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Abstract 

Software defined radio is a feasible solution for reconfigurable radios, which can 
perform different functions at different times on the same hardware. The partial 

reconfiguration is the key feature of software defined radio. Partial 
reconfiguration is the ability of certain Field Programmable Gate Arrays (FPGAs) 

to reconfigure only selected portions of their programmable hardware while other 

portions continue to operate undisturbed. A FPGA can be partially reconfigured 

using a partial bitstream. We can use such a partial bitstream to change the 
structure of one part of an FPGA design as the rest of the device continues to 

operate and this reduces the reconfiguration time. 
The aim of this thesis is to design and , implement a software defined radio 

based wireless communication system (GSM). The baseband section of a wireless 
communication system is first simulated and then implemented in hardware. The 

performance of the baseband transmitter is analyzed using constellation and eye 
diagrams different signal-to noise ratio and different BT(bandwidth, time product) 

values, while considering an additive white Gaussian noise channel. The 
performance of the receiver is analyzed by comparing the bit error rates. The 

performance of the system in real time is also analyzed by implementing the system 

in hardware using Xilinx Virtex-4 field programmable gate array. A comparison of 

the simulation results with the results obtained from implementing the system on 
virtex-4 hardware is presented and discussed. 

The two different GSM baseband processing versions have been developed 
i.e., one is area optimized and the other is speed optimized. The total hardware 

resources occupied by these units have been reduced through time-sharing 

between modules. 
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INTRODUCTION AND STATEMENT OF THE PROBLEM 

1.1 Introduction 

Mobile communication has grown exponentially ever since its emergence and is 
still growing phenomenally. In fact in the entire history of telecommunications the rate of 
growth of mobile communication has been unprecedented Use of technology for 
widespread application of information transfer has been the most important factor for the 
success of mobile communication. The mobile technology, originating with analog 
mobiles has seen significant changes from 2G to 2.5G to 3G and now 4G standards are 
being frozen. The success of implementation of higher generation technologies rests on 
several consequent technologies particulaily DSP. 

Today a mobile communication system uses many different frequency bands. For 
the convenience of the users it is important that a single terminal, which can be 
programmed depending on the service available in a given region, functions for all the 
multiple accessing techniques and associated technologies. The DSP can provide such a 
desired flexibility. Considering the various signal processing functions and the multiband 
and multimode operations required in mobile communications, the software approach is 
more attractive than the hardware. This concept for radio connectivity has given birth to 
the nomenclature of software defined radio [1]. Advances in the analog to digital 
conversion and processor technologies have made it possible to go for the software 
radios, where in majority of the communication functions of a radio link are performed 
easily by reconfigurable and possibly down-loadable software. The SDR can provide 
multi-functionality, global mobility, compactness and power efficiency, ease of 
manufacture, and ease of upgrades. If one were to consider SDR principles for mobile 
communication there would be many issues and challenges [2] in the implementation of 
base stations and mobile stations. Key enabling technologies for software radio 
particularly for handset terminal implementation are signal digitization, silicon capability, 
signal processing, SIM cards, downloadable software, and personal Java / Java card. 
Suitable algorithms need to be developed for implementation ofvarious functions. 
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Software defined radio (SDR) technology can be used to take advantage of 

programmable hardware modules to build open system architecture based on software. In 

this case, a variety of transceiver functions such as automatic gain control, frequency 

translation, filtering, modulation and demodulation can be integrated on a single 

hardware platform. This could result in maximizing the number of radio functions for a 

particular application. Software defined radio offers the flexibility and upgradeability 

necessary to satisfy these requirements [2]. 

Consider a typical communication system scenario where the user would like to have 

access to information through different wireless networks (e.g., CDMA, GSM, wireless 

local area network (WLAN), Bluetooth, etc.), or a mobile phone user may be traveling 

between two regions around the globe, where the wireless technologies or standards are 

different. To utilize the services offered by the broad range of technology alternatives 

around the world, the user has to carry different devices due to incompatibility of systems 

and standards. The practical solution to overcome this problem is to use a single device 

that can adapt to different technologies [4]. This could be possible using software defined 

radio, since it represents a radio that uses a reprogrammable hardware to create a generic 

hardware base. On top of the generic hardware platform, flexible software architecture is 

embedded. The software allows for multiple protocols, fast upgrades, and complete 
reconfigurations ofradio features and functions. 

1.2 Statement of the problem 

The objective of this thesis is to design and implement GAM baseband processing for 

reconfigurable software defined radio on FPGA. 

The design of GSM baseband processing consists of the design of GSM transmitter and 

receiver. So to achieve these goals, the problem can be sub divided as follows: 

1. To Model the GSM baseband processing in HDL (Hardware Descriptive Language) 
and simulating using ModelSim6.0d. 

2. To Model the GSM baseband using Xilinx system generator tool and performing 
hardware co-simulation. 
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3. To synthesize and optimize the area, performance of modules using Xilinx ISE tools 

and to generate two versions ofbitstreams. 

4. To implement the GSM baseband processing on FPGA. 

5. To perform partial reconfiguration of GSM baseband processing versions. 

1.3 Organization of Thesis 

This thesis is organized as follows: Chapter 2 presents the necessary concepts used in 

design of baseband processing section of SDR. These are, an overview of GSM 
communication standard, FPGA device structure and it's advantage for GSM baseband 

processing, and partial reconfiguration techniques have been discussed. Historical review 

of different SDR architectures and baseband processing implementation methodologies 

developed in this thesis. 

Chapter 3 gives the fundamentals of SDR. Concepts of SDR including comparison of 

conventional radios with SDR, architectural requirements, technical challenges in 

implementing SDR and basic architecture of SDR. 

Chapter 4 describes the GSM baseband processing details. In this, GSM transmitter has 

channel coder, interleaver, burst builder, A5/1 cipher and GMSK modulator have been 

explained in detail. Similarly, GSM receiver has GMSK demodulator, de-cipher, burst 

de builder, de-interleaver and channel decoder. 

In Chapter 5, implementation details of GSM transmitter and receiver are presented. It 

includes, simulation results of MATLAB simulink, Modelsim 6.0d, Hardware co-

simulation results. The synthesis results of GSM baseband processing versions are also 

explained. Comparison of two GSM baseband processing versions GSM vl, GSM v2 is 

done. 

Chapter 6 presents the partial reconfiguration of two GSM baseband processing 

versions. It includes, design of static module, controller of bus macros and partial 
reconfigurable modules. 

Finally chapter 7 provides conclusion and future scope. 
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BACKGROUND AND HISTORICAL REVIEW OF SDR 

This chapter provides useful concepts for SDR implementation and its previous research 
details. 

2.1 History of GSM 

In 1982 the main governing body of the European telecommunication operators, 

also known as CEPT (Conference European des Postes et Telecommunications), created 

a committee called Group Special Mobile (GSM) and tasked it with specifying a pan-

European cellular radio system to operate within 900 MHz band [7]. GSM is used by the 

80% of the global market. GSM differs from its predecessors in that both signaling and 

speech channels are digital, and thus is considered a second generation (2G) mobile 
phone system. 

ETSI published the GSM phase 1 specification in 1990 and commercial service 

began in 1991. Since then, GSM has grown to cover the world with both terrestrial and 

satellite networks. GSM was originally designed for operation in the 900 MHz band and 
has since been adapted to 1800 MHz (DCS1800), 1900 MHz (PCS1900) and is now 

being offered at 450 MHz The 1900 MHz band is used in the United States and competes 

directly with CDMA (IS-95). GSM has steadily evolved with publication of phase 2 and 

phase 2+ specifications that add improved data services, new speech coding algorithms 

and other enhancements. Phase 2 add features like call waiting, call hold, conference 

calling etc., and phase 2+ covers multiple service profiles, private numbering plans, inter 

working with digital enhanced cordless telecommunication and other business oriented 

features. Table 2.1 gives the specifications of GSM standards. 

In addition to traditional speech services, GSM provides a variety of data services 

including FAX and Short Messages. The Short Message Service (SMS) includes both 

broadcast and point-to-point text messaging. GSM started with circuit-switched data at 

various rates up to 9.6 kbps. Today, the maximum rate is 14.4 kbps to 115.2 kbps and 

will soon be extended to at least 384 kbps per user. 
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Table 2.1 GSM Specifications 

Multiple Access Technology FDMA/TDMA 

Duplex Technique FDD 

Uplink band frequency 93 3-960 MHz 

Downlink band frequency 890-915 MHz 

Channel Spacing 200Khz 

Modulation GMSK 

Speech coding RPE-LTP 

Speech channels per RF channel 8 

Channel data rate 270.833kbps 

Frame duration 4.615 ms 

2.2 FPGA for Baseband Processing [4] 

Throughout its history in the last 50 years, digital electronics technology has improved 

exponentially over time, doubling in performance roughly every 18 months while device 

sizes and costs have shrunk correspondingly. 

One alternative being considered for the future is based on the technology of field 

programmable gate arrays (FPGAs). It should be obvious that every application would be 

best served by custom circuitry targeted specifically for it; and, in fact, application-

specific integrated circuits (ASICs) are often made in response to special needs. But no 

one can afford to turn out a custom chip for every application he wants to run. FPGAs are 

able to meet the above requirements by their ability to be reconfigured any number of 

times. All FPGAs contain a regular structure of programmable basic logic cells 

surrounded by programmable interconnects and all these resources are configurable 

resources and its structure is shown in Fig 2.1. 
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FPGAs are usually slower than their application-specific integrated circuit (ASIC) 

counterparts, cannot handle as complex a design, and draw more power (for any given 

semiconductor process). But their advantages include a shorter time to market, ability to 

re-program in the field to fix bugs, and lowernon recurring engineering costs. 

To define the behavior of the FPGA the user provides a hardware description language 

(HDL) or a schematic design. Common HDLs are VHDL and Verilog. Then, using an 

electronic design automation (EDA) tool, a technology-mapped netlist is generated. The 
netlist can then be fitted to the actual FPGA architecture using a process called place-and-

route, usually performed by the FPGA company's proprietary place-and-route software. 

The user will validate the map, place and route results via timing analysis, simulation, 

and other verification methodologies. Once the design and validation process is complete, 

the binary file generated is used to (re)configure the FPGA. Detailed design flow is 
explained in section 5.3. 

Configurable 

Configurable 
Logic block 

Figure 2.1: FPGA Structure 



2.3 Reconfigurable systems 
2.3.1 Reconfiguration 

Reconfiguration is a post-fabrication process in which processing elements are 

programmed spatially and temporally i.e., computation in space and time, using hardware 

that can adapt at the logic level to solve spedfic problems [5]. 

The term "reconfiguration" refers to reprogramming an FPGA after its configuration is 

complete. Reconfiguration can be initiated by pulsing the full chip reset pin (this method 

is identical to configuration), or by re-synchronizing the device and sending configuration 

data. The latter method is only available in Select MAP and JTAG configuration modes. 

To reconfigure a device in Select MAP mode without pulsing full chip reset pin, the 

BitGen persist option must be set otherwise, the data pins becomes user I/O after 

configuration 

2.3.2 Types of Reconfiguration 

There are two types of reconfiguration mechanisms, depending on the use they make of 

the dynamic nature of the reconfigurable device. 

a) Compile-Time Reconfiguration 

CTR [5] is the simplest and most commonly used approach for implementing 

applications with reconfigurable logic. The most important feature of CTR applications is 

that they consist of a single system-wide configuration for all the system (Fig 2.2). The 

FPGAs are loaded with their respective configurations before the execution of the 

operation, and once execution of the application starts, they remain in this configuration 

till the end of execution. 

Figure 2.2: Compile Time Reconfiguration 
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This approach is similar to using an ASIC because the hardware does not change during 
the execution of the application. 

b) Run Time Reconfiguration 

Run-Time reconfigurable applications consist of a set of time-exclusive tasks that can be 

downloaded into the FPGA (one at each time, or several simultaneously) using a dynamic 

allocation scheme. In contrast to CTR, the FPGA will probably be reconfigured more 

than once during the execution of an application (Fig 2.3). Developing dynamic 

reconfiguration [5] is difficult because of the need for both software and hardware 

expertise to determine how best to partition a computation into sections to implement in 

hardware, how to sequence these circuit sections, and how to tie them together to produce 

an efficient computation. This overhead can be reduced to some extent by using dynamic 
partial reconfiguration which is described below. 

The main advantage of RTR in front of CTR is that it allows reusing the reconfigurable 

device several times for the same application. To be able to do that it is necessary to 

partition the application into a set of configurations, but instead of using spatial 

exclusiveness as a criterion, this method uses time exclusiveness. We can distinguish two 

classes of run-time reconfiguration schemes Global reconfiguration and Local 
reconfiguration which are described below. 

i) Global Run-Time Reconfiguration 

Here application is divided into distinct temporal phases where each phase is 

implemented as a single system wide configuration that occupies all system FPGA 
resources. 

Figure 2.3: Run Time Reconfiguration. 
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In this case, reconfiguration time is more critical than in a CTR application. In this the 

reconfiguration of the FPGA is not only performed during the set-up of the system, but 

several times during the execution of the application. Fig 2.4 shows the execution of a 
Global RTR application which is mapped into two configurations. 

------------------------, 

I 

Figure 2.4: Global Run-Time Reconfiguration 

ii) Local Run-Thme Reconfiguration 

It is also possible to reconfigure only subsets of the reconfigurable circuit. This approach 

is called partial reconfiguration or Local RTR. In this case important time-savings are 

made compared with a complete reconfiguration of the components, as reconfiguration is 

quite a time-consuming operation and with Local RTR not all the circuitry must be 

reconfigured to carry out changes. 

Fig 2.5 shows an example of Local RTR where the application to implement consists of 4 

partitions A, B, C and D. In a first step, partitions "A", "B" and "C" are loaded into the 

FPGA and then executed. In a second step, partitions "B" and "C" are removed and 

partition "D" is loaded into the FPGA, which is followed by the execution of the 

application. 

i ------------, 

Figure 2.5: Local Run Time Reconfiguration 
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2.4 Partial Reconfiguration Techniques 

Reconfiguring the whole system is complicated costly in terms of overhead and may also 

be redundant in cases when desired functionality can be implemented by changing only a 

part of the circuit. The solution is to use partial reconfiguration which proves to be more 

efficient. Partial reconfiguration involves partitioning the hardware [9] within the 

platform to reduce the reconfiguration overhead. Partial Reconfiguration is the ability to 

reconfigure a portion of an FPGA while the remainder of the design is still operational. 
Certain areas of a device can be reconfigured while other areas remain operational and 

unaffected by reprogramming. If Partial Reconfiguration is done when the device is 

active it is called Active Partial Reconfiguration or Dynamic Partial Reconfiguration. 

Dynamic Partial reconfiguration is again divided into two types [13] 

1) Module-Based Partial Reconfiguration 

2) Difference-Based Partial Reconfiguration. 

2.4.1 Module-Based Partial Reconfiguration_ In this method entire reconfigurable 

module is modified while leaving base region intact. Modular Design is best used for 

large designs that can easily be partitioned into self-contained modules. It is also used 
when communication is needed between modules. 

Base and Partially Reconfigurable Regions (PRR): 

The base region is the portion of the design that does not change during partial 

reconfiguration and may include logic that controls the partial reconfiguration process. 

PRRs contain logic that can be reconfigured independently of the base region and other 

PRRs. The shape and size of each PRR is defined by the user through a range constraint. 

Each PRR has at least one, and usually multiple, partially reconfigurable modules (PRM) 

that can be loaded in to the PRR. Fig 2.6 illustrates a design with a single partial 

reconfiguration region PRR A. PRR A can be loaded with PRMs Al, A2, or A3. Each of 

the PRMs contains different logic for processing data passed from the static logic in the 

base region to the dynamic logic programmed in PRR A. Partial Reconfiguration can be 
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carried out in two different.ways. It is possible to reconfigure part of the circuit while 

operation of the other parts is interrupted This kind of reconfiguration is called Passive 

Partial bit stream Al .bit 

Partial bit stream A2.bit 

Partial bit stream A3.bit 

Figure 2.6: Module based partially reconfiguration process 

partial reconfiguration. It is also possible in some cases, when partial reconfiguration is 

applied to leave the non-reconfigured parts of the circuit in operation while other parts 
are being reconfigured. This method is called Active Partial Reconfiguration. In the case 

of Passive Partial Reconfiguration time savings are made by lowering the reconfiguration 

time compared with a complete reconfiguration of the components. If Active Partial 

Reconfiguration is applied then time-savings are even more important as the execution of 

the application is not interrupted. 

2.4.2 Difference-Based Partial Reconfiguration: 

This method of Partial Reconfiguration is accomplished by making a small change to a 

design (normally done in FPGA Editor), and then by generating a bitstream based on 

only the differences in the two designs. Switching the configuration of a module from 

one implementation to another is very quick, as the bitstream differences can be 

extremely smaller than the entire device bitstream. This method is very useful for 

implementing modules which differ by only little changes in their coding. In this work I 

have followed module based partial reconfiguration and it is described in detail in 

chapter 6. 
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2.5 Historical review 

The term "Software Defined Radio" was coined in 1991 by Joseph Mitola, who published

•  the first paper on the topic in 1992. One of the first public software radio initiatives was a 
U.S. military project named SpeakEasy. The primary goal of the SpeakEasy project was 
to use programmable processing to emulate more than 10 existing military radios, 

operating in frequency bands between 2 and 2000 MHz. Further, another design goal was 

to be able to easily incorporate new coding and modulation standards in the future, so that 

military communications can keep pace with advances in coding and modulation 

techniques. From 1992 to 1995, the goal was to produce a radio for the U.S.army that 

could operate from 2 MHz to 2 GHz, and operate with ground force radios. 

In this SpeakEasy project, wide range was not supported due to architectural 

complexities, so SpeakEasy phase II was launched to operate in the range 4 MHz to 400 

MHz. The goal was to get a more quickly reconfigurable architecture (i.e. several 
conversations at once), in an open software architecture, with cross-channel connectivity 

(the radio can "bridge" different radio protocols). The secondary goals were to make it 
smaller, weigh less and cheaper. The project was the first known . to use FPGAs (field 

programmable gate arrays) for digital processing of radio data. The time to reprogram 
these is an issue limiting application of the radio. 

After SpeakEasy II, JTRS (Joint Technical Radio System) was started. JTRS is a program 

of the US military to produce radios that provide flexible and interoperable 

communications. Examples of radio terminals that require support include hand-held, 

vehicular, airborne and dismounted radios, as well as base-stations (fixed and maritime). 

This goal is achieved through the use of SDR systems based on an internationally 

endorsed open Software Communication Architecture (SCA). The SCA, despite its 

military origin, is under evaluation by commercial radio vendors for applicability in their 

domains. In 1999, Joseph Mitola proposed SDR architecture and it's technical challenges 
[1].  

[1] Describes the evolving concepts and architecture of software defined radio. It 

also presents the technical challenges like clock generation and distribution, power 

12 



management and receiver architecture. The main challenge in power management is sleep 

delay vs paging delay. To solve this drawback, a solution was proposed to use power 

managed ,DSP devices. To overcome the efficiency of receiver architecture, wideband 

SDR was proposed and to overcome the computational efficiency of software, FPGAs, 

JAVA engines were proposed. The architecture developed in [1] could not handle the 

power management properly. 

In [7] GSM baseband processor was developed using high level language (C 

language) to implement on DSP kit. The AIRT  Library extensions to C greatly simplified 

the hardware design effort, and AIRT  Builder combined with Mistral 2 allowed to design 

the FPGA and yet maintain a C language environment for verification. 

The FPGA implementation occupied approximately 70% of the logic resources of the 

Xilinx XCV800. It occupied 25 of 28 Block RAMS and consumes power less than 500 

mW maximum. The maximum clock speed was 13 MHz and the external SRAM speed 

was 6.5 MHz. An ASIC implementation was expected to dramatically reduce power 

consumption and cost. The baseband processing developed in [7] was not concurrent 
approach 

[8] Presents concurrent software defined approach for common baseband 

processing. The main focus is on exploring the algorithmic and architectural design 

spaces of 3G and 4G systems to identify the computational and geometric structures 

shared by diverse coding schemes, services and hardware platforms, and the efficient and 

flexible integration of these structures on innovative extensible hardware. 

A subset of GSM baseband processing modules involved in the generalized GSM 

transmitter have been successfully implemented using Linedancer. The algorithms 

developed for the parallel architecture enable efficient, concurrent multi user processing 

and contribute to the high speed software reprogrammable implementation. The design 

used 270 MHz clock rate for all its baseband module processing. The baseband model 

developed in [8] not used special purpose IF cores, which reduce the turnaround time. 

The synthesis time was also more. 
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[9], [10] Presents High-level "frameworks" such as the SCA (Software 

Communication Architecture) add virtualization layers on heterogeneous DSP-FPGA 

_.. systems with the promise of code portability. The implementation was done in the 

general context of the development of an SCA board support package for Lyrtech's 

DSP/FPGA development platforms as well as the development of example applications 

and reference designs running on these platforms. 

The SCA GSM implementation was derived from a non-SCA model-based GSM 

design. To design these modules, special purpose VHDL code wrapped in a system 

generator block was used. As a result of this design, the DSP/FPGA platform operates 64 

mbps and operating frequency of 65 MHz. In [9] area optimization of FPGA was not 

taken into consideration. 

From the above historical review, it can be concluded that, the following major research 

gaps still exist. 

In [7], the code developed has to be synthesized using synthesizer called Mistral 2. So the 

generated bitstream will occupy more silicon area of FPGA. So it is possible to optimize 
the FPGA silicon area 

In [8], technique introduced will take more time to synthesize the design and 'also 

increases the power consumption of FPGA. So it is possible to optimize the power 

consumption. This paper also presented the two baseband processing modules, 

GSM,OFDM. But it has not explained the reconfiguration of two baseband processing 

models. So it is also possible to perform the partial reconfiguration which is a key feature 

of software defined radio. 

[9] This paper presented how a GSM waveform can be implemented for an SCA 

environment on a DSP/FPGA. This paper has shown only system generator model 

development. So it is possible to develop a baseband model using VHDL code to 

optimize the area. 

Thus, this dissertation work is to effectively fill some of above stated research gaps. 
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CHAPTER 3 

RECONFIGURABLE SDR AND ITS ARCHITECTURAL REQUIREMENTS 

3.1 Introduction 

With the increase of wireless standards in television, radio, and mobile communications, 

compatibility issues have emerged in wireless networks, Inconsistency between wireless 

standards is causing problems to subscribers, wireless network operators, and equipment 

vendors [14]. Subscribers are forced to change their handsets whenever the latest breed of 

standards is introduced. Network operators face the dilemma during the upgrade of a 

network from one generation to another due to the presence of a large number of 

subscribers using legacy handsets incompatible with newer generations of standards. 

Equipment vendors face difficulty in airing new technology because of short time-to-

market requirements [15]. Inconsistency between wireless standards is inhibiting 

deployment of global roaming facilities and causing problems in introducing new 

features and services [16]. Users are expecting more from their mobile terminals in terms 

of quality of service and multimedia applications. Traditional wireless systems, with their 

capabilities hard-coded in them, are no longer able to keep step with this brisk growth 
rate. 

Introduction of software into the radio systems has brought the concept of software radio. 

It is now possible to realize various radio functions using suitable software on the same 

hardware. Such radios have been referred to as Software-Defined Radio (SDR). The 

SDRs are programmable and reconfigurable. Programmability / reconfigurability have 

become necessity of the day, because of the multiple standards, multiple frequency 
bands, and variety of applications. 

The SDRs can provide multi-functionality, global mobility, compactness and power 

efficiency, ease of manufacture, and ease of upgrades. Design of SDRs required 

definition of suitable architecture and proper partitioning of the function in a radio 

system. Suitable algorithms need to be developed for implementation of various 

functions. The development of digital techniques in communication systems resulted in 
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additional performance improvement, because of use of source coding, channel coding, 

encryption, multiplexing, and multi accessing techniques. All these techniques can easily 

be defined and implemented in SDR._ 

3.2 Concepts of Software Defined Radio 
3.2.1 Definition of SDR 

Definition of SDR is provided by the SDR forum [3], is that SDR is the radio that accepts 

fully programmable traffic and control information and supports a broad range of 

frequencies, air interfaces, and application software. 

3.2.2 Conventional Radio vs Software Defined Radio (SDR) 
To compare the functionalities of Conventional radios with software radios, the following 

table is given. 
Table 2.1: Difference between conventional radios and software defined radios 

Conventional Radios Software Defined Radios 

Radio functionalities are primarily defined Radio 	functionalities 	are 	defined 	in 
in 	hardware 	with 	minimum software 
configurability in software 

Since 	the 	design 	is 	dominated 	by Software based architecture allows for 

hardware, upgrading the design is not easy upgrade of the design without 
abandoning the older design 

possible. 

The user has to use different mobile Global mobility can be achieved by 
devices 	due 	to 	incompatibility 	of downloading the appropriate air interface 
standards, thus overcoming the incompatibility of 

standards. 

Multi-function radios design including Reprogrammability makes SDR to be 
separate silicon for each system decreases efficient and compact 
the efficiency and becomes bulky. 

Results in waste of silicon area since each Silicon area is conserved by using the 

system has to be implemented separately same chip to perform a function and 
' changing 	the 	configurations 	during 

runtime to perform another function 

16 



3.2.3 Technical Challenges 

This section discusses the technical issues, which have to be solved before software radio 

can be commercially-  available. The important technical issues involved in the 

development of a software radio system are as follows: 

(1) In transceivers, the border between analog and digital domain should be moved 

closer, as much as possible, towards the RF. This requires ADC and DAC wide band 

converters placed as near as possible to the antenna. Increasing the. border between the 

analog and digital domain is not exclusively for software defined radio. Much research 

has been carried out in the wideband transceiver realization [15]. The primary goal of this 

transceiver was to extend the digital domain at the IF stage and keeping the RF stage 

analog [15]. 

(2) The process of replacement of dedicated hardware in communication systems with 

DSPs or FPGAs should be further developed. In other words, we need to define the radio 

functionalities as much as possible in software. This opens the way to two possible 

horizons: software implementation of baseband functions, such as coding, modulation, 

equalization and pulse shaping; and re-programmability of the system to guarantee multi-
standard operation. Though DSP technology has been used in implementing the baseband 

processing in base stations, it is not possible to categorize it as SDR since not all 
baseband functionalities are implemented in DSPs. Also, the software is limited and pre-

loaded; therefore the system is constrained to a specific radio interface and cannot be 

reconfigured [1]. Hence, implementing communication functions in software presents a 
major challenge in practical systems. 

(3) Analog-to-digital and digital-to-analog conversions for the ideal software defined 

radio are difficult to achieve. In practice, the selection requires trading power 

consumption, dynamic range and bandwidth. Current conversion technology is limited 

and is often the weak link in the overall system design. There are post digitization 

techniques based on multirate digital signal processing that can be used to improve the 

flexibility of the digitization process [2], [16]. 

17 



(4) Power management is also a major challenge. For example, sleep modes of DSPs or 
other hardware save power but introduce a probability that the radio will be asleep during 
a paging message. A possible solution is a structured timing of paging messages, which 
reduces the probability of a miss, and further conserves battery life [17], [18]. 

(5) The clock generation and distribution is another challenge in SDR design. Every 
standard such as GSM or IS-95 has its own clock rate. Using one reference oscillator per 
standard may increase parts count, increase complexity, and therefore cost. A single 
master clock may use the least common multiple (LCM) of the required clocks, but this 
leads to a high clock rate, which is power inefficient. A possible solution is to use 
normalize standards to avoid clock rates with large LCMs [1]. 

(6) Receiver complexity is typically four or more times the transmitter complexity [2].. 
Thus, the receiver architecture has a first order impact on handset cost. The challenge is 
to develop a simple receiver. With the current technology, the support of many standards 
leads to complex and power inefficient solutions. Application specific integrated circuits 
are power efficient but inflexible. Field programmable gate arrays could be a possible 
solution. Hybrids ofplatfoml implementation could be utilized. 

(7) The ideal radio frequency stage for SDR should incorporate flexibility in selection of 
power gain, bandwidth, dynamic range, etc. Achieving strict flexibility is impractical and 
trade-offs must be made [2].These are the major challenges that must be addressed before 
full realization of SDR. Besides these important issues there are other challenges, which 
have to be solved like software architecture selection, hardware architecture selection 
etc., which are not discussed in this thesis. More information can be found in [1], [20]. 

3.3 Architectural requirements of SDR 

This section gives the details of the architectural requirements of the SDR. 

3.3.1 Architectural characteristics intrinsic to SDR 

To implement SDR system, the system architecture must be designed in the following 
aspects [211. 
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a) Reconfigurability: Reconfigurability is the ability to accommodate more than one 

functional unit on the same hardware by doing reconfiguration without changing the 

system architecture. Thus, it is the ability of change of a radio's personality through 
reprogramming of both software and hard-ware, in general. In addition, reconfigurability 

may be extended to change individual algorithms by changing the parameters of 

individual algorithms. 

b) Flexibility: SDR architecture must exhibit to support more than one standard as well 

as for incorporation of future standards in a single device, with reprogramability as an 

essential feature. 

c) Modularity: Modularity is another basic characteristic of SDR architecture. 

Modularity involves the encapsulation of each of the various tasks that define a system 

into individual and separate modules, whether in software or hardware, that can be linked 

together in a logical manner through their interfaces to form the desired system. In a well-

designed modular SDR, the functionality of the system can be incrementally changed 

through the addition or replacement of individual modules without impacting the design 

of other modules. 

3.3.2 Architectural characteristics import to SDR 

a) Scalability: One of the most important characteristics of a SDR is scalability, the 

ability to add new modules, either in hardware or software, to enhance the performance 

of the radio. The synergistic effects of reconfigurability and scalability may prevent 

optimality. Due to a software radio's many software and potential hardware changes and 

the complexity of the system, it is often difficult to say with absolute certainty how the 

radio will perform after a change is made and whether the radio will be able to 

accommodate these changes. 

b) Validation & Verification: Validation addresses the functionality verification. Thus, 

designed architecture and particular HW/SW functionality correctness is important and 

should be verified before they are integrated as a combination of components in the 

integrated system. The difference between validation of architecture and validation of an 



application is by referring to the latter as verification. The ,alid t gmteriis~j~ised"'for 

architecture and verification term is used for application. Verification is the process of 

conforming that a particular HW/SW combination with application, of the potentially 

limitless number of combinations will perform as expected Verification is an essentially 
important issue for the wireless communication systems with multiple standard support 

like the SDR. 

c) Replicability: Replicability is the ability to support addition of new channels to the 

system by simply adding copies of the basic radio. The replicability effectively provides 
scalability for the entire system, allowing it to expand to handle additional traffic. 

d) Interoperability: The past decade has seen the introduction of many software radio 

products that can be drawn upon to reveal the practical characteristics of SDRs. However, 

with so many different SDR architectures with varying degrees of cross-compatibility 
being introduced, one may wonder if this multitude of SDR designs will bring the 

wireless market back, full circle, to interoperability problems similar to the ones that 

endangered the software radio concept. Fortunately, this potential problem was identified 
several years ago, and several movements have started the process of creating 

standardized SDR architecture. In an attempt to provide a measure of standardization, 

with a hope of promoting interoperability among SDR designs, a number of SDR groups 

have been formed. 

3.3.3 Architecture of Software Defined Radio (SDR) 

The digital radio system consists of three main functional blocks: RF section, IF section 

and baseband section [16] as shown in fig 3.1. The RF section consists of essentially 
analog hardware modules while IF and baseband sections contain digital hardware 

modules. 

RF Section: 

The RF section (also called as RF front-end) is responsible for transmitting/receiving the 



a 

Fig 3.1: Basic Architecture of Software Defined Radio 

radio frequency (RF) signal from the antenna via a coupler and converting the RF signal-

to an intermediate frequency (IF) signal. The RF front-end on the receive path performs 

RF amplification and analog down conversion from RF to IF. On the transmit path, RF 

front-end performs analog up conversion and RF power amplification. 

IF Section: 

The ADC/DAC blocks perform analog-to-digital conversion (on receive path) and digital 

to analog conversion (on transmit path), respectively. ADC/DAC blocks interface 

between the analog and digital sections of the radio system. DDC/DUC blocks perform 

digital down conversion (on receive path) and digital-up-conversion (on transmit path), 

respectively.DUC/DDC blocks essentially perform modem operations, i.e., modulation of 

the signal on transmit path and demodulation (also called digital tuning) of the signal on 

receive path. The .baseband section performs baseband operations (connection setup, 

equalization, frequency hopping, timing recovery, correlation) and also implements the 

-link layer protocol (layer 2 -protocol in OSI protocol -model).The DDC/DUC and 

baseband processing operations require large computing power and these modules are 

generally -implemented using ASICs or stock DSPs. Implementation of the digital 

sections using ASICs results in fixed-function digital radio -systems. If DSPs are used for 

baseband processing, a programmable digital -radio (PDR) system can be realized. In 

other words, in a PDR system baseband operations and link layer. protocols are 
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implemented in software. The DDC/DUC functionality in a PDR system is implemented 

using ASICs. The limitation of this system is that any change made to the RF section of 

the system will impact the DDC/DUC operations and will require non-trivial changes to 

be made in DDC/DUC ASICs. 

A software-defined radio (SDR) system is one in which the baseband processing as well 

as DDC/DUC modules are programmable. Availability of smart antennas, wideband RF 

front-end, wideband ADC/DAC technologies and ever increasing processing capacity 

(MIPS) of DSPs and general-purpose microprocessors have fostered the development of 

multi-band, multi-standard, multi-mode radio systems using SDR technology. In an SDR 

system, the link-layer protocols and modulation/demodulation operations are 

implemented in software. If the programmability is further extended to the RF section 

(i.e., performing analog-to-digital conversion and vice-versa right at the antenna) an ideal 
software radio system that support programmable RF bands can be implemented. 

However, the current state-of-the-art ADC/DAC devices cannot support the digital 

bandwidth, dynamic range and sampling rate required to implement this in a 

commercially viable manner. Figure 3.2 illustrates the architecture of software 

components in a typical SDR system. 

Higher Level Protocols( WAP,TCP/IP) 

Radio Applications (Link Layer Protocols,modulation/ 
demodulation) 

Fig 3.2: Software Architecture of SDR 
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The system uses a generic hardware platform with programmable modules (DSPs, 

FPGAs, microprocessors) and analog RF modules. The operating environment performs 

hardware resource management activities like allocation of hardware resources to 

different applications, memory management, and interrupts servicing and providing a 

consistent interface to hardware modules for use by applications. In SDR system, the 

software modules that implement link layer protocols and ' modulation/demodulation 

operations are called radio applications and these applications provide link-layer services 

to higher layer communication protocols such as WAP and TCP/IP. 

Baseband Section: 

In SDR the digital baseband processing consists of the following modules: speech coder 

and decoder, channel coder and decoder, interleaver, de-interleaver, burst builder and 

burst de builder, cipher and decipher, GMSK modulator and demodulator. The fig.3.3 

shows the SDR with digital baseband processing modules. 
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Fig.3.3: GSM Baseband processing in Software Defined Radio 
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CHAPTER 4 

DESIGN OF GSM BASEBAND PROCESSING FOR SDR 

4.1 Overview of Digital blocks of GSM Transmitter and Receiver: 

The analog part includes the RF transmitter and receiver and the digital part downlink 
signal processing consists of speech encoding, channel encoding, interleaving, 
encryption, burst building and modulation (Figure 4.1(a).) On the uplink, the signal 
processing consists of receive filtering, demodulation, equalization, decryption and 
channel decoding (Figure 4.1(b)) [24]. Each of these blocks has been implemented 
individually in VHDL and they are described below. 

Speech 	Channel Encoder —► 	Interleaver 	Encryption Encoder 

Burst Builder I 	GMSK modulator 

a) Transmitter 

Filters 	F— H GMSK Demodulation F--- 	De_interleaving 

Channel Decoding F- Speech Decoding 

b) Receiver 

Fig 4.1: GSM Transmitter and Receiver 

In this standard the datapackets are sent at specific times at specific frequencies. Thus, 
several conversations take place simultaneously and at the same frequency using different 
time slots. Systems are also frequency duplex so that the transmit and receive frequencies 
are different, and both sides of the transmission (Mobile-to-Base and Base-to-Mobile) are 
concurrent. 
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4.2 GSM Transmitter 

This section gives the detailed explanation of the blocks used in GSM transmitter. 

4.2.1 Speech encoder: 

Depending on compression achieved and quality of the resultant data following are three 

coding rates: 

1. Full rate (RTE-LTP) 

2. Half rate 

3. Enhanced full rate 

The speech coding scheme at 13 kbps is called RPE-LTP, which stands for Regular Pulse 
Excitation-Long Term Prediction is used in standard GSIVL The 13 kbps rate is also 

referred to as "full rate". The full rate speech encoding algorithm processes 20 ms frames 

of speech and produces 260 bits of data per frame. The 20 ms input frame consists of 160 

samples of speech at a sampling rate of 8 KHz. The speech blocks each of 20 ms duration 
coming out of speech coder are grouped into three classes of sensitivity to errors 

depending on their importance to the content of the information samples in speech. They 

are as following: 

Class la CRC 53-bits 

Speech (50-bits) generator  

coder ° m  189-bits Convolution 

260 bits / I bi  
encoder 	378-bits 
(21 5) 	C 

20 ms Class lb Attach n 
° (132-bits) 4-tail bits er 
m 	456-bits 

136-bits 
bi 

Class 2 n  
(78-bits) 

er 

Figure 4.2: The block diagram showing three classes of data and data flow at different 

stages 

1. Class la: Three parity bits are derived from the 50 class la bits. Transmission errors 

within these bits are catastrophic to speech intelligibility, therefore, the speech decoder 
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is able to detect uncorrectable errors within the class la bits. If there are class la bits in 
errors, the whole block is usually ignored. 

2. Class Ib: The 132 class 1 b bits are not parity checked but are fed together with the 
class la and parity bits to a 'convolutional encoder. Four tail bits are added first and then 
r = 1/2, (Constraint length K = 5) convolutional code provides an output of 378 bits. 

3. Class II: The 78 least sensitive bits are not protected at all. 
A splitter has been designed to group the bits coming out from speech coder. 

4.2.2 Channel coder 

As shown in fig.4.2, channel coder mainly consists of two blocks: CRC generator and 

convolutional encoder. 

CRC generator: 
Before convolutional coding, three bits of parity are added to class la bits. The generating 
polynomial is Generator Polynomial G = D3  + D + 1. The block diagram of the CRC 

generator is as shown in figure 2. The hardware operation is as follows: three flip-flops 
with active rising edge are connected in linear feedback shift register manner and a 
switch in between which separates data input with the parity bits. For the first 50 clocks 
the switch remains closed and for the last 51 to 53 clocks the switch is kept open. 

Generator Polinomial 
G=D3 +D+1 

First 50 bits 

Operation 1....50 Clk ..SW closed 
	

Last 3 Parity bits 
51..53 Clk .. SW open 

Fig.4.3: CRC generator (or) Parity bits generator 
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Simulation result of CRC generator used in GSM: 

Fig 4.4: Simulation waveform of CRC generator used in GSM 

Convolutional Encoder: 

In general the channel coder adds redundancy in a manner the decoder can detect and 

correct errors in received data stream. Convolutional encoder has been used as channel 

encoder for GSM standard. Convolution encoder is characterized by its constraint length 

and its code rate. The constraint length of encoder is defined as one plus the number of 

memory elements and code rate defined as ratio of input bits to output bits. In GSM 

communication standard traffic channel, convolution encoder of type (2, 1, 5) has been 

used. Whose constraint length is 5 and code rate is '/z . This code is applied to both the 
class lb (132 bits + 4 tail bits) and class la (50 bits + including 3 parity bits ). In order for 

a code to be able to correct errors, a certain number of additional bits have to be added. 

The added bits are called redundancy bits. Before the information bits are encoded, four 

bits are added. These bits are all set to zero and used to reset the convolutional code. 

These bits are called tail bits. The block diagram of a convolution encoder is shown in 

fig.4.5. For 189 bits input the output of the convolution encoder is 378 bits for one frame 
duration (i.e. 20 ms). 
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Input bit 

Generator Polinomi 

9j=D4+D3+1 
go=D4+D3 +D+ 

Fig.4.5: (2, 1, 5) Convolution Encoder 

Simulation Result: 
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1{~}Q~i: Pj~i~ILII_!''f~~3;~~ 

/gsm_shift/datain 	Ii  
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0 ns to 947 ns 	 Now Z us Delta: 2  

Fig 4.6: Simulation waveform of convolutional Encoder 

4.2.3 Interleaver: 

In order to combat the effects of error due to interference and noise, error correction 
techniques are used. The redundancy introduced due to error-correcting codes increases 
the data rate. For example, the raw data rate, due to speech coding, is only 260 bits over a 
period of 20 ms, as shown in fig 4.8. 
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However, after channel encoding through convolution encoder, the number of bits are 
increased to 456 bits, resulting in a data rate of 22.8 Kbps.Most probably the bit errors 
often occur in bursts. This is due to the fact that long fading dips affect several 
consecutive bits. To deal with this problem consecutive bits of a message are separated so 
that these are sent in a nonconsecutive way. This is done by interleaving, which is the 
process of distributing data bits in a different order in which they are generated. The 
output of the combiner from figure2 fed to block interleaver. 

The block interleaver divides the 456 bits of one frame into the eight sub blocks in the 
following way. Bit number 0 goes into sub block 1, bit number 1 goes into sub block 2, 
and so on until all eight sub blocks are used up. Bit number 8 ends up in sub block 
number 1 again. The first four sub blocks are put into the even-numbered bits of four 
consecutive bursts, and the second four sub blocks are put into the odd-numbered bits of 

the next four consecutive bursts. 

First, the 456-bit encoded speech message block is read into an 8-column by 57-row 
matrix RAM, filling each row in turn. The bits are then read out of the RAM by column, 
forming eight sub blocks of 57 bits each. Note that adjacent bits in the code word are 
placed into different sub blocks. As each burst contains 114 traffic-carrying bits, it is in 
fact shared by two speech blocks. Each block will share four bursts with the block 
preceding it and four with the block that succeeds it. A burst will then be transmitted in 
the designated timeslot of eight consecutive TDMA frames, thus providing the 
interleaving depth of eight. The complete process in vivid manner is as shown in figure 5 
above. The training sequences for different timeslots are given in table.4. 1. 

4.2.4 Encryption: 

A5/1 algorithm has been used as encryption algorithm for this GSM communication 
standard. The AS algorithm uses a frame number and key Kc to produce a stream of 114 
bits that are used to encrypt and decrypt a burst of data [28]. At the transmitter, each of 
the 114 bits in the encryption stream is exclusive-OR'ed with the corresponding bits in 
the data stieam. At the receiver, the A5 algorithm generates the same bit stream using the 
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frame number and Kc as at the transmitter and again performs the exclusive OR 
procedure to reproduce the original data bits. Since the frame number changes on every 
burst, the encryption stream also changes. Depending on network procedures, the key Kc 
may change on every call. This makes it very difficult for listeners to break the code. The 

A5/1 algorithm is as follows: 

A5/1 Stream cipher: A5/1 is a stream cipher used for encrypting over the air 

transmissions in the GSM standard. A GSM conversation is transmitted as a sequence of 
228-bit frames (1 14-bit in each direction) every 4.6 millisecond. Each frame is XORed 
with a 228-bit sequence produced by the A5/1 key stream generator. The initial state of 
this generator depends on a 64-bit secret key, Kc, which is fixed during the conversation, 

and on a 22 bit public frame number, Fn. 

The A5/1 architecture is composed of three LFSRS, R1, R2, and R3 of lengths 19-, 

22-, and 23-bit, respectively. Each LFSR is shifted, using clock cycles that are 

determined by the Majority Function. This unit uses 3 bits C1(8), C2(10), and C3(10). If 

two or more bits of them are zero then the majority is m = 0. Similarly if two or more of 

them are equal to 1 then the majority is m = 1. If Ck  = m then corresponding register Rk  is 

shifted, where 1==1, 2, 3. The feedback polynomials for R1, R2, and R3 are: x19+x5  
+x2+x+1, x22+x+1 and x23+x15  +x2+x+1, respectively. At each cycle, after the initialization 
phase, the last bits of each LFSR are XORed to produce one output bit. The fig.4.7 shows 

the A5/1 cipher algorithm. 

A GSM transmission is organized as sequences of bursts. In a typical channel and 
in one direction, one burst is sent every 4.615 milliseconds and contains 114 bits 
available for information. A5/1 is used to produce for each burst a 114 bit sequence f key 
stream which is XORed with the 114 bits prior to modulation. A5/1 is initialized using a 
64-bit key together with a publicly-known 22-bit frame number. In fielded GSM 
implementations 10 of the key bits are fixed at zero, resulting in an effective key length 
of 54 bits. The A5/1 stream cipher uses three LFSRs. A register is clocked if its clocking 
bit (orange) agrees with the majority of the clocking bits of all three registers. 
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Figure 4.9: The A5/1 stream cipher 

Fig.4. 10: Simulation waveform of A5/1 cipher 

4.2.5 Burst Builder: 

The GSM specifications define 4 different types of bursts; a normal burst has been 

considered (fig.4.10). The other types of burst (Frequency correction burst and 

Synchronization burst) are indeed only transmitted from the base station to the mobile 

station at known arrival time. A normal burst is used to transmit data information. 



It lasts 576.9ms (15/26 ms) and is composed of 156.25 bits, which are: 

(a) 2*3 tail bits used to allow the signal to ramp up and down for a transition. 

(b) 2*57 data bits (two half burst of 57.bits each, from the interleaver, are introduced in 

a burst). 

(c) 2* 1 signaling flags, which indicate eitherthe data is signaling traffic or user traffic. 

(d) 26 bits of training sequence. 

(e) 1*8.25  bit-times of guard period (30.4ms) at the end of the burst to help compensate 

for multipath echoes. 

Frame-1 	Frame-2 	Frame-3 

(456 bits)/20 ms 	(456-bits)/20 ms 	(456-bits)/20 ms 

8 sub blocks 	8 sub blocks 	8 sub blocks 

(57 row X 8 column) 	(57 row X 8 column) 	(57 rowX 8 column) 

57 bits (column-1) of 57 bits (column-5) of 
Burstl -- subblocki of frame2 subblock5 of framel 

0 1 

57 bits (column-2) of 57 bits (column-6) of 
Burst-2 — — subblock2 of frame2 subblock6 of framel 

2 3 

57 

 

it (column-3) of 57 bits (column-7) of 
Burst-3 -- subblock3 of frame2 subblock7 of framel 

4 5 

57 bits (column-4) of 57 bits (column-8) of 
Burst -4 - - subblock4 of frame2 subblock8 of framel 

Interlaeved 

F
_ 	

_ _ Burst Builder 
burst-n 

AS/1 Cypher 
(b) 

57 bits (column-1) of 57 bits (column-5) of 
Burst -5 --p1 

subblockl of frame3 subblock5 of frame2 

8 9 

57 bits (column-3) of 57 bits (column-6) of 
Burst-6 -- subblock2offrame3 subblock6 of frame2 

10 11 

column 3) of 57 bits (column-7) of 
Burst 7 -- Cbk3 of frame3 subblock7 of frame2 

12 13 

57 bits (column-3) of 57 bits (column-8) of 
Burst-8 — 

subblock4 of frame3 subblock8 of frame2 

14 15 
(a) 

Normal burst sent in one time slot 
Traning  I Guard 

Tail-bits Information Information Tail-bits 
Sequence Period 

I 	I 	I 
1 	I 	I 	I 	I 	I 

3-bits 158-bits 	26-bits 158-bits 13-bits 18.25 
I 	I 	I 	I 	l 

Fig 4.11: Generation of normal Burst of traffic channel 
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1 TDMA Frame = 8 time slots 

I Time slot = 156.25 bits 

Fig 4.12: Normal burst used in GSM [3] 

4.2.6 GMSK Modulation: 

The GSM system uses a Gaussian Minimum Shift Keying(GMSK) modulation. This is a 

form of frequency shift keying. Minimum shift keying is named for the fact that the two 

frequencies used for the 0 and 1 states spaced the minimum distance required to maintain 

orthogonality for coherent detection. Coherent 'detection refers to matched filter detection 

using knowledge of carrier phase. The modulating bit rate is 1/T= 1624/6 K bits/sec or 

approxmately 270.833 K bits/sec. The bits are differentially encoded prior to modulation 

[29]. The Gaussian filter has an impulse response that lasts about three bit periods. This 

means that the instantaneuos transmitted phase is a function of a sequence of bits rather 

than a single bit. 

The data di(t) to Gaussian Minimum Shift Keying (GMSK) modulator is first 

differentially encoded by performing modulo-2 addition of the current and previous bits, 

giving b(t) (as in the standard GSM system), 

b,{t) = d(t) XOR di_1(t) ....................(1) 

b1(t) has a value either 1 or 0. As input to the GMSK modulator must either be +1 or -1, 

we convert 1 to -land 0 to +1 using, 

bA,(t) = 1 - 2 b;(t) ............................... (2) 

The modulating data, bAi(t) are then passed through a Gaussian filter which has the 
response h(t) 
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1  52 
(3 ) 

Where 6= tn2 /(27rBT) 

T is the bit period and B is the 3-dB Gaussian filter bandwidth. The BT product is the 
relative bandwidth of Gaussian filter which is used in the GSM system and is set to 

0.3.The b ;(t) after passing through the filter is then interlaced into odd bAo;(t) and bAe;(t) 

even bits. Modulated signal is then generated by using the following equation (8). 

VGMSK(t) = A [b%i(t) sin 2n (t/4Th)] cos coot +A [bAo,(t) cos2n ( t/4Tb)] sin coot ....... (4) 

here first and second term represents the inphase and quadrature phase components 

respectively as in fig 4.13. 

Sin(u) 
In phase 

Differential 	 U 	Sin wot 
encoded input 	 Vc ~tsh(t) Gaussian 

J 	Fiiter 	 'r%2 

U 
Phase 

Cos(u) 

Fig.4.13 : GMSK Modulator 

4.3 GMSK Receiver 

This section gives the detailed explaination of the blocks used in GSM receiver. 

4.3.1 CMSK Demodulator 

As mentioned above carrier is recovered using a loop of center-frequency locking scheme 
from a BPSK Costas loop [20]. Subsequently carriers cosa ot and sin oOt are extracted 
from Voltage Controlled Oscillator (VCO) and n/2 phase shifter of the Costas bop. 
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Then coswot is multiplied with the whole GMSK signal which is received at the receiver 

and let say an intermediate signal x(t), is produced. Similarly y (t) is produced by using 

carrier sinwOt. x(t) and y(t) are given by the following Equations respectively. 

X(t) = VGMSK(t) X COSwpt 

y(t) = VGMSK(t) x sinwpt 

When x(t) is passed through a low pass filter inphase component [b^ei(t) sin2n (t14Tb)] is 

recovered. Similarly y(t) gives quadrature phase component [bAOi(t) cos2ir (t/4T6)]. Then 

we generate the components sin Zit (t/4Th) and cos Zit (t/4Tb) using known values of Tb, 

and recovered the original odd and even bit sequences bAoi(t) and b"ei(t) . 

Carrier Recovery using COSTAS LOOP: 

The mechanism of the Costas loop carrier recovery is to iterate its internally generated 

carrier from the VCO into the correct phase and frequency based on the principle of 
coherency and orthogonality. The outputs of the both Low Pass Filter (LPF) give the 

information about the signals which is modulated using BPSK. But the information we 

have taken only the carriers coming out from VCO and rr/2 phase shifter (i.e. coswOt and 

sinwOt respectively). 

LPF 

coslwot' 	 Recovered 
/ 	 from 	 Bits 

	

VGMSK(t) ~, costas 	ADD 	Threshold 
sin wot 	loop 

LPF 

Fig.4.14: GMSK Demodulator 

Figure 4-fhows BPSK Costas loop. Two LPF represents two parallel tracking loops (I 

and Q) (i.e.Inphase and Quadrature phase), simultaneously a loop filter is used to drive 

the product of the I and Q components of the signal that drives the VCO. Once the 
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frequency of the VCO is equal to the suppressed carrier frequency, an error voltage is 

produced proportionally by the I and Q multiplication, which is passed through the loop 

filter and then VCO to control the frequency of VCO (i.e. carrier frequency). 

cos wot 

	

Lowpass 	Q-Phase 
Filter 

	

VGMSK(t) 90° PLL 	LOOP 

	

VCO 	I Filter 

Lowpass 
Filter  I-Phase 

sin wot 

Fig.4.15: BPSK costas loop 

Simulation result of GMSK modulator and demodulator is shown in fig.4.16. 

4.3.2 Deinterleaver: 

The block deinterleaver is used in the receiver side of the GSM system. The function of 

the deinterleaver is just opposite of the interleaver we used in the transmitter side. This 

module does have the great functionality in GSM system. As said above that the 

functionality is just opposite to the interleaver, it reduces the number of bits received in 

incoming signal after processing. A special type of processing done inside this module 

which rearranges the bit pattern and reduces in number also to get the original bit 

sequence started from the transmitter side. Our system is capable of doing parallel 

processing in every stage from input to output. The fast processing algorithm used in this 

module allows it to take all the incoming bits at once, process them in parallel and giving 

output regarding all the bits very fast in very less time using 4 clock pulses only. The 

main purpose of the de-interleaver is to reverse the functionality of the block interleaver 

used in the transmitter side and convert the bit sequence, received, in that manner so as to 

get the meaningful information sent from transmitter. The fig.4.17 below shows the full 

rate channel decoding scheme used in GSM system. 
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Fig.4.16: Simulation results of GMSK Modulation and Demodulation 

Block de-interleaver executes reverse process of block interleaver. Recieved data is 

stored by inter-column permutation patterns, then de-interleaver outputs data one by one 

from the top of row to underside row. It acts on the output of the interleaver and puts the 

symbols back into the original order. The process of deitnterleaving is the integral part of 

the whole interleaving process used in the GSM system. 

It reduces the bit rate of the incoming signal, as it removes the redundancy from it and 

convert it in the signal,we got after block interleaver in the transmitter side. The Fig.4.17 
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below shows the full rate channel decoding process in the receiver side of the GSM 

system. 

456 bits 

Convolutional code tj --  78 bits 

50 	' 31 	132 	 4 	78 

	

Class Ia. 	 Class Ib, 	 Class II. 

	

5o bits 	132 bits' 	 =78 bits;' 

260 bits 

Fig.4.17: Full rate Channel decoding [18] 

Operation: 

The block interleaver/deinterleaver operates in discrete mode with a single -port memory 

used as a buffer. The symbol transmission consists of an alternating sequence of write 

and read cycles. Each cycle delay is equal to the buffer size, which is the block length 

multiplied by the span delay. The total cumulative delay from the transmitter to the 

receiver can be calculated using the following equation: 

2 x number-of rows x (number of columns + 4) 

The block interleaver/deinterleaver uses single-port SRAM memory configured as a 

matrix of n rows by m columns to perform interleaving. During the write cycle, the input 

symbols are written column by column; during a read cycle, the output symbols are read 

row by row. The column length is usually equal to the codeword length of the FEC 

encoder, while the numbers of rows (often called the span) is the interleaver delay. The 

figures below illustrate block function operation using a 6-symbol codeword. 

The channel coding includes not only the classical (forward error correction) block and 

convolutional codes, but also modulation and any combination of them, such as 

concatenated coding and modulation. 
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Most block or convolutional codes are designed to combat random, independent 
errors usually occurring in a channel without memory. For channels with memory such as 
mobile channels, burst channel errors are observed due to fading which varies depending 
on mobile speed, propagation delay spread and frequency. Interleaving (here interleaving 
means interleaving and de-interleaving both) is deployed to disperse the burst errors 
when the received signal level fades, and to reduce the concentration of the errors that 

must or should be corrected by the channel code. The basic de-interleaving process is 
shown below. 

The complete block of 912 bits received, is divided into 8 bursts each of 
containing 114 bits. These 114 bits of each burst are consecutively placed in 2 different 
sub blocks of 57 bits each. Same process is repeated for every burst. Then speech 
message sub block is read into an 8-column by 57-row matrix RAM, filling each row in 
turn. After that all these bits read column. wise and placed in a single array of 456 bits, 
this gives the original message signal. 

F 

Fig.4.18(a): Read cycle of De-intelaving process 
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Fig.4.18(b): write cycle of De-intelaving process 

Simulation Results: 

The simulation result is taken before the synthesis of the GSM Block De-interleaver 
module on the Xlinx — ISE software. The pre-synthesis simulation result gives us the 
solid idea about our module; it is working fine or not. We can check the most of the 
functionality of our module in the simulation before the synthesis. But there are some 
drawbacks also of this simulation before the synthesis. This can never tell us about the 
usage and the availability of the sources on the FPGA. The Figure 4.20 given below 
displays the presynthesis result of the GSM Block De-interleaver module designed on 
ModelSim. 

Figure.4.19: simulation result of the Block deinterleaver module 
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Fig.4.20: Complete De-Interleaving Process 
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4.3.3 Decryption: 
The same A5 algorithm is used in receiver to generate the same key stream which is 
generated by transmitter and the interleaved data is retrieved. This data applied to the 
deinterleaver gives the required encoded sequence then we go for the decoding phase. 
Simulation waveform is shown in fig. below. Simulation result is shown in fig4.21. 

Fig.4.21: Simulation waveform of De-ciphering block 

4.3.4 Viterbi Decoder: 

Viterbi algorithm is commonly used to decode convolutional codes. It is the maximum 
likelihood decoding technique to decode convolutional codes and involves searching.the 
entire code space for the codeword which most closely resembles the received sequence. 
This algorithm uses trellis to represent states, output codeword's along with time history 
of states. We may use tree diagram for the same need The coded sequence corresponding 
to an information sequence of length L bits, we have to show 2L  branches. 

The number of branches grows exponentially, and, hence, the tree approach must be 

avoided. Four Steps to get required information sequence: 

Step 1: Calculate branch metrics at each of states at different times. 
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Step 2: Accumulate them through each path ending at different nodes and at different 
paths to calculate the path metric at times t = tl; t2; t3.... etc. 

Step 3: After calculating branch and path metric surviving paths at times t = tl, t2, t3.... 
etc., which is the path that traversed from chosen state to a particular state at particular 
time with total Hamming distance is minimum over the paths traversed from the chosen 

state to that particular state to be calculated. 

Step 4: At the final stage, we end up with the initial state and only one surviving path that 

traversed the states with minimum path metric. 

In the event that the path metrics of merging paths are equal, a random choice can be 
made with no negative impact on the likelihood. The path stored at the right-most node in 
the trellis diagram is the maxi-mum likelihood path through the trellis diagram and 
represents the most likely sequence to have been transmitted given the actual received 
sequence. This algorithm has been implemented from standard logic cores which are 

provided in Xilinx ISE. 

The output the viterbi decoder is sequence of 189 bits. These 189 bits are again divided 
into two groups i.e, 53 bits to get 50 class Ia bits and 136 bits to get 132 of class Ib bits. 
These bits will be added with 78 bits of class II to get the transmitted sequence of 260 
bits. CRC detector will detect the 50 bits from the.applied 53 bits (reverse operation of 

CRC generator). 

4.3.5 CRC Remover: 

The CRC generator will take messaW string M as input and divide it by a key word k 
that is known to both the transmitter and the receiver. The remainder r left after dividing 
M by k constitutes the "check word" for the given message. The transmitter sends both 
the message string M and the check word r, and the receiver can then check the data by 
repeating the calculation, dividing M by the key word k, and verifying that the remainder 
is r. The CRC detector and generator have been implemented by a LFSR. The basic 

purpose of this CRC generator is indication of quality of frame. After combining three 
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classes of data to desired data rate speech decoder will decode the data. So we receive the 

transmitted data. This completed the transmitting and receiving operations. 
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Fig.4.22: Trellis diagram for (2,1,4) convolutional encoder 
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CHAPTER 5 

IMPLEMETATION DETAILS OF GSM BASEBAND PROCESSING ON FPGA 

In recent years field programmable gate arrays (FPGAs) have become key components in 

the implementation of high performance digital signal processing (DSP) systems, 

especially in the areas of digital communications, networking, video and image 

processing. The logic fabric of today's FPGAs consists not only of look-up tables, 

registers, multiplexers, distributed and blocks memory, but also dedicated circuitry for 

fast adders, multipliers and I/O processing. 

Initially I have simulated the GSM baseband processing using Matlab Simulink. After 

finding the correct results in Simulink, I have developed the two versions of GSM 

transmitter and receiver, one is using ModelSim 6.2d and the other is using Xilinx system 

generator tool. The aim of developing two versions is to get the area efficient and 

power,delay efficient models. Depending on the requirement any one of model is utilized 

using dynamic partial reconfiguration technique. 

5.1 Mafab Simulink Model: 

The GSM transmitter and receiver model was designed using blocks available in Matlab 

Simulink [22]. In this model I have used Bernoulli random generator as a source for data 

generation with a data rate of 9.6 kbps and frame size of 260 bits like in GSM speech 

signal The GSM transmitter block consists of, channel coder, convolutional encoder, 

interleaver, data burst, GMSK modulator blocks. The GSM receiver block consists of 

GMSK demodulator, burst separation, de-interleaver, viterbi decoder, channel decoder 

blocks. The fig.5.1 shows the Similink model of GSM transmitter and receiver. 

5.2 Simulation Results 

The results obtained from the simulation is presented and discussed in this section. The 

bit error rate (BER) ,constellation diagram and eye diagram of the modulated signal from 

which conclusions about the modulated signal can be drawn is observed at the output of 

the channel. These diagrams reveal the modulation characteristics of the signal and help 

to depict the impact of impairments, such as pulse shaping or channel distortions. They 

CB. 



Mocluk D:emodUlatlon  
AWGN. o 	K— 	MATUB 	Di 	dBel 

Fundioq  DeooEcr 

AWGN Ch OAISK 	DHry 	Difl.wtl oral' 
D.-n'.6lAei  -..  ..  ..  DeeaRei 

6UaTLAB 1 	[ I 	—TLr 	D,~ Function' I •Ylerhl D~eooder 	Ilf-••_ Fa.. 
„' 

Iaa ira 

are commonly used to evaluate the overall performance of the digital communication 
systems. Since the channel used in this thesis is AWGN, the extent to which the noise has 
affected the modulated signal can be seen from constellation and eye diagrams. 

Coding 
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5.2.1 BER Performance 

GMSK modulator, demodulator performance is measured by calculating BER with 
BT=0.3,0.5. BER performance is measured using the following equation. 

Eb/No)dB = (S/N) dB —(10 log(K)) dB +( 10  log (fS/fb) dB.........(4.1) 

The fig.5.2 shows the plot of BER vs Eb/N0. 

5.2.2 Constellation Diagrams 

Figure 4.8 shows the constellation diagram of the modulated signal with signal-to noise 
ratio (SNR) of 15 dB. Increasing the SNR of the AWGN channel will increase the 
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performance of the system. The Constellation diagram shows the GMSK signal has 
constant envelope. The constellation diagram of modulated signal with SNR of 20 dB is 
shown in fig.5.3. 

Ir w 

1%,NQ (d6) 

Fig 5.2: BER vs Eb'No plot for BT=0.3,0.5 
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Fig.5.3: Constellatbn diagram of GMSK with SNR=15dB 

5.2.3 Eye diagrams: 

The width of the eye provides information about tolerance to jitter, and the height of the 

eye gives information about tolerance to additive noise. Eye closure (inadequate width or 
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height) is probably due to ISI. The fig.5.4 shows the Eye diagram of GMSK with SNR of 

15dB. 

Fig.5.4: Eye diagram of GMSK with SNR=15dB 
5.3 FPGA Design Flow The following fig.5.5 shows the FPGA design flow using VHDL 

coding/ Xilinx system generator block set. 

Tools used 

• The following softwares and hardwares were used in this thesis. 

• MATLAB Simulink R2006b 

• Xillinx System generator 

• ModelSim 

• Hardware Descriptive Language (HDL) 

• C++ Programming 

• Xilinx ISE 9.2i 

• XUP Virtex-4 [13] FPGA kit 

Synthesis 

Synthesis is the process by which abstract design descriptions are reduced into a lower 

level circuit representation, such as netlists or equations. HDLs provide the input and 

output of hardware synthesizers. Floating point arithmetic modules are synthesized and 

their netlists has been generated. 
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Figure.5.5: FPGA Design Flow 

Imptemenitafion 

Implementation is the process in which a logical design is converted into a physical file 

format that can be downloaded to the selected target device. Floating point arithmetic 

modules are implemented. 

1. Translate 

The Translate process merges all of the input netlists and design constraints and outputs a 

Xilinx native generic database (NGD) file, which describes the logical design reduced to 

Xilinx primitives. 

2. Map 

The Map process maps the logic defined by an NGD file into FPGA elements, such as 

CLBs and IOBs. The output design is a native circuit description (NCD) file that 

physically represents the design mapped to the components in the Xilinx FPGA. 
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3. Place and-Route 
The Place and Route process takes a mapped NCD file, places and routes the design, and 
produces an NCD file that is used as input for bit stream generation. 

Programming File Generation 

The Generate Programming File process produces a bit stream for Xilinx device 
configuration. After the design is completely routed, you must configure the device so it 
can execute the desired function. Fig 4.3 shows the Xilinx ISE 9.2i Window on which 
synthesis process has been carried out. 

5.4. Simulation using ModelSim 6.2d tool: 

The design of individual baseband modules has been done using VHDL code. Simulation 
has been done using Modelsim6.2d. All the individual modules have been integrated to 
form transmitter and receiver model. The following fig.5.6 is simulation of complete 
baseband processing model. 

5.5. Simulation using Xilinx system generator9.2i tool: 

Xilinx system generator is integrated with Matlab Simulink. So system generator blockset 
is available as part of matlab Simulink. By choosing blocks available in Xilinx blockset, 
available IP(Intellectual Property) cores from Xilinx, GSM transmitter & receiver model 
was designed. The main steps of the Xilinx system generator design are explained below. 

System Generator Model of GSM Transmitter & Receiver: 

The following fig. shows the Xilinx system generator model of a GSM transmitter and 
receiver. The .following model was designed by using the Xilinx IP cores available in 
system generator blockset. The functions which are not available are developed by using 
the Xilinx black box concept. A piece of code was written in VHDL and those are 
inserted in black box to get the desired functionality. Fig 5.7 shows system generator 
model of GSM transmitter and receiver. 
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Fig.5.6: System Generator Model GSM Transmitter & Receiver 

The ModelSim tool was integrated into the Xilinx system generator. So it is possible to 

observe the simulation waveforms of the Xilinx system generator in ModelSim. The 

following waveform shows the simulation waveform of Xilinx system generator model. 
Hardware Co simulation 

The System Generator will automatically synthesize, and place and route the design on 

the target FPGA platform upon selecting the appropriate options, such as compilation 

type, target FPGA, synthesis tool, and so on. The key steps in the hardware co-simulation 

process can be summarized as follows [38]: 

(1) The hardware co-simulation platform can be chosen from the System Generator 

dialog box. When the compilation target is selected, the fields on the System Generator 

dialog box are automatically configured with settings appropriate for the selected 

compilation target. The fig shows the appropriate settings for bitstream generation. 
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Fig.5.7: Simulation window of GSM Transmitter & Receiver 

(2) After initiating the "Generate" button, the code generator is invoked and produces an 

FPGA configuration bitstream for the design that is suitable for hardware co-simulation. 

System Generator not only generates the HDL and netlist files for the model during 

thecompilation process, but it also runs the downstream tools necessary to produce an 
FPGA configuration file. 

(3) After the FPGA configuration bitstream is created, a new hardware co-simulation 

block is created by the System Generator and stored in the MATLAB SIMULINK 

Library. Hardware co-simulation blocks can be used in the design with other MATLAB 
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Fig.5.8: Simulation waveform of Xilinx system generator model 

Simulink blocks. When the hardware co-simulation block is simulated, it interacts with 

the underlying FPGA platform and facilitates the design implementation and verification 

of the desired FPGA. In this thesis, only hardware co-simulation is performed using 

Virtex-4 FPGA [8]. 

5.6 Implementation of GSM Baseband processing on Xilinx Virtex-4 xc4vfxl2ff668 

-10 Device 
By doing synthesis of baseband processing modules .bit files which can be loaded onto 

FPGA are obtained. The 260 bit input is applied to GSM Transmitter, and 260 bit output 

is received at GSM receiver. After completion of synthesis, place& route, bit file has 

been generated, which when downloaded to the FPGA determines the FPGA's behavior. 
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Figure.5.9: Xilinx ISE 9.2i Window 

A piece of C++ code is written to control the 260 bit data. Controller will generate an 

acknowledge signal when the data is 260 bits. The software code downloads the bit file to 

the FPGA and, using the PCI bus, transfers all the operand data for the application to the 

card's SRAM banks. Once the data transfer is complete the FPGA design is ready to 

start. The host computer signals the FPGA, using the status register, to start it running. 

The status register is a blocking communications system, between the host and the 

FPGA, that can be used to synchronize the host and FPGA. Immediately before signaling 

the FPGA the host computer records the current value of the system clock. Once the 

FPGA has finished running, it signals the host program, and immediately after receiving 

the signal the host program records the value of the system clock for a second time; the 

difference in the recorded times is the execution time [6] of the program. After execution 

of the program we can see 260-bit output stored in the specified location in pc. 
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5.7 Comparison of two GSM Baseband Processing versions. 
The following table gives the comparison of performance of two GSM baseband 

processing versions: 

Target Device xc4vfxl2ff668 -10 GSM 

Device utilization Versionl Version2 

Number of slices(5472) 2298 2845 

Number of slice flip flops(10944) 1102 - 1532 

Number of 4 input LUTS(1 0944) 1203 1870 

Number of IOs 262 262 

Number ofbonded IOs(320) 262 262 

Number of BRAMs 17 22 

Number of GCLKs(32) 1 1 

Delay (ns) 12.032 9.247 

Throughput (Gbps) 21.60 28.11 

Table 5.1: Comparison of GSM baseband processing versions 

Analysis of Results: 

From the above Table 5.1, it is clear that versionl is taking less silicon are but speed is 

less, where as in case of version2 silicon area is more but speed is high. The main reason 

for high speed with more silicon area is parallel processing of FPGA. Since the delay of 

GSM vl is 12.032 ns, the throughput is 21.60 Gbps and for GSM v2, it is 28.11 Gbps 

because the delay is only 9.247 ns. Detailed device utilization is given in Appendix-A. 
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PARTIALLY RECONFIGURATION OF GSM BASEBAND PROCESSING 

VERSIONS AND RESULTS 

In this chapter dynamic partial reconfiguration implementation details and results are 
presented. Two versions of GSM baseband processing bit streams (i.e., area efficient 
code and power efficient code) generation is explained in chapter 5. These two versions 
are used as partially reconfigurable modules. The detailed dynamic partial 
reconfiguration flow has been explained in chapter 2. 

Partial reconfiguration is useful for systems with multiple functions that can time-share 
the same FPGA device resources. In such systems, one section of the FPGA continues to 
operate, while other sections of the FPGA are disabled and partially reconfigured to 
provide new functionality. Partial Reconfiguration is supported by the devices which can 
be configured after its manufacture; FPGA is an example of such a device. So we 
implement partial reconfiguration on FPGA. Further the large gate count of FPGAs made 
them suitable for design of GSM baseband processing. 
6.1 Modules Creation for Partial Reconfiguration 
Creating a partial reconfiguration design requires the creation and implementation of the 
design within a set ofspecific guidelines. 

Table.6.1: PR Directory Structure [12] 

base 
B' ( j pr_design Implementation directory for the static portion of the 

€ . base base design {f_e. everything except the PRMs7_ 
merges merges 

{ 	prm_ai PRMs are merged with the base design in the merges 
prm_a2 directories. A separate subdirectory is required for 

non_pr each merge. 
at non_pr 
a2  Non-pr versions of the design are fully implemented 

9:: reconfigmodules reconfigmodules initial system design and test. 
prm_ai 
prm_a2 reconfigmodules 

C 	 , 	synth Each PRM is implemented in a separate  p 	Pte direr#ory 
synth base 

prma HDL for the top level, the base design, and each PRM 

prm=b is synthesized in the appropriate directory. 
top €....{- . 	top  

top The top level netiist is translated in a separate di€ec- 
tory. The UCF file goes here. 
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The partial reconfiguration flow utilizes a modified form of the Xilinx Modular Design 
process. All the logic that should be partially reconfigured should be arranged in folders. 
Recommended directory structure is as shown in figure below. Fig 6.1 shows the folders 
that should be present in PR design and also the files that should be included in them. 

6.1.1 Design of Partially Reconfigurable GSM baseband processing Modules: we 

have designed a partially reconfigurable system which includes two partial reconfigurable 
regions. In this partial reconfigurable region hardware resources are time-shared between 
two baseband processing versions. Fig 6.1 shows the run time partial reconfiguration 
process. 

Figure 6.1: Run-time and Partial reconfigurations of GSM baseband processing versions. 

6.1.2 Design of Static module 

Static Region or Base Region which contains the common logic which will not change 
between the PR modules. In this design the static module is used to display the 
transmitted and received bit sequence. 

6.1.3 Design of Bus Macro: 

Xilinx provides these bus macros through their web page[ www.xilinx.com ] and has one 
bus macro for every family of FPGAs. In this example the bus macro for Virtex-N is 

used. An example bus design was given for eight tri state buffers set up in an 
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arrangement that allows four bits of information to travel either left-to-right or right-to-
left, using one TBUF long line per bit, see Figure 6.2. 

Boundary between 
modules 

ENB~ 

O 	O(1) 

Reference 
com[ponent 

ENS 

O(0) 	0(1) 
	

FO2) O(3) 

2 slices 

Fig 6.2: Bus macro design 
6.2 Implementation flow in command line using ISE 10.1i [41] 

1. Built Flat Design. This design helps us to l inctionality of the design. 
2. Synthesize all modules including RM_ synthesize all lower-level modules with UO 
buffers insertion OFF and synthesize the top-level with 1/0 buffers insertion selected. 
3. Build. Top-Level Design: This will generate top.ngd file which will be used in next 
step. 
4. Build Static Design: This will generate top routed.ncd static.used files among other 
files. The top routed.ncd file contains the implemented static design. The static.used file 
contains routes used by static logic in PRR, the information needed during the RM 
implementation step. 
5. Build RM Design: This will generate top routed.ncd file among other files. 
6. Assemble Static Design: In this we will assemble the static modules as well as 
desired one RM for each PRR into a design that will be loaded when the FPGA is 
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configured. This will generate static full.bit file which contains adder and right shift 
operations. 	It 	will 	also 	generate 	ag_reconfig_leds_blank.bit 	and 
ag reconfig_GSM blank.bit files which can replace the LEDs and GSM PRR with blank 
logic. 
7. Generate Partial Bitstreams_ In this step we will generate partial bitstreams. The 
PRR can be reconfigured instead of the entire FPGA with bit-streams of individual 
reconfigurable modules i.e GSM vl.bit, GSM v2.bit files. 
8. Testing: Use static full.bit file to program FPGA and then verify the functionality 
using partial bit streams. We can notice that programming is very quick reducing the 
reconfiguration time. 
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Figure 6.3 PlanAhead window showing two Partially Reconfigurable Regions 

Fig 6.3 shows how partially reconfigurable regions are described on FPGA. It also shows 

the bus macro placement over right corners of partially reconfigurable regions 



CHAPTER 7 

CONCLUSIONS AND FUTURE SCOPE 

7.1 Conclusions: 

In this dissertation report, the design of GSM baseband processing for 

reconfigurable software defined radio has been presented and implemented on modem 

virtex-4 FPGA platform. 

Initially, the GSM transmitter and receiver are designed using VHDL code and 

then second version of same was designed using Xilinx system generator tool. The first 
version is area optimized and the second version is speed optimized. After generating two 

versions of GSM baseband processing, partial reconfiguration was done on same virtex-4 
FPGA platform to save the area of FPGA. 

Two GSM baseband processing versions are developed and comparisions are 

given in Table 5.1. Also the proposed versions are compared with existing baseband 

deigns presented in [7], [8], [9]. The following conclusions can be drawn from this thesis: 

> The device utilized the 42%, 52% of the available resources for GSM vl, GSM v2 

versions where as the baseband model developed in [7] occupies 70% of the resources of 

the virtex —4 FPGA platform. 

> The average delay for slice is 12.032ns and 9.247 ns in case of GSM vl , GSM v2 

respectively. The average delay of slice delay is 18.64 ns in [7]. 

> The BRAM blocks used are 25 for the model developed in [7]. These are 17 and 22 in 

case of GSM vl, GSM v2. 

> The operating frequency of FPGA hardware are 50 MHz and it is only 13 MHz in [7] 

> The floor plan view of partial reconfiguration of two baseband processing version 

was presented which was useful to reduce the required haniware during run time. 
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7.2 Future Scope: 

In this dissertation baseband processing section of software defined radio has been 
selected for implementation, however, it can be extended to full software defined radio 
by designing RF section and IF section. 

I 

The channel is considered to have additive white Gaussian noise. Inter-symbol 
Interference, Doppler shift, phase error, multipath fading, etc., can be added to the 
channel, in order to closely simulate real life systems. 

The implemented software defined radio is consists of coding, modulation and 
spreading. This thesis can be extended by adding more functionalities such as 
equalization, carrier recovery, phase recovery,etc., needed to counteract the noise and 
interference problems of a communication system. 

Further efficient implementation of baseband processing modules can be done by 
using difference based partially reconfiguration. But this approach requires more 
redundancy in baseband processing modules. New standards like OFDM, wi-max can 
also be implemented for software defined radio. 
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APPENDIX-A 

IMPLEMENTED DESIGNS 

Fig. 1: Hierarchical view of GSM design 
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Fig.2: RTL view of Receiver 
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APPENDIX-B. 

DESIGN STATISTICS 

Design statistics of GSM_v1: 
Timing summary: 
--------------- 
Timing errors: 0 Score: 0 
Constraints cover 55489067 paths, 0 nets, and 144085 connections 
Design statistics: 
Minimum period: 12.032ns 	(Maximum frequency: 50.780MHz) 
Minimum input required time before clock: 	12.936ns 
Minimum output required time after clock: 	9.952ns 

Analysis completed Monday June 08 03:32:59 2009 
----------------------------------------------------------------------- 

Device Utilization Summary 
Logic Utilization Used Available Utilization 
Number of Slice Flip Flops 1102 10944 10% 
Number of 4 input LUTs 1203 10944 11% 
Logic Distribution 
Number of occupied Slices 2298 5472 42% 
Number of Slices Containing only relate 
logic 

2298 5472 42% 

Number of Slices containing unrelated 
logic 

0 5472, 0% 

Total Number of 4 input LUTs 2521 10944 23% 
Number used as logic 1203 
Number used as route thru 126 
Number used as shift registers 913 
Number used as bonded IOBs 262 320 81% 
Number of FIFO 16/ RAMS 16 s 17 336 5% 
Total equivalent gate 1669098 

Power summary: 
----------------------------------------------------------------------- 

I(mA) P(mW) 

Total estimated power consumption: 128.3 

Vccint 1.20V: 449 538 
Vccaux 2.50V: 234 585 
Vcco25 2.50V: 5 - 	13 

Clocks: 71 85' 
Inputs: 3 3 
Logic: 30 36 
Outputs: 
Vcco25 5 13 
Signals: 0 0 

Quiescent Vccint 1.20V: 345 408 
Quiescent Vccaux 2.50V; 
----------------------------------------------------------------- 

234 584 
------ 
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Design statistics of GSM_v2: 
Timing summary: 

Timing errors: 0 Score: 0 
Constraints cover 68489067 paths, 0 nets, and 244685 connections 
Design statistics: 
Minimum period: 9.247ns 	(Maximum frequency: 50.780MHz) 
Minimum input required time before clock: 	12.936ns 
Minimum output required time after clock: 	9.952ns. 
Delay: 	 12.092ns 
Analysis completed Thursday June 11 11:46:48 2009 
-----------------------------------------------------=----------------- 

Device Utilization Summary 
Logic Utilization Used Available Utilization 
Number of Slice Flip Flops 1532 10944 14% 
Number of 4 input LUTs 1970 10944 19% 
Logic Distribution 
Number of occupied Slices 2845 5472 52% 
Number of Slices containing only relate 
logic 

2845 5472 52% 

Number of Slices containing unrelated 
logic 

0 5472 0% 

Total Number of 4 input LUTs 3440 10944 31% 
Number used as logic 1970 
Number used as route thru 158 
Number used as shift registers 1028 
Number used as bonded IOBs 262 320 81% 
Number of FIFO 16/ RAMS 16 s 22 336 6% 

Total equivalent gate 2929278 

Power summary: 	 I (mA) 	P (mW) 
------------------------------------------------------------------------- 
Total estimated power consumption: 	 228 

Vccint 1.20V: 
Vccaux 2.-50V: 
Vcco25 2.50V: 

Clocks: 
Inputs: 
Logic: 
Outputs: 
Vcco25 
Signals: 

Quiescent Vccint 1.20V: 
Quiescent Vccaux 2.50V: 

449 538 
234 585 
5 13 

71 85 
3 3  
30 36 

5 13 
0 0  

345 408 
234 584 

71 


	Title
	Abstract
	Chapter 1
	Chapter 2
	Chapter 3
	Chapter 4
	Chapter 5
	Chapter 6
	Chapter 7
	References
	Untitled

