
SECURE GROUP- REKEYING USING BALANCED BINARY
TREE IN DISTRIBUTED ENVIRONMENT

A DISSERTATION
Submitted in partial fulfillment of the

requirements for the award of the degree
of

MASTER OF TECHNOLOGY
in

COMPUTER SCIENCE AND ENGINEERING

By

RANAJIT SENKO

DEPARTMENT OF ELECTRONICS AND COMPUTER ENGINEERING
INDIAN INSTITUTE OF TECHNOLOGY ROORKEE

ROORKEE-247 667 (INDIA)

JUNE, 2009

Candidate's Declaration

I hereby declare that the work being presented in the dissertation report titled "Secure

Group Rekeying Using Balanced Binary Tree in Distributed Environment" in partial

fulfillment of the requirement for the award of the degree of Master of Technology in

Computer Science and Engineering, submitted in the Department of Electronics and

Computer Engineering, Indian Institute of Technology Roorkee, is an authentic record of

my own work carried out under the guidance of Dr. Kuldip Singh, Professor, in

Department of Electronics and Computer Engineering, Indian Institute of Technology

Roorkee. I have not submitted the matter embodied in this dissertation report for the

award of any other degree.

Dated: 36- 06— 0 9 	 (Ranajit Senko)

Place: IIT Roorkee

Certificate
This is to certify that above statements made by the candidate are correct to the best of

my knowledge and belief.

Dated: 3O- 06. p
Place: IIT Roorkee.

Dr. Kuldip Singh,

Professor,

Department of Electronics

and Computer Engineering,

IIT Roorkee, Roorkee,

247667 (India).

U

ACKNOWLEDGEMENTS

I am thankful to Indian Institute of Technology Roorkee for giving me this opportunity. It

is my privilege to express thanks and my profound gratitude to my supervisors Dr.

Kuldip Singh, Professor for their invaluable guidance and constant encouragement

throughout the dissertation. I was able to complete this dissertation in time due to the

constant motivation and support received from them.

I am also grateful to Mr. Sandeep Sood for helping me to understand some basic and

important concepts explored in the dissertation work. I am grateful to Mr. Tirumalesh .C,

Mr. Sandip Lokhande, Mr. Manoj Gupta and to all my friends who helped me directly and

indirectly in completing this dissertation. Most importantly, I would like to extend my

deepest appreciation to my family for their love, encouragement and moral support.

(Ranajit Senko)

ii

ABSTRACT

Secure group communication is important for building distributed applications that

work in dynamic network environments and communicate over insecure networks such

as the global Internet. They can be used to building fault tolerant distributed

applications. They can also provide support for distributed operating systems,

distributed transactions and load balancing. The design and implementation of these

distributed applications can be simplified by the group communication system. In

distributed group communication systems, there is no single point of failure unlike
centralize systems.

Though a large number of methods have been proposed and implemented for secure

group communication in distributed environment, but they differ from each other in

many aspects. These are computational overhead, storage requirement at each member,

communicational overhead, distribution of load among group members and delay due to

group membership change in new group key agreement. Also, there is no method to

reduce the average waiting time for joining members. A lot of methods have already

been proposed to solve these problems, but still there are no unique solutions to these
problems.

In this Dissertation entitled "Secure Group Rekeying using Balanced Binary Tree in

Distributed Environment", a solution is proposed for distributed key agreement

algorithm which minimizes the computational overhead of group members, storage

requirement at each group members and also reduces the average waiting time for

joining members. It also ensures the message authentication very easily without the

overhead of digitally signed messages. It also reduces the message delivery delay which

makes group communication operation faster.

The implementation of the proposed work is done using java based event simulator JiST

(Java in Simulation Time). The results of the proposed method are compared with the

existing methods and improvement is obtained on computational overhead, number of

rekeying messages, message delivery delay and average waiting time for the joining

members.

111

CONTENTS

CANDIDATE'S DECLARATION ..i

ACKNOWLEDGEMENTS ..ii
ABSTRACT...iii
CONTENTS..iv

1. INTRODUCTION
1.1 Introduction ..1
1.2 Motivation2
1.3 Problem Statement ...2
1.4 Organization of the Report ...3

2. BACKGROUND
2.1 Overview .. 4
2.2 Key Management Role ..4
2.3 Centralized Group Key Management Protocol6

2.3.1 Group Key Management Protocol6
2.3.2 Logical Key Hierarchy7
2.3.3 One-Way Function Tree............10
2.3.4 One-Way Function Chain Tree11
2.3.5 Centralized Flat Table ...1 3

2.4 Decentralized Group Key Management Protocol14
2.4.1 Scalable Multicast Key Distribution15
2.4.2 Intra-Domain Group Key Management Protocol15
2.4.3 Hydra Protocol ...16

iv

2.4.4 Baal Protocol 	 .17

2.4:5 MARKS Protocol ...1 8
2.5 Distributed Group Key Management Protocol:............19

2.5.1 Burmester and Desmedt Protocol20
2.5.2 Group Deffie-Hellman Key Exchange.........21

3. RELATED WORK
3.1 Related Work ..22
3.2 Research Gaps23

4. PROPOSED SYSTEM
4.1 Introduction ..24
4.2 Informal Description of Algorithm26
4.3 Group Key Agreement ...28

4.4 Merging of Two Balanced Tree ...29

4.5 Batch Rekeying Algorithm ...34

5. SIMULATION AND RESULTS
5.1 JiST Simulator....... 3 8
5.2 Simulation Parameter ...3 9
5.3 Results ..40

6. CONCLUTION AND FUTURE WORK
6.1 Conclusion and Future Work ...:..........44

REFERENCES...45
APPENDIX: ALGORITHM LISTING

INTRODUCTION 	 CHAPTER 1

1.1 Introduction

A distributed system consists of a collection of autonomous computers, connected

through a network, which enables computers to coordinate their activities and to share the

resources of the system. As a result, users realize the system as a single integrated

computing facility. Group communication is an important service in distributed system

which is provided by a component of a distributed system, called Group Communication

System. A Group Communication System facilitates multipoint to multipoint

communication among a group of processes in a distributed system. The Group

Communication Systems are useful for building real world distributed systems. They can

be used to build fault tolerant distributed applications. They can also provide support for

distributed operating systems, distributed transactions and load balancing. Recently, they

are also being used for collaborative computing applications like video conferencing.

The explosive growth of the internet has increased both the number and the popularity of

applications that require a reliable group communication infrastructure. Secure group

communication is important for building distributed applications that work in dynamic

network environments and communicate over insecure networks such as the global

Internet. Key management is the main issue for providing common security services (data

.secrecy, authentication and integrity) for group communication.

There are several different approaches to group key management and are divided into

three main classes: centralize, decentralized and distributed group key management

protocols [1]. In distributed key management approach, there is no group controller.

Moreover, an advantage of distributed protocols over the centralized protocols is the

increase in system reliability because the group key is generated in a shared and

contributory fashion and there is no single point of failure. In distributed group key

management system, group key is generated in a contributory fashion, where all members

contribute their own share to the computation of the group key. When a member join or

leave the group, group key needs to be refresh in order to provide backward or forward

1

secrecy, which is called individual rekeying. But individual rekeying has two problems:

inefficiency and out of sync problem between key and data. To solve these two problems,

a periodic batch rekeying method was proposed [2, 3 and 4]. But most of the approaches

do not satisfy all attributes that make the group communication system more practicable.

These attributes are computational overhead to each member, communicational overhead,

and storage requirement of each member and distribution of load among group members.

1.2 Motivation

Centralized system has a problem of single point of failure. But in distributed system,

there is no such problem. Moreover, it increases the system reliability as the group key is

generated in a shared and contributory fashion. Whenever membership gets changed,

group key needs to be refreshed in order to provide forward and backward secrecy. When

it occurs with respect to a single member join or leave request, it is called individual

rekeying. But it has two problems: inefficiency and out-of-sync problem. To overcome

these two problems a periodic batch rekeying method is used. It is efficient because it

reduces the number of rekey messages. But there is no unique solution which takes care

of all the following problems in batch rekeying: computational overhead to each member,

communicational overhead, and storage requirement of each member and distribution of

load among group members, as well as average waiting time of joining members.

1.3 Problem Statement

The aim of this dissertation work is to design an algorithm for efficient implementation of

secure distributed group communication. The main objective of the proposed algorithm is

to minimize the cost and storage requirement of each members of the group, to minimize

the computational overhead at each member and to minimize the average waiting time for

joining of new members in group.

2

1.4 Organization of the Report

The report is divided into six chapters including this introductory chapter. Rest of the

report is organized as follows:

Chapter 2 gives an over view of Group Communication System, classification of Group

Communication System and different techniques available in each class briefly.

Chapter 3 presents brief description about the work done in the field of distributed group

key agreement.

Chapter 4 describes the details of the proposed algorithm.

Chapter 5 discusses simulation results obtained from simulation.

Chapter 6 concludes the dissertation and provides directions for the future work.

3

BACKGROUND
	

CHAPTER 2

2.1 Overview

The explosive growth of the internet has increased both the number and the popularity of

applications, that require a reliable group communication infrastructure. Some of them are

Pay-per-view, stock quote distribution, voice and video conferencing, white boards and

distributed simulations. Secure group communication is important for building distributed

applications that work in dynamic network environments and communicate over insecure

networks such as the global Internet. Key management is the main thing for providing

common security services (data secrecy, authentication and integrity) for group

communication.

The messages send among the group members are protected by encryption using the

chosen key, which in the context of group communication, is called the group key. Only

those who know the group key are able to extract the original message. The group may

require the group key to be refreshed whenever the membership changes in order to

preserve forward and backward secrecy. Group key management approaches can mainly

be divided into three main classes [1]:

• Centralized Group Key Management Protocol

• Decentralize Group Key Management Protocol

• Distributed Group Key Management Protocol

2.2 Key Management Role

This section represents the common goal of three classes just mentioned above. Key

management plays an important role in enforcing access control on the group key. It

supports the establishment and maintenance of key relationships between valid parties

according to a security policy being enforced on the group [5]. It encompasses techniques

and procedures that can carry out:

El

• Providing member identification and authentication. Authentication is important in

order to prevent an intruder from impersonating a . legitimate group member. In

addition, it is important to prevent attackers from impersonating key managers. Thus,

authentication mechanisms must be used to allow an entity to verify whether another

entity is really what it claims to be.

• Access control. After a party has been identified, its join operation should be

validated. Access control is performed in order to validate group members before

giving them access to group communication.

• Generation, distribution and installation of key material: It is necessary to change

the key at regular intervals to make safe its secrecy. Additional care must be taken

when choosing a new key to guarantee key independence. Each key must be

completely independent from any previously used and future keys; otherwise;

compromised keys may reveal other keys.

The key secrecy can be extended to membership changes. When a group requires

backward and forward secrecy [7], the key must be changed for every membership

change. Backward secrecy is used to prevent a new member from decoding messages

exchanged before it joined the group. If a new key is distributed for the group when a

new member joins, it is not able to decipher previous messages even if it has recorded

earlier messages encrypted with the old key. Forward secrecy is used to prevent a leaving

group member to continue accessing the group's communication. If the key is changed as

soon as a member leaves, that member will not be able to decipher group messages

encrypted with the new key.

As multicast is being used for group transmission, it is generally assumed that multicast

should also be used to rekey the group. It is not reasonable to consider transmitting data

using a scalable multicast communication and rekeying the members under a non scalable

peer-to-peer communication. If the group has thousands of members, sending them a new

key one by one would not be efficient. Although rekeying a group after the join of a new

member is trivial, rekeying the group after a member leaves is far more complicated. The

old key cannot be used to distribute a new one, because the leaving member knows the

5

old key. A group key distributor must therefore provide other mechanisms to rekey the

group using multicast messages while maintaining the highest level of security possible.

2.3 Centralized Group Key Management Protocol

In a centralized system, there is only one entity controlling the whole group. Therefore,

there is a problem of single point of failure. The entire group will be affected if there is a

problem with the controller. The group privacy is dependent on the successful

functioning of the single group controller. When the controller is not working, the group

becomes vulnerable because the keys, .which are the base for the group privacy, are not

being generated/regenerated and distributed. Furthermore, the group may become too

large to be managed by a single party, thus raising the issue of scalability. The group key -

management protocol used in a centralized system seeks to minimize the requirements of

both group members and Key Distribution Center (KDC) in order to augment the

scalability of the group management. The efficiency of the protocol can be measured by:

• Storage requirements. The number of key encryption keys (KEKs) that group

members and the KDC need to keep.

• Size of messages. Measure by the number of bytes requires for a rekey message for

adding and removing members. The protocol can combine unicast and multicast

messages to achieve the best results. Note that the usage of unicast channels implies

establishing a secure channel, hence increasing the total cost of the protocol.

• Backwards and forward secrecy. The capability of a protocol to provide secrecy

despite changes to the group membership._

• Collusion. Evicted members must not be able to work together and share their

individual piece of information to regain access to the group key.

2.3.1 Group Key Management Protocol

The Group Key Management Protocol (GKMP) [8, 9] enables the creation and

maintenance of a group key. In this approach, the Key Distribution Center (KDC) helped

by the first member to join the group creates a Group Key Packet (GKP) that contains a

group traffic encryption key (GTEK) and a group key encryption key (GKEK). When a

on

new member wants to join the group, the KDC sends it a copy of the GKP. When a rekey

is needed, the GC generates a new GKP and encrypts it with the current GKEK ({GTEK}

GKEK). As all members know the GKEK, there is no solution for keeping the forward

secrecy when a member leaves the group except to recreate entirely new group without

that member.

2.3.2 Logical Key Hierarchy

Wong et al. [10] proposed the use of a Logical Key Hierarchy (LKH). In this approach, a

KDC maintains a tree of keys. The nodes of the tree hold key encryption keys. The leaves

of the tree correspond to group members and each leaf holds a Key Encryption Key

(KEK) associated with that one member. Each member receives and maintains a copy of

the KEK associated with its leaf and the KEKs corresponding to each node in the path

from its parent leaf to the root. The key held by the root of the tree is the group key. For a

balanced tree, each member stores at most (log2. ') + 1 keys, where (log2") is the height

of the tree. For example, as shows in Figure 2.1, member ul knows k1, k12, k14 and k. A

joining member is associated with a leaf and the leaf is included in the tree. All KEKs in

the nodes from the new leafs parent in the path to the root are compromised and should

be changed (backward secrecy). A rekey message is generated containing each of the new

KEKs encrypted with its respective node's children KEK. The size of the message

produced will be at most 2 * (log2 ") keys long. Figure 2.1 shows an example of the

KEKs being affected. The new member u3 receives a secret key k3 and its leaf is attached

to the node k34. The KEKs held by nodes k34, k14 and k, which are the nodes in the path

from k3 to k, are compromised. New KEKs (k'34, k'14 and k') are generated as shown in

Figure 2.2. Finally, the KEKs are encrypted with each of its respective node's children

KEK ({k'34} k3, k4; {k' 14} k12, k'34; and {k} k'14, kss (as shown in Figure 2.2). The size of a

rekeying message for a balanced tree has at most 2 * (log2 n) keys. Removing a member

follows a similar process. When a member leaves (or is evicted from) the group, its

parent node's KEK and all KEKs held by nodes in the path to the root are compromised

and should be updated (forward secrecy). A rekey message is generated containing each

of the new KEKs encrypted with its respective node's children KEK. The exception is the

parent node of the leaving member's leaf. The KEK held by this node is encrypted only

7

with the KEK held by the remaining member's leaf. As the key held by the leaving

member was not used to encrypt any new KEK, and all its known KEKs were changed, it

is no longer able to access the group messages.

Figure 2.1 KEKs affected when a member joins the tree

Figure 2.3 presents what happens when a member leaves. Member u4 is leaving the group

and it knows KEKs k34, k14 and k. KEKs k'34, k'14 and k' are updated and encrypted with

each of its respective children's KEKs. An exception is made for the k'34. This KEK is

encrypted only with k3, which is the key of the remaining member of n34. There has

another same approach like LKH except for joining operations. Instead of generating

fresh keys and sending them to members already in the group, all keys affected by the

membership change are passed through a one way function. Every member that already

knew the old key can calculate the new one. Hence, the new keys do not need to be sent

and every member can calculate them locally. This algorithm is known as LKH+.

c•.

{k'}k'14
• {k' }k58

{k'14}k'12 	k' 	 kss
{k' 14}k'34 	14

NJ

k12 '34}k3
34}k4

{x}k means x has been encrypted with k

Figure 2.2 Necessary encryption -when a member join's the tree in the basic LKH.

	

k• \ 	{k'}k' 14

J {k'}k58

{k' 14}k' 12

	

{k' 14}k'34 	k' 8
14

	

k12 	 K' 	{k'34}k3
34 I {k'34}k4

K3 	K4

{x}k means x has been encrypted with k

Figure 2.3 Necessary encryption when a member is removed in the basic LKH.

2.3.3 One-Way Function Tree

An improvement over hierarchical binary tree approach is a one-way function tree (OFT)

[11]. This scheme reduces the size of the rekeying message from 2 * (log2 r) to only (loge

n). Here a node's KEK is generated rather than just attributed. The KEKs held by a node's

children are blinded using a one way function and then mixed together using a mixing

function. The result of this mixing function is the KEK held by the node. This is

represented by the following formula:

ki = f (g (ktett(i)), g (k right(i)) (1)

Where left(i) and right(i) denote the left and right children of node i respectively. The

function g is one way, and f is a mixing function: ancestors of a node are those nodes in

the path from its parent node to the root. The set of ancestor of a node is called ancestor

set and the set of siblings of the nodes in ancestor set are called sibling set (as shows in

Figure 2.4). Each member receives the key (associated to its leaf node), its sibling's

blinded key and the blinded keys corresponding to each node in its sibling set. For a

balanced tree, each member stores log2" + 1 keys. For example, in Figure 2.4, member U4

knows key k4 and blinded keys k3B (its sibling's blinded key) and k12B and k58B (blinded

keys in u4's sibling set). Putting these values in equationl, member U4 is able to generate

all keys in its ancestor set (k34, k14 and k). The message size reduction is achieved

because in the standard scheme, when a node's key changes, the new key must be.

encrypted with its two children's keys, and in the OFT scheme, the blinded key changed

in a node has to be encrypted only with the key of its sibling node. Figure 2.5 shows an

example of this scheme. Member 113 joins the group at node n34. It requires keys k34, k14

and k to be changed. The only values that must be transmitted are the blinded KEKs k3B,

k'34B and k' 14B. And all encrypted with k4, k12 and k58 respectively. The new KEKs can be

calculated by every group member: k'34 = f (g (k3), g (kk)), k'14 = f (g (k12), g (k'34)) and

k' = f (g (k' 14), g (kss)).

10

Figure 2.4 Ancestor and sibling sets of member

g(k' 14) 	(c) {g(k' 14)} k58

{g(k'34)}k12
k) 	g(k'34) (k58

k12) 	 (
A

K') 	{g (k3)}k4
7

g (k3)

K3) 	(K4

Figure 2.5 Necessary encryption when u3 joins the tree in the improved LKH.

2.3.4 One-Way Function Chain Tree

Canetti et al. [12] proposed a slightly different approach that achieves the same

communication overhead as in case of one way function tree. This scheme uses a pseudo

random generator to generate the new KEKs rather than a one way function and it is

11

applied only on user's removal. This scheme is known as the one way function chain tree.
The pseudo random generator, G(x), doubles the size of its input (x), and there are two
functions, L(x) and R(x), that represent the left and right halves of the output of G(x)
(i.e., G(x) = L(x)R(x), where I L(x) I = I R(x) I _ I x 1). When a user u leaves the group,
the algorithm to rekey the tree goes as follows:
• A new value r is associated to every node v from u to the root of the tree using rp(„) _

r for the first node and rp(v) = R(r,) for all other v (where p(v) denotes the parent of v).
• The new keys are generated as k'„ = L (r).
• Each rp(v) is encrypted with key ks(v) (where s(v) denotes the sibling of v) and sent off.

From r, one can compute all keys k', k'p(v), k'p(p(,)) up to the root node key. Taking
into account the example of Figure 2.1, if ul leaves the group (Figure 2.6), nodes n12,
n14 and no will be associate respectively with r, R(r) and R(R(r)) and these values will
be encrypted for n2, n34 and n58, with their respective KEKs (k2, k34 and k58). Finally,
the new KEKs k12, k14 and k will be L(r), L(R(r)) and L(R(R(r))).

k'=L(R(R(r))) 	(k

{R(R(r))} k5 8
k' 14= L(R(r))

k14 k58

k' 12=T .(r)

{R(r)}k34

k12-

k34

KI

{r}k2

MA

Figure 2.6 New key r is attributed to leaf K2

12

2.3.5 Centralized Flat Table

Waldvogel et al.[13] extended their own solution and proposed to change the hierarchical

tree for a flat table (FT) with the effect of decreasing the number of keys held by the

KDC. The table has one entry for the Traffic Encryption Key (TEK) and 2w more entries

for KEKs, where w is the number of bits in the member id. There are two keys available

for each bit in the member id, one associated with each possible value of the bit (Table

2.1 shows an example with w = 4). A member knows only the key associated with the

state of its bit. In total, each member holds w + I keys. For example, a member with id

0101 knows KEKO.0, KEK1.1, KEK2.0 and KEK3.0 (as shown in Table 2.1).

When a member leaves the group, all keys known by it are changed and the KDC sends

out a rekey message containing two parts. The first part has the new TEK encrypted with

each unchanged KEK (any member with an id with at least one single bit of difference

from the leaving member's - id can recover the TEK). In the second part, each of the new

KEKs is encrypted with its old KEK and with the new TEK (as shown in Table 2.2). This

way, every remaining member can update its old KEKs without gaining further

knowledge about the KEKs other members had. This scheme is susceptible to collusion

attacks. A set of evicted members, which have IDs with complementary bits, - may

combine their sets of keys to recover a valid set of keys and hence are able to have

unauthorized access to group communication. -

Table 2.1.
Flat ID assignment

TEK

KEKO.0 KEK 0.1

KEK 1.0 KEK 1.1

KEK 2.0 KEK 2.1

KEK 3.0 KEK 3.1

ID Bit #0

ID Bit #1
ID Bit #2
ID Bit #3

Bit 0 	 Bit 1 	-

13

Table 2.2
Message to execute member 0101

TKE

(KEK 0.0new) TEKnew (TEKnew) KEK 0.1

(TEKnew) KEK 1.0 (KEK 1.1 new) TEKnew

(KEK 2.0) TEKnew (TEKnew) KEK 2.1

(TEKnew) KEK 3.0 . (KEK 3.1 new) TEKnew

Bit 0 	 Bit!

ID Bit #0

ID Bit #1
ID Bit #2

ID Bit #3

2.4 Decentralized Group Key Management Protocol

In a decentralized subgroup approach, the large group is split into smaller subgroups.

Different controllers are used to manage each subgroup thereby minimizing the problem

of concentrating the work on a single place. In this approach, more entities are allowed to

fail before the whole group is affected. We use the following attributes to evaluate the

efficiency of decentralized frameworks:

• Key Independence. Each key must be completely independent from any previous

used and future keys; otherwise compromised keys may reveal other keys.

• Decentralized controller. A centralizing manager should not manage the subgroup

managers. The central manager raises the same issues as the centralized systems,

namely if the centralizing manager is unavailable, the whole group is compromised.

• Local rekey. Membership changes in a subgroup should be treated locally, which

means that rekey of a subgroup should not affect the whole group. This is also known

as the 1-affects-n problem.

• Key vs. data. The data path should be independent of the key management path,

which means that rekeying the subgroup should not impose any interference or delays

to the data communication.

• Rekey per membership. Related to backward and forward secrecy.

14

• Type of communication. Group with a single data source are said to use 1-to-n

communication, and groups with several or all members being able to transmit are

characterized by using n-to-n communication.

2.4.1 Scalable Multicast Key Distribution

Ballardie [14] proposed the scalable multicast key distribution (SMKD) protocol, which

uses the tree built by the Core Based Tree (CBT) multicast routing protocol [15, 16] to

deliver keys to multicast group members. In the CBT architecture, the multicast tree is

rooted at a main core. Also, cores can exist eventually. The main core creates an access

control list (ACL). Group key and key encryption key (KEK) are used to update the

group key. The ACL, the group key and the key encryption key are transmitted to

secondary cores and other nodes, when they join the multicast tree after their

authentication. Any router or secondary core authenticated with the primary core can

authenticate joining members and use the ACL to distribute the keys, but only the main

core generates those keys. The SMKD protocol does not provide the forward secrecy

when a member leaves the group. It has to execute afresh each time when a member

departs.

2.4.2 Intra-Domain Group Key Management Protocol

T. Hardjono et al. [17] proposed the Intra-domain Group Key Management Protocol

GKMP. Architecture divides the network into administratively scoped areas. There is a

Domain Key Distributor (DKD) and many Area Key Distributors (AKDs). Each AKD is

responsible for one area. Figure 2.7 exemplifies this architecture. The group key is

generated by the DKD and is propagated to the group members through the AKDs. The

DKD and AKDs belong to a multicast group called All-KD-Group. The DKD uses this

group to transmit rekey messages to the AKDs who rekey in turn their respective areas.

This architecture suffers from a single point of failure, which is the DKD that is the entity

responsible for generating the group key. Besides, in case of an AKD failure, members

belonging to the same area will be not able to access the group communication.

15-

2.4.3 Hydra Protocol

Rafeli et al. [18] proposed Hydra protocol, wherein the group is organized into smaller

subgroups and a server called the Hydra server (HSi) controls each subgroup i. If a

membership change occurs at subgroup i, the corresponding HSi generates the group key

and sends it to the other HSj involved in that session. In order to have the same group key

distributed to all HSs, a special protocol is used to ensure that only a single valid HS is

generates the new group key whenever required. Figure 2.8 depicts the Hydra

architecture.

A1l-KD-group

Local area group 	 Local area group 	 Local area group

Figure 2.7 Intra-domain Group Key Management Protocol Architecture

16

Layer 1

Layer 2

Figure 2.8 Hydra Architecture

2.4.4 Baal Protocol

Chaddoud et al. [19] proposed a protocol that is known as Baal protocol, which defines

three entities:

• The Group Controller (GC): It maintains a participant list and creates and distributes

the group key to group members via local controllers.

• Local Controllers (LC): The GC delegates a LC to each subnet (generally a local

network) to manage the keys within its subnet. When a LC receives a new group key,

it distributes it to the members connected to its subnet. Besides, a LC can play the

role of the GC by generating and distributing new group keys after membership

changes following some coordination rules.

• Group member: It belongs to participation list. When a membership change occurs at

a subnet, the corresponding LC can generate a new group key and distribute it to its

subnet and to the other members via their LCs. To assure that a single LC generates a

new group key at a time, the GC assigns a priority to each LC and when many LCs

17

distribute simultaneously a new group key, the LCs are instructed to commit to the

group .key issued by the LC having the highest priority.

2.4.5 MARKS Protocol

In MARKS protocol, Briscoe [20] suggest slicing the time length to be protected (such as

the transmission time of a TV program) into small portions of time and using a different

key for encrypting each slice. The encryption keys are leaves in a binary hash tree that is

generated from a single seed. The internal nodes of the tree are also called seeds. A

blinding function, such as MDS, is used on the seed to create the tree in the following

way:

• First, the depth D of the tree is chosen. The depth, D, defines the total number (N) of

keys- (N = 2D).

• Then, the root seed, So,o, is randomly chosen. In S1, j, i represents the depth of the seed

in the tree, and j is the number of that key in level i.

• After that, two intermediate seeds (left and right) are generated. The left node is

generated by shifting So,o one bit to the left and applying the blinding function on it

(Si, 0 = b(ls(So,o))). The right node is generated by shifting So,o one bit to the right

and applying the blinding function on it (S 1, 1 D b(rs(So,o))).

• The same algorithm is applied to. the following levels until the expected depth is

reached.

Users willing to access the group communication receive the seeds needed to generate the

required keys. For example, Figure 2.9 shows a binary hash tree of depth 3. If a user

wants to participate in the group from time 3 to 7, it would be necessary to have only two

seeds: S3,3, as K3, and S1,1, to generate K4 till K7. This system cannot be used in situations

when a membership change requires change of the group key, since the keys are changed

as a function of the time.

Figure 2.9 Binary Hash tree

2.5 Distributed Group Key Management Protocol

The distributed key management approach is characterized by having no group controller.

The group key can be either generated in a contributory fashion, where all members

contribute their own share to computation of the group key, or generated by one member.

In the latter case, although it is fault tolerant, it may not be safe to 'leave any member to

generate new keys since key generation requires secure mechanisms, such as random

number generators, that may not be available to all members. Moreover, in most

contributory protocols (apart from tree-based approaches), processing time and

communication requirements increase linearly in term of the number of members.

Additionally, contributory protocols require each user to be aware of the group

membership list to make sure that the protocols are robust.

19

The - following attributes are used to evaluate the efficiency of distributed key

management protocols:

• Number of rounds: The protocol should try to minimize the number of iterations
among the members to reduce processing and communication requirements.

• Number of messages: The overhead introduced by every message exchanged between

members produces unbearable delays as, the group grows. Therefore, the protocol
• should require a minimum number of messages.

• Processing during setup: Computations needed during setup time. Setting up the
group requires most of the computation involved in maintaining the group, because
all members need to be contacted. 	 -

• DH key: Identifying whether the protocol uses Diffie—Hellman (DH) to generate the

keys. The use of DH to generate the group key implies at=thes - oup key is generated
in a contributory fashion.

2.5.1 Burmester and Desmedt Protocol 	 L'4 9
Burmester et al. [21] proposed a practical confereho.eyribnY.t6ms based on

Mae
public keys, which authenticate the users which are prove n tz5 ' e secure provided the

Diffie-Hellman problem is intractable. A certain number of interactions is needed but the

overall cost is low. But there is a complexity tradeoff. Depending on the network used, it

either have a constant (in the number of conference participants) number of rounds or a

constant communication and computation overhead. It is a very efficient protocol that
executes in only three rounds:

1. member mi generates its random exponent ri and broadcasts Z; = d' ;

2. member m; computes and broadcasts X; = (Z; +i 1 Z; _
3. member mi can now compute key k = Z' 'j..1 . Xn-i i . Xn-2 i+1 ... X;_2 mod p.

The BD protocol requires n + 1 exponentiations per member and in all but one the

exponent is at most n - 1. The main drawback is the requirement of 2n broadcast
messages.

20

2.5.2 Group Deffie-Hellman Key Exchange

Group Diffie—Hellman key exchange [2] is an extension of the DH key agreement

protocol that supports group operations. The DH protocol is used for two parties to agree

on a common key. In this protocol, instead of two entities, the group may have n

members. The group agrees on a pair of primes (q and fi) and starts calculating in a

distributive fashion the intermediate values. The first member calculates the first value

(a"1) and passes it to the next member. Each subsequent member receives the set of

intermediary values and raises them using its own secret number generating a new set. A

set generated by the ith member will have i intermediate values with i - 1 exponents and a

cardinal value containing all exponents.

21

RELATED WORK 	 CHAPTER 3

3.1 Related Work

Different approaches have been proposed for distributed batch rekeying for group

communications. Wong et al. [22] proposed the key tree approach for secure group

communications. They suggested to associate keys in a hierarchical tree and rekey at

every join or leave event. They provided this key tree- approach for the solution to the

scalability problem of the group key management. Later Steve et al. [23] introduced the

concept of batch rekeying to enhance system efficiency since the rekeying workload is

independent of membership dynamics. All the above approaches rely on a centralized key

server, which is responsible for generating and distributing new keys.

Steiner et al. [2] used first to address dynamic membership issues in group key agreement

and proposed a family of Group Diffie-Hellman (GDH) protocols (GDHl, GDH2 and

GDH3) based on straightforward extensions of the two parties Diffie-Hellman (DH).

GDH provides contributory authenticated key agreement, key independence, key

interiority and resistance to known key attacks. These protocols are not very efficient for

the following reasons. First, there is a large delay incurred during initial establishment of

group key, since exponentiation operations at each member are -performed only after it

receives the result of an exponentiation from its previous member. And the last one is the

group leader will have to do 0(n) exponentiation operations on every membership change

events. This causes a large delay in the formation of the new group key.

The TGDH protocol [3] solves many of the problems associated with the GDH protocols.

Each member participating in the secure group communication (SGC) maintains a binary

key tree. The members occupy the leaf nodes. Every internal node nd of the binary tree

represents a key shared by all members which are leaf nodes of the binary subtree rooted

at nd and is computed by a single DH key agreement protocol between two groups of

members occupying the leaf nodes of the two subtrees rooted at the two child nodes of

22

nd. Though the TGDH protocol is very efficient, it loads the members of the SGCS

because of the 2D (D is the depth at which a new member is added to the tree or an old

member is removed from the tree) serial exponentiation operations per membership
change. This causes a lot of delay in resuming normal group communication.

Lee et al. [4] described three interval based distributed rekeying algorithms: Rebuild

algorithm, the Batch algorithm and the Queue-batch algorithm. The use of interval based

rekeying aims to maintain good rekeying performance independent of the dynamics of

joins and leaves. These algorithms were based on the following assumptions: The key
tree of TGDH is used as a foundation of all the algorithms, the rekeying operations are

carried out at the beginning of every rekey interval and When a new member sends a join

request, it should also include its individual blinded key. The first two algorithms

perform rekeying at the beginning of every rekey interval, which can result in a high
processing load during the update instance and therefore delay the start of the secure

group communication.

3.2 Research Gaps

As per the reviewing of different existing methods, we have found the following research

gaps which we will address in our dissertation work.
1. In [2], there is a large delay incurred during initial establishment of group key, since

exponentiation operations at each member are performed only after it receives the

result of an exponentiation from its previous member.
2. In [2], the group leader will have to do O(n) exponentiation operations on every

membership change events. This causes a large delay in the formation of the new
group key.

3. In [3], it loads the members of the SGCS because of the 2D (D is the depth at which

a new member is added to the tree or an old member is removed from the tree) serial

exponentiation operations per membership change. This causes a lot of delay in
resuming normal group communication.

4. Also, there is no solution for minimizing the average waiting time for the joining and

leaving group members.

23

PROPOSED SYSTEM
	

CHAPTER 4

4.1 Introduction

In this chapter, we give details of our proposed algorithm for efficient implementation of

secure GCSs. The proposed algorithm for implementation of a group communication

system is based on the balanced binary tree. One of the main issues of this algorithm is to

maintain the balance of the binary tree, so that each member needs to store minimum

number of keys, which is equal to the depth of the binary tree, in order to minimize the

storage requirement of each member. We form a secure chain among the group members

using DH protocol where each member Mi share its secret with its adjacent neighbours in

the secure chain and compute the shared key called lefikey and rightkey. Using this

method, we can provide message authentication because every member receives only

encrypted messages from another member with whom it share a secret key. In our

method, we compute keys corresponding to the tree nodes in a bottom-up manner in such

a way that the loads at each member are properly distributed. The algorithm enables the

group members to agree upon a common group key with minimum computation

overhead. All group communication traffic is encrypted with this common key so that

only group members can recover original group messages. There are two kinds of group

key management algorithm: key distribution and key agreement. In key distribution

algorithms, a trusted entity securely distributes the group key to the group members. In

key agreement algorithms, there is no trusted entity for generating the group key. The

group members agree upon a common group key by communicating among themselves,

as due to their fault tolerant nature, there is no need for a trusted third party. Here main

goal of this dissertation are:

1) To built a fully distributed group key management system;

2) To minimize the number of messages exchange among group members during the

group key generation;

3) To minimize the storage requirement at each member by properly maintaining the

balance of the key tree. If the tree becomes unbalanced then the storage requirement

24

K

K12

K14

31

K7

among the group members are varies (as shown in Figure 4.1) and it will become

large when the group is associated with a large number of members.

4) To minimize the computational requirement by maintaining the balance of the tree.

When the tree becomes unbalanced the numbers of decryptions are large if any of its

siblings leave (as shown in Figure 4.1).

5) To minimize the average waiting time of the joining member in the group by

replacing the departed members with the joining members within the rekeying

interval.

6) To minimize the cost by maintaining the balance of the tree.

U1 	U2

Figure 4.1 Unbalanced key tree

25

In the above Figure 4.1, it can be seen that key storage among the group members

varies from three to six rather than four in a balanced key. Also it can be seen that

member U1 and U2 needs five decryptions if any of its siblings leaves rather than

three decryptions in a balanced key tree. Finally, the rekeying cost is nine messages

when U1 or U2 departs since K1, K2, K4, K8 and K12 need to be changed. In this

example, the difference between balanced and unbalanced key tree varies slightly as

the multicast group is small. In scenario such as pay-per-view where the multicast

group membership varies from thousands to millions of members, unbalanced key

tree might lead to significant computation efforts for both the members.

4.2 Informal Description of Algorithm

The notations used in this section are listed in Table 4.1.

Table 4.1
List of notations

N The number of members in the group

M; (1 < i < n) The ith member of the group

T The key tree

root[T] Root node of T

{m}K Encryption of message m with K

{c}K 1 Decryption of cipher text c using key K

P The DH modulus. Both p and (p-1) /2 are prime

g (g <p) The DH generator of order p-1 modulo p
a, Member Mi `s long term private secret

gal mod p Member Mi `s public key

HnN Minimum height of leaf node in key tree

HMAX Maximum height of leaf node in key tree

HINSERT Hmm of ST _A - HMX of ST _B

HMIN ST A H 	of ST A

HMAC ST A H 	of ST _A

26

HMIN ST B H 	of ST _B

HMAXSTB H 	of ST _B

The main issue of the algorithm is to maintain a balance binary key tree T at all members.

The leaf nodes of the tree representing the group members and each internal node

associated with a key shared between all those members which are at the leaves of the

binary subtree rooted at the node having this key. Each internal node of the binary tree

has exactly two children. The tree is balanced in the sense that the difference in depths of

any two leaf nodes is at most one. It is a much stronger requirement for balancing the

tree. The tree is securely built using the idea of a secure chain of leaf nodes, which is

established using DH key agreement between adjacent members in the chain. The

performance of the group key, management algorithm is ensured by using efficient

algorithms for key management and keeping the tree balanced.

Every node nd of T is associated with the following variables listed in Table 4.2.

Table 4.2
List of variables

Left (right) The left.((right) child of nd (nil if nd is a leaf)

Par The parent node of nd

Key The key associated with nd. It is nil if key is unknown or

if nd is a leaf node.

first (last) The ID of the left (right) most leaf node of the subtree

rooted at nd, if nd is not a leaf node. Otherwise it is the ID

of nd.

A variable x associated with a node nd is referred to by the notation x[nd].

27

4.3 Group Key Agreement

The algorithm proceed in two phase. The members are arranged in a logical line.

Phase 1 In the first phase, every member M1 engages in a DH key agreement protocol
with every other M~ (I i — j I = 1). At the end of this phase, every pair of adjacent
members M;, Mi+1 (1 < i < n) will share a secret key. The two keys a member Mi shares
with its two neighbours are known locally as leftkey and rightkey as shown in Figure 4.2.

ga1a2 	ga2a3 	ga3a4 	ga4a5 	ga5a6 	ga6a7 	ga7a8 	ga8a9

M1 	 M~ 	 M3 	 M~ 	 M5 	 M6 	 M7 	 M8 	 M9

Figure 4.2 Formation of the DH chain

Phase 2 In the second phase, a balanced binary tree is built in a distributed fashion in
such a way that every node knows only the keys at nodes along the path from itself to
root [T]. In Figure 4.3, the darkened nodes are the ones whose keys are known to
members M1 and M2. The dashed line represents the secure channels formed in stage 1.

The key corresponding to the nodes of the tree are generated from bottom of the tree to
the top, i.e, the key for a node nd is generated after generating the keys for left[nd] and
right[nd] (unless nd is a leaf node). For example, for node nd in Figure 4.3, key[nd] is
generated after generating key[Ieft[nd]] and key[right[nd].

Figure 4.3 The key tree

The member corresponding to the rightmost leaf node of the subtree rooted at left[nd]
selects a random value for key[nd] and multicasts {key[nd]}key[left[nd]] to the members
corresponding to the leaf nodes of the subtree rooted at left[nd]. It also sends
{key[nd] }r,,j,tk y to the member corresponding to the leftmost leaf node of the subtree
rooted at right[nd]. The leftmost leaf node of right[nd] then decrypt it using its leftkey
and multicast {key[nd] } key[right[nd]] to the leaf nodes of the subtree rooted at right[nd].
Now, all leaf nodes of the subtree rooted at nd will know key[nd].

4.4 Merging of Two balanced Tree

We have used two merging algorithms [24], which are suitable for a batch join event.
Both merging algorithms insert the joining members at suitable height to create a
balanced key tree. We first assume that we need to combine two key trees, ST _A and
ST B, where ST _A has its height greater than ST B.

29

Method 1 This algorithm is only used when the difference in the maximum height

between the two key trees, ST _A and ST B, is greater or equal to one. The algorithm

works as follow:

If the difference between HMAX ST A and HMIN ST B is greater than one and the

difference between HMAX ST A and HMAX ST B is greater or equal to one, the

algorithm calculates HMAX ST B level up from HMIN ST A, provided the resultant

height is greater than zero. If the resultant height is zero, the child key node of the root is

selected. The selection of the key node at HINSERT is based on the one with the most

number of leaf nodes on the minimum height from that particular key node to the leaf

nodes. If more than one node in the HINsERT has same number of leaf nodes in the

minimum height, then we select the left most node among them. Marking is done on the

selected key node. The algorithm creates a new key node at the old location of the

marked key node and inserts the marked key node and ST _B as its children.

Figure 4.4 shows an example, where we have a balanced key tree ST _A (as shown in

Figure 4.4 (a)) with 9 members. Assume that two member wish to join in the group.

These two members form a new key tree (ST B) as shown in Figure 4.4(b). Here, the

ST_B will be adding to the 2 level of ST A. Finally, it creates a new node with node ID 4

and inserts the marked key tree and the new key tree as shown in Figure 4.4(C).

Figure 4.4 (a) shows the original key tree (ST A). Let two members want to join the

group. We first form a tree ST _B using these two joining members as shown in Figure

4.4 (b). According to the Method 1 the ST _B key tree will be inserted at the level 2 of

ST A. Here nodes 4, 5, and 6 have the same numbers of maximum leaf nodes at lowest

height of ST A. In this situation, we chose the node with lowest node ID. Insert a new

node at this place and make the subtree rooted at node 4 as its left child and new tree

ST _B as its right child.

W

(a) ST A key tree

(b) ST key trey

31

New node 	 z

3 1 • 	 (4 1 	 (5 1 	 (6

	

I 	 ,

7 	8 % 9 	; 10 	11 	12 	13 	14
r 	 ,
! 	 4

f 	 ~

15 	16 	; 	17 	18 	; 	19 	20

Mark

(c) Resultant key tree

Figure 44 (a) ST _A key tree, (b) ST _B key tree, and (c) Resultant key tree

Method 2 This algorithm is only used for combining key trees with the same maximum
height or the difference in maximum height between them is not more than one. If the
difference between HMAX ST A and HM[N ST B and the difference between HMAX ST A and

HMAX _s-r_B are similar or equal to one, then the Method 2 is suitable for combining them
together. Finally, it creates a new key node at the root and inserts ST _A and ST _B as its
children.

32

(a) 	 (b)

(c)

Figure 4.5 (a) ST _A key tree, (b) ST _B key tree and (c) resultant key tree.

Suppose that four members want to join in the group. First, form a new tree ST _B using

these joining members as shown in Figure 4.5 (b). Now, according to the Method 2 ST _B

will be added at 0th level of ST A. So, create a new node and make it as the new root of

the key tree and insert ST _A and ST _B as its left and right child respectively. Figure 4.5

(c) shows the resultant key tree.

33

4.5 Batch Rekeying Algorithm

Here, we used a hybrid batch rekeying method, which depend on fixed interval period

and fixed number of join and leave, to maintain group of join and leave. In this method,

when a member wants to leave from the group and there exist some member, those want

to join the group, the departed member is replace instantly by the waiting member. Use

this technique we can improve the average waiting time of the joining members. Now we

describe how the group of joins and leaves are handling in this method.

Case 1: When (J > L) /* where J and L used to represent the joining and leaving

members respectively */

1. If (L = 0)

a. Create a new tree T' using the new joining members.

b. Called the merging algorithm to merge the original tree T with T'.

c. All members are reassigned IDs.

2. If (L : 0)

a. Replace all leaving member by the newly joining members.

b. Using remaining joining members create a new tree T'.

c. Called the merging algorithm to merge the original tree T with T'.

d. All members are reassigned IDs.

Case 2: When (J < L)

1. If (J = 0)

a. Remove all departed member.

b. Check the balance of the resulting tree.

If the tree remains balanced then only reassign the IDs.

Else maintain the balance of the tree using the balancing algorithm,

which will be describe later in this section. And after that reassign the

IDs.

2. If (J40)

a. All joining members replace same number of departed members.

b. The remaining departed members are removed

c. Later parts are same as 1 b.

34

When the group of members joins, the keys of the nodes along the path from the leaf nod

corresponding to the new members to the root are changed as follows. Let N be the set of

nodes such that the subtrees rooted at each node nd E N contains the new members M; as

one of its leaf nodes. Every member Ms (j : i) belongs to the subtrees rooted at k E N

replaces key[nd] with its has function. Since the right neighbour of the new member now

has all new keys for nodes along the path from the node corresponding to the new

member to the root, it can send these keys along with the logical tree to the new members

securely.

Now, we give some example to explain the above operations. Figure 4.6 explain what

happened when L > J.

(a)

M2, M5 and M7 leave 	MIO Join

35

(b)

Figure 4.6 When M2, M5 and M7 leave and Mlo join'the group

Example:

In this example the group consists of nine members as shown in Figure 4.6 (a). Let

member M2, M5 and M7 wants to leave the group and a new member Mlo want to join the

group. According to the above method M5 will be immediately replace by the new joining

member Mlo, because M5 has the lowest node ID among the leaving members. Joining

members are added to the lowest node ID so that it can properly maintain the balance of

the key tree. After removing the member M2 and M7 the resultant key tree will be as

shown in Figure 4.6 (b). After time up of rekeying interval group members are reassign

the node IDs and reform the broken chain by executing DH. We have no control over the

leaving members. So if the tree becomes unbalanced after removing then find the node at

maximum height and remove it from that place and add it to the node which is at lowest

height as its child. Repeat this process until the tree become balance.

Figure 4.7 explain what happened if J> L. Let the group consists of nine members as

shown in Figure 4.6 (a). Let member M5 wants to leave the group and new members M10,

M11 and M12 wants to join the group. In that case according to the above algorithm M10

will replace member M5 immediately within the rekeying interval. After that the

remaining joining members here M11 and M12 form a new tree as shown in Figure 4.7 (b).

Now using the merging algorithm as described in section 4.4 we join the two trees. Here

we use the method 1 one for joining the two trees. After time up of rekeying interval

reassign the ID of the group members.

(b)

M
3 6 1 (~) 	(8) \ 9

M I 	l 2) 	l 4 / l O / l 11 / l 12

(C)

Figure 4.7 (b) tree of joining members and (c) Resultant key tree

37

SIMULATION AND RESULTS 	 CHAPTER 5

The effectiveness of our scheme was evaluated by simulation using a JAVA based JiST

(Java in Simulation Time) simulator.

5.1 JiST Simulator

Java in Simulation Time (JiST): JiST is a new Java-based discrete-event simulation

engine, with a number of novel and unique design features [25]. It is a prototype of a new

general-purpose approach to building discrete event simulators, called virtual machine-

based simulation that unifies the traditional systems and language-based simulator

designs. The resulting simulation platform is more efficient. It out-performs existing

highly optimized simulators both in time and memory consumption.

The JiST system architecture, depicted in Figure 5.1, consists of four distinct

components: a compiler, a byte code rewriter, a simulation kernel and a virtual machine.

JiST simulation programs are written in plain, unmodified Java and compiled to byte

code using a regular Java language compiler. These compiled classes are then modified,

via a byte code-level rewriter, to run over a simulation kernel and to support the

simulation time semantics described shortly. The simulation program, the rewriter and

the JiST kernel are all written in pure Java. Thus, this entire process occurs within a

standard, unmodified Java virtual machine (JVM). The benefits of this approach to

simulator construction over traditional systems and languages approaches are numerous

[25]

Embedding the simulation semantics within the Java language allows reuse of a large

body of work, including the Java language itself, its standard libraries and existing

compilers. JiST benefits from the automatic garbage collection, type-safety, reflection

and many other properties of the Java language. This approach also lowers the learning

curve for users and facilitates the reuse of code for building simulations. The use of a

standard virtual machine provides an efficient, highly-optimized and portable execution

platform and allows for important cross-layer optimization between the simulation kernel

and running simulation. Furthermore, since the kernel and the simulation are both

~,►

	

	 running within the same process space it reduces serialization and context switching

overheads. In summary, a key benefit of the JiST approach is that it allows for the

efficient execution of simulation programs within the context of a modern and popular

• language. JiST combines simulation semantics, found in custom simulation languages

and simulation libraries, with modern language capabilities. This design results in a

system that is convenient to use, robust and efficient.

1 1
1

~ .m - ~ ~
1 	~ 1
1 	1 	1 1
1 	1I
1 _ - —

Java source CO e

compiler rewriter
Uavac) J (•E

J ,
jaw ?i'FCC e 	moth:/?d Glasses

simulation
kernel

vii uIal
machine

Figure 5.1 JiST system architecture

5.2 Simulation Parameter

In this section, we list the various simulation parameters we used in our simulation

scenarios. These are given in Table 5.1.

M

. Table 5.1
List of simulation parameters

Parameter Value

Slot Interval 200 sec

Time Between Addition and Deletion 15 sec

Randomness
Equal number of addition and deletion,

more addition, more deletion

Simulation Time 5000 sec

Initial Number of Nodes 90

5.3 Results

Our proposed algorithm is fully distributed and secure, and it makes minimum use of

Diffie-Hellman key agreement algorithm unlike other algorithms proposed in the

literature which solely relies on the Diffie-Hellman protocol. In our algorithm, the group

key change protocol messages are always authenticated because every member receives

only encrypted messages from another member with whom it shares a secret key. So, the

overhead of digitally signed messages is absent. The algorithm requires 0 (loge °)

messages to be sent for each member leave event. But, since the computation overhead

on group members per membership change is minimum, the algorithm is suitable for

groups in which the members do not have the resources to frequently perform a number

of Diffie-Hellman exponentiation operations.

In case of join, let a new member M wants to join the group. Then, consider before M is

added to the group, the old members of the group (n in number) are in a logical chain

such that every adjacent pair of members have established a common key using Diffie-

Hellman(DH) key agreement protocol. After M has been added to the tree at all members,

the following two steps need to be taken:

Round 1 The new member has to engage in DH key agreement protocol with its

neighbors (at most two)

Round 2 Each key from M to the root of the tree is replaced with its hash to preserve

backward secrecy. The sibling of M sends its key tree to M encrypted with leftkey.

When our key change algorithm is being executed, the group multicast services have to

be suspended. The delay before these activities can be resumed depends on the delay in

executing this algorithm. There are three types of delays incurred proposed algorithm

1. Let the time taken for one large integer exponentiation operation be d. Let the

maximum time required to reliably send a message be 1. In the first round, two such

exponentiation operations and one SEND() operation are performed serially resulting

a maximum delay of 2d + 1.

2. Since the second round involves a single SEND() operation, the maximum delay in

this round is 1.

3. Other local calculations at each member introduce a delay, which is negligible

compared to the above two delays

Therefore, a member joins operation cause a maximum delay of 2d + 2! and at most five

messages are passed. But in the TGDH protocol, the member join operation requires one

DH key agreement round and in the next round, one member performs 2D (where D is

the depth at - which new member is join) serial exponentiations and broadcasts the

modified key tree (with new values of blind keys for the nodes along the path from the

joining member's node to the root). Therefore, for the TGDH protocol, the delay is d (2D

+ 3) ±2! and the messages passed include two unicasts and one broadcast.

35

y
N
CD

25
In
6i

120
GU

6> 15
14
~.d./

10

5

bb l

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49

Join and Leave Evants

Figure 5.2 Effect of batching operation on rekeying

Figure 5.2 shows how the numbers of rekeying messages are reduced in case of batch

operation with respect to the single join and leave operations. Therefore, using the batch

operation, we can effectively minimize the computational cost. For example, consider

two leaves that happen one after another. The keys need to be changed in each leave to

preserve the forward secrecy. These two leave may happened so close to each other that

the first set of new keys are actually not used and are immediately replaced by the second

set of new keys. So, when request are frequent many new keys may be generated and

distributed, but not used at all. This is the worst case of computational cost. In Figure 5.2

the single join and leave events case [61 require 5080 messages and in the case of batch

join and leave events case require 2998 rekeying messages, which is substantially lower

than the previous value.

42

250

200

0

fad Batch

~NeeBatch

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 3637383940414243444546474849

Join Events

Figure 5.3 Effect of replacement of leave by join within rekeying interval

Figure 5.3 shows the effect on waiting time when a leaving member is immediately

replaced by a joining member within the rekeying interval than replacing after rekeying

interval. If we replace the leaving member by a joining member after the rekeying

interval, then some form of forward secrecy is scarifies and each joining member need to

wait for the rekeying interval time period. But in our case in which we replace the

leaving member by a joining member within the rekeying interval time period, waiting

time of each member will be less than previous work [4]. But, in our case some form of

backward secrecy is scarifies instead forward secrecy. In previous work, the average

waiting time of the joining members is 141 seconds where as, in our case, the average

waiting time of joining members is 44 seconds which is reduced by 69 %.

4~

CONCLUSION AND FUTURE WORK 	CHAPTER 6

6.1 Conclusion and Future Work

The motivation behind the dissertation work was to design a group communication

system to reduce the computational overhead of each group members, storage

requirement, message delivery delay and average waiting time of the joining members. In

order to achieve these goals, we proposed a group key agreement algorithm which

manages the group key with minimum computational overhead at each group members.

The algorithm maintains a balanced distributed key tree at the group members using

which group key can be changed efficiently whenever the group membership changes.

This algorithm gives an easiest solution to the message authentication because each

member receives messages encrypted with the key which it shares only with its adjacent

neighbours. It also reduces the message delivery delay present in the existing TGDH

protocol. We saw that our algorithm substantially minimizes the rekeying messages than

the rekeying after individual join and leave. Our algorithm minimize the average waiting

time of the joining members by allowing the joining members to replace the leaving

members within the rekeying interval, in contrast in previous batch rekeying method [4]

leaving members are replace by the joining members after time out of rekeying interval.

The proposed algorithm has a scope of extension. Future work may consider developing a

more efficient tree balancing algorithm. In group communication, there is no control over

leaving member and may cause the tree to be unbalanced. In our proposed algorithm, we

have used two tree balancing methods: one for balancing the unbalanced tree due to

leaving of members and other for merging two balanced trees where one is added in an

appropriate position of other tree. So instead of two algorithms, one balancing algorithm

may be developed to handle these two cases simultaneously.

REFERENCES

[1] Sandro Rafaeli, David Hutchison, "A Survey of Key Management for Secure Group
Communication", ACM Computing Surveys, pp. 309-329, Published by ACM New
York, NY, USA, 2003.

[2] Steiner, M., Tsudik, G., and Waidner, M., "Diffle-Hellman Key Distribution Extended
to group Communication", 3 rd ACM Conference on Computer and Communications
Security, pp. 31-37, Published by ACM 1996.

[3] Yongdae Kim, Adnan Perrig, and Gene Tsudlk, "Tree-Based Group Key Agreement",

ACM Transactions on Information and System Security, pp. 60-96, Published by ACM,
2002

[4] Patrick P. C. Lee, John C. S. Lui, David K. Y. Yau, "Distributed Collaborative Key
Agreement Protocols for Dynamic Peer Groups", 10th IEEE International Conference on
Network Protocols, pp. 322-333, Published by IEEE Computer Society, 2002.

[5] Mcdaniel, P., Prakash, A., and Honeyman, P., "A Flexible Framework for Secure
Group Communication", In Proceedings of the 8th USENIX Security Symposium, pp.
99-114, 1999.

[6] S. Rahul, R. C. Hansdah, "An Efficient Distributed Group Key Management
Algorithm", 10th International Conference, pp. 230, Published by IEEE Computer
Society, 2004.

45

[7] Kim, Y., Perrig, A., and Tsudik,. "Simple and Fault Tolerant Key Agreement for
Dynamic Collaborative Groups", In Proceedings of the 7th ACM Conference in
Computer and Communication Security, pp. 235-24 1. 2000

[8] Harney, H. and Muckenhim, C., "Group Key Management Protocol (GKMP)
Specification", RFC 2093, 1997a.

[9] Harney, H. and Muckenhirn, C.., "Group KeyManagement Protocol (GKNIP)
Architecture", RFC 2094, 1997b.

[10] Wong, C. K., Gouda, M.G., and Lam, S. S., "Secure Group Communications Using
Key Graphs", IEEE/ACM Transactions on Networking (TON), pp. 16-30, Published by
IEE, 2000.

[11] Mcgrew.D.A, and Sherman.A.T, "Key Establishment in Large Dynamic Groups
Using One Way Function Trees", IEEE Transactions on Software Engineering, pp. 444 -
458, Published. by IEEE, 2003.

[12]. R. Canetti, J. Garay, G. Itkis, D. Micciancio, M. Naor, B. Pinkas, "Multicast
Security: A Taxonomy and Some Efficient Constructions", Eighteenth Annual Joint
Conference of the IEEE Computer and Communications Societies, pp. 708-716,
Published by IEEE, 1999.

[13] Waldvogel. M, CARONNI. G., Sun. D., Weiler. N., and Plattner. B., "The Versa
Key framework: Versatile group key management", Journal on Selected Areas in
Communications: Special Issue on Middleware, pp. 1614--1631, Published by IEEE
1999.

[14] A. Ballardie, "Scalable Multicast Key Distribution", RFC 1949, 1996.

[15] A. Ballardie, "Core Based Trees (CBT version 2) Multicast Routing Protocol
Specification", RFC 2189, 1997.

[16] T. Ballardie, I.P. Francis, and J. Crowcroft, "Core Based Trees: An Architecture for
Scalable Inter-domain Multicast Routing", ACM SIGCOMM, pp. 85-95, 1993.

[17] T. Hardjono, B. Cain, and I. Monga, "Intra-Domain Group Key Management for
Multicast Security", IETF Internet draft, pp. 324-332, 2000.

[18] S. Rafaeli and D. Hutchison., "Hydra: a decentralized group key management", 11th
IEEE International WETICE: Enterprise Security Workshop, pp. 62-67, Published by
IEEE Computer Society, 2002.

[19] G. Chaddoud, I. Chrisment, and A. Shaff, "Dynamic Group Communication
Security", 6th IEEE Symposium on Computers and Communication, pp. 49, Published by
IEEE Computer Society, 2001.

[20] B. Briscoe, "MARKS: Multicast key management using arbitrarily revealed key
sequences", 1st -International Workshop on Networked Group Communication, pp. 301-
302, 1999.

[21] Burmester,M. and Desmedt, Y., "A Secure and Efficient Conference Key
Distribution System (extended abstract)", In Advances in Cryptology EUROCRYPT
Lecture Notes in Computer Science, pp. 275-286, 1994.

47

[22] C. K. Wong, M. Gouda, and S. S. Lam, "Secure Group Communications using Key

Graphs", IEEE Transactions on Networking, pp. 16-30, Published by IEEE press, 2006.

[23] Xiaozhou Steve Li, Yang Richard Yang, Mohamed G. Gouda and Simon S. Lam
"Batch Re keying for Secure Group Communications", 10th International Conference on

World Wide Wave, pp. 525 — 534, Published by ACM New York, NY, USA, 2001

[24] Wee Hock Desmond Ng, Haitham Cruickshank, Zhili Sun, "Scalable Balanced

Batch Rekeying for Secure Group Communication", Computers and Security, pp. 265-

273, Published by Science Direct, 2006.

[25] R. Barr, Z. J. Haas, and R. van Renesse, "Dist: An Efficient Approach to Simulation

using Virtual Machines", Software Practice & Experience, pp. 539-576, 2005.

APPENDIX

Algorithm for Batch Rekeying in Distributed Environment:

The following are some functions used in the algorithm.
• A sequence of number i... j can be divided into two groups as follows

Low(i,j)=(a,b),wherea=i,b= I i+(j-1)/2J,

High(i, j)-=(a,b),where a= p+(j—i)/27 + l,b=j.
• The topple (first[nd], last[nd]) associated with a node nd is referred to by the

notation id(nd)-

In the following algorithm, we make use of a balanced binary tree T. The binary tree T is
built independently by each member by calling the function CONSTRUCT BT(i, j, st) is
defined below

CONSTRUCT_BT(i, j, st)
ifi=j then

left[st], right[st] F nil
key[st] E- nil

else
left[st] F NEW NODE()
right[st] .F NEW NODE()
par[left[st]], par[right[st]] E- st.
(xi, yl), id(left[st]) F low(i, j)
(x2, y2), id(right[st]) F high(i, j)
CONSTRUCT_BT(xl, .y1, left[st])
CONSTRUCT BT(x2, y2, right[st])

end if

IN

Group key Agreement

Let Mi (1 < i < n) be the ith member in the group. Every pair of adjacent members sharing
a secret key and every internal node nodea,b representing a key shared by members Mi (a
<1 <b). There are three kinds of external events at each memberMi
1. SEND;,~(msg): Sending of a message msg from M1 to MM
2. MCASTi, (a, b)(msg): Sending of a message msg from Mi to all MM (a < j <b)
3. RECVJ, i (msg): -Receipt of a message at Mi from MM
The algorithm proceeds in two phases. In the first phase DH keys are established between
pairs of members Mi, Mi + I and in the second phase, keys corresponding to all of the
tree's internal nodes are generated in a distributed fashion

Phase 1

• Mi ->Mi-1(l~i<n)g"modp
• M1-)Mi_1(1<i<n)gmodp

• Mi (1 < i <n) rightkey . g°" «'+1 mod p

• M1_1 (1 <i < n) leftkey E- g«i-I ai mod p

Phase 2- Every member Mi executes the following algorithm.
x E- par[Mi]
while x # nil do {key at root node is not yet generated}

1 E- left[x]

r F right[x]
if i = last[1] then {right most leaf node of 1}

key[x] E- RAND()
MCASTi, (first[I], last[l] — 1) ({key[x] }key[I])

SENDi, i + 1 ({key[x] }riglztkey)

else if f rst[l] < i < last[l] then

RECV1ast[1], i (}key[x]}key[1])

key[x] E- { { key[x] }key[I] } key[1]-1
else if i = first[r] then

RECV1ast[1], i ({ key[x] } 1efkey)

11

key[x] E- {{ key [x]}leftkey}letkey 1
MCASTi, (first[r] +1, last[r]) ({key[x1key[r])

else if first[r] < i < last[r] then

RECVfirst[r], i ({key[x]}key[r])

key [x] F { { key [x] } key[r] } key[r]-1
end if
x F par[x]

end while

Group Key Change

The Group key management protocol has to change the group key whenever the group
membership changes. It is initiated on the occurrence of any one of the following two
events: First when new members want to join the group and second, when existing
members has to be removed from the group. To minimize the average waiting time of the
joining members here We used BATCH KEY() function is defined below. In this
function we used two queue q1 for storing leaving members and qj for joining members.
Within the rekeying interval when a members want to join the group, if there exit any
member who want to leave the group immediately replace by the new member using
REPLACE (MI, M~, st) function. After time up the rekeying interval, if there exist only
joining members form a new tree using the remaining joining members and merge the
new tree with the old one using the ADD () function. Otherwise if there exist only
leaving members then delete them form the group using DELETE NODE (ql[frontl], T)
function.

BATCH_KEY()
while(timeslice)

if frontl : rearl
if frontj : rearj

while frontl rearl or front] ~ rearj
M1= ql[frontl]
Mj = qj[frontj]

iii

REPLACE(M1, M~, st)
frontl = front! + 1
front] = frontj + 1

end while
end if

end if
if(frontl 0 rearl)

DELETE NODE(gl[frontl], T)
end if
if front] rearj
ADD ()
SHIFT_RIGHT(hnode)

end if

Here the leaving member -Ml is replaced by the M~ j oining member.

REPLACE(M1, M1, st)
While st ~ nil

if last[left[st]] > Ml
st = left[st]

else
st = right[st]

new E-NEW NODE()
par[new] F par[st]

end while

The ADD.O function is used to form the new tree using the -remaining joining members
and merge or insert it within the old key tree in order to properly maintain the balanced of
the key tree.

iv

ADD()
STA B = CONSTRUCT BT(frontj, rearj, st)
if (HMJ ST A — HM1N_ST B) > 1 and (HIMAX ST A — HMAX_ST_B) >- 1 then

HINSERT — HMIN ST A — HMAX ST _B

iter = HINSERT

if iter = 0 then
iter = iter + 1

end if
NODE_COUNT (st, iter)
new E- NEW NODE ()
par[new] F par[hnode]
left[new] E- hnode
right[new] F ST_B
par[ST_B] F new
par[hnode] F new

else if (HMAX ST A — HMIN ST B) < I and (HMAX ST A — HMAX ST B) < 1 then
new F NEW NODE ()
par [ST_A] F new
par [ST B] F new
left [new] E- ST _A
right [new] F ST—B

end if

The NODE COUNT (st, i) function is used to count the number of leaf nodes at the
lowest level corresponding to the each node at the level HINsERT where the new tree will
be add. And find the node which has maximum number of leave nodes at lowest level.

'NODE_COUNT (St. i)
max=0
hnode = nil {used to find the inserting node }
ifi#0

v

NODE_COUNT (left[st], i-1)
NODE_COUNT (right[st], i-1)

else
j = last [st] — first [st]
temp = st
count = 0
whilej00

if depth[list[j]] = HMIN ST A

count = count + 1
end if
j=j-1

end while
if max < count

max = count
hnode = temp

end if
end if

The. SHIFT RIGHT(st) function is used to reassigned the member ID after the joining of
members in the group.

SHIFT_RIGHT(st)
first[par[st]] = first[st]
last[par[st]] = last[right[par[st]]] — first[right[par[st]]] + 1 + last[st]
1= last[st]

• temp = right[par[st]]
first[temp] = I + 1
last[temp] = last[par[temp]] .
NO_NEW(temp)
temp = par[temp]
while par[temp] : nil

vi

temp = par[temp]
first[temp] = first[left[temp]]
last[temp] = last[left[temp]] + last[right[temp]] — first[right[temp]] + 1

end while
no = Iast[right[temp]] — first[right[temp]
first[right[temp]] = last[left[temp]] + 1
last[right[temp]] = first[right[temp]] + no
NO—NEW(temp)

NO NEW (st) function is used to assigning the ID to the new members that form the new
tree which one was merging with the old one.

NO NEW (st)
nnodes = last[left[st]j — first[left[st]]
first[left[st]] = first[st]
last[left[st]] = first[left[st]] + nnodes
nnodes = last[right[st]] — first[right[st]]
first[right[st]] = last[left[st]] + 1
last[right[st]] = first[right[st]] + nnodes
if first[st] : _last[st] then

SHIFT RIGHT(left[st])
SHIFT RIGHT(right[st])

end if

The DELETE NODE (M, T) function given- below is used to delete a leaf node M from
the tree T. The removal of a leaf node M might make the tree unbalanced. The tree is
rebalanced in the function DELETE NODE (M, T) itself. The DELETE NODE (M, T)
function makes use of the following functions which are also given below, to re-balance
the tree

VII

DELETE (M, T): This function deletes the node M from the tree T and returns the sibling
node of M and a Boolean value indicating whether M is a left child of its parent or not.
After deletion, the first and last values of the nodes of T are readjusted.
INVALIDATE KEYS (M): This function sets the value of key [nd] to nil for all nodes
nd along the path from M to the root of the tree
GET BALANCER (M): This function used to maintain the balance of the tree.

DELETE_NODE (M, T)
(sib, LN) F DELETE (M, T) {sib is the sibling of M}
INVALIDATE KEYS (sib)
if (height(T) = depth(sib) + 2) or (first[sib] = last[sib]) then {Tree has become
unbalanced}

balancer F GET BALANCER (sib)
INVALIDATE. KEYS (balancer)
DELETE (balancer, T)
p F- NEW NODE ()
if LN = TRUE then {sib was left node before deletion of M}

left[p] F sib
right[p] F balancer

else {sib was right node before deletion of M}
left[p] F balancer
right[p] F sib

end if
par[p]HE- par[sib]
if sib = left[par[sib]] then

left[par[sib]] E- p
else

right[par[sib]] F p
end if
par[sib], par[balancer] F p

{Renumbering the members}

viii

id E- first[sib]
first[p], first[left[p]], last[left[p]] F id
last[p], first[right[p]], last[right[p]] F id + 1
x F Par[F]
while x nil do

last[x] F last[x] + 1

if x = left[par[x]] then
SHIFT RIGHT(right[par[x]])

end if
x E- par[x]

end while
end if

DELETE (M, T)
RT F root[T]
if M = left[par[M]] then

left node F TRUE
sib E- right[par[M]]
SHIFT_LEFT(sib)

else

left node F FALSE
sib - left[par[M]]

end if
par[sib] F- par[par[sib]]
x <- sib
while x ~ RT do

last[par[x]] F last[par[x]] - I
if x = left[par[x]] then

SHIFT LEFT(right[par[x]])
end if
x E- par[x]

ix

end while
return(sib, left node)

SHIFT-LEFT(x)
first[x] F first[x] - I
last[x] E- last[x] - 1
if first[x] ~ last[x] then

SHIFT LEFT(1 eft[x])
SHIFT LEFT(right[x])

end if

GET_BALANCER (x)
nd F par[x]
while ((last [left[nd]] - first[left[nd]]) - (last[right[nd]] - first[right[nd]]) j <2 do

nd - par[nd]
end while
while first[nd] last[nd] do

if (last[left[nd]] - first[left[nd]]) > (last[right[nd]] - first[right[nd]]) then
nd E- left[nd]

else
nd E- right[nd]

end if
end while
return (nd)

INVALIDATE_KEY(x)
repeat

key[x] E- nil
x F par[x]

until x = root[T]

KEY CHANGE_ON_LEAVE ()
x E- par[M1]
while x : nil do

lE- left[x]
r F right[x]
if key[x] = nil then

if i = last[l] then
key[x] E- RAND ()
MCAST i, (first[I]; Iast[1] — 1) ({key[x] } key[1])

SEND i, i ± 1 ({ key [x] } rightkey)

else if first[1] <I < last[1] then
RECVIast[I], i ({key[x] }keytl})

key[x] F {{key[x]}key[I]}key[I].- 1
else if i = first[r] then

• RECVIast[1], i ({key[x]}leftket)

key[x] F .{ {key[x] }leftkey} leftkey - 1
MCAST i, (first[r] - 1,1ast[r3) ({key[x] } key[r])

else if first[r] <i <_. last[r] then

RECVIast[r], i ({keY[x]}key[r])

key[x] E- { {keyjx] } key[r] } keytr] - 1
end if

end if
x - par[x]

end while

xi

	Title

	Abstract

	Chapter 1

	Chapter 2

	Chapter 3

	Chapter 4

	Chapter 5

	Chapter 6

	References

	Appendix

