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ABSTRACT 

Estimating the state of the system from noisy measurements is being 

increasingly used in many application areas. which include, signal processing, 

communications, statistics and econometrics. Filtering is a way to achieve this by 

incorporating noisy observations as they become available with prior knowledge of the 

system model. Due to the dramatic increase in the number of users and their demand 

for more advanced services, the need for fast and accurate filtering techniques in digital 

communications, capable of coping with challenging transmission conditions, is 

becoming more and more prevalent. 

Bayesian methods form a rigorous general frame work for dynamic state 

estimation problems. The central idea to this recursive Bayesian estimation is to 

determine the probability density function of the state vector of the systems conditioned 

on the available measurements. However, the optimal exact solution to this Bayesian 

filtering problem is intractable since it requires high dimensional integration. Kalman 

filter provides an optimal solution in case of linear systems and Gaussian noise. For 

practical nonlinear filtering applications, extended Kalman filter, which is based on an 

assumption of Gaussian noise, yields approximate solutions. 

Particle filtering algorithms, which are developed independently in various engineering 

fields, provides a numerical solution to the non-tractable recursive Bayesian estimation 

problem in case of non-linear and non-Gaussian systems. 

In this dissertation work, we have used the state space model approach for 

deriving the particle filtering algorithm for blind detection in various systems namely 

SISO, MIMO, OFDM, with the use of Kalman filtering algorithm. Particle filters are 

sequential Monte Carlo methods that use a point mass representation of probability 

densities in order to propagate the required statistical properties for state estimation. 

MIMO-OFDM systems can achieve higher data rates over broadband wireless 

channels. The blind detection in differentially encoded MIMO-OFDM systems using 

particle filtering algorithm is also been exploited. For simulation MATLAB is used and 

it is demonstrated through simulation results that the performance of particle filtering 

approach to blind detection is close to the optimal MLSE receiver. 
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Chapter 1 

INTRODUCTION 

In many application areas which include signal processing, statistics, 
communications, and econometrics, it is required to estimate the state of the system 

from a noisy measurements made on the system [1,2]. Bayesian methods form a 
rigorous general frame work for dynamic state estimation. In Bayesian frame work all 

the unknown quantities are treated as random variables and a priori knowledge of the 

system being 'modeled is often available for the formulation of Bayesian models. The 
Bayesian approach is to construct a posterior probability density of the state based on 

all available information. Using Baye's theorem a posterior density can be computed 

from the prior distributions and the likelihood function [3]. Inference of unknown 

quantities and their related statistics are made based on the resultant posterior density. 

In reality, however, observations usually occur sequentially in time and 

estimation of the unknown values is often required on-line. This motivates the idea of 

updating the posterior distribution as the observation data becomes available. Storing 

all the observational data may not be necessary if the posterior distribution is updated 

sequentially in time. In recursive Bayesian estimation [4], optimal solution is calculated 

from the a posterior density based on certain cost function. In linear systems with 

Gaussian process and measurement noise, an optimal closed-form solution is the well-

known Kalman filter [2,5]. In. nonlinear or non-Gaussian problems the closed form 

solution to the recursive Bayesian filtering problem is intractable since it requires high 
dimensional integration. Therefore, approximate nonlinear filters [1,4] have been 

proposed, which can be categorized into five types: (1) analytical approximations, (2) 

direct numerical approximations, (3) sampling based approaches, (4) Gaussian mixture 

filters, and (5) simulation based filters. . 

In nonlinear case, the most common approach is extended Kalman filter 
(EKF)[2,5], which approximate the model by linearized version of it using Taylor 

series expansion and then use the optimal Kalman filter with this approximate model. 
This filter works well for weekly nonlinear system. For systems with high degree of 

non linearity further terms in _ Taylor series should be considered, which results in 
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additional computational complexity [2,5]. The EKF assumes the Gaussian nature 
which is not always satisfied with the real systems. Real systems commonly include 

non-linear and non-Gaussian elements as well as high dimensionality. There are many 
practical applications with non-linear and non-Gaussian features namely, localization 
of robots, estimating noisy digital communications signals, image processing, and 
aircraft tracking using radar measurements [1,4]. Numerical integration [1,4] is another 
approach that could be used in non-linear, non-Gaussian cases but it is computationally 
too expensive to be used in practical applications. 

Although the idea of Monte Carlo simulation [4] originated in the late 1940s, its 

popularity in the field of filtering started in 1993[6]. Roughly speaking, Monte Carlo 

technique [6,7,8] is a kind of stochastic sampling approach aiming to tackle the 

complex systems which are analytically intractable. The power of Monte Carlo 

methods is that they can approximate the solutions of difficult numerical integration 
problems [4]. These methods fall into two categories, namely, Markov chain Monte 

Carlo (MCMC) methods for batch signal processing and sequential Monte Carlo 

(SMC) methods for adaptive signal processing. The sequential Monte Carlo[7,8,9,10] 

approaches have attracted more and more attention in different areas with many 

applications in signal processing, statistics, machine learning, econometrics, automatic 

control, tracking, communications, biology and many others. One of the attractive 

merits of the sequential Monte Carlo approaches lies in the fact that they allow on-line 
estimation by combining the powerful Monte Carlo sampling methods with Bayesian 

inference at an expense of reasonable computational cost [7,8]. Sequential Monte Carlo 
methods found limited use in the past, except for the last decade, primarily due to their 

very high computational complexity and the lack of adequate computing resources of 
the time. The fast advances of computers in the recent years and outstanding potential 

of particle filters have made them a very active area of research. In particular, the 

sequential Monte Carlo approach has been used. in parameter estimation and state. 

estimation. This SMC approach is known variously as particle filtering 
[2,4,7,8,11,12,13], boot strap filtering, the condensation algorithm, interacting particle 

approximations and survival of the fittest. 

Particle filtering is an emerging and powerful methodology particularly useful 

in dealing with non linear and non-Gaussian problems based on the concept of 
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.. sequential importance sampling and Bayesian theory [2,4]. In comparison with 

standard approximation methods, such as the popular Extended Kalman Filter, the 

advantage of particle filtering is in that the exploited approximation does not involve 

linearizations around current estimates but rather approximates the representation of the 

desired distributions by discrete random measures [7,8]. Particle filters are sequential 

Monte Carlo methods which can be applied to any state space model and which 

generalizes the Kaman filtering methods. The basic idea of particle filter is to use a 

number of independent random variables called particles, sampled directly from the 

state space, to represent the posterior probability, and update the posterior by involving 

the new observations; the "particle system" is properly located, weighted, and 

propagated recursively according to the Bayesian rule [1,2,4,10]. Particle filtering 

methods are founded upon Monte Carlo simulations of the underlying systems and 

provide a convenient and attractive approach to computing the posterior distribution. 

Particle filtering methods are not limited by nonlinearity and non-Gaussianity 

constraints and can be implemented in a relatively simple fashion for a wide variety of 

problems. Due to the need for more complete physical models, the next generation of 

filtering methods will have to deal with nonlinear and non-Gaussian model 

components. Particle filtering methods have the potential to use the increasing 

computational power -available in today's technological market to push filtering theory 

beyond its challenges. 

1.1 Applications of Particle Filtering in Wireless Communications 

Much of the world's communication technology today involves the 

transmission of digital signals over noisy channels, and thus also requires reliable real-

time estimates of the system state. In communication systems, the maximization of the 

symbol a posteriori probability results in an optimal receiver in the sense that it 

minimizes the error probability. However, in situations of unknown quantities (such as 

channel and noise parameters), it usually becomes very difficult to construct the 

marginal a posteriori distribution in fading channels. Multipath fading results from the 

fact that radio signal propagates through many paths with different delays from 

transmitter to the receiver [14,15]. A novel adaptive Bayesian receiver for signal 

3 



detection and decoding in fading channels with unknown channel statistics is presented 
in [16,17]. 

There is an increasing demand for the design of multiple-input multiple-output 

(MIMO) communication system for high data-rate wireless communications. An 

MIMO system employs multiple antennas at the transmitter and the receiver, and its 

capacity increases linearly with the minimum between the numbers of transmit and 

receive antennas [9,18]. In case of known channels, various detectors can be employed 

to demodulate the transmitted data symbols, such as the maximum likelihood sequence 

detector (MLSE)[14,18], the zero -forcing detector[14,18], the minimum mean square 

error detector[ 14,18]. Receiver has to know the channel statistics for efficient 

demodulation of the received symbols. However, the channel dynamics cannot be 

known in advance and they will change from time to time. Various methods have been 

developed to know the unknown statistics of the channel. If the system is linear and the 

noise is approximated as Gaussian, then the Kalman filter will give the optimal 

solution. But if the power amplifiers feeding the transmit antennas are nonlinear then 

the state-space model of MIMO channel will be nonlinear [9,18]. Moreover, due to the 

non-Gaussian nature of the dynamic noise and measurement noise, the state space 

model of a MIMO channel is indeed non-Gaussian. A novel sequential Monte Carlo 
blind receiver for MIMO systems is presented in [19]. 

Orthogonal frequency division multiplexing (OFDM) [20] is one of the most 

promising techniques for achieving high speed wireless data communications. OFDM 

is a multicarrier transmission technique which divides the single wideband channel into 

a number of narrowband channels called sub-channels; each subcarrier in each sub-

channel is being modulated by a low rate data stream and subcarriers are transmitted 

parallel over the channel [20,21]. The increased symbol duration reduces the impact of 

ISI. The main attraction of OFDM is based on its implementation using cost efficient 

Fast Fourier Transform (FFT) to implement multiple carrier modulation or 

demodulation operations. Thus the robustness to frequency-selective fading channels 

accompanied by high spectral efficiency and the feasibility of low cost transceiver 

implementations have led OFDM to being considered as a promising candidate for high 

data rate wireless communications [21]. A sequential Monte Carlo blind receiver for 

OFDM systems in frequency-selective fading channels is presented in [22]. 
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MIMO system is used for high data rate transmission in a dense multi-path 

scattering environment, which causes the MIMO channel to be frequency-selective. 

OFDM can transform such a frequency-selective MIMO channel into a set of parallel 

frequency-flat MIMO channels, and reduces the ISI caused by the multipath. Thus 

MIMO-OFDM [23] systems are used as effective means of providing high-speed data 

transmission over dispersive wireless channels. The extension of particle filter 

approach for blind detection in MIMO-OFDM systems is considered in this dissertation 

work. 

Recent advances digital wireless communication technologies have allowed 
A 

development of wireless sensor networks. Their use may span a vast range of fields, 

and their effectiveness is already being felt both in commercial and military 

applications as well as in the further development of science and engineering. Target 

tracking by particle filtering in binary sensor networks is presented in [24]. Particle 

filtering for positioning, navigation and tracking have been in presented in [25]. 

Particle filters finds applications in a wide variety of fields. 

1.2 Statement of the Problem 

To develop a blind Bayesian receiver for MIMO-OFDM communication 

systems over unknown fading channels. For this purpose, we explore the feasibility of 

using particle filtering approach to the blind detection in the above system by 

formulating it as a state space model i.e„ state and observation equations. The receiver 

is based on the SMC methods for computing the a posteriori probabilities of unknown 

transmitted symbols. This Particle filtering technique does not require any training or 

pilot symbols and it can applied even the channel noise may be either Gaussian or Non-

Gaussian. This dissertation presents the following work: 

1. Study of Particle filters and its application to blind detection in SISO flat fading 

channel. 

2. Application of Particle filtering in blind detection of MIMO systems in flat 

fading channel. 

3. Application of Particle filtering in blind detection in OFDM systems over 

frequency selective channel. 
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4. Extensions of Particle filter approach to the MIMO OFDM systems. 

1.3 Organization of the Report 

This report is organized in six chapters: 

In chapter 1, the overview of particle filters and its applications to wireless 

communications is presented and the statement of problem of the dissertation work is 

summarized. 

In chapter 2, an overview of recursive Bayesian approach to the estimation of 

the system state using noisy measurements made on the system is described first. The 

optimal filtering technique namely Kalman filter, for the linear system and Gaussian 

noise is summarized. A detailed derivation of sequential importance sampling (SIS), 

which is the basis for the particle filtering technique is presented. The degeneracy 

phenomenon, resampling and choice of sampling density in particle filter are 

emphasized. 

In chapter 3, the particle filtering approach for the blind detection in SISO and 

MIMO systems in flat fading channels is described. The simulation results are also 

presented for both SISO and MIMO systems. 

In chapter 4, the particle filtering approach for the blind detection in OFDM 

systems in frequency-selective fading channels is presented. Simulation results are also 

given. 

In chapter 5, the particle filter approach is extended to blind detection in 

MIMO-OFDM systems and simulation results are presented. 

Chapter 6 concludes the report with suggestions for future work. 
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Chapter-  2 

SEQUENTIAL MONTE CARLO METHODS FOR 

BAYESIAN FILTERING 

In this chapter, an overview of recursive Bayesian approach to the estimation of 

the system state using noisy measurements made on the system is described first. The 

optimal filtering technique namely Kalman filter, for the linear system and Gaussian 

noise is summarized. The concept of Monte Carlo. sampling for solving the intractable 

integrals is discussed. A detailed derivation of sequential importance sampling (SIS), 

which is the basis for the particle filtering technique is presented. The degeneracy 

phenomenon in particle filter and the concept of resampling in particle filter is 

described next The choice of sampling density with emphasis on the Gaussian optimal 

importance function is discussed. Another version of particle filter i.e., sampling 

importance resampling (SIR) filter is also presented. Finally the simulation results of 

SIR filter for a nonlinear, system is presented. 

2.1 Recursive Bayesian Estimation 

Bayesian theory is a branch of probability theory that helps to model the 

uncertainty about the world and the outcomes of interest by incorporating prior 

knowledge and observational evidence. Bayesian analysis, interpreting the probability 

as a conditional measure, is one of the popular methods in many cases. 

In Bayesian reference, all uncertainties (including states, parameters, which are 

either time-varying or fixed but unknown, priors) are treated as random variables. The 

inference is performed with in the Bayesian framework given all of available 

information. The objective of Bayesian inference is to use the priors and causal 

knowledge, quantitatively and qualitatively, to infer the conditional probability, given 

finite observations. There are usually three levels of the probabilistic reasoning in 

Bayesian analysis. Starting with model selection given the data and assumed priors; 

estimate the parameters to fit the data given the model and priors; and update the hyper 
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parameters of the prior. There are three types of intractable problems inherently related 
to the evaluation of aposteriori densityp(x/y) [1]. 

• Normalization: Given the prior p(x) and likelihood p(y/x), the posterior p(x/y) 
is obtained by the product of prior and likelihood divided by a normalizing 
factor The expression for the posterior p(x/y) is given by 

p(x/y)_   

 

— p(Y / x)p(x) 
Jp(y / x)p(x)dx 
x 

(2.1) 

• Marginalization: Given the posterior p (x, z /y),  the marginal posterior p(x/y) 

is calculated by 

p(x / y) = jp(x, z / y)dz 	 (2.2) 
z 

• Expectation: Given the conditional pdf p(x/y), the expectation of the function 
J(x) can be calculated as 

EP(x,Y ) [ f(x)] _ Jf(x)p(x / y)dx 	 (2.3) 
x 

where x, y and z are random variables in equations (2.1), (2.2) and (2.3). 

For many problems in communications and signal processing, an estimate is 
required every time a measurement is received: In this case, a recursive filter is a 
convenient solution. A recursive filtering approach means that received data is 
processed sequentially rather than as a batch so that it is not necessary to store the 
complete data set or to reprocess existing data if a new measurement becomes 
available. State space model [2,5], which is used in such situations is essentially a 
notational convenience used for estimation and control problems. State space model 
comprises of two models namely system model and measurement model. The system 
model describes about the evolution of the state with time and measurement model 
relates the noisy measurements to the state. The generalized form of state space model 
is given by [2] 
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System equation 

Xk = fk ( Xk-I I vk-1) 	 (2.4) 

where fk  : Ji"z x 	-> 91"s is a possibly nonlinear evolution function. 

nx  and nv  are the dimensions of the state and process noise respectively. 

xkE Ri"x is state vector. 

V k _1  E ' is an i.i.d process noise. 

Measurement equation: 

Zk = hk(xk,nk) 	 (2.5) 

where hk  : %"x x'iR'" -+ {"z is a possibly nonlinear measurement function 

nx  and n, are the dimensions of the state and measurement noise respectively 

nk  E R"- is an i.i.d measurement noise 

From the Bayesian perspective of dynamic state estimation, it is required to 

construct a posterior probability density function (pdf) of the state P(X k  / z l:k ) based on 

all the available observations zl;k  up to time k. It is assumed that the initial pdf 

p(xo  / zo) - p(x0 ) of the state vector, which is also known as the prior, is available. 

Then the pdf p(xk  / z l.k ) may be obtained recursively in two stages: prediction and 

update. Two assumptions are used to derive the recursive Bayesian filter [1]. 

(i) The states follow a fi rst-order Markov process i.e., 

P(Xk / XO:k-1) = P(Xk / X  k-1) 	 (2.6) 

(ii) The observations are independent of the given states. 
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2.1.1 Prediction Stage 

The prediction stage uses the system model to predict the. state pdf forward from 
one measurement time to next. Since the state is usually subject to unknown 
disturbances (modelled as random noise), prediction generally translates, deforms, and 

spreads the state pdf. Specifically, given the pdf p(xk _1 / zl:k_1) which is already 

available at time k-1, this stage involves the calculation of the pdf P(X k / ZI:k_1 ) . 

P(Xk / Zl:k-1) = P(Xk, Zl:k-1) / P(Zl:k-1) 

f P(Xk 3~ X _1,Zl:k--1)dXk-1 J / P(Z1k-1) 

m 

J P( X k /Xk-1,ZI:k-I )P( Xk-1 ,Z1:k-1)dxk-1 	 P(Z I:k_l ) 
_,o 

f P( X k /X k-1 ,Zl:k-1)P( Xk-1 /Z l:k-1)dX k-1 
—co 

	

r SP(Xk/Xk-1)P(Xk--1,Zl:k-1)dXk-1 	 (. assumption (i)) 

	

P(Xk /ZI:k-1) = I P(xk / Xk-1)P(Xk_I ,Z1•k-1)dxk-1 	 (2.7) 

The equation (2.7) is known as the Chapman-Kolmogorov (CK) equation [3]. 

2.1.2 Update Stage 

The update stage involves modification of the prediction pdf based on the latest 

measurement available at that time. Specifically, given the measurement p(zk ) 

available at time k then it is used to update the prior via Baye's rule [3]. 

P(Xk / Z I:k) = P(Xk, Zl:k) / P(71:k ) 
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{P( Z k /X k ,Z l:k-1)P( X k ,Z l:k-1), / [ P( Z k /Z l:k-1)P( Z l:k-1)] 

P( Zk / Xk)P( X k / Z1:k-1) / P( Zk / Z1:k-1) 

P(Xk /z1) = P( Zk / Xk)P( Xk / Z1:k-1) / P( Zk / Z1:k-1) 	 (2.8) 

where the normalizing constant is given by 

P(Zk /Z1:k-1) -  JP( Z k /X k)P( Xk /ZI:k-1)d%k 	 (2.9) 

The normalizing constant depends on the likelihood function P(Zk  / xk ) defined by the 

measurement model and the known statistics of observation noise nk  . In the update 

stage, the measurement zk  is used to modify the prior density to obtain the required 

posterior density of the current state. The predictor and update relations are shown in 

Fig.2.1. 

Prior Density 
P( Xk-II Z I.k-1) 

Measurement 
P( Zk/ Xk) 

System dynamics 
(transition density) 

P ( xk lX  k-1) 

Prediction 
(CK equation) 
P( xk/ Z L.k-1) 

Baye's update 
formula 

Updated 
conditional pdf 

P(xk / z1 ) 

Figure 2.1. Prediction and update stages for the recursive Bayesian estimation 

The recursive relations described above are easily solved for linear/Gaussian 

systems. In case the system is nonlinear/non-Gaussian in nature, the integrals are not 
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tractable. In such cases, the approximate solution is provided by several non-linear 

filters. 

2.2 Kalman Filter 

Kalman filter [5] is a linear, discrete-time filter which can be applied to the 

stationary and nonstationary environments without any modification and its solution 

can be computed recursively. In particular, each updated estimate of the state is 

computed from the previous estimate and the new input data, so only previous estimate 

requires storage. In addition to eliminating the need for storing the entire past observed 

data, the Kalman filter is computationally more efficient than computing the estimate 

directly from all of those past data at each step of the filtering process. Kalman filter 

assumes that the posterior density at every time step is Gaussian and, hence 

parameterized by mean and covariance. To apply Kalman filter certain assumptions 

must hold. They are: 

• vk_1  and nk  are drawn from Gaussian distributions of known parameters. 

• fk ( xk-1 , V  k-1) is known and is a linear function of xk_1  and vk_1 

• hk  (xk  , nk ) is a known linear function of X k  and nk  

Thus the state equation (2.4) and measurement equation (2.5) are written as 

Xk = Fkxk-1 + Vk-1 	 (2.10) 

Zk  Hk xk  +nk 	 (2.11) 

where Fk  and Hk  are known matrices defining linear functions. The covariances of 

V k-1  and nk  are Qk_1  and Rk.  Assume that the V k _1  and nk  have zero mean and are 

statistically independent. The Kalman filtering algorithm is summarized as follows [2]: 

P(xk-1 / Z1:k-1) = N( xk-1; mk-11k-1 I Pk-1/k-1) 	 (2.12) 

P(Xk / Z1.k-1) = N( xk; mk/k-1,  Pk/k-1) 	 (2.13) 
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P(Xk / Z1:k) — N( xk; mk/k' 'k/k ) 
	

(2.14) 

where N(x; m, P) is a Gaussian density with argument x, mean m, and covariance P. 

mk/k-1 — Fkmk-1/k-1 	 (2.15) 

T Pk/k-1 = Qk-1 + FkPk-1/k-lFk 	 (2.16) 

mk/k =mk/k-1 +Kk(Zk —Hkmk/k-1) 	 (2.17) 

Pk/k = Pk/k-1 —KkHkPk/k-1 	 (2.18) 

In addition, Sk the covariance of the innovation term zk —Hkmk/k_1, and Kk the 

Kalman gain respectively are given by 

T 
Sk 

_ 
— HkPk/k-1Hk +Rk 	

( 2.19)  

T
'S 

1 	 ( 	) K k = Pk/k-1Hkk 	 2.2~ 

The Kalman filter algorithm consists of an iterative prediction-correction 

process [1]. In the prediction step, the time update is taken where the one-step ahead 

prediction of observation is calculated; in the correction step, the measurement update 

is taken where the correction to the estimate of current state is calculated. The Kalman 

filter update is represented in Fig. 2.2. 

Time update: 	 Measurement update: 
One step prediction of the 	 Correction to the state 
measurement 	 estimation 

zn 
 

xn 

Figure 2.2 Predictor-Corrector form of Kalman filter 
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2.3 Monte Carlo Sampling 

Monte Carlo [MC] methods [1] are commonly used for approximation of 
intractable integrals and rely on the ability to draw a random sample from the required 
probability distribution Monte Carlo methods use statistical sampling and estimation 
techniques. to evaluate the solutions to mathematical problems: Monte Carlo techniques 
have attracted lot of attention and have been developed in many areas. Monte Carlo 
methods have three categories: (i) Monte Carlo sampling, which is devoted to 
developing efficient sampling technique for estimation; (ii) Monte Carlo calculation, 
which is aimed to design various random or pseudo-random number generators; and 
(iii) Monte Carlo optimization, which is devoted to applying the Monte Carlo idea to 
optimize some non differentiable functions. In the following only Monte Carlo 
sampling [4] is discussed. 

Consider the multidimensional integral I = f g(x)dx , where x E R"= .Monte 

Carlo methods for numerical integration factorize g(x) _ ,r(x)f(x) in such a way that 

,r(x) is interpreted as a probability density satisfying 'r(x) >_ 0 and $r(x)dx  =1, f (x) is 

an integrable function in a measurable space. The assumption is that it is possible to 

draw N samples {x'; i =1,....N} distributed according to 71(x). Then the pdf 71(x) can be 

approximated as [4] 

(2.21) 

The Monte Carlo estimate of the integral 

1= j f (x),r(x)dx 	 (2.22) 

is the sample mean 

N 
IN 
	 (2.23) 
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By taking large number of samples, the estimate converges to its true value. The 

variance of the estimate is inversely proportional to number of samples. There are 

several issues which are of concern in Monte Carlo sampling [I] 

• Consistency: An estimator is consistent if the estimator converges to the true 

value almost surely as the number of observations approaches infinity. 

• Unbiasedness: An estimator is unbiased if its expected value is equal to the true 
value. 

• Efficiency: An estimator is efficient if it produces the smallest error covariance 

matrix among all unbiased estimators, it is also regarded optimally using the 

information in the measurements. A well-known efficiency criterion is the 

Cramer-Rao bound. 

• Robustness: An estimator is robust if it is insensitive to the gross measurement 

errors and the uncertainties of the model. 

• _ Minimal variance: Variance reduction is the central issue of various Monte 

Carlo approximation methods, most improvement techniques are variance 
reduction oriented. 

In Bayesian estimation context, density ir(x) is the posterior density. It is not 

possible to sample effectively from the posterior distribution, being multivariate, 

nonstandard, and only known up to proportionality constant. A possible solution is to 

apply the importance sampling method. 

2.3.1 Importance Sampling 

Ideally the samples are generated from the density ,r(x) and the integral I is 
N  

evaluated by using IN  = 1  f (x`) . If the samples are easily generated from a density 
N ;_I  

q(x), which is similar to ;r(x) , then a correct weighting of the sample set still makes the 

Monte Carlo estimation possible. The pdf q(x) is referred to as importance or proposal 

density [4,7,8,9]. Its similarity to r(x) is interpreted by 

,r(x)>0= q(x)>0 	VxER 	 (2.24) 
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This means that q(x) and ;r(x) has same support. The equation (2.24) is necessary for 

the importance sampling theory to hold and, if valid, the integral I is written as 

I = ff (X)7C(x)dx  = ff(X) ' ~~) q(x)dx 	 (2.25) 

provided that E(x) is upper bounded. A Monte Carlo estimate of I is computed by 
q(x) 

generating N>1  independent samples {x'; i =1, ....N} distributed according to q(x) and 

forming the weighted sum: 

N 

IN = 1 .f (x`)u'(x` ) N ,_1 

where, 

( i)= r(x') 

(2.26) 

(2.27) 

are the importance weights[4]. If normalizing factor of the desired density n(x) is 

unknown, then normalization of the importance weights is carried out. Then the 

estimate of the integral IN is given by 

N 

N _ Axl )wlxi) IN — 1 N 	= L f(X
i
)w(x

i 

	

) 	 (2.28) 

where, the normalized importance weights are given by 

w(x) = 1 N 	i =1,......., N 	 (2.29) 

N j=1 

This technique is used in the Bayesian framework, where ;r(x) is the posterior density. 
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2.4 Particle Filtering 

Sequential Monte Carlo methods have found limited use in the past, except for 
the last decade, primarily due to their very high computational complexity and the lack 
of adequate computing resources. The fast advances of computers in the recent years 
and outstanding potential of particle filters have made them a very active area of 
research recently. Particle filter [4,6,7,8,9,10,11,12] is a sequential Monte Carlo 
methodology based on the recursive computation of probability distributions. The basic 
idea of particle filter is to use a number of independent random variables called 
particles, sampled directly from the state space, to represent the posterior probability, 
and update the posterior by involving the new observations; the "particle system" is 
properly located, weighted, and propagated recursively according to the Bayesian rule. 
Particle filters are sequential Monte Carlo methods which can be applied to any state 
space model and which generalizes the Kaman filtering methods. The advantage of 
particle filtering over other methods is in that the exploited approximation does not 
involve linearizations around- current estimates but rather approximations in the 
representation of the desired distributions by discrete-  random measures. Particle filter is 
best suited for nonlinear state-space models and non-Gaussian noises. Particle filters 
have found application in many areas such as channel equalization, estimation and 
coding, wireless channel tracking, artificial intelligence, speech enhancement, speech 
recognition and machine learning etc. 

2.4.1 Sequential Importance Sampling (SIS) 

In order to make Bayesian importance sampling more practical, it will be 
convenient to calculate the particle weights recursively. The sequential importance 
sampling (SIS) [2,4,6,7,8,11] algorithm is a Monte Carlo (MC) method that forms the 
basis for most sequential MC filters developed over the past decades. It is a technique 
for implementing a recursive Bayesian filter by MC simulations. The key idea is to 
represent the required posterior density function by a set of random samples with 
associated weights and to compute estimates based on these samples and weights. As 
the number of samples becomes very large, this MC characterization becomes an. 
equivalent representation to the usual functional description of the posterior pdf, and 
the SIS filter approaches the optimal Bayesian estimate. 
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Let { xo;k , wk } N' denote a random measure that characterizes the posterior pdf 
i-1 

p(xo /z1 ).  Where, {xo:k , i = 0....., Ns } is a set of sample points with associated 

weights {wk, i =1,...., Ns } and xo.k = {xj, j = 0,...., k} is the set of all states up to time k. 

The weights are normalized such that wk =1. By SIS algorithm, the set {x0:k,wk}s 

is recursively computed from the set {ac0:k-1, wk -1 }Ni when a new measurement zk is 

available at time k. Specifically, suppose at time k —1 the posterior pdf p(xO:k_1 / 

is approximated by a random measure 1X~:k-1 wk-1 N then SIS algorithm builds a 

random measure by appending newly generated particles xk to the xo:k_l and updating 

the weights wk to form {xo:k , wk }Ni that properly represent the posterior pdf p(xo:k / zl:k ) 

Then, the posterior density at time k is approximated as [2] 

, 
p( x0:k / Z1:k) „ 	wk8 x0 k — x0:k 

	 (2.30) 
i=1 

The above equation represents the discrete weighted approximation to the true 

posterior, p(xO:k / zl.k ) . The weights can be chosen using the principle of importance 

sampling. If the samples xo.k were drawn from an importance density q(x0.k / z1 ) , the 

weights are given by 

P( o:k /Z l:k) 

wk 	q(xi0:k / Z1:k ) 
(2.31) 

At each iteration by using the approximated p(xok_1 / z1.k_1) , and with a new set of 

samples; the pdf p(xo.k / zl.k) is calculated. The importance density q(xo,k / zl.k ) is 

factorized as 

q(x0:k /Z1:k) = glx0:k,Zl:k) 
q(z11) 
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_ q( xk / XO:k-1 I Z I:k)q( x0:k-I , Zl:k ) 

q( z1:k) 

_  q(xk / XO:k-1 I Z l.k)q( Zk / XO:k-1 I Z I:k-1)q( x0:k-1 , Z1:k-1) 

q(Zk / Z1:k-I)q( z1:k-1) 

q(xk / XO:k-1I Z I:k)q( Zk / Zl:k-1)q( x0:k-1, Zl:k-1) 

q (Zk / zl:k-1)q( Z I:k-1) 

= q( xk / X O:k-1 , Z1:k)q(xO:k-1 / Zl:k-1) 

q(x0:k / Zl:k) = q(xk / XO:k-11  Zl:k)q( X  O:k-1 / Z l:k-1) 
	

(2.32) 

By the equation (2.32), the samples xo:k — q(xo:k / Zl.k) are obtained by augmenting each 

of the existing samples xo:k-1 — q(x0:k-1 /Zl:k-1) with the new state xk ~ q( Xk /x0:k-I ,Z l:k) 

The pdf p(xo:k / ZI:k) is expressed as 

P(XO:k / ZI:k) =  P(xo:k,Zl:k) 

P( Zk / X O:k , Zl:k-1)P( X O:k , Zl:k-1) 

P( Z k / Z l:k-1)P( Zl:k-1) 

_  P( Z k / X O:k I Z l:k-1)P(xk 1  X O:k-1 , Zl:k-1)P( X o:k-1 , Z I:k-1) 

P(Z k / Z I:k-1)P( Z l:k-1) 

P(Zk /  XO:k  I Z l:k-1)P( Xk / X o:k-1I Zl.k-I)P( X o:k-1 /  Z I:k-1) 

P( Zk /Z I:k-1) 

_  P(Zk /  Xk)P(Xk /Xk-I)P( X o:k-I /Z I:k-I) 

P( Zk / Zl:k-1) 

P( XO:k / ZI:k) CC P(Zk /Xk)P( xk /xk-1)P( o:k-1 /ZI:k-1) 	 (2.33) 
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where P(Zk / Zl:k_1) is a normalized constant. Now substituting the equations (2.32) 

and (2.33) in equation (2.31), then 

P(Zk / X k)p(x k / x
i 
k-1)P(x

i 
O:k—I / Zl:k-1) 

Wk 0C 	q(x'k I X'o:k-1,z1:k)q(x'O:k-1 /Z1:k-1) 

p( Z k / X k)P( x!k /Xlk-1) Wk = Wk-1 	i 	i 
~I(x k / X o:k-1, Z1:k) 

(2.34) 

1e,?' 

Furthermore, if q(xk / XO:k-1 I z1:k) = q(xk / X k-1 , Zk ) , then the importance density becomes 

only dependent on Xk_1 and Zk This is particularly useful in the common case when 

only a filtered estimate of P(X k / Z l:k ) is required for each time step. In such situations, 

only xk need to be stored and the path XO.k_1 , the history of observations z1 _1 can be 

discarded. Then the modified weight is given by 

Wi Wi p(Zk /Xk)p(xk /xk-1) 	 (2.35) k 	k-1 	/ 
q(xk / xk-1I Zk ) 

The posterior filtered density p(xk / zl.k ) is given by 

p( 

	

xk /zl:k ) 	w 8(xk x) 	 (2.36) k 	k 
i=1 

Thus the SIS algorithm consists of recursive propagation of weights and 
samples as each measurement is received sequentially. A pseudo-code description of 
the SIS algorithm is given by algorithm 2.1 [2, 4]. 

Algorithm 2v1: SIS Particle filter 

	

N~  i i NS C j( xk , w }i=1 = SIS { xk—1 , wk-1 }r_1 9 Z k 

• FOR i=1:N3 

Draw xk --- q(4 / Xk_1, zk) 
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> Assign each particle with the importance weight up to a normalizing 
constant according to 

i  = i p(Zk / Xk)p(xk  / xk-1) wk wk-1 	 i q(( xi /gk-1,Zk) 

• END FOR 

• Calculate the total weight: t=SUM[{wk }Ns
1

] 
r_ 

• FOR i =1: Ns  

> Normalize the weights: wk = t 'w 

• END FOR 

2.4.2 Degeneracy Phenomenon and Resampling in Particle Filters 

In particle filters, the posterior probability is represented by a set of randomly 
chosen weighted samples drawn from an importance density. However a common 
problem with the sequential importance sampling is that after a few iterations, most 
particles will have negligible weight. It means that the weight is concentrated on 
certain particles only. This problem is called degeneracy problem [2,4,11,12].The 
variance of the importance weights increases over time, and thus it is impossible to 
avoid the degeneracy problem [7]. Effectively a large computational effect is devoted 
to updating particles whose contribution to approximate the posterior pdf is almost 
zero. A suitable measure of degeneracy of the algorithm is the effective sample size 

[7,13] (Nef f ) given by 

NS 	 (2.37) 
Nef  1 + Var (wk ) 

Where, Wkf  = p( xk / Zl.k) / q(x / xk-1, Zk ) .Thus the effective sample size cannot be 

evaluated exactly, an estimate is calculated instead which is given by 
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{
f 	i N xk ,wk}i-1 

{xk,l /NIN 

Neff = N, 
 1 	

(2.3 8) 
Z(wk )2  

The small Neff , the severe will be the degeneracy. There are three basic 

measures to mitigate the degeneracy problem in particle filters, (1) by increasing the 
number of samples Ns, (2) resampling. (3) by good choice of importance density. The 
simplest method to mitigate the degeneracy effect is to use a very large N. however it 
will increase the computational load on the system, which is often impractical. 

Resampling 

Effects of degeneracy in particle filter is reduced by using resampling 

[13,26,27,28,29] where the particles having small weights are eliminated and the 

particles with large weights are replicated. The resampling stage is depicted in 
Fig.2.3 [10]. 

Figure 2.3 Particle resampling 



1• 

U. 

At every step the effective particle size is calculated. The calculated effective size is 
compared with the predefined threshold, based on that the resampling step will be 

carried out. The resampling stage involves drawing of `N samples from the a posterior 

pdf with replacement. All the particles after resampling have the same weight 1/N. By 

this, the particles having large weight are repeated and particles.  having less weight are 
eliminated. Thus the samples are concentrated in the region of interest. From Fig.2.3, it 

may be seen that the diameters of the circles are proportional to the weights of the 

particles and after resampling all the particles are having the same weight. 

Resampling involves a mapping of random measure {x ,wk} into a random 

measure {xk,l/N} with uniform weights. The set of random samples {x}' is 

generated by resampling (with replacement) N times from an approximate discrete 

representation of p (%k  /;k ) with the probability p {%k  = %k  } = wk . The resulting 

sample is an i.i.d sample from the a posterior density p (xk /zl.k ) , and hence new 

weights are uniform.. The selection of new samples is schematically shown in the 
Fig.2.4 [4]. 

Figure 2.4 The process of resampling 
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In Fig.2.4, the acronym CSW stands for the cumulative sum of weights of the 

random measure {xk, w } , and random variable u; , i 1.....,N is uniformly distributed 

in the interval [0,1]. From Fig.2.4, the main idea - in the process of resampling is to 
select the new particles ~by gomparing an ordered set of uniformly distributed random 

numbers u1, i =1....., N,, lie ~ in the interval [0, 1 ] with the cumulative sum of the 

normalized weights. It may be seen that from Fig.2.4, uniform random variable u. maps 

into index j and the corresponding particle xk has a good chance of being selected and 

multiplied because of its high value of uk .This technique is mainly used in systematic 

resampling [4,27,28] and residual resampling [13,27,28], which are given by algorithm 

2.2 and 2.3. 

Algorithm 2.2: Systematic resampling [27,28] 

• Generate N uniform random numbers 

u --- U[0,1) 

• 	Obtain the N ordered random numbers uk 

Uk = (k —1)+u 
N 

• Allocate the n, copies of the particle x, to the new distribution 

(-1  i 

n. = the number of uk 

Algorithm 2.3: Residual resampling [27,28] 

• Allocate n,' = [Nw;] copies of the particle xl to the new distribution 

• Additionally, resample m = N — Z n, particles from {x1 } by making n," copies 

of particle x, where the probability for selectingx; is proportional to 

w; = Nw, — n, using systematic resampling. 
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Now, the generic particle filter algorithm is given by algorithm 2.4. 

Algorithm Ze4e Generic particle filter [2, 4] 

i  f Ns 

 [jXjk-1 5, Wk-1)NC 
 	isXk,Wkfr_1]=PFj 	kJ 

• FOR i=1:N, 

Draw x—q(x/x' _1 ,z ) k 

> Assign each particle with the importance weight up to a normalizing 
constant according. to 

P( Zk /X k)P( X k /X k-1) wk = wk-1 	
i i 

q( gk /xk-1 ,Zk) 

• END FOR 

• Calculate the total weight: t=SUM[{wk}Ns 

• FOR i =1: Ns 

> Normalize the weights: wk = t 'wk 

• END FOR 

• Calculate effective sample size N. by 

Neff = Ns 1 

(w ~2 
k 

i=1 

• IF Nef < NT 

> Resample using systematic resampling or residual resampling. 

• END IF 
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The general particle filtering algorithm 2.4 may be represented by Fig.2.5 [5]. 

.~-.... d Particle clo' 
€x1)0)) 

correction 

El 0 	r smpiin 

l diction 

..~. ................. 	{7tn+lei 

Figure 2.5 An illustration of generic Particle filter with importance sampling and 
resampling 

From Fig.2.5, it is seen that the particles are modified by the importance density 
function. The higher the probability, the denser the particles are concentrated. The 
circle diameters are proportional to the weights of the particles. The effective size of all 
the particles is calculated. If the effective size is less than the predefined threshold, then 
the resampling step is carried out (i.e., the larger particles are repeated and the smaller 
particles are neglected). After resampling, the weights of all particles are same. Now 
these particles constitute the new set of particles. Then the whole procedure (Generic 
particle filter algorithm 2.4) is repeated with these new set of samples. 

Although the resampling step reduces the effects of the degeneracy problem, it 
introduces other problems. First, it limits the opportunity to parallelize the 
implementation since all the particles must be combined. Second, the particles that 
have high weights are statistically selected many times, this lead to a loss of diversity 
among the particles as the resultant sample will contain many repeated points. This 
problem is known as sample impoverishment [1,4]. There are techniques namely 
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Markov chain Monte Carlo (MCMC) [4], regularization [4] method to reduce the effect 
of sample impoverishment. 

The sequential importance sampling algorithm is common for all types of 
particle filters. There are other versions of particle filters [2,4], namely (1) sampling 
importance resampling (SIR) filter; (2) auxiliary sampling importance resampling 
(ASIR) filter; (3)regularized particle filter. (RPF). 

2.4.3 Choice of Importance Density 

The - choice of the sampling density of the algorithm affects the quality of the 
state estimate significantly [2,4,12]. However there are number of choices for the 
sampling density. The sampling density must fulfil a criterion to ensure convergence of 
the estimates as number of samples N, becomes large. Further, the shape of the 
sampling density must be as close to the true filtering pdf as possible and it should 
guarantee a minimum variance. The sampling density should also be as simple with 
respect to the weights evaluation as possible. 

Optimal Sampling Density 

If sampling density is chosen to minimize the variance of weights [7] so that 
effective sample size is maximized, then it is said to be optimal sampling density. This 
sampling density will assume the form 

q( Rk /X k-1 ,Z k)opt = P(Xk / Xk-1,Zk) 

__ 

 

P(Zk , Xk , Xfk-1) 
i 

P( Zk , xk-1) 

_ P( Zk/ Xk9 Xk-1)P( X k ,xk-1) 
P(Zk / X k-1)P(xk-1) 

_ P(Zk / Xk, xk-1)P(Xk /x_1 
P(Zk 

~I (~k / Rk-1 ~ Z k )opt 	
P( Zk I gk-1) 

(2.39) 
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Substitute the equation (2.39) in equation (2.35) we get 

Wk OC Wk_1 P(Z k  /x 1 ) 

	

= Wk_1  f P(Zk / xk )Plxk / xk-1 /"'xk 	 (2.40) 

Interestingly, the weights do not depend on the current value of the state xk .The above 

chosen optimal density has two limitations. It requires sampling from the pdf 

P(Xk / xk-1,Zk) and the evolution of integral expression (2.40). Both of them cannot be 

done easily. When Xk belongs to a finite set, then the integral expression (2.40) become 

a sum, and sampling from the optimal importance density is possible. 

Gaussian Optimal Importance Function 

Consider the case where the state dynamics is nonlinear, the measurement 

equation is linear, and all the random elements in the model are additive Gaussian. 
Such a system is given by 

xk = fk-1 (xk-1) + V k-1 	 (2.41) 

Z k  = Hkxk  +W k 	 (2.42) 

Where vk-1  and wk  are mutually independent zero-mean white Gaussian sequences 

with covariances Qk_1  and Rk , respectively. It can be shown that in this case, both the 

optimal importance density and p ( zk  /xk-1 ) are Gaussian, that is: 

p ( xk / X  k-1 ,  Z k ) N  ` xk; ak; k) 
	

(2.43) 

p(Z k /Xk-1 ) N(Z k ,bk ,Sk ) 
	 (2.44) 

	

Where ak =fk_1 (xk-1)+Ek1kRk l  (zk  --bk ) 
	

(2.45) 

T 
Y-k = Qk-1 — Qk-1H k S1k HkQk-1 (2.46) 
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T  ) S k = HkQk_1Hk 	 ( + Rk 	 2.47 

bk = Hkfk-1(xk-1) 	 (2.48) 

Proof: 

According to the state space model described by (2.41) and (2.42), we observe that 

P ( Xk /Xk-1) = N (Xk, fk-1 (xk-1); Qk-1 ) 

	
(2.49) 

P ( Z k / X k) = N ( Zk; H k xk; Rk ) 
	

(2.50) 

From the Baye's update formula 

P(Zk ,Xk ,Xk-1) 

P(Zk ,Xk-1) 

_ P(Zkf Xk ,Xk-I)P(Xk,Xk-1) 
P( Zk / Xk-I)P(Xk-1) 

__ P(Zk/ Xk)P( Xk/ Xk-1) 

P(Zk / X k-1) 

P ( xk / xk-1 I Zk) P(Zk / X k-1) - P( Zk / xk)P( X k / X k-1) 	 (2.51) 

By taking the exponent terms on the R.H.S of the expression (2.51), we get 

= ( Z k -Hkxk )T Rk' ( Z k -H k X k)+( xk -fk-1 (xk-1))T Qk I (xk -fk-1 ( xk-1)l 

= zT R-lz zT R-1H x xT HT R-lz + xT HT R-1H x +XTQ-1 x 	-1 fk _1 ( x _ k k k 	k k k k 	k k k k 	k k k k k 	k k_1 k 	k xTQ k_1 	k 1 

-f11 ( xk-1)Qk IXk +f-, (xk-1)Qk ~fk-1 (xk-1) 

= xk [Qk'1 +HkRk1Hk ]Xk -xk 
L
HkRk' Zk +Qk ifk-1 ̀ xk-1)J 
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-[ Zk Rk1H k +fk-1 t%k-I/Q;1I ]xk +z Rk1zk +f k 1 (Xk-I)Q:11fk-1 ̀ %k-1 J 	(2.52) 

By matrix inversion lemma, we have 

[Q;'1 + Hk Rk'Hk -1_1 = Qk-1 - Qk-1Hk [ H kQk-1H k + Rk]' H k `tk-1 

Let Zkl = Qk 1 +HkRk1Hk and Sk = HkQk-1Hk + Rk 

T 
F'k = Qk-I -Qk-1HkS

1
k HkQk-1 

The term —Xk [HkRkl zk +Qk lfk-1 (xk_I)] can be simplified as 

—Xk [HkRk1Zk + Q►1fk_1 (%k-1) +Frk1fk-1 (xk-I) —Eklfk-I (xk-1) 

-%k LHk Rk1Zk +QklIfk-1 (%k-1) +Y-klfk-1 (X k_1 )-Qk I fk_1 (Xk-1)--Hk RklHkfk-1 (Xk-I )] 

-xk 
LHTR-1 {Zk -Hkfk-1 ( Xk-I)}+Y-k lf k-1 (Xk-1)] 

Let bk = Hkfk-1 (xk_1) and ak = fk-1 (Xk-1) + kHkRkl (Zk - bk ) then 

~i-1 [ak - fk-1 (%k-1)] HR '  LZk - Hkf k-1 (X k-1) J 

-%k LF'kl [ak ^ fk-1 (Xk-1)] F "rklfk-I \Xk-1 /J 

=, —xk Ek'ak 	 (2.53) 

The term —[4Rk1Hk +fk-1( %k-1) ̀ r kl, ] Xk can be simplified as 

-[ZkRk I H k +f k 1 (Xk-1)Qk1~ +f'1 (Xk-1)~kl -f,-1 (%k_1/;']%k 

-
L
zkRk'H k +fk I (Xk_1)Qk li +fk 1 ( xk_I ) F•k1 -f k 1 (xk-I)CQka +HkRkIHk1]%k 
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= _[[z — fk-1 (X k-1 ) Hk ] Rk 1Hk +f, (Xk-1) ~k 1 ] xk 

z _[[a —f-1 (xk-1)] kl + fk-1 (X k-1 ) k1 ] X k 

—akgkl Xk 	 (2.54) 

By using equations (2.53) and (2.54), the equation (2.52) can be further simplified as 

(Xk —ak )' ik l (Xk _ak)+zk Rk1Zk — ak ak +fk 1 (Xk-1)Qk l1fk-1 (Xk-1) (2.55) 

The termzkRk'zk —akklak +fk 1 (xk_1)Qk Ifk_1 (xk_I) can be simplified as 

[fk-I   ( Xk-1 ) + [Zk — fk-1 (xk-1 ) H k ] Rk1H k E'k ] F'kl [1k-1 ( X k-I) + ;H k Rk1 [ Z k — Hkfk_, \Xk_1 /]J 

1-ZkRk 1Z k +fk I (xk-I)Qk lfk-1 (Xk-1) 

= —fk-1 (Xk-1) ;1fk-1 (xk-1) — fk-1 (Xk-1) H k Rk1 [Z k — Hkfk-1 X̀k-1 /] 

—[Zk — Hkfk-1 (xk-1 )]T Rk1HkZikHk Rk1 [zk —Hkfk-1 (Xk-1)] 

— [zk —Hkfk_1 ( Xk-1) Rk'Hkfk-1 ( xk-1)+Z k Rk1Z k +fk-1 (Xk-1)Qx ~fk-1 (Xk-1) 

= — [ Zk — Hkfk-1 (Xk-1)]T Rk1H kzk H k Rk 1 [ zk — H k fk-1 `Xk-1 )] 

—zkRkIHkfk-I (Xk-1)+fk-I (xk-,)HkR;1Hkfk-1 (Xk-1)—fk 1 ( Xk-1)H k Rk1zk 

+fk 1 (Xk-1)HkRk1Hkfk-1 (Xk-1) —fk-1 (xk-1 )[Hk Rk1Hk +QklI ]fk-I (xk-1) 

+ZkRk lzk +fk I ( Xk_I)Qk 1fk-1 (Xk-1) 

By matrix inversion lemma we have Sk' = Rk' — Rk'H k I k Hk R-1 , now 
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= -[ Zk -H k fk_1 ( xk-1 )]T  Rk1  [Zk -H k fk-1  (xk_1)]+[zk -Hkfk-I ( xk-1)]T  Skl [Z k  -Hk1k-1 (xk-1)] 
+Zk Rk'  [zk  - Hkfk_1 (xk-1)1-  fk-1  (xk-1 ) HR'  [Z k  - Hkfk-1 `xk-1)] 

: -[zk - H k fk-1 ( xk-1 )]T Rk'  [ Zk - Hkfk-1 ( xk-1)] + [Zk - H k fk _1  (X k_ I  )]T  Sk I  [Z k  - Hkfk-I  (X k_1 )] 

+[Z k  - Hkfk_1 ` X k-1 )]T Rk'  [Z k  -Hkfk-1 \1k-1l] 

= [Zk - Hkfk-1 (xk-1 )]T sk1  [Zk  - Hkfk-1 (xk-1)] 

= [zk  -b k ]T  Sk l  [Z k  -bk ] 	 (2.56) 

By substituting equation (2.56) in the equation (2.55) then 

=(xk -ak )T  ' ' ( xk - ak )+[Z k -bk ]T  S k' [Z k -bk]  

=, P ( X k / X  k-1,  Zk) P( Z k /Xk-1)  - N (xk;  ak , F'k ) N(Zk , bk ; Sk ) 

Hence it is proved. The analytical expressions obtained above are difficult for most 
other cases. In the following, the suboptimal choices of the sampling density will be 
considered. 

Prior Sampling Density 

This sampling density is frequently used due to its simplicity and easy weight 

computation. Here the current estimate zk  is ignored during drawing of samples and 

thus low quality estimates will be obtained. The prior sampling density takes the 
form [2,4] as 

q(Xk / Xk-1 ,Zk) "- P(Xk / Xk-1) 
	

(2.57) 

By substituting the equation (2.57) in the equation (2.35) we get 

Wk OC  Wk-1P(Zk /x) 
	

(2.58) 
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The equation (2.40) states that it is possible to calculate the importance weights before 

the particles are propagated to time k The equation. (2.58) states that this is not possible 

with the prior sampling density. 

If the transitional prior p(X k /xk_1 ) is used, as the importance density and is a 

much broader distribution than the likelihood, p ( zk  /X k ) , then only a few particles will 

be assigned a high weight. Consequently, the particles will degenerate rapidly and the 

filter does not work. The particles should be in the right place (in the regions of high 

likelihood) by incorporating the current observation, then only efficient estimate is 

obtained through the particle filter algorithm. 

2.5 Sampling Importance Resampling (SIR) Filter 

The SIR algorithm in can be easily obtained from SIS algorithm by considering 

the following [2]. 

• The importance density is chosen to be prior density 

g(xk / xk-1,  Zk) = P(Xk /4_i) 

• The. resampling step is carried out at every time index. 

By the choice of importance density as the prior density, the weights are given by 

wk cc Wk-1p(Z k /4) 

However, considering the fact that the resampling step is carried out at every time 

index, the weight update is given by 

wk cc  p(Zk /4) 	 (2.59) 

The weights should be normalized before resampling step is carried out. The advantage 

of SIR over SIS is easy weight computation. The SIR filter algorithm 2.5 is presented 

in the following [2,4]. 

33 



Algorithm 2.7: SIR Particle filter 

f 	i NS 	 r i 	t NJ 

® FOR i=1:Ns  

> Draw xk — p(Xk / Xk-1) 

> Assign each particle with the importance weight up to a normalizing 
constant according to 

wk = P( zk /X k) 

• END FOR 

• Calculate the total weight: t=SUM[ {iwk }N' 
L 

• FOR i=1:Ns  

> Normalize the weights: wk = 

• END FOR 

• Resample using systematic resampling or residual resampling. 

2.6 Simulation Results 

The following nonlinear state space model is considered for the simulation of 

sampling importance resampling (SIR) filter, which is given by [2] 

xk  = fk (xk-1 , k ) + vk-1 	 (2.60) 

x2  
zk  = 20 +nk 	 (2.61) 

where 

/ k ( xk-1, k ) — 
xk-1  + 25xk-1 + 8 COS (1.2k) 	 (2.62) 
2 1+xk-1 
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From the state space model (2.60) & (2.61), the prior density p (xk  /xk _1 ) and 

likelihood function p ( zk  /xk  ) are respectively given by 

p (xk  /Xk _1 ) = N (xk; fk (76k-1, k) , Qk-1) 	 (2.63) 

2 
p(zk /xk):=N zk ;20,Rk 	 (2.64) 

It is assumed that in equations (2.60) & (2.61), vk _1  and nk  are zero mean Gaussian 

random variables with variances Qk _1  and Rk  respectively. For the simulation of SIR 

filter in the MATLAB environment, the following parameters are used. 

> Noise variances are Qk_1  =10 and Rk  =1 respectively. 

> Number of states M=100 
> Number of particles N=10,100 
➢ Number of Monte Carlo runs=1000 

The samples {xk }N l  and the corresponding weights {wk }N l are generated using 

algorithm 2.7. The estimate of the state x,,, is calculated by using the set of samples 

{xk N l  and corresponding weights {w }' , which is given by the sum of products of 

samples and corresponding weights. 

N I 	! xest  = xkwk  
1 

(2.65) 

To obtain the performance of state estimation, the Root Mean Square Error (RMSE) 
between the true state and estimated state is computed, which is given by 

RAISE = 	 (x—x 1 )2 
	

(2.66) 
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The flow chart for simulation of SIR particle filter algorithm is given in Fig.2.6. 

Start 

Assign all the parameters required for 
the simulation of SIR filter 

A 

Generate the true states xk  using (2.60) 

& (2.62) and measurements using 
(2.61) respectively 

Draw samples xk from the prior 

density p (xk  /xk_l) • 

Calculate the importance weights up to 
a normalizing constant using (2.59) 

Normalize the importance weights 
using algorithm 2.7 

Resample the particles by systematic 
resampling using algorithm 2.2 

The estimated state is calculated by 
using equation (2.65) 
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Calculate the RMSE between true 

state and estimated state, by 

equation(2.66) 

C 

Stop 

Figure 2.6 Flow chart for the simulation of SIR particle filter 

All steps from A to C shown in flow chart are repeated for each independent Monte 

Carlo run. Fig 2.7 shows 100 true values of the state xk  as a function of time k. Fig 2.8 

shows the 100 measurements zk  of the state xk  as a function of time k. 

Fig 2.9 shows the estimated state and true state for comparison. In this case, SIR 

filter uses 10 particles for estimating the state. The RMSE of SIR filter is obtained by 

averaging over 1000 independent realizations, which is found to be 16.6144. 

Fig 2.10 shows the estimated state of the SIR filter when 100 particles are used. 

For comparison, we have also plotted the true states xk  . It may be noted here that there 

is a close similarity between the true states and estimated states by SIR filter. The 

RMSE of SIR filter is found to be 5.9006. 

It can be seen from the Fig2.9, the SIR filter gives disappointing results when 

10 particles are used. It is observed that there is nearly 3 times improvement in the 

RMSE when 100 particles are used. So, to achieve smaller errors, we have to increase 

the number of particles. The advantage with smaller number of particles is that lower 

numbers of computations are needed. 

In this chapter, we have considered the application of particle filtering to 

estimate the state of a nonlinear system. In following chapters, we will consider that 

application of particle filtering for blind detection in SISO, MIMO, OFDM and MIMO-

OFDM systems. 
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Figure 2.7 100 true values of the state xk  as a function of time k 
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Figure 2.8 100 measurements zk  of the state xk  as a function of time k 
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Figure 2.9 True and estimated values of the state Xk as a function of time k considering 

10 particles 
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Figure 2.10 True and estimated values of the state xk  as function of time k considering 

100 particles 
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Chapter 3 

PARTICLE FILTERING FOR BLIND DETECTION IN 

SISO AND MIMO SYSTEMS 

In the transmission of digital information over a communication channel which 

is fading dispersive, caused by the interference between two or more versions of 

transmitted signal which arrive at the receiver at slightly different times [14,15], and for 

the case of known channels the optimal detection is performed by the maximum-

likelihood sequence estimation (MLSE) detector [14,30]. It finds the best symbol 

vector that minimizes the Euclidean distance with respect to the received signal, but its 

complexity increases exponentially with the dimension of the parameter to be 

estimated. Zero-forcing (ZF) detector [14] and the minimum mean square error 

(MMSE) detector [14] require only linear complexity, but cannot achieve optimal 

performance. Most of sub optimal algorithms include a two stage receiver structure 

with a channel estimation stage followed by a sequence detection stage. J.K.Cavers[311 

suggested a pilot method for detection of signals in fading channels. But the 

transmission of pilot requires bandwidth, decreases the communication throughput and 

causes significant overhead problem. This loss is insignificant for time invariant 

channel where as in case of time varying channel, the loss is significant. 

A novel adaptive Bayesian receiver for signal detection and decoding in fading 

channels with unknown channel statistics is presented in [16]. It is based on the 

sequential Monte Carlo methodology that has recently emerged in the field of statistics. 

The basic idea is to treat the transmitted signals as "missing data" and to sequentially 

impute multiple samples of them based on the observed signals. The imputed signal 

sequences, together with their importance weights, provide a way to approximate the 

Bayesian estimate of the transmitted signals [16]. We have used the state space model 

approach for deriving the particle filtering algorithm for the blind detection in single-

input single-output (SISO) systems with the use of Kalman filtering algorithm. This 

SMC technique easily handles the non-Gaussian ambient channel noise, without the use 
of any training /pilot symbols or decision feedback. 
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In this chapter, SISO communication system is described and derivation of the 
state space model of SISO system when fading coefficients are modeled by both auto 
regressive-moving average (ARMA) and auto regressive (AR) processes is presented 
first. The derivation of particle filter algorithm for signal detection in fading channels 
for SISO systems is presented next. The residual resampling algorithm and the delayed 
estimation approach are also discussed. Finally above approach is used for blind 
detection in MIMO system. Simulation results are given at the end. 

3.1 Signal Model of SISO System 

Consider a communication system signalling through a flat fading channel with 
additive ambient noise as given in Fig.3.1 [16,17]. 

a, 	n, 

s, 
b1 	Symbol mapper  

Figure 3.1 Communication system signalling through flat fading channel 

As Fig 3.1 shows, the input binary information bits {b, } are passed to a symbol 

mapper yielding complex data symbols {s, } , which take a finite value from the 

alphabet set A = { a,......., a1A~ } . Each symbol is transmitted through a flat-fading channel, 

where it is multiplied by a fading channel coefficient with the addition of ambient 

channel noise. The received signal y, is given by [16,17] 

t-0,1,...... 	 (3.1) 

Where a, is the fading channel coefficient 

s, is the transmitted symbol 

n, is the ambient additive channel noise at time t. 
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The processes {a. } , {s, } , {n, } are assumed to be mutually independent. It is 

assumed that the additive noise i in equation (3.1) is a sequence of independent and 

identically distributed (i.i.d) zero-mean complex random variables. Two types of noise 

distributions are considered. In the _ first type, rn assumes a complex Gaussian 

distribution of zero mean and variance v.2, which is given by 

n, —N~10' 0-Z l 
	

(3.2) 

Where as in second type, n, assumes Middeleton Class A noise model [9,32] for 

modelling a non-Gaussian distribution, which has been extensively used to model 

physical noise in radio and acoustic channels. i.e., retakes the form of a two-term 

mixture Gaussian distribution [9]. 

n, -- (I_E)Nc( 0,5-2 )+ Nc( 0,kc2 ) 	 (3.3) 

where N. (0, S2 ) represents the nominal ambient noise. 

Nv (0, kc2 ) represents an impulsive component 

& is the probability that impulsive pulses can occur, 0 <s <1 

k>1. 

The overall variance of the noise is fixed by varying the parameters c and k, which is 

given by [9] 

62 =(1— B )q2 +kq2 	 (3.4) 

It is further assumed that the channel-fading process is Rayleigh i.e., the fading 

coefficients {a,} form a complex Gaussian process [16]. The fading process is usually 

modelled by the output of a Butterworth filter driven by white Gaussian noise. 
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3.1.1 Fading Coefficients Modelled as ARMA Process 

The generalized form of ARMA process of order. (r,r) is given by 

Oral-r  + ..............+4at-1  +at  = Bout  +6 u1-1  +..........+9rut-r 	 (3.5) 

where {u, } is a white complex Gaussian noise sequence with independent real and 

complex components. The ARMA coefficients {b, } and {8, } , as well as the order r of 

the Butterworth filter, are chosen so that the transfer function of the filter matches the 

power spectral density of the fading process, which in turri, is determined by the 

channel Doppler frequency[16]. By assuming that the statistical properties of the fading 

process are known a priori, the order and the coefficients of the Butterworth filter are 
known. 

Define the state variable .ç,  which is given by 

Orxt-r  + U1 	 (3.6) 

By writing the equation (3.6) in matrix form, we get 

Xt -01 	-02 	• . • 	 Or 	0  x1-1 1  
xt-1 1 	0 	• .. 	0 	0 x1-2 0  

xt-2- = 0 	1 	• • • 	0 	- 	0 • xr-3 + 0 ut 	 (3.7) 

xt-r 0 	0 	... 	1 	0 xt-r-1 0  

Denote x, = [x, xr _I  xt _2  • • • xt_r  ]T  then state equation is given by 

zt  = Fx1-1 + gut 	 (3.8) 

-01 -02 	.. 
Or 

 0 

1 0•• 00 
Where F= 0 1 	••• 0 0 

0 0•. 10 
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I 

0 

g= 0 

0 

u, —N~(0,1) 

Now, from the equation (3.5) & (3.6), we get 

a, = O0x~ +O1x,-1 +..........+91.x, 	 (3.9) 

By writing equation (3.9) in matrix form, we get 

xt 

a, =[e 6 02 ... Or] xt_2 	 (3.10) 

xt _r. 

Denote h = [O 6 B2 • • • Or ] then at is given by 

(3.11) 

If the additive noise in equation (3.1) is Gaussian i.e., n1 — NN (0, a2 ), then the state- 

space model for SISO system is given by 

x, = Fxr_, + gu, 	 (3.12) 

Y, = S,h H x, +6v, 	 (3.13) 

where {v, } is a white complex Gaussian noise sequence with unit variance and 

independent real and imaginary components. 
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If the additive noise in equation (3.1) is non-Gaussian and is modeled by 

equation (3.3), then an indicator random variable I, t=0,1..... is used to model the state 

space model. The indicator variable is defined by 

1, 	if nt -- Nc (0, c,-z ) 

2 	if n, — Nc (0,kc2 ) (3.14) 

with p(I I =1) = (1— s) and p(II = 2) = a . Let o-, = S2 and az = kS 2 , then state space 

model of the system for the case of non-Gaussian noise is given by 

X, = Fx _1 +gut 	 (3.15) 

y1 = s,h1x, +o v, 	 (3.16) 

3.1.2 Fading Coefficients Modelled as AR Process 

The generalized form of AR process of order r is given by 

0,a1-r . ..............+oar-1 +at =ur 	 (3.17) 

where {u, } is a white complex Gaussian noise sequence with independent real and 

complex components and {q; } are AR coefficients. 

By defining state variable xt as in equation (3.6) and xt = [x1 x,-, xt-Z • • • x~ . ]T 

then state equation is given by 

Xt = Fxr-1 + gut 

-01 -02 	.. -0, 0 
1 0 	... 00 

Where F= 0 1 	••• 0 0 

0 0 	••. 10 
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1 

0 

g= 0 

0 

ut —N~(0,1) 

Now form equation (3.6) & (3.17), we get 

at =x 	 (3.18) 

By writing the equation (3.18) in matrix form as 

xr 

x:a 
ar = [1 0 0 • .. 01 x1_2 	 (3.19) 

X,_, 

Denote h = [1 0 0 ... 0]H then cc is given by 

a, = hHx, 	 (3.20) 

If the additive noise is Gaussian i.e., n1 - NN (0,Q2 ), then the state-space model for the 

SISO system is given by 

x, = Fxr-, +gur 	 (3.21) 

Y1 = s,h"x, + avr 	 (3.22) 

On the other hand, if the additive noise is non-Gaussian, then state space model of the 
SISO system is given by 

z, = Fxl-~ + gut 	 (3.23) 

Yr = s,h'X r +o-h 	 (3.24) 



3.2 Particle Filtering Algorithm for SISO System 

Consider the flat-fading channel with additive Gaussian noise given by (3.12) & 

(3.13). Let Y, ° ( y0 ,........., y,) be the received signals and S, _° (s9 .........., s,) be the 

transmitted signals up to time t respectively. 

Statement of the Problem: To estimate the a posteriori probabilities of the information 
symbols 

a, EA 

based on the received signals Y, and the a priori symbol probabilities p (s, = a,) , 

without the knowledge of channel coefficients a, = h";. 

Consider M-ary phase-shift keying (MPSK) signals are transmitted i.e., 

a, = exp j 2;ri
I 	

for  i = 0.4 ........, JAI —1 	 (3.25) JA 

where j T . Assume that the transmitted symbols are independent i.e., 

p(s,=a,/S,_,)=p(s,=a; ), 	a. E A 	 (3.26) 

When no prior information about the symbols is available, the symbols are assumed to 
take each possible value in the Alphabet set A with equal probability i.e., 

1 	for i =1..........JAI. 	 (3.27) 

In order to implement the particle filter, a set of Monte Carlo samples of the 

transmitted symbols{S )}m  with its corresponding importance weights jw,( j) j' which 

are properly weighted with respect to the distribution p (S, /Y,) are needed. From SIS 
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discussed in section 2.4.1, the Monte Carlo samples are easily generated from a trial 
sampling density. If the choice of trial sampling density is taken as the optimal 
sampling density then by equation (2.39) 

n
(
s,/s1-t' l~ "—p

(
s1/a1J1'Y,

) 
	

(3.28) 

For this choice of sampling density, the weights are updated according to equation 
(2.40) as 

w!') oc wr-1P(y 's1-1'Y'-1) 
	

(3.29) 

ocww-'iIp(y,/s,=a1,s ,Y,,)p(s,=a,) 	 (3.30) 
O, EA 

Denote p~ ;) = p (y, `s, = a,, 51-1, Yl-,) p(s, = a1), then weights are given by 

ac  
a1 EA 

Now, the term sampling density p (s, /S(i), Y,) is modified as 

P(s' Siji'Y') `P(S,/ SI 'Y"Y'-t) 

P(s,,S ,Y,, Y~-t) 

P (S, Y1, YY-t ) 

(3.31) 

 

P(Y' S"Si'i,Y,-tlPlstlst(APY',) 
P(Y,/s , Y'-t) 
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°C p(Y,/S,,sr'i'Y 1 )p s̀, /s('-i'Y1-1 ) 

°c P(Y,Is, =a,,s ,vv-, )p(s, =a,) 

P(srlS1--i Yr)=Pi; 	 (3.32) 

From the state space model (3.12) & (3.13), the density p (y, /s, = a,, S( A, YY _,) is 

Gaussian and its mean and variance is calculated using the Kalman filtering algorithm. 

= a,, S;f i, Y,) -- N. (mean, variance) 
	

(3.33) 

The state space model defined by equations (3.12) & (3.13) is reproduced for 
convenience. 

x, = Fxr-1 + gut 

y, = s,h"xf + 6v, 

The Kalman filtering algorithm for the above state space model when sf is known, is 
given below: 

The innovation term from equation (2.17) is given by 

77~ = Y, — s,h H FI,_, 	 (3.34) 

The correlation matrix of the innovation process by using equation (2.19) is given by 

R, = s,h H K,hs, +a•2 

R =Ist I 2 hHK,h+o 2 

R, =hN K,h+cr2 	 (Js, =1) (3.35) 

The Kalman gain by using equation (2.20) is given by 
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g, =K rhs. /Rr 	 (3.36) 

Filtered state error correlation matrix by using equation (2.18) is given by 

M, = Kr — g:srhHK, 

~r =K — R Kr hs, srhH Kr 
R1 

A =Kt — R's,IZ K,hhH K, 
r 

1 	H El = K r — R K,hh Kr ('.• Is, f =1) (3.37) 

Predicted state error correlation matrix by using equation (2.16) is given by 

Kr =F-1F l̀ + ggH 	 (3.38) 

Estimated state vector by using equation (2.17) is given by 

it = Fit-1 + g,1, .. . 

zr = Fit-1 + R Krhs; (y, — srhHFzr-, ) 
r 

z, =FSc,-t + (y, —s,hH FI,-,)s;Klh 	 (3.39) 

The m can of density p (y, /8, = ar , S, Y,-,) can be computed using the innovation 

equation (3.34) as [ 16] 

mean = E (y, /sr = a,, si'-i, Yr-1 } 

= srhH + ;'i  
s- - W 

(3.40) 
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= a1hHFx(i 

Now denote ,c ') = h"Fx('i , then 

mean=a,L$ j) 	 (3.41) 

The variance of density p (y, /sr = a;, Si-;, Y~-t ) can be computed by using the 

correlation matrix of the innovation process equation (3.35) as [16] 

variance = Var fyls,  = a,, S , Y,--, } 	 (3.42) 

=h"Kh+mii
s, 
 -   -Q1 

= hH K{i)h + a2 

By using the equation (3.35), variance is given by 

variance = R(' ) 	 (3.43) 

Now, the probability density p (y, /s, = a,, S, Yt _1 ) is given by 

p(yr/sr = aSi--I' ,-~)_ N.(aglj), ~j)) 	 (3.44) 

For each a, E A , the a posteriori symbol probability p (sr = a, /Y1 ) as in equation 

(2.36) can be estimated as [5,9] 

p(s, = a,/Y,)= E{8(s, = a,)/Y,} 

 (s,(j)~~S_a; t(4 , 
Wt. j=1 

i=1,......, IAI (3.45) 

where  
j=1 
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S (.) is dirac-delta function defined as 

	

1, 	if s~' ) = a; 
(3.46) 

	

0, 	if ss' ) ~ a; 

The decision on the symbol s, is obtained as 

sr =argmaxp(sr =a1 /Y,)  
ajeA 

arg max 8 ($) = a, }w(i) 	 (3.47) 

The estimated symbol s, may have a phase ambiguity since M-ary phase shift 

keying is used. For instance, binary phase shift keying (BPSK) signals, s, E {-1,+l}. It 

can be easily seen that from (3.1) that if both the symbol sequence {s,} and the channel 

value sequence {a, } are phase-shifted by 2r, no change is incurred on the observed 

signal {y, } .Alternatively, in the state space model (3.12) & (3.13) a phase shift of )r 

on both the symbol sequence {s1 } and the state sequence {x, } yields the same model 

for the observations. Hence such a phase ambiguity necessitates the differential 
encoding and decoding. 

The particle filter algorithm for generating the sequential Monte Carlo samples 

of transmitted symbols 
I
S;') }m with corresponding importance weights jw,(j1j'n and 

Kalman filter update k(i) = (x, E) are given in algorithm 3.1. [16]. 

Algorithm 3.1 

1) Initialization 

Each Kalman filter is initialized as ko) = (x(j)~ Lo 	th )) with 	= 0, Lo') = I, 

j =1........m . All the importance weights are initialized as wo =1, j =1........m 
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so that there is no bias in decision making by initial weights. Since the data 
symbols are assumed to be independent, initial symbols are not needed. 

Based on the state space model (3.12) & (3.13), the following steps are 
implemented at time t to update each weighted sample. For j =1,.......m 

2) Compute the one-step predictive update of each Kalman filter k('1 

From equations (3.34), (3.35) and (3.36), the predictive update of Kalman filter 

k('; is given by 

K(i) = FL(j)FH + ggH 

Rr' ) = hHK(')h + c2 

p(f) = hHFx(' 

3) Compute the trial sampling density. 

For each o f E A, compute p~,) by using equation (3.44) as 

Per ) =P(Yrlsr =a;'s1-1 -1)P(s, =a,) 

=a; ,S(-l~'7 )—  N.(a;PpJ),R1 

4) Impute the symbol s, 

Draw s(') from the Alphabet set A with probability 

= a. ) oc P~ ), 	a, E A 	 (3.48) 

Append s( J) to S~ J, and obtain S;') 

cc 



5) Compute the importance weight 

By using equation (3.31), the weight update is given by 

cc 	p(J) 
a, EA 

6) Compute the one-step filtering update of the Kalman filter k; 

Based on the imputed symbol s;') and the observation yr , the Kalman filter 

update 	k;') _ (x;J), TP)) is obtained by using equations (3.39) & (3.37) as 

1 
(
Yt(i) ( 	(i)) (i)* i)% = F%r-~ + (i) 	—Sr Pt sr Kr h 

Ef') —K 	1 K,')hhHK(') 

At each time t, the only quantities that need to be stored are {k! , w; }' At each 

time t, the dominant computation involves the m one-step Kalman filter updates. Since 

m samplers operate independently and in parallel, the SMC detector is well suited for 
parallel implementations. 

3.3 Resampling 

The importance sampling weight 	measures the "quality" of the 

corresponding imputed signal sequence S. . A relatively small weight implies that the 

sample is drawn far from the main body of the posterior distribution and has small 

contribution in the final estimation. Such a sample is said to be ineffective. If there are 

too many ineffective samples, the Monte Carlo procedure becomes inefficient. This can 
be detected by observing a large coefficient of variation [16] in the importance weight. 

Suppose, {is a sequence of the importance weights. Then the coefficient of 

variation, v, is defined as [ 16] 



v2 = 
	

t 	1 	
. r  TZ  (3.49) 

1 	C') 
vt =— 	` –1 	 (3.50) 

m j=1 wt 

m 

Where, tiv, = Z w m 	 (3.51) 
j=1 

A measure of the efficiency of an importance sampling scheme is the effective sample 
size m, , is defined as [16] 

m 
mr 1+v1 

(3.52) 

In dynamic resampling, a resampling step is performed once the effective 

sample size is below a certain threshold, e.g, mt 51 O . Alternatively, resampling can be 

done at every fixed- length interval (say, every five steps). 

In [16], Rong Chen et al, proposed a residual resampling strategy, which forms 

a new set of weighted samples (Si' ), k(' ), wt') 	from original set {(S~'), k -', w;'))}m 

m 

according to the algorithm 3.2 (assume thatEw;') = m after proper normalization). 
j=1 

Algorithm 3.2[16] 

1) For j =1, ........, m retain k j = [w 	copies of the sample (Sr'i, k;' ) ) . Denote 

m 

Kr =m->k1.  
j=1 

2) Obtain Kr i.i.d draws from the original sample set {(S, k(j) )}m , with 

probabilities proportional to 
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(w,(j) — k j ), 	for 	.j =1,......,m 

3) Assign equal weight, i.e., j) = 1, for each new sample. 

Delayed Estimation 

Since the fading process is highly correlated, the future received signals contain 

the information about current data and channel state. A delayed estimate is usually 

more accurate than the concurrent estimate. In delayed estimation [16], instead- of 

making inference on (x, , s,) instantaneously with posterior distribution p(xr , s, /Y1 ) , 

delay this inference to a later time (t + A), A > 0, with the distribution p(x1, s, 

There are two types of delayed estimation: the delayed-weight method [16] and 

delayed-sample method [16]. 

Delayed-Weight Method 

If the set {(s. w;' ) )}m is properly weighted with respect to p (St /Y;), then 
=1 

by induction, the set I(St+s,ww.'}s)}m is properly weighted with - respect to 
j=1 

P (S:+5 /Y,+5) , S >0.  Hence, by focussing on Sr at time (t +8),  the delayed estimate of 

the symbol can be obtained as [16] 

p( s1 = a1 /Y.+5 )  = 	S(sl j) = a)w(j) 	i =1 	IAI . 	(3.53) 
i+o j=1 

where W+s = Z w(j) .Since the weights {w(j) }m contain the information about the r 	 r+S 	 r+d j=1 
j=1 

signals (y,+,.........., y,.), the estimate in equation (3.53) is usually more accurate. The 

delayed estimation method incurs no additional computational cost (i.e., CPU time), but 

it requires some extra memory for storing 
I(

S;+l ,........., sl+s )~m For uncoded systems 
j=1 

this simple delayed-weight method is quite effective for improving the detection 
performance over the concurrent method. 
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3.4 Particle Filtering for Blind Detection in MIMO Systems 

There is an increasing demand for the design of multiple-input multiple 

output (MIMO) communication system for high data-rate wireless communications. An 

MIMO system employs multiple antennas at the transmitter and the receiver, and its 

capacity increases linearly with the minimum between the numbers of transmit and 

receive antennas [9,18]. When channels of MIMO systems are known, maximum 

likelihood sequence detector (MLSE) [18] is optimal, which searches for the data 

sequence that after convolution with the channel is closest in Euclidean distance to the 

received signal sequence but its complexity increases exponentially with the dimension 

of the parameter to be estimated. Zero-forcing. (ZF) detector [18] and the minimum 

mean square error (MMSE) detector [18] require only linear complexity, but cannot 

achieve optimal performance. However, the channel dynamics cannot be known in 

advance and they will change from time to time. The channel state information (CSI) 

can be known by transmitting a pilot sequence or training sequence periodically [9], 

which result in wastage of power, bandwidth, reduces the communication throughput 

and creates overhead problems. 

A novel sequential Monte. Carlo blind receiver for MIMO systems is presented 

in [19]. The basic idea in [19] is to design a probabilistic approximation method for 

computation of the maximum a posteriori distribution (MAP) [19] via sequential Monte 

Carlo method (SMC). We have used the state space model approach for deriving the 

particle filtering algorithm for the blind detection in differentially encoded MIMO 

systems with the use of Kalman filtering algorithm in both flat fading and frequency-

selective fading channels. This SMC technique easily handles the non-Gaussian 

ambient channel noise, without the use of any training /pilot symbols or decision 

feedback. 

In this c apter the MIMO system is described. Next, the state space model of 

MIMO system in both flat fading and frequency-selective fading channel is derived. 

The particle filter algorithm for differentially encoded MIMO system is derived and 

finally the simulation results of SISO and MIMO systems are presented. 
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3.4.1 Signal Model of MIMO System 

Consider an MIMO system with K transmit and P receive antennas over fading 

channels with additive Gaussian noise as given in Fig 3.2[19]. 

	

S. 	a 
Binary Modulato ddl ,n Differential sl,n 	 Y~,,, M 1'n 

C 
source 

J 	
encoder 	

Outpu 
 

R 

	

E 	dz n 
Binary Modulator d2,n Differential sz•n 	LY2,C 	Outpu 
source 	 encoder 	 E 

I 
V 
E 

R - ` 

dK,n 
Binary Modulator aK,n Differential SK,n 	YP,n 	 Outpu 
source  encoder 

Figure 3.2 An MIMO system with sequential Monte Carlo receiver 

As the Fig. 3.2 shows, at each transmit antenna k, k =1........., K, the binary bits 

emitted from binary source are mapped into multi-phase signals dk.n , n =1........., N —1 

in the modulator, which take values from a finite alphabet set A = {a1,..., aJAI } , where N 

is the block size. These signals {dk,n }n ~l are differentially encoded to resolve the phase 

ambiguity inherent to any blind receiver, and the output of differential encoder sk ,n is 

given by [19] 

Sk0 =l, 
_ 	 (3.54) 

sk,n-ldk,n , 	12 = 1....., N —1 

The differentially encoded symbols are transmitted through the transmitting antennas 
and are assumed to be independent in time as well as in space. 
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Assume that the channel between l h transmit antenna and the p h̀ receive 
antenna is subject to flat fading, then the received signal y,", at the p" receive antenna, 

P =11 ......, P and at time n is given by [19] 

K 
Yp n =Yhpk,f Sk n +vp,n , 	p = 1,......,P, 	n=0,....,N-1 	(3.55) 

k=1 

where sk n is the transmitted symbol at the k" transmit antenna at time n 

hp k,n is the complex fading channel gain between the k"1 transmit antenna and 

the p h̀ receive antenna 

vp n is i.i.d complex Gaussian noise (VP' n -- N (0, a2)) 

By writing equation (3.55) in matrix form, we get 

Yl,n 	'`1,1,n hi,2,n hl,K,n 	S1,n 	Vi,,, 

Y2,n 	_ 	'2,1,n '2,2,n ... 	k,K,n 	S2,n 	
+ 	v2 n 	 (3.56) 

yP,n 	hp,l ,n hp,2 n ... 	hp,K,n 	SK,n 	V P,n 

Let, 

h1,n = [k,1,n A,2,n 	... 
T 

~,K,n ] 
~ 

h2,n — [h 1 ,n k ,2 ,n 	• • 
j, 
1,K,n 

1T 
" 

hPn = [hpin hP2,n 	... T hpK,n ~ 

and 	Sn = [s1 	S2,n ... SK,. ] 

Then, the equation (3.56) is modified as 
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Yl,n Sn 
0... 0 hl,n VI,n 

Y2,n _ 0 S n  ... 0 h2  + V2 	
(3.57 l 	) 

yy,n 	0 0 ... sn  hp,n VP,n 

Sn  0 ... 0 
0 Sn  •..O 

Denoting yr„ 

0 0 •.. Sn  

T hn  = [h1 ,, h2 	... hP,n  

T Vn =[v1 	V2n  ... VP.  

T 
and 	yn  = [y1,n .y2,n  ... yp,n  

then, equation (3.57) is written as 

Yn = Wnhn  +vn 	 (3.58) 

Assume that the fading coefficients thp k n } remain fixed for a block of N symbols, then 

hn +l = hn 
	 (3.59) 

Now, the state space model of MIMO system in flat fading channel for a block of N 
symbols using equations (3.58) & (3.59) is given by 

hn +1 = hn 	 (3.60) 

Yh =W)1  +Vn 	 (3.61) 

3.5 Particle Filtering Algorithm for M1MO System 

Consider the state space model of MIMO system given by equations (3.60) & 

(3.61). Let YYY  ° {Yo,y,.........,yn}, be received signals andSn  ° { so ,s1,.........,sn}be 
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transmitted signals up to time n. Also denote do ° {d1,  d2,n 1 • • • • • • • •., dx,n } 

Dn A {dl ,d2,.........,dn} . 

Statement of the Problem: To estimate the a posteriori probabilities of the information 
symbols 

	

a; e AK ;n=1,....,N-1 
	

(3.62) 

based on the received signals Y,, up to time n and the a priori symbol probabilities of 

D,~ without the knowledge of channel response h. 

Consider M-ary phase-shift keying (MPSK) signals are transmitted i.e., 

aa=exP[i1_[J  21rz 	for z 0 	IAi 1 	 (3.63) 

where j = 	. Assume that the transmitted symbols are independent i.e., 

p (sn = a, / Sn_1) = p (s» =a1), 	a; E AK 	 (3.64) 

Now, using equation (5.1) the probability p (sn = a;) is given by 

p(sn =a;)=p(d» =a; os 	 (3.65 ) 3.65) 

where o denotes element-wise product. When no prior information about the symbols 
is available, the symbols are assumed to take each possible value in the Alphabet set 

A" with equal probability i.e., 

p (dn 	 for i=1..........IAK 
	

(3.66) 

Let s~'~ —°— {s(j) ,  s2',,  ........., SK' )fl } , j =1, 2......., m be a sample drawn at time n and 

denote S(') —°— {so, s;'W .........., 	5. In order to implement the particle filter, a set of 
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Monte Carlo .samples of the transmitted symbols {S}m with its corresponding 
-1 

importance weights jw~')J' which are properly weighted with respect to the 
,-, 

distribution p (S" /Y") are needed. From SIS technique discussed in section 2.4.1, the 

Monte Carlo samples are easily generated from a trial sampling density. If the choice of 

trial sampling density is taken as the optimal sampling density then by equation (2.39), 

we get 

qls"/5(~ 1'Y") = p(s"/5(~ n ) 
	

(3.67) 

For this choice of sampling density, the weights are updated according to equation 

(2.40) as 

°C wP (Yn /S(J 19 Yn-1) 
	

(3.68) 

w~') ocw('i 21 P(YnIS(J1,Sn =ai,1'"-1)P(sn =a. n'-i 1'n-1) 
a j EAK 

w(J) cc w(,1 E P (Yn /s 21 ,s, =a.,Yn-1 )p (s =ai 
a, EAK 

w(') ocw('i Z p(yn/s(J1,s =a.,Yn-i)p(dn =af os) 	 (3.69) 
a, EAK 

Denote a(;) = p (yn /`S , sn = a1, Yn-1) P (dn = ai 0 s) , then weights are given by 

w(') cc 

	

	
(3.70) 

a,EAK 

Now, the term sampling density p (s,,/S('i, Yn ) is modified as 

P(s /S('-Ilya)=P(sn~S~~i~Yn9Yn-1)
. 
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P( S n' Sn i'Y"' Y -1) 

p ( snJ l ,yn ,Yn-1 ) 

P(Yn/S(J19SnI Y.-1~P(S(,13 ~n 9Yn-1) 

P (Yn I Sn-i' n-1) P (S(, 19 Yn-1 ) 

P(y 's(n'I,S,,x-1)p(Sn/s ,y"-1) 
p(ynI S nJlI yn-1) 

0C P(YnIS(J1ISn 	 n_1 L" n_1)  

°c P (yW TS(j 1, SH = a1, YY-1) p (Sn =a1) 

°cp(ynIs(21,Sn =ai,Yn-1)p(dn =a1 

nJ1IYn) =anj 
	 (3.71) 

From the state space model (3.60) & (3.61), the density p (yn /SlJ 1, sn = a1 , Yn_1) is 

Gaussian and its mean and variance is calculated using the Kalman filtering algorithm. 

p(yn /S('i,sn = a.,Yn_1 ) -- N. (mean, variance) 	 (3.72) 

The state space model of MIMO system defined by equations (3.60) & (3.61) is 
reproduced here. 

hn+1 = hn 

yn = 'Y nhn +v, 

The Kalman filtering algorithm for the above state space model when s,l is known, is 

given as follows: 
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The innovation term from equation (2.17) is given by 

T1n = Yn — Wnhn-i 	 (3.73) 

The correlation matrix of the innovation process by using equation (2.19) is given by 

R„ = yrnK n yrn + 62I p 	 (3.74) 

The Kalman gain by using equation (2.20) is given by 

G = K n yrn R' 	 (3.75) 

Filtered state error correlation matrix by using equation (2.18) is given by 

F"n Kn — GnWnKn 

Y.n =K n —K nWn Rn1WnKn 	 (3.76) 

Predicted state error correlation matrix by using equation (2.16) is given by 

Kn  = :n_, 	 (3.77) 

Now, substitute equation (3.77) in equations (3.74), (3.75) and (3.76) then 

Rn = Wnn-iWn +a2IP 	 (3.78) 

Gn  = En_,Wn Rn' 	 (3.79) 

En  = En-1  — En-IT n  Rn'TnEn_I 	 (3.80) 

Estimated state vector by using equation (2.17) is given by 

hn  = hn-i  + Gnitn 

hn  = hn-i + Y-n-1W 1R 1  (Yn  — Wnbn-1) 	 (3.81) 



The mean of density p (Y.IS'jl,s. = a;, Y„_1 ) can be computed using the innovation 

equation (3.73) as [19] 

mean = E{y„ /S , sn = a1,' 1} 	 (3.82) 

_ xVnhnJ 
Sn —81 

Now, denote E, = r (a1 ) , then 

mean = E;h(' i 	 (3.83) 

Let j ') _ E1h(' 1 then mean is given by 

mean = µtin 	 (3.84) 

The variance of density p(yn/S,Sn = a,,Yn_1 ) can be computed by using the 

correlation matrix of the innovation process equation (3.78) as [ 19] 

variance = Var lyn ls(nj-~, I sn = a;,Yn_1} 	 - 	 (3.85) 

= 'vn£'(j lwn + o•21 I 
sn —81 

= Nf(a;)I(';yi" (a1)+a-2Ip 

variance = E;Enj;~1' +62 I P 	 (3.86) 

Let R)_ EiE~' EH + U 2I P then variance is given by 

variance = R('1 	 (3.87) 
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Now, the probability density p (y„ /S, S„ = a., Yn_1) using equations (3.84) & (3.87) is 

given by 

p(yn/8('21, s„ = ar, Yn-1) Nc (),R(.i) ) 	 (3.88) 

For each a, E AK, the a posteriori symbol probability p (dn = a; /Y„) as in equation 

(2.36) can be estimated as [19] 

p(dn =a;/Yn)=P(Sn °Sn--1 =ai/Yn) 

45(%  °S:1=a,)/Yn} 

 —~ (✓) (.i 1 _ 
	n 8(s °s * , _ a.)w .i) 	 (3.89) 

Wn j=1 

Where W,, = 
=1 

S (.) is dirac-delta function defined as 

(') {i)' 

8(s) ° s(i)" _ 
a,) 	 if sn ° s„-1 = a; 

n 	n 1 — 
t) _ 
	(J) 	(j). 

0, 	if sn ° s 	a; 	
(3.90) 

 

The information symbol d„ is estimated by maximizing the a posterior density 

p (dn = a; /Y), where a, E AK. The particle filter algorithm for generating the 

sequential Monte Carlo samples of the transmitted symbols Is 4}m with corresponding 
,_1 

weights { 	 m which are properly weighted with respect to the distribution 

p (S„ /Y n ) and Kalman filter update k(' ) = (h(j), Y,,(') ) is given in algorithm 5.1 [ 19]. 
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Algorithm 3.3 

1) Initialization 

Each Kalman filter is initialized as k(i) _ (h(j), E(j) ) , with E(1) =1000IK,. and 

h(1) --- NN (0, E-1) for j =1........m. All the importance weights are initialized as 

w'1 =1, j =1, .......m so that there is no bias in decision making by initial 

weights. 

Based on the state space model (3.60) & (3.61), the following steps are 

implemented at n`h recursion (n = 0........, N —1) to update each weighted 

sample. For 1=1........m 

2) For each a; E A', compute the following quantities 

From equations (3.84) and (3.87), the mean and variance of the trial sampling 
density is calculated. 

(j)_ 	(i 
— '-'i n-1 

Rl (' _ ~.E(.i) ~H + U21 n,i 	+ n-1 i 	P 

Where S, = yi (a; ) 

3) Compute the trial sampling density 

For each a; E AK, compute a( ) by using equation (3.88) as 

a(r) = p (yn /s ' 
1, sn _ ai, Yn-1) p (dn = i1, OS' -1) 

P(Yn/'5n 1,Sn 
 



4) Impute the symbol sn 

Draw a sample s(') from the set A" with probability 

( (i) 	) oc a(i) 	E AK p\s = a i 	ni ~ 	a i (3.91) 

Append s(') to S(' i and obtain S~') 

5) Compute the importance weight 

By using equation (5.24), the weight update is given by 

wn awn-1 	an,i 
a,EAK 

6) Update the a posteriori mean and covariance of channel 

If the imputed symbol s~') = a, in step 4, then setµ(') = PL 	R ) R(') = R('1 and 

update the a posteriori mean and covariance of channel by using equations (3.81) & 
(3.80) as 

h(' i + E(j 18(i)H (R(j) )-1 (y, —) 	 (3.92) 
11  

E(J) — V(J 1 -.'(J .(')H (R('))-1 	i 	 (3.93) 

At each time n, the dominant computation in this particle filtering algorithm 

involves the m x AK one-step Kalman filter updates for (h('), di)). Since the m 

samplers operate independently and in parallel, the SMC detector is well suited for 
parallel implementations. 

The residual resampling algorithm, which forms a new set of weighted 

samples ~(S(' ) ,kn') , 1')m from original set, 1(5('),k('),w~') )yn can be generated as 

in algorithm 3.2. 



3.6 Simulation Results 

3.6.1 SISO 'System 

For the simulation of blind detection in SISO systems, the following models 
namely ARMA (3,3) [19] and AR(2) [5] processes are used for the fading coefficients 

a, — 2.37409at_1  + 1.92936a1_2  — 0.53208at_3  

=10_2  (0.89409u., + 2.68227u,_1  + 2.68227ur_2  + 0.89409u,_3 ) 	(3.94) 

Where u, — N(0,1) 

as  —0.10a.1   — 0.80at_2  =u1  and 	u, — N (0, 0.27) 	 (3.95) 

For the simulation of blind detection in SISO system using particle filtering algorithm 
in MATLAB environment, the following parameters are used. 

> Number of particles m= 50 
> Modulation scheme: BPSK 

> SNR= Var { ar  }/Var {n, } 

> Number of Monte Carlo simulations N,, 100 
> Number of transmitted symbols=100000 
> For delayed estimation, delay=2 is considered. 
> For the case of non-Gaussian noise c = 0.1 and k =10. 

Steps carried out for the simulation of particle filtering algorithm for SISO system are: 

1) Obtain the randomly generated BPSK signals and differentially encode them 
before transmission. 

2) Generate the true states using equation (3.12) and observations using equation 

(3.13). 
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3) Generate sequential Monte Carlo samples of transmitted symbols (S(,j) lm with 
~-1 

corresponding importance weights {w 4 }m at time t by using the algorithm 3.1. 

4) Calculate the effective sample size r using equation (3.52). 

5) If m _< f-then  do resampling by using algorithm (3.2) else go back to step 3. 

6) For each a, E A , the a posteriori symbol probability p (s, = a, /Y,) is calculated 

using the equation (3.45) after differentially decoding is performed. 

7) The symbol is decoded using the equation (3.47) and the bit error rate (BER) is 

calculated between transmitted symbols and decoded symbols. 

Steps from 1 to 7 are repeated for each independent Monte Carlo run and BER is 

averaged over all Monte Carlo runs. For comparison, known channel bound (MLSE) 

and performance• of differential detector is also plotted. 

Fig. 3.3 shows BER performance of particle filtering algorithm in SISO systems 

with fading coefficients modeled as ARMA process and additive Gaussian noise. It is 

evident that the delayed weighted method gives better performance, for instance at 

SNR of 30 dB it gives BER 0.0014 while the particle filter with zero delay gives BER 

of 0.0027. For comparison, the performance using differential detection method is also 

plotted and it is seen to perform poorly especially from SNR of 20 dB-40dB and 

saturates at a BER value of 0.0101. Besides that, known channel bound is also plotted 

for comparison. It is seen that the delayed weighted scheme performance is close to the 

known channel bound. 

Fig. 3.4 shows BER performance of particle filtering algorithm in SISO systems 

with fading coefficients modeled as ARMA process and additive non-Gaussian noise. 

Differential detection forms error floor from SNR of 30dB-4OdB and saturates at 

0.0115. It is seen that from SNR of 1OdB-2OdB the delayed weight method and particle 

filter with zero delay are close in performance to the known channel bound. At higher 

values of SNR, typically from 25dB- 40dB, delayed weighted method shows a large 

performance improvement when compared to the differential detection method. 
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Fig. 3.5 shows BER performance of particle filtering algorithm in SISO systems 
with fading coefficients modeled as AR process and additive Gaussian noise. At lower 
values of SNR, typically from lOdB-15dB, differential detector, particle filter with zero 
delay and delayed weighted method are close in the performance. Delayed weight 
method and particle filter with zero delay shows much improvement than differential 
detector from SNR of 25dB-4OdB. Delayed weight method gives a BER of 0.0005 at 
SNR of 40dB. 

Fig. 3.6 shows BER performance of particle filtering algorithm in SISO systems 
with fading coefficients modeled as AR process and additive non-Gaussian noise. Here 
also at lower SNR (i.e., from lOdB-15dB) values differential detector, delayed weight 
method, particle filter with zero delay performs closely. Delayed weight method shows 
a close performance to known channel bound from SNR of 20-25 dB. For instance at 
25dB, delayed weight method gives BER of 0.0031 while known channel bound gives 
BER of 0.0024. By increasing the delay, the delayed weight method performs close to 
the optimal detector. 

3.6.2 MIMO System 

For the simulation of blind detection in MIMO systems, fading coefficients are 
generated from the circularly symmetric complex Gaussian distribution. All fading 
coefficients are assumed to be uncorrelated and are normalized such that total energy is 
equal to unity. 

For the simulation of blind detection in MIMO system using particle filtering algorithm 

in MATLAB environment, the following parameters are used. 

> Number of particles m= 50 
> Modulation scheme: BPSK 
> Number of transmitting antennas K=2 
> Number of receiving antennas P=2 

> Number of transmitted symbols=100000 

➢ Number of Monte Carlo simulations N„= 100 
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Steps carried out for the simulation of particle filtering algorithm for MIMO system 
are: 

1) Generate BPSK signals from alphabet set A = {-1,1} randomly and differentially 

encode them using equation (3.54) before transmitting from each antenna. 
2) Generate the fading coefficients and observations according to state space 

model of MIMO system given by equations (3.60) & (3.61). 

3) Generate the sequential Monte Carlo samples of transmitted symbols IS 
l j=l
? 

with corresponding importance weights 
I  Wp }

m  at time n by using the 

algorithm 3.3. 

4) Calculate the effective sample size m„ using equation (3.52). 

5) If m„ <_ 1  M then do resampling by using algorithm 3.2 else go back to step 3. 

6) For each a. E AK,  the a posteriori symbol probability p (d„ = a. /Y„) is 

calculated using the equation (3.89) . 

7) The symbol is decoded by maximization of a posterior probability 

p (d„ = a, /Y„) and bit error rate .(BER) is calculated between transmitted 

symbols and decoded symbols. 

Steps from 1 to 7 are repeated for each independent Monte Carlo run and BER is 

averaged over all Monte Carlo runs. 

Fig. 3.7 shows BER performance of the particle filtering in blind detection of flat-

fading MIMO system and additive Gaussian noise. Besides this, the performance of 

MLSE receiver with perfect channel state information, which serves as a lower bound 

on the achievable performance for any blind receiver is also given. As SNR is varied 

from OdB-15dB, the BER of particle filtering method decreases from 0.3579 to 0.0057 

while known channel bound decreases from 0.1930 to 0.0018. It may be seen that there 

is a close similarity between the known channel bound and the particle filtering 

method. 
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Figure 3.3 BER performance of particle filtering algorithm in SISO systems with 

fading coefficients modeled as ARMA process and additive Gaussian noise. 
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Chapter 4 

PARTICLE FILTERING FOR BLIND DETECTION IN 

OFDM SYSTEMS 

Orthogonal frequency division multiplexing (OFDM) [20] is one of the most 

promising techniques for achieving high speed wireless data communication. OFDM is 

a multicarrier transmission technique, which divides the single wideband channel into a 

number of narrowband channels called sub-channels; each subcarrier in each sub-

channel is being modulated by a low rate data stream and sub-carriers are transmitted in 

parallel over the channel. The increased symbol duration reduces the impact of ISI. 

Thus OFDM is one of the most effective techniques for combating multipath delay 

spread over mobile wireless channels [20]. For OFDM systems, efficient and accurate 

channel estimation is necessary to coherently demodulate the received data. Channel 

estimation methods for OFDM systems based on the use of training signals are 

presented in [34,35]. However, transmissions of pilots require bandwidth and it 

significantly reduces the overall system capacity. 

A sequential Monte Carlo blind receiver for OFDM systems in frequency-

selective fading channels is presented in [22]. In this SMC detector, Bayesian inference 

of unknown data symbols in the presence of an unknown multipath fading channel is 

made only from the observations over one OFDM symbol duration based on techniques 

of importance sampling and resampling. We have used the state space model approach 

for deriving the particle filtering algorithm for the blind detection in differentially 

encoded OFDM systems with the use of Kalman filtering algorithm. This SMC 

technique easily handles the non-Gaussian ambient channel noise, without the • use of 

any training /pilot symbols or decision feedback. 

In this chapter, the OFDM system is described first. Next, the state space model 

of OFDM system for one symbol duration is presented. The particle filter algorithm for 

differentially encoded OFDM system in frequency-selective fading channel is derived. 
The residual resampling algorithm with fixed resampling interval and the delayed 

estimation approach are also discussed. Finally simulation results are presented. 



4.1 Signal Model of OFDM System 

Consider an OFDM system with N subcarriers signaling through a frequency-

selective fading channel as given in Fig4.1 [21,22]. 

Sk 

Serial to 0 	 Parallel 
Binary 	Modulator dk Differential 	parallel 	IDFT 	to serial 	S" 
source 	 encoder 	converter 	 converter 

Add 
guard 
interval 

Channel 

	

Yk 	 Y„ 	 AVA 

Sequential 	 Serial to 	Remove
14  output 	Monte Carlo 	 arallel 	guard  

detector 	DFT 	p 	 interval 
converter 

Figure 4.1 Baseband model of OFDM system with sequential Monte Carlo detector 

As shown in Fig.4.1, the binary digits emitted from source are mapped into multi-phase 

signals dk  in the modulator, which takes values from a finite alphabet set 

A = {a1,..., a{AI  } . These signals {dk  }k it  are differentially encoded to resolve the phase 

ambiguity inherent to any blind receiver, and the output of differential encoder Sk  is 

given by [22] 

So  =1, 
Sk  = S'k-ldk, 	k =1.....,N--1 (4.1) 
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The differentially encoded symbols {Sk }k o are applied to the Inverse Discrete Fourier 

Transform (IDFT) block resulting in {sn }n , which are given by 

s„ = IDFT{Sk ) 

Sn =_~Srkej2~knIN' 	n=O,....,N-1 
N k=0 

1 N-1 	
(4.2) 

When the number of sub-carriers N increases, the OFDM symbol duration becomes 

large compared to the maximum multipath spread zm of the channel, and the amount of 

intersymbol interference (ISI) reduces. However, to avoid the effects of ISI and to 
maintain the orthogonality between the sub-carriers, a guard interval is inserted 
between adjacent OFDM frames [21]. After parallel-to-serial conversion and insertion 
of guard interval, the signals are then transmitted through a frequency-selective fading 
channel. At the receiver end, after removing the guard interval and serial to parallel 

conversion, the sampled received signal yn becomes [22] 

yn =s ®hn +v., 	n=0,1.......N-1 	 (4.3) 

where ® is convolution operation 

hn is channel impulse response 

v,, is i.i.d complex white Gaussian noise 

Let h = [h0 , A, ......, hL_l ]T contain the time response of all L taps of the channel, then 

frequency response of the channel Hk is given by 

Hk = DFT{h„} 

L-1 Hk = Y, hn e-j 2~clo~/N' 	k =0.....,  N —1 	 (4.4) 
n=0 

By writing the equation (4.4) in matrix form, we get 
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ho  

Hk  = [ ii 	 e-i2ark(L-1)/N] '1 	 (4.5) 

hL-1 

Denote w f  (k) = [1 ei22rkIN ... e j2xk(L-1)/N lT then equation (4.5) becomes 

Hk  =wf (k)h 	 (4.6) 

Received samples {y„ }n Q are applied to the Discrete Fourier Transform (DFT) block 

resulting in {Yk  }k  o  , which are given by 

Yk  = DFT{yn  } 

Yk  = E yne-i27rkn1N 	k =0....., N —1 
N-1 

(4.7) 
n=0 

In frequency domain, by using equation (4.3) the received signal Yk  over k`" sub-carrier 

can be expressed as [34] 

Y =Sk Hk +Vk , 	k= 0,1.......,N-1 
	

(4.8) 

Where Vk  -- NN  (0, 0.2 ) is the Fourier transform of v„ , which is also i.i.d. complex 

Gaussian noise Then received signal in equation (4.8) using equation(4.6) is given by 

Yk  =Skwf (k)h+Vk , 	k=0,l,......,N-1 
	

(4.9) 

Assume that the channel response is constant during one OFDM symbol duration, then 

hk+1 = hk 
	 (4.10) 

Now the state space model of OFDM system in one symbol duration using equations 

(4.9) & (4.10) is given by 
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hk+l = hk 	 (4.11) 

Yk =Skwj (k)h+Vk 	 (4.12) 

4.2 Particle Filtering Algorithm for. OFDM System 

Consider the state space model of OFDM system given by equations (4.11) & 

(4.12). Let Yk  ° {Yo , Y........., Yk  } be the received signal and Sk  ° {So, Sl  , ........, Sk  } be 

the transmitted signal up to k" sub-carrier respectively. 

Statement of the Problem: To estimate the a posteriori probabilities of the information 
symbols 

p(dk  =a;lYk ), 	a;  EA;k=1.....,N-1 

based on the received signal up to l h  sub-carrier Yk  and the a priori symbol 

probabilities of dk  without the knowledge of channel response hk  . 

Consider that M-ary phase-shift keying (MPSK) signals are transmitted i.e., 

a, = exp j 27ri  
f  , 	 for i = 0........., IAI —1 	 (4.13) 

IA 

where j = 	. Assume that the transmitted symbols are independent i.e., 

p(Sk = ai /Sk-1) = p(Sk  = a,), 	a1  A 	 (4.14) 

Now, using equation (4.1) the probability p (Sk  = a1 ) is given by 

p(Sk  =ai )= p(dk =a1Sk-1) 	 (4.15) 

When no prior information about the symbols is available, the symbols are assumed to 
take each possible value in the Alphabet set A with equal probability i.e., 



1 p(dk =a1Sk_1 )= 1— 	for i =1..........JAI (4.16) 

In order to implement the particle filter, a set of Monte Carlo samples of the 

transmitted symbols {S }m with its corresponding importance weights {w.4 }m which 

are properly weighted with respect to the distribution p (Sk /Yk ) are needed. From SIS 

method discussed in section 2.4.1, the Monte Carlo samples are easily generated from a 
trial sampling density. If the choice of trial sampling density is taken as the optimal 
sampling density then by equation (2.39) 

q(skIsk~1,Yk
) =p('Ski k-1-9y') (4.17) 

For this choice of sampling density, the weights are updated according to equation 

(2.40) as 

wkJ' MW I-I p(Y1ISkJ1,Yk_1 ) 	 (4.18) 

wk 
ocwk 	 p( Yklsk =ai ,'Sk 1,Yk-l)p( Sk =af/ S5 )1 ,Yk1) 

a1 EA 

w/ cw p( r / sk =a,,S l,Yk-1)p(dk -'aiSk~l*) 	 (4.19) 
a1 EA 

Denote ak') = p (Yk /Sk = a;, S, Yk-1) P (dk = a;S'), then weights are given by 

/4.20 l 	) 
a,EA 

The sampling density p (Sk /S, Yk ) can be written as 

p(Sk /skjl 9Yk )= p(Sk /sk 1,Yk,Yk-1) 
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P(Sk ,sk~1,Yk ,Yk1 ) 

P (sk 1, 1k , Yk-1) 

P( Yklsk l ,sk ,Yk-1)P( sk 1,sk,Yk-1) 

P( YkIsk 1,Yk-1)P(skJ1,Yk-1) 

P( Y"/S"' Sk 1,Yk-I' 	 l ,Yk-1) 

P(Yk/Sk l'Yk-1) 

0CP(Yk/Sk =ai,Sk I,Yk-1)P(Sk = a,I"sk 1IYk-1) 

°CP(YkI Sk=ai ,'Sk l,Yk-l)P(Sk _a.). 

oc P(Yklsk =ai,'Sk 1,Yk-1)P(dk - aISk_l• ) 

P(sk/ SkJIIYk)=ak,r) 

	
(4.21) 

From the state space model (4.11) & (4.12), the density p (Y" /Sk = a; , Sk'i, Yk-1 ) is 

Gaussian and its mean and variance are calculated using the Kalman filtering 
algorithm. 

P(Yx/sk =a;,S,Yk-1) — N N (mean,variance) 
	

(4.22) 

The state space model of OFDM system defined by equations (4.11) & (4.12) is 
reproduced here. 

hk+l = hk 

Yk =SkW f (k)h+Vk 



The Kalman filtering algorithm for the above state space model when Sk is known, is 
given below: 

The innovation term from equation (2.17) is given by 

77k = Yk -SkW f (k)ilk-, 
	 (4.23) 

The correlation matrix of the innovation process by using equation (2.19) is given by 

Rk  = Skwf (k)Kkwf (k)Sk +C 2  

Rk  -_ ISk I' wI  (k)K kwf  (k)+0.2 

Rk =wf(k)K kw f (k)+o-2 	 (•.•ISk l=1) (4.24) 

The Kalman gain by using equation (2.20) is given by 

gk = K kw f  (k)Sk  / Rk 	 (4.25) 

Filtered state error correlation matrix by using equation (2.18) is given by 

Ek = K k  -gkSkWl (k)Kk 

Ek  =K k  — Rk  Kkwt lk }Sk SkW .f \kl K k 

Ek  = K k  - R  I SkI 2  Kkwf (k)wf (k)Kk Rk 

1 
gk  = K k  — Kkw f (k) ws (k) Kk 

k 
(•.• I Sk  I =1) 	(4.26) 

Predicted state error correlation matrix by using equation (2.16) is given by 

Kk = Ek-1 
	 (4.27) 
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Substituting equation (4.27) in equations (4.24), (4.25) and (4.26) , we can write 

Rk  =wj (k);k-1wf  (k)+o-2 	 (4.28) 

gk = Ek-IVY' f  (k) Sk̀  / Rk 	 (4.29) 

= Y'k-1 R Ek-iw f (k)w.1 (k);_1 	 (4.30) 
Rk 

Estimated state vector by using equation (2.17) is given by 

hk 

hk - hk-1 + R  2;k-lw.f ( k ) Sk;  (Yk -'SkW  f ( k ) hk-1) 
k 

(l'k _ SkW f `k)hk-1 I hk  = 1'k-1 + 	R 	lk-lwf (k) s; 	 (4.31) 
k 

The mean of density p (Yk  /Sk  = a; , Sk'i, Yk-1 ) can be computed using the innovation 

equation (4.23) as [22] 

mean = E {Yk  /Sk  = a,, S, Yk-1 } 	 (4.32) 

H 	 k-I 
= SkW f  ( k)hk-1 

Sr =Qi 

= a;w f (k)hk' 

Denoting ttk) = a,w f (k' hk' 1, then 

mean = Eck t ) 	 (4.33) 



The variance of density p (Yk /Sk = a; , Sk' i , Yk_1) can be computed by using the 

correlation matrix of the innovation process equation (4.28) as [22] 

variance = Var f Yk ISk = a,, Sk'i, Yk _1  } 	 (4.34) 

= w.f \k! T.k f  1w f ( k ) + 072 ISk=aj 

= wt (k) F'k'-iw f  (k) + 72 

which may be written as 

variance = Rk ,) 	 (4.35) 

Now, the probability density p (Yk  /Sk  = a; , Sk' 1, Yk_1 ) using equations (4.33) & (4.35) is 

given by 

p(Yk /Sk  =ai,Skj1IYk-1)— Nc(/4,,RJ')) 
	

(4.36) 

For each a, E A , the a posteriori symbol probability p (dk  = ai  /Yk ) as in equation 

(2.36) can be estimated as [22] 

p(dk =a,/Yk)= p( SkSk-1 =a,/Yk) 

= E{S(SkS/-1 = of/lykI 

1 m 
Sk' )Sk-i = a, ,(j)  

r  Wk j=1  

m 
Where Wk  = Wk>> 

j=1 

9 (.) is dirac-delta function defined as 

(4.37) 



(Sk'j'Sk'j 
	) 1 	 kk-1i  

if 
  1 	I 	

10, 	if Skl)Sk.2 ~ a, 
(4.38) 

The information symbol dk is estimated by maximizing the a posterior density 

p (dk = a, /Yk ) , where a; E A . The particle filter algorithm for generating the 

sequential Monte Carlo samples of the transmitted symbols {Sk')}m with corresponding 
J-1 

weights fwk')}m , which are properly weighted with respect to the distribution 
i-1 

P (Sk /Yk) and Kalman filter update kk' ) = (h(j) , Ek' ) ) is given in algorithm 4.1 [22]. 

Algorithm 4.1 

1) Initialization 

Each Kalman filter is initialized as k(',) = (h(j), 	with 	=1 000I and 

h~ 1) -- N (0, E_1 ) for j =1........m. All the importance weights are initialized as 

wit =1, j =1........m so that there is no bias in decision making by initial 

weights. 

Based on the state space model (4.11) & (4.12), the following steps are 
implemented at k"' recursion 	(k = 0........, N —1) 	to update each weighted 

sample. For j =1........m 

2) For each ai E A, compute the following quantities 

From equations (4.33) and (4.35), the mean and variance of the trial sampling 
density are calculated. 

(J)  = awi f (k)h(jl luk,i  

Rk ;) = wH (k) Eak' 1w1 (k) + U2 



3) Compute the trial sampling density 

For each a; E A, compute ak;) by using equation (4.36) as 

ak,r~ = p(Yk/Sk =a1 ,S( jl ,'Tk-1)p(dk =aiSkj1*) 

p (Yk /sk ( j) I Yk-1)—N(1u   c k,1) '  Rk,f) j 

4) Impute the symbol Sk 

Draw Ski ) from the Alphabet set A with probability 

=a1)ocak;?, 	a1 EA 	 (4.39) 

Append Sk') to Sk' i and obtain Sk') 

5) Compute the importance weight 

By using equation (4.20), the weight update is given by 

(i)(1 	(') Wk oC Wk_1 	ak,i 
aleA 

6) Update the a posteriori mean and covariance of channel: 

If the imputed symbol Sk' ) = a, in step 4, then set ftk' ) = ,u , Rk' ) = Rk  and 

update the a posteriori mean and covariance of channel by using equations (4.31) & 
(4.30) as 

(

Yk hkJ) ̀  h(j k-i + 	^ ~k ~kJ 1wj (k) S1)* 	 (4.40) k~) 

'kJ) = 	1 Ek' 1 — 	Ek'iwf (k)wI (k) 4 '-1 	 (4.41) 
Rk' ) 

91 



At each recursion k, the dominant computation in this particle filtering 

algorithm involves the m one-step Kalman filter updates for (h5-'), Ek') ) . Since the m 
samplers operate independently and in parallel, the SMC detector is well suited for 
parallel implementations. 

The residual resampling algorithm with fixed resampling interval (that is, 

resampling is done every ko recursions), which forms a new set of weighted samples 

1(9(j) kk' ), wk' ) 	from original set {(s° ),   kk' ), w' )fl  can be generated as in 
j-1 	 j=1 

algorithm 3.2. 

Delayed-weight estimation 

In section 4.2, the problem of estimating the symbol dk based on the received 

signals Yk up to k' sub-carrier by particle filtering algorithm is considered, which is 

similar to online filtering in dynamical systems. By the state space model (4.11) & 

(4.12), the future signals {v}' '1 contain useful information about the channel. Hence, 

an estimation that is also based on these future observations is usually more accurate. In 

delayed-weight estimation, the inference on dk is made at later time (k +8), S > 0 with 

respect to the distribution p (dk /Yk+s) . If the set {(s. wk' ) )}m is properly weighted. 

with respect to p (Sk /Yk ) , then by induction, the set {(s ?8 , x'k+S)}m is properly 
j=1 

weighted with respect to p (Sk+s/Yk+s), S >0.  Hence, by focussing on Sr at step 

(k +5),  the delayed estimate of the symbol can be obtained as [22] 

(dk - ai /Yk+S ) = 1 

	

p 	 8 (Sk(')S~'~* = ai )w2,  	a E A 	(4.42) - 

	

	 i  
Wk+B j=1 

	

where W 	E w ' 	 g Since the weights fWk+J 1j=1
contain the information about the  

j=1 

signals (Yk+19 • • • • •... •, I'k+a) , the estimate in equation (4.42) is usually more accurate. The 
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delayed estimation method incurs no additional computational cost (i.e., CPU time), but 

it requires some extra memory for storing I(Sk+i.••••••• Sk+s)I j  
,_I 

4.3 Simulation Results 

For the simulation of blind detection in OFDM systems, the coefficients of time 

delay line (TDL) model of frequency-selective fading channels are assumed to be 
uncorrelatea. All L taps of fading channel are Rayleigh distributed, and normalized such 
that total energy is equal to unity. 

For the simulation of blind detection in OFDM system using particle filtering algorithm 
in MATLAB environment, the following parameters are used. 

> Number of particles m= 50 

> Modulation schemes: BPSK, QPSK 
> Number of subcarriers N=64 

> Number of taps of fading channel L=3 
> Number of transmitted symbols=100000 
> Delay in delayed weight method=5. 
> Number of Monte Carlo simulations N,,,=100 

> Resampling is done at every ko  =5 recursions. 

Steps carried out for the simulation of particle filtering algorithm for OFDM system are 

1) Generate BPSK signals from alphabet setA = {-1,1} randomly and 

differentially encode them before transmission using equation (4.1). 
2) Generate the fading coefficients and observations according to state space 

model of OFDM system given by equations (4.11) & (4.12). 

3) Generate the sequential Monte Carlo samples of transmitted symbols IS}m  
j-I 

with corresponding importance weights {w )  }m  at kth  recursion by using the 
j-I 

algorithm 4.1. 
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4) 'Do resampling by using algorithm (3.2) whenever k is a multiple of ko  else go 

back to step 3. 

5) For each a;  E A, the a posteriori symbol probability p (dk  = a, /Y,k ) is calculated 

using the equation (4.37). 

6) The symbol is decoded by maximization of a posterior probability 

p (dk  = a, /Yk ) and bit error. rate (BER) is calculated between transmitted 

symbols and decoded symbols. 

Steps from 1 to 6 are repeated for each independent Monte Carlo run and BER is 

averaged over all Monte Carlo runs. To measure the system performance, Word error 

rate (WER) is also calculated, which denotes the error rate of the whole data block 

transferred during one symbol duration. 

Fig. 4.2 shows BER and WER performance of the particle filtering in blind detection of 

OFDM system with additive Gaussian noise and BPSK modulation. Besides this, the 

performance of MLSE receiver which serves as a lower bound is also plotted. It may be 

seen that the delayed weight method performance is close to the known channel bound. 

As SNR is varied from OdB-3OdB, the BER of delayed weight method decreases from• 

0.1345 to 0.00026 while BER of known channel bound decreases from 0.1295 to 

0.0002. From SNR of 1 OdB-3OdB, . WER of delayed weight method shows significant 

improvement and in close to WER of the known channel bound. The WER of delayed 

weight method varies from 1.0001 to 0.0123 as SNR is varied from lOdB-3OdB. 

Fig. 4.3 shows BER and WER performance of the particle filtering in blind detection of 

OFDM system with additive Gaussian noise and QPSK modulation. For delayed weight 

method, the BER decreases from 0.3645 to 0.0016 and WER decreases from 1.0003 to 

0.0624 as SNR is varied from OdB-3OdB. It may be seen that, the delayed weight 

method performance is close to the known channel bound. For instance at SNR=2OdB, 

the delayed weight method gives BER of 0.0089 and known channel bound gives BER 

of 0.0055. The delayed weight method gives better performance for BPSK when 

compared to QPSK. For instance, the delayed weight method gives BER of 0.0053 for 

BPSK while BER of 0.0356 for QPSK at SNR=15dB. It is noted that WER of delayed 
weight method is also close to the known channel bound. 
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Chapter 5 

PARTICLE FILTERING FOR BLIND DETECTION IN 

MIMO-OFDM SYSTEMS 

MIMO system is used for high data rate transmission in a dense multi-path 
scattering environment, which causes the MIMO channel to be frequency-selective. 

OFDM can transform such a frequency-selective MIMO channel into a set of parallel 
frequency-flat MIMO channels, and it reduces the ISI caused by the multipath. Thus 
MIMO-OFDM systems are used as effective means of providing high-speed data 

transmission over dispersive wireless channels [23]. For MIMO-OFDM systems, 

efficient and accurate channel estimation is necessary to coherently demodulate the 
received data. Jiang Yue et al., [36] propose joint semi-blind channel estimation and 

data detection in MIMO-OFDM systems, where channel estimation is done by the 

Kalman filter by the use of pilots and the outputs of data detection are fed back to 
another Kalman filter for improved channel estimation. A sequential Monte Carlo 

Kalman filter based Channel estimation in MIMO-OFDM systems is presented in [37], 
where the initial estimate for the delays and channels are obtained using one training 

symbol and in the remaining OFDM symbol intervals, the QRD-M algorithm is 

employed to detect the transmitted data symbols and finally the QRD-M data detector 
and MC channel/delay estimator are combined in a joint decision-directed algorithm. 

The QRD-M algorithm [37,38] uses a limited tree search to approximate the maximum-
likelihood detector. 

We have used the state space model approach for deriving the particle filtering 
algorithm for the blind detection in differentially encoded MIMO-OFDM systems with 

the use of Kalman 'filtering algorithm. This SMC technique easily handles the non-
Gaussian ambient channel noise, without the use of any training /pilot symbols or 
decision feedback. 

In this chapter, the MIMO-OFDM system is described first. Next, the state 

space model of MIMO-OFDM system is derived. The particle filtering algorithm for 

the blind detection in differentially encoded MIMO-OFDM system is derived. Finally 
the simulation results are presented. 
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5.1 Signal Model of MIMO-OFDM System 

Consider a MIMO-OFDM system with P transmit antennas, Q receive antennas 
and N data sub-carriers as shown in Fig. 5.1. 

Differential 
1  Modulator Encoder 	IDFT & CP 

S  Binary  
data 	P 	P 	 Differential 

Modulator 	Encoder 	IDFT & CP 

1 
Remove CP 

J 	

DFT 
Sequential 

P 
Monte Carlo  

Q  Remove CP 	DFT 	 receiver S 

Figure 5.1 An MIMO-OFDM system with sequential Monte Carlo receiver 

As shown in Fig. 5.1, the binary data is demultiplexed into P parallel streams; 
data in each stream is independently mapped into equiprobable symbols 

dk , p 1.......P 	and k = 0......N -1 within the modulator. These symbols dk are 

differentially encoded to resolve the phase ambiguity inherent to any blind receiver, 

and the output of differential encoder Sk for each transmit antenna p and sub-carrier k 
is given by 

Sp -1 
Sk =Sk ,dk, 	k=1,....,N-1, 	1........ 	 (5.1) 

Outpu 

1 

19 
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These differentially encoded symbols {Sk }k o, p =1,.....,P are applied to the Inverse 

Discrete Fourier Transform (IDFT) block resulting in {sn }N ' pp=1,....., P , which are 
n-0 

given by 

s,P = IDFT{Sk } 

'2~rkn/N s," =—ESke' 	n=O.....,N-1; p=1,......P 	 (5.2) 
N k=0 

The symbols ts-P)n=ON-1,p =1, ,P are transmitted via respective antenna p after  

insertion of cyclic prefix (CP) in each OFDM symbol. At the receiver end, after 

removing CP and taking DFT then OFDM signal Yk received at the qrh receive antenna 

at sub-carrier k is given by [36,37] 

P Yk =YHk.PSI +Vk, 	k=0,......,N--1, p=1,......,P, q=1.......,Q 	(5.3) 
P=1 

where Sk is the transmitted symbol at the p h̀ transmit antenna at sub-carrier k 

H •' is the frequency response of the channel between the p`h transmit antenna 

and the q`h receive antenna at sub-carrier k 

Vk is i.i.d complex Gaussian noise (Vq _ N N (0, o 2 )) 

Let h4 P =114, , hg•P,......, hL.P]T  contains the time response of all L taps of the channel 

between the p h̀ transmit antenna and the q`h receive antenna then frequency response 

of the channel Hk •P is given by 

Hk "P = DFT {1I °p } 

L-1 Hk,P 	k=0,......,N-1, p=1,......,P, q=1,......,.Q 	(5.4) 
n=0 



By writing the equation (5.4) in matrix form, we get 

H9;P = [i e- j2ak/N 
k 

9>P 

... e-121k(L-1)/NI "1 

h9,P 
L-1 

(5.5) 

Denote w f  (k) = [i e' 2zkiN ... e,2lrk(L-1)/N I T , then equation (5.5) becomes 

Hk,P = ,̀v  (k)h4,P, 	k=0,......,N-1, p=1,......,P, q=1,......,Q 	(5.6) 

The equation (5.6) for q=1 is written in matrix-form as 

H'1 	w7 (k) 
	0 	... 	• 0 	h"1  

H12 	 0 	wf (k) ... 	0 	h1.2 	
(5.7) 

Hi" 	0 	0 	... wr (k) h" 

Let, 

H = [H," Hk>2  ... H '  ]T 
 

H2  = [Hk"2,1  H2'2 ... H2,kP 1T 
kk  

HQ = [ HQ" HQ" ... HQ,P ]T  

w f (k) 	0 	••• 	0 
0 	w f (k) ... 	0 

Ck = 	 . 

0 	0 	•.. w(k) 

and Sk  = [Sk Sk - • • s(] then equation (5.3) in matrix- form is written as 
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yk Sk 0 ... 0 Hk Vk 

	

Sk  ... 0 
Hk + 

j,2 	
(5.8) 

YQ 	0 0 • • • Sk  HQ 	VQ 

Let, 

hl  = [hi" hl•2  ... hi' IT 

h2  - [h2.1  h2•2 ... hz,P IT 

hQ = [hQ" hQ'2  ..• hQ,' lT  

then equation (5.6) in matrix-form is written as 

gk Ck  0 ... 0 hl 

Hk 	0 Ck ... 0 h2 	

(5.9) 

HQ 	0 0 ... Ck  hQ 

By substituting equation (5.9) in equation (5.8), we get 

yk Sk  0 ... 0 Ck  0 ... 0 h' rfk 
Y2 	0 Sk  ••• 0 0 Ck  ••• 0 h2  V2 	

(5.10) 

yQ 	0 0 ... Sk  0 0 ... Ck  hQ VQ 

Denote, 

Sk  0 ... 0 
0 Sk  ... 0 

Tk 

0 0 ... Sk 
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Ck 0 ... 0 

flk - 

	0 	Ck ... 	0 

0  0 ... Ck 

h = [hl h2 ... hQ]T 
 

Yk [Yk Yk ... YQ ] T 

vk = [Vk Vk ... VQ ]T 

The equation (5.10) is modified as 

Yk ='k!lkh +Vk 	 (5.11) 

Assume that the channel is static in one OFDM symbol duration, then 

hk+l = hk 	 (5.12) 

The state space model of MIMO-OFDM system by using equations (5.11) & (5.12) is 
given by 

hk+l = hk 	 (5.13) 

Yk —'k flkhk +Vk 	 (5.14) 

5.2 Particle Filtering Algorithm for MIMO-OFDM System 

Consider the state space model of MIMO-OFDM system given by equations 

(5.13) & (5.14). Let rk =° {Yo , Y1, ......... Yk } be the received signal and 

~sk A {S0, S1........., Sk} be the transmitted signal up to 1th sub-carrier respectively. Also 

denote d k 	{dk,dk..........,dk } and Dk =° {dl,d2,.........,dk} .. 
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Statement of the Problem: To estimate the a posteriori probabilities of the information 
symbols 

p (dk = a► /Yk ), 	a. E A"; k =1, ...., N —1 	 (5.15) 

based on the received signal y up to km sub-carrier and the a priori symbol 

probabilities of Dk without the knowledge of channel response hk . 

Consider that M-ary phase-shift keying (MPSK) signals are transmitted i.e., 

a~ = exp j 2;ri 	 for i = 0........., IAI —1 	 (5.16) 
JAI 

where j = 	. Assume that the transmitted symbols are independent i.e., 

p (S k = a; /Sk_,) = p (Sk = a1 ), 	a; e AP 	 (5.17) 

Now, using equation (5.1) the probability p (Sk = a;) is given by 

p(S'=a; )=p(dk =a,oSk _,) 	 (5.18) 

where o denotes element-wise. product. When no prior information about the symbols 
is available, the symbols are assumed to take each possible value in the Alphabet set 

A p with equal probability i.e., 

p (dk = a. 	sk_1 ) = 	1p for 	i =1.......... AP  (5.19) 

Let 	Sk'i =° Is ' ),Sk('l,.........,Sk(') },   j =1,2,......,m be a sample drawn at sub- 

carrier k and denote .sk' ) ° jS(Oj)'S(jj)3 .........I S k1) } . In order to implement the particle 

filter, .a set of Monte Carlo samples of the transmitted symbols {$) }m with its ;_~ 

corresponding importance weights jwk'j))M which are properly weighted with respect to 
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the distribution p (sk /Yk) are needed. From SIS method discussed in section 2.4.1, the 

Monte Carlo samples are easily generated from a trial sampling density. If the choice of 
trial sampling density is taken as the optimal sampling density then by equation (2.39), 
we get 

+j,S~(JI,r)= p(S k /Sk jl ,/ k ) 
	

(5.20) 

For this choice of sampling density, the weights are updated according to equation 
(2.40) as 

u'k') °C Wp(Yk/5k-1,Yk-1) 	 (5.21) 

bVP aw I 	p(Yk /.'5MIIS k =ai,/k-1)p(Sk =ajI`Sk.1 /k-1) 
areAP 

WkJ) °C WN 	p(Yk/.s ,Sk =a.,Yk-1 )p(Sk =a.) 
a,EAP 

WkJ) or W01 E p (Yk /..s , S k = a,,Yk-1 )p (d k = a, s '2 ) 	(5.22) 
a,€AP 

Denoteak;? = p(Yk/`Sk~l ,Sk = a,, / k-1)p(dk = a; oSk')1 ),then weights are given by 

Wk 

 

cc Wk-1 	ak,i 
a1 EAP 

The sampling density p (Sk/sk±1,Yk) can be written as 

p(S k /`Sk~lI k )— p(`Sk/`Sk-1I YkI rk-1
) 

_ p(Sk~ S̀kJ11YO k-1) 

p( SkJ1I YkI/ k-1) 

(5.23) 
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p(Ykl`Skj-lI'SkI/k-1)p(Sk( lI SO k-1) 

p(Yk/S 2, k-1)p(Sk,l ,/ k-1) 

p(Yk/`Skfl' Skl / k-1)p( Sk/`JkJll/ k-1 
'J" ~/ 

p (Yk l `Sk-1, / k-1 

= aI , rk_1 ) p (Sk = a, /Sk_l, I'k-1) 

oC p(Yk /Sk-;,Sk =a,,yk_I )p(Sk =a,) 

p(Yk /Sk';,Sk =a,,rk _1)p(dk =a; °Sk-1 ) 

p(Sk15k-1, / k
) 

	
(5.24) 

From the state space model (5.13) & (5.14), the density p (Yk /4, Sk = a1, rk_1 ) is 

Gaussian and its mean and variance are calculated using the Kalman filtering 
algorithm. 

p (Yk I -Sk'i, S k = a„ yk_1 ) -- N~ (mean, variance) 	 (5.25) 

The state space model of MIMO--OFDM system defined by equations (5.13) & (5.14) 
is reproduced here. 

hk+l = hk 

Yk = k -Qkhk + vk 

The Kalman filtering algorithm for the above state space model when Sk is known, is 
given as follows: 

105 



The innovation term from equation (2.17) is given by 

1qk = Yk -''kL'khk-1 	 (5.26) 

The correlation matrix of the innovation process by using equation (2.19) is given by 

Rk =T k fl k K k~k k +62IQ 	 (5.27) 

The Kalman gain by using equation (2.20) is given by 

Gk = K k SZk'I'k Rk' 	 (5.28) 

Filtered state error correlation matrix by using equation (2.18) is given by 

Ek = K k -Gk'ki2kK k 

I = Kk -Kk~k T k Rk1WkLkKk 	 (5.29) 

Predicted state error correlation matrix by using equation (2.16) is given by 

Kk = Ek-1 	 (5.30) 

Substituting equation (5.30) in equations (5.27), (5.28) and (5.29), we can write, 

Rk = knkl'k-l flk k +d'ZIQ 	 (5.31) 

Gk = ~k-l~k 'k Rkl 
	

(5.32) 

Lk = Yk-1 - Ek-lflk IY k Rkl'kIIk~k-1 	 (5.33) 

Estimated state vector by using equation (2.17) is given by 

hk = hk-1 +Gk h1k 

Ilk = hk-1 -1 ~k _l~k 'I'k Rkl Yk - 'I'ki2khk-1) 	 (5.34) 
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The mean of density p(Yk/Sk'-i ,Sx =a1,rk-1) can be computed using the innovation 

equation (5.26) as 

mean = E{Yk /Sk'I,S k = a;,yk_l } 	 (5.35) 

 kh isk k1
k =a1 

_ 

Denoting E; ='I' (a;) , then 

mean=6. J khk'i 	 (5.36) 

Let µk') = 2; 1khk2l then mean is given by 

mean =4i) 	 (5.37) 

The variance of density p (Yk /$k'i, Sk = a;,~'k-1) can be computed by using the 

correlation matrix of the innovation process given in equation (5.31) as 

variance = Var f Yk 1'511 1 Sk = a1 ,_1 } 	 (5.38) 

Tkilk~'& 1-k k + 62IQ ISk=ai 

='I`(a,)SZkEk-1 k'A (a;)+U2IQ 

variance = E;SLkEk-1 k ~H +Q2IQ 	 (5.39) 

Let Rk'1 = ";lk £'kJ 1~k "H + cr IQ then variance is given by 

variance = Rk'} ' 	 (5.40) 
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The probability density p (Yk /sk'i, Sk = a., Yk-,) using equations (5.37) & (5.40) is 

given by 

p (Yk I -5kJi , Sk 
	 (5.41) 

For each a, a A", the a posteriori symbol probability p (dk = a, /y) as in equation 

(2.36) can be estimated as 

p(dk=aI/ k) . p( S k °Sk-1 =ail/k) 

=E{8(Sk oSk-1 =ai )/yk } 

1 m = _ 9 (Skj) ,S41 = al )wj) 
Wk j=1 

(5.42) 

m 

where Wk = 
j=1 

8 (.) is dirac-delta function defined as 

1 S(Sk') oS1j)1 =a;)_ , 
a, 

if Sk ) ° Sk j)1 = a1 

if Sk') o Sk')t ~ a. 
(5.43). 

The information symbol dk is estimated by maximizing the a posterior density 

p (dk = ai /rk ) , where a; E A". The particle filter algorithm for generating the 

sequential Monte Carlo samples of the transmitted symbols js,( j) j' with 
j=1 

corresponding weights Iwk')}m , which are properly weighted with respect to the 
J-1 

distribution p (sk /Yk ) and Kalman filter update kk j) = (hk'), Ek') ) is given in 

algorithm 5.1. 
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Algorithm 5.1 

1) Initialization 

Each Kalman filter is initialized as k(i ) _ (h(;), E(;) ) , with E(;) = i0001 	and 

h(1) - N N (0, E-1 ) for j =1........m. All the importance weights are initialized as 

w'1 =1, j =1........m so that there is no bias in decision making by initial 

weights. 

Based on the state space model (5.13) & (5.14), the following steps are 

implemented at lth recursion (k =0........, N —1) to update each weighted 

sample. For j =1........m 

2) For each ai E A', compute the following quantities 

From equations (5.37) and (5.40), the mean and variance of the trial sampling 
density are calculated. 

1L(j ) _ 

Rk~) = ~,~k Ekj iak SH + 62I Q 

where 2,='I' (a;) . 

3) Compute the trial sampling density 

For each a, E AP , compute ak ;) by using equation (5.41) as 

= p(Yk/sk,l,sk =a1 ,/ k-1)p(dk =a. oSk4)1 ). 

p(Yk /sk'1,Sk = a.,Yk-1 ) `" Nc ( jt(j),R(j)) 
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4) Impute the symbol Sk 

Draw a sample Sk') from the set A with probability 

p(S =a,) ,,c ak;), a,E AP 	 (5.44) 

Append Sk') to sk'i and obtain sk') 

5) Compute the importance weight 

By using equation (5.23), the weight update is given by 

wk oC wk-1 	ak,1 
a1 EA' 

6) Update the a posteriori mean and covariance of channel 

If the imputed symbol Sk') = a; in step 4, then set 	= µk'? , Rk' ) = Rk'I and 

update the a posteriori mean and covariance of channel by using equations (5.34) & 
(5.33) as 

hk — hk-I + F'k-l~k `''k (R i)k ) (Yk  — Nk ) 	 (5.45) 

~rk') _ ~rk-)I — Ek' iSZk 
.

k' )H 	( Rk' ) )-1 E(')I 	 (5.46) 

At each recursion k, the dominant computation in this particle filtering 

algorithm involves the m x AP one-step Kalman filter updates for (hk'), Ek') ) . Since the 

m samplers operate independently and in parallel, the SMC detector is well suited for 
parallel implementations. 

The residual resampling algorithm, which forms a new set of weighted samples 

1( §(j)lkk'), wk ) )}m from original set I(s(' ), kk' ) , wk' ) )}m according to the algorithm 3.2. 
j=1 	 J-1

k 
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- 	5.3 Simulation Results 

For• the simulation of blind detection in MIMO-OFDM systems, the fading 
coefficients are assumed to be uncorrelated. All L taps of each fading channel are 

Rayleigh distributed and normalized such that total energy is equal to unity. 

For the simulation of blind detection in MIMO-OFDM system by particle filtering 
algorithm in MATLAB environment, the following parameters are used: 

> Number of particles m= 50 

> Modulation schemes: BPSK 
➢ Number of transmitting antennas P=2 
> Number of receiving antennas Q=2 

> Number of subcarriers N=64 
> Number of taps of each fading channel L=3 

> Number of transmitted symbols=100000 
> Number of Monte Carlo simulations N,,,=100 

➢ Resampling is done at'every ko  =5 recursions. 

Steps carried out for simulation of particle filtering algorithm for MIMO-OFDM 
system are: 

1) Generate BPSK signals from alphabet setA ={-1,l} randomly and 

differentially encode them before transmitting from each antenna using 
equation (5.1). 

2) Generate the fading coefficients and observations according to state space 
model of MIMO-OFDM system given by equations (5.13) & (5.14). 

3) Generate the sequential Monte Carlo samples of transmitted symbols 
I
s 4 }m  

with corresponding importance weights{wk's} at 1ë recursion by using the 

algorithm 5.1. 

4) Do resampling by using algorithm (3.2) whenever k is a multiple of kq  else go 

back to step 3. 
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5) For each a, E A" , the a posteriori symbol probability p (dk  = a. /y j) is calculated 

using the equation (5.42) . 
6) The symbol is decoded by maximization of a posterior probability 

p (dk  = a./rk ) and bit error rate (BER) is calculated between transmitted 

symbols and decoded symbols. 

Steps from 1 to 6 are repeated for each independent Monte Carlo run and BER is 
averaged over all Monte Carlo runs. 

Fig. 5.2 shows BER performance of the particle filtering in blind detection of MIMO-

OFDM system and additive Gaussian noise with BPSK modulation. Besides this, the 
performance of MLSE receiver with perfect channel state information, which serves as 

a lower bound on the achievable performance for any blind receiver is also plotted. As 

SNR is varied from OdB-25dB, the BER of particle filtering decreases from 0.2143 to 
0.0003 while BER of known channel bound decreases from 0.1974. to 0.00015. It may 
be seen that there is a close similarity between the known channel bound and the 

particle filtering method. For instance at SNR of 15dB, particle filtering method gives 
BER of 0.0038 while known channel bound gives BER of 0.0026. 
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Figure 5.2 BER performance of MIMO-OFDM system 
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Chapter 6 

CONCLUSIONS 

Optimal estimation for non-linear non-Gaussian state-space models does not 

typically admit. analytic solution. Since their contribution in 1993, particle filtering 
methods have become a very popular class of algorithms to solve these estimation 
problems numerically in an online manner, i.e. recursively as observations become 
available, and are now routinely used in various fields such as communications, signal 

processing, computer vision, econometrics, robotics and navigation. 

Many statistical signal processing problems found in wireless communications 
involves making inference about the transmitted information data based on the received 

signals in the presence of various unknown channel distortions. The optimal solutions 
to these problems are often too computationally complex to implement by conventional 
signal processing methods. The recently emerged particle filtering methods are 
extremely powerful numerical techniques for tackling wireless signal processing 
problems. Particle filters are sequential Monte Carlo methods which can be applied to 

any state space model and generalizes the Kalman filtering methods. Particle filter uses 

the concept of sequential importance sampling . (SIS) for the recursive computation of 

a posteriori pdf by drawing of samples from the importance density with corresponding 
importance weights. This dissertation work is aimed at the application of particle 

filtering for blind detection in SISO, MIMO, OFDM and MIMO-OFDM systems. The 
conclusions drawn based on the simulation results are as follows: 

Particle Filtering for Blind Detection in SISO and MIMO Systems 
We have used the state space model approach for deriving the particle filtering 

algorithm for the blind detection in SISO and MIMO. systems with the use of Kalman 
filtering algorithm. As simulation results of SISO system show, the particle filtering 
method performs well when compared to the differential detection method for both 
Gaussian and non-Gaussian additive noise at high SNR. Typically, at BER of 10-2  there 

is a performance advantage of 12 dB for zero delay particle filtering. It is seen that the 

delayed weighted scheme shows improvement in performance of 5 dB at BER of 

10-3  when compared to that of particle filtering and is close to the known channel 
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bound. The BER performance of MIMO system over unknown fading channels 
obtained through simulation is within 1 dB of the known channel bound (MLSE). The 
particle filtering with zero delay shows 6dB improvement in performance for MIMO 
system when compared to SISO system at BER of 10-2. 

Particle Filtering for Blind Detection in OFDM Systems 
We have used the state space model approach for deriving the particle filtering 

algorithm for the blind detection OFDM systems over unknown frequency-selective 

fading channels. As the simulation show, the BER and WER performance of the 

delayed weight methods is close to the known channel bound. Typically, the 

performarf e of delayed weight method is within 1 dB to the known channel bound for 
r R 10-3. It is also seen that the delayed weight method gives 4 dB improvement in 

performance for BPSK modulation when compared to QPSK modulation for OFDM 
systems for -BER of 10-2. 

Particle Filtering for Blind Detection in MIMO-OFDM Systems 
The particle filtering approach for blind detection in MIMO-OFDM systems is 

exploited in this dissertation. From the simulation results, it may be seen that there is a 
close similarity between the known channel bound and the zero delay particle filtering 

method. The performance of particle filtering with zero delay is within 1.5 dB to the 
known channel bound for BER of 10"3. It is also evident that there is a 4 dB 

improvement in performance for MIMO-OFDM system when compared to that of 
OFDM system for BER of 10-3. 

Future work 

Monte Carlo methods mainly fall into two categories, namely, Markov chain 

Monte Carlo (MCMC) methods for batch signal processing and sequential Monte Carlo 
(SMC) methods for adaptive signal processing. A study on different MCMC methods 

and its applications to wireless communications is a topic of significant interest. 

Sequential Monte Carlo approach is powerful in statistical signal processing but its 
complexity is usually very high. Thus the low-complexity SMC algorithms for blind 
detection in wireless communications is a possible line of future work. Target tracking 

by particle filtering in binary sensor networks is also a topic of significant interest. 
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