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ABSTRACT 

Frequent Sequential Pattern Mining, commonly known as Sequential Pattern Mining 

is a data mining technique used to find interesting patterns in a large collection of 

data items. A common example of sequential pattern mining from market-basket 

databases is to track customer-buying patterns between the different items purchased 
by them. The discovery of such patterns can help retailers develop marketing 

strategies by gaining insight into frequently purchased items and their trends. The 

databases used for these purposes are progressive databases, which are a generalized 

model providing dynamic addition and deletion of data for efficient mining 
operations. 

Sometimes a group of local market players may be interested in mining trends by 

pooling in their individual data. However the shared data may disclose some 

information which might be against the privacy policies of these collaborating parties 

or may be of strategic importance for some party. The need for a privacy preserving 

mechanism is thus felt to safeguard the sensitive information shared during the 
mining process. 

In our dissertation work, we propose a set of algorithms for finding sequential 

patterns from distributed databases while preserving privacy. The work aims at 

maintaining the privacy of the data and patterns mined with minimal effect on 

accuracy of the results. In this work, the algorithms address all three types of 

fragmentation (viz. Vertical, Horizontal, Arbitrary).The proposed work of sequential 

pattern mining is applicable to progressive databases(special cases being static and 

incremental databases). In this work we use cryptographic and randomization 

techniques to achieve privacy preservation. The work also proposes an idea to 

suppress sensitive sequential pattern mining results. This proposition has generally 
been applied to the various kinds of distributed databases under study. 
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CHAPTER 1 

Introduction 

1.1 	Introduction and Motivation 

Data Mining, better known as knowledge discovery can be described as obtaining 

possibly unseen information from large data. Data mining may be better explained as 

processing data using sophisticated searching capabilities and statistical algorithms, to 

discover patterns and correlations in large preexisting databases. This process of 

analyzing data from different perspectives and summarizing it into useful information 

has a great application in the business world. For example, the mined knowledge can 

be used to increase revenue, cut costs or make certain marketing decisions. It allows 

users to analyze data from many different dimensions, categorize it, and summarize 

the relationships identified. Technically, data mining can be defined as the process of 

"mining" knowledge from large amounts of data [1].  

The knowledge discovery process consists of five main stages as shown in Fig. 1.1: 

• Extract, transform, and load transaction data into the data warehouse system. 

• Store and manage the data in a multidimensional database system. 

• Analyze the data by data mining algorithm to extract knowledge. 

• Present the results in a useful format, such as a graphs or tables. 

• Interpret the results. 

The type of databases used for storing the collected data, depends upon the 

application of this data. Sometimes the presence of obsolete data in the data used for 

mining may result into erroneous results. Progressive databases provide a generalized 

solution to store all the collected data. These databases allow dynamic addition and 

deletion of data. This avoids re-mining of the whole data when new data is added. 

The static and incremental databases are special cases of such databases. As a result 
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progressive databases hence have a greater scope for application in real world 

applications. 
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Figure 1.1: Stages in Knowledge Discovery Process 

Security and privacy are other important issues for any data collection method The 

collected data is shared and is intended to be used for making strategic decisions. 

Also, when data is mined for applications like customer profiling, medical analysis 

etc. large amounts of sensitive and private data about individuals needs to be 

gathered, stored and processed. Such situations make it necessary to maintain the 

confidentiality of the data in order to prevent its illegal access. Sometimes data 

mining results may also disclose some new implicit information about individuals 

which is against privacy policies. For these reasons, privacy preserving data mining is 

essentially a sought after field of research in data mining. 

Algorithms are developed for modifying the original data in some way, so that private 

data and private knowledge remains private even after the data mining process. The 

main consideration in privacy preserving data mining is the preservation of sensitive 

raw data and sensitive knowledge that can be mined from the database with minimal 

effect on the results. For preserving the privacy, sensitive raw data like identifiers, 

names, addresses etc. must be modified or masked from the data to be mined, so that 

the data recipient may not be able to get any sensitive details from the data provider. 

Also the sensitive knowledge that can be mined from the database must be omitted; as 

such information can equally compromise the data privacy [2]. 
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The main use of privacy preservation is in the field of distributed data mining, since 

this area requires extensive data transfer among data sharing parties. However in most 

of the cases, the sites may not want to disclose their individual data for the purpose of 

preserving the confidentiality. The data mining algorithms that mine knowledge while 

preserving privacy have thus been developed. Just as the data used for each mining 

technique varies from application to application so does the privacy preservation 

technique. 

A typical example in data mining over distributed databases where privacy of data is 

of importance is in the field of medical research. Consider the case where a number of 

different hospitals wish to jointly mine their patient data, for the purpose of medical 

research. Privacy policy and law do not allow these hospitals from pooling their data 

or revealing it to each other since it could lead to the breach in confidentiality of 

patient records involved. Although hospitals are allowed to release data as long as the 

identifiers, such as name, address, and etc., are removed, it is not safe enough because 

the re-identification attack can link different public databases to relocate the original 

subjects. In order to pursue mutual gains and relieve the public from the privacy 

concerns, we need privacy-preserving distributed data mining protocols, which allow 

distributed data mining to take place while protecting privacy of the underlying 

distributed data. 

Another example of such a scenario is the case of multiple competing supermarkets, 

each having a large set of data records of its customers' buying behaviors. These 

supermarkets may have a varied catalogue of thousands of products; and may want to 

conduct data mining on their joint data for mutual benefit. Since these companies are 

competitors in the market, they do not want to disclose their customers' information 

to each other. But they want to share the results obtained from this collaboration since 

it could bring them an advantage over other competitors. 
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1.2 Problem Statement 

The problem statement for the proposed research work can be stated as: "To design 

techniques for preserving the privacy of distributed progressive databases while 

mining sequential patterns." 

The following aspects have been considered while designing these techniques: 

• The proposed algorithm is designed for boolean data (case data is market-

basket data). 

a Each data item to be mined is associated with a timestamp, marking the time 

of its occurrence. 

• The various types of fragmentation scenarios (horizontal, vertical, arbitrary) 

have been considered. 

1.3 Organization of the Dissertation 

The report is divided into six chapters including this introductory chapter. The rest of 

this thesis report is organized as follows: 

Chapter 2 provides a brief description of literature review on sequential pattern 

mining. The other topics discussed include the various privacy preserving methods, 

the possible data fragmentation alternatives etc. 

In Chapter 3 we provide a detailed description of proposed algorithms for preserving 

privacy while mining sequential patterns in distributed databases. 

A brief description of the implementation details of the various modules in the 

proposed work has been discussed in Chapter 4. 

Chapter 5 describes the results and includes a discussion on them. It also provides an 

analysis on important performance parameters of the proposed algorithm. 

Chapter 6 concludes the dissertation and gives some suggestions for future work. 
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CHAPTER 2 

Literature Review and Concepts 

Sequential pattern mining aims at mining interesting patterns from a large set of data. 

Preserving privacy while mining data in a distributed scenario, requires data at 

multiple parties to be mined without compromising the privacy constraints of the 

data. Our work deals with privacy preserving sequential pattern mining in a 

distributed database scenario, various ideas, concepts and their related works needed 

to be studied while arriving at the proposed solution. This chapter presents a brief 

review of the studied literature. It includes works on sequential pattern mining, 

privacy preserving mining, various data fragmentation alternatives and so on. 

2.1 Progressive Databases 

There are two main types of databases: Static and Dynamic. A database that does not 

change over time is called a static database. Whereas the one in which the data 

changes with time are called dynamic databases. Dynamic databases can further be 

classified into incremental databases and progressive databases. Incremental 

databases assimilate data over time. Hence the size of the database increases with 

time. A progressive database however, is a kind of dynamic database in which new 

data can be added to the database and obsolete data can be removed simultaneously. 

Progressive databases can be called as a generalized model of static, dynamic and 

incremental databases. Such databases are the most up-to-date databases and have 

great applicability due to their flexibility of usage [3]. 

2.2 Distributed Databases 

Data required for mining need not always be extracted from a single location. Data is 

generally distributed across multiple databases in order to harness the advantages of 

distributed processing. Sometimes databases may also be replicated in order to 

increase their efficiency. Some of the advantages of distributed databases are as 

follows: 
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• Reliability and availability in transaction processing. 

• Modularity in operations 

• Improved efficiency and flexibility 

Splitting a central database in order to generate a distributed database system requires 

a logical scheme to act as a basis for data distribution. These partitioning schemes are 

also known as data fragmentation schemes. There are three main schemes for 

generating partitions from a central database viz. 

• Horizontal fragmentation 

• Vertical fragmentation 

• Arbitrary fragmentation. 

Each of these can be briefly described as following: 

Horizontal partitioning, partitions a relation R along its tuples. Each horizontal 

fragment (HF) has a distinct subset of the tuples of the relation R [4]. 

Vertical partitioning of a relation R produces vertical fragments. Each of the vertical 

fragments (VF) contains a subset of R's attributes as well the primary key of R [5]. 

Concept of arbitrarily partitioned data can be explained as one that generalizes both 

horizontally and vertically partitioned data. In arbitrarily partitioned data, different 

attributes for different items can be owned by either party. In arbitrarily partitioned 

data, there is not necessarily a defined scheme of how data is shared between the 

parties. Consider two parties A and B. For each tuple, A knows the values for a subset 

of the attributes, and B knows the values for the remaining attributes. Each tuple d;  is 

partitioned into disjoint subsets (except for the primary key) dA;  and dB;  which are 

owned by parties A and B. It is possible that a given tuple may be "completely 

owned" by B or by A [6]. 
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2.3 Frequent Sequential Pattern Mining 

Frequent sequential pattern mining, commonly known as sequential pattern mining, 

was first addressed in [7] by R. Agrawal and R. Srikant as the problem: "Given a 

database of sequences, where each sequence consists of a list of ordered item sets 

containing a set of different items, and a user defined minimum support threshold, 

sequential pattern mining finds all subsequences whose occurrence frequencies are no 

less than the threshold from the set of sequences". The concept of a sequence can be 

more formally described as: 

Definition 1: LetX =(xi, X2, x3...  x„} be a set of different items. An element e, denoted 

by < XI, X2,...>, is a subset of items belonging to X which appear at the same time. A 

sequence s, denoted by < el ; ez ; ... ; -e,,, > , is an ordered list of elements. A 

sequence database DB contains a set of sequences, and I  DB I represents the number 

of sequences. in DB. A sequence a = < aj ; a2 ; ... ; a„ > is a subsequence of another 

sequence /3 =< b j ; b2; ... ; b,,, > if there exist a set of integers, 1 < it < i. _S i„ <_ m, 

such that al is a subset of b,,; a2 is a subset of biz ; .. . and a„ is a subset of b,,, [3]. 

Sequential. patterns are useful in businesses for shelf placement, promotions, targeted 

marketing, customer retention and many other tasks. R. Agrawal et al [7] by 

proposing two algorithms Aprioriall and Apriorisome, dealing with candidate 

generation for sequential pattern mining. SPADE [8] illustrated by Zaki, generated 

patterns by systematically searching the sequence lattice spanned by the subsequence 

relation. Other proposed algorithm in this area is SPAM [9], which works on 

searching a lexicographic sequence tree in depth-first manner using a vertical bitmap 

data layout. 

However it was realized that static databases do not cater to many real world 

scenarios. Most real world scenarios require data to be constantly added, updated and 

pruned out of the database. This is because the existence of obsolete data in the 

database may result into sequences that currently may not be frequent. A model to 

mine sequences without the effects of presence of obsolete data was thus required. 
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2.4 Progressive Sequential Pattern Mining 

Progressive sequential pattern- mining extracts sequences over various time intervals. 

The time interval over which the patterns are mined at a particular timestamp is called 

Period of Interest (PO1). The POI can be described as, a sliding window of user 

specified length, which keeps on advancing as time goes by giving the most recent 

sequential patterns. The formal definition of POI can be stated as: 

Definition 2: Period of Interest (P01) is a sliding window, whose length is a user 

specified time interval. The sequences having elements whose timestamps fall into 

this period, P01, contribute to I DB I for current sequential patterns. On the other 

hand, the sequences having elements with timestamps older than P01 are pruned 

away from the sequence database immediately and do not contribute to the I DB 

thereafter [3]. This is illustrated in Fig.2.1. 

The algorithm used to mine patterns from progressive databases is called PISA 

(Progressive mIning of Sequential pAtterns) (Fig 2.2). This algorithm uses the M-ary 

Tree structure to generate and maintain candidate patterns dynamically. 

• The M-ary Tree (MTree) 

While mining for patterns the PISA algorithm keeps track of time and newly arriving 

elements in the database. At each timestamp the insertion of elements into the M-ary 

S01 A B C AD B C 
S02 AD B A 
S03 A BC B C A C 
SO4 D C A BC 
S05 D B A C 

SID ti t2 t3 t4 t5 	tb tl to I 	.. 	tiae 

DB"5 
DB2,~ 

DB3•7 

Figure 2.1: A Sample database 
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Algorithm PISA 
var Mtree; 
var CurrTime; 
var eleSet; 
while(there is new transaction) 

eleSet = read all ele at CurrTime; 
insert(Tc,Mtree); 
CurrTime++; 
End 

Figure 2.2: Algorithm PISA 

tree results in an updated tree for the next timestamp. The algorithm traverses each 

node in the tree at time t in post order, deletes obsolete elements and updates the 

sequences according to data at current timestamp. The aim is to first insert new 

elements into existing candidate sequence and later identify any new frequent 

patterns. The procedure of manipulating candidate patterns in the Mtree is given in 

Fig.2.3. 

• Mining Frequent Patterns from the M-ary tree 

Whenever a series of elements appear in a sequence (refer SID in Fig.2. 1), path from 

the root is created labeled by the respective elements of the pattern with the 

corresponding sequence number on which this pattern occurred. This path from root 

to node called the candidate pattern. If a path already exists the concerned fields of 

the nodes are updated with the respective information. The timestamp for each node 

of the candidate sequential pattern is marked according to timestamp of the starting 

element of the candidate pattern. An obsolete element (i.e. element which lies out of 

the PDI) and a node having no sequence numbers in its sequence list are pruned from 

the sequence list of the node and the M-ary tree respectively, ensuring only up to date 

candidate patterns in the M-ary tree [3]. 

After all the candidate sequential patterns are generated, the algorithm checks for the 

number of sequence IDs in a sequence list of all nodes. If the number of sequence IDs 



Procedure insert Tc Mtree 
for(each node of Mtree in post order) 

if(node is Root node) 
for(ele of every seq in eleSet) 
for(all combination of elements in ele) 

if(element =label of one of node. child) 
if(seq is in node.child.seq_list) 
update timestamp of seq to Tc; 
else 

create a new sequence with timestamp = Tc; 
else // create a child node 
create child node with element, seq, timestamp = Tc; 

else II for a common node 
for(every seq in the seq_list) 

if(seq. timestamp <= Tc - POI) 
delete seq from seq_list and move to next seq; 

if(there is new ele of seq in eleSet) 
for(all combinations of elements in ele) 

if(element is not on the path from Root) 
if(element ° label of one of node. child) 

if(seq is in node. child.seq_list) 
child. seq_list.seq.timestamp = node.seq.timestamp; 

else 
create new sequence with timestamp = seq.timestamp, 

else //create a child 
create a new child with element,seq, timestamp = seq, timestamp. 
if(seq_list.size =0) 

delete this node and all of its children from its parent; 
if(seq_list.size>=support*sequence number) 

output labels of path from Root to this node as sequence pattern; 
End 

Figure 2.3: Procedure Insert 

in a particular node is larger than minimum support multiplied number of sequences 

in the current POI, the path from the root till that node is considered as a frequent 

sequential pattern. The working of PISA for sample data (Fig.2.1) is given in Fig 2.4 

[3].  

2.5 Privacy Preserving Data Mining Techniques 

Privacy preserving data mining techniques include a large spectrum of methods such 

as randomization, k-anonymity, 1-diversity etc. Certain methods that were studied 

while designing of the proposed research work are briefly explained below: 

10 



(t2) (t0) 

ROR'l 

Iabef 
seqLJenceIO 
tisthm 

requant, sequential patterns 

(t3) 

Figure 2.4: Working of PISA 

• The Randomization Method 

In randomization technique for privacy-preserving data mining, noise is added to the 

data in order to mask the attribute values of records. The noise added is sufficiently 

large so that individual record values cannot be identified from the randomized data 

[10]. At times, this method provides privacy at the cost of accuracy. Therefore, 

techniques are designed to derive and work with aggregate distributions such as in 

[11]. Some secure protocols use randomization in order to hide original data from the 

various participating sites. 

• Selective Result Generation 

This method is also known as downgrading application effectiveness [10]. Certain 

privacy preserving techniques are specific to the form of knowledge mined. The 

knowledge mined can be of various forms like clusters, association rules, predictions 

etc. In some cases although the data may not be private, leakage of mined knowledge 

can lead to privacy breach. In order to preserve privacy certain parameter values are 
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altered, in permissible limits so that the modified results hide/suppress the sensitive 

knowledge. As a result selective results are generated. The two most common 

methods of used in this technique are blocking and distortion. The parameter values 

to be modified depend on the type of knowledge to be suppressed. The applications of 

these techniques include association rule hiding, downgrading classifier effectiveness, 

query auditing etc. 

• " Cryptography Based Techniques 

In cryptography-based techniques, the data entered by the people is first encrypted by 

using different cryptography algorithms such that at the end of the multiparty 

computation, no one knows anything except his own input and results. Depending on 

the type of application, many cryptography algorithms like RSA, DES, etc. are used 

for encrypting the data [10]. For privacy preservation of the data in this technique, the 

encrypted data is either kept by a server and the miner queries the server for mining 

on the data or it is shared by several miners, who can only jointly mine this data. 

Apart from the standard privacy preserving techniques, certain secure sub-protocols 

have also been designed to securely carry out certain common tasks such as Secure 

Sum, Secure Dot product, Secure Comparison etc. These protocols generally use 

randomization with cryptography based techniques to preserve privacy while carrying 

out their defined task. 

2.6 Privacy Preserving Distributed Data Mining 

The first privacy preserving distributed data mining approach that come to mind is 

that, the algorithm is applied for each site independently and combines the result. 

This method however often fails to achieve a globally valid result, because it can 

cause an inconsistency between local and global results due to the following reasons 

[12]: 

• Values for a single entity may be split across sources. Data mining at 

individual sites will be unable to detect cross-site correlations. 
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• The same item may be duplicated at different sites, and will be over-weighted 

in the results. 

• A single site may not have information about all distinct items to be 

considered in the data mining process. 

To overcome the above problems, algorithms were proposed for partitioning data 

between sites. There has been a lot of work addressing Secure Multiparty 

Computation. Goldriech proved existence of a secure computation for any feasible 

function [ 13], many algorithms based on his Circuit Evaluation Protocol. But this 

general method, which is based on boolean circuits, is inefficient for large inputs. 

Many other algorithms were proposed for privacy preservation across various 

scenarios of distributed databases, which included the - use of cryptographic 

techniques [14], use of homomorphic encryption [15] etc. However these could incur 

a lot of communication overhead while mining on progressive databases with large 

number of items involved. Efforts were also made to apply privacy preserving 

techniques to specific data mining tasks such as clustering [4], [5], [6] and association 

rule mining over distributed databases. 

Privacy preserving sequential pattern mining started gaining ground in 2004. Zhan et 

al. in [16] have proposed an approach, which transforms the databases of each 

collaborating party, followed by the execution of a secure protocol and results in the 

preservation of privacy as well as provides correct results. Although theoretically, this 

approach is robust and secure, it has serious limitations relating its applicability to 

real world problems. Other approaches proposed towards privacy preserving 

sequential pattern mining were those of using data perturbation [17] and secure two-

party computations [18] which could lead to large overheads as the number of items 

increased. Kapoor et al in [19] proposed a method using bit vectors. Zhan in [20] 

proposed another method of privacy preservation using homomorphic encryption and 

digital envelopes. 
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2.7 Research Gaps Found 

The major limitation of many of the existing works in the field of privacy preserving 

sequential pattern mining ([16], [18],[19] etc.) is that the methods proposed were 

applicable only to static databases. Any increment to the database requires re-

computation of patterns across the entire data. This can be a limitation when data is to 

be mined frequently over large databases. Also the presence of obsolete data may 

affect the current frequent patterns. Thus a database model that could keep the data 

updated was proposed [3]. The collaborating parties may want to mine knowledge 

from their joint data from such databases. At the same time might want to preserve 

their sensitive data. Considering the real world applications of distributed sequential 

pattern mining, there was. a need to use a privacy preservation mechanism for this 

process. The research gaps were identified can hence be summarized as follows: 

• None of the existing works in privacy preservation sequential pattern mining 

none had considered mining of sequential patterns across progressive 

fragmented databases. 

• The methods proposed to mine patterns from vertically and arbitrarily 

fragmented databases do not consider the case of mining discontinuous 

patterns. 

• A method to hide sensitive patterns [21] from such dynamic databases with 

limited effects on the global results could be added to enhance privacy. 
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CHAPTER 3 

Proposed Work for Privacy Preservation 

In this chapter we discuss the methods for privacy preservation while mining frequent 

sequential patterns in distributed databases. We also suggest an approach to suppress 

sensitive co-occurring patterns. This approach could serve as a data sanitizing 

procedure in order to preserve privacy. 

3.1 Proposed Scheme for Privacy Preservation 
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Figure 3.1: Proposed Scheme for Privacy Preservation 

Assumptions 

• The scheme proposed introduces a Third party (Tp) which acts a consolidator 
/mediator amongst all the data sharing parties (Dp). 

• All the parties included in the system are assumed to be semihonest, i.e. they 
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follow the protocol as per the norms but may decipher knowledge from the 

information conveyed to them during the protocol. 

• Determining which set of patterns is sensitive depends on the individual 

interest of the participating parties and would be based on domain knowledge 

As shown in Fig.3.1, the proposed work can be broadly divided into 8 steps. Each of 

which is explained below. The detailed description of each module may differ 

depending on the type of fragmentation and will be discussed in respective sections. 

Step 1: Collect Sensitive Pattern Sets from Dp's 

In case of data shared across multiple parties, in order to block the co-occurrence of 

sets of patterns, the information about the sensitive sets of patterns needs to be sent to 

the Tp. The data structure used to store the sets of sensitive patterns is called a 

blockSet. 

The function getSensitveSet() models this step in Algorithms PisaInVertiFrag 

(Fig.3.2) & PisalnHoriFrag (Fig.3.7). In this step each Dp encrypts the sets of 

sensitive patterns it wishes to suppress using the public key its own and public key of 

the Tp and sends it to the next Dp. Each new set added by the Dp is inserted into the 

blockSet. This process continues until each party has added its sensitive pattern sets 

into the blockSet. The last Dp sends this blockSet to the Tp. The Tp later decrypts the 

information in the blockSet in order to process patterns. 

Step 2: Compute Global Threshold using Total Number of Distinct Sequences 

The global threshold (Gthresh) is calculated as 

Gthresh = Total number of distinct sequences * minSup ........................ (1) 

where minSup is the minimum support. 

The computation of total number of distinct sequences varies according to the type of 

fragmentation. The details of which are given in Sections 3.2, 3.3. 
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Step 3: Data Preprocessing 

This step is used at each timestamp, to determine the data that needs to be sent to the 

Tp. The data to be sent can be in the form of frequent patterns or frequent 1-

itemsets.The type of data to be sent depends on the nature of fragmentation. The 

details of the methods of obtaining these frequent patterns / frequent 1-itemsets are 

discussed in Sections 3.2, 3.3, 3.4. 

Step 4: Encryption 

The data to be sent to the Tp is encrypted by the Dp's in order to make it 

indecipherable at the Tp. The use of public key encryption is made to encrypt items, 

whereas hashing techniques are used to encrypt sequence numbers across all parties. 

The method oçkey distribution varies as per the nature of fragmentation. These 

methods are discussed in Sections 3.2, 3.3. 

Step 5: Collect and Organize Data 

The encrypted preprocessed data coming from all Dp's needs to be organized at the 

Tp by matching timestamps and sequence numbers. This process identifies the n-
itemsets that could not be identified earlier due to the fragmented nature of data. Data 

may also be organized on the basis of party information in order to facilitate 

dissemination of patterns. 

Step 6: Generation of Global Patterns and Blocking Sensitive Patterns. 

The generation of global patterns includes assimilation of the preprocessed data into a 

suitable data structure. The module also suppresses co-occurring patterns present in 

the blockSet. The methods of generation of global patterns and blocking of sensitive 

patterns depend upon the type of fragmentation and are discussed in detail in Sections 

3.2, 3.3. 
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Step 7: Dissemination of Patterns to Respective Parties. 

In this step the patterns generated are shared amongst the parties that contribute to the 

pattern. The methods for dissemination of patterns is discussed Sections 3.2, 3.3. 

Step 8: Decryption of Received Patterns 

The received patterns are decrypted in order to be used at the respective Dp. 

3.2 	Sequential Pattern Mining Across Vertically Partitioned 

Databases 

Assumptions 

• Each party knows the total number of parties sharing their data. 

a The minimum length of the pattern and minimum number of parties is >=3 

• Although the total number of sequences considered at each party is the same, 

all the sequences need not, be updated at any given time. 

• Each party (including the third party) has its own key pair (e, d) to be used for 

encryption and decryption. The third party shares its public key with all data 

sharing parties. 

• All the parties share a uniform one way hashing function H(m). 

Description 

The algorithm needs to mine both continuous and discontinuous patterns. As a result 

we need to mine global frequent patterns by consolidating candidate frequent items at 

the Tp. This requires certain modifications are required in the basic algorithm PISA in 

order to avoid loss of patterns. 

The algorithm proposed Progressive mIning of Sequential Patterns In Vertically 

Fragmented database (PisalnVertiFrag) is shown in Fig 3.2. The steps of this 

algorithm are discussed below inline with those described in Section 3.1. 



Step 1 for this algorithm is similar to that discussed in the previous section. 

Step 2: Computing Global Threshold using Total Number of Distinct Sequences 

The total number of distinct sequences is computed at each timestamp by the Tp in 

order to generate the global threshold (Gthresh) using egn..l. The total number of 

distinct sequences is computed by securely computing a union of the sequence 

numbers held by each Dp. The sequence numbers, corresponding to profile IDs' are 

hashed using a one way hash function at each Dp. Since the same hashing function is 

shared across all the data sharing parties to it helps to match the sequences, thus 

providing anonymity. The method to securely compute the union is given in Fig 3.3. 

Algorithm PisaInVertiFrag( minSup , poi) 
Var curr Time = 0; 
Var noParty; 
List fdat[] = List [ noParty 1; 
VarTSeq; 
List sendList; 
getSensitiveSet(); 	 //Step 1 
while (new data is available at any site) 

for (each party) 
TotalSeq = calcSeqO;. 	 //Step 2 
dat[ ii = get FregltemsO; 	//Step 3 & 4 

sendList =mine global patterns using dat; //Step 5 & 6 
send results in sendLlist to respective parties //Step 7 & 8 
currTime++; 
End 

Figure 3.2: Algorithm PisaInVertiFrag 

Step 3: Data Preprocessing 

At each timestamp, each Dp computes and sends frequent 1-item (getFregltems())sets 

based its local threshold. The frequent 1-item sets are locally computed using the 

PISA algorithm at the root node of the Mtree at each Dp. The Dp 's do not send item 

sets that have been frequent in both, the previous and current timestamp and have not 

been updated in the current timestamp. For items which were frequent in the previous 

timestamp and have been updated in the current timestamp the party sends only the 

updated part of the frequent item information. 
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Procedure calcSegO 	 P so•~'~ 
Var seqSet; 	 // set of ha1idseqa i es 

for (each party) 
seq' = use hash function to generate a copy of seq; 
for(every element in seq') 

if (seq' does not exist in the seqSet) 
add to the seqSet 

Pass seqSet to the next party 
send IseqSet j to the Tp 

End 

Figure 3.3: Procedure calcSeq 

Step 4: Encryption 

The 1-itemsets are encrypted by using the public key of each Dp. The sequence 

numbers of each of these elements are hashed using a 1-way hash function. 

This data obtained in Step 4 is organized as mentioned in Step 5 of Section 3.1 

Step 6: Generate Global Frequent Patterns and Block Co-occurring Sensitive 

Frequent Patterns 

This data is now added into the global pattern tree (GMtree) as described in the 

Procedure Modified Pisa given below. The GMtree is a member of the class 

gpatMiner. 

Procedure Modified Pisa 

This version of the insert function, modPisa (Fig 3.4) is proposed to deal with data 

occurring at a differed timestamps. The procedure ensures minimal loss of candidate 

patterns from the original data. This variant differs with from the original procedure 

in the following aspects: 

• The node contains an added field origts for keeping track of the original 

timestamp of occurrence in addition to the existing 3 fields (viz label, 

sequence number and timestamp). 

• While adding data into the tree the algorithm checks for the timestamp of the 

element along with the other pre-existing checks. 
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Procedure modPisa (Tc ; Mtree) 
for(each node of Mtree in post order) 
if(node is Root node) 

for(ele of every seq in eleSet) 
for(all combination of elements in ele) 

if(element =label of one of node. child) 
if(seq is in node. child.seq_list) 
update timestamp of seq to Tc; 
update orig_ts of seq to Tc; 
else 

create a new sequence with timestamp =orig_ts= Tc; 
else // create a child node 
create child node with element, seq, orig_ts =timestamp = Tc; 

else 	// for a common node 
for(every seq in the seq_list) 

if(seq. timestamp <= Tc - POI) 
delete seq from seq_list and move to next seq; 

if(there is new ele of seq in eleSet) 
for(all combinations of elements in ele) 

if(element is not on the path from Root) 
if(ts of element >node. seq.orig ts) 

if(element == label of one of node. child) 
if(seq is in node.child.seq_list) 

child.seq_list.seq.timestamp = node.seq.timestamp; 
child.seq_list.seq.orig_ts = element.ts; 

else 
create new sequence with timestamp = seq.timestamp, 
orig_ts =element.ts; 

else //create a child 
create a new child with element,seq, timestamp = seq.timestamp 

else if (ts of element == node.seq) 
create a new joint_label with element.label + node.label; 

if ( node. parent. child.label! joint_label ) 
create a new child node at node.parent with joint_label,node.seq , 

timestamp = node.seq.timestamp, orig_ts =element.ts; 
if(seq_list.size =0) 

delete this node and all of its children from its parent; 
if(seq_list.size>=support* sequence number) 
output labels of path from Root to this node as sequence pattern; 

End 
Figure 3.4: Procedure modPisa 

The algorithm generates 2/n-itemsets dynamically in case they could not be 

discovered earlier. In order to block co-occurring patterns, modPisa algorithm is 

fiirther modified subjected to the conditions mentioned in co-occurBlock algorithm 

(Fig.3.5) and procedure modlnsert (Fig.3.6). 
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Algorithm co-occurBlock( ) 
Var currentTime; 
Var threshold; 
Var blockSet; 	 //Stores sensitive sets of patterns 
Mtree root; 
while(there exist new data at currentTime) 

Extract data from database 
Calculate threshold; 
for(every pattern in every set in blockSet) 

prune obsolete sequences 
if(pattern.support >= threshold) 

set pattern.threshFlg; 
else 

reset pattern.threshFlg; 
root.traverseO 
currentTime ++; 

End 

Figure 3.5: Algorithm co-occurBlock 

Algorithm co-occurBlock - 

Sometimes although a particular pattern is not interesting, its co-occurrence with 

some other patterns may reveal certain sensitive information. The proposed algorithm 

suppresses co-occurring frequent sensitive patterns sets by blocking some of the 

sensitive patterns. As a result if pattern set P = (A, B) is sensitive, the proposed 

method blocks either A or B; avoiding both A and B to be frequent together at a 

particular time instance. This avoids the co-occurrence of A, B as frequent patterns at 

the same timestamp. 

As discussed in Step 1, the information about sets of patterns, considered sensitive, is 

maintained in the blockSet. The proposed method maintains updated information 

about the status of patterns in a blockSet. The threshFlg associated with a pattern 

indicates whether the support of that pattern in the blockSet has crossed the threshold 

value. The algorithm updates the status of the pattern while it updates the Mtree at 

every timestamp as explained in Fig.3.5. 

Fig.3.6, describes the changes to be incorporated in the insert function (Fig 2.3). Each 

node denoting a sensitive pattern has its bcandid field set to 1. While adding a 

sequence to a node, which denotes a sensitive pattern, the algorithm first checks for 
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Procedure modInsert( root, blockSet) 
for(each node of Mtree in post order) 

if(adding new element to the tree) 
if (element creates pattern that exists in blockSet) 

add element and set element. bcandid = 1; 
if(adding new sequence to the node) 

if(node.bcandid ==1) 
if(pattern.support > threshold for rest n-1 patterns in set) 

block sequence; 
else 

add sequence; 
if(node.support >=bthresh) 

set pattern.threshFlg; 
End 

Figure 3.6: Procedure modInsert ( ) 

the values of threshFlg of other patterns in the set. If the value of threshFlg of not 

more than n-2 patterns in a set are I then the pattern adds the sequence to the node 

else blocks the sequence. If a node that denotes a sensitive pattern, is added into a 

tree, this node is marked by setting its bcandid field to 1. 

Step 7: Dissemination of GIobally Frequent Patterns 

After frequent patterns are mined, the Tp generates a message containing the 

following information: 

• Random sequence of Dp's that have contributed to the pattern 

• Encrypted frequent pattern 

This message is sent to the first Dp in the random sequence. On receiving the 

encrypted pattern each Dp identifies its share of items in the pattern. It decrypts these 

elements and substitutes these elements in the pattern by their encrypted form. The 

encryption in this round is done using the public key of the last Dp in the random 

sequence. This newly encrypted pattern is sent to the next party in the sequence. This 

process is carried out until the last Dp in the sequence receives the pattern. 

Step 8: Decryption 
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After the last Dp has processed the pattern, the Dp decrypts all the elements using its 

public key and broadcasts the pattern all the Dp 's in the random sequence. 

3.3 Sequential Pattern Mining in Horizontally Fragmented 

Databases. 

Assumptions 

• We assume that all (Dp;'s) own a random number of tuples/sequences from 

the total database. 

• The set of items contained in the sequences of all parties remains the same. 

• The algorithm assumes all data sharing parties to use the same key pair 

generated using a public key encryption scheme. This ensures that the same 

pattern gets uniformly encrypted across all the parties. 

Description 

The proposed algorithm, Progressive mIning of Sequential pAtterns In Horizontally 

Fragmented databases (PisalnHorFrag) is given in Fig 3.7. Some steps which need 

detailed discussion (as mentioned in Section 3.1) are given below.. 

The step I of the proposed algorithm is similar to that mentioned in Section 3.1. 

Step 2: Calculating Global Threshold using Total Number of Distinct Sequences 

The process of computation of total number of distinct sequences is described in the 

function getSeq (Fig.3.8).This function is triggered by the Tp. The Tp generates a 

random number say R. It also generates a random order sequence of Dps. The Tp 

sends R, and the random sequence to the first Dp in the generated random sequence. 

When a Dp;  receives input from another party, it adds to the input R, the number of 

distinct sequences the in the current POf in its own fragment of data. The Dp;  then 

deletes its name from the random sequence and sends the resulting sequence list and 
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Algorithm PisalnHoriFra minSupol)  
Var currTime; 	 // Stores current time 
Var noParty; 	 //Stores no. of Dps 
List fpat[] = List [ noParty ] ; 
Var TSeq; 
List Gpvector; 
List sendList; 
getSensitiveSetO; 	 //Step 1 
while (new data is available at any Dp) 

for (each party) 
TSeq = getSegQ; 	//Step 2 
fpat[ i ] = getPatterns( currTime ,poi,minSup) //Step 3 & 4 

Gpvector = calcGpvector(~; 	 //Step 5 & 6 
sendList = calcGpat(GPvector); 
send data in sendList to respective parties; //Step 7 & 8 

currTime++; 
End 

Figure 3.7: Algorithm PisalnHoriFrag 

modified random number to the next party in the list. Hence if XA is number of 

distinct sequences at party A then party B receives R' =R +XA from party A and so 

on. 

This process of cumulative addition of individual portions of data continues till all 

Dp; are processed. The last Dp; sends the final modified value of R' to the Tp. The Tp 

now subtracts the random number it had initially sent, from R' to get the total number 

of distinct sequences. 

Procedure getSeq ( noParty) 
Var Order [] = Var [ noParty 1; 
Order = randomize(noParty); 
int Random = random number generated by Tp; 
int Random' = Random; 
for ( each partyNo in Order) 

Random' = Random' + no. of distinct sequences in Db in party[ partyNo] ; 
Remove partyNo from Order 
Send Random, to Tp 
Random' = Random' — Random; 

End 

Figure 3.8: Procedure getSeq 
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Step 3: Data Preprocessing 

Each Dp computes frequent patterns on the data in its fragment using algorithm PISA. 

The algorithm also hides any sensitive co-occurring patterns as per the conditions 

mentioned in Fig.3.5 and Fig 3.6. 

The Dp needs to send these frequent patterns to the third party as candidate patterns 

for mining globally frequent patterns. These patterns are sent in the, form of a vector 

where the pattern forms the dimension and its support count . the corresponding 

magnitude. The vector at each site is a resultant of absolute change in each 

dimension. The procedure to compute the vector is given in Fig.3.9. Here we 

introduce a new term called virtual support. 

The virtual support of a pattern can be defined as the change in the support count of a 

pattern since the last timestamp. In this case, the support of a pattern, if it is not 

frequent, is considered 0. Hence if a pattern is newly frequent and has not been 

frequent in the previous timestamp, it is added to the vector as a new dimension and 

its virtual support count is equal to its magnitude. Similarly if a pattern has been 

frequent in the previous timestamp and the current timestamp and there is a change of 

support count, it is reflected in the vector: 

Virtual Support, = support, — supportt_, 	 ... (1) 

Procedure getPatterns ( currTime ,poi,minSup) 
List tp,,,[J ; 
List tcurr[] 
tpasr tcurr; 
List Fp frequent patterns from pisa(currTime ,poi,minSup) 
t.uR-Fp ; 
for(each pattern in Fp) 

if(pattern[i] exist in tpas, ) 
pattem[i].support = t.pattern[i].support - tpattem[i].support ; 

else 
pattem[i].support = t. Pattern[i].support ; 
Add pattern to the list of patterns to be sent Fp'; 

return Fp' 

Figure 3.9: Procedure getPatterns 



The Tp keeps a track of sequential patterns sent by each party in a log and 

automatically prunes them when the pattern becomes infrequent. 

Step 4: Encryption 

The non-sensitive local frequent patterns at each Dp are encrypted using the public 

key shared by all the Dp's. 

Step 6: Computation of Globally Frequent Patterns 

In Step 5, the Tp consolidates all patterns obtained from the Dp and adds them to the 

Global pattern vector (Gpvector) of the previous timestamp by matching the patterns 

(Fig 3.10). It tries to find patterns which have a support count greater than Gthresh. 

For every pattern that has a threshold above the global, the algorithm checks if the 

pattern exists in the blockSet. If the pattern forms a part of a sensitive set, the Tp 

checks for the support count of the pattern against the blocking conditions as 

described in Fig 3.6.This procedure determines whether a pattern can be declared to 

be globally frequent or it needs to beblocked. 

Proc calcGpvector 
List Gpvector; 
List Gpvector,r;  
Gpvector,„n. = GpvectorPas, 
for(every pattern in fpat) 

if( pattern not in Gpvector. ) 
add pattern to Gpvector,,,,,. ; 

else if( pattern exist in Gpvector-) 
add pattern. support to GpvectorC „ ff  [ pattern] 
if( Gpvector 1.,. [pattern].support <= 0) 

remove pattern from Gpvector.,n-r  
else if( partyNo does not exist in Gpvector[pattern].partyList) 

add partyNo to. Gpvector0 ,,,,. [pattern].partyList 
return Gpvectorcur, 

Figure 3.10: Procedure calcGpvector 

If a pattern has a support count greater than Gthresh, the Tp declares the pattern to be 

globally frequent. 
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The Tp then segregates patterns with threshold lesser than the global threshold 

according to the parties in which they are infrequent. Each party hence receives a list 

of infrequent patterns from the Tp, and returns the support count of the corresponding 

pattern from its candidate pattern list. These support counts are now added to the 

Gpvector to find if any of the patterns is globally frequent (Fig.3.11). The patterns 

that are globally frequent are added to a list. 

Step 7: Dissemination of Global Patterns 

Thepatterns in the list are shared only amongst Dps where the pattern was originally 

frequent. 

Step 8: Decryption 

Since the key to encryption is shared by each Dp, the patterns received can be 

decrypted by each party independently. 

Proc calcGpat(GpvectorC„rr) 

List sendList; 
List Gpvector `= Gpvectorc;  
Gthresh = TSeq * minSup ; 
for(each pattern in GPvector' ) 

if( Gpvector' [pattern].support> Gthresh) 
remove pattern from Gpvector' 
add to sendList; 

else 
get pattern. support from all parties not in partyList 
update Gpvector'.pattern.support with partyNo.pattern.support 

for( each pattern in GPvector') 
if( Gpvector' [pattern].support > Gthresh) 

add to sendList; 
return sendList 

Figure 3.11: Procedure calcGpat 

3.4 Sequential Pattern Mining over Arbitrarily Fragmented 

Databases. 

Assumptions 

• Each party can have any item at any time instance. 

28 



• Also the number of sequences under consideration need not remain constant. 

• The system uses a public key cryptosystem, with each party having 

information of the public keys of the other parties. The parties share a 

common key pair to encrypt all the items at all parties uniformly. The parties 

also share a common hashing function in order to hash sequence numbers and 

items uniformly. 

Description 

The generalized nature of this fragmentation scenario makes it necessary to share 

more number of parameters as compared to the previous two cases. The method 

proposed here uses ideas discussed in the previous two fragmentation scenarios, but 

with a slight variation. The underlying algorithm is similar to Algorithm PisalnVfrag 
(Fig.3.2). The steps in which this module differs from the generalized model are 

discussed below. 

Step 1 and 2 of this algorithm are similar to the steps mentioned in Section 3.2. 

Step 3: Data Preprocessing 

Unlike the case of vertical fragmentation, the items occurring in a party can occur in 

another party for the same sequence at a later timestamp. As a result it is difficult to 

decide if a particular item is frequent. 

This module aims at getting a union of distinct sequences over which a particular item 

occurs (Fig.3.12). The cardinality of this set of distinct sequences is now compared 

with the Gthresh. The set of items whose cardinality is above the threshold are 

selected to be candidates for mining global frequent patterns. Each party now sends 

information pertaining to these candidate items to the third party. 

Step 4: Encryption 
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Each party encrypts the data it sends to the Tp using the public key in the common 

key pair shared across all parties. The sequence numbers are hashed using the one 

way hashing function in order to provide anonymity. 

In Step 5, the Tp organizes the encrypted data by matching the sequence numbers and 

timestamps. The Tp also maintains information about the elements sent by each Dp at 

at each timestamp. 

Step 6: Computation of Globally Frequent Patterns 

The data organized at the Tp is now assimilated in the GMtree at the Tp using the 

procedure mentioned in Fig.3.4. The sensitive co-occurring patterns are blocked using 

the algorithm mentioned in Fig.3.5 and Fig.3.6. 

Step 7: Dissemination of Global Frequent Patterns 

After the patterns are mined at the GMtree the Tp segregates the patterns according to 

the contribution of the participating parties. The patterns are now sent to each party 

based on this segregation. Since all parties use the . same encryption scheme, each 

party can decrypt a given sequence without any communication with other parties. 

Procedure calcFregLabO 
List seqSet; 	/1 set of sequences of each item 

for (each Dp) 
for(each element occurring at a currTime) 

seq' = encrypt a copy of seq of element using Tp's public key; 
if (element does not exist in the segSet) 

add element and seq' to the seqSet and element.seq'; 
else 

if (element exist in the seqSet) 
if (element does not exist in the seqSet) 

add seq' to element.seq 
Pass seqSet to the next party 
if(party = = last Dp) 

for(each element in seqSet) 
if Ielement.segl >Gthresh 

broadcast element to all Dp 
End 

Figure 3.12: Procedure calcFregLab 
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CHAPTER 4 

Implementation Details 

The implementation of the proposed algorithms comprised mainly of the following 

tasks. 

• Selection of programming language 

• Design and development of the basic network architecture as assumed 

• Designing databases and establishing connectivity 

• Implementing the basic PISA algorithm 

• Coding of the proposed algorithms 

4.1 Selection of Programming Language 

The implementation of the proposed algorithms and all its pre-requisites was done 

using Java. Java platform is freely downloadable and provides large assistance to 

amateurs by means of its documentation, forums and API's. The expanse of the 

language and its seamless integration with fields such as databases, networks, data 

structures etc was one of the main reasons for the choice. The modularity and object 

oriented nature of the language gives the user the freedom to individually build and 

test modules independent of each other. 

4.2 Design and Development of the Basic Network Architecture 

Assumed 

The network architecture assumed for the simulation of the distributed environment is 

that of a single client (known as the Third party (Tp) in the above text) and multiple 

data servers (known as data parties (Dp;)).The architecture provides for one to one 

communication between the client and the servers and also in between the servers. 

This system was simulated using the Remote Method Invocation (RMI) and socket 
programming concepts. Java RMI enables the programmer to create distributed Java 

technology-based applications, in which the methods of remote Java objects can be 
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invoked from other Java virtual machines. The inter server communication was 

established using socket programming. Some of the classes which play a role in the 

development of this architecture are listed below. The methods described in these 

classes are generic to all the fragmentation scenarios. The specific methods will be 

discussed in the respective sections. 

class DataServer 

This class is used to create and bind objects (which correspond to Dp's) to the RMI 

registry. The arguments passed to the constructor allow dynamic creation of user 

defined number of Dp's. 

Interface Datalntf 

The interface defines the client's view of the remote object. As a result any 

communication between the client and server needs to be made using the functions 

declared in the interface. 

class Datalmpl 

The functions listed in the interface are defined or implemented in this class. This 

class interacts with the Dp's using these functions and gets back the desired results. 

The sockets to communicate between various Dp's are also created using the same 

class. Some important functions in this class are: 

public ArrayList process  

public void rung 

private void sendThis (int no, Object obj) 

Table 4.1: Listing of generic methods in class Datalmpl 

• public ArrayList process® 

This function returns the results of data preprocessing to the Tp. These results 

may be in the form of frequent patterns, items etc. 
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• public void rung 

This function is responsible for receiving any message/object sent from any Dp. 
The object received is then typecast and used for further processing. - 

• private void sendThis (int no,Object obj) 

This function is used to send messages/objects to any other Dp. The first 

argument in the function denotes the Dp identity with whom the communication 

is to be established and the second argument denotes the object to be sent. 

class ThirdParty 

This class simulates the Tp and maintains synchronization and timing between the 

multiple servers. This class responsible for the assimilation of data, generation of 

patterns from this data and dissemination of patterns. 

Some of the important functions in this class are: 

public void setParamO 

public void getMaxO 

private void timeCalc 0 

public void getSensitiveSeto 

Table 4.2: List of generic methods in class ThirdParty 

• public void setParam 0 

This function sets values of parameters such as minimum support and period of 

interest for all the Dp's in the network. 

• public void getMax 0 

This function computes the maximum time of simulation by consulting each 

data server. 
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• public void timeCalc 0 

This method maintains synchronization between all the Dp's. This function acts 

as the main processing block and calls other functions which would deal with 

tasks of message transfer, maintenance of data and data mining operations. 

• public void getSensitiveSet 0 

This function collects data to models the algorithm Co-occurBlock mentioned 

in Sections 3.2. This function initiates a procedure to securely obtain a 

collection of patterns sets which are considered sensitive by the Dp's. These 

sets of patterns are stored in a structure called blockSet. 

4.3 Designing Databases and Establishing Connectivity. 

The DBMS used for managing the databases in the simulated environment is MS-
Access. Multiple database connections are created in order to simulate the distributed 

environment. The data for the given problem statement is in the form as shown in 

Fig.2. The database tables exactly model the data similar to that given in the figure in 

a tabular format using attributes of timestamp and sequence number to represent the 

item / group of items. The class DBdriver is developed to manage all the database 

communication and data manipulation w.r.t the database. 

4.4 Implementation of Basic Algorithm PISA 

The implementation of the basic algorithm PISA is divided into two main classes: 

class Pisa and class Mtree. The class Pisa gives the overall structure and is the driver 

class of the algorithm described in Fig.2.2, whereas the class Mtree defines the M-ary 

tree data structure, its various operations and models the function insert described in 

Fig.2.3. The class Mtree is used in Horizontal fragmentation scenario for generating 

frequent patterns at each Dp. 

Some of the main functions in class Mtree are: 
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public Mtree ( String lab, int s, int t, int c) 

public void addToNode (int s, int t, int c) 

public void insert (Mtree m, int currTime, ArrayList b) 

pubic Boolean notLiesOnRoute (String s) 

public ArrayList fpGen (int currTime, int minSup) 

Table 4.3: Listing of generic methods in class Mtree 

• public Mtree (String lab, int s, int t,int c) 

This function creates a node of an M-ary tree which in itself can at a later stage 

develop into an M-ary tree. This node has a label lab, sequence number where 

the label occurred as s and its timestamp of occurrence as c. The third 

parameter denotes the time of start of the pattern over that sequence. 

• public void addToNode (int s, int t, int c) 

This overloaded function is used to add a new sequence s into a node of the 

Mtree or may be used to add a child node to the node. This function can be 

overloaded as public void addToNode (Mtree z) to add a child node into the 

Mtree. 

• public boolean notLiesOnRoute (String s) 

This function checks if a particular label s already exists in the pattern. Since 

each pattern in the M-ary tree is denoted by a path from the root till a leaf node, 

in order to check for duplicates in a pattern it is necessary to back traverse the 

path from the leaf node till the root. 

• public void insert (Mtree m, int currTime, ArrayList b) 

This function is used to insert items and their associated information in the M-

tree. The method of insertion used in the function is described in Fig. 2.3.The 
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function also blocks frequent sensitive co-occurring patterns, the information of 

which is stored in ArrayList b. 

• public ArrayList fpGen (int currTime, double minsup) 

This function computes the frequent patterns by calculating the threshold and 

checking if the number of sequences each node of the M-ary tree exceeds the 

threshold. If the number of sequences exceeds the threshold the function back 

traverses the path till the root declaring labels on that path to form a frequent 

pattern. 

The class Mtree is modified to class GMtree for its usage in vertical and arbitrary 

fragmentation scenarios. 

4.5 Implementation of Proposed Algorithms 

This section gives an idea about implementation of the algorithms proposed in the 

previous section. Each section gives an overview of the important functions in the 

algorithm. 

Algorithm co-occurBlock: 

This module implements the algorithm co-occurBlock by modifying the class Mtree 

in case of horizontal fragmentation scenario and modifying GMtree class in case of 

vertically and arbitrary fragmentation scenario. Some of the important functions 

incorporated are: 

public int chkSensitive (String s, ArrayList b) 

public void updateThresh (int val, String s, ArrayList b) 

private int chkLock (String s, ArrayList b) 

Table 4:4: Listing of methods used for implementing 
Algorithm co-occurBlock 



• public int chkSensitive (String s, ArrayList b) 

This function checks if the path from the current node till the root is a sensitive 

pattern. This procedure is carried out by back traversing the. tree and comparing 

it with the patterns in the blockSet. 

• public void updateThresh (int val, String s, ArrayList b) 

This function is used to update the value of the thresh field of a pattern s in the 

Set. The value of the thresh field may be set to I or reset to 0 depending upon 

the support count of the pattern. 

• public int chkLock (String str, ArrayList b) 

This function is used to check if a sequence can be added into a pattern sir. If 
(n-1) patterns in the set are blocked; i.e their support counts have crossed the 

threshold, the sequence under consideration is blocked otherwise it is added. 

Vertical Fragmentation Scenario: 

Some of the important functions in class DataImpl are as follows: 

public void getNoSeq (int currentTime, int poi) 

public ArrayList process ( ) 

public void geEPat( SendList x) 

Table 4.5: List of Dp Functions in Vertical Fragmentation 

• public void getNoSeq ( int currentTime, int poi) 

This function models the procedure calcSeq (Fig.3.3). This function is used to 

get a secure union of sequence numbers that are active in the current POl. 

• public ArrayList process( ) 

This function returns the items that are frequent in the current timestamp. In 
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order to avoid redundancy the data at a party is organized into a single level 

Mtree and returns only updated frequent items at each time instance. These 

items are encrypted as in described step 4 of Section 3.2. 

• public void getPat( SendList x) 

This function is used to decrypt items and communicate between parties when a 

frequent item is received from the third party. The logic of the function is 

explained in step 6 of Section 3.2. 

Some of the important functions in class ThirdParty are as follows: 

public void getData (ArrayList flist[]) 

public void Send (ArrayList x) 

public void getPat( SendList x) 

Table 4.6: List of specific functions in class ThirdParty for Vertical 
Fragmentation 

• 	public void getDala(ArrayList flist[]) 

This function is used to get, organize and update data input from the various 

servers. The use of this function is to identify any 2/n-itemsets that could be 

obtained by combining data coming from two or more parties. The data is also 

organized according to the party it comes from in order to facilitate the sharing 

of patterns with the servers. This data needs to be updated and pruned so that 

only up to date data is processed. 

• public void Send(ArrayList x) 

This function is used to send encrypted elements from frequent patterns to the 

intended parties. The structure of the data sent is as discussed in step 6 of 

Section 3.2. This data is further organized to obtain decrypted patterns at a 

predefined server. 
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class VGpatMiner is used to organize and mine global patterns from distributed 

vertically fragmented databases. Some of the important functions in this class are as 

follows: 

public ArrayList gpatMine (SeqList Gdata[]) 

public ArrayList getPartyList ( ArrayList s) 

Table 4.7: List of functions of in class VGpatMiner 

• public ArrayListgpatMine(SegList Gdata[]) 

This function works on the data Gdata[], organized by the getData() in class 

ThirdParty. This data is inserted into the GMtree using the modified Pisa 

algorithm as described in Fig.3.4. This function also triggers the function that 

mines frequent patterns from the GMtree. 

• public ArrayList getPartyList(ArrayList s) 

The list of frequent patterns s provided by the previous function needs to be 

segregated according to the parties that contribute to them. This function 

associates each element of the pattern with a party and also randomly 

determines the party where the pattern has to be sent. 

Horizontal Fragmentation Scenario: 

Some of the important functions in class Datalmpl are as follows: 

public ArrayList genRandom(ArrayList s) 

public int gelNoSeq (int currentTime, double minSup, int poi) 

public void procPat (ArrayList c) 

Table 4.8: List of important Dp Functions in Horizontal Fragmentation 
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• public ArrayList genRandom (ArrayList s) 

This function is used to generate a random vector of a set of Dp names. The 

vector is used for randomization of inputs to a particular function in order to 

provide security. 

• public intgetNoSeq ( int currentTime, double minSup, int poi) 

This function models the procedure calcSeq (Fig 3.3).The function extracts the 

number of distinct sequences from the database for the currentTime and PDl. 

These sequences are later added to get the total number of distinct sequences at 

the Tp. 

0 public void procPat(ArrayList c) 

This function is actually responsible for calculating the frequent pattern vector. 

The procedure of calculating the frequent pattern vector is given in procedure 

getPatterns (Fig 3.9).This procedure of computing the frequent pattern vector is 

calculated as follows: 

Consider the set of frequent patterns at time ti along with their respective 

support counts to be {AB (4), BC (5), CA (3)}.These can be represented as a 

vector: 

4AB + 5BC + 3CA 

Now consider the frequent patterns at time t2 the frequent pattern set considers 

say {AB(5), BC(5),CD(4)}.The function compares the previous vector with the 

current set of frequent patterns to get: 

lAB-3CA+4CD 

This gives an indication that the support count of AB has incremented by 1, 
support count of CA has decremented by 3 and the support count of CD has 

either incremented by 4 or CD is a new pattern in the vector. 



Class HgpatMiner is used to generate global patterns in the horizontally fragmented 

scenario. Some of the important functions in this class are as follows: 

public ArrayList[] calcGpatl( ) 

public void calcGpat2 (ArrayList an) 

public void calcGpat3( ) 

Table 4.9: Listing of important Functions in class HgpatMiner 

• public ArrayList[] calcGpatl( ) 

This function organizes frequent pattern vectors obtained from each site 

according to the site they come from. The function also generates the global 

pattern vector by matching the dimensions from the previous timestamp and 

adding the corresponding magnitudes by usage of function arrPat(explained as 

calcGpatvector in Fig.3.10). The function returns the global pattern vector 

which is sent to calcGpat2 for further computations. 

• public void calcGpat2(ArrayList a[]) 

This function models procedure calcGpat (Fig.3.11). This function compares 

the magnitude of each dimension in the vector (denoted by ArrayList a[]) with 

the global threshold (Gthresh) and eliminates the dimension from the vector. 

The dimensions whose magnitude is less than Gthresh are added to the search 

list of respective parties in order to get their support counts. The search list 

consists of list of parties who have not contributed to the candidate frequent 

pattern at the current timestamp. A part of the procedure given in Fig.3.11 is 

implemented in the next function. 

• public void calcGpat3( ) 

This function assimilates data obtained after the supports of candidate frequent 

patterns are updated by support counts from the parties in the search list. The 
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new support values are now compared against Gthresh to get the final set of 

globally frequent patterns. 

Arbitrary Fragmentation Scenario 

This case of the algorithm mostly uses functions from the previous two cases. The 

two main functions where the functionality of this case differs from that of the other 

two cases are reported as follows: 

• public void getData( double gthresh) 

This function defined in class DataImpl is used to get the candidate frequent 

itemsets. The function maintains a secure union set of sequences over which a 

particular item occurs. Each set is later compared with the global threshold 

gthresh. If the number of sequences exceeds gthresh and the sequences 

corresponding that item are obtained from each party. The logic of this function 

is explained in Fig.3.12. 

• public void FinalSend(ArrayList send) 

This function is defined in class AgpatMiner and is used to send patterns in the 

ArrayList send to the participating parties. The class AgpatMiner mines global 

patterns from an arbitrarily fragmented database scenario. 
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CHAPTER 5 

Results and Discussion 

The following section discusses the performance of the proposed algorithms across 

various parameters. The results for the proposed work have been tested over a test 

dataset of 300 customers over 30 days. Number of items considered for mining is 15. 

This data was obtained using a synthetic dataset generator available at [22].This data 

was subjected to various types of fragmentation across variable number of data 

servers. 

The values of POI considered for testing results (7, 10, 15) mark 1/4, 1/3 and 1/2 of the 

total timespan under consideration. The values of minimum support considered are 

values around the knee point in the graph shown in Fig.5.1. 
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Figure 5.1: Number of Patterns v/s Percent Value of Minimum Support 

5.1 Performance of Protocols with respect to Patterns Mined 

The performance protocols can be tested for Precision. The Precision of the 
algorithms can be calculated as: 

Precision: 	Number of Frequent Patterns Mined by the algorithm 

No of Frequent Patterns Generated by PISA 
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Figure 5.2: Number of patterns mined for various fragmentation scenarios for 

fixed value of POI=7 

Fig 5.2 shows that all the algorithms mine 100% of the patterns generated by 

PISA(without using co-occurrence blocking algorithm), i.e. the precision of the 

algorithms is 100%. The above graph shows the number of patterns mined over the 

period of 30 timestamps using the given value of POI. 

No. of Patterns over 15 timestamps No. of Patterns over 30 timestamps 

POI 

Min. Supiibcç  
7 10 7 10 

7 150 360 360 1058 

10 79 170 172 556 

15 32 72 84 225 

Table 5.1: Number of Patterns generated for various values of minimum support 

and POI 

The results in Table 5.1 indicate that the number of patterns mined increase as the 

value of POI increases. Also the number of patterns is inversely proportional to the 

minimum support threshold. The adherence to these two properties serves a primary 

checksum to ensure the correctness of the algorithm. 
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5.2 Impact of the Co-occurrence Blocking Algorithm on Patterns 

Mined 

No of blocking 
sets 

Percentage of patterns mined 
after co-occurrence blocking 

Percentage of patterns mined after 
frequent itemset hiding 

Timestamp 

(ts) =15 
At is = 30 At ts = 15 At ts = 30 

1 98.7 99.4 97.4 98.8 

2 89.8 91.9 79 83.8 

3 81 83.8 62 67.6 

Table 5.2: Comparison of co-occurrence pattern blocking algorithm with 

frequent pattern hiding (min. support =10, POI = 7) 

The results in Table 5.2 are computed for a random set of patterns to be blocked over 

an arbitrary / vertical fragmentation scenario (both cases are considered 

simultaneously since trees generated by both the cases are isomorphic).These results 

are compared with the results of frequent itemset hiding. It is seen that the results are 

better since the number of patterns suppressed using frequent pattern set hiding are n 

times that of the proposed method, where n is the number of patterns in the set. Also 

since the number of suppressed patterns is less, the number of patterns which are lost 

due to the blocked patterns derived from these patterns is also less. The following 

graph compares the number of patterns reconstructed in with the increase in the size 

of the set to be blocked. 

1 	 2 	 3 
	

4 
No of patterns to be blocked 
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The use the approach proposed for co-occurrence blocking is amended for its usage in 

a horizontally fragmented scenario (as discussed in Section 3.3).However this method 

No of sets Horizontal fragmentation 

(%ge of reconstructed patterns) 

Vertical/Arbitrary fragmentation 

(%ge of reconstructed patterns) 

is=15 is =30 is =15 is=30 

1 94.9 97.1 98.7 99.4 

2 86.1 89.6 89.8 91.9 

3 77.2 ' 82.7 81.0 83.8 

Table 5.3: Comparison of the two variants of co-occurBlock protocol 

may lead to false positives due to the random order of blocking. The table 5.3 gives a 

comparison between the accuracy of two proposed variants. The number of patterns 

mined (without use of Co-occurrence blocking algorithm) were 79 and 172 at 

timestamp (ts) 15 and 30 respectively (with values of min. support = 10, POI = 7). 

5.3 Information Disclosed by the Algorithms 

Here, we discuss the information disclosed at each stage of the algorithm. The system 

assumes each party (including the Tp) to be semi-honest. As a result these parties 

follow the protocol sincerely without carrying out any malicious activity but are eager 

to decipher knowledge out of the information provided to them during the course of 

the protocol. 

Case 1: Vertical Fragmentation 

• In case vertical fragmentation each party has its independent encryption scheme. 

As a result an item encrypted by a party can not be decrypted by any other 

party. 

• The nature of the fragmentation makes it necessary to send information about 

the sequence number and the timestamp along with the element. As a result the 



scheme uses a common one way hash function across all parties to encrypt the 

sequence numbers. This ensures that a party can identify a sequence number, 

only if it itself has that sequence in its own list. 

• In the preprocessing stage each party sends only information about the 

'candidate frequent 1-itemsets. This ensures that only frequent 1 itemsets reach 

the Tp. Since the labels in these itemsets are encrypted, the Tp learns only about 

the statistics of the globally frequent 1-itemsets. 

• In the pattern dispersion stage, the random vector ensures that two parties do not 

collaborate to find the data contributed by any third party. The 

encryption/decryption protocol introduced also anonymizes the data and 'avoids 

any party to decipher the contributions made by the previous parties in the 

vector. 

Case 2: Horizontal Fragmentation 

• Although a lot of data gets transferred to the third party, the use uniform 

encryption scheme amongst data sharing parties keep the Tp from identifying 

the data it is working upon. The only knowledge that may be obtained would be 

statistical knowledge of encrypted patterns. 

• The computation of total number of distinct sequences across all the parties 

does not reveal any information about any party's contribution to the total sum 

nor does it disclose the total number of distinct sequences to any Dp. The 

random vector provided by the Tp avoids two Dp 's collaborating to find 

information contributed by a third party. 

• Although the support count of the pattern is known to the third party, the third 

party cannot decipher exactly the percentage value of support. Although a rough 

estimate of the support count can be made. 

• The candidate count retrievals and pattern dispersion activities are also 

considered secure since they are carried out independent of any other party. 
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• Since global patterns are sent to the respective data parties where this pattern 

was locally frequent, no party other than the ones who contributed to the data 

receive the pattern. 

Case 3: Arbitrary Fragmentation 

The arbitrary fragmentation is the generalized case of the two cases discussed above. 

The algorithm uses a cryptographic setup similar to that in the case of horizontal 

fragmentation. The nature of the algorithm only differs in the third stage (choosing 

candidate frequent 1- itemsets). The rest stages are similar to either the vertical and 

horizontal cases respectively. 

• In the third step, the sequence numbers pertaining to each element are hashed 

and added to the set as in the second stage. As a result, although the information 

passes over to the next party, the receiving party cannot decipher the value of 

the sequence number from the hash, more so they cannot conclude anything 

about the inputs given by a particular party. 

5.4 Impact of Number of Servers on Execution Time 

The simulated environment gives a limited scope to trace the execution time, this is 

because the segregation of the Tp and Dp activities is not feasible due to the presence 

of a single processing unit. However it was realized that the execution time increases 

linearly as the number of servers increase. This increase can be attributed to the 

increase in communication overhead incurred with the increase in the number of 

Dp's. 

5.5 Impact of POI on Execution Time 

It can be noted that execution time is directly proportional to the value of POI. A 
reason for this is, the increase in time required to process the expanded data structure 

which would be required to store the candidate patterns. The ratio of this increase in 

execution time is lesser in case of vertical and arbitrary fragmentation due to selective 

filtering of candidate frequent 1-itemsets. In case of horizontal fragmentation with an 
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increase in POI,- the number of candidate global frequent patterns also increases, 

thereby increasing the execution time. 

5.6 Communication Overhead 

The communication overhead incurred also plays an important role while analyzing 

the efficiency of an algorithm in a distributed environment. The following section 

computes the communication overhead for each of the proposed algorithm. The worst 

case number of messages transferred in each case can be analyzed. 

The number of messages transferred for communicating 1 frequent pattern of length 

(min) N to N parties is computed as follows. It is also assumed that all the N parties 

contribute to the pattern: 

Horizontal Fragmentation scenario 

Computing total number of distinct sequences - 	 N+ 1 

Obtaining frequent pattern vectors 	 2N 

Search for candidate global frequent patterns 	 2N 

Communication of frequent patterns 	 N 

Total 	 6N + 1 

Vertical Fragmentation scenario 

Computing total number of distinct sequences 	 N+1 

Obtaining frequent itemsets 	 2N 

Communication and decryption of frequent patterns 	 N 

Broadcasting patterns 	 N+1 

Total 	 SN+2 



Arbitrary Fragmentation scenario 

Computing total number of distinct sequences 	 N+1 

Obtaining frequent itemsets 	 3N+1 

Broadcasting patterns 	 N 

Total 	 5N+2 

Table 5.4: Comparison of Communication Overhead 

It can be seen that the communication overhead is of O(n).Comparing the number of 

messages and their performance for varying number of servers, it can be seen that rate 

of growth in case of the horizontal fragmentation is greater than vertical and 

arbitrarily fragmented_ scenarios. 
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Figure 5.4: Communication overhead (no of msgs) v/s number of servers 
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CHAPTER 6 

Conclusion 

6.1 Conclusion 

In this work we focused our attention on the problem of privacy preserving sequential 

pattern mining over distributed progressive databases. There are many existing 

methods for privacy preservation, however not many are applicable to a distributed 

progressive database scenario. The limitation of progressive databases is that, neither 

any prediction of future data could be made, nor could any manipulations to data 

collected in the past is possible. Hence despite the robustness and accuracy of the 

existing works, there is little real world scope of their application due to progressive 

nature of real world databases. 

In our work, we have proposed a set of algorithms for discovering frequent patterns 

from a group of collaborating parties without breaching their individual privacy 

concerns. The data possessed by the group of parties could map to any of the three dat 

fragmentation scenarios (viz. Horizontal, vertical, arbitrary). We have therefore 

proposed a generalized scheme for these scenarios. The proposed work used public 

key cryptography and randomization as a basis to achieve privacy preservation. We 

also use a method to block co-occurring frequent patterns in progressive databases, 

thereby hiding sensitive information of each party from the others. A factor 

considered for choice of privacy preserving methods was to minimize the distortion 

of the original data and maintain a maximum possible accuracy. 

The algorithms proposed over fragmented databases preserve privacy at four stages: 

Obtaining sensitive sets of patterns, determining the global threshold, collecting data 

from the participating parties and distribution of the global patterns. The method used 

for blocking is used to supplement these algorithms and hides any sensitive sets of co-

occurring patterns. 

The results achieved display a high amount of accuracy with respect to mining of 

globally frequent patterns. The communication overhead scales linearly as the 
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number of parties increase. The amount of information disclosure to each party 

(including the Tp) is limited and hence does not breach privacy under the current set 

of assumptions. Also the co-occurring pattern blocking method serves as a better 

method to mask sensitive patterns as . compared to the existing methods to hide 

sensitive frequent pattern sets. 

6.2 Suggestions for Future Work 

The proposed work dealt with preserving privacy while mining sequential patterns 

across distributed progressive databases. The data assumed in this scenario was 

binary market-basket data. In order to widen the scope of application for this problem 

the proposed algorithms may be modified to suit categorical and numerical data. 

According to studies carried out on PISA, a method to prioritize occurrences of 

patterns was proposed in our previous work [23]. Keeping this idea as a basis, an 

effort may be made to exploit the progressive nature of the data and proposed 

prioritizing mechanism in order to preserve privacy. 
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APPENDIX A: SOURCE CODE LISTING 
Code for Implementing Data Party in Vertically Fragmented Scenario 

import java.io.*; 
import java.rmi.RemoteException; 
import java.sgl.*; 
import java.math.BigInteger; 
import java.net.*; 
import java.util.*; 
import javax.net.ssl.SSLServerSocket; 
import ppvp2.ServerInfo; 
import sun.nio.ch.SocketAdaptor; 
import javax.crypto.*; 
import java.security.spec.*; 
import javax.crypto.spec.*; 

public class Datalmpl extends java.rmi.server.UnicastRemoteObject implements DataIntf,Runnable 
{ 

String type; 
int poi; 
int currTime; 
double minSup; 
Pisa p; 
Obj t; 
Integer myno; 
String cip; 
int cport; 
Vector<Serverinfo> servers; 
ServerSocket sock; 
RSA 1 r; 

• public DataImpl (String s,String (name) throws java.rmi.RemoteException 	//constructor for Dp 
{ 

super(); 
t--new TpO; 
type = s; 
p = new PisaO; 
myno = new Integer(type); 
r =new RSA I (type); 
try 
{ 

ObjectlnputStream oin = new ObjectInputStream(new FileInputStream(fname)); 
servers = (Vector<Serverinfo>) oin.readObjectO; 

} 
catch(Exception ex) 
{ 

System.out.println("Error while storing to file..........."+ex); 
ex.printStackTraceO; 

public void putParanm (int Poi,double Min Sup) throws java.rmi.RemoteException 	// sets parameters 
{ 

poi = Poi; 
minSup = MinSup; 
p.setParam(Poi,MinSup,type); 

public ArrayList processo 
{ 

ArrayList f=new ArrayList(p.process()); 
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r.encrypUsingtPub (f); 
return f; 

} 

public void getSeq (ArrayList x) throws java.rmi.RemoteException 
{ 

if(x = null) 
{ 

x=new ArrayListO; 
} 
ArrayList sequences=new ArrayList<Integer>0; 
int lowerBound = this.currTime - poi + 1; 
try 
{ 

Class.forName("sun. jdbc.odbc.JdbcOdbcDriver"); 
Connection con = DriverManager.getConnection("Jdbc:Odbc:Amruta"+type); 
Statement stmt = con.createStatementQ; 
ResultSet rs = null; 
rs = stmt.executeQuery("SELECT DISTINCT seqno FROM Table4 where timestamp<"+ currTime +" and 

timestamp >"+ lowerBound); 
while(rs.nextO) 
{ 

Integer i = Integer.parselnt(rs.getString(1)); 
sequences.add(i); 

} 
} 
catch(Exception e) 
{ 

e.printStackTraceO; 
} 
for(int i 0;i<sequences.sizep;i++) 
{ 

Integer c = (Integer)sequences.get(i); 
int cl = c.valueOf(c); 
intflag=0; 
if(x != null) 

for(int jo; j<x.sizeo;j++) 
{ 

Integer d =(Integer)x.get(j); 
int d1=d.valueOf(d); 
if(c1=d1) 
{ 

flag=1; 
break; 

} 
} 

if(flag = 0) 
{ 

x.add(c); 
} 

} 
if(myno + I < servers.sizeO) 

sendThis(myno+l,x); 
else 

try 
{ 

{ 
Socket scli=new Socket(cip,cport); 
Integer i = x.sizeO; 
ObjectOutputStream cout = new.ObjectOutputStream(scli.getOutputStreamo); 
cout.writeObject(i); 

} 
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catch(Exception ex) 
{ 

ex. print StackTraceo; 
} 

} 

public void runO 
{ 

while(true) 

try 
{ 

Socket cc=sock.accepto; 
ObjectlnputStream ins=new ObjectlnputStream(cc.getInputStreamQ); 
Object m=ins.readObjectO; 
if(m instanceof String) 

String k=(String)m; 
) 
else if(m instanceof SendList) 

SendList x =(SendList)m; 
x.nodeList.remove(0); 
getPat(x); 

} 
else if(m instanceof ArrayList) 
{ 

ArrayList g =(ArrayList)m; 
this.getSeq(g); 

} 
else if (m instanceof BlockSet) 
{ 

BlockSet b ° BlockSet(m); 
this.setSensitiveBlock(b) 

) 
} 
catch(Exception ex) 
{ 

ex.printStackTraceO; 
} 

} 
} 

public void getPat (SendList x) throws java.rmi.RemoteException 

try 

if(x.nodeList. sizeO>0) 

this.decryptEncryptAnd Send(r,x); 
Integer t=x.nodeList.get(0); 
sendThis(t,x); 

} 
else 
{ 

String s = r.decryptUsingPriv(x.pattem); 
for(int i =0;i< x.bnodeList.sizeO;i++) 
{ 

Integer t=x.bnodeList.get(i); 
sendThis(t,$); 

} 
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by 
{ 

Socket scli=new Socket(cip,cport); 
String ok="go ahead"; 
ObjectOutputStream cout=new ObjectOutputStream(scli.getOutputStreamO); 
cout.writeObj ect(ok); 

} 
catch(Exception ex) 
{ 

ex.printStackTraceO; 
} 

} 
} 
catch(Exception e) 
{ 

e.printStackTraceO; 
} 

} 

public void setSensitiveBlock (BlockSet b) 
{ 

RSA1 rl = new RSA("ThirdParty",myno); 
ArrayList x[] = new ArrayList[20]; 
for(int i = 0; i<20 ;i++) 
{ 

x[i] = new ArrayList<String>Q; 

try 
} 

{ 
Class.forName(" sun.j db c.odbc.JdbcOdbcDriver"); 
Connection con = DriverManager.getConnection("Jdbc:Odbc:Amruta"+dbNo); 
Statement stmt = con.createStatement(); 
ResultSet rs = null; 
rs = stmt.executeQuery("select * from block"); 
while(rs.nextO) 
{ 

intset = Integer,parseInt(rs.getString("set")); 
String element= rs.getString("pattern"); 
x[set].add(element); 

} 
} 
catch(Exception e) 

e.printStackTraceO; 

for(int i = 0; i <20;i++) 
{ 

if(x[i].sizeO!=0) 
{ 

String a[]=new String[x[i].sizeO]; 
for(intj = 0; j<x[i].sizeO;j++) 
{ 

a[j ] _(S tr in g) x [ i] . get (j ); 
a[j ]=r l .encryptUsi ngPub(a[j ]. getBytesQ; 

} 
block b1= new block(a); 
b.add(bl); 

} 
} 

} 
if(myno + 1 < servers.sizeO) 

sendThis(myno+l,b); 
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else 
{ 

try 
{ 

Socket scli=new Socket(cip,cport); 
ObjectOutputStream cout=new ObjectOutputStream(scli.getOutputStreamO); 
c out. writeOb j e ct(b); 

} 
catch(Exception ex) 
{ 

System.out.println("Error while sending to client  
ex.printStackTraceo ; 

Code for Implementing Third Party in Vertically Fragmented Scenario 

import java.io.*; 
import java.rmi.*; 
import java.util.*; 
import java.net.*; 
import sun.nio.ch.ServerSocketAdaptor; 

public class ThirdParty{ 
int maxTime; 
static int currentTime= 0; 
static double minSup; 
static int seq[] = new int[2] ; //stores no of dist seq in each party //change here 
static int poi; 
static Datalntf c[] = new DataIntfj2];//change here 
static gpatMiner g = new gpatMiner; 
ArrayList fList[] = new ArrayList[2]; //change here 
static SegList Gdata[]; 
static ArrayList<node> pLabel[]=new ArrayList[2]; 
ServerSocket clock; 
boolean ok=false; 
public static int freqCnt = 0; 
RSAI t =new RSA1("ThirdParty"); 

public static ArrayList blockset = new ArrayList<block>O; 

ThirdParty (double x,int y) 	 //sets minimum support and poi 
{ 

pLabel[0] = new ArrayList<node>O; 
pLabel[1] = new ArrayList<nodr>O; 
minSup = x; 
poi = Y; 
try 

csock=new ServerSocket(12345); 
for(int i = 0; i < 2; i++) 	 //change here 
{ 

String s = new String(String.valueOf(i)); 
c[i] = (DataIntf)Naming.lookup(°rmi:I/localhost/Pisa"+s); 
c[i].setCparams(InetAddress.getLocalHostO.getHostAddressO, 12345); 
seq[i] = 0; 

} 
catch (Exception e) 
{ 

e.printStackTraceQ; 
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public void timeCalc 0 
{ 

try 
{ 

c[O].setS ensitiveBlock0; 
waitforcO; 
while(currentTime <= maxTime) 
{ 

for(int i = 0 ; i < 2 ; i++) 
{ 

c[i].putTime(currentTime); 
fList[ i]=c[i].proces s0; 

} 
ArrayList anew ArrayListO; 
c[O].getSeq(a); 
waitforcO; 
g.calcSeqO; 
getData(fList); 
ArrayList x=g.gpatMine(Gdata); 
Send(x); 
currentTime++; 

} 
} 
catch(Exception e) 
{ 

e.printStackTraceO; 
} 

} 

public void Send (ArrayList x) 

for(int t0; t<x.sizeO;t++) 
{ 

genRandom(((SendLi st)x. get(t)).nodeList); 
Integer sendParty=((SendList)x.get(t)).nodeList.get(0); 
try 
{ 

((SendList)x.get(t)).nodeList.remove(0); 
c[sendParty. intV a1ueQ] . getPat((SendL ist)x. get(t)); 
waitforcO; 

catch (Exception ex) 
{ 

ex.printStackTraceO; 

} 
} 

public ArrayList genRandom(ArrayList s) //to be sent when decrypting patterns 
{ 

for(int i=O;i<s.sizeO;i++) 

{ int rand=(int)((Math.randomO* I 0)%s.sizeo); 
Integer temp =(Integer) s.get(rand); 
s.remove(rand); 
s.add(temp); 

} 
return s; 

} 
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private void waitforcO 
{ 

try 
{ 

Socket sc=csock.acceptO; 
ObjectlnputStream sin=new ObjectlnputStream(sc.getlnputStreamO); 
Object gh=sin.readObjectO; 
if(gh instanceof String) 
{ 

String s =(String)gh; 
} 
else if(gh instanceof Integer) 
{ 

Integer i=(Integer)gh; 
g.Gseq=Integer.valueOf(i); 
System.out.println("Total no of global sequences are +g.Gseq); 

else if (gh instanceof BlockSet) 
{ 

BlockSet b =BlockSet(gh); 
decryptBlock(b); 

} 
catch(Exception ex) 

System.out.println("Error "+ex); 
ex. print StackTraceO; 

Code for Global M-ary Tree in Vertical Fragmentation 

import java.util. 
import java.sgl.*; 
import java.util.ArrayList; 

public class Mtree 

String label; 
int seq[]; 	 //stores sequence nos 
int timeStamp []; 	//stores timestamps 
Mtree link[]; 	//stores links to children 
Mtree parent = null; 	//parent of the current node 
int current, noLink; 
int delFlag; 
ArrayList fregpattern = new ArrayList<dbOp>Q; 
public static int poi=0; 
int origts []; 
double bthresh; 
String pattern = new Strings; 
int bcandid; 

public Mtree (String lab, int s, int t,int ot) // creates an object of type MTree 
{ 

delFlag = 0; 
label = lab; 
seq = new int[ I ]; 
seq[0] = s; 
current = 1; 	 //stores no of sequences 
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timeStamp = new int[1]; 
timeStamp[O] = t; 
link = new Mtree[ 1 ]; 
Iink[O] = null; 
noLink = 0; 	 1/stores no of children 
origts = new int[1]; 
origts[0] = ot; 
bcandid = 0; 

public void addToNode (int s, int t,int ot) 
{ 

int x; 
current-H-; 
int temp[] = new int[current]; 
for(x = 0; x < current - 1; x++) 

temp[x] = seq[x]; 
temp[x] = s; 
seq = temp; 
temp = new int[current]; 
for(x = 0; x < current - 1; x++) 

temp[x] = timeStamp[x]; 
temp[x] = t; 
timeStamp = temp; 
temp = new int[current]; 
for(x = 0; x < current - 1; x++) 

temp[x] = origts[xl; 
temp[x] = ot; 
origts = temp; 

public void addToNode (Mtree z) II add a child node 
{ 

int x; 
noLink++; 
Mtree temp[] = new Mtree[noLink]; 
for(x = 0; x< noLink -1; x++) 

temp[x] = link[x]; 
temp[x] = z; 
link = temp; 
z.parent = this; 

public void insert (Mtree node,int currentTime,ArrayList blockset) 	//modified insert function 
{ 

int flagLabel, flagSeq; 
if(node.label.equal s("root")) 
{ 

if(gpatMiner.Gdata!= null) 
{ 

for(int i-0; i<gpatMiner.Gdata.size(); i-H-) 
{ 

SeqList l =(SeqList)gpatMiner.Gdata.get(i); 
for(int j=0; j<l.nodeList.sizeO; j++) 
{ 

node z=(node)l.nodeList.get(j); 
int sequenceNo =1. timeStamp; //here field timestamp is used for seqno 
int length = (Integer)z.name.lengtho; 
int lea = (int)Math.pow(2,length); 

	

String []element = new String[len]; 	//to store combinations 
element = node.combinations(z.name); 
for(int x=0; x<len; x++) 
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{ 
flagLabel = 0; 
if(element[x] !=null) 
{ 

for(int a=0; a < node.noLink; a++)//check for node's chidren 
{ 

flagSeq = 0; 
if((element[x] . equals(node.I ink[ a].label))) 
{ 

flagLabel=l; 
for(int b = 0; b < node.Iink[a].current; b++) 
{ 

if(sequenceNo node.link[a].seq[b]) 
{ 

flagSeq= 1; 
if(node.link[a].origts[b]< z.val) 
{ 

node.link[a].timeStamp[b] = z.val; 
node.link[a].origts[b] ° z.val; 
break; 

} 
i f(node.link[a].origts [b]>=z.va1) 
{ 

break; 
} 

} 
} 
if(flagSeq°0 && flagLabel=l) 
{ 

int add = 1; 
{ 

node.l ink[a] .addToNo de(s equenceNo,z.val,z.val); 
} 

} 
} 

} 
if(flagLabel= 0) 
{ 

int flag =0; 
node.addToNode(new Mtree(element[x],sequenceNo,z.val,z.val)); 

} 
) 

} 
} 

} 
else 
{ 

for(int i = 0; i < node.current && node.current!=0 ; i++) 
{ 

if(node.timeStamp[i] <= cur entTime-poi) 
{ 

for(int e=i+1 ; e < node.current ; e++) 
{ 

node. seq[e-1 ]=no de. s eq[ e]; 
node.timeStamp[e- 1 ]=node.timeStamp [e]; 
node.origts[e- 1 ]=node. origts[e]; 

} 
node.current =node.current-1; 
i- 
if(node.current=0 ) 
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{ 
node.delFlag= 1; 

} 
continue; 

} 
for(int j = 0 ; (gpatMiner.Gdata!= null)&&(j < gpatMiner.Gdata.sizeO); j++) 
{ 

SegList 1=(SegList)gpatMiner.Gdata.get(j); 
if(l.timeStamp = node.seq[i]) 
{ 

for(int k =0; k < LnodeList.sizeO; k++) 
{ 

node z = (node)l.nodeList.get(k); 
int sequenceNo =1.timeStamp; //here timestamp is used for seqno 
int length = (Integer)z.name.lengtho ; 
int len = (int)Math.pow(2,length); 
String []element = new String[len]; 	//to store combinations 
element = node.combinations(z.name); 
for(int m=0; m<element.length ;m++) 
{ 

flagLabel = 0; 
if(element[m] !=null) 
{ 

if((node.notLiesOnRoute(element[m])) && (z.val>node.origts[i])) 
( 

for(int x = 0; x < node.noLink && node.link[x]!=null; x++) 
{ 

i f(node.link[x].l abet.equals(el ement[m])) 
{ 

flagLabel = 1; 
flagSeq = 0; 
for(int y = 0; y<node.link[x].current;y++) 
{ 

if(sequenceNo = node.link[x].seq[y]) 
{ 

flagSeq = 1; 
if(z.val>node.link[x].origts [y]) 
{ 

node.l ink [x] .tim eS tamp [y]=no de.ti meS tamp [ i]; 
node.link[x] .origts[y]=z.val; 
if(node.link[x].bcandid = 1) 
{ 

node.link[x] .updateTime(node.link [x]. seq[y],node. 
timeStamp[i],b to ckset); 

} 
} 
if(z.val <=node.link[x].origts[y]) 
{} 
break; 

} 
} 
if(flagSeq = 0) 
{ 

int flagAdd = 0; 
if(node.link[x].bcandid = 1) 

{ 
flagAdd = ehkLock(node.link[x].pattem,blockset); 

} 
else 

flagAdd 1; 
if(flagAdd= 1) 
{ 
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int val =0; 
node.link[x].addToNode(sequenceNo,node.timeStamp[ i],z.val); 
if(node.link[x].bcandid =1) 
{ 

node.link[x]. addseq(node,link[x].pattern,sequenceNo, 
node.timeStamp [i],blo ckset); 
if(node.link[x].current>= bthresh) 
{ 

val 	1; 
node.l ink[x] . updateThresh(val, node.l ink [x] . pattem,blocks et); 

} 
} 

} 
} 

} 
} 
if(flagLabel= 0) 
{ 

String s =node.backTraverse1 Q; 
s = s +" "+ element[m]; 
int sl =s.IengthQ; 
int val = chkSensitive(s,blockset); 
if(val = 1) 
{ 

int flagAdd =1; 
if(bthresh =1) 

{ 
flagAdd =chkLock(s,blockset); 

} 
if(bthresh > 1) 
{ 

flagAdd =1; 
} 
if(flagAdd =1) 

node.addToNode(new Mtree(element[m],sequenceNo, 
node.ti meStamp[i],z. val)); 
node. addtoblock(s,s equenceN o,node.timeStamp[i], blockset); 
node.link[node.noLink-1 ].bcandid=l; 
node.link[node.noLink-1 ].pattern=node.link[node.noLink- I ].backTraverscl Q; 

} 
if(bthresh =1) 
{ 

node.]ink[nodenoLink-I].updateThresh(val, S. blockset); 
} 

} 
if(val 	0) 

node.addToNode(new node. Mtree(element[m],sequenceNo,timeStamp[i],z.val)); 
} 

} 
} 

} 
} 

} 
} 

} 
} 

} 

public void traverse (int time,Mtree m,ArrayList blockset) 	// traverses Mtree in post order 
{ 
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int no=O; 
if(m.noLink!=O) 
{ 
while(no < m.noLink) 

{ 
traverse(time,m.Iink[no],blockset); 

if(m.link[no].delFlag= 1) 
{ 

int i0; 
m.link[no] = null; 
for(i = no; i < m.noLink - 1; i++) 
{ 

m.link[i] = m.link[i+l]; 
} 
m.noLink--; 
no--; 

} 
no++; 

} 
insert(m,t ime, b to ckset); 

} 
else 

insert(m,time,bl ockset); 
} 

public void postTraverse (int time,Mtree m,double threshold,ArrayList freqpattern) 
{ 	 // calculates frequent patterns 

int no=O; 
{ 

while(no < m.noLink) 
{ 

postTraverse(time,m.link[no],thresho ld,fregpattern); 
no+-; 

} 
if(m.calcO >= threshold) 
{ 

String pan=m.backTraverseO; 
int nit, count; 
nit = 0; 
count = 0; 
nit = pan.indexOf(" ", nit); 
while(nit!=-1) 
{ 

nit++; 
nit = pan.indexOf(" ", nit); 
count++; 

} 
if(count >= 2) 
{ 

PisaClient.fcnt++; 
for(int i =0 ;i<m.current;i-H-) 
{ 

dbOp d new dbOp(m.seq[i],pan); 
freqpattem.add(d); 

} 
} 

} 
} 

} 

public String backTraverse() 	 // back traces the path from node till root 



{ 
intj; 
inti=1; 
String pattern = new StringO; 
Mtree temp = this; 
while(!(temp.label.equals ("root'))) 
{ 

temp = temp.parent; 
} 
return pattern; 

} 

public double calc() 	 //calculates support count 
{ 

return this current; 
} 

public void addseq (String pattern,int seqno,int time,ArrayList b) 
{ 

String s pattern; 
tuple t =new tuple(seqno,time); 
for(int i =0 ;i< b.sizeO;i++) 
{ 

block c =(block)b.get(i); 
for(intj = 0; j < c.set.sizeO; j++) 
{ 

String str = (String)c.set.get(j); 
if(s.equals(str)) 
{ 

nodeList x = (nodeList)c.minSeq.get(j); 
x.seq.add(t); 

} 
} 

} 
} 

//adds sequence to pattern in blockset 

public int chkSensitive (String s,ArrayList b) 
{ 

for(int i = 0; i< b.sizeO; i++) 
{ 

block c =(block)b.get(i); 
for(int j = 0; j < c.set.sizeO; j++) 
{ 

String t = (String)c.set.get(j); 
if(t.equals(s)) 
{ 

return 1; 	// ifs exists in current blocked set 
} 

} 
} 
return 0; 

} 

//checks if the given string exists in the blockset 

public int chkLock (String str,ArrayList b) 	//checks if a sequence can be added to a node 

String s =str; 
int flag[] = new int[b.sizeO]; // checks if pattern s exists in ith blocked set 
int lockset[] = new int[b.sizeQ]; // set to be locked 
for(int i = 0; i< b.sizeO; i++) 
{ 

int count = 0; 
block c =(block)b.get(i); 



for(intj = 0; j < c.set.sizeO; j--+) 
{ 

int 1; 
String t = (String)c.set.get(j); 
if(t.equals(s)) 
{ 

flag[i] = 1; 	//ifs exists in current blocked set 
} 
else 
{ 

l = (Integer)c.thresh.get(j); 
if(l=1) 

count++; 
} 

} 
if(count 	c.set.size( - 1) 

	
// what for single element set 

{ 
lockset[i] = 1; 

} 
	

//need to lock this set 

for(int i = 0; i < b.sizeO ;i++) 
{ 

if((flag[i] = 1) && (lockset[i] = 1)) 
return 0; 	 //cannot add 

return 1; 
} 

public void chkBcandid (ArrayList b) 
{ 

if(bcandid =0) 
if(!(label.equals ("root"))) 
{ 

String s = backTraverse10; 
if(b!=null) 
for(int i = 0; i< b.sizeo;i++) 
{ 

block bl =(block)b.get(i); 
for(intj = O;j< bl.set.size0;j++) 
{ 

String t =(String)bl.set.get(j); 
t = t.substring(0,t.lengtho-1); 
if(s.equals(t)) 
{ 

this.bcandid=l; 
break; 

} 
} 

} 
} 

} 
} 

//checks if a pattern corresponds to a sensitive pattern 

Code for class gpatMiner in Horizontally Fragmented Scenario 

import java.util.*; 
import java.sgl.*; 

public class gpatMiner 
{ 

int Gseq = 0; 
int initial= 0; 
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ArrayList gData; 
double threshold; 
static ArrayList partyPat[] = new ArrayList[21; //keeps track of sequences contributed by each party 
static ArrayList freqPat = new ArrayList<patEle>(); 
ArrayList tempPat = new ArrayList<patEle>O; 
ArrayList sendPat = new ArrayList<String>(); 
public ArrayList gblockset = new ArrayList<block>Q; 

gpatMinero 
{ 

for(int i=O;i<partyPat.length;i++-) 
partyPat[i]=new ArrayList<dbOp>O; 

} 

public void calcSeqO 
{ 

int maxT =0; 
for(int i=0; i<PisaClient.seq. length ;i++) 
{ 

maxT = PisaClient.seq[i]+maxT; 
} 
maxT = maxT - ThirdParty.rno; 
Gseq = maxT; 
threshold = ThirdParty.minSup * Gseq; 

} 

public void arrPat(ArrayList fList,int party) 
{ 

previously stored 
int flag = 0; 
if(fList != null) 
{ 

for(int i = 0; i <fList.sizeO; i++) 
{ 

flag = 0; 
dbOp p = (dbOp)fList.get(i); 
if(fregPat != null) 
{ 

String name = null; 
int count = 0; 
for(int j=0;j< fregPat,size();j++) 
{ 

patEle q=(patEle)fregPat.get(j); 
name = q.label; 
count = q.count; 
if(p.pat.equals(q.l ab el)) 
{ 

flag=]; 
q. count = q.count + p.count; 
if(q.count =0) 
{ 

//calculates global threshold 

//adds recently acquired fregpatterns to 

//frequent patterns 

fregPat.remove(j); 

} 
else 
{ 

int flag]=0; 
for (int c=0;c<q.partyNames.sizeO;c--+) 
{ 

Integer partyl = (Integer)q.partyNames.get(c); 
System.out.println(party 1); 
if(party 1 = party) 
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{ 
flagl=l; 
break; 

} 
} 
if(flagl = 0) 
{ 

q.partyNames.add(party); 
} 

} 
break; 

} 
} 
if(flag = 0) 
{ 

if(name != null) 
{ 

patEle x = new patEle(p.pat,p.count,party); 
fregPat.add(x); 

} 
} 
flag=0; 

} 
} 
if(fregPat.size0=0) 
{ 

for(int i=0;i< fList.size();i++) 

dbOp d=(dbOp)fList.get(i); 
if(! d.pat. equals(nul l)) 
{ 

if(d.count> 0) 
{ 

patEle e = new patEle(d.pat, d.count, party); 
freqPat.add(e); 

} 
} 

} 
} 
if (fList.sizeO!=0) 
{ 

tempPat.clearO; 
int x = fregPat.sizeO; 
for(int i 0;i<x;i++) 
{ 

patEle p = (patEle)fregPat.get(i); 
patEle q = new patEle(p.label,p.count,p.partyNames); 
tempPat.add(q); 

} 
} 

} 

public ArrayList[] calcGpatlO 
{ 	 //stage Ito calculate global frequent patterns 

ArrayList arr[] = new ArrayList[2]; 
arr[0] = new ArrayList<String>O; 
arr[1] = new ArrayList<String>Q; 
if(fregPat!'null) 
for(int i=0;i<fregPat.size();i++) 
{ 

patEle p = (patEle)fregPat.get(i); 
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if(p,count >= threshold) 
{ 

chkB lock(p.l abel, gblo ckSet); 
sendPat.add(p.label); 
fregPat.remove(i); 

else 
for(int j=Oj<partyPat.lengthj++) 
{ 

int flag = 0; 
for(int z=0;z<p.partyNames.sizeO;z++) 
{ 

if((Integer)p.partyNames.get(z) = j) 
{ 

flag = 1; 
break; 

} 
} 
if(flag =0) 
{ 

arr[j]. add(p.label); 
} 

} 
} 
return arr; 

} 

!/assign pattern to parties 

//gets candidate patterns from other Dps public void calcGpat2(ArrayList all) 
{ 

int flag; 
ArrayList subset = new ArrayList<patEle>(); 
if(a != null) 

subset = getFromDp(a); 
if(subset != null) 

for(int j=0;}<subset.size() j++) 
{ 

flag = 0; 
patEle d = (patEle)subset.get(j); 
if (fregPat!=null) 

for(int i=O;i<fregPat.sizeQ;i++) 
{ 

patEle e = (patEle)fregPat.get(i); 
if(d.label. equals(e.label)) 
{ 

e.count = e,count +d.count; 
flag 1; 
break; 

} 
} 
if(flag = 0) 
{ 

freqPat.add(d); 
} 

} 
} 

public void calcGpat3Q 
{ 

if(fregPat!= null) 
for(int i = 0;i<fregPat.size();i++) 

//update support counts 

//computes frequent patterns in round 2 

73 



{ 
patEle d = (patEle)fregPat.get(i); 
if(d.count >= threshold) 
{ 

int chk = chkBlock(d.label , gb]ockSet ) 
if (chk =1) sendPat.add(d.label); 

} 
} 
fregPat.clearO; 
for(int i=0;i<tempPat.sizeO;i++) 
{ 

patEle p = (patEle)tempPat.get(i); 
freqPat.add(tempPat.get(i)); 

} 

public void sendO 
{ 

for(int i =0; i <sendPat.sizeO ; i++) 
{ 

String s = (String)sendPat.get(i); 
for(int j = 0; j < partyPat.lengthj++) 
{ 

for(int k = 0 ; k<partyPat[j].sizeO ; k++) 
{ 

dbOp d = (dbOp)partyPat[j].get(k); 
if(d.pat.equals(s)) 
{ 

try{ 
ThirdParty.c[j] . sendPattem(s); 

} 
catch(Exception e) 
{ 

e.printStackTraceO; 
} 
break; 

} 
} 

} 
} 
sendPat.cleard; 

// decides which pattern goes to which party 

} 
} 

} 

Code for Implementing Third Party in Horizontal Fragmentation 

import java.rmi.*; 
import java.net.*; 
import java.io.*; 
import java.util.*; 
import sun.nio.ch.ServerSocketAdaptor; 

/* connects to multiple Dps manages time and other mining activities*/ 

public class ThirdParty 
{ 

int maxTime; 
static int currentTime= 0; 
static double minSup; 
static int seq[]; 	 //stores no of dist seq in each party 
static int poi; 
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static Datalntf c[]; 
gpatMiner g; 
ArrayList freqPat[]; 
ServerSocket esock; 
boolean ok = false; 

ThirdParty (double x, int y, int t) 
{ 	 //sets minimum support and poi 

minSup = x; 
poi = y; 
int no=t; 
seq =new int[t]; 
c = new Datalntf[2]; 
g = new gpatMinerO; 
try 
{ 

csock=new ServerSocket(12345); 
for(int i=0;i<no;i++) 
{ 

c[i] _ (Datalntf)Naming.lookup("rmi://localhost/Dp"+s); 
c[i].setCparams(InetAddress.getLocalHostf.getHostAddressO, 12345); 
seq[i]=O; 

} 
catch (Exception e) 
{ 

e.printStackTraceO; 

public void timeCalcO 
{ 

int flag=0; 
try( 

while(currentTime<= maxTime) 
{ 

flag-0; 
g,ginitQ; 
for(int i=0;i<2;i++) 
{ 

c[i].putTime(currentTime); 
seq[i] = c[i].getNoSeq(currentTime, minSup, poi,ThirdParty.rno); 
c[i].processO; 
g. gpatMine l (i); 

} 
g.calcSegQ; 
ArrayList arr[] = g.calcGpat1 ; 
if(arr!= null) 

g. calcGpat2(arr); 
g.calcGpat3 Q; 
g.sendQ; 
currentTime++; 

} 
catch(Exception e) 
{ 

e.printStackTraceO; 
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