
OTECIi

FPGA IMPLEMENTATION OF GSM BASEBAND PROCESSING
FOR RECONFIGURABLE SOFTWARE DEFINED RADIO

A DISSERTATION
Submitted in partial fulfillment of the

requirements for the award of the degree
of

MASTER OF TECHNOLOGY
in

ELECTRONICS AND COMMUNICATION ENGINEERING
(With Specialization in Semiconductor Devices and VLSI Technology)

By

SRINIVAS GADDAM

DEPARTMENT OF ELECTRONICS AND . COMPUTER ENGINEERING
INDIAN INSTITUTE OF TECHNOLOGY ROORKEE

ROORKEE - 247 667 (INDIA)

JUNE, 2009

Candidate's Declaration

I hereby declare that the work being presented in the dissertation report titled

"FPGA Implementation of GSM baseband Processing for Reconfigurable
Software Defined Radio" in partial fulfillment of the requirement for the award of
the degree of Master of Technology in Semiconductor Devices and VLSI

technology, submitted in the Department of Electronics and Computer

Engineering, Indian Institute of Technology Roorkee, is an authenticate record of

my own work carried out under the guidance of Dr. R.C.Joshi, Professor, and
Dr.A.K.Saxena, Professor, Department of Electronics and Computer Engineering,

Indian Institute of Technology Roorkee.

I have not submitted the matter embodied in this dissertation report for the award
of any other degree.

Dated: 2q • 06• o9 	 (Srinivas Gaddam)
Place: IIT Roorkee.

Certificate
This is to certify that above statements made by the candidate are correct to the

best of my knowledge and belief.

(Dr. R.C.J shi) 9 	(Dr.A.K.Saxena)

Professor

	

	 Professor

Department of Electronics & Computer Engineering

IIT Roorkee, Roorkee-247667(India)

Dated: 2 	9
Place: IIT Roorkee.

1

ACKNOWLEDGEMENTS

I am thankful to Indian Institute of Technology Roorkee for giving me this

opportunity. It is my privilege to express thanks and my profound gratitude to my

supervisor Prof.R.C.Joshi, and Prof.A.K.Saxena for their invaluable guidance and

constant encouragement throughout the dissertation. I was able to complete this
dissertation in this time due to constant motivation and support obtained from

Prof.R.C.Joshi.

I am also grateful to the staff of Sponsored Research Laboratory and VLSI

Laboratory for their kind cooperation extended by them in the execution of this

dissertation. I am also thankful to all my friends who helped me directly - and

indirectly in completing this dissertation.

I am grateful to Mr. Hari Krishna Boyapati and Mr. Rahul for being excellent peers
and creating a congenial environment for work.

Most importantly, I would like to extend my deepest appreciation to my parents,

brothers and my best friend Sreelatha, for their love, encouragement and moral

support. Finally I thank God for being kind to me and driving me through this

journey.

S
(SRINIVAS GADDAM)

ii

Abstract

Software defined radio is a feasible solution for reconfigurable radios, which can
perform different functions at different times on the same hardware. The partial

reconfiguration is the key feature of software defined radio. Partial
reconfiguration is the ability of certain Field Programmable Gate Arrays (FPGAs)

to reconfigure only selected portions of their programmable hardware while other

portions continue to operate undisturbed. A FPGA can be partially reconfigured

using a partial bitstream. We can use such a partial bitstream to change the
structure of one part of an FPGA design as the rest of the device continues to

operate and this reduces the reconfiguration time.
The aim of this thesis is to design and , implement a software defined radio

based wireless communication system (GSM). The baseband section of a wireless
communication system is first simulated and then implemented in hardware. The

performance of the baseband transmitter is analyzed using constellation and eye
diagrams different signal-to noise ratio and different BT(bandwidth, time product)

values, while considering an additive white Gaussian noise channel. The
performance of the receiver is analyzed by comparing the bit error rates. The

performance of the system in real time is also analyzed by implementing the system

in hardware using Xilinx Virtex-4 field programmable gate array. A comparison of

the simulation results with the results obtained from implementing the system on
virtex-4 hardware is presented and discussed.

The two different GSM baseband processing versions have been developed
i.e., one is area optimized and the other is speed optimized. The total hardware

resources occupied by these units have been reduced through time-sharing

between modules.

iii

List of Figures

Figure 2.1 FPGA Structure 6

Figure 2.2 Compile Time Reconfiguration 7

Figure 2.3 Run Time Reconfiguration 8

Figure 2.4 Global Run-Time Reconfiguration 9

Figure 2.5 Local Run-Time Reconfiguration 9

Figure 2.6 Partially Reconfiguration process 11

Figure 3.1 Basic Architecture of Software Defined Radio (SDR) 21

Figure 3.2 Software Architecture of SDR 22

Figure 3.3 GSM Baseband Processing in SDR 23

Figure 4.1 GSM Transmitters and Receiver 24

Figure 4.2 The block diagram showing three classes of data and data 25

flow at different stages

Figure 4.3 CRC generator (or) Parity bits generator 26

Figure 4.4 Simulation waveform of CRC generator used in GSM 27

Figure 4.5 (2, 1, 5) Convolution Encoder 28

Figure 4.6 Simulation waveform of convolutional Encoder 28

Figure 4.7 Interleaving process of 3-frames 30

Figure 4.8 Simulation waveform of interleaver 30

Figure 4.9 The A5/1 stream cipher 32

Figure 4.10 Simulation waveform of A5/1 cipher 32

Figure 4.11 Generation of normal Burst of traffic channel 33

Figure 4.12 Normal burst used in GSM 34

Figure 4.13 GMSK Modulator 35

Figure 4.14 GMSK Demodulator 36

Figure 4.15 BPSK Costas Loop 37

Figure 4.16 Simulation results of GMSK Modulation and Demodulation 38

Figure 4.17 Full rate channel coding 39

Figure 4.18 Read and write cycles of De-intelaving process 41

Figure 4.19 Simulation result of the Block deinterleaver module 41

Figure 4.20 Complete De-Interleaving Process 42

iv

Figure 4.21 Simulation waveform of De-ciphering block 43

Figure 4.22 Trellis diagram for (2,1,4) convolutional encoder 45

Figure 5.1 Matlab Simulink model of GSM transmitter and receiver 47

Figure 5.2 BER vs Eb/No plot for BT=0.3,0.5 48

Figure 5.3 Constellation diagram of GMSK with SNR=15dB 48

Figure 5.4 Eye diagram of GMSK with SNR=15dB 49

Figure 5.5 FPGA Design Flow 50

Figure 5.6 System Generator Model GSM Transmitter & Receiver 52

Figure 5.7 Simulation window of GSM Transmitter & Receiver 53

Figure 5.8 Simulation waveform of Xilinx system generator model 54

Figure 5.9 Xilinx ISE 9.2i Window 55

Figure 6.1 Run-time and Partial reconfigurations of GSM baseband 58

processing 	versions

Figure 6.2 Bus macro design 59

Figure 6.3 PlanAhead window showing two Partially Reconfigurable 60

Regions

u

List of Tables

Table 2.1 GSM specifications. 	 4

Table 4.1 Conventional radios vs software radios. 	 16

Table 5.1 Comparison of GSM baseband processing versions 	 56

Table 6.1 PR Directory Structure. 	 57

vi

Abbreviations

CRC Cyclic Redundancy Check

CTR Compile Time Reconfiguration

DSP Digital Signal Processing

DR Dynamic reconfiguration

EA Early Access

FPGA Field Programmable Gate Array

GSM Global System for Mobile communication

HDL Hardware Descriptive Language

IEEE Institute of Electronics and Electrical Engineers

IOB Input Output Blocks

ISE Integrated Software Environment

ISDR Ideal Software Defined Radio

JTAG Joint Test Action Group

NCD Native Circuit Description

NGD Native Generic Database

PC Personal Computer

PCI Peripheral Component Interconnect

PR Partial Reconfiguration

PRR Partial Reconfiguration Region

RTL Register Transfer Logic

RTR Run Time Reconfiguration

SDR Software Defined Radio

UCF User Constraints File

VHSIC Very High Speed Integrated Circuit

VHDL VHSIC Hardware Description Language

XST Xilinx Synthesis Technology

XUP Xilinx University Program

vii

Table of Contents
Candidate's Declaration & Certificate i
Acknowledgements ii
Abstract iii
List of Figures iv
List of Tables v
Table of Contents vi
Chapter 1: Introduction and Statement of the Problem I

1.1 Introduction 1

1.2 Statement of the problem 2

1.3 Organization of Thesis 3

Chapter 2: Background and Historical Review of SDR 4

2.1 History of GSM 4

2.2 FPGA for Baseband processing 5

2.3 Reconfigurable systems 7

2.3.1 Reconfiguration 7

2.3.2 Types of Reconfiguration 7

2.4 Partial Reconfiguration (PR) Techniques 10

2.4.1 Module Based PR 10

2.4.2 Difference Based PR 11

2.5 Historical review of SDR 12

Chapter 3: Reconfigurable SDR and its Architectural Requirements 15

3.1 Introduction 15

3.2 Concepts of SDR 16

3.2.1 Definition of SDR 16

3.2.2 Conventional radio vs Software Defined Radio 16

3.2.3 Technical Challenges 17

3.3 Architectural Requirements of SDR 18

3.3.1 Architectural characteristics intrinsic to SDR 18

3.3.2 Architectural characteristics import to SDR 19

3.3.3 Architecture of SDR 20

viii

Chapter 4: Design of GSM Baseband Processing for SDR 24

4.1 Overview of digital blocks of GSM Transmitter and Receiver 24

4.2 GSM Transmitter 25

4.2.1 Speech coder 25

4.2.2 Channel Encoder 26

4.2.3 Interleaver 28

4.2.4 Encryption(A5/1 Cipher) 29

4.2.5 Burst Builder 32

4.2.6 GMSK Modulator 34

4.3 GSM Receiver 34

4.3.1 GMSK Demodulator 35

4.3.2 De-interleaver 0 37
4.3.3 De-cryption 43

4.3.4 Viterbi Decoder 43

4.3.5 CRC remover 44

Chapter 5: Implementation Details of GSM Baseband Processing on FPGA 46

and Results

5.1 MATLAB Simulink model 46

5.2 Simulation Results 46
5.2.1 Bit Error Rate (BER) 47

5.2.2 Constellation Diagrams 48
5.2.3 Eye Diagrams 49

5.3 FPGA Design Flow 49
5.4 Simulation using ModelSim 6.Od 51
5.5 Hardware Co Simulation using Xilinx system generator tool 51
5.6 Implementation on virtex-4 FPGA 54
5.7 Comparison of Two GSM Baseband Processing Versions 56

Chapter 6: Partial Reconfiguration of GSM Baseband Processing Versions 57
6.1 Module Creation for Partial Reconfiguration 57

6.1.1 Design of PR Regions 58
6.1.2 Design of Static Module 58
6.1.3 Design of Bus Macro 58

6.2 Implementation Flow using ise 10.1 & Planahead 10.1 59

ix

Chapter 7: Conclusion and Scope for Future Work
	

61

7.1 Conclusion 	 61

7.2 Scope for Future Work
	

62

References 	 63

Authors Publications 	 67

APPENDIX A IMPLEMENTED DESIGNS
	

68

APPENDIX B DESIGN STATISTICS
	

70

x

INTRODUCTION AND STATEMENT OF THE PROBLEM

1.1 Introduction

Mobile communication has grown exponentially ever since its emergence and is
still growing phenomenally. In fact in the entire history of telecommunications the rate of
growth of mobile communication has been unprecedented Use of technology for
widespread application of information transfer has been the most important factor for the
success of mobile communication. The mobile technology, originating with analog
mobiles has seen significant changes from 2G to 2.5G to 3G and now 4G standards are
being frozen. The success of implementation of higher generation technologies rests on
several consequent technologies particulaily DSP.

Today a mobile communication system uses many different frequency bands. For
the convenience of the users it is important that a single terminal, which can be
programmed depending on the service available in a given region, functions for all the
multiple accessing techniques and associated technologies. The DSP can provide such a
desired flexibility. Considering the various signal processing functions and the multiband
and multimode operations required in mobile communications, the software approach is
more attractive than the hardware. This concept for radio connectivity has given birth to
the nomenclature of software defined radio [1]. Advances in the analog to digital
conversion and processor technologies have made it possible to go for the software
radios, where in majority of the communication functions of a radio link are performed
easily by reconfigurable and possibly down-loadable software. The SDR can provide
multi-functionality, global mobility, compactness and power efficiency, ease of
manufacture, and ease of upgrades. If one were to consider SDR principles for mobile
communication there would be many issues and challenges [2] in the implementation of
base stations and mobile stations. Key enabling technologies for software radio
particularly for handset terminal implementation are signal digitization, silicon capability,
signal processing, SIM cards, downloadable software, and personal Java / Java card.
Suitable algorithms need to be developed for implementation ofvarious functions.

1

Software defined radio (SDR) technology can be used to take advantage of

programmable hardware modules to build open system architecture based on software. In

this case, a variety of transceiver functions such as automatic gain control, frequency

translation, filtering, modulation and demodulation can be integrated on a single

hardware platform. This could result in maximizing the number of radio functions for a

particular application. Software defined radio offers the flexibility and upgradeability

necessary to satisfy these requirements [2].

Consider a typical communication system scenario where the user would like to have

access to information through different wireless networks (e.g., CDMA, GSM, wireless

local area network (WLAN), Bluetooth, etc.), or a mobile phone user may be traveling

between two regions around the globe, where the wireless technologies or standards are

different. To utilize the services offered by the broad range of technology alternatives

around the world, the user has to carry different devices due to incompatibility of systems

and standards. The practical solution to overcome this problem is to use a single device

that can adapt to different technologies [4]. This could be possible using software defined

radio, since it represents a radio that uses a reprogrammable hardware to create a generic

hardware base. On top of the generic hardware platform, flexible software architecture is

embedded. The software allows for multiple protocols, fast upgrades, and complete
reconfigurations ofradio features and functions.

1.2 Statement of the problem

The objective of this thesis is to design and implement GAM baseband processing for

reconfigurable software defined radio on FPGA.

The design of GSM baseband processing consists of the design of GSM transmitter and

receiver. So to achieve these goals, the problem can be sub divided as follows:

1. To Model the GSM baseband processing in HDL (Hardware Descriptive Language)
and simulating using ModelSim6.0d.

2. To Model the GSM baseband using Xilinx system generator tool and performing
hardware co-simulation.

7

3. To synthesize and optimize the area, performance of modules using Xilinx ISE tools

and to generate two versions ofbitstreams.

4. To implement the GSM baseband processing on FPGA.

5. To perform partial reconfiguration of GSM baseband processing versions.

1.3 Organization of Thesis

This thesis is organized as follows: Chapter 2 presents the necessary concepts used in

design of baseband processing section of SDR. These are, an overview of GSM
communication standard, FPGA device structure and it's advantage for GSM baseband

processing, and partial reconfiguration techniques have been discussed. Historical review

of different SDR architectures and baseband processing implementation methodologies

developed in this thesis.

Chapter 3 gives the fundamentals of SDR. Concepts of SDR including comparison of

conventional radios with SDR, architectural requirements, technical challenges in

implementing SDR and basic architecture of SDR.

Chapter 4 describes the GSM baseband processing details. In this, GSM transmitter has

channel coder, interleaver, burst builder, A5/1 cipher and GMSK modulator have been

explained in detail. Similarly, GSM receiver has GMSK demodulator, de-cipher, burst

de builder, de-interleaver and channel decoder.

In Chapter 5, implementation details of GSM transmitter and receiver are presented. It

includes, simulation results of MATLAB simulink, Modelsim 6.0d, Hardware co-

simulation results. The synthesis results of GSM baseband processing versions are also

explained. Comparison of two GSM baseband processing versions GSM vl, GSM v2 is

done.

Chapter 6 presents the partial reconfiguration of two GSM baseband processing

versions. It includes, design of static module, controller of bus macros and partial
reconfigurable modules.

Finally chapter 7 provides conclusion and future scope.

3

Cam:rvr-1 	~l

BACKGROUND AND HISTORICAL REVIEW OF SDR

This chapter provides useful concepts for SDR implementation and its previous research
details.

2.1 History of GSM

In 1982 the main governing body of the European telecommunication operators,

also known as CEPT (Conference European des Postes et Telecommunications), created

a committee called Group Special Mobile (GSM) and tasked it with specifying a pan-

European cellular radio system to operate within 900 MHz band [7]. GSM is used by the

80% of the global market. GSM differs from its predecessors in that both signaling and

speech channels are digital, and thus is considered a second generation (2G) mobile
phone system.

ETSI published the GSM phase 1 specification in 1990 and commercial service

began in 1991. Since then, GSM has grown to cover the world with both terrestrial and

satellite networks. GSM was originally designed for operation in the 900 MHz band and
has since been adapted to 1800 MHz (DCS1800), 1900 MHz (PCS1900) and is now

being offered at 450 MHz The 1900 MHz band is used in the United States and competes

directly with CDMA (IS-95). GSM has steadily evolved with publication of phase 2 and

phase 2+ specifications that add improved data services, new speech coding algorithms

and other enhancements. Phase 2 add features like call waiting, call hold, conference

calling etc., and phase 2+ covers multiple service profiles, private numbering plans, inter

working with digital enhanced cordless telecommunication and other business oriented

features. Table 2.1 gives the specifications of GSM standards.

In addition to traditional speech services, GSM provides a variety of data services

including FAX and Short Messages. The Short Message Service (SMS) includes both

broadcast and point-to-point text messaging. GSM started with circuit-switched data at

various rates up to 9.6 kbps. Today, the maximum rate is 14.4 kbps to 115.2 kbps and

will soon be extended to at least 384 kbps per user.

4

Table 2.1 GSM Specifications

Multiple Access Technology FDMA/TDMA

Duplex Technique FDD

Uplink band frequency 93 3-960 MHz

Downlink band frequency 890-915 MHz

Channel Spacing 200Khz

Modulation GMSK

Speech coding RPE-LTP

Speech channels per RF channel 8

Channel data rate 270.833kbps

Frame duration 4.615 ms

2.2 FPGA for Baseband Processing [4]

Throughout its history in the last 50 years, digital electronics technology has improved

exponentially over time, doubling in performance roughly every 18 months while device

sizes and costs have shrunk correspondingly.

One alternative being considered for the future is based on the technology of field

programmable gate arrays (FPGAs). It should be obvious that every application would be

best served by custom circuitry targeted specifically for it; and, in fact, application-

specific integrated circuits (ASICs) are often made in response to special needs. But no

one can afford to turn out a custom chip for every application he wants to run. FPGAs are

able to meet the above requirements by their ability to be reconfigured any number of

times. All FPGAs contain a regular structure of programmable basic logic cells

surrounded by programmable interconnects and all these resources are configurable

resources and its structure is shown in Fig 2.1.

5

FPGAs are usually slower than their application-specific integrated circuit (ASIC)

counterparts, cannot handle as complex a design, and draw more power (for any given

semiconductor process). But their advantages include a shorter time to market, ability to

re-program in the field to fix bugs, and lowernon recurring engineering costs.

To define the behavior of the FPGA the user provides a hardware description language

(HDL) or a schematic design. Common HDLs are VHDL and Verilog. Then, using an

electronic design automation (EDA) tool, a technology-mapped netlist is generated. The
netlist can then be fitted to the actual FPGA architecture using a process called place-and-

route, usually performed by the FPGA company's proprietary place-and-route software.

The user will validate the map, place and route results via timing analysis, simulation,

and other verification methodologies. Once the design and validation process is complete,

the binary file generated is used to (re)configure the FPGA. Detailed design flow is
explained in section 5.3.

Configurable

Configurable
Logic block

Figure 2.1: FPGA Structure

2.3 Reconfigurable systems
2.3.1 Reconfiguration

Reconfiguration is a post-fabrication process in which processing elements are

programmed spatially and temporally i.e., computation in space and time, using hardware

that can adapt at the logic level to solve spedfic problems [5].

The term "reconfiguration" refers to reprogramming an FPGA after its configuration is

complete. Reconfiguration can be initiated by pulsing the full chip reset pin (this method

is identical to configuration), or by re-synchronizing the device and sending configuration

data. The latter method is only available in Select MAP and JTAG configuration modes.

To reconfigure a device in Select MAP mode without pulsing full chip reset pin, the

BitGen persist option must be set otherwise, the data pins becomes user I/O after

configuration

2.3.2 Types of Reconfiguration

There are two types of reconfiguration mechanisms, depending on the use they make of

the dynamic nature of the reconfigurable device.

a) Compile-Time Reconfiguration

CTR [5] is the simplest and most commonly used approach for implementing

applications with reconfigurable logic. The most important feature of CTR applications is

that they consist of a single system-wide configuration for all the system (Fig 2.2). The

FPGAs are loaded with their respective configurations before the execution of the

operation, and once execution of the application starts, they remain in this configuration

till the end of execution.

Figure 2.2: Compile Time Reconfiguration

7

This approach is similar to using an ASIC because the hardware does not change during
the execution of the application.

b) Run Time Reconfiguration

Run-Time reconfigurable applications consist of a set of time-exclusive tasks that can be

downloaded into the FPGA (one at each time, or several simultaneously) using a dynamic

allocation scheme. In contrast to CTR, the FPGA will probably be reconfigured more

than once during the execution of an application (Fig 2.3). Developing dynamic

reconfiguration [5] is difficult because of the need for both software and hardware

expertise to determine how best to partition a computation into sections to implement in

hardware, how to sequence these circuit sections, and how to tie them together to produce

an efficient computation. This overhead can be reduced to some extent by using dynamic
partial reconfiguration which is described below.

The main advantage of RTR in front of CTR is that it allows reusing the reconfigurable

device several times for the same application. To be able to do that it is necessary to

partition the application into a set of configurations, but instead of using spatial

exclusiveness as a criterion, this method uses time exclusiveness. We can distinguish two

classes of run-time reconfiguration schemes Global reconfiguration and Local
reconfiguration which are described below.

i) Global Run-Time Reconfiguration

Here application is divided into distinct temporal phases where each phase is

implemented as a single system wide configuration that occupies all system FPGA
resources.

Figure 2.3: Run Time Reconfiguration.

0

In this case, reconfiguration time is more critical than in a CTR application. In this the

reconfiguration of the FPGA is not only performed during the set-up of the system, but

several times during the execution of the application. Fig 2.4 shows the execution of a
Global RTR application which is mapped into two configurations.

------------------------,

I

Figure 2.4: Global Run-Time Reconfiguration

ii) Local Run-Thme Reconfiguration

It is also possible to reconfigure only subsets of the reconfigurable circuit. This approach

is called partial reconfiguration or Local RTR. In this case important time-savings are

made compared with a complete reconfiguration of the components, as reconfiguration is

quite a time-consuming operation and with Local RTR not all the circuitry must be

reconfigured to carry out changes.

Fig 2.5 shows an example of Local RTR where the application to implement consists of 4

partitions A, B, C and D. In a first step, partitions "A", "B" and "C" are loaded into the

FPGA and then executed. In a second step, partitions "B" and "C" are removed and

partition "D" is loaded into the FPGA, which is followed by the execution of the

application.

i ------------,

Figure 2.5: Local Run Time Reconfiguration

0

2.4 Partial Reconfiguration Techniques

Reconfiguring the whole system is complicated costly in terms of overhead and may also

be redundant in cases when desired functionality can be implemented by changing only a

part of the circuit. The solution is to use partial reconfiguration which proves to be more

efficient. Partial reconfiguration involves partitioning the hardware [9] within the

platform to reduce the reconfiguration overhead. Partial Reconfiguration is the ability to

reconfigure a portion of an FPGA while the remainder of the design is still operational.
Certain areas of a device can be reconfigured while other areas remain operational and

unaffected by reprogramming. If Partial Reconfiguration is done when the device is

active it is called Active Partial Reconfiguration or Dynamic Partial Reconfiguration.

Dynamic Partial reconfiguration is again divided into two types [13]

1) Module-Based Partial Reconfiguration

2) Difference-Based Partial Reconfiguration.

2.4.1 Module-Based Partial Reconfiguration_ In this method entire reconfigurable

module is modified while leaving base region intact. Modular Design is best used for

large designs that can easily be partitioned into self-contained modules. It is also used
when communication is needed between modules.

Base and Partially Reconfigurable Regions (PRR):

The base region is the portion of the design that does not change during partial

reconfiguration and may include logic that controls the partial reconfiguration process.

PRRs contain logic that can be reconfigured independently of the base region and other

PRRs. The shape and size of each PRR is defined by the user through a range constraint.

Each PRR has at least one, and usually multiple, partially reconfigurable modules (PRM)

that can be loaded in to the PRR. Fig 2.6 illustrates a design with a single partial

reconfiguration region PRR A. PRR A can be loaded with PRMs Al, A2, or A3. Each of

the PRMs contains different logic for processing data passed from the static logic in the

base region to the dynamic logic programmed in PRR A. Partial Reconfiguration can be

10

carried out in two different.ways. It is possible to reconfigure part of the circuit while

operation of the other parts is interrupted This kind of reconfiguration is called Passive

Partial bit stream Al .bit

Partial bit stream A2.bit

Partial bit stream A3.bit

Figure 2.6: Module based partially reconfiguration process

partial reconfiguration. It is also possible in some cases, when partial reconfiguration is

applied to leave the non-reconfigured parts of the circuit in operation while other parts
are being reconfigured. This method is called Active Partial Reconfiguration. In the case

of Passive Partial Reconfiguration time savings are made by lowering the reconfiguration

time compared with a complete reconfiguration of the components. If Active Partial

Reconfiguration is applied then time-savings are even more important as the execution of

the application is not interrupted.

2.4.2 Difference-Based Partial Reconfiguration:

This method of Partial Reconfiguration is accomplished by making a small change to a

design (normally done in FPGA Editor), and then by generating a bitstream based on

only the differences in the two designs. Switching the configuration of a module from

one implementation to another is very quick, as the bitstream differences can be

extremely smaller than the entire device bitstream. This method is very useful for

implementing modules which differ by only little changes in their coding. In this work I

have followed module based partial reconfiguration and it is described in detail in

chapter 6.

11

2.5 Historical review

The term "Software Defined Radio" was coined in 1991 by Joseph Mitola, who published

• the first paper on the topic in 1992. One of the first public software radio initiatives was a
U.S. military project named SpeakEasy. The primary goal of the SpeakEasy project was
to use programmable processing to emulate more than 10 existing military radios,

operating in frequency bands between 2 and 2000 MHz. Further, another design goal was

to be able to easily incorporate new coding and modulation standards in the future, so that

military communications can keep pace with advances in coding and modulation

techniques. From 1992 to 1995, the goal was to produce a radio for the U.S.army that

could operate from 2 MHz to 2 GHz, and operate with ground force radios.

In this SpeakEasy project, wide range was not supported due to architectural

complexities, so SpeakEasy phase II was launched to operate in the range 4 MHz to 400

MHz. The goal was to get a more quickly reconfigurable architecture (i.e. several
conversations at once), in an open software architecture, with cross-channel connectivity

(the radio can "bridge" different radio protocols). The secondary goals were to make it
smaller, weigh less and cheaper. The project was the first known . to use FPGAs (field

programmable gate arrays) for digital processing of radio data. The time to reprogram
these is an issue limiting application of the radio.

After SpeakEasy II, JTRS (Joint Technical Radio System) was started. JTRS is a program

of the US military to produce radios that provide flexible and interoperable

communications. Examples of radio terminals that require support include hand-held,

vehicular, airborne and dismounted radios, as well as base-stations (fixed and maritime).

This goal is achieved through the use of SDR systems based on an internationally

endorsed open Software Communication Architecture (SCA). The SCA, despite its

military origin, is under evaluation by commercial radio vendors for applicability in their

domains. In 1999, Joseph Mitola proposed SDR architecture and it's technical challenges
[1].

[1] Describes the evolving concepts and architecture of software defined radio. It

also presents the technical challenges like clock generation and distribution, power

12

management and receiver architecture. The main challenge in power management is sleep

delay vs paging delay. To solve this drawback, a solution was proposed to use power

managed ,DSP devices. To overcome the efficiency of receiver architecture, wideband

SDR was proposed and to overcome the computational efficiency of software, FPGAs,

JAVA engines were proposed. The architecture developed in [1] could not handle the

power management properly.

In [7] GSM baseband processor was developed using high level language (C

language) to implement on DSP kit. The AIRT Library extensions to C greatly simplified

the hardware design effort, and AIRT Builder combined with Mistral 2 allowed to design

the FPGA and yet maintain a C language environment for verification.

The FPGA implementation occupied approximately 70% of the logic resources of the

Xilinx XCV800. It occupied 25 of 28 Block RAMS and consumes power less than 500

mW maximum. The maximum clock speed was 13 MHz and the external SRAM speed

was 6.5 MHz. An ASIC implementation was expected to dramatically reduce power

consumption and cost. The baseband processing developed in [7] was not concurrent
approach

[8] Presents concurrent software defined approach for common baseband

processing. The main focus is on exploring the algorithmic and architectural design

spaces of 3G and 4G systems to identify the computational and geometric structures

shared by diverse coding schemes, services and hardware platforms, and the efficient and

flexible integration of these structures on innovative extensible hardware.

A subset of GSM baseband processing modules involved in the generalized GSM

transmitter have been successfully implemented using Linedancer. The algorithms

developed for the parallel architecture enable efficient, concurrent multi user processing

and contribute to the high speed software reprogrammable implementation. The design

used 270 MHz clock rate for all its baseband module processing. The baseband model

developed in [8] not used special purpose IF cores, which reduce the turnaround time.

The synthesis time was also more.

13

[9], [10] Presents High-level "frameworks" such as the SCA (Software

Communication Architecture) add virtualization layers on heterogeneous DSP-FPGA

_.. systems with the promise of code portability. The implementation was done in the

general context of the development of an SCA board support package for Lyrtech's

DSP/FPGA development platforms as well as the development of example applications

and reference designs running on these platforms.

The SCA GSM implementation was derived from a non-SCA model-based GSM

design. To design these modules, special purpose VHDL code wrapped in a system

generator block was used. As a result of this design, the DSP/FPGA platform operates 64

mbps and operating frequency of 65 MHz. In [9] area optimization of FPGA was not

taken into consideration.

From the above historical review, it can be concluded that, the following major research

gaps still exist.

In [7], the code developed has to be synthesized using synthesizer called Mistral 2. So the

generated bitstream will occupy more silicon area of FPGA. So it is possible to optimize
the FPGA silicon area

In [8], technique introduced will take more time to synthesize the design and 'also

increases the power consumption of FPGA. So it is possible to optimize the power

consumption. This paper also presented the two baseband processing modules,

GSM,OFDM. But it has not explained the reconfiguration of two baseband processing

models. So it is also possible to perform the partial reconfiguration which is a key feature

of software defined radio.

[9] This paper presented how a GSM waveform can be implemented for an SCA

environment on a DSP/FPGA. This paper has shown only system generator model

development. So it is possible to develop a baseband model using VHDL code to

optimize the area.

Thus, this dissertation work is to effectively fill some of above stated research gaps.

14

0

CHAPTER 3

RECONFIGURABLE SDR AND ITS ARCHITECTURAL REQUIREMENTS

3.1 Introduction

With the increase of wireless standards in television, radio, and mobile communications,

compatibility issues have emerged in wireless networks, Inconsistency between wireless

standards is causing problems to subscribers, wireless network operators, and equipment

vendors [14]. Subscribers are forced to change their handsets whenever the latest breed of

standards is introduced. Network operators face the dilemma during the upgrade of a

network from one generation to another due to the presence of a large number of

subscribers using legacy handsets incompatible with newer generations of standards.

Equipment vendors face difficulty in airing new technology because of short time-to-

market requirements [15]. Inconsistency between wireless standards is inhibiting

deployment of global roaming facilities and causing problems in introducing new

features and services [16]. Users are expecting more from their mobile terminals in terms

of quality of service and multimedia applications. Traditional wireless systems, with their

capabilities hard-coded in them, are no longer able to keep step with this brisk growth
rate.

Introduction of software into the radio systems has brought the concept of software radio.

It is now possible to realize various radio functions using suitable software on the same

hardware. Such radios have been referred to as Software-Defined Radio (SDR). The

SDRs are programmable and reconfigurable. Programmability / reconfigurability have

become necessity of the day, because of the multiple standards, multiple frequency
bands, and variety of applications.

The SDRs can provide multi-functionality, global mobility, compactness and power

efficiency, ease of manufacture, and ease of upgrades. Design of SDRs required

definition of suitable architecture and proper partitioning of the function in a radio

system. Suitable algorithms need to be developed for implementation of various

functions. The development of digital techniques in communication systems resulted in

15

additional performance improvement, because of use of source coding, channel coding,

encryption, multiplexing, and multi accessing techniques. All these techniques can easily

be defined and implemented in SDR._

3.2 Concepts of Software Defined Radio
3.2.1 Definition of SDR

Definition of SDR is provided by the SDR forum [3], is that SDR is the radio that accepts

fully programmable traffic and control information and supports a broad range of

frequencies, air interfaces, and application software.

3.2.2 Conventional Radio vs Software Defined Radio (SDR)
To compare the functionalities of Conventional radios with software radios, the following

table is given.
Table 2.1: Difference between conventional radios and software defined radios

Conventional Radios Software Defined Radios

Radio functionalities are primarily defined Radio 	functionalities 	are 	defined 	in
in 	hardware 	with 	minimum software
configurability in software

Since 	the 	design 	is 	dominated 	by Software based architecture allows for

hardware, upgrading the design is not easy upgrade of the design without
abandoning the older design

possible.

The user has to use different mobile Global mobility can be achieved by
devices 	due 	to 	incompatibility 	of downloading the appropriate air interface
standards, thus overcoming the incompatibility of

standards.

Multi-function radios design including Reprogrammability makes SDR to be
separate silicon for each system decreases efficient and compact
the efficiency and becomes bulky.

Results in waste of silicon area since each Silicon area is conserved by using the

system has to be implemented separately same chip to perform a function and
' changing 	the 	configurations 	during

runtime to perform another function

16

3.2.3 Technical Challenges

This section discusses the technical issues, which have to be solved before software radio

can be commercially- available. The important technical issues involved in the

development of a software radio system are as follows:

(1) In transceivers, the border between analog and digital domain should be moved

closer, as much as possible, towards the RF. This requires ADC and DAC wide band

converters placed as near as possible to the antenna. Increasing the. border between the

analog and digital domain is not exclusively for software defined radio. Much research

has been carried out in the wideband transceiver realization [15]. The primary goal of this

transceiver was to extend the digital domain at the IF stage and keeping the RF stage

analog [15].

(2) The process of replacement of dedicated hardware in communication systems with

DSPs or FPGAs should be further developed. In other words, we need to define the radio

functionalities as much as possible in software. This opens the way to two possible

horizons: software implementation of baseband functions, such as coding, modulation,

equalization and pulse shaping; and re-programmability of the system to guarantee multi-
standard operation. Though DSP technology has been used in implementing the baseband

processing in base stations, it is not possible to categorize it as SDR since not all
baseband functionalities are implemented in DSPs. Also, the software is limited and pre-

loaded; therefore the system is constrained to a specific radio interface and cannot be

reconfigured [1]. Hence, implementing communication functions in software presents a
major challenge in practical systems.

(3) Analog-to-digital and digital-to-analog conversions for the ideal software defined

radio are difficult to achieve. In practice, the selection requires trading power

consumption, dynamic range and bandwidth. Current conversion technology is limited

and is often the weak link in the overall system design. There are post digitization

techniques based on multirate digital signal processing that can be used to improve the

flexibility of the digitization process [2], [16].

17

(4) Power management is also a major challenge. For example, sleep modes of DSPs or
other hardware save power but introduce a probability that the radio will be asleep during
a paging message. A possible solution is a structured timing of paging messages, which
reduces the probability of a miss, and further conserves battery life [17], [18].

(5) The clock generation and distribution is another challenge in SDR design. Every
standard such as GSM or IS-95 has its own clock rate. Using one reference oscillator per
standard may increase parts count, increase complexity, and therefore cost. A single
master clock may use the least common multiple (LCM) of the required clocks, but this
leads to a high clock rate, which is power inefficient. A possible solution is to use
normalize standards to avoid clock rates with large LCMs [1].

(6) Receiver complexity is typically four or more times the transmitter complexity [2]..
Thus, the receiver architecture has a first order impact on handset cost. The challenge is
to develop a simple receiver. With the current technology, the support of many standards
leads to complex and power inefficient solutions. Application specific integrated circuits
are power efficient but inflexible. Field programmable gate arrays could be a possible
solution. Hybrids ofplatfoml implementation could be utilized.

(7) The ideal radio frequency stage for SDR should incorporate flexibility in selection of
power gain, bandwidth, dynamic range, etc. Achieving strict flexibility is impractical and
trade-offs must be made [2].These are the major challenges that must be addressed before
full realization of SDR. Besides these important issues there are other challenges, which
have to be solved like software architecture selection, hardware architecture selection
etc., which are not discussed in this thesis. More information can be found in [1], [20].

3.3 Architectural requirements of SDR

This section gives the details of the architectural requirements of the SDR.

3.3.1 Architectural characteristics intrinsic to SDR

To implement SDR system, the system architecture must be designed in the following
aspects [211.

18

a) Reconfigurability: Reconfigurability is the ability to accommodate more than one

functional unit on the same hardware by doing reconfiguration without changing the

system architecture. Thus, it is the ability of change of a radio's personality through
reprogramming of both software and hard-ware, in general. In addition, reconfigurability

may be extended to change individual algorithms by changing the parameters of

individual algorithms.

b) Flexibility: SDR architecture must exhibit to support more than one standard as well

as for incorporation of future standards in a single device, with reprogramability as an

essential feature.

c) Modularity: Modularity is another basic characteristic of SDR architecture.

Modularity involves the encapsulation of each of the various tasks that define a system

into individual and separate modules, whether in software or hardware, that can be linked

together in a logical manner through their interfaces to form the desired system. In a well-

designed modular SDR, the functionality of the system can be incrementally changed

through the addition or replacement of individual modules without impacting the design

of other modules.

3.3.2 Architectural characteristics import to SDR

a) Scalability: One of the most important characteristics of a SDR is scalability, the

ability to add new modules, either in hardware or software, to enhance the performance

of the radio. The synergistic effects of reconfigurability and scalability may prevent

optimality. Due to a software radio's many software and potential hardware changes and

the complexity of the system, it is often difficult to say with absolute certainty how the

radio will perform after a change is made and whether the radio will be able to

accommodate these changes.

b) Validation & Verification: Validation addresses the functionality verification. Thus,

designed architecture and particular HW/SW functionality correctness is important and

should be verified before they are integrated as a combination of components in the

integrated system. The difference between validation of architecture and validation of an

application is by referring to the latter as verification. The ,alid t gmteriis~j~ised"'for

architecture and verification term is used for application. Verification is the process of

conforming that a particular HW/SW combination with application, of the potentially

limitless number of combinations will perform as expected Verification is an essentially
important issue for the wireless communication systems with multiple standard support

like the SDR.

c) Replicability: Replicability is the ability to support addition of new channels to the

system by simply adding copies of the basic radio. The replicability effectively provides
scalability for the entire system, allowing it to expand to handle additional traffic.

d) Interoperability: The past decade has seen the introduction of many software radio

products that can be drawn upon to reveal the practical characteristics of SDRs. However,

with so many different SDR architectures with varying degrees of cross-compatibility
being introduced, one may wonder if this multitude of SDR designs will bring the

wireless market back, full circle, to interoperability problems similar to the ones that

endangered the software radio concept. Fortunately, this potential problem was identified
several years ago, and several movements have started the process of creating

standardized SDR architecture. In an attempt to provide a measure of standardization,

with a hope of promoting interoperability among SDR designs, a number of SDR groups

have been formed.

3.3.3 Architecture of Software Defined Radio (SDR)

The digital radio system consists of three main functional blocks: RF section, IF section

and baseband section [16] as shown in fig 3.1. The RF section consists of essentially
analog hardware modules while IF and baseband sections contain digital hardware

modules.

RF Section:

The RF section (also called as RF front-end) is responsible for transmitting/receiving the

a

Fig 3.1: Basic Architecture of Software Defined Radio

radio frequency (RF) signal from the antenna via a coupler and converting the RF signal-

to an intermediate frequency (IF) signal. The RF front-end on the receive path performs

RF amplification and analog down conversion from RF to IF. On the transmit path, RF

front-end performs analog up conversion and RF power amplification.

IF Section:

The ADC/DAC blocks perform analog-to-digital conversion (on receive path) and digital

to analog conversion (on transmit path), respectively. ADC/DAC blocks interface

between the analog and digital sections of the radio system. DDC/DUC blocks perform

digital down conversion (on receive path) and digital-up-conversion (on transmit path),

respectively.DUC/DDC blocks essentially perform modem operations, i.e., modulation of

the signal on transmit path and demodulation (also called digital tuning) of the signal on

receive path. The .baseband section performs baseband operations (connection setup,

equalization, frequency hopping, timing recovery, correlation) and also implements the

-link layer protocol (layer 2 -protocol in OSI protocol -model).The DDC/DUC and

baseband processing operations require large computing power and these modules are

generally -implemented using ASICs or stock DSPs. Implementation of the digital

sections using ASICs results in fixed-function digital radio -systems. If DSPs are used for

baseband processing, a programmable digital -radio (PDR) system can be realized. In

other words, in a PDR system baseband operations and link layer. protocols are

21

implemented in software. The DDC/DUC functionality in a PDR system is implemented

using ASICs. The limitation of this system is that any change made to the RF section of

the system will impact the DDC/DUC operations and will require non-trivial changes to

be made in DDC/DUC ASICs.

A software-defined radio (SDR) system is one in which the baseband processing as well

as DDC/DUC modules are programmable. Availability of smart antennas, wideband RF

front-end, wideband ADC/DAC technologies and ever increasing processing capacity

(MIPS) of DSPs and general-purpose microprocessors have fostered the development of

multi-band, multi-standard, multi-mode radio systems using SDR technology. In an SDR

system, the link-layer protocols and modulation/demodulation operations are

implemented in software. If the programmability is further extended to the RF section

(i.e., performing analog-to-digital conversion and vice-versa right at the antenna) an ideal
software radio system that support programmable RF bands can be implemented.

However, the current state-of-the-art ADC/DAC devices cannot support the digital

bandwidth, dynamic range and sampling rate required to implement this in a

commercially viable manner. Figure 3.2 illustrates the architecture of software

components in a typical SDR system.

Higher Level Protocols(WAP,TCP/IP)

Radio Applications (Link Layer Protocols,modulation/
demodulation)

Fig 3.2: Software Architecture of SDR

22

The system uses a generic hardware platform with programmable modules (DSPs,

FPGAs, microprocessors) and analog RF modules. The operating environment performs

hardware resource management activities like allocation of hardware resources to

different applications, memory management, and interrupts servicing and providing a

consistent interface to hardware modules for use by applications. In SDR system, the

software modules that implement link layer protocols and ' modulation/demodulation

operations are called radio applications and these applications provide link-layer services

to higher layer communication protocols such as WAP and TCP/IP.

Baseband Section:

In SDR the digital baseband processing consists of the following modules: speech coder

and decoder, channel coder and decoder, interleaver, de-interleaver, burst builder and

burst de builder, cipher and decipher, GMSK modulator and demodulator. The fig.3.3

shows the SDR with digital baseband processing modules.

video

Ted 	
Ner and DIA

Realtime'
digital 	

Digs Up!

~ A!D and D/A baseband 	s
converter

Rrocessin9

microphone

Wideband Ald
	

R/F
& D/A
	

conversion

Fig.3.3: GSM Baseband processing in Software Defined Radio

23

CHAPTER 4

DESIGN OF GSM BASEBAND PROCESSING FOR SDR

4.1 Overview of Digital blocks of GSM Transmitter and Receiver:

The analog part includes the RF transmitter and receiver and the digital part downlink
signal processing consists of speech encoding, channel encoding, interleaving,
encryption, burst building and modulation (Figure 4.1(a).) On the uplink, the signal
processing consists of receive filtering, demodulation, equalization, decryption and
channel decoding (Figure 4.1(b)) [24]. Each of these blocks has been implemented
individually in VHDL and they are described below.

Speech 	Channel Encoder —► 	Interleaver 	Encryption Encoder

Burst Builder I 	GMSK modulator

a) Transmitter

Filters 	F— H GMSK Demodulation F--- 	De_interleaving

Channel Decoding F- Speech Decoding

b) Receiver

Fig 4.1: GSM Transmitter and Receiver

In this standard the datapackets are sent at specific times at specific frequencies. Thus,
several conversations take place simultaneously and at the same frequency using different
time slots. Systems are also frequency duplex so that the transmit and receive frequencies
are different, and both sides of the transmission (Mobile-to-Base and Base-to-Mobile) are
concurrent.

24

4.2 GSM Transmitter

This section gives the detailed explanation of the blocks used in GSM transmitter.

4.2.1 Speech encoder:

Depending on compression achieved and quality of the resultant data following are three

coding rates:

1. Full rate (RTE-LTP)

2. Half rate

3. Enhanced full rate

The speech coding scheme at 13 kbps is called RPE-LTP, which stands for Regular Pulse
Excitation-Long Term Prediction is used in standard GSIVL The 13 kbps rate is also

referred to as "full rate". The full rate speech encoding algorithm processes 20 ms frames

of speech and produces 260 bits of data per frame. The 20 ms input frame consists of 160

samples of speech at a sampling rate of 8 KHz. The speech blocks each of 20 ms duration
coming out of speech coder are grouped into three classes of sensitivity to errors

depending on their importance to the content of the information samples in speech. They

are as following:

Class la CRC 53-bits

Speech (50-bits) generator

coder ° m 189-bits Convolution

260 bits / I bi
encoder 	378-bits
(21 5) 	C

20 ms Class lb Attach n
° (132-bits) 4-tail bits er
m 	456-bits

136-bits
bi

Class 2 n
(78-bits)

er

Figure 4.2: The block diagram showing three classes of data and data flow at different

stages

1. Class la: Three parity bits are derived from the 50 class la bits. Transmission errors

within these bits are catastrophic to speech intelligibility, therefore, the speech decoder

25

is able to detect uncorrectable errors within the class la bits. If there are class la bits in
errors, the whole block is usually ignored.

2. Class Ib: The 132 class 1 b bits are not parity checked but are fed together with the
class la and parity bits to a 'convolutional encoder. Four tail bits are added first and then
r = 1/2, (Constraint length K = 5) convolutional code provides an output of 378 bits.

3. Class II: The 78 least sensitive bits are not protected at all.
A splitter has been designed to group the bits coming out from speech coder.

4.2.2 Channel coder

As shown in fig.4.2, channel coder mainly consists of two blocks: CRC generator and

convolutional encoder.

CRC generator:
Before convolutional coding, three bits of parity are added to class la bits. The generating
polynomial is Generator Polynomial G = D3 + D + 1. The block diagram of the CRC

generator is as shown in figure 2. The hardware operation is as follows: three flip-flops
with active rising edge are connected in linear feedback shift register manner and a
switch in between which separates data input with the parity bits. For the first 50 clocks
the switch remains closed and for the last 51 to 53 clocks the switch is kept open.

Generator Polinomial
G=D3 +D+1

First 50 bits

Operation 1....50 Clk ..SW closed
	

Last 3 Parity bits
51..53 Clk .. SW open

Fig.4.3: CRC generator (or) Parity bits generator

26

Simulation result of CRC generator used in GSM:

Fig 4.4: Simulation waveform of CRC generator used in GSM

Convolutional Encoder:

In general the channel coder adds redundancy in a manner the decoder can detect and

correct errors in received data stream. Convolutional encoder has been used as channel

encoder for GSM standard. Convolution encoder is characterized by its constraint length

and its code rate. The constraint length of encoder is defined as one plus the number of

memory elements and code rate defined as ratio of input bits to output bits. In GSM

communication standard traffic channel, convolution encoder of type (2, 1, 5) has been

used. Whose constraint length is 5 and code rate is '/z . This code is applied to both the
class lb (132 bits + 4 tail bits) and class la (50 bits + including 3 parity bits). In order for

a code to be able to correct errors, a certain number of additional bits have to be added.

The added bits are called redundancy bits. Before the information bits are encoded, four

bits are added. These bits are all set to zero and used to reset the convolutional code.

These bits are called tail bits. The block diagram of a convolution encoder is shown in

fig.4.5. For 189 bits input the output of the convolution encoder is 378 bits for one frame
duration (i.e. 20 ms).

27

Input bit

Generator Polinomi

9j=D4+D3+1
go=D4+D3 +D+

Fig.4.5: (2, 1, 5) Convolution Encoder

Simulation Result:

He Edit `View Add Format Tools Window

1{~}Q~i: Pj~i~ILII_!''f~~3;~~

/gsm_shift/datain 	Ii

/gsm_shlft/gt 0 40 ns

Cursor 1 	44nsJJI
°I € 	 I %®

0 ns to 947 ns 	 Now Z us Delta: 2

Fig 4.6: Simulation waveform of convolutional Encoder

4.2.3 Interleaver:

In order to combat the effects of error due to interference and noise, error correction
techniques are used. The redundancy introduced due to error-correcting codes increases
the data rate. For example, the raw data rate, due to speech coding, is only 260 bits over a
period of 20 ms, as shown in fig 4.8.

28

However, after channel encoding through convolution encoder, the number of bits are
increased to 456 bits, resulting in a data rate of 22.8 Kbps.Most probably the bit errors
often occur in bursts. This is due to the fact that long fading dips affect several
consecutive bits. To deal with this problem consecutive bits of a message are separated so
that these are sent in a nonconsecutive way. This is done by interleaving, which is the
process of distributing data bits in a different order in which they are generated. The
output of the combiner from figure2 fed to block interleaver.

The block interleaver divides the 456 bits of one frame into the eight sub blocks in the
following way. Bit number 0 goes into sub block 1, bit number 1 goes into sub block 2,
and so on until all eight sub blocks are used up. Bit number 8 ends up in sub block
number 1 again. The first four sub blocks are put into the even-numbered bits of four
consecutive bursts, and the second four sub blocks are put into the odd-numbered bits of

the next four consecutive bursts.

First, the 456-bit encoded speech message block is read into an 8-column by 57-row
matrix RAM, filling each row in turn. The bits are then read out of the RAM by column,
forming eight sub blocks of 57 bits each. Note that adjacent bits in the code word are
placed into different sub blocks. As each burst contains 114 traffic-carrying bits, it is in
fact shared by two speech blocks. Each block will share four bursts with the block
preceding it and four with the block that succeeds it. A burst will then be transmitted in
the designated timeslot of eight consecutive TDMA frames, thus providing the
interleaving depth of eight. The complete process in vivid manner is as shown in figure 5
above. The training sequences for different timeslots are given in table.4. 1.

4.2.4 Encryption:

A5/1 algorithm has been used as encryption algorithm for this GSM communication
standard. The AS algorithm uses a frame number and key Kc to produce a stream of 114
bits that are used to encrypt and decrypt a burst of data [28]. At the transmitter, each of
the 114 bits in the encryption stream is exclusive-OR'ed with the corresponding bits in
the data stieam. At the receiver, the A5 algorithm generates the same bit stream using the

• Frame 	̀; Frame 2 Frame-3
(456 `t its)f20 ms t6bitsy2O msJ (455 bits)(20 ms

8 sub blocks 8 sub blocks 8 sub blocks
(57 row X 8 column) 1 (57 row X 8 column) (57 row X 8 column)

57 bits (column l) of ! Training 57 bits (Column 5) of Burst-1 	— — _ _ 1 subbtackl of frame2 sequence 'subblocK8 ±:if frame1

Burst-2 — 	 i — — 	57 bits' (column-2) of ; Training 57 is (co{urn `) of
subblock2 of frame2 sequence subbic6#ffrarrie1'

Burst-3 — — — --i 57 bits (column -3) of Training 57 tits (S 	urttn 7) of
subblock3 of frame2 sequence subklock7 of frornsl'

Burst-4 ----I 57 bits (column-4) of 4 Training 57 bits (eittu M-8) of
subblock4 of frame2 sequence subblackBoffn1mel;

57 bits (column 1) of ^' Training 57 bits (colurrtrl-5} of Burst-5 	— — — — = subblockl of.fraine3 - sequence subblook5 of frame2

J 57 bits (column =2),of-} Training 57 bits (column 6) of Burst-6 	-- -_
subblock2 of frame3 , sequence subblock6 of franie2

67 bits (cat mn-3) of = Training 57 bits (column 7) of Burst-7 	-- -- subblock3 of frame3;' sequence subbtock7offrame2.

' 57 bits (column-3) of Training 57',bits (column-8) of Burst-8 	-- -- subbtock4 of.frame3• sequence subblock8 of frame2

Figure 4.7: interleaving process of 3-frames

Simulation result:

F@e Et View Add Format Todd Wk dow

Jl JLl
1r 	i 	100.^

I m iimfeavaddoLdd 0,10,100,100111, 1

Igsr2inlabevadc~c 	1 	 ~.

	

/ sm_eterleever/matt 	{01 1 011 00 11 00111 	 ~!'.

	

Now 	1000 M _._._ 	_ _,. _. 	
_sue:/ate iaterleaver/met2 B 76 z
0 7 01101100 11001111 11111100 00110001 11110011 00110011 01001100 11001100
H 11001100 11110111 11101011 10000000 00111111 00101101 01110111 10100110

50 ns_ to_ 969 ns - 	j NOW. 1 u116 : 10110101 01010101 11110110 01101101 10010101 01011011 01010101 01010011 _
'- -- -;24 11111111 11000000 00000000 00000111 10111111 11111111 11111101 11111111

32 01111111 11111110 00000000 00111111 01010101 11111111 10111111 11111111
40 01111011 11111010 00000000 00000001 01111111 11111111 11011111 11101000
48 11111010 11110101 00101010 01111110 11101011 10011011 10001011 10000111
56 : 01101010

Fig 4.8: Simulation waveform of interleaver

30

frame number and Kc as at the transmitter and again performs the exclusive OR
procedure to reproduce the original data bits. Since the frame number changes on every
burst, the encryption stream also changes. Depending on network procedures, the key Kc
may change on every call. This makes it very difficult for listeners to break the code. The

A5/1 algorithm is as follows:

A5/1 Stream cipher: A5/1 is a stream cipher used for encrypting over the air

transmissions in the GSM standard. A GSM conversation is transmitted as a sequence of
228-bit frames (1 14-bit in each direction) every 4.6 millisecond. Each frame is XORed
with a 228-bit sequence produced by the A5/1 key stream generator. The initial state of
this generator depends on a 64-bit secret key, Kc, which is fixed during the conversation,

and on a 22 bit public frame number, Fn.

The A5/1 architecture is composed of three LFSRS, R1, R2, and R3 of lengths 19-,

22-, and 23-bit, respectively. Each LFSR is shifted, using clock cycles that are

determined by the Majority Function. This unit uses 3 bits C1(8), C2(10), and C3(10). If

two or more bits of them are zero then the majority is m = 0. Similarly if two or more of

them are equal to 1 then the majority is m = 1. If Ck = m then corresponding register Rk is

shifted, where 1==1, 2, 3. The feedback polynomials for R1, R2, and R3 are: x19+x5
+x2+x+1, x22+x+1 and x23+x15 +x2+x+1, respectively. At each cycle, after the initialization
phase, the last bits of each LFSR are XORed to produce one output bit. The fig.4.7 shows

the A5/1 cipher algorithm.

A GSM transmission is organized as sequences of bursts. In a typical channel and
in one direction, one burst is sent every 4.615 milliseconds and contains 114 bits
available for information. A5/1 is used to produce for each burst a 114 bit sequence f key
stream which is XORed with the 114 bits prior to modulation. A5/1 is initialized using a
64-bit key together with a publicly-known 22-bit frame number. In fielded GSM
implementations 10 of the key bits are fixed at zero, resulting in an effective key length
of 54 bits. The A5/1 stream cipher uses three LFSRs. A register is clocked if its clocking
bit (orange) agrees with the majority of the clocking bits of all three registers.

31

LMajo1.i 	Function

0 1 2 3 4 5 6 F. 9 10 11 12 13 14 15 16 17 18:

0 4 5 6 7 8 9 [10j11 12 13 14 15 16 17 18 19 '20 21<

0 1 213 4 5 6 7 8 9 1g0° 11 12 13 14 15 16 17 18 19 20 21 22-' i

Key stream

Figure 4.9: The A5/1 stream cipher

Fig.4. 10: Simulation waveform of A5/1 cipher

4.2.5 Burst Builder:

The GSM specifications define 4 different types of bursts; a normal burst has been

considered (fig.4.10). The other types of burst (Frequency correction burst and

Synchronization burst) are indeed only transmitted from the base station to the mobile

station at known arrival time. A normal burst is used to transmit data information.

It lasts 576.9ms (15/26 ms) and is composed of 156.25 bits, which are:

(a) 2*3 tail bits used to allow the signal to ramp up and down for a transition.

(b) 2*57 data bits (two half burst of 57.bits each, from the interleaver, are introduced in

a burst).

(c) 2* 1 signaling flags, which indicate eitherthe data is signaling traffic or user traffic.

(d) 26 bits of training sequence.

(e) 1*8.25 bit-times of guard period (30.4ms) at the end of the burst to help compensate

for multipath echoes.

Frame-1 	Frame-2 	Frame-3

(456 bits)/20 ms 	(456-bits)/20 ms 	(456-bits)/20 ms

8 sub blocks 	8 sub blocks 	8 sub blocks

(57 row X 8 column) 	(57 row X 8 column) 	(57 rowX 8 column)

57 bits (column-1) of 57 bits (column-5) of
Burstl -- subblocki of frame2 subblock5 of framel

0 1

57 bits (column-2) of 57 bits (column-6) of
Burst-2 — — subblock2 of frame2 subblock6 of framel

2 3

57

it (column-3) of 57 bits (column-7) of
Burst-3 -- subblock3 of frame2 subblock7 of framel

4 5

57 bits (column-4) of 57 bits (column-8) of
Burst -4 - - subblock4 of frame2 subblock8 of framel

Interlaeved

F
_ 	

_ _ Burst Builder
burst-n

AS/1 Cypher
(b)

57 bits (column-1) of 57 bits (column-5) of
Burst -5 --p1

subblockl of frame3 subblock5 of frame2

8 9

57 bits (column-3) of 57 bits (column-6) of
Burst-6 -- subblock2offrame3 subblock6 of frame2

10 11

column 3) of 57 bits (column-7) of
Burst 7 -- Cbk3 of frame3 subblock7 of frame2

12 13

57 bits (column-3) of 57 bits (column-8) of
Burst-8 —

subblock4 of frame3 subblock8 of frame2

14 15
(a)

Normal burst sent in one time slot
Traning I Guard

Tail-bits Information Information Tail-bits
Sequence Period

I 	I 	I
1 	I 	I 	I 	I 	I

3-bits 158-bits 	26-bits 158-bits 13-bits 18.25
I 	I 	I 	I 	l

Fig 4.11: Generation of normal Burst of traffic channel

33

1 TDMA Frame = 8 time slots

I Time slot = 156.25 bits

Fig 4.12: Normal burst used in GSM [3]

4.2.6 GMSK Modulation:

The GSM system uses a Gaussian Minimum Shift Keying(GMSK) modulation. This is a

form of frequency shift keying. Minimum shift keying is named for the fact that the two

frequencies used for the 0 and 1 states spaced the minimum distance required to maintain

orthogonality for coherent detection. Coherent 'detection refers to matched filter detection

using knowledge of carrier phase. The modulating bit rate is 1/T= 1624/6 K bits/sec or

approxmately 270.833 K bits/sec. The bits are differentially encoded prior to modulation

[29]. The Gaussian filter has an impulse response that lasts about three bit periods. This

means that the instantaneuos transmitted phase is a function of a sequence of bits rather

than a single bit.

The data di(t) to Gaussian Minimum Shift Keying (GMSK) modulator is first

differentially encoded by performing modulo-2 addition of the current and previous bits,

giving b(t) (as in the standard GSM system),

b,{t) = d(t) XOR di_1(t)(1)

b1(t) has a value either 1 or 0. As input to the GMSK modulator must either be +1 or -1,

we convert 1 to -land 0 to +1 using,

bA,(t) = 1 - 2 b;(t) (2)

The modulating data, bAi(t) are then passed through a Gaussian filter which has the
response h(t)

34

1 52
(3)

Where 6= tn2 /(27rBT)

T is the bit period and B is the 3-dB Gaussian filter bandwidth. The BT product is the
relative bandwidth of Gaussian filter which is used in the GSM system and is set to

0.3.The b ;(t) after passing through the filter is then interlaced into odd bAo;(t) and bAe;(t)

even bits. Modulated signal is then generated by using the following equation (8).

VGMSK(t) = A [b%i(t) sin 2n (t/4Th)] cos coot +A [bAo,(t) cos2n (t/4Tb)] sin coot (4)

here first and second term represents the inphase and quadrature phase components

respectively as in fig 4.13.

Sin(u)
In phase

Differential 	 U 	Sin wot
encoded input 	 Vc ~tsh(t) Gaussian

J 	Fiiter 	 'r%2

U
Phase

Cos(u)

Fig.4.13 : GMSK Modulator

4.3 GMSK Receiver

This section gives the detailed explaination of the blocks used in GSM receiver.

4.3.1 CMSK Demodulator

As mentioned above carrier is recovered using a loop of center-frequency locking scheme
from a BPSK Costas loop [20]. Subsequently carriers cosa ot and sin oOt are extracted
from Voltage Controlled Oscillator (VCO) and n/2 phase shifter of the Costas bop.

35

Then coswot is multiplied with the whole GMSK signal which is received at the receiver

and let say an intermediate signal x(t), is produced. Similarly y (t) is produced by using

carrier sinwOt. x(t) and y(t) are given by the following Equations respectively.

X(t) = VGMSK(t) X COSwpt

y(t) = VGMSK(t) x sinwpt

When x(t) is passed through a low pass filter inphase component [b^ei(t) sin2n (t14Tb)] is

recovered. Similarly y(t) gives quadrature phase component [bAOi(t) cos2ir (t/4T6)]. Then

we generate the components sin Zit (t/4Th) and cos Zit (t/4Tb) using known values of Tb,

and recovered the original odd and even bit sequences bAoi(t) and b"ei(t) .

Carrier Recovery using COSTAS LOOP:

The mechanism of the Costas loop carrier recovery is to iterate its internally generated

carrier from the VCO into the correct phase and frequency based on the principle of
coherency and orthogonality. The outputs of the both Low Pass Filter (LPF) give the

information about the signals which is modulated using BPSK. But the information we

have taken only the carriers coming out from VCO and rr/2 phase shifter (i.e. coswOt and

sinwOt respectively).

LPF

coslwot' 	 Recovered
/ 	 from 	 Bits

	

VGMSK(t) ~, costas 	ADD 	Threshold
sin wot 	loop

LPF

Fig.4.14: GMSK Demodulator

Figure 4-fhows BPSK Costas loop. Two LPF represents two parallel tracking loops (I

and Q) (i.e.Inphase and Quadrature phase), simultaneously a loop filter is used to drive

the product of the I and Q components of the signal that drives the VCO. Once the

36

frequency of the VCO is equal to the suppressed carrier frequency, an error voltage is

produced proportionally by the I and Q multiplication, which is passed through the loop

filter and then VCO to control the frequency of VCO (i.e. carrier frequency).

cos wot

	

Lowpass 	Q-Phase
Filter

	

VGMSK(t) 90° PLL 	LOOP

	

VCO 	I Filter

Lowpass
Filter I-Phase

sin wot

Fig.4.15: BPSK costas loop

Simulation result of GMSK modulator and demodulator is shown in fig.4.16.

4.3.2 Deinterleaver:

The block deinterleaver is used in the receiver side of the GSM system. The function of

the deinterleaver is just opposite of the interleaver we used in the transmitter side. This

module does have the great functionality in GSM system. As said above that the

functionality is just opposite to the interleaver, it reduces the number of bits received in

incoming signal after processing. A special type of processing done inside this module

which rearranges the bit pattern and reduces in number also to get the original bit

sequence started from the transmitter side. Our system is capable of doing parallel

processing in every stage from input to output. The fast processing algorithm used in this

module allows it to take all the incoming bits at once, process them in parallel and giving

output regarding all the bits very fast in very less time using 4 clock pulses only. The

main purpose of the de-interleaver is to reverse the functionality of the block interleaver

used in the transmitter side and convert the bit sequence, received, in that manner so as to

get the meaningful information sent from transmitter. The fig.4.17 below shows the full

rate channel decoding scheme used in GSM system.

37

Fig.4.16: Simulation results of GMSK Modulation and Demodulation

Block de-interleaver executes reverse process of block interleaver. Recieved data is

stored by inter-column permutation patterns, then de-interleaver outputs data one by one

from the top of row to underside row. It acts on the output of the interleaver and puts the

symbols back into the original order. The process of deitnterleaving is the integral part of

the whole interleaving process used in the GSM system.

It reduces the bit rate of the incoming signal, as it removes the redundancy from it and

convert it in the signal,we got after block interleaver in the transmitter side. The Fig.4.17

38

below shows the full rate channel decoding process in the receiver side of the GSM

system.

456 bits

Convolutional code tj -- 78 bits

50 	' 31 	132 	 4 	78

	

Class Ia. 	 Class Ib, 	 Class II.

	

5o bits 	132 bits' 	 =78 bits;'

260 bits

Fig.4.17: Full rate Channel decoding [18]

Operation:

The block interleaver/deinterleaver operates in discrete mode with a single -port memory

used as a buffer. The symbol transmission consists of an alternating sequence of write

and read cycles. Each cycle delay is equal to the buffer size, which is the block length

multiplied by the span delay. The total cumulative delay from the transmitter to the

receiver can be calculated using the following equation:

2 x number-of rows x (number of columns + 4)

The block interleaver/deinterleaver uses single-port SRAM memory configured as a

matrix of n rows by m columns to perform interleaving. During the write cycle, the input

symbols are written column by column; during a read cycle, the output symbols are read

row by row. The column length is usually equal to the codeword length of the FEC

encoder, while the numbers of rows (often called the span) is the interleaver delay. The

figures below illustrate block function operation using a 6-symbol codeword.

The channel coding includes not only the classical (forward error correction) block and

convolutional codes, but also modulation and any combination of them, such as

concatenated coding and modulation.

39

Most block or convolutional codes are designed to combat random, independent
errors usually occurring in a channel without memory. For channels with memory such as
mobile channels, burst channel errors are observed due to fading which varies depending
on mobile speed, propagation delay spread and frequency. Interleaving (here interleaving
means interleaving and de-interleaving both) is deployed to disperse the burst errors
when the received signal level fades, and to reduce the concentration of the errors that

must or should be corrected by the channel code. The basic de-interleaving process is
shown below.

The complete block of 912 bits received, is divided into 8 bursts each of
containing 114 bits. These 114 bits of each burst are consecutively placed in 2 different
sub blocks of 57 bits each. Same process is repeated for every burst. Then speech
message sub block is read into an 8-column by 57-row matrix RAM, filling each row in
turn. After that all these bits read column. wise and placed in a single array of 456 bits,
this gives the original message signal.

F

Fig.4.18(a): Read cycle of De-intelaving process

40

Fig.4.18(b): write cycle of De-intelaving process

Simulation Results:

The simulation result is taken before the synthesis of the GSM Block De-interleaver
module on the Xlinx — ISE software. The pre-synthesis simulation result gives us the
solid idea about our module; it is working fine or not. We can check the most of the
functionality of our module in the simulation before the synthesis. But there are some
drawbacks also of this simulation before the synthesis. This can never tell us about the
usage and the availability of the sources on the FPGA. The Figure 4.20 given below
displays the presynthesis result of the GSM Block De-interleaver module designed on
ModelSim.

Figure.4.19: simulation result of the Block deinterleaver module

41

Fig.4.20: Complete De-Interleaving Process

42

4.3.3 Decryption:
The same A5 algorithm is used in receiver to generate the same key stream which is
generated by transmitter and the interleaved data is retrieved. This data applied to the
deinterleaver gives the required encoded sequence then we go for the decoding phase.
Simulation waveform is shown in fig. below. Simulation result is shown in fig4.21.

Fig.4.21: Simulation waveform of De-ciphering block

4.3.4 Viterbi Decoder:

Viterbi algorithm is commonly used to decode convolutional codes. It is the maximum
likelihood decoding technique to decode convolutional codes and involves searching.the
entire code space for the codeword which most closely resembles the received sequence.
This algorithm uses trellis to represent states, output codeword's along with time history
of states. We may use tree diagram for the same need The coded sequence corresponding
to an information sequence of length L bits, we have to show 2L branches.

The number of branches grows exponentially, and, hence, the tree approach must be

avoided. Four Steps to get required information sequence:

Step 1: Calculate branch metrics at each of states at different times.

43

Step 2: Accumulate them through each path ending at different nodes and at different
paths to calculate the path metric at times t = tl; t2; t3.... etc.

Step 3: After calculating branch and path metric surviving paths at times t = tl, t2, t3....
etc., which is the path that traversed from chosen state to a particular state at particular
time with total Hamming distance is minimum over the paths traversed from the chosen

state to that particular state to be calculated.

Step 4: At the final stage, we end up with the initial state and only one surviving path that

traversed the states with minimum path metric.

In the event that the path metrics of merging paths are equal, a random choice can be
made with no negative impact on the likelihood. The path stored at the right-most node in
the trellis diagram is the maxi-mum likelihood path through the trellis diagram and
represents the most likely sequence to have been transmitted given the actual received
sequence. This algorithm has been implemented from standard logic cores which are

provided in Xilinx ISE.

The output the viterbi decoder is sequence of 189 bits. These 189 bits are again divided
into two groups i.e, 53 bits to get 50 class Ia bits and 136 bits to get 132 of class Ib bits.
These bits will be added with 78 bits of class II to get the transmitted sequence of 260
bits. CRC detector will detect the 50 bits from the.applied 53 bits (reverse operation of

CRC generator).

4.3.5 CRC Remover:

The CRC generator will take messaW string M as input and divide it by a key word k
that is known to both the transmitter and the receiver. The remainder r left after dividing
M by k constitutes the "check word" for the given message. The transmitter sends both
the message string M and the check word r, and the receiver can then check the data by
repeating the calculation, dividing M by the key word k, and verifying that the remainder
is r. The CRC detector and generator have been implemented by a LFSR. The basic

purpose of this CRC generator is indication of quality of frame. After combining three

44

classes of data to desired data rate speech decoder will decode the data. So we receive the

transmitted data. This completed the transmitting and receiving operations.

S15 S15

S14 S14 °%7 S14 — — — — S14 S12
0110

S13 S13 — — — — S13

S12 512 S12 S12 — — — — S12 S12 S12
0111

S11 S11 --- — 811

4~
0

0/11 	S10 	S10 ---- S10 	310

S9 	S9 ---- S9
Q~0 	 poi

S8 S8 S8
0111 S8 S8 — — — — S8 S8 S8 S8

S7 	Si ---- S7

1110

S6 	0111 	S6 	SB ---- S5 	56

S5 	S5 ---- S5 ,1°" 	11N0 	 1

S4 ono 	4 	oi11 	S4 	S4 — — — — 54 	S4 	S4

S3 	S3 ---- 83 	 °'o,

4° 	 S2 	1110S2 	S2 ---- S2 	S2 	o'oi
11 0

U» 	 Si 	 ~o 	Si — — — — S1

aoo 	aroo
SO 	SO 0100 — SO 	oloo 	SO 	oroo 	S0 0/00 	S0 	SO 	SO

3 4 5 0 185 188 187 188 189
0) 11 2

Fig.4.22: Trellis diagram for (2,1,4) convolutional encoder

45

CHAPTER 5

IMPLEMETATION DETAILS OF GSM BASEBAND PROCESSING ON FPGA

In recent years field programmable gate arrays (FPGAs) have become key components in

the implementation of high performance digital signal processing (DSP) systems,

especially in the areas of digital communications, networking, video and image

processing. The logic fabric of today's FPGAs consists not only of look-up tables,

registers, multiplexers, distributed and blocks memory, but also dedicated circuitry for

fast adders, multipliers and I/O processing.

Initially I have simulated the GSM baseband processing using Matlab Simulink. After

finding the correct results in Simulink, I have developed the two versions of GSM

transmitter and receiver, one is using ModelSim 6.2d and the other is using Xilinx system

generator tool. The aim of developing two versions is to get the area efficient and

power,delay efficient models. Depending on the requirement any one of model is utilized

using dynamic partial reconfiguration technique.

5.1 Mafab Simulink Model:

The GSM transmitter and receiver model was designed using blocks available in Matlab

Simulink [22]. In this model I have used Bernoulli random generator as a source for data

generation with a data rate of 9.6 kbps and frame size of 260 bits like in GSM speech

signal The GSM transmitter block consists of, channel coder, convolutional encoder,

interleaver, data burst, GMSK modulator blocks. The GSM receiver block consists of

GMSK demodulator, burst separation, de-interleaver, viterbi decoder, channel decoder

blocks. The fig.5.1 shows the Similink model of GSM transmitter and receiver.

5.2 Simulation Results

The results obtained from the simulation is presented and discussed in this section. The

bit error rate (BER) ,constellation diagram and eye diagram of the modulated signal from

which conclusions about the modulated signal can be drawn is observed at the output of

the channel. These diagrams reveal the modulation characteristics of the signal and help

to depict the impact of impairments, such as pulse shaping or channel distortions. They

CB.

Mocluk D:emodUlatlon
AWGN. o 	K— 	MATUB 	Di 	dBel

Fundioq DeooEcr

AWGN Ch OAISK 	DHry 	Difl.wtl oral'
D.-n'.6lAei -.. DeeaRei

6UaTLAB 1 	[I 	—TLr 	D,~ Function' I •Ylerhl D~eooder 	Ilf-••_ Fa..
„'

Iaa ira

are commonly used to evaluate the overall performance of the digital communication
systems. Since the channel used in this thesis is AWGN, the extent to which the noise has
affected the modulated signal can be seen from constellation and eye diagrams.

Coding

e 	c mY hoh I 	D y rr rol 	
interIsavmg

I~r Encoder ' I` ' JMAT_LAB
Fun.i .r

5.2.1 BER Performance

GMSK modulator, demodulator performance is measured by calculating BER with
BT=0.3,0.5. BER performance is measured using the following equation.

Eb/No)dB = (S/N) dB —(10 log(K)) dB +(10 log (fS/fb) dB.........(4.1)

The fig.5.2 shows the plot of BER vs Eb/N0.

5.2.2 Constellation Diagrams

Figure 4.8 shows the constellation diagram of the modulated signal with signal-to noise
ratio (SNR) of 15 dB. Increasing the SNR of the AWGN channel will increase the

47

performance of the system. The Constellation diagram shows the GMSK signal has
constant envelope. The constellation diagram of modulated signal with SNR of 20 dB is
shown in fig.5.3.

Ir w

1%,NQ (d6)

Fig 5.2: BER vs Eb'No plot for BT=0.3,0.5

FIIe 	Axes 	Channek 	Wrdow 	Fief`

...._.e 	 e< 	;_. 	•.* 	_
~' p 	S Y 	e

3 	•2 . 	 C 	1; 	2 3
fr phasa Arnptude

Fig.5.3: Constellatbn diagram of GMSK with SNR=15dB

5.2.3 Eye diagrams:

The width of the eye provides information about tolerance to jitter, and the height of the

eye gives information about tolerance to additive noise. Eye closure (inadequate width or

48

height) is probably due to ISI. The fig.5.4 shows the Eye diagram of GMSK with SNR of

15dB.

Fig.5.4: Eye diagram of GMSK with SNR=15dB
5.3 FPGA Design Flow The following fig.5.5 shows the FPGA design flow using VHDL

coding/ Xilinx system generator block set.

Tools used

• The following softwares and hardwares were used in this thesis.

• MATLAB Simulink R2006b

• Xillinx System generator

• ModelSim

• Hardware Descriptive Language (HDL)

• C++ Programming

• Xilinx ISE 9.2i

• XUP Virtex-4 [13] FPGA kit

Synthesis

Synthesis is the process by which abstract design descriptions are reduced into a lower

level circuit representation, such as netlists or equations. HDLs provide the input and

output of hardware synthesizers. Floating point arithmetic modules are synthesized and

their netlists has been generated.

49

models of GSM Transmitter &
Receiver using xilinx basic

elements and !P cores from

Verify The Modeled Functionality
& Generate HDL automatically

Through simulation directly from
Sys.Gen.by supporting

modelsim {Simulation tool}

Estimate the resourses
required by each functional

unit by using
{ Xilinx ISE (or) any EDA

Synthesis tool }

Change The User Condtraints File
(.UCF) according to the Device I/O pins.

Generate and Configure the
device (i.e Downloading .bit file)
through any other configuration
mode supported by thr device.

® M*~o~ delSim 	.Eo
\I~ ljScope

System
Genemor ModelSirn WaveScope

Gateway In Gateway Out Scope

Q-~ User Constraints

l C' Synthesize-XST
C 	implement Design

O-Translate
-Map

Place & Route
p C j(&Generate Programming file

(OR) Hardware Co-simulation ~-

0- 	 system
cenemor

Figure.5.5: FPGA Design Flow

Imptemenitafion

Implementation is the process in which a logical design is converted into a physical file

format that can be downloaded to the selected target device. Floating point arithmetic

modules are implemented.

1. Translate

The Translate process merges all of the input netlists and design constraints and outputs a

Xilinx native generic database (NGD) file, which describes the logical design reduced to

Xilinx primitives.

2. Map

The Map process maps the logic defined by an NGD file into FPGA elements, such as

CLBs and IOBs. The output design is a native circuit description (NCD) file that

physically represents the design mapped to the components in the Xilinx FPGA.

so

3. Place and-Route
The Place and Route process takes a mapped NCD file, places and routes the design, and
produces an NCD file that is used as input for bit stream generation.

Programming File Generation

The Generate Programming File process produces a bit stream for Xilinx device
configuration. After the design is completely routed, you must configure the device so it
can execute the desired function. Fig 4.3 shows the Xilinx ISE 9.2i Window on which
synthesis process has been carried out.

5.4. Simulation using ModelSim 6.2d tool:

The design of individual baseband modules has been done using VHDL code. Simulation
has been done using Modelsim6.2d. All the individual modules have been integrated to
form transmitter and receiver model. The following fig.5.6 is simulation of complete
baseband processing model.

5.5. Simulation using Xilinx system generator9.2i tool:

Xilinx system generator is integrated with Matlab Simulink. So system generator blockset
is available as part of matlab Simulink. By choosing blocks available in Xilinx blockset,
available IP(Intellectual Property) cores from Xilinx, GSM transmitter & receiver model
was designed. The main steps of the Xilinx system generator design are explained below.

System Generator Model of GSM Transmitter & Receiver:

The following fig. shows the Xilinx system generator model of a GSM transmitter and
receiver. The .following model was designed by using the Xilinx IP cores available in
system generator blockset. The functions which are not available are developed by using
the Xilinx black box concept. A piece of code was written in VHDL and those are
inserted in black box to get the desired functionality. Fig 5.7 shows system generator
model of GSM transmitter and receiver.

51

FIe Ek gew Rmi in Foartat To N*

7 o~ : B
~ CWS"H 5 .nrble . d

S p ModrlSlm
Clash QD y —

y~ / 1, ~n ~t~ 6 C Demaar itroirtlBD 	f 	\ s Co

d 7~~
aF~bikoouD78

m
d 	m

dip' ouN Comclulional Encoder (tF ~+~
di dS378' ~.O.a r i . ~ . r Hemoulli 	b

Binny
~ ski 	D

`-~
dl' 	o

ebssb_1Tt bts
Add CAC& T.il bBr 	PrrrNelto 5edal eirein dalaYa119

Grtel-If fn
,dipi~~

datYd78 b~ d~ /
~—°C Hedrl to PmRel ergsJr 7H bis

bitdiuide data 46Ebil: IMedoirer

D11 	I4-. 	oitl 	n1

GMSKDemolu[ahr 	tea^ 	 GMSK Mudulrior
Channel

BcoPtl d1dA

data I_'—-'' L__r'- 	7 bi DawdarM3 0 	BIad(Boxi
final bi 	Bwpe7 dna7 I cc' e

I L__ `1Ifl!IfdeIn%dearer 	De9urst 	NomulBaet
dmde Scepe5 data

GSM Tananilter& Recairei

Fig.5.6: System Generator Model GSM Transmitter & Receiver

The ModelSim tool was integrated into the Xilinx system generator. So it is possible to

observe the simulation waveforms of the Xilinx system generator in ModelSim. The

following waveform shows the simulation waveform of Xilinx system generator model.
Hardware Co simulation

The System Generator will automatically synthesize, and place and route the design on

the target FPGA platform upon selecting the appropriate options, such as compilation

type, target FPGA, synthesis tool, and so on. The key steps in the hardware co-simulation

process can be summarized as follows [38]:

(1) The hardware co-simulation platform can be chosen from the System Generator

dialog box. When the compilation target is selected, the fields on the System Generator

dialog box are automatically configured with settings appropriate for the selected

compilation target. The fig shows the appropriate settings for bitstream generation.

52

V 1(udeISim S£ PLUS G,2b 	 F"C

®®

CGE
III-p)Jcphempr2/dal 	..c 	011000000W0 I10 	, 	 . 	 i 	", • .: ,1 •, 	1 	3.
III n) 7 	¢Zr`?1daa786 	01IMM1U013mm1 	- 	 -

rew 	as 	010nrieoDanla - . 	 ,

o- 	 oi1I1 	M"' .• 	t 	._ 	_ 	 _ 	' 	-- 	- 	- 	-- 	-
liii y} A«reo 	ze«x 	0 	 - -

p' 1ctm~iv2MW 	UUUUUUUuu UU 	 .. 	~ 	- 	— — '
1c 	lne .2/rohe1d 1aa t 	mn1110moi0010 	 • 	 •• 	-- -• 	. --,

 I'

	

;~,'} ldxenr~27ie➢t 	0=11001101014 	j 	- 	 :.. 	.- 	•--

	

4,',3 lcgtmen?liey2 	m11100t01molm 	- 	 L. 	-

	

} 7e[ey3 	- 	m000wlmOml

J i' 	'Vm 	 0 	 -
Q~ ~FgF~Ak7daly4ud 	OtU10000000ll171 	 a 	r 	; 	 •_ 	----1 	l 	-j-

hPIW w2!r 1"-C— 	ono0o4~000111 	1
a.!J Ic5}mlesklrNdaa72W , 	m1m0in uoiot 	 ,- 	'
Dc) IcgFeakw /fl)4e b 	mm11iitq o i1Q 	i 	 -
L} 	 ad+emnv2fr .3atal_r 	ue 	m10110Di1B01fl1. 	 '•:.., 	.. 	. , 	.. 	 - 	-

..7zJnrr 'Ti-
fj-O 	0191.00D000 11131 	• 	.+ 	` - 	i 	j 	°, 	1, 	- 	1

) &w2!`ri/mdie ,i 	1
Li 	k 	rdloaR. 	 I000011101111101 - 	-- 	- 	- 	j -̀-! 	t 	--- - --"- 	---' 	i •-- 	. _ l - 	x.

:p} Ttfahme4QIN/ma4T 	~mt0(OOt190111 - --- 	_~~,. --' - -- 	-- 	-- 	'-----'-L"--~--------------- - 	
i 	. .. - -

p'~ iwkmealXNdefa_t rt=c 	1i00tmin01m 	"--r 	 ~~----_—.-_ "..,.,.— 	1 	, 1 - --r__-••-- ^ • -------~-
Co j Ig1eQewlMharwTg_se{t 	DOi001011100001 	_,_ .__~•._ 	 .i-
D/ RqF 	Qleilgmvq ceQ? 	OWm10111Ol 1 	 .~.
-Dc) 1gbmH?JnlII, * j 	00000i11 1141106.
Q 	CcpFsmw2lNNarir,yseg3 	01 	Ii1I1911010@ • 	

- I. Dc) Jco 	raw?IrNtr aps_?eq 	OOO1101O111mOd: 	•• 	- 	-• . 	
_

. 	
- Dc) 1memewv.wmr>Q~5 	moO11lmOk 	.• 	• • •

Cc) igtm`xr?h Wsni 	101llm11110:1 - 	_
ao tako 	.wauq7 	1110 1ymo*ani ..

JcQh®reir2/1Tmefile:it. 	1 	 -
gQk!r 	dww 	0110W00000llam----' 	—— 	 ~~ 	r 	— _--__
4;} 	ata~a~a~ 	oummlacnmot 	_ 	 - 	• - ---•" 	 ...~
D) /aphe~l/rdaVdafae j ac 	mm11f9B0mllO 	'----•-- 	--- - Y--- - •- T----- -- -. - 	- -- -- 	-_ 	--

'. f.~iow.J/w1a1/A.wu. 	1 	
_

- 	Now. 	61)006m

Fig.5.7: Simulation window of GSM Transmitter & Receiver

(2) After initiating the "Generate" button, the code generator is invoked and produces an

FPGA configuration bitstream for the design that is suitable for hardware co-simulation.

System Generator not only generates the HDL and netlist files for the model during

thecompilation process, but it also runs the downstream tools necessary to produce an
FPGA configuration file.

(3) After the FPGA configuration bitstream is created, a new hardware co-simulation

block is created by the System Generator and stored in the MATLAB SIMULINK

Library. Hardware co-simulation blocks can be used in the design with other MATLAB

53

Fig.5.8: Simulation waveform of Xilinx system generator model

Simulink blocks. When the hardware co-simulation block is simulated, it interacts with

the underlying FPGA platform and facilitates the design implementation and verification

of the desired FPGA. In this thesis, only hardware co-simulation is performed using

Virtex-4 FPGA [8].

5.6 Implementation of GSM Baseband processing on Xilinx Virtex-4 xc4vfxl2ff668

-10 Device
By doing synthesis of baseband processing modules .bit files which can be loaded onto

FPGA are obtained. The 260 bit input is applied to GSM Transmitter, and 260 bit output

is received at GSM receiver. After completion of synthesis, place& route, bit file has

been generated, which when downloaded to the FPGA determines the FPGA's behavior.

54

Fie Ed, wrw P r t ,.2o o 	prates, window link I:IIIDL

Sar_ x 	FPfiA Dee+ 	Srsn+nY a 	-'': 	fLDAT MI 	_ _.-.Y 	
..

'.."" 	'•S
Swwc iw. i 5s*hesi ,1n 	wn 	e&o, .._...... i. D.6m O-M- •- Ror.d F2e; BxL au.

:........._..__
SS*tt—d

©-2 33 MMG . D IDB Roro ea
~afml•B4-i-J(moA1mL`Ardl -. 	_ 	 3 	iT+Oaf Dente ragGmla-s 	__.._._ .w2oi, D•771A96 2522Waimsf89 new 0R edl

i - ruea~zeiY:iYlzzaoe 	'..

HAnthem OaWOns.. _' 	1

(

.~ -st
	.. 	':_ SE11 	BSS 	DETS

~ 	
~ 	~

.•.
_w4,. soxa:e DVBa,:

..d
mnl N Vab- Uu3zau

9X OP~Qetivr God SPe'4 y.

m D Ptmsa:m Ellal
_ _.

 2
2

......_.. _ .- 	7X
U 	SYnhem Cwshst Fbe Aroa 1 ' lX
S.M~ F 	Cwwo da Fie

D ____....____._
1 BX

Rocc 	t 	hN- B I Lb:ary Snatch Drdv D --- 1211

w
1
,

E _

:.g GIa6eI DGd:aaum Gml :AA~od~Nets il! ~ e7s 	 ?
£ 	YewD
-~i 	D avrUti '. Genaeb RTLSd—W. [Yea - 	Y IM 	'•' 	t

Road Corsi_ E-~

	
UowCnnol, ❑ . 	_. _ ~5JII3newlI

' ~ I]SSnUws~¢e Cor 	Sear h Diedaie_ ... 	®
Y 5 WN T^~7 Cmstreris L7 -.- ._.._.._....

. ® V— R Goss CbdP,o. th U }

"~ V— T i

	

dr,--- 	.. 	.____..__..__.__.
H 	S 	du I/

_.__.........__
v

. - 	-..___. ..._...._

?irylwnenl Slice Uhbebm Ratio _
0 i BfNM. U.... 	Hetio i100

....100 77-

$2~~ 	GemdeR
Case Maitae

k:..

°°uov__— moO . 	_._........... D ._.. _ ' t<`
HDLF

_ 	_ N6kV bvet.Adiursd 7 	Dd'v-R

OK .: 	Cmcd

~

ZNrO: Neel
' 	elmule

Cvede 	Ertaa 	Wa:m4+ 'y FM n Fiea

Figure.5.9: Xilinx ISE 9.2i Window

A piece of C++ code is written to control the 260 bit data. Controller will generate an

acknowledge signal when the data is 260 bits. The software code downloads the bit file to

the FPGA and, using the PCI bus, transfers all the operand data for the application to the

card's SRAM banks. Once the data transfer is complete the FPGA design is ready to

start. The host computer signals the FPGA, using the status register, to start it running.

The status register is a blocking communications system, between the host and the

FPGA, that can be used to synchronize the host and FPGA. Immediately before signaling

the FPGA the host computer records the current value of the system clock. Once the

FPGA has finished running, it signals the host program, and immediately after receiving

the signal the host program records the value of the system clock for a second time; the

difference in the recorded times is the execution time [6] of the program. After execution

of the program we can see 260-bit output stored in the specified location in pc.

55

5.7 Comparison of two GSM Baseband Processing versions.
The following table gives the comparison of performance of two GSM baseband

processing versions:

Target Device xc4vfxl2ff668 -10 GSM

Device utilization Versionl Version2

Number of slices(5472) 2298 2845

Number of slice flip flops(10944) 1102 - 1532

Number of 4 input LUTS(1 0944) 1203 1870

Number of IOs 262 262

Number ofbonded IOs(320) 262 262

Number of BRAMs 17 22

Number of GCLKs(32) 1 1

Delay (ns) 12.032 9.247

Throughput (Gbps) 21.60 28.11

Table 5.1: Comparison of GSM baseband processing versions

Analysis of Results:

From the above Table 5.1, it is clear that versionl is taking less silicon are but speed is

less, where as in case of version2 silicon area is more but speed is high. The main reason

for high speed with more silicon area is parallel processing of FPGA. Since the delay of

GSM vl is 12.032 ns, the throughput is 21.60 Gbps and for GSM v2, it is 28.11 Gbps

because the delay is only 9.247 ns. Detailed device utilization is given in Appendix-A.

56

PARTIALLY RECONFIGURATION OF GSM BASEBAND PROCESSING

VERSIONS AND RESULTS

In this chapter dynamic partial reconfiguration implementation details and results are
presented. Two versions of GSM baseband processing bit streams (i.e., area efficient
code and power efficient code) generation is explained in chapter 5. These two versions
are used as partially reconfigurable modules. The detailed dynamic partial
reconfiguration flow has been explained in chapter 2.

Partial reconfiguration is useful for systems with multiple functions that can time-share
the same FPGA device resources. In such systems, one section of the FPGA continues to
operate, while other sections of the FPGA are disabled and partially reconfigured to
provide new functionality. Partial Reconfiguration is supported by the devices which can
be configured after its manufacture; FPGA is an example of such a device. So we
implement partial reconfiguration on FPGA. Further the large gate count of FPGAs made
them suitable for design of GSM baseband processing.
6.1 Modules Creation for Partial Reconfiguration
Creating a partial reconfiguration design requires the creation and implementation of the
design within a set ofspecific guidelines.

Table.6.1: PR Directory Structure [12]

base
B' (j pr_design Implementation directory for the static portion of the

€ . base base design {f_e. everything except the PRMs7_
merges merges

{ 	prm_ai PRMs are merged with the base design in the merges
prm_a2 directories. A separate subdirectory is required for

non_pr each merge.
at non_pr
a2 Non-pr versions of the design are fully implemented

9:: reconfigmodules reconfigmodules initial system design and test.
prm_ai
prm_a2 reconfigmodules

C 	 , 	synth Each PRM is implemented in a separate p 	Pte direr#ory
synth base

prma HDL for the top level, the base design, and each PRM

prm=b is synthesized in the appropriate directory.
top €....{- . 	top

top The top level netiist is translated in a separate di€ec-
tory. The UCF file goes here.

57

The partial reconfiguration flow utilizes a modified form of the Xilinx Modular Design
process. All the logic that should be partially reconfigured should be arranged in folders.
Recommended directory structure is as shown in figure below. Fig 6.1 shows the folders
that should be present in PR design and also the files that should be included in them.

6.1.1 Design of Partially Reconfigurable GSM baseband processing Modules: we

have designed a partially reconfigurable system which includes two partial reconfigurable
regions. In this partial reconfigurable region hardware resources are time-shared between
two baseband processing versions. Fig 6.1 shows the run time partial reconfiguration
process.

Figure 6.1: Run-time and Partial reconfigurations of GSM baseband processing versions.

6.1.2 Design of Static module

Static Region or Base Region which contains the common logic which will not change
between the PR modules. In this design the static module is used to display the
transmitted and received bit sequence.

6.1.3 Design of Bus Macro:

Xilinx provides these bus macros through their web page[www.xilinx.com] and has one
bus macro for every family of FPGAs. In this example the bus macro for Virtex-N is

used. An example bus design was given for eight tri state buffers set up in an

58

arrangement that allows four bits of information to travel either left-to-right or right-to-
left, using one TBUF long line per bit, see Figure 6.2.

Boundary between
modules

ENB~

O 	O(1)

Reference
com[ponent

ENS

O(0) 	0(1)
	

FO2) O(3)

2 slices

Fig 6.2: Bus macro design
6.2 Implementation flow in command line using ISE 10.1i [41]

1. Built Flat Design. This design helps us to l inctionality of the design.
2. Synthesize all modules including RM_ synthesize all lower-level modules with UO
buffers insertion OFF and synthesize the top-level with 1/0 buffers insertion selected.
3. Build. Top-Level Design: This will generate top.ngd file which will be used in next
step.
4. Build Static Design: This will generate top routed.ncd static.used files among other
files. The top routed.ncd file contains the implemented static design. The static.used file
contains routes used by static logic in PRR, the information needed during the RM
implementation step.
5. Build RM Design: This will generate top routed.ncd file among other files.
6. Assemble Static Design: In this we will assemble the static modules as well as
desired one RM for each PRR into a design that will be loaded when the FPGA is

59

configured. This will generate static full.bit file which contains adder and right shift
operations. 	It 	will 	also 	generate 	ag_reconfig_leds_blank.bit 	and
ag reconfig_GSM blank.bit files which can replace the LEDs and GSM PRR with blank
logic.
7. Generate Partial Bitstreams_ In this step we will generate partial bitstreams. The
PRR can be reconfigured instead of the entire FPGA with bit-streams of individual
reconfigurable modules i.e GSM vl.bit, GSM v2.bit files.
8. Testing: Use static full.bit file to program FPGA and then verify the functionality
using partial bit streams. We can notice that programming is very quick reducing the
reconfiguration time.

!*t Dj 	 C't 'd 1 rf F~ ~b 	r~ . ` ~ ~1 , j}~"P 3 ~C t J~ p

	

}{ 	 -•P01 ~ R3xirirLC~31~7~ + 	~ ~ 	j`_FDF~tk_f~6

... .. 	—.—_i____v.vv_=
jTr 	y !.k.. 	 6r1 iFCtKfYett.i 	 i•.. li ii. -

C.~6nr.nt+~seiw~s ..I 	- - 0
Y N-iMa 	 I1~.~ 	.JIKAJ~ 	~3rVi 	.-Ft(yjlH 	 rl!(KVI ,

1?. «rit 	 PR 9 R~rit Mplt. 	.PM cosmw.@ - ..- Soo.1 fXJ t~2~a=ti

e. !'IY a ems" ~MVIaCAM'Od Rlnf . I_, F Nit.,-}

Figure 6.3 PlanAhead window showing two Partially Reconfigurable Regions

Fig 6.3 shows how partially reconfigurable regions are described on FPGA. It also shows

the bus macro placement over right corners of partially reconfigurable regions

CHAPTER 7

CONCLUSIONS AND FUTURE SCOPE

7.1 Conclusions:

In this dissertation report, the design of GSM baseband processing for

reconfigurable software defined radio has been presented and implemented on modem

virtex-4 FPGA platform.

Initially, the GSM transmitter and receiver are designed using VHDL code and

then second version of same was designed using Xilinx system generator tool. The first
version is area optimized and the second version is speed optimized. After generating two

versions of GSM baseband processing, partial reconfiguration was done on same virtex-4
FPGA platform to save the area of FPGA.

Two GSM baseband processing versions are developed and comparisions are

given in Table 5.1. Also the proposed versions are compared with existing baseband

deigns presented in [7], [8], [9]. The following conclusions can be drawn from this thesis:

> The device utilized the 42%, 52% of the available resources for GSM vl, GSM v2

versions where as the baseband model developed in [7] occupies 70% of the resources of

the virtex —4 FPGA platform.

> The average delay for slice is 12.032ns and 9.247 ns in case of GSM vl , GSM v2

respectively. The average delay of slice delay is 18.64 ns in [7].

> The BRAM blocks used are 25 for the model developed in [7]. These are 17 and 22 in

case of GSM vl, GSM v2.

> The operating frequency of FPGA hardware are 50 MHz and it is only 13 MHz in [7]

> The floor plan view of partial reconfiguration of two baseband processing version

was presented which was useful to reduce the required haniware during run time.

61

7.2 Future Scope:

In this dissertation baseband processing section of software defined radio has been
selected for implementation, however, it can be extended to full software defined radio
by designing RF section and IF section.

I

The channel is considered to have additive white Gaussian noise. Inter-symbol
Interference, Doppler shift, phase error, multipath fading, etc., can be added to the
channel, in order to closely simulate real life systems.

The implemented software defined radio is consists of coding, modulation and
spreading. This thesis can be extended by adding more functionalities such as
equalization, carrier recovery, phase recovery,etc., needed to counteract the noise and
interference problems of a communication system.

Further efficient implementation of baseband processing modules can be done by
using difference based partially reconfiguration. But this approach requires more
redundancy in baseband processing modules. New standards like OFDM, wi-max can
also be implemented for software defined radio.

62

REFERENCES

[1] Joseph Mitola II. "Technical challenges in the globalization of software radio"
IEEE Communication Magazine, February 1999, pp. 84-89,

[2] J. Reed, "Software Radio: A Modern Approach to Radio Engneering ", Prentice
Hall Communications Engineering and Emerging Technologies Series, 2002.

[3] SDR definition accessed from, www.sdrforum.org

[4] M. Cummings and S. Haruyama, "FPGA in the software radio," IEEE Comm.Mag.,
vol. 37, no. 2, Feb. 1999, pp. 108-112.

[5] Antoni.L, Leveugle.R, Feher.M, "Using run-time reconfiguration for fault injection
in hardware prototypes", in proceedings of 17th IEEE International Symposium,
November 2002, pp. 245 — 256,

[6] Early access partial reconfiguration user guide, ug 208, available. at
www.xilinx.com, march 2006.

[7] David Coons, "FPGA Implementation of GSM Baseband Processor" available at

www.techonline.com/e1ectronics_directory/techpaper/1 93103486

[8] H.R.Myler, Shabbir, A. Bagasrawala, Naresh V. Narayana, "A Concurrent
Processing Approach for Software Defined Radio Baseband Design" IEEE Region.
5 and ' IEEE Denver Section Technical, Professional and Student Development
Workshop,2005,pp.20-24.

[9] Louis belangar, "Developing an SCA GSM Waveform targeted on DSP/FPGA
Architecture" Proceeding of the SDR 04 Technical Conference and Product
Exposition, 2004, pp. 73-78.

[10] Muhammad Imran Anwar, Seppo Virtanen, Jouni Isoaho, "A Software Defined
approach for common baseband processing", Journal of Systems Architecture
vol.54,2008, pp. 769-786.

63

[11] White paper, "Software Defined Radio, A Technology Overview,available" at
www.wipro.com/dsp

[12] "Two Flows for Partial Reconfiguration:Module Based or Difference Based",
XAPP290 (v1.2), Xilinx Inc., Sept 9,2004

[13] Xiaoyao Liang, Athalye.A, Sangjin Hong, "Dynamic coarse grain dataflow
reconfiguration technique for real-time systems design", in proceedings of IEEE
International Symposium, Vol. 4,, May 2005, pp. 3511 - 3514

[14] W.H. Tuttlebee, "Software defined radio: facets of a developing technology", IEEE
Personal Communication 6 (2), 1999, pp.38-44.

[15] E. Buracchini, "The software radio concept,"IEEE Commun. Mag., vol. 38, no.
9,Sep. 2000, pp. 138-143.

[16] A. Haghighat, "A review on essentials and technical challenges of software defined
radio," Proceedings of MILCOM, vol. 1, Oct 2002, pp. 377-382.

[17] J. Gunn, K. Baron andW. Ruczczyk, "A low power DSP core-based software radio
architecture," IEEE Journal on Selected Areas in Commun., vol. 17, no. 4, Apr.

1999, pp. 574590.

[18] A. Truter, E.Wolmarans, "A software defined radio architecture with power control

for 3GW-CDMA systems", IEEE comm.,magazine, 2000,pp. 25-28.

[19] J. Noll and E Buracchini, "Software radio - A key technology for adaptive access,"

Wireless Comnain. and Mobile Computing vol. 2, issue 8, Dec. 2002, pp. 789-798.

[20] K.Moessnar,D.Bouse,D.Griefendref and J,Stamrien, "Software radio and
reconfiguration management", computer comm.. vol.26, issue 1, Jan.,2003, pp.26-
35

[21] K. Solomon Raju, "System level Architectures and Optimal Mapping for
Reconfigurable Computing Systems" Ph.d Thesis, Department of Electronics and
Computer Engineering, Indian Institute of Technology Roorkee, May 2008.

64

[22] K. Bondalapati, V. Prasanna, "Reconfigurable Computing systems", Proceedings of
IEEE, vol. 90, no. 7, July 2002, pp.1201-1217.

[23] S. Halter, M. Oberg, P. Chau, P. Siegel, "Reconfigurable signal processor for
channel coding and decoding in low SNR wireless communications" in:
Proceedings of the IEEE Workshop on Signal Processing Systems, Cambridge,
MA, USA, 1998, pp. 260-274

[24] Asha K.Merhotra, "GSM System Engineering" Artech House Publishers, 1997.

[25] Thierry Turletti, "Towards the software realization of a GSM base station'; IEEE
Communication Magazine, vol.1 7(no .4), April 1999,pp. 265-269

[26] M.Mouly and M.B. Pautet. "GSM technical specifications list", report, Cell and
Sys,2004.

[27] Caesar S. Wong, "A 3 V GSM Baseband Transmitter" IEEE Journal of Solid-State
Circuits, Vol. 34, No. 5, May 1999, pp.121-127.

[28] G.Kostopoulos,N. Sklavos, M.D. Galanis, O. Koufopavlou, "VLSI Implementation
of GSM Security: A5/1 and, W7 Ciphers", proceedings of the IEEE Workshop on
Wireless Circuits and Systems (IEEE WoWCAS'04), Canada, May 21-22, 2004,
pp.321-325

[29] Santosh Shah and V Sinha. Dsp based implementation of gmsk demodulator using
costas loop. National Conference on Communication, IIT Guwahati (India), January
2009, pp.223-227.

[30] J. G. Proakis. Digital Communications. McGraw Hill, third edition, 1995.

[31] T. Rappaport, "Wireless Communications - Principles & Practice", 2nd edition.

Prentice-Hall, Upper Saddle River, NJ, 1996.

[32] GSM history accessed from,www. gsmworld.com

65

[33] R.M. Gunther, M.A. Sessler and E.Vassallo, "GMSK Demodulator implementation
for esa Deep Space Missions", In Proceedings of the IEEE ,Contributed Paper,
Volume 95, November 2007, pp. 2132-2141.

[34] XC 4000 series devices and Configuration Guides for Virtex{II Pro, Virtex4 and
Virtex-5 available at www.xilinx.com

[35] MATLAB simulink implementation details accessed from, www.mathwork.com

[36] ModelSim Reference. Retrieved on Oct 18, 2005 from http://www.xilinx.com/ise

/optionaljrod/mxe.htm.

[37] Douglas L. Perry "VHDL Programming by Example" Fourth Edition,
TataMcGraw-Hill Publication, New York, 2002.

[38] D. Chin and S. Lam. "Implementing DSP designs with Xilinx System Generator
and implementation tools." Retrieved on June 13, 2005 from
http://www.synplieity.conilliterature/syndicatedlpdffDSP.pdf.

[39] Xilinxwebsite [online]
http://www.xilinx. com/publications/xcellonline/xcell_55/xc_prmethod55.htm.

[40] Partial reconfiguration design flow, www.xilinx.com/planahead

[41] "Partial Reconfiguration on Xilinx Devices." [Online]. Available:

http://www.itee.uq.edu.au/ listarch/partial-reconfig/

[42] Platform Studio User Guide, Xilinx, Inc., 2004, version 3.0.

AUTHORS PUBLICATIONS

[1] Srinivas Gaddam,R.C.Joshi, A.K.Saxena, "FPGA Implementation of QPSK and GMSK

Modem for Reconfigurable Software Defined Radio (SDR)", National Conference on

Signal processing Communication and VLSI, NCSCV'09,Coimbathore,May 8-9,
2009,pp.704-708.

[2] Harikrishna.B, Rahul, Srinivas.G, R.C.Joshi, M.V.Karthikeyan, "Design and

Implementation of Digital Basebarxl Modules of CDMA IS-95 and GSM for

Reconfigurable SDR", 13th IEEE VLSI Design and Test Symposium,Bangalore, July•
8-10, 2009. (accepted)

[3] Srinivas Gaddam, R.C.Joshi, A.K.Saxena, "Accelerating GSM Baseband Processing for
Reconfigurable SDR" INDICON 2009,Ahmedabad, Dec. 18-20,2009,(communicated)

67

APPENDIX-A

IMPLEMENTED DESIGNS

Fig. 1: Hierarchical view of GSM design

receiver

CONVDEGOD
:acs unit.

genacs.27 acs : b.acs iii

iecsymb_~s t sm =d 59:
sta_naum irelcolbi.,

~m_q eIeol- b L 32

:iin32,- sb sum - 	.bO

acstop

Fig.2: RTL view of Receiver

68

r

C

APPENDIX-B.

DESIGN STATISTICS

Design statistics of GSM_v1:
Timing summary:

Timing errors: 0 Score: 0
Constraints cover 55489067 paths, 0 nets, and 144085 connections
Design statistics:
Minimum period: 12.032ns 	(Maximum frequency: 50.780MHz)
Minimum input required time before clock: 	12.936ns
Minimum output required time after clock: 	9.952ns

Analysis completed Monday June 08 03:32:59 2009

Device Utilization Summary
Logic Utilization Used Available Utilization
Number of Slice Flip Flops 1102 10944 10%
Number of 4 input LUTs 1203 10944 11%
Logic Distribution
Number of occupied Slices 2298 5472 42%
Number of Slices Containing only relate
logic

2298 5472 42%

Number of Slices containing unrelated
logic

0 5472, 0%

Total Number of 4 input LUTs 2521 10944 23%
Number used as logic 1203
Number used as route thru 126
Number used as shift registers 913
Number used as bonded IOBs 262 320 81%
Number of FIFO 16/ RAMS 16 s 17 336 5%
Total equivalent gate 1669098

Power summary:

I(mA) P(mW)

Total estimated power consumption: 128.3

Vccint 1.20V: 449 538
Vccaux 2.50V: 234 585
Vcco25 2.50V: 5 - 	13

Clocks: 71 85'
Inputs: 3 3
Logic: 30 36
Outputs:
Vcco25 5 13
Signals: 0 0

Quiescent Vccint 1.20V: 345 408
Quiescent Vccaux 2.50V;

234 584

70

Design statistics of GSM_v2:
Timing summary:

Timing errors: 0 Score: 0
Constraints cover 68489067 paths, 0 nets, and 244685 connections
Design statistics:
Minimum period: 9.247ns 	(Maximum frequency: 50.780MHz)
Minimum input required time before clock: 	12.936ns
Minimum output required time after clock: 	9.952ns.
Delay: 	 12.092ns
Analysis completed Thursday June 11 11:46:48 2009
---=-----------------

Device Utilization Summary
Logic Utilization Used Available Utilization
Number of Slice Flip Flops 1532 10944 14%
Number of 4 input LUTs 1970 10944 19%
Logic Distribution
Number of occupied Slices 2845 5472 52%
Number of Slices containing only relate
logic

2845 5472 52%

Number of Slices containing unrelated
logic

0 5472 0%

Total Number of 4 input LUTs 3440 10944 31%
Number used as logic 1970
Number used as route thru 158
Number used as shift registers 1028
Number used as bonded IOBs 262 320 81%
Number of FIFO 16/ RAMS 16 s 22 336 6%

Total equivalent gate 2929278

Power summary: 	 I (mA) 	P (mW)

Total estimated power consumption: 	 228

Vccint 1.20V:
Vccaux 2.-50V:
Vcco25 2.50V:

Clocks:
Inputs:
Logic:
Outputs:
Vcco25
Signals:

Quiescent Vccint 1.20V:
Quiescent Vccaux 2.50V:

449 538
234 585
5 13

71 85
3 3
30 36

5 13
0 0

345 408
234 584

71

	Title
	Abstract
	Chapter 1
	Chapter 2
	Chapter 3
	Chapter 4
	Chapter 5
	Chapter 6
	Chapter 7
	References
	Untitled

