiving all the route reply messages, the source calculates

the frequency of each link. If the difference between first and second frequency is very

high, then the first link is a wormhole link.

In [6], each node collects information from 3-hop neighbors and sends it to the

coordinator. The coordinator analyses and takes decisions based on this information.

3.5.4 Neighbor List:

Khalil et al [11] [12] propose a protocol for wormhole attack discovery in static

networks, called LiteWorp. In LiteWorp, nodes obtain full two-hop routing information

from their neighbors. While in a standard ad hoc routing protocol, the nodes usually keep

track of who their neighbors are; in LiteWorp they also know who the neighbor's

neighbors are. They can take advantage of two-hop, rather than one-hop, neighbor

information. This information can be exploited to detect wormhole attacks.

After authentication, nodes do not accept messages from those they did not originally

register as neighbors. Also, nodes observe their neighbor's behavior to determine whether

data packets are being properly forwarder by the neighbor, - a so-called `watchdog'

approach. LiteWorp adds an interesting wormhole-specific twist to the standard

watchdog behavior: nodes not only verify that all packets are forwarded properly, but

also make sure that no node is sending packets it did not receive (as would be the case

with a wormhole)

3.5.5 Wormhole detection based on packet dropping:

Several researchers worked on the wormhole attack problem by treating a wormhole as a

misbehaving link. In such approaches, a wormhole attack is not specifically identified.

Rather, the wormhole's destructive behaviour is mitigated.

16

Baruch [13] and Chigan [8] use link rating schemes to prevent black hole and wormhole

attacks. They rely on authenticated acknowledgements of data packets to rate links: if a

link drop packets, the acknowledgements do not get through; such a link is rated low and

avoided in future.

3.5.6 Network visualization:

Wang and Bhargava [14] introduce an approach in which network visualization is used

for discovery of wormhole attacks in stationary sensor networks. In. their approach, each

sensor estimates the distance to its neighbors using the received signal strength. During

the initial sensor deployment, all sensors send this distance information to the central

controller, which calculates the network's physical topology based on individual sensor

distance measurements. With no wormholes present, the network topology should be

more or less flat, while a wormhole would be seen as a `string' pulling different ends of

the network together.

3.5.7 Directional Antennas:

Directional antennas have been extensively studied in the general literature [16]. When

directional antennas are used, nodes use specific `sectors' of their antennas to

communicate with each other. Therefore, a node receiving a message from its neighbor

has some information about the location of that neighbor. It knows the relative orientation

of the neighbor with respect to itself. This extra bit of information makes wormhole

discovery much easier than in networks with exclusively Omni directional antennas.

In [16], Hu and Evans propose a solution to wormhole attacks for ad hoe networks in

which all nodes are equipped with directional antennas. Wormholes introduce substantial

inconsistencies in the network, and can easily be detected.

In SERLOC [7], Lazos et al use a slightly different approach. Here, only a few nodes

need to be equipped with directional antennas, but these nodes also have to be location-

aware. These nodes then send out localization beacons, based on which, regular network

nodes determine their own relative Iocations.

17

3.6 Limitations of existing techniques

The various existing techniques studied in the previous section have many limitations,

these are discussed below

• The level of time synchronization required for temporal leashes [3] (on the order

of Nanoseconds) entails the use of specialized hardware not currently practical in

wireless ad hoc networks. In sensor networks, such level of synchronization is

impossible [13] at this time. Temporal packet leashes thus offer an elegant but not

practical solution to Wormhole attacks.

• Geographical leashes work fine when GPS coordinates are practical and available.

However, modern GPS technology has significant limitations that should not be

overlooked. While the price of GPS devices is going down, it remains substantial.

Besides, GPS is somewhat of a nuisance for personal laptops. Also, while it is

possible to achieve GPS precision of about 3m with state-of-the-art GPS devices

[13], consumer-level devices do not get (and do not require) this level of

resolution. Finally, GPS systems are not versatile, as GPS devices do not function

well inside buildings, under water, in the presence of strong magnetic radiation,

etc.

• RTT-based approaches [5][10][17] are incompatible with the standard 802.11

MAC protocol. Thus, on top of possibly requiring specialized hardware, these

approaches also prohibit the use of the standard MAC protocol, and, overall, do

not seem practical.

• Some approaches [13][8] are geared towards discovery and prevention of only

one kind of wormhole behavior: packet loss. Wormholes can do much more than

that. They can send packets out of order, confuse location-based schemes, or

simply aggregate packets for traffic analysis. Even the distortion of topology

information that a wormhole introduces can be a significant problem in particular

networks.

18

• The methods proposed by [4] and [7] are both viable, and could be easily applied

to networks that use directional antennas. Currently, such networks are mostly in

research stage, and their future prominence is not clear [14].

• Methods given in [11][12] are interesting, but would not work at all in a scenario

where node mobility is a factor. Since a node's neighbors are determined and

detected only once [18], and the packets from non-neighboring nodes are rejected,

no node movement is allowable. Therefore, these are applicable to static networks

only.

• Methods given in [10] [17] are somewhat limited in scope as they apply only to

routing protocols that are both on-demand and multipath. Non-multipath on-

demand protocols do not provide enough information for the determination of link

frequencies. While on-demand routing protocols keep complete information about

routes they discover, proactive ones rely on next-hop information, which does not

allow the calculation of link frequencies

Overall, while a number of techniques have been proposed to combat wormhole

attacks, an easy lightweight solution is still lacking. The following are some of the

issues we have addressed in this work.

I. No solution addressed DOS attack created by out-band wormhole in reactive

protocols.

2. All the solutions that are proposed are applicable for either proactive or reactive

protocols. We need a solution works for both proactive and reactive protocols.

3. All the solutions work for either multi-hop, single path or multi-hop, multipath

protocols. We need a solution works for both types of protocols.

4. Most of the solutions use additional hardware for maintaining time

synchronization or to know the exact position of the node. Our solution should do

not require any additional hardware.

5. In this work we do not assume any restrictions on node mobility and on the

topology of the network.

6. We need a solution that works for both hidden and exposed wormhole attacks.

19

4. MULTIPATH DSR PROTOCOL

4.1 Introduction

In this chapter we present our proposed multi-path routing protocol based on DSR, called

Multipath DSR (MDSR). The main objective of the proposed MDSR is to minimize the

effects of in-band and out-band wormhole attacks. In the next chapter, we propose a

security extension to MDSR to detect and isolate hidden and exposed in-band wormhole

attacker nodes.

Multipath routing protocols, due to the existence of multiple routes between

communicating nodes, have the following advantages over unicast protocols [19].

1. Increases the aggregated throughput of the network

2. Achieves load balancing and resource preservation.

3. Good resistance against attacks like repudiation, eavesdropping and traffic

analysis.

Our proposed MDSR, like any other existing multi-path routing protocol, based on

reactive routing protocols like DSR and AODV has following three phases.

1. Finding the routes to destination

2. Selecting the route to use

3. Maintaining the routes

Before stating the actual changes needed to DSR, let us closely observe the RREQ

propagation in DSR, to point out the loopholes that are exploited by wormhole attacker to

form a wormhole tunnel with the help of Figure 4.1.

Suppose node 0 broadcasts a RREQ packet to node 30 with RREQ ID=I . All the nodes in

the transmission range of 0 will receive this RREQ. From Figure 4.1 nodes 1, 8 and 9

receives the RREQ. Since these nodes are not the intended recipients and this is the first

RREQ they are seeing from node 0 with this RREQ ID, they will forward this RREQ to

20

their neighbor nodes 2, 10, 18, 16, 17. This process continues until the RREQ reaches the

destination node 30.

Out-band wormhole attack uses the fact that all intermediate nodes forward a RREQ

packet only once if it is not seen it earlier. If some parts of the network are congested or

highly mobile or out-band wormhole attack is launched at the time of RREQ propagation,

we observed two problems. They are described as fallows

1. RREQ from the non congested paths arrive quickly compared to the paths with

congested or highly mobile or out-band wormhole formed areas of network. This

results no paths through congested or highly mobile area. It is ok, if the area is

congested or under high mobility for long time. But if the area recovered quickly

and if through that area, a shorter path exists, and then the shorter path may be not

utilized.

2. The 1-hop neighbors of destination after receiving first RREQ propagate to

destination and also among them. Then this results in discarding the RREQ

packets from most of the other paths to the destination node. This problem can be•

visualized using Figure 4.1. Suppose among the 1-hop neighbors of node 30, node

22 receive RREQ early, and it forwards this RREQ to nodes 21, 23, 30, 29 and

31. All the nodes receive this RREQ and drop all the consequent RREQ packets.

This will result formation of only I path between source and destination.

In our proposed MDSR, we took care to overcome above problems in forwarding RREQ

in the process of finding the routes to destination, as these problems are exploited by

wormhole attacker to form wormhole tunnels.

Selecting the route to use depends on the needs of the application. If the application

requires robustness, it can send same packet through multiple paths. If the application

requires load balancing among the network it can choose different paths to send data

packets.

Maintaining routes is same as normal DSR.

21

00000000
00 E®®

16 17 18 19 20 21 22 	23

24 25 26 27 ®®:Y®
32 	33 	34 	35 	36 	37 	38 	39

Source Node 	: 	Destination

Figure 4.1 RREQ propagation in DSR

4.2 Modifications to DSR

To address the above problems, we proposed following modifications.

1. Route discovery at source node.

2. Processing and forwarding of RREQ at the intermediate node.

3. RREPLY at destination and intermediate nodes.

4.2.1 Route Discovery at source node

• When a source node wants to transmit a data packet to a destination node, to

which it does not have a known path, it initiates the route discovery process by

broadcasting a RREQ packet.

• After broadcasting the RREQ packet, the source node sets a timer whose time

period T is determined by using formula given below.

2*R
T= V +C

Where R = Maximum Transmission range.

22

V= Speed of the wireless signal.

C= Constant value, R/2*V as used in our simulations.

The time value of timer indicates the time needed to receive a RREPLY from 1-

hop neighbor.

• Acceptance of RREPLY depends on the arrival time and the path length between

source and destination node.

• The possible arrivals for RREPLY packets could be as follows.

	

case i. 	Arrival of RREPLY before timer expires and

a. if path length is equal to 1, then accept the RREPLY.

b. else reject RREPLY, as RREPLY received may be a forged reply

from a malicious node.

	

case ii. 	Arrival of RREPLY after the timer expires and

a. if path length is equal to 1, then reject the RREPLY, because it

may be a RREPLY received from a malicious wormhole tunnel.

b. else path length greater than 1, accept the RREPLY, RREPLY has

been travelled along the path containing only legitimate nodes

from destination to source.

This is shown in Table 4.1

With in time period of Timer After the Timer expires

Path length = I Accept, as RREPLY Reject, May be from

received satisfies the 1-hop WORMHOLE TUNNEL.

Roundtrip time.

Path length > I Reject. May be a forged Accept (path having only

reply. legitimate nodes).

Table 4.1 RREQ at source node

4.2.2 RREQ processing at intermediate nodes

The main purpose of this modified RREQ processing at intermediate nodes is to make

each intermediate node forward the RREQ more than once if it is from a congested area.

And also make all 1-hop neighbors of destination forward the RREQ packets received

23

through different paths by discarding the RREQ coming from other 1 -hop neighbors of

destination. In order to achieve this each node in MANET maintains two Tables, Seen-

RREQ and the other is Neighborhood table.

Seen-RREQ Table is the same as RREQ Table in DSR, which consists of source node,

RREQ ID, TTL value. For example Table 4.2 shows the Seen-RREQ Table at node 1 in

Figure 4.1, after node 1 broadcast RREQ packet that is received from node 0.

Source Node RREQ ID TTL

0 1 225

Table 4.2 Seen-RREQ Table

Table 4.3 shows a sample Neighborhood Table at node 22 in Figure4.1.

Destination ID 1-hop neighbors

30 29

30 21

Table 4.3 Neighborhood Table

The procedure for filling the entries in both tables and taking decision about forwarding

or discarding RREQ packet at intermediate nodes is given in detail in the fallowing steps.

• When RREQ is received at an intermediate node, itneeds to know whether

destination is within 1-hop neighborhood.

• To confirm the presence of the destination in 1-hop neighborhood, the following

procedure is followed.

1. Each intermediate node after receiving the RREQ packet, delays the

forwarding of RREQ by time equal to 1-way propagation delay calculated

using formula given below.

R
T =v+ C

Where, R = Maximum Transmission range.

V= Speed of the wireless signal.

C= constant value, as used R/2*V in our simulations.

24

2. If the intermediate node overhears a RREPLY with Hop count equal to 1,

before timer expires, the intermediate node and the node that forwarded the

RREQ are in 1-hop neighborhood destination.

3. If the node that forwarded the RREQ is not in the 1-hop neighborhood of the

destination, the intermediate node forwards RREQ's as follows

a. If the path in the RREQ except source contains a node in the

neighborhood table with destination ID equal to destination of RREQ,

then discard the RREQ, as it is already forwarded by one of the 1-hop

neighbors of destination.

b. Else if the received RREQ has no entry in the table, then the node follows

the source node RREQ forwarding procedure described in section 4.2.I

and adds an entry to the Seen-RREQ table.

c. Else if received RREQ has higher TTL value than in the stored entry,

then it.updates the TTL of store entry and forward as described in section

4.2.1

d. Else discards the RREQ, as it is already seen.

4. If the intermediate node and node that forwarded the RREQ are in the I-hop

neighborhood of the destination node, the intermediate node forwards

RREQ's as follows

a. If the received RREQ has no entry in the Neighborhood table, add an

entry into the table with destination ID equal to destination node of

RREQ and 1-hop neighbor as the last hop node from which it received

this RREQ. Discard the RREQ.

b. Else discard the RREQ.

Figure 4.2 gives the flow chart for processing RREQ at intermediate nodes. By delaying

RREQ propagation by RN time, 1-hop neighbors of the destination learn about other 1-

hop neighbors of the destination and add them to neighborhood table. With the help of

this neighborhood table, 1-hop neighbors of destination discard the RREQ packets from

other 1-hop neighbors of destination. With the help of TTL value and RREQ ID in the

seen-RREQ table, each intermediate node forwards RREQ packet more than once.

25

Intermediate Node

I RREQ received

I Start Timer T= R/V

NO 	 RREPLY 	 YF.S
received
before timer

Add entry to Neighborhood table

/ RREQ path
contains entry 	 YES

	

from 	 Discard RREQ
Neighborhood

table

ES

NC?

Seen-RREQ <TTL in Seen-

contains this 	 YES 	 RREQ higher

	

RREQ 	 than TTL in
RREQ

NO 	 I NO

Add entry in Seen-RREQ J 	Forward RREQ 	 Update TTL in Seen-
RRIEQ

Figure 4.2 Flow chart of RREQ processing at intermediate nodes

To understand the process of updating Neighborhood table at intermediate nodes, the

following section presents three scenarios with examples.

4.2.3 Example Neighborhood table updating scenarios

We have presented three different scenarios to understand the neighborhood table

updating process by intermediate nodes which are 1-hop neighbors of destination.

4.2.3.1 Scenario 1

This scenario is shown in Figure 4.3. In which there are two intermediate nodes 1 and 2,

both are 1-hop neighbors of each other. And only one of them node 2 is in 1-hop

neighborhood of destination.

Destination Node O Intermediate Node

Figure 4.3 Scenario I

Suppose node I forwarded the RREQ sent by some other node. Node 2 receives this

RREQ and waits 1-hop propagation time. In Figure 4.3 node D is not in the 	radio

propagation range of 1, so node 2 will not receive RREPLY. After 1-hop propagation

27

time expires, node 2 forwards this RREQ by adding an entry into its Seen-RREQ table. In

this example scenario no entry will be added to Neighborhood table.

4.2.3.2 Scenario 2

This scenario is shown in Figure 4.4, in which there are two intermediate nodes I and 2.

Both are 1-hop neighbors of each other. Also, both nodes are 1-hop neighbors of

destination.

Destination Node O Intermediate Node

Figure 4.4: Scenario2

Suppose node 1 forwards RREQ packet sent by some other node. Both destination and

node 2 receive this RREQ. Destination sends RREPLY immediately. Node 2 waits for I -

hop propagation time. Before timer expires node 2 receives the RREPLY from node D

which is 1-hop distance and also originated at D. So node 2 by observing RREPLY finds

28

that this RREPLY is sent to the source node through node 1. It adds node I to its

Neighborhood table and discards this RREQ, and consequent RREQ with same ID

containing node I in its path.

4.2.3.3 Scenario 3

This scenario is shown in Figure 4.5, in which there are two intermediate nodes I and 2.

Both are 1-hop neighbors of destination, but not each other.

Destination Node 	O Intermediate Node

Figure 4.5: Scenario3

Suppose node I forwards RREQ packet sent by some other node. Destination receives

this RREQ. It sends RREPLY immediately. Node 2 receives a RREPLY from D which is

1-hop distance, and also originated at D. So node 2 by observing the RREPLY finds that

this RREPLY is sent to the source node through node 1. It adds node I to its

Neighborhood table and discards this RREQ, and consequent RREQs with same ID

containing node 1 in its path.

4.2.4 RREPLY at destination and intermediate nodes

• As and when the destination node receives the RREQ, it immediately sends

RREPLY. This can be achieved by giving the processing and sending of RREQ

and RREPLY packets highest priority in the network.

• If an intermediate node receives a RREPLY, it checks if it is the intended next

recipient. If yes, it forwards the RREPLY back to source along the route given in

RREPLY.

• If an intermediate node overhears a RREPLY and if it is not the intended next

recipient, then it adds the first node in the path from destination to source to

Neighborhood table. The first node in the path can be found from the RREPLY

message itself because RREPLY messages carry the entire path from source to

destination.

Suppose in Figure 4.1, destination node 30 is sending a RREPLY with the following

route 30-21-20-11-2-1-0 to source node 0. All the 1-hop neighbors of 30 overhear this

RREPLY. They add node 21 to their neighbor list and discards all the RREQ with same

ID, coming to'destination 30 through node 21 from the source node 0.

4.3 Mitigation of wormhole attack effects

4.3.1 Dos attack

We described the formation of Dos attack in section 3.3. Our proposed modifications

allow forming of the paths through legitimate nodes.

This problem solution can be visualized using Figure 4.1. Suppose among the 1-hop

neighbors of node 30 (destination), node 22 receives RREQ early, and it forwards this

RREQ to nodes 21, 23, 30, 29 and 31. After receiving RREQ, each node except node 30

(destination) waits for R/V time to allow overhearing of RREPLY, to know the

possibility of presence of destination in their 1-hop neighborhood.

30

After reception of RREQ at destination, it sends RREPLY, which is overheard by nodes

21, 22, 29 and 31, and they will add node 22 to their neighborhood table, stating node 22

as 1-hop neighbor of node 30 (destination). All 1-hop neighbors of node 30 (destination)

will not forward RREQ with the seen RREQ ID coming from node 22 but forward

RREQs from other paths, forming a path only through legitimate nodes. Hence Dos

attack can be mitigated.

4.3.2 Cache poisoning, indirect Sinkhole attack and Traffic analysis

The use of timer for accepting RREPLY at source and intermediate nodes, results in no

tunneling of RREPLY through the in-band wormhole tunnel, resulting in no path through

the wormhole tunnel. Hence all these attacks are mitigated.

31

5. SECURITY EXTENSION

In this chapter we propose a security extension to the multi-path DSR (MDSR) protocol

to pinpoint and isolate the in-band wormhole attacker nodes. This security extension is

applicable to all reactive and proactive routing protocols.

We considered following assumptions in the design of this security extension.

1. All the RREPLY messages are authenticated by using digital signature.

2. The attacker can only encapsulate the original packet and transfer it to other

attacker.

3. The attacker cannot change the contents of the packet.

4. All the nodes know the maximum transfer unit (MTU) of the network. This

information is also available at the network layer.

5. Attacker nodes cannot fragment and reassemble the packets, without losing the

digital sign.

6. All links are bi-directional.

5.1 Extension to proposed MDSR

The extensions for the proposed MDSR are as follows.

• Use of fixed RREPLY message size.

• A table called suspicious node table containing entries listing malicious nodes is

maintained at each node.

5.1.1 Fixed RREPLY message size

As we know the MTU of the network, we fix the size of RREPLY message to be 40 bytes

smaller than MTU of the network. All other messages/ packets are of size less than

RREPLY size. This can be seen in Figure 5.1:

32

t Maximum size of RREPLY/ Minimum size of tunneled RREPLY

Minimum size of RREPLY/ Maximum size of other packets

DATA/ ACK/ RREQ/ Route ERROR packets

RREPLY Packet

Tunneled RREPLY (illegal) Packet

Figure 5.1 Restricted packet sizes in the network

5.1.2 Suspicious table

Each node in network maintains a table listing the malicious nodes found during

operation of the network.

5.2 Mechanism

• After receiving the RREQ, the destination node forms a RREPLY message.

a Before sending the RREPLY, the destination calculates the size of the RREPLY

packet. If the size is less than some predefined maximum SIZE, it pads the

RREPLY. Then it digitally signs the RREPLY packet and sends it.

• Figure 5.1 shows the mechanism In the proposed extension,. Any intermediate

node tunnels the RREPLY, and then the new packet will exceed allowable

maximum packet size of the network.

• Any intermediate node that sees the packet with more than the allowable

maximum size simply discards that packet and makes a note of the node which

tunnels the packet as malicious node in Suspicious table

33

• The nodes discard all the packets coming from or destined to the nodes in

suspicious table.

• If RREPLY messages are not tunneled, it is not possible to establish a connection

through the tunnel. This will avoid the formation of wormhole tunnel.

5.3 Analysis

With this security extension we can detect the wormhole attacker nodes at the first place,

so no data packets go through the wormhole tunnel. Our assumptions make sure that the

sending of packets of size greater than the allowed .size is impossible. Hence this

mechanism does not require any threshold value as is required by some mechanisms.

Once an illegal packet is received, the source of the received packet is considered as

malicious and added to the Suspicious table to avoid formation of wormhole tunnel and

isolate the node from the network.

Applications like Mobile IP need packets to be encapsulated for their operation. In such

applications, due to the use of our security extension, nodes of the network add agent

nodes which use encapsulation to their suspicious table. To avoid this, an exception can

be added to allow encapsulation for agent nodes.

For proactive routing protocols, instead of RREPLY messages, periodic hello messages

can be set to maximum size.

34

6. Simulation

6.1 JiST-swans

Java in Simulation Time (JiST): AST is a new Java-based discrete-event simulation

engine, with a number of novel and unique design features [20]. It is a prototype of a new

general-purpose approach to building discrete event simulators, called virtual machine-
based simulation that unifies the traditional systems and language-based simulator

designs. The resulting simulation platform is more efficient. It out-performs existing

highly optimized simulators both in time and memory consumption.

The JiST system architecture, depicted in Figure 6.1, consists of four distinct

components: a compiler, a byte code rewriter, a simulation kernel and a virtual machine.

JiST simulation programs are written in plain, unmodified Java and compiled to byte

code using a regular Java language compiler. These compiled classes are then modified.

via a byte code-level rewriter, to run over a simulation kernel and to support the

simulation time semantics described shortly. The simulation program, the rewriter and

the JiST kernel are all written in pure Java. Thus, this entire process occurs within a

standard, unmodified Java virtual machine (JVM). The benefits of this approach to

simulator construction over traditional systems and languages approaches are numerous
[20].

Embedding the simulation semantics within the Java language allows reuse of a large

body of work, including the Java language itself, its standard libraries and existing

compilers. JiST benefits from the automatic garbage collection, type-safety, reflection

and many other properties of the Java language. This approach also lowers the learning

,curve for users and facilitates the reuse of code for building simulations. The use of a

standard virtual machine provides an efficient, highly-optimized and portable execution

platform and allows for important cross-layer optimization between the simulation kernel

and running simulation. Furthermore, since the kernel and the simulation are both

running within the same process space it reduces serialization and context switching

35

overheads. In summary, a key benefit of the JiST approach is that it allows for the

efficient execution of simulation programs within the context of a modern and popular

language. JiST combines simulation semantics, found in custom simulation languages

and simulation libraries, with modern language capabilities. This design results in a

system that is convenient to use, robust and efficient.

Compile
r Rewriter

Simulatio

1 n

L---~ Kernel

i 	i Virtual

i 	L Machine

Java source code Java byte code Modified

Figure 6.1: JiST system architecture

Scalable wireless network simulator (SWANS) [20] is a scalable wireless network

simulator built atop the JiST platform. It was created primarily because existing network

simulation tools are not sufficient for current research needs, and its performance serves

as a validation of the virtual machine-based approach to simulator construction. SWANS

are organized as independent software components that can be composed to form

complete wireless network or sensor network configurations. Its capabilities are similar to

ns2 and GloMoSim, but are able to simulate much larger networks. SWANS leverages

the JiST design to achieve high simulation throughput, save memory, and run standard

Java network applications over simulated networks. In addition, SWANS implements a

data structure, called hierarchical binning, for efficient computation of signal

propagation.

Every SWANS component is encapsulated as a JiST entity: it stores it own local state and

interacts with other components via exposed event-based interfaces. A SWAN contains

36

components for constructing a node stack as shown in Figure 4.2, as well components for

a variety of mobility models and field configurations. It allows components to be readily

interchanged with suitable alternate implementations of the common interfaces and for

each simulated node to be independently conFigured. Finally, it also confines the

simulation communication pattern. For example, Application or Routing components of

different nodes cannot communicate directly. They can only pass messages along their

own node stacks. Consequently, the elements of the simulated node stack above the

Radio layer become trivially parallelizable, and may be distributed with low

synchronization cost. In contrast, different Radios do contend (in simulation time) over

the shared Field entity and raise the synchronization cost of a concurrent simulation

execution. To reduce this contention in a distributed simulation, the simulated field may

be partitioned into non-overlapping, cooperating Field entities along a grid.

6.2 Simulation parameters

In this section we list the various simulation parameters we used in our simulation

scenarios. These are given in Table 6.1, Table 6.2 and Table 6.3 for field parameters,

physical layer parameters and protocols used respectively.

Field parameters

Field width

Field height

Signal •Propagation Model

Signal Interference Model

Path Loss

Fading

Placement"

Mobility

l I00int . .

1100mt

Hierarchical binning

RadioNoiseAdditive

TwoRay

None

Scenario specific

Static/ Random Walk

Table 6.1 Field Parameters

37

Physical layer parameters

Transmit Power 	 15.0 db

Band Width
	

2Mb/s

Transmission Range 	 13 0mt

Temperature 	 290 c

Table 6.2 Physical layer parameters

Protocols

Mac Protocol
Routing Protocol
Transport protocol
Application

IEEE 802.11
Dynamic Source Routing (DSR)
User datagram protocol (UDP)
Constant Bit Rate (CBR)

Table 6.3 Protocols used

6.3 Simulation network

In order to simulate the proposed protocols, we created the network shown in Figure 6.2.

In this network there are two attacker nodes which are placed near the source and

destination initially and moved away as the simulation progress. We have created two

different types of attacker nodes.

Typel attacker nodes create an in-band hidden wormhole attack. This can be done by

tunneling all the RREQ to the partner attacking node. The other attacker node broadcast

the RREQ to places of the network near the destination. After it receives a RREPLY it

tunnels back the RREPLY to the first attacker, which sends this RREPLY to the source.

After the successful creation of wormhole, successive data- packets will be dropped

causing the throughput of the network to decrease.

Type2 attacker nodes create an out-band hidden wormhole attack. This is achieved by

placing one attacker near the source and other attacker near the destination. If any RREQ

packet is received by the attacker near the source, it gives this packet to other attacker. In

this type of attack attackers introduce only propagation delay on the packet, no MAC

layer delays.

O(D Z 3 4 5 6 7

ED® 12 EDEDED

00 000000
EE 	25 	26 	27 	1E11 	29 r 	+ 	r

00 ®®•0®ED

00 e 43 44 45 46 47

00 50 51 52 53 54 55

56 	57 	58 	59 	60 	61 	62 	63

'-" Destination nodes • Malicious
• Source Nodes 	'

	

,' 	 nodes

Figure 6.2 Simulation network with 64 nodes of which 2 are malicious

r

W

6.4 Metrics for Evaluation

In order to evaluate the simulation results the fallowing parameters are considered.

1. Overhead: In a proactive routing protocol like DSR the main overhead comes

while transmitting the RREQ packet. The number RREQ packets transferred

during the simulation gives the overhead of the network.

2. Throughput: Throughput is calculated as the ratio to the number of data packets

transmitted to the number of data packets successfully received at the destination.

In order to eliminate duplicate packets, we have modified DSR to check for

duplicates and remove them.

3. Connectivity among attackers: This is defined as the number of RREPLY

packets successfully tunneled by the attackers. This is an important parameter in

in-band wormhole attacks. A decrease in the number of RREPLYs tunneled

shows the isolation of attackers from network.

6.5 Analysis of results

Figure 6.3 shows the number of RREQ packets forwarded by traditional DSR and

proposed Multipath DSR (MDSR). From Figure 6.3 we can observer that the proposed

MDSR introduces very less additional overhead on traditional DSR in the network. This

is as we have discussed in section 4.2.

Figure 6.3 No. of RREQ forwarded by intermediate nodes.

40

Next simulated different static network topologies, uniformly distributed, clustered and

linear by varying number of nodes and their positions in the simulation field. With both

DSR and MDSR obtained the throughput Figure 6.4 shows the results. As we can see in

Figure 6.4 through put of MDSR is high compared to traditional DSR. Especially when

we have simulated with linear network like in case 2 the throughput increased well.

1

[,J]

0.8

MA

0.6

0.5

0.4

0.3

0.2

0.1

0

10 	20 	30 	40 	50 	60

Number of Nodes

■ DSR

MDSR

Figure 6.4 Throughput comparisons, DSR vs. MDSR under no attack

Then we have introduced two attackers of type2 in to the network as shown in the Figure

6.2. The attackers establish out-band hidden worm hole and performs DOS attack as

described in section 3.3.

As we can observe from the graph shown in Figure 6.5, the throughput of the traditional

DSR is very low (equal to 0) when the attackers are near the source and destination. This

is because in traditional DSR once a node sees a RREQ packet with particular ID from a

node it doesn't forward any subsequent packets. The attackers are exploiting this. That is

why the throughput is nearly zero when the attackers are close. But with MDSR the

RREPLY is coming through alternate legitimate paths so there is through put even if the

attackers are at 1-hop neighbors of both source and destination.

41

0.8

0.7

0.6

bE 0.4
0

0.3

0.2

0.1

0

■ Normal DSR
MDSR

1 	 2 	 3 	 4

Number of hops from the attacker

Figure 6.5 Throughput comparisons under out-band hidden wormhole attack.

Next we added the security extension to the MDSR (MDSR-Se). We removed type2

attackers from the network and added two typel attackers. Typel attackers perform

traffic analysis and packet dropping attacks. Figure 6.6 shows the throughput of the

network with DSR, MDSR and MDSR-Se. MDSR-Se has very good throughput even

when the attackers are too close. This is because the security extension isolates the

attackers from the network and completely eliminates the wormhole tunnel.

1
0.9

0.8

0.7

a 0.6

0.5
0
- 0.4

0.3
0.2
0.1

0

■ Normal DSR

MDSR

® MDSR-Se

1 	 2 	 3 	 4

Number of hops from attacker

Figure 6.6 DSR vs. MDSR vs. MDSR-Se throughput comparison
under in-band wormhole attack

42

To show the connectivity we have simulate the network with in-band wormhole. Figure

6.7 shows the percentage of RREPLYs tunneled with DSR and MDSR with security

extension. The higher rate of percentage RREPLYs tunneled the higher connectivity

between attackers. In Figure 6.7 with MDSR-Se the percentage of RREPLYs tunneled

greatly reduced.

0

V 1.2
a
c
c

0.8

0.6
■ Normal DSR

0.4 —
:3 MDSR-Se

~° 0.2 c

• a 0
1 	2 	3 	4

Number of hops from attacker

Figure 6.7 Percentage of RREPLYs tunneled with DSR and with MDSR-Se

Isolation of attackers from network not only means reducing the percentage of RREPLYs

tunneled. But also the communication between the attackers must be broken. It is not

possible to intercept the communication of attackers when they have out-banded

communication. If the attackers are using in-band to communicate, it is possible to isolate

the attackers by stopping most of the packets flowing between them. The packets include

tunneled RREQ. Figure 6.8 shows the number of RREQ packets successfully tunneled

with DSR and with MDSR-Se.

43

140

120
.c a,
a, 100
C
7

Cf

80
W
cc
cc

60

E 40
C

20

■ Normal DSR

MI MDSR-Se

1 	 2 	 3 	 4

Number of hops from attacker

Figure 6.8 number of RREQ successfully tunneled under DSR and

MDSR-Se

From Figures 6.7 and Figure 6.8 it is clear that with the MDSR-Se it is possible to isolate

the in-band wormhole attackers from the network.

7. CONCLUSION

7.1 Summary of work done
Secure routing protocols for ad-hoc networks that are designed to minimize the route

falsification attacks, fail against in-band worm-hole attacks created by the insider nodes

without any special hardware. Even though these attacks are less powerful compared to

traditional out-band worm-hole attacks, they can be launched very easily.. In multipath

routing protocols there is a higher chance that these attackers succeed in gaining

transmission.

Our proposed mechanism, with fixed size RREPLY messages to complement the existing

source routing protocols like (DSR), resist the creation of in-band worm-hole tunnels with

very less additional overhead. We have investigated the effectiveness of our proposal

using simulation. Simulation results confirm that in-band wormhole attacks can be

detected and isolated completely from the network.

Even though it is practically not possible to pinpoint and isolate hidden out-band

wormhole attacks, our proposed MDSR with Neighborhood table and timer at source and

intermediate nodes, minimizes DOS attacks of hidden out-band wormhole, by allowing

legitimate RREQ to reach the destination through alternate paths.

7.2 Suggestions for further Work

• The MDSR-Se can be simulated with proactive routing protocols like DSDV and

OLSR. In order to simulate MDSR-Se, instead of RREPLY, periodic HELLO

messages should be used.

• In order to further minimize the sinkhole attack with out-band wormholes; one

can combine our proposed MDSR with path rating mechanisms. In the Path rating

mechanisms, destination send periodic messages to source node about the quality

of different paths. This can be used to select paths to communicate. In order to do

45

this, one needs to use our MDSR to find different paths between source and

destination and rate the paths for communication.

• One can also place the time stamps in RREQ and RREPLY messages at

intermediate nodes. This time stamps include time difference. between two

successive RREQ of same ID received at each intermediate node, and time gap

between RREQ forwarded and RREPLY received along the path. By simulating

with various wormhole lengths, one can obtain different values. After obtaining

these values one can use Data mining techniques to eliminate the possible

tunneled paths at first place.

7.3 Contributions

Papers selected

[1] Tirumalesh .C, kumkum Garg, "Secure Multipath Routing Protocol for detecting and
avoiding worm-hole attacks", ICCNT 2009, Volume 23, May 2009. r e-v,adio I
C-4evence- oc) co*.potev omcl t -1-wo4c .'ec.*iotoj ,ckeyww, i
[2] Tirumalesh.0 , kumkum Garg. "Secure Multipath Routing Protocol for detecting and
mitigating worm-hole attacks", CICSyN2009, May 2009.1 '+ 	Aho~ol C jrpjP.
on 	po"O e»a l j n-F~l iFer~[~) Cc n- n-..u c4- bn S }emss Qnd KIP-* & cu ndo,t
Contribution to Jist-SwansU

1. Integrated Inspect animation support into JiST-Swans code.
2. Added statistical collection to DSR implementation.

3. Modified DSR to eliminate duplicate messages.

46

References

[1] S: Corson, J. Macker "Mobile Ad hoc Networking (MANET): Routing Protocol
Performance Issues and Evaluation Considerations (RFC 2501)" [Online at
http://wv.'w.ietf.org/rfc/rfc250 I .txt] [last Accessed, june 2009], 1999.

[2] D. Johnson, Y. Hu and D. Maltz, "Dynamic Source Routing Protocol (DSR)",
[Online at http://www.iettiorg/rfc/rfc4728.txt] [Accessed, Jun 2008], 2007.

[3] Hu.Y.-C, Perrig. A, Johnson. D.B, "Packet leashes: a defense against wormhole
attacks in wireless networks", Twenty-Second Annual Joint Conference of the IEEE
Computer and Communications Societies, Volume: 3, pp: 1976-1986, April 2003.

[4] Y. C.. Hu, A. Perrig, and D.B. Johnson, "Wormhole Attacks in Wireless Networks",
IEEE JSAC Volume: 24, pp.370-80, Feb. 2006.

[5] Nait-Abdesselam. F, "Detecting and avoiding wormhole attacks in wireless ad hoc
networks", Communications Magazine, IEEE, Volume: 46, pp: 127-133, April 2008.

[6] S. Zheng, T. Jiang, J. S. Baras, "Intrusion Detection of In-Band Wormholes in
MANETS Using Advanced Statistical Methods", Milcom: 08 Assuring Mission Succes,
November 2008.

[7] L. Lazos, R. Poovendran, "SeRLoc: secure range-independent localization for
wireless sensor networks", ACM workshop on wireless security, pp: 21-30, October
2004.

[8] Chunxiao Chigan, Bandaru. R, "Secure node misbehaviors in mobile ad hoc
networks", IEEE 60th VTC2004-Fall, Volume: 7, pp: 4730-4734, September 2004.

[9] Hon Sun Chiu, King-Shan Lui, "DeLPHI: wormhole detection mechanism for ad hoc
wireless networks", IEEE Wireless Pervasive Computing, pp: 6-12, January 2006.

[10] Song. N, Qian, L.Li, X., "Wormhole attacks detection in wireless ad hoc networks: a
statistical analysis approach", 19'h IEEE International conference on Parallel and
Distributed Processing, pp: 8-16, April 2005_

[11] Znaidi, Wassim Minier, Marine Babau, Jean-Philippe, "Detecting Wormhole
Attacks in Wireless Networks Using Local Neighborhood Information", Personal, Indoor
and Mobile Radio Communications, 2008. PIMRC 2008. IEEE 19th International
symposium, pn : 1- 5, 15-18 Sept. 2008.

47

[12] Gunhee Lee Dong-kyoo Kim Jungtaek Seo, "An Approach to Mitigate Wormhole
Attack in Wireless Ad Hoc Networks",Information Security and Assurance, 2008. ISA
2008. International Conference , pn: 220 - 225 , 24-26 April 2008

[13]Baruch Awerbuch, Reza Curtmola, Herbert Rubens, David Holmer, and Cristina
Nita-Rotaru, "On the Survivability of Routing Protocols in Ad Hoc Wireless Networks",
IEEE SecureComm, September 2005.

[14]_Weichao Wang, Bharat Bhargava, "Visualization of wormholes in sensor networks",
ACM workshop on wireless security, pp: 51-60, 2004.

[15] R. Barr, Z.J. Haas, and R. van Renesse, "Handbook on Theoretical and Algorithmic
Aspects of Sensor, Ad hoc Wireless, and Peer-to-Peer Networks", chapter 19 — Scalable
Wireless Ad Hoc Network Simulation,Auerbach, 2005.

[16] L. Hu, D. Evans ,"Using Directional Antennas to Prevent Wormhole Attacks",
Proceedings of the 11th Network and Distributed System Security Symposium, pp.131-
141, 2003.

[17] Gorlatova Maria A, Kelly, Marc Liscano, Ramiro Mason, Peter C. "Enhancing
frequency-based wormhole attack detection with novel jitter waveforms", IEEE
Securecomm 2007, pp: 304-309, September 2007.

[18] Maheshwari. R, Jie Gao, Das. S .R, "Detecting Wormhole Attacks in Wireless
Networks Using Connectivity Information", IEEE PIMRC2008, pp: 1-5, September
2008.

[19]] Sebastien Berton, Hao Yin, Chuang Lin Geyong Min, "Secure, Disjoint, Multipath
Source Routing Protocol(SDMSR) for Mobile Ad-Hoc Networks", GCC 2006, pp. 387-
394, oct 2006.

[20] R. Barr, Z.J. Haas, and R. van Renesse, "Jist: An efficient approach to simulation
using virtual machines," Software Practice & Experience, vol. 35, no. 6, pp. 539-576,
2005.

[21] S. Kurkowski, T. Camp, M. Colagrosso, "A Visualization and Analysis Tool for
Wireless, Simulations: iNSpect" , Technical Report MCS 06-01, Colorado School of
Mines, January 2006.

[22] S. Kurkowski, T. Camp, N. Mushell, and M. Colagrosso, "A Visualization and
Analysis Tool for NS-2 Wireless Simulations: iNSpect" , Proceedings of the 13th IEEE
International Symposium on Modeling, Analysis, and Simulation of Computer and
Telecommunication Systems (MASCOTS), pp. 503-506, 2005.

48

*The following are some of the main functions to create out-band hidden wormhole attacks....

**/

public void takepack(Ip send) {

System.out.println(localAddr+"One RREQ received from partner out-band..........

JistAPI.sleep((long)(Math.randomO * BROADCAST_JITTER));

netEntity.send(send, Constants.NET_INTERFACE_DEFAULT, MacAddress.ANY);

}

private void ProcessOptions(RouteDsrMsg msg, NetAddress src, NetAddress dst,

short protocol, byte priority, byte til,

short id, short fragOffset)

{

Iterator iter = msg.getOptions().iterator();

RouteDsrMsg.OptionAckRequest ackRequest = null;

RouteDsrMsg.OptionSourceRoute sourceRoute = null;

while (iter.hasNext())

{

byte[] optBuf = (byte[])iter.next();

RouteDsrMsg.Option opt = RouteDsrMsg.Option.create(optBuf, 0);

if (opt == null)

{

// This should never happen in the simulation

throw new RuntimeException("Unrecognized DSR Option");

}

switch (opt.getType())

{

case RouteDsrMsg.OPT_ROUTE_REQUEST:

HandleRequest(msg, (RouteDsrMsg.OptionRouteRequest)opt, optBuf, src,

dst, protocol, priority, ttl, id, fragOffset);

break;

}

}

private void ForwardRequest(RouteDsrMsg msg, RouteDsrMsg.OptionRouteRequest opt,

byte[] optBuf, NetAddress src, NetAddress dst,

short protocol, byte priority, byte til,

short id, short fragOffset)

// If I've already forwarded this request, ignore it

for (int i = 0; i < opt.getNumAddresses(); i++)

{

if (localAddr.equals(opt.getAddress(i))) return;

}

RouteDsrMsg newRequest = (RouteDsrMsg)msg.clone();

List newOptions = newRequest.getOptionsO;

n ewOpt i on s. r em ove(optB u f);

NetAddress[] newAddresses = new NetAddress[opt.getNumAddresses()];

for (int i = 0; i < newAddresses.length; i++)

newAddresses[i] = opt.getAddress(i);

}

newRequest.addOption(RouteDsrMsg.OptionRouteRequest.create(opt.getl dO,

opt.getTargetAddressO, newAddresses));

NetMessage.Ip newRequestlp = new NetMessage.Ip(newRequest, src, dst,

protocol, priority, (byte)(ttl - 1), id, fragOffset);

System. out.println(locaIAddr+"One RREQ tunneled to partner out-band........ from "+src);

partner.takepack(n ewRequestl p);

000a0WI.lrrk000000.a....0..0....0...■■2a.0.0..0000 aM00000MaMNN0Na00Maa0..0■

The following are some of main functions in in-band wormhole attack ■•••s•• ••••ra0MM00000a00M0000a0aM000■■ 000x00000000000000000••••u...........
private void ProcessOptions(RouteMDSRMsg msg, NetAddress src,

NetAddress dst, short protocol, byte priority, byte ttl, short id,
short fragOffset) {

Iterator iter = msg.getOptionsQ.iterator();
RouteMDSRMsg.OptionAckRequest ackRequest = null;
RouteMDSRMsg.OptionSourceRoute sourceRoute = null;
while (iter.hasNext())
{

byte[] optBuf = (byte[])iter.next();
RouteMDSRMsg.Option opt = RouteMDSRMsg.Option.create(optBuf, 0);
if (opt == null)
{
// This should never happen in the simulation
throw new RuntimeException("Unrecognized MDSR Option");

switch (opt.getType())
{
case RouteMDSRMsg.OPT ROUTE_REQUEST:
HandleRequest(msg, (RouteMDSRMsg.OptionRouteRequest)opt, optBuf, src,
dst, protocol, priority, ttl, id, fragOffset);

break;

case RouteMDSRMsg.OPT ROUTE_REPLY:
HandleReply(msg, (RouteMDSRMsg.OptionRouteReply)opt);
break;

case RouteMDSRMsg.OPT_SOURCE ROUTE:
sourceRoute = (RouteMDSRMsg.OptionSourceRoute)opt;

if (localAddr.equals(NextRecipient(sourceRoute, dst)))
{
ForwardPacket(msg, sourceRoute, optBuf, src, dst, protocol,
priority, ttl, id, fragOffset);

}
else
{

Perform RouteSh orten ing(sourceRoute, src, dst);

break;

case RouteMDSRMsg.OPT_ACK_REQUEST:

ackRequest = (RouteMDS RMsg. Option AckRequest) opt;
break;

case RouteMDSRMsg.OPT_ACK:
Hand IeAck((RouteMDSRMsg.OptionAck)opt, dst);
break;

case RouteMDSRMsg.OPT_ROUTE ERROR:
HandleError((RouteMDSRMsg.Option RouteError)opt);
break;

case RouteMDSRMsg.OPT_PADI :
case RouteMDSRMsg.OPT_PADN:

break;

default:
// Possible problem: The processing of unrecognized options should
// probably occur *before* the processing of any other options.
// This will never arise in the simulation, though.
switch ((opt.getType() & 0x60) >> 5)
{

case RouteMDS RMsg. UNRECOGNIZED_OPT_IGNORE:
// Ignore this option
break;

case RouteMDSRMsg.UNRECOGNIZED_OPT_REMOVE:
{

// Remove this option from the packet
RouteMDSRMsg newMsg = (RouteMDSRMsg)msg.clone();

List options = newMsg.getOptionsO;
opt i on s.rem ove(optB u f) ;
msg = newMsg;
break;

case RouteMDSRMsg.UNRECOGNIZED_OPT_MARK:
{
// Set a particular bit inside the option

RouteMDSRMsg newMsg = (RouteMDSRMsg)msg.clone();
byte[] newOptBuf = new byte[optBuf.length];
System.arraycopy(optBuf, 0, newOptBuf, 0, optBuf.length);
newOptBuf[2] 1= 0x80;

List options = newMsg.getOptionsO;
option s.rem ove(optBu f) ;
options.add(newOptBuf);
msg = newMsg;
break;

}

case RouteMDSRMsg.UN RECOGNIZED_OPT_DROP:
// Drop the packet
return;

default:
throw new RuntimeException("Should never reach this point");

iv

break;
}

if (ackRequest != null)
{

HandleAckRequest(msg, ackRequest, src, dst, sourceRoute);
}

}
NetAddress partners;
int type;
/**

* Creates a new RouteMMDSR object.
*
* @param localAddr local node address
*/
public RouteMMDSR(NetAddress localAddr,NetAddress partners,int type)
{

this.IocalAddr = localAddr;
this.partners=partners;
this.type=type;
InitRouteCache();
InitBuffer();
InitRequestTable();
Ini tRouteReplyTabl e();
Ini tMainten an ceB uffer();
intilizeStatisticCollector();
nextRequestld = 0;
nextAckld = 0;
activeRequests = new HashSetQ;
activeAcks = new HashSet();

self = (Routelnterface.Dsr).listAP1.proxy(this, Routel nterface. Dsr. class);
//*****************************Logger place

stats.logger,printf{"%s Node Succesfully intilized..\n",IocalAddr);
stats.I ogger. flush ();

The following are some of the main methods in proposed MDSR

private void ForwardRequest(RouteDsrMsg msg, RouteDsrMsg.OptionRouteRequest opt,

byte[] optBuf, NetAddress src, NetAddress dst,

short protocol, byte priority, byte ttl,

short id, short fragOffset)

// If I've already forwarded this request, ignore it

for (int i = 0; i < opt.getNumAddresseso ; i++)

{

if (localAddr.equals(opt.getAddress(i))) return;

}

// To do in future: Check the Route Cache to see if we know a route to the

// destination

// Clone the message, add this node's address to the Source Route option,

// and retransmit it.

RouteDsrMsg newRequest = (RouteDsrMsg)msg.cloneO;

List newOptions = newRequest.getOptions();

newOptions. remove(optBuf);

NetAddress[] newAddresses = new NetAddress[opt.getNumAddresses() + 1];

for (int i = 0; i < newAddresses.length-1; i-++)

{

newAddresses[i] = opt.getAddress(i);

}

newAddresses[newAddresses. length - 1] = localAddr;

newRequest, addOpti on (RouteDsr Msg.Option Rout eRequest.create(opt.get I d(),

opt.getTargetAddressO, newAddresses));

maintainencebuffer.add (n ewRequest);

JistAPI.sleep((long)(Math.random() * BROADCAST JITTER));

self.clearMBuf(src,dest, opt);

LyjI

Public void clearMBuf(NetAddress src,NetAddress dest, OptionRouteRequest opt)

{

If(maintainencebuffer.exists(src,dest,opt))

{

RouteDsrMsg newReques= Maintainencebuffer.get(src,dest,opt);

NetMessage. Ip newRequestlp = new NetMessage. Ip(newRequest, src, dst,

protocol, priority, (byte)(ttl - 1), id, fragOffset);

if(neughbourhoodtable.checkthis(n ewReques))

netentity.send(newRequestl p);

//nothing to d000000000000000

}

private void HatndleReply(RouteDsrMsg msg, RouteDsrMsg.OptionRouteReply reply,int ttl)

{

if(isforMe(msg))

{ NetAddress dest;

RouteRequestTableEntry entry;

OutbandHidden Statistics.n oofrreplyreceived++;

System -out, println(localAddr+" received one route reply.........

// Update the Route Request Table

dest = reply.getAddress(reply.getNumAddresses() - 1);

entry (RouteRequestTableEntry)routeRequestTable.get(dest);

if (entry != null) entry.numRequestsSinceLastReply = 0;

}

else

{

I]

VII

activeRequests.remove(dest);

// Add the route to our Route Cache

for (int i = 0; i < reply.getNumAddresses(}-1; i++)

{

if (localAddr.equals(reply.getAddress(i)))

{

NetAddressfl route = new NetAddress[reply.getNumAddresses() - 2 - i];

for (int j = i; j < i + route.length; j++)

{

route[j - i] = reply.getAddress(j+l);

System. out.println(route[j-i]);

}

InsertRouteCache(dest, route);

break;

}

} }else{

If(ttl=Constants.TTL_DE F UALT)

{

//jam at one hop neighborhood and jam not intended next recipient add entry to
neighborhood table

ntable.addfrom(msg);

} }

private void SendRouteRepIy(OptionRouteRequest opt, NetAddress src)

NetAddress[] routeToHere = new NetAddress[opt.getNumAddresses() + 2];

routeToHere[O] = src;

for (int i = 1; i < routeToHere.length-1; i++)

{

viii

routeToHere[i] = opt.getAddress(i- 1);

routeToHere[routeToHere.length - 1] = localAddr;

NetAddress[] routeFromHere = new NetAddress[routeToHere.length - 2];

for (int i = 0; i < routeFromHere.length; i++)

{

routeFromHere[i] = routeToHere[routeToHere.length - i - 2];

}

// Add a Route Reply option indicating how to get here from the

// source and a Source Route option indicating how to get to the

// source from here.

RouteMDSRMsg reply = new RouteMDSRMsg(null);

reply.addOption(RouteMDSRMsg.Option RouteReply.create(routeToHere));

if (routeFromHere.length > 0)

{

reply. addOption (RouteMD S RMsg.Option SourceRoute.create(0,

routeFromHere.length, routeFromHere));

}

int nsize=reply.getSizeO;

byte[] data = new byte[1000-nsize];

Message payload = new MessageBytes(data);

RouteMDSRMsg replyreal=new RouteMDSRMsg(payload);

replyreal. add Option(RouteMDS RMsg.Option RouteRepI y.create(routeToHere));

if (routeFromHere.Iength > 0)

ix

replyreal.addOpti on (RouteM DS RM sg.Opt ion Sour ceRoute. create(0,

routeFromHere.length, routeFromHere));

}

// RouteMDSRMsg.OptionPadN.create(bb);

System.out.println("SIZE OF ROUTE REPLY IS ::::::::::"+rep]yreal.getSize());

NetMessage.Ip replyMsg = new NetMessage.Ip(replyreal, localAddr,

src, Constants.NET PROTOCOL DSR, Constants.NET PRIORITY NORMAL,

Constants . TT L_D E F A ULT);

JistAPI.sleep((Iong)(Math.random() * BROADCAST_JITTER));

Transmit(replyMsg);

/**logger place.........*/

// stats.Iogger.printf("RREPLY : to : %s \t lasthop : %s1n",src,opt.getIastHopAddress());

// stats. I ogger. flush ();

/** */

}

private void AddRequestld(NetAddress src, short id,int length)

{

// Do nothing if it's already in the table

if (SeenRequestLately(src, id,length)) return;

// Otherwise add this id to the table

RouteRequestTableEntry entry = (RouteR equestTableEntry)routeRequestTable.get(src);

if (entry == nul I)

x

{

entry = new RouteRequestTableEntry();

routeRequestTable.put(src, entry);

}

entry. ids.addFirst(new RID(id,length));

if (entry.ids.sizeO > MAX_REQUEST_TABLE_I DS)

{

// Make sure the list doesn't grow too large by removing the least

// recently seen id number

entry.ids.removeLast(); 	}

* Route request ID with length

*/

public class RID

{

short id;

int length;

public RID(short id,int length)

{

this.id=id;

this. length=length;

}

xi

public void receive(Message msg, NetAddress src, MacAddress lastHop,

byte macld, NetAddress dst, byte priority, byte ttl) {

if (!(msg instanceof RouteMDSRMsg))

{

throw new RuntimeException("Non-DSR message received by DSR");

} // Don't process any options here -- that's all done by peek. Just forward

// any content on to the transport layer (or whatever).

RouteMDSRMsg dsrMsg = (RouteMDSRMsg)msg;
RouteMDSRMsg.OptionSourceRoute sourceRoute = GetSourceRoute(dsrMsg);

if (sourceRoute != null)

{

// Strange as it may seem, we will discard this packet, which is

// in fact intended for us, if it arrives here before traversing

// the other links in the intended route. (Route shortening should

// prevent this from happening too often.)

if (! localAddr.equals(NextRecipien t(sourceRoute, dst))) return;

}

if (dsrMsg.getContentO != null)

{

boolean ok=false;

Iterator iterl = dsrMsg.getOptions().iterator();

wh i le(i ter l . h asNextO)

{

byte[] optBufl = (byte[])iter l .nextO;

RouteMDSRMsg.Option opt] = RouteMDS RMsg.Option .create(optBufl,
0);

xii

if (optl == null)

{

//This should never happen in the simulation

throw new RuntirneException("Unrecognized DSR Option");

}

if(opt I .getType()==RouteMDS RMsg.OPT—ROUTE—RE PLY)

{

ok=true;

break;

}

}if(!ok){

//Now go through some strange contortions to get this message received by

// the proper protocol handler

NetMessage.Ip newlp = new NetMessage.Ip(dsrMsg.getContent(), src, dst,

dsrMsg.getNextHeaderType(), priority, ttl);

netEntity.receive(newlp, lastHop, macld, false);

/**logger place...*/

stats.Iogger.printf("RECV : from : %s \n",src);

stats.I ogger. fl ush ();

stats.packetRecevied();

/** 	 */ ..

}

/*
*this is driver file to create field and nodes for simulation.

* */
package driver;

public class MainDriver {
private Location.Location2D location;;

private Random rand;
@Suppress Warn ings(" unchecked")

private Vector sources;
private Vector malnodes;
private Mobility rmobility;
private Path Loss p1;
private Field field;
private RadioInfo.RadioInfoShared radiolnfo;
private Placement place;
private Mapper protMap;
private PacketLoss outloss,inloss;
private Vector nodes;

public MainDriver()
{

sources=new Vector();
malnodes=new VectorO;
nodes=new Vector();

}
private void addNode(int i, int x,int y) {

RadioNoise radio = new RadioNoiseAdditive(i, radiolnfo);
Location location = new Location. Location2D(x,y);
if(location==null)
{

System.out.println("Location is NUI I
return;

}
Maclnterface macProxy = null;
Mac802_1 I mac = new Mac802_I 1(new MacAddress(i), radio.getRadiolnfo());
mac.setRadioEntity(rad i o.getProxy());
macProxy = mac.getProxy();
// network
final NetAddress address = new NetAddress(i);
NetIp net = new NetIp(address, protMap, inloss, outloss /*, ipStats*/);

// transport
TransUdp udp = new TransUdp();

System.out.println("Node "+i+" is added at locatio "+x+";°+y)•

field.addRadio(radio.getRadiolnfo(), radio.getProxy(), location);
field.startMobility(radio.getRadiolnfo().getUnique().getlD());

// node entity hookup
radio.setFieldEntity(field.getProxy());

radio. setMacEntity(mac.getProxyO);

mac.setRadioEntity(radio.getProxy());
byte intld = net.addlnterface(mac.getProxy(),new

MessageQueue.NoDropMessageQueue(Constan ts.NET_PRI ORITY_N UM,
(byte)200));

mac. setNetEntity(net.getPr oxy(),
intId);

net.setProtocolHandler(Constants.NET_PROTOCOL_UDP, udp.getProxy());
udp. setNetEntity(net.getProxy());

Routelnterface route = null;

// routing
igi!=8 && i!=37){

RouteMDSR dsr = new RouteMDSR(address);
dsr. setNetEntity(n et. getProxy());
//d sr . get Proxy() . startQ;
route = dsr.getProxy();

net.setProtocol Handler(Con stants.NET_PROTOCOL_DS R, route);
net. setRouting(route);
nodes.add(dsr);

}
else if (i=8)
{

RouteMMDSR dsr=new RouteMMDSR(new NetAddress(8),new NetAddress(37), I);
dsr.setNetEntity(n et.getProxy());

//dsr. getProxy(). start();
route = dsr.getProxy();

net.setProtocolHandler(Constants.NET_PROTOCOL_DSR, route);
net.setRouting(route);

}
else if(i==37)
{

RouteMMDSR dsr=new RouteMMDSR(new NetAddress(37),new NetAddress(8),2);
dsr. setNetEn tity(n et. getProxy());

//dsr. getProxyO. st artO;
route = dsr.getProxy();

net.setProtocolHandler(Constants.NET_ PROTOCOL _DSR, route);
net.setRouting(route);

}

private void generateCBRTraffic() {
. int etime = Integer.parseInt(ss.endtime);

xv

long delaylnterval = (long) (((double) 1024 /512) * 1 * Constants.SECOND);//delay interval between
packets.

long iterations = (long) Math.ceil(((double) etime * (double) Constants.SECOND) / delaylnterval);

int nocon = Integer.parseInt(ss.nooftransmissions);

System. out.printIn("No. of iterations of transfer :" + iterations);
StatisticCollector.total=(int) iterations;

byte[] data = new byte[512];
Message payload = new MessageBytes(data);

long currentTime = 0;

Vector desti=new Vector ();

int kh=31;
desti.add(kh);
kh=30;
desti.add(kh);
System.out.print("Chosen "+ nocon + " Sources are: ");
for (int i = 0; i < sources.size(); i++) {

System. out.print(sources.get(i) + ":
}
System . out, println ();

System.out.print("Chosen "+ nocon + " destinations are:
for (int i = 0; i < desti.size(); i++) {

System. out.print(desti.get(i) + ":")•
}
System. out.println();

for (int i = 0; i < iterations; i++) {
for (int j = 0; j <2;j-H-) {

NetMessage msg;
TransUdp.UdpMessage udpMsg = new TransUdp.UdpMessage(4010, 4010, payload);

int src = ((Integer) sources.get(j)).intValue();
int dest = (Integer)desti.get(j);

Routelnterface srcRoute = (Routelnterface) nodes. elementAt(src);
//System.out.println("Sending

msg = new NetMessage.Ip(udpMsg,
new NetAddress(src),
new NetAddress(dest),
Con stants.NET_PROTOCO L_ U D P,
Constants.NET_PRI ORI TY_N ORM A L,
(byte) Constants.TTL_DEFAULT);

sreRoute.send(msg);

}
3istAPI.sleep(delayInterval);//packet delay for each source.

xvi

currentTime += delaylnterval;
}

/**

* builds the simulation field

*/

public void buildField()
{

rand=new Random(Long.parseLong(ss.seed)),
makeSourcesO;
makemaliciousNodes();

rmobility=new Mobility. Static();

int x=1100;
int y=1100;
Location.Location2DO corners = new Location.Location2D[4];
corners[0] = new Location.Location2D(0, 0);
corners[1] = new Location.Location2D(1 100, 0);
corners[2] = new Location.Location2D(0, 1100);
corners[3] = new Location.Location2D(1100,

1100);
Spatial spatial = spatial = new Spatial. LinearList(corners[0], corners[]],

corners[2], corners[3]);

pl=new PathLoss.TwoRay();
/// rmobility.
field = new Field(spatial, new Fading.None(), pl,

rmobi lity,Constants.PROPAGATION_LI M IT_DEFA ULT);

radiolnfo = Radiol nfo.createShared(Constants. FREQUENCY_DEFAULT,
Constants.BAND WIDTH _DEFAULT, Constants.TRANSMIT_DEFAULT,

Constants.GAIN_DEFAULT, Uti1.fromDB(Constants.SENSITI VITY_DEFAULT),
Util.fromDB(Constants.THRESHOLD_DEFAULT), Constants.TEMPERATURE_DEFAULT,
Constants.TEMPERATURE_FACTOR_D E FAULT,

Constants.AMBIENT_NOI SE_DEFAULT);
protMap = new Mapper(new int[]{

Constants.NET_PROTOCOL_UDP,
Constants.NET PROTOCOL DSR,

});

outloss = new PacketLoss.Zero();
inloss = new PacketLoss.Zero();
//inloss=outloss;
place = new Placement. Random(]ocation);

xvii

int tonodes=Integer.parselnt(ss.noofnodes);

int xx=25;
int m=0;
int yy=25;

for (inti=0;i<8;i++){
xx=25;
for(int j=0;j<8;j++){

addNode(m,xx,yy);
m±+;
xx+=150;

}
yy+= 150;

}
generateCBRTrafficO;

* Creates location object
*1

private void createfield()
{

float x=1100;
float y=1100;
location=new Location.Location2D(x,y);

}
1**
*
* get Sources for transmission
*
*1

private void makeSources()
{

int i=0;
sources.add(i);
i=2;
sources.add(i);

}
/**
*
* get malicious nodes which are not original transmission sources and destinations
*
*1

private void makemaliciousNodes()
{

int i=9;
malnodes.add(i);
i=36;
malnodes.add(i);

}

public static void main(String args[])
{

xviii

MainDriver ma=new Main Driver();

try
{

File ff=neW File(argsj0]);
ObjectInputStream oin=new ObjectInputStream(new FilelnputStream(ff));
mass=(Sim pl eState)oin.readObject();

}
catch(Exception ex)
{

ex. printStackTraceQ;
}
long time = Long.parseLong(ma.ss.endtime);
System. out. println ("»»»»»»»»»»»»»»"+tim a *Constants. SECOND);

JistAPI.endAt(time * Constants. SECOND);
StatisticCol lector sc=new StatisticCoI Iector(ma.nodes);

JistAPl.runAt(sc, JistAPI.END);

ma.rand=new Random(Long.parseLong(ma.ss.seed));
Constants.random = ma.rand;

ma. createfieldO;
ma. buildFieldO;

}

SimpleState ss=null;

*This calss is used to collect some statistics.

**/
package driver;
import java.io.File;
import java. io.PrintWriter;
import java.util.Vector;
import jist. swans .net.NetAddress;
import j ist. swans. route. RouteDsr;
import j ist. swans. route. RouteM DS R;
public class StatisticCollector implements Runnable{
/** logger for this entity*/
public PrintWriter logger;
/** total number of packets send by this node*/
private int numberofpacketssend;
/** number of packets received by this node*/

xix

private int numberofpacketsreceived;
/**number of route requests send by this node*/
private int noofrouterequestssend;
public static int total;
public static int totalmal=0;
public StatisticCollector(NetAddress localAddr)
{
try{
File sfile=new File("logs/"+localAddr);
sfi le. createNewF i le O;
logger=new PrintWriter("logs/"+IocalAddr);
numberofpacketssend=0;
numberofpackets rece ived=0;
} catch (Exception ex) {
System.err.println("Statistic Collector :"+ex);
}
}
Vector nodes;
public StatisticCollector(Vector nodes)
{
this. nodes=nodes;
ix
}
public void packetRecevied()
{
numberofpacketsrece ived++;
}
public void packetSend()
{
numberofpacketssend++;
}
public PrintWriter getLogger() {
return logger;
}
public void setLogger(PrintWriter logger) {
this. logger = logger;

public void sendRREQ()

noofroutereq u estssend++;
}
@Override
public void run() {
int totalRREQ=O;
int totalDataSEND=O;
int tota1DATARECEIVE=O;
for(int i=0;i<nodes.sizeQ;i++)

if(nodes.get(i) instanceof RouteMDSR)

xx

{
RouteMDSR mdsr=(RouteMDSR)nodes.get(i);
mdsr.getStatso. logger. print 	 PRIN TING FINAL
STATISTICS OF THIS NODE»»»»»»»»»»\n");
mdsr.getStats(). logger. printf("Total RREQ Send:
%d\n",mdsr.getStats().noofroute requests send);
mdsr.getStatsO.logger.printg"Total DATA SEND : %d\n",
mdsr.getStats().numberofpacketssend);
x
mdsr.getStatsO.logger.printf("Total DATA RECEIVE : %d\n",
mdsr. getStatsO. numberofpac kets received);
mdsr. getStats(). logger. Flush();
totaIRREQ+=mdsr.getStats().noofrouterequestssend;
totalDataSEN D+=mdsr. getStats(). nu m berofpacketss end;
totaIDATAREC E IV E+=mdsr.getStats(). numberofpacketsreceived;
}
else if(nodes.get(1) instanceof RouteDsr)
{
RouteDsr mdsr=(RouteDsr)nodes. get(i);
mdsr.getStats(). logger.printf("»»»»>PRINTING
FINAL STATISTICS OF THIS NODES»»»»»»»»»>\n");
mdsr. getStats(). logger. printf("Total RREQ Send:
%d\n",mdsr.getStatsQ.noofrouterequestssend);
mdsr. getStatsO. logger. printf("Total DATA SEND : %d\n",
total);
mdsr.getStats().logger.printf("Total DATA RECEIVE:
%d\n", mdsr.getStats().numberofpacketsreceived);
mdsr.getStats(). logger. flush();
totalRREQ+=mdsr.getStats().noofrouterequestssend;
totalDataS EN D+=mdsr. getStats(). nu m berofpac ketssend;
totaIDATARECEIV E+=mdsr.getStats(). numberofpacketsreceived;
}
}
System. out. printIn("»»»»»»»»»»»»»»»» FIN AL
SIMULATION STATISTICS»»»»»»»»»»»»»»');
System. out.println("DATA SEND :"+totalDataSEN D);
System.out.println("DATA RECEIVED : "+totaIDATARECEIVE);
System.out.println("RREQ SEND: "+totaIRREQ);
float through=totaIDATARECEIVE/(float)total;
System.out.println("THROUGHPUT : "+through);
System.err.println("THROUGHPUT : "+through);
float totaltunnel—totalmal/(float)total;
System. out.println("IAM OF DATA TUNNELED"+totaltunnel);
}
}

xxi

	Title
	Abstract
	Chapter 1
	Chapter 2
	Chapter 3
	Chapter 4
	Chapter 5
	Chapter 6
	Chapter 7
	References

