
AN AGENT BASED DISTRIBUTED
INTRUSION DETECTION SYSTEM

A DISSERTATION
Sub~;nitted ih .partial fulfillment of the

requir[; meats for the award of the degree
of

MASTER OF TECHNOLOGY
in

INFORMATION TECHNOLOGY

By

R. SOWMYA

of

X09)

x

DEPARTMENT OF- ELECTRONICS AND COMPUTER ENGINEERING
INDIAN INSTITUTE OF TECHNOLOGY ROORKEE

ROORKEE-247 667 (INDIA)

JUNE, 2009

Candidate's Declaration

I hereby declare that the work being presented in the dissertation report titled "AN

AGENT BASED DISTRIBUTED INTRUSION DETECTION SYSTEM" in partial

fulfillment of the requirement for the award of the degree of Master of Technology in

Information Technology, submitted in the Department of Electronics and Computer

Engineering, Indian Institute of Technology Roorkee, is an authenticate record of my

own work carried out under the guidance of Dr. Kumkum Garg, Professor,. Department of

Electronics and Computer Engineering, Indian Institute of Technology Roorkee.

I have not submitted the matter embodied in this dissertation report for the award of any

other degree.

Dated: o 	 . Sowm a ~o 	`l 	 (R 	y)
Place: IIT Roorkee.

Certificate
This is to certify that above statements made by the candidate are correct to the best of

my knowledge and belief.

Dated: 3b - OG 	 Dr. Kumku Garg,

- Place: IIT Roorkee. 	 Professor,

Department of Electronics and

Computer Engineering, IIT Roorkee,

Roorkee - 247667 (India).

ACKNOWLEDGEMENTS

I am thankful to Indian Institute of Technology Roorkee for giving me this opportunity. It

is my privilege to express thanks and my profound gratitude to my supervisor

Prof. Kumkum Garg for her invaluable guidance and constant encouragement throughout

the dissertation. I was able to complete this dissertation in this time due to constant

motivation and support obtained from Prof. Kumkum Garg.

I am also grateful to the staff of Network security laboratory for their kind cooperation

extended by them in the execution of this dissertation. I am also thankful to all my friends

who helped me directly and indirectly in completing this dissertation.

Most importantly, I would like to extend my deepest appreciation to my family for their

love, encouragement and moral support. Finally I thank God for being kind to me and

driving me through this journey.

(R. SOWMYA)

ii

ABSTRACT

An Intrusion Detection System (IDS) is an automated system that aims to detect

intrusions or attacks in a computer system. The main goal of IDS is to detect any

unauthorized use, abuse, or misuse of computer system by both system insiders and

external attackers. The IDS architectures commonly used Centralized IDS, but these

systems suffer from single point of failure and at heavy Ioad these CIDS may not

detect all attacks. That limits their configurability, scalability and efficiency. The

difficulty of these IDS leads the idea of agents based IDS.

In this work, a novel IDS is proposed which addresses the problems of existing

Centralized IDS. This proposed system uses agents along with a Network Intrusion

Detection System (NIDS) to efficiently detect and trace back an internal attacker. The

proposed system satisfies all necessary requirements, i.e. it should be easily and

frequently updated with new attack signatures, it should adapt to changes in network

topology and it should detect anomalous events or beaches in security should be

detected in real-time and reported immediately.

To eliminate single point of failure in the system proposed, NIDS are replicated at the

secondary monitor. Existing Distributed Intrusion Detection Systems send whole

system log, thus requiring a larger bandwidth, but in system proposed Agents

send only required results to the monitor station, thus requiring a smaller bandwidth.

The system uses misuse detection model for detecting attacks in the network.

The proposed architecture has been developed in Java. This system uses IBM Aglet

2.0.12 to provide a mobile agent environment, the open source database-Mysql as the

background DB , gcc 4.3.1 for generating attack, inotify-java, which is a Linux kernel

subsystem for file system event notification and open source jpcap 0.7 at monitor

station for sniffing network data.

CONTENTS

CANDIDATE DECLARATION
I

ACKNOWLEDGEMENTS II

ABSTRACT III

1. 	INTRODUCTION

1.1. 	Introduction 1

1.2. 	Problem Statement 2

1.3. 	Organization of Report 2

2. INTRUSION DETECTION SYSTEMS

2.1. 	Introduction 3

2.2. 	Classification of IDS

2.2.1. 	Misuse Detection 4

2.2.2. 	Anomaly Detection 5

2.2.3. 	Host-based IDS 6

2.2.4. 	Network-based IDS 6

2.3. 	IDS Requirements

2.3.1. 	Functional requirements 7

2.3.2. 	Performance requirements 8

2.4. 	Limitations of existing IDS 8

2.5. 	Software Agents

2.5.1. 	Mobile vs. Stationary Agents 9

2.5.2. 	Mobile Agents and Mobile Agent Environment 9

2.5.3. 	Mobile Agent paradigm vs. Client-Server paradigm 10

2.5.4. 	Mobile Agent Frameworks (MAFs) 12

2.5.5. 	Aglets 13

iv

3. LITERATURE REVIEW

	

3.1. 	Intrusion Detection Using Autonomous Agents (AAFID) 	14

	

3.2. 	Intrusion Detection Agent System (IDA) 	 15

	

3.3. 	Intelligent Mobile Agent for Intrusion Detection System
(IMAIDS) 	 17

	

3.4. 	Micael 	 18

	

3.5. 	Intelligent Agents for Distributed Intrusion Detection System
(IA_DIDS) 	 19

	

3.6. 	Research Gaps identified 	 20

4.1. 	Proposed System Architecture 21

4.1.1. 	Monitor Station 23

4.1.1.1. 	Packet Sniffer 23

4.1.1.2. 	State Maintainer 23

4.1.1.3. 	Signature Database 24

4.1.2. 	Bulletin Board 24

4.1.3. 	Mobile Agent Platform 24

4.1.3.1. 	Static Agent 24

4.1.3.2. 	Information Gathering Agent 25

4.1.3.3. 	Tracing Agent 26

4.2. 	Working of Proposed System 26

4.3. 	Attack Signatures 27

5. IMPLEMENTATION

5.1. 	Monitor Station 30

5.2. 	Creation of Scenarios 31

5.3. 	Mobile Agents 35

5.3.1. 	Static Agent 35

v

5.3.2. Information Gathering Agent 	 37

5.3.3. Tracing Agent 	 38

5.4. 	Bulletin board 	 38

5.5. 	Adding and Updating Signature Database 	 40

5.6. Results 	 41

6. CONCLUSION

6.1. Summary of Work Done 	 48

6.2. Suggestions for Further Work
	

48

REFERENCES

APPENDIX - A

vi

1. INTRODUCTION

1.1 Introduction

In the last few years, there has been a tremendous increase in connectivity between

systems which has brought about limitless possibilities and opportunities.

Unfortunately, security related problems also increased at the same rate. Computer

systems are becoming increasingly vulnerable to attacks. These attacks, based on

flaws in operating systems or application programs, usually read or modify

confidential information or render the system useless. Formally, an intrusion is

defined as any activity that violates the confidentiality, integrity or availability of the

system.

Intrusion prevention is more desirable, but it cannot be fully achieved due to several

reasons like bugs in software, abuse by insider and human negligence. Many times it

is difficult to have good access control while simultaneously making system user

friendly. Attacks are inevitable, but even after the attack has occurred, it is important

to determine that the attack has happened, assess the extent of damage and track

down the attacker [1]. This helps in preventing further attacks. Due to these reasons,

a detection system as a second line of defence is always desirable.

The concept of Intrusion Detection (ID) was first introduced by Anderson [2] in

1980, which was later refined by Denning [3] in 1987. Anderson defined intrusion

as an intentional unauthorized attempt to access information, modify information, or

make a system untrustworthy or unusable. Hence, ID is the process of detecting

unauthorized access to the- system which violates confidentiality, integrity or

availability policies of the system.

The main goal of Intrusion Detection System (IDS) is to analyze events on the

network and identify attacks. . The IDS architectures commonly used Centralized

IDS, but these systems suffer from single point of failure and at heavy load these

CIDS may not detect all attacks. This limits their configurability, scalability and

efficiency. The difficulty of these IDS leads to the idea of agents. Detecting

1

intrusion in distributed networks, from outside the network as well as from inside

the network is very difficult. An IDS has to analyze the large volume of data while

not placing load on monitoring system's network. Mobile agent technology can

provide IDS flexibility and enhanced distributed detection ability. Agents can detect

and take predefined actions against malicious activity. The Distributed Intrusion

System shows a superior performance compared to existing monolithic IDS

techniques. This is one of the major motivations to use the distributed model based

on Mobile Agent platform.

1.2 Problem Statement

To design an efficient agent based Distributed Intrusion Detection System.

1.3 Organization of Report

Including this introduction chapter, this report contains 6 chapters.

Chapter 2 presents an overview of Intrusion Detection Systems and mobile agents.

The several characteristics that are desirable for IDS have also been discussed. The

advantages of using Agents in IDS are discussed.

' 	Chapter 3 gives a review of existing Distributed Intrusion Detection System. The

advantages and disadvantages of existing techniques are mentioned.

Chapter 4 presents the architecture and essential components of the proposed system

with the working of its essential components.

Chapter 5 gives implementation details and discusses-the results.

Finally, the work is concluded and the future scope is given in chapter 6.

2

2. INTRUSION DETECTION SYSTEMS

2.1. Introduction

An intrusion is an event, or a set of events, that attempts to compromise a computer

system's confidentiality, integrity, availability, or that attempts to bypass its security

mechanisms. Intrusions can be caused by system insiders or by external attackers [4].

System insiders are users authorized to use the system, but they can cause intrusions

by attempting to gain privileges to which they are not entitled or by misusing the

privileges that have been given to them. External attackers are users who have not

been authorized to use the system, and can cause intrusions by gaining access to the

system from outside such as the internet.

An IDS collects and analyze data from different system and network resources to

check any security breach; and alerts the system administrator on finding an intrusion.

IDS raises an alert in case an outside intruder breaks into the system or an inside user

escalates their privilege or misuses resources. It works just like a burglar alarm that

raises an alarm in case of misuse.

Increased network connectivity of computer systems gives greater access to outsiders

and makes it easier for intrusions to avoid identification. By being connected to the

internet, computer systems are exposed to different threats and are made more

vulnerable to different attacks. By using IDS, an attacker on the computer system can

be detected and measures can be taken to stop it before any damage is done to

computer system.

There are several reasons why IDS are necessary {1}:

> To detect attacks and other security violations that other security measures

cannot prevent. IDS can be used to detect attacks that exploit vulnerabilities in

the security mechanisms of a computer system. In addition IDS can serve an

important function in protecting the system, because it can report intrusions to

system administrators, who can recover any resulting damage.

> The first stage of an attack usually involves examining a system for any

vulnerability, searching for an optimal point of entry. This stage is often

3

experienced as network probes and other tests for existing vulnerabilities. By

using an IDS probes can be detected and actions may be taken to block the

attacker access to the target system.

> To act as a' means of quality control for security design and administration. An

IDS runs over a period of time can show patterns of system usage and detected

problems. These can show the design and management of flaws in the system

security. Deficiencies can be corrected before they cause a security problem.

➢ To provide information about actual intrusions. IDS can collect relevant and

detailed information about the attack. This supports incident handling and

recovery efforts. Such information can also be used to identify problem areas

in the security configurations or policy of the system.

2.2. Classification of IDS

IDS are classified according to what analysis technique is used to detect intrusions.

An ID mainly uses two techniques: misuse detection and anomaly detection [5].

2.2.1 Misuse Detection

Misuse Detection, also known as Signature based detection, identifies intrusion by

matching a pattern of activities corresponding to a known intrusion in signature

database. Misuse Detection only detects known or a small variation of known

intrusions, because the signature of the intrusion must already be defined in signature

database. It also provides intrusion detection confidence by producing a low rate of

false positive (IDS raises an alert whereas no intrusion occurred in reality) due to

detection of only known intrusions.

The size of signature database grows as new attacks are discovered. This causes a

problem as new attacks emerge at an alarming rate. Secondly, to detect all known

attacks signatures the database should be up-to-date. This creates a challenging task

for the IDS administrator. Detection of only the known attacks makes it prone to

novel attacks which can pass without any notice. Attackers can even launch the older

attacks by slightly changing the attacking method to circumvent the signature.

4

2.2.2 Anomaly Detection

In Anomaly Detection a baseline of normal behaviour is initially established and any

deviation from the normal behaviour is flagged as anomalous which results in

triggering an alert. A baseline for normal behaviour (e.g. network load, application

resource usage, packet size, etc.) is established either by the network administrator or

through self learning. A threshold of the accepted deviation is also defined and any

activity outside this threshold will be considered as an expected intrusion.

Anomaly detection can also detect unknown attacks deviating from the normal system

usage unlike misuse detection that heavily relies on prerequisite knowledge of

signature. Anomaly Detection IDSs are based on heuristics instead of their relying on

signature database in case of misuse detection.

It is difficult to train anomaly based IDSs to learn every aspect of the normal traffic

and when they fail to learn about the normal traffic, they trigger alarms by flagging

the normal usage as anomalous. This induces the IDS to produce a high rate of false

positives. This is a major challenge in case of anomaly detection IDSs.

An IDS requires specific type of data that it can analyse for possible intrusions. The

data is obtained from different sources, depending on what types of attacks should be

detected by the IDS. With respect to the source of data used for analysis, intrusion

detection systems are classified as host-based or network based [1].

2.2.3 Host-based IDS

Host-based Intrusion Detection Systems (HIDS) are designed to monitor and detect

attacks targeted to single host only. This can determine exactly which processes and

users are involved in a particular attack on the operating system. A host based IDS

have the ability to directly access and monitor the data files and system processes

usually targeted by attacks. Therefore, it can view the system after an attempted

attack, which allows it to verify the success of failure of an attack.

A host-based IDS normally uses information sources of two types: OS audit logs and

system logs. Hence, HIDS produces a low rate of false positives. Operating system

audit logs are records of system events, generated at the innermost (kernel) level of

operating system. System logs, on the other hand, are files of system and application

events.

The capability of HIDS to combat the internal threats limits their view to detect

attacks targeted to more than one host like distributed and network attacks. These

distributed attacks leave only the innocent marks on each system, which cannot be

detected in case data is collected from a single system only. Moreover the size and

diversity of networks makes it infeasible to have HIDS to detect attacks on each

system in the network.

2.2.4 Network-based IDS

A Network-based Intrusion Detection System (NIDS) monitors traffic on the entire

network segment in order to trace the malicious activities on the network. NIDS are

put at strategic points in the network infrastructure by setting the network interface

into promiscuous mode in order to scan the traffic destined also to the other hosts.

Unlike HIDS, the dedicated machines can be used for NIDS which make them less

prone to compromise by splitting and enforcing more security on them. NIDS can

analyze the captured data by detecting known attacks by comparing it with the

signature database.

Although NIDS can correlate data destined to different hosts, it requires efficient

packet scanning, to meet ever increasing network size and bandwidth, to ensure that

no threats are missed. This can result in scalability problems in case of high network

load. NIDS can also produce a higher rate of false positives as compared to HIDS,

because data is collected from diverse nodes. The best approach is to use a hybrid IDS

which combines the best of both RIDS and NIDS in order to complement better false

positive accuracy with a diverse range of detection capability.

A comparison of RIDS and NIDS is given in Table 2.1

Host-based IDS Network-based IDS

Monitors the activities on a single host Monitors 	the 	traffic 	on 	the 	entire
for malicious use. network segment to trace the malicious

activities.

RIDS are resource hungry and must
reside on each host that needs detection. Dedicated machines can be use for

NIDS

HIDS is suitable for attacks originating NIDS is suitable to detect attacks from
from inside the network perimeter, outside the network.

It produces a low rate of false positives. Comparatively 	higher 	rate 	of false
positives

Should be OS dependent. Can be OS independent.

Detect attack at network level, targeted
Detect attacks targeted to single host to
only, multiple hosts.

Difficult to maintain HIDS in large Provides good infrastructure for large
networks, but have scalability limitations in very

large networks.

Table 2.1 Host based IDS vs. Network based IDS

2.3. IDS Requirements

There are several characteristics that are desirable in IDS. Jansen et al. (1999) [3]

have divided these characteristics into two groups of requirements: functional

requirements and performance requirements.

2.3.1 Functional requirements

> The IDS must continually monitor and report intrusions.

> When an intrusion occurs, the IDS must supply enough information to

determine the extent of the damage.

> The IDS should be easily and frequently updated with new attack signatures as

new security advisories and security patches become available and as new

vulnerabilities and attacks are discovered.

> The IDS should adapt to changes in network topology and configuration as

computer devices are dynamically added and removed from the network.

7

2.4.1 Performance requirements

➢ To the extent possible, any anomalous events or breaches in security should be

detected in real-time and reported immediately. This may minimize the

damage to the network and the loss or corruption of data.

➢ The IDS should not impose a large overhead on the computer system.

> The IDS should be scalable to enable it to handle additional computational and

communication load, as new computer devices are added to the network.

Our proposed IDS meet all the above requirements.

2.5. Limitations of existing IDS[61
> Lack of efficiency: Current IDSs are not efficient enough to evaluate events

in real-time with large number of events and on high-speed networks with

large volumes of traffic.

> High number of false positives: Current IDSs have a high false positive rate

because recognition of intrusions is not perfect.

> Limited flexibility: IDSs have typically been written for a specific

environment and have proved difficult to use in other environments that may

have similar policies and concerns.

2.5 Software Agents

As per the IBM's definition [7], an agent is a software object that is situated within an

execution environment and acts on behalf of others in an autonomous fashion and

exhibits some levels of the key attributes of learning, cooperation, and mobility.

2.5.1 Mobile vs. Stationary Agents

Mobility is an orthogonal property of agents. That is, all agents are not necessarily

required to be mobile. An agent can remain stationary and communicate with the

surroundings by conventional means like remote procedure calls (RPC) and remote

object invocation (RMI). The agents that do not or cannot move are called stationary

agents.

On the other side, a mobile agent is not bound to the system where it begins

execution. The mobile agent is free to travel among the hosts in the network. Once

8

created in one execution environment, it can transport its state and code with it to

another execution environment in the network, where it resumes execution.

2.5.2 Mobile Agents and Mobile Agent Environment

A mobile agent must contain all of the following models:

1. Agent model

2. Life-cycle model

3. Computational model

4. Security model

5. Configuration model

6. Navigation model

Mobile agent consists of a self-contained piece of software that can migrate and

execute on different machines in a dynamic networked environment, and that senses

and (re) acts autonomously and proactively in this an environment to realize set of

goals or tasks [8].

The software environment in which the mobile agents exist is called mobile agent

environment. Mobile agent environment is a software system distributed over a

network of heterogeneous computers. Its primary task is to provide an environment in

which mobile agents can execute. It implements the majority of the models possessed

by a mobile agent.

The mobile agent environment is built on top of a host system. Mobile agents travel

between mobile agent environments. They can communicate with each other either

locally or remotely.

2.5.3 Mobile Agent paradigm vs. Client-Server paradigm[9]

Client-server paradigm enjoys various techniques like remote procedure calling

(RPC), remote object-method invocation (like Java RMI or CORBA) etc. The RPC

paradigm, for example, is the prominent technique of the client-server paradigm. It

views computer-to-computer communication as enabling one computer to call

procedures in another. Each message that the network transports either requests or

acknowledges a procedure's performance. Two computers whose communication

follows the RPC paradigm have to agree upon the effects of each remotely accessible

9

procedure and the types of its arguments and results. This agreement constitutes a

protocol.

Figure2.1 Client Server Communication Paradigm

For an example, as shown in Figure 2.1, a client computer initiates a series of remote

procedure calls with a server in order to, accomplish a task. Each call involves a

request sent from client to server and a response sent from server to client. Thus the

salient feature of client-server paradigm is that each interaction between the client and

the server requires two acts of communication. That is, ongoing interaction requires

ongoing communication.

In contrast to client-server paradigm, the mobile agent paradigm views computer-to-

computer communication as enabling one computer not only to call procedures in

another, but also to supply the procedures to be performed. Each message that the

network transports consists of a procedure. Two computers whose communication

follows the mobile agent paradigm have to agree upon the instructions that are

allowed in a procedure and the types of data that are allowed in its state. This

agreement constitutes a language.

Figure 2.2 represents the same example scenario as before but using mobile agent

paradigm. Here the client computer sends an agent to the server whose procedure

there makes the required requests to the server. The dotted line in Figure 2.2 shows

the previous movement of the agent. All the request and responses in this case are

local to the server and no network is required to complete a task. Thus the salient

feature of mobile agent paradigm is that each a client computer and a server can

10

interact without using the network once the network has transported an agent between

them. 	 —....

Mobile --------------
Agent

Mobile 	 Server

Agent 	 Applicati
on

Remote Server

Figure2.2. Communications using mobile agent paradigm

The mobile agents have several strengths. The following is the brief discussion of five

good reasons for using mobile agents [10]:

• They reduce network load: The main motivation behind using mobile agents is

to move the communication to the data rather than the data to the computations.

Distributed systems often required multiple interactions to complete a task. But

using mobile agent allows us to package a conversation and send it to a

destination host. Thus all the interactions can now take place locally. The result is

enormous reduction of network traffic. Similarly instead of transferring large

amount of data from the remote host and then processing it at the receiving host,

an agent send to the remote host can processed the data in its locality.

• They are naturally heterogeneous: Mobile agents are generally independent of

the computer and the transport layer and depend only on their execution

environment. Hence they can perform efficiently in any type of heterogeneous

networks.

• They are robust and fault-tolerant: The dynamic reactivity of mobile agents to

unfavourable situations makes it easier to build robust and fault-tolerant

distributed systems.

FIN

• Overcoming network latency: Network latency can be'reduced by sending an

agent with a sequence of service requests across the network rather than by

issuing each service request by a separate remote procedure call.

• Dynamic adaptation: Mobile agents have the ability to sense their execution

environment and autonomously react to changes.

2.5.4 Mobile Agent Frameworks (MAFs)

Many research/commercial MAFs have been developed and major review can be

found in [11]. Java has been most popular with MAF developers, because of its

platform independent, object oriented language construct, object serialization/de-

serialization (suitable for migration) etc. We describe the Aglet framework which we

have used.

2.5.5 Aglets

	

Aglet I 	 I Aglet

	

Context 	Dispatch 	 Context Dispose

	

Aglet
	 Aglet

Retract

Create 	 De-

Clone 	 activate
Activate

.Class files 	I 	 I 	Disk

Figure 2.3 Aglets Life cycle Events

Aglet is defined as a mobile java object that visits Aglet enabled host in a computer

Network. Aglets Software Development Kit [ASDK] is a product of IBM's Tokyo

Research laboratory, initiated in early 1995. The goal has been to bring the flavour of

mobility to Applets (Aglets means Agent plus Applet). The Aglets SDK includes

Aglets API documentation, sample Aglets, the aglet server (TAHITI) and the agent

web launcher (FIJI). Various Aglets abstractions, life cycle events defined by this

SDK are shown in Figure 2.3.

12

Agle 	Aglet 	 Aglet 	Ag1e
Prox 	

Message 	 Proxy Y

L I Aglet Context

Figure 2.4 Aglet Context

Figure2.4 shows the Aglet Context. It comprises of the following:

• Aglet - Mobile Java object that runs in its own thread, acts autonomously, visits

local and remote hosts, and reacts to events and messages.

• Proxy - Provides Aglet with location transparency and a shield from direct access.

• Context - Stationary workplace that hosts Aglets. Provides platform resources

• Identifier - Globally unique, immutable Aglet identifier. AgletID maintained in an

Agletlnfo object associated with Aglet.

13

3. LITERATURE REVIEW

3.1 Intrusion Detection Using Autonomous Agents (AAFID)
AAFID implements a host based hierarchical design [13]. Essential components of the

architecture are agents, transceivers and monitors.

Each host can contain any number of agents that monitor for interesting events

occurring in the host. All the agents in a host report their findings to a single

transceiver. Transceivers are per-host entities that oversee the operation of all the

agents running in their host. They may also perform data reduction on the data

received from the agents. Finally, the transceivers report their results to one or more

monitors. Monitors have access to network-wide data; therefore they are able to

perform higher-level correlation and detect intrusions that involve several hosts. Also,

a transceiver may report to more than one monitor to provide redundancy and

resistance to the failure of one of the monitors. Figure 3.1 shows architecture of

AAFID.

Transceiver 	ED Agents

O Monitors 	 Data flow

Figure3.1. Architecture of AAFID

14

3.2 Intrusion Detection Agent System (IDA).

IDA [14] consists of managers, sensors, bulletin boards, Message boards, Tracing
agents, and information gathering agents. Figure 3.2 shows architecture of IDA.

Sensors: present on each target system, monitor system logs in search of MLSIs. If a

sensor finds an MLSI, it reports this finding to the manager. The sensor also reports

on the type of MLSI.

Manager: The manager analyzes information gathered by information-gathering

agents (which are described below) and detects intrusions.

Sexz:or

_ I

IA
MB 	 M8

Log 	 Lo

Target A 	 Target B

Figure3.2 IDA Architecture

f
TA: Tracing .Agent
IA: Information gathering Agent
BB: Bulletin Board
MB: Message Board

Tracing agent: The intrusion-route tracing agent, called simply the tracing agent,

traces the path of an intrusion and identifies its point of origin: the place from which

the user leaving an MLSI remotely logged onto the target host.

Information-gathering agent: An information-gathering agent, which is mobile,

gleans information related to MLSIs from a target system.

15

3.3 Intelligent Mobile Agent for Intrusion Detection System

(IMAIDS)
IMAIDS [14] consists of following components. Figure 3.3 shows architecture of

IMA-IDS.

Collector • agent: This kind of agent will be cloned and distributed throughout the

network. This agent patrols the network and collects all the events occuring in the

host to which it is related.

Correlator agent: This creates contexts of connections. The contexts of connections

represent the relations between various information coming from multiple distinct

collector agents. This correlator agent uses.a set of rules to classify crucial events and

will hurry this specific information to the appropriate analyzer agent.

Correlator agent I 	 I Correlator agent

I I 	ReadWrite 	 Read Write

Manager
agent 	 ReadWrite

ReadWrite 	 Read Write

Analyser agent • .Y Analyser agent 	Analyser agent

Figure3.3 IMAIDS Architecture

Manager agent: This agent gathers collected information and distributes it to

analyser agents.

Analyser agent: Several kinds of analysis such as classical signature detection,

anomaly detection

16

3.4 Micael

Micael[15] consists of the head quarter, the sentinels, the detachments, the auditors,

and finally the special agents. Figure 3.4 shows Architecture of this System.

The Head Quarter (QG) is a special agent that centralizes the system's control

functions. It's also responsible by creation the other agents, maintaining this way a

database of agents' executable codes. Periodically, the QG creates auditor agents, to

verify that the whole of the system remains it's integrity.

Sentinels are special agents that remain residents in each of the target network hosts,

collecting relevant information, and informing the QG about eventual anomalies, just for

logging. When a Sentinel detects an arbitrary level of anomaly, it requests the creation of
a Detachment to the QG, so the Detachment can verify with greater detail the detected

anomaly. Periodically, the sentinel saves its execution state to the QG, preventing abrupt

host system's failures or shutdowns.

Auditor: Check the code that detachments executing is correct or not through the

database that is maintained at HQ.

Figure3.4 Micael Architecture

3.5 IA DIDS (Intelligent Agents for Distributed Intrusion Detection

System) [16)
This system architecture is showed in Figure 3.5.

The Specialized Local Agent is the engine component of this system. It must

combine several kinds of attack analysis such as signature detection, anomaly

detection and performed global analysis, for detecting distributed attacks. SLA

delegates performed tasks to well defined agents and uses different data sources. As

shown in figure SLA delegates predetermined performed tasks to four agents (Filter,

Analyser, Correlate, Interpreter and Mobile), and use two knowledge database (Event

Rules, Events DB).

Filter Agent is agent responsible for filtering specialized security events from the log

files. It examines the packets for well-known attack events and stores all its

characteristics into Event DB. Filter agent uses the rules in the event rules database

for. filtering.

Event Rule
Mobile
agent

Interpreter Agent

Network 	 Mobile
Data 	 Specialized Local Agent 	 agent
Flow

Filter 	 Analyser 	 Correlator
Agent 	 Agent 	 Agent

Event DB

Figure3.5 IA_DIDS Architecture

18

Analyser Agent analyses the events database. It looks for the local events selected by

the Interpreter Agent. These patterns are retrieved from Events DB. Then, it reports a

search results to the Interpreter Agent using its Specialized Local Agent.

Interpreter Agent: It collaborates with the Analyser Agent for detecting complex local

attacks, and uses the Correlate agent with the Mobile Agent for determining whether

some suspicious activities in different node can be combined to be a distributed

intrusion.

Correlate agent is responsible for determining whether some suspicious activities in

different network nodes can be combined to be a distributed intrusion.

3.6 Research Gaps Identified:
➢ In AAFID , monitors are single points of failure. If a monitor stops working, all the

transceivers that it controls stop producing useful information. This can be solved

through a hierarchical structure where the failure of a monitor would be noticed by

higher level monitors, and measures would be taken to start a new monitor and

examine the situation that caused the original one to fail. Another possibility is to

establish redundant monitors that look over the same set of transceivers so that if

one of them fails, the other can take over without interrupting its operation.

Detection of intrusions at the monitor level is delayed until all the necessary

information gets there from the agents and transceivers. This is a problem common

to distributed IDSs. Till now there is no AAFID implementations that solves the

failure of monitors through redundant monitors.

➢ The main disadvantage of the Intrusion Detection Agent(IDA) is scalability,

because managers can deal with only a limited amount of sensors and agents. Till

now there is no IDA implementations that solve the problem of scalability.

> In IMAIDS Detection of intrusions at the analyser agent is delayed until all the

necessary information gets from the correlator agents. This is a problem common

to distributed IDSs. And also correlator agent has to maintain some rules to find

the crucial events that are derived from set of simple events. It is difficult to update

rules that are maintained by correlator agent.

➢ The Intelligent Agents for Distributed Intrusion Detection System has to maintain

event database and event rules at each host. This event rule base consists of some

events that correlate to intrusion. It has to be updated according to the

19

environment. This is a very difficult task. Till now there is no successful

implementations developed based on this concept.

Due to the above gaps, we have been motivated to propose a novel agent based
Distributed Intrusion Detection System.

20

4. PROPOSED IDS

In this chapter, the proposed IDS system architecture is discussed in detail. The IDS

consist of a distributed IDS integrated with mobile agents. The IDS detect network

intrusion from outsiders as well as from insiders. It also trace backs the origin of the

attack, if the attack is generated from inside the network. In general, it is difficult to find

the point of origin of the intrusion in internal network by IQS.'he reason is that the

internal attacker, the authorized user, uses various tools to find internal network

information like IP address of the internal network hosts, which ports are opened in that

host. With the knowledge gained by internal attacker, internal attacker generates attack

with spoofed IP addresses. To overcome this disadvantage, the architecture presented

uses mobile agents along with a NIDS to trace internal attacks. This is shown in

Figure 4.1.

4.1 Proposed System Architecture

Primary 	 I Secondary I 	Bulletin
Monitor 	 f Monitor I 	 board

Channel

System with System with System with
Mobile agent Mobile agent Mobile agent

platform platform platform

Figure 4.1 Overall System Architecture.

In the proposed system, a primary monitor station is replicated to remove single point of

failure and bottlenecks. In some cases, if at all primary monitor fails to detect an attack,

21

then there is chance to detect that attack by a secondary monitor. Secondly, this approach

provides highly distributed IDS that reduce the traffic in the network by using local

processing units (static agents) to analyze relevant data and send summaries to monitor

station.

Monitor station
Information

gathering agent

Lan_IP K Information
database 	gathering agent

N

Information
gathering agent

Bulletin
board

State 	 Tracing

	

maintainer 	 agent

Scenarios
Packets

	

I 	 Signature
Packet sniffer 	database

NIDS

Figure 4.2 Proposed IDS

Figures 4.1 and 4.2 give the block diagrams of the Proposed System. The main

components in it are:

➢ Monitor Stations

22

➢ Bulletin Board

> Mobile Agent Platform

4.1.1 Monitor Station: Monitor Station is the place where one analyzes the network

traffic to find the signs of attack. To increase the detection rate and to eliminate single

point failure in the IDS it is possible to place more than one monitor station at different

key positions in the network. All the Monitor Stations cooperate with each other to find

the attack. A Monitor Station consists of the following components.

➢ Packet Sniffer

> State Maintainer

➢ Signature Database

Figure 4.3 shows the Monitor station.

Monitor Station

State
Maintainer

Packets 	 Scenarios

Packet Sniffer 	 Signature
Database

Figure 4.3 Monitor Station

4.1.1.1 Packet Sniffer: A sniffer is a device used to tap into networks to allow an

application or hardware device to eavesdrop on network traffic. The traffic can be ARP,

IP, TCP, UDP, ICMP packets. The Packet Sniffer that is maintained at the primary

monitor is used for reading packets in the network by setting Network Interface Card in

promiscuous mode. In this model, Packet Sniffer is continuously running at each Monitor

Station.

23

To reduce the load on the sniffer it is also possible to assign filters to sniffer. For

example, if one wants to see only TCP packets for attacks, filter can be set such that all

UDP, ICMP, ARP packets are eliminated.

4.1.1.2 State Maintainer: State Maintainer creates the Attack Scenario from Signature

Database. After reading the packet, Sniffer sends the packet to State Maintainer. State

Maintainer analyzes the packet for any possible attack. If it finds any attack it sends all

the required information about that particular attack to Bulletin Board for further

processing.

4.1.1.3 Signature Database: The misuse detection model is used in Proposed System.

Therefore, the Signature Database is maintained at Monitor Station. This database

consists of signatures of various attacks. This database is designed such that it can be

updated whenever any new attack is found. The details about the signatures are given in

section 4.3.

4.1.2 Bulletin Board

Bulletin Board is a place where administrator interacts with the IDS. After finding the

signs of an attack, Monitor Stations inform to Bulletin Board. Monitor Stations also send

the detailed information about the attack. The information consist of the packets those

signs matches to the signs of an attack, packet received time. It also receives suspicious

activities at different systems in the network that are gathered by Information Gathering

Agent. It indexes all this information in such a manner that it can find information

quickly when ever Tracing Agent requests for it.

4.1.3 Mobile Agent Platform

Mobile Agents are used to gather suspicious activities at different hosts and also to trace

the origin of the attack if the attack is from inside the network. In the proposed IDS,

mobile agent platform consists of 3 agents and a database.

> Static Agent

> Information Gathering Agent

> Tracing Agent

24

➢ Lan_IP Database

4.1.3.1 Static Agent: A Static Agent is running in each host in the LAN. It observes the

suspicious activities at the host and stores them separately from system log. This

separation helps the Information Gathering Agent to gather required information quickly.

The Static Agent also sends periodic ALIVE messages to other Static Agents. This

periodic message helps to estimate down times of different systems. This information

helps while tracing the attack. It is possible for an attacker to turn off the mobile agent

platform for a particular amount of time and launch the attack. This type of behavior is

also considered as suspicious activity. The different suspicious activities for the

generation of network intrusion include:

> Using local system administration privileges

➢ Creation of RAW sockets

➢ Turn off the mobile agent platform

For recording the usage of local system administration privileges inotify Java, a kernel

sub system for Linux has been used.

For gathering information about RAW socket creation, the Linux kernel has been

modified in such a way that it logs all the RAW socket creations. Static Agent reads this

log and stores them separately with information collected from inotify.

The information about shutdown of mobile agents platform is gathered using periodical

ALIVE messages.

4.1.3.2 Information Gathering Agent: Monitor Stations and Bulletin Board periodically

send Information Gathering Agents to different hosts in the LAN.- Before going to the

host, Information Gathering Agents gather information about that host from Bulletin

Board. The information includes the time of last Information Gathering Agent to this host

and possible 'downtimes of agent platform in the host.

As and when Information Gathering Agent dispatches to host, Information Gathering

Agent summaries the file maintained by Static Agent and sends the summary to Bulletin

25

Board. It also gathers any suspicious activities from system log for the downtimes. Even

though Mobile Agent Platform is down, system logs still consist of suspicious events like

RAW socket creation.

4.1.3.3 Tracing Agent: At Bulletin Board one Tracing Agent runs. This Tracing Agent

gets the summaries sent by Information. Gathering Agents and the results sent by the

NIDS from the Bulletin Board. After getting the required information from the Bulletin

Board, Tracing Agent analyses the information to find the point of origin of the attack. In

this work, NIDS are tested with the attacks that are dependent on the RAW socket

generation. Therefore to find the point of origin of an attack, Tracing Agent compares the

RAW socket generated time with the results that are sent by NIDS. If the match is found

then, Tracing Agent concludes there is a presence of attack in the network.

4.2 Working of Proposed System

➢ At each host in the LAN, a Static Agent runs.

➢ Static Agent first gets the suspicious activity list that is maintained by Monitor

Station.

➢ In this work, the suspicious activity list consists of the RAW socket generation and

use of local system administration privileges and down times of agent platform.

➢ If the static agent detects activities in the suspicious activities present in the list, then

it stores the observed information in one log.

➢ The monitor station creates Information Gathering Agent for each host in the LAN.

➢ Dispatch the Information Gathering Agents to each host in the LAN.

> Information Gathering Agent analyses the file that is maintained by Static Agent.

➢ Summaries of Information Gathering Agents sent to Bulletin Board.

> At Monitor Station, one NIDS based on misuse detection mode is executed.

Therefore 	one database, which consists of signature of various attacks is

maintained at Monitor Station.

> NIDS reads the packets in the network by setting network interface in promiscuous

mode and compare these packets with the signatures that are present in the database.

26

If the match is found, NIDS concludes that there is a presence of attack and sends

the necessary information to the Bulletin Board.

➢ At each Monitor Station, there is one tracing agent. This tracing agent gets the

information present in the Bulletin Board.

> After getting necessary information from the Bulletin Board, Tracing Agent analyses

the information to find point of origin of an attack.

4.3 Attack Signatures

An Attack Signature is a unique arrangement of information that can be used to

identify an attacker's attempt to exploit a known operating system or application

vulnerability [17].

The proposed system uses one standard (AISF) for signature of an attack [18].

According to this standard, signature of attack consists of various modules; these are

Signature Identification Module, Signature Information Module, Signature

Characteristics Module, IP Module, Data Link Module, TCP Module, UDP Module and

ICMP Module. IP, ICMP, Data Link, TCP and UDP module consists of respective

protocols information for the attack.

Signature Identification Module

In this module there are following fields

Version: field devised for the identification of the AISF model.

ID: identifies the attack. It is a unique number.

Name: this is common name of the intrusion event.

Next Module: identifies next module following this module in the signature of an attack.

In our work we have used EOF in Next Module to specify that module is end of module

for that attack.

27

Signature Information Module
In this module there are following fields

Security level: describes how dangerous this attack.

Category: Intrusion event category, like scan, Dos, or interactive attack.

Description: describes the cause of this attack.

Impact: What is the consequence of this attack.

Target system: System that are more commonly affected by this attack.

Next module: the same as described above.

Signature Characteristics Module

In this module there are following fields

Ease of Attack: describes how easily this attack can be realised.

Recommended Actions: recommended preventive an /or corrective actions to take.

Threshold: count for number of events of this type leads to an attack.

Next Module: as described above.

The following modules are easily understandable, representing more technical side of an

attack signature. They represent required information for intrusion detection, like data

link, network and transport layers.

Data Link Module

This module consists of Source Address, Destination address and Next Module.

IF Module

This module consists of Packet length, Type of service, Fragment ID, Flags, Fragment

Offset, TTL, Source Address, Destination Address, Options, Protocol, Expression and

Next Module.

28

TCP Module

This module consists of Packet length, Source Port, Destination Port, Sequence Number,

Acknowledge Number, Data offset, Flags, Window, Urgent pointer, Options and Next

Module.

UDP Module

This module consists of Packet length, Source Port, Destination Port and Next Module.

ICMP Module

This module consists of Packet length, Type, Code, ID, Sequence and Next Module.

We have followed some rules for representing the signature of an attack

i. na to represent, that attribute not applicable,

ii. It to represent less than

iii.gt to represent greater than

iv. eq to represent equals to

v. neq to represent not equals to

vi. S to represent stored

vii. s to represent store

viii. con represent contains

ix. exp represent expression

x. EOF represent this module is end module for this attack

29

5. IMPLEMENTATION

This chapter gives the implementation details of the proposed system and discusses

results.

5.1 Monitor Station

As discussed in chapter 4, Monitor Station consists of the fallowing components.

1. Packet Sniffer

2. State Maintainer

3. Signature Database

To implement Packet Sniffer we have used jpcap 0.7. This is an open source library.

Figure 5.1 shows the interface between Sniffer and State Maintainer.

Array Blocking Queue

Figure 5.1 Interface between sniffer and state maintainer

After reading the packet, the Packet Sniffer puts the packet in the queue between Sniffer

and State Maintainer. State maintainer reads each packet from the queue and gives it to

30

the appropriate maintainers. For example if the packet is of type IP then it gives the

packet to IPMaintainer. If the packet is of type TCP it gives it to the TCPMaintainer.

Figure 5.2 shows State maintainer.

State Maintainer

IP
Scenario

Scenario 	ICMP

Scenario TCP

Scenario UDP

Figure 5.2 State Maintainer

State Maintainer consists of IP, TCP, ICMP, UDP maintainers. These maintainers consist

of different scenarios. Each scenario represents one attack signature.

5.2 Creation of Scenarios

For each attack signature present in the signature database we have created the scenario.

Scenario contains rule table, store table along with attack signature information. Rule

table contains rules for checking that corresponding attack. Store table contains rules for

when to store, if these rules matched then what are the values to store for further

checking attack. After successful creation of scenario, monitor station add that scenario to

corresponding maintainer depending on end module of an attack signature. For example

if attack signature's end module IP then created scenario is added to IP maintainer.

31

We have divided all the signatures in the signature data base into two types. First type of

signatures is those which only depend on single packet. For example, consider the attack

"ping of death". In ping of death attack, we can find the attack if we receive a single

packet with length more than 65535 bytes. The signature data base for this type of attack

is as follows.

Signature Identification Module

Version 	 : 	0.7

ID 	 1

Name 	 : 	ping of death

Next Module 	: 	SCM

Signature Information Module:

Security level medium

Category : 	dos

Description : 	ICMP packet size > 65535

Impact ; 	system will not respond

Target system Win 95, Win NT

Next module SCM

Signature Characteristics Module:•

Ease of Attack 	 true

Recommended Actions: 	simply reboot

Threshold 	 1

Next Module 	: 	IP

IP Module

Packet length 	: 	na

Type of service 	 na

Fragment ID 	 na

Flags 	 : 	na

32

Fragment Offset 	: gt 8192

TTL na

Source Address na

Destination Address 	: na

Options 	 : na

Protocol 	 : na

Expression na

Next Module 	: EOF

Rule table consists of only single entry for this attack signature

0 : IP 	Fragmentoffset gt 35565

There are no entries for store table because there are no rules that start with s. There is

only one rule to match this attack. Matching a packet to see if this type of attacks is came

is simple. When we receive a packet compare the rule table to see all the rules are

matched. This type of attack does not depend on the store table.

The second types of attacks are those that, depend on rule table and store table. For
example consider the "syndrop" attack. This depends on two conjunctive packets.

Signature Identification Module

Version 	 0.7

ID 	 : 	1

Name 	 : 	syndrop attack

Next Module 	: 	SCM

Signature Information Module:

Security level : 	high

Category : 	dos

Description : 	overlap of IP fragments

Impact system will not respond

Target system : 	Win 95, Win NT

Next module : 	SCM

33

Signature Characteristics Module:

Ease of Attack 	 false

Recommended Actions: 	simply reboot

Threshold 	: 	1

Next Module 	 IP

IP Module

Packet length

Type of service

Fragment ID

Flags

Fragment Offset

TTL

Source Address

Destination Address

Options

Protocol

Expression

Next Module

s con $ip.flags MF

na

s con $ip.flags MF

na

It S $ip.PacketLength

na

na

na

M

na

exp eq $ip.FragmentID s $ip.FragmentlD

EOF

Scenario's rule table generated by primary monitor for this attack consists of

a. IP Fragment Offset It S $ip.packetLegth
b. IP Expressio exp eq $ip.FragmentlD s $ip.FragmentlD

Scenario's store table generated by primary monitor for this attack consists of

a. Rules
i. con $ip.flags MF

b. Values
i. Fragment ID
ii. PacketLength

34

To match this type of attack the fallowing procedure is followed.

1. When a packet comes, first check to see if all the rules in store table are matched.
2. If yes then store this packet in a Array List.
3. If no match the packet with the rules in the rule table.
4. If the rule starts with "s" then the field value needs to match with a packet stored

in ArrayList.
5. To get such type of packets create temporary ArrayList. Store all the packets from

original store ArrayList.
6. Match all the conjunctive rules with this temporary list.
7. If all the rules in the rule table matched then a attack has happend.

5.3 Mobile Agents

Implementation of mobile agents in languages such as JAVA provides them with system

and platform independence and considerable security features, which are a necessity in

Intrusion Detection Systems. Therefore we have implemented mobile agents with ibm

aglets2.0.12.

5.3.1 Static Agent:

At each host in the intranet (LAN), we run one Static Agent, which looks for information

related to malicious activity in that host. For getting malicious activity we have

maintained one suspicious activity list. This list consists of events that are observed by

static agent. In our work, this list consists of RAW socket generation and password file

modification. After getting suspicious list this Static Agent observes the activities that are

present in that list.

For observing RAW socket generation, we have modified the kernel such that when

RAW socket is generated it logs that socket information, for modifying kernel we have

followed [19]. By reading log file Static Agent get RAW socket information.

According to [19], we have inserted the following code in socket.c's sys_socket(int

family, int type, int protocol) method.

35

if(type=3)

printk(KERN–DEBUG "\n my kernel ... A socket is created with family %d, type

%d, protocol %d and process %d \n",family,type,protocol,current->pid);

This code simply logs socket information, when RAW socket is generated by the host. In

our work, we also have redirected log messages to inotify.txt file with klogd, which is a

system daemon which intercepts and logs Linux kernel messages. For redirecting log

• messages to inotify.txt, first we have to avoid auto-backgrounding of klogd. This is

needed especially if the klogd is started and controlled by jpit(8), for that we have used

-n option for klogd daemon. After that we have used –f option to send log messages to

the inotify.txt file.

For observing password file modification we have used inotify-java API utility [20]. The

inotify-java API provides an event-based mechanism for monitoring Linux file system

events using the inotify interface provided by glibc (versions 2.4 and up) and the Linux

kernel, starting from 2.6.13.

Inotify is an mode-based file notification system that does not require a file ever be

opened in order to watch it. inotify does not pin filesystem mounts—in fact, it has a

clever event that notifies the user whenever a file's backing filesystem is unmounted.

inotify is able to watch any filesystem object whatsoever, and when watching directories,

it is able to tell the user the name of the file inside of the directory that changed[20].

For monitoring, password file modification, we have simply created instance of inotify-

java API's Inotify class. After that we have added InotifyEventListener to the Inotify

class. 	In 	InotifyEventListener 	we 	have 	implemented

filesystemEventOccurred(InotifyEvent event) method for IN–MODIFY event. This is a

sample code for monitoring password file system modification by static agent. Static

agent stores observed suspicious activity information along with time when that

suspicious activity occurred in that host into the inotift.txt file in our work. That observed

information may be RAW socket generation or it may be password file modification.

36

myfile = new FileWriter("inotify.txt", true);

out = new Buffered Writer(myfile);

Inotify mynotify = new InotifyO;

InotifyEventListener e= new InotifyEventListener()

{
public void filesystemEventOccurred(InotifyEvent event)

{

if(event.IN_MODIFY())

out.newLine();

out.write(" my kernel modify occured11);

mynotify. addInotifyEventListener(e);

mynotify. add Watch("/etc/pwd", Constants.IN_ALL_EVENTS);

In above code mynotify.addWatch("/etc/pwd", Constants.IN ALL_EVENTS) adds a

watch to filename pwd file. General syntax of addWatch method is given below

addWatch("filename", Constants.MASK), where MASK is one of ACCESS, MODIFY,

ATTRIB, CLOSE_WRITE, CLOSE NOWRITE, OPEN, MOVED_FROM,

MOVED_TO, CREATE, DELETE, DELETE_SELF, UNMOUNT, Q_OVERFLOW,

IGNORED, ISDIR, ONESHOT, CLOSE, MOVE or ALL_EVENTS.

5.3.2 Information Gathering Agent:

At Monitor Station we have maintained a Lan IP. Database, which consists of IP

addresses of hosts in the LAN. For each IP addresses present in the Lan_IP Database

Monitor Station creates Information Gathering Agent and dispatched to the

corresponding IP address.

We have implemented that logic in IGProxy aglet. First in IGProxy, we have connected

to Lan IP Database and stored all IP addresses in one vector (addresses). For each entry

37

in addresses vector, IGProxy creates the Information Gathering Agent. Following code

shows the creation of Information Gathering Agent and dispatch to the addresses present

in the Lan IP by IGProxy.

AgletProxy inf_proxy;

inf_proxy=context. createAglet(this.getCodeBase(),"InformationGathering",this.getAgletl

DO);
URL url =new URL("atp://"+ipaddresses.get(i)+":4434");

inf_proxy. di sp atch(url);

As and when Information Gathering ' Agent dispatched to IP address, Information

Gathering Agent summaries the file (inotify.txt) maintained by Static Agent and send the

summary to Bulletin Board along with IP address of that system in one string form.

5.3.3 Tracing Agent

We have a Tracing Agent at the Bulletin Board. This agent continuously gets the

information present at Bulletin Board to find the point of origin of attack in LAN. For

that in our work, we simply compared the time when RAW socket generated in each host

with the time when attack is generated. The reason for the same is that, we are tested our

work with attacks that depends on RAW socket generation. If the match is found then,

tracing agent concludes there is a presence of attack in the network.

5.4 Bulletin board:

In our work, we are run the Bulletin Board in Linux system, i.e. we are run server socket

at 4324 port in local host. The following code segment shows the creation of server

socket.

ServerSocket sc=new ServerSocket(Integer.parseInt("4324"))

If the Bulletin Board successfully binds to its port, then the ServerSocket object is

successfully created and the Bulletin Board continues to accepting connections from

clients. Following code segment shows the accepting connections from clients.

38

while(true)

{
Socket client=sc.acceptO;

}

The accept method waits until a client starts up and requests a connection on the host and

port of this bulletin board. When a connection is requested and successfully established,

the accept method returns a new Socket object which is bound to the same local port and

has it's remote address and remote port set to that of the client. The Bulletin Board can

communicate with the client over this new Socket and continue to listen for client

connection requests on the original ServerSocket. After the server successfully

establishes a connection with a client, Bulletin Board communicates with the client using

client's input streams and output streams.

As mentioned earlier, we are sending summaries of Static Agent in string form and NIDS

informaton in scenario form. Bulletin Board read objects from client's input stream. If the

object is instance of string then, Bulletin Board stores that result in one HashMap with

key set to IP address of system from where that summaries came otherwise we are simply

displaying Scenario's information in Bulletin Board.

The Bulletin Board also acts as an interface to the administrator. Administrator can also

view the activities that are happening in the LAN. We have created a simple UI for

bulletin board in which we can view the events host wise or we can view the events at a

particular time period. Figure 5.3 shows a screen shot of our Bulletin board.

39

Q (.Agent ..T.Agent

II 1 I.:. 	:..,III. 	»:L 	 I ►'_II

Figure 5.3 Bulletin Board

5.5 Adding and Updating Signature Database

To simplify the adding of new attack signatures and updating and deletion of existing

ones, we have created a simple GUI based application which automatically updates all

the replicated databases. Figure 5.4 shows the UI of this application.

40

	

EProjecta, 	®i~j F~3ea~

DatibaseDesigi
v•1b DatabaseDesign

j 5mce Padoges
da

Gl
..b &xt nArea.}3va

i s

ja usti% ttkb.j Ya
—ova

-~DICMP ~icdJ:,java

DIPTT ie,jva

T•Uddidd?rjaJa
~~Pay4~_Madulz.}~va

DTI MAk'~iva
~. D'resfd:ss; spa

Fono M rtA,ea
Other Campan is

-Vn_ [per]
63rd1tay t

&0 ?a idl [ipandJ
Gr iay U

D P a [RarrdI

	

; fl 	4 [Fanj
t D a` [A

»® wde aydt

afan Lc rpandl

Impact

Cre its Target System 7(=

daj 	3FkatMo 	e.; 	{ i=
f; TaWD

Add t da FE 	i Date t~tod

2

Figure5.4 Signature Database

5.6 Results

The proposed system is tested with 4 attacks these are Teardrop attack, Ping of death

attack, Winnuke attack and Syndrop attack. Figure 5.5 shows the Test bed used.

Teardrop attack:

A teardrop attack is a denial of service attack. Some implementations of the TCP/IP IP

fragmentation re-assembly code do not properly handle overlapping IP fragments. Impact

of this attack is system will not respond.

41

Ping of death attack:

Ping of Death attack involved sending IP packets of a size greater than 65,535 bytes to

the target computer. IP packets of this size are illegal, but applications can be built that

are capable of creating them. Carefully programmed operating systems could detect and

safely handle illegal IP packets, but some failed to do this. ICMP ping utilities often

included large-packet capability and became the namesake of the problem. Impact of this

attack is system will not respond.

Winnuke attack:

The WinNuke attack sends OOB (Out-of-Band) data to an IP address of a Windows

machine connected to a network and/or Internet. Usually, the WinNuke program connects

via port 139, but other ports are vulnerable if they are open. When a Windows NT and

Windows 95 machine receives the out-of-band data, it is unable to handle it and exhibits

odd behaviour, ranging from a lost Internet connection to a system crash (resulting in the

infamous Blue Screen of Death).

Syndrop attack:

This attack is same as the Teardrop, but it generating attack withTCP at as the transport

protocol instead of UDP. Impact of this attack is system will not respond.

The proposed system is tested with the network of 6 systems, in that

4 systems : Linux Distributed System,

1 system: Windows 95 (192.168.111.144) and

1 System : Windows NT (192.168.111.146).

42

192.168.111.189

192.168.111.190 	 192.168.111.188

192.168.111:144
192.168.111.146

192.168.111.143

Figure5.5 Test Bed

1. To test the proposed system, we run Network IDS and bullet-in board at monitor

station. Figure 5.6 shows the snap shot of NIDS.

File Edit Navigate Seerch Project gun Window Jlelp
v , o- ouv 	 v .._

[1. Problems iii Declaration U—Console E3

. Main [Java Application] /opt/Java/bin/Jave (Jun 25 2009 338:51 PM) ...___ .,.. , .._... 	
_j(192 . 168. 111. 143

Info r00
Attack name syndrop/teardrop

!Info r00000000000000000a000OOOOOooc0000000000000
1 sinario created sucessfully ..
+++++++++++++++++SINARIO+++++++++++++++
ID :1
Maintainer : 1

» »=M ».w».:aw*...*****Sinn rioInfo*` ****.... =:r.*» w»+*

Attack Name :syndrop/teardrop
Windowdetay :1
Security Level :high
Impact :reboot
TargetSystem :95, NT
RecommendedActions :reboot
Threshold :1
*** * :k:K**:K***:t:*»<***SinarioInfo:k**m****n.******W.**

*.************Rule Table: ».»::mow.«:«-•R»...M:«»c:«»:«*» M

	

0 : IP 	FragmentOffset 	Zt S $ip.PacketLength

	

IP 	Expression 	exp eq $ip.FragmentlD s $ip.FragmentlD
a s *.m..**Rule Tab'Le,w*,,-t*

» 	s«* 	.+m»:r Store Tabla»»:x»...-»<-:K:r*m:r*x w-*sm»:

++++++++++++++++++++++++Rules++++++++++++++++++++++++
0 : con $ip.flags MF
++++++++++++++++++++++++Rules+++*++++++++++++++++++++
++++++++++++++++++++++++Values++++++++++++++++++++++++
O : IP : FragmentlD
1 : IP : PecketLength

r++++++++++++++++++++++++Values++++++++++++++++++++++++
Store Table""«-w:« »»:«:w«:«»:« *.s«»

Figure5.6 NIDS at Monitor Station

43

2. To test the proposed system, we have generated ping of death attack with spoofed

IP address 192.168.111.111 through 192.168.111.190. Figure 5.7 shows the

Bulletin Board and Figure 5.8 shows Tracing Agent result at that instance

respectively.

r , .fr'+rt r~5, 	y 	̀ , t 	~ 	raa° ,r 	a+x, .
	 - 	 . 	~7! f, s., . t

File (Agent T.Agent

One Attak came
ping of death reboot
' in /192.168.111.144
from /192.168.111.111
Attack Time4:32: 11PM

f1 Tt R1ftTRttta :tY.R :t tR?it1fY41t1 taY1Y Y'RR Fall RrtR

Based Time Based

IP Address 192. 168. 111. 194

TIME :4:25:55 PM
TIME :4:25:55PrA
TIME :4:25:55 PM
TIME :4:25:55 PM
TIME :4:25:55PM
TIME :4:28:9PM
TIME :4:28:9PM
TIME :4:28:9PM
TIME :4:28:9PM
TIME :4:28:9PM
TIME :4:28:9PM
TIME :4:28:9PM
TIME :4:3'1:52PM
TIME :4:32:11PM

Figure5.7 Bulletin board

FIIe:Edit .:View Terminal . Help-. .
before create
Iam INF agent started
i am INF running
atfter create
url is :atp://192.168.111.189:4434
oefor dispatch
on Dispatchin:

Addr: atp://192.168.111.189 place:
No integrity check because no security domain is authenticated.
after dispatch
before create
Iam INF agent started
i am INF running
atfter create
url is :atp://192.168.111.188:4434
oefor dispatch
on Dispatchin:
**" Addr: atp://192.168.111.188 place:
No integrity check because no security domain is authenticated.
after dispatch
@@@@@@@@Attack_time is4:32:11PMfor attack i is 	+1@@@@@@@@
i am tracing agent : i Attack found in 192.168.111.190 time4:32:28PM
i am tracing agent : i Attack found in 192.168.111.190 time4:32:28PM
i am tracing agent : I Attack found in 192.168.111.190 time4:32:28PM

Figure5.8 Tracing Agent
44

Form Figure 5.7 and 5.8, we conclude that the system successfully traces the point of

origin of an attack. This can be used when the administrator wants to take the

recommended actions for the system when that particular system generates huge attacks.

Next, to test the system with syndrop attack, we generated syndrop attack at

192.168.111.188 with the spoofed IP address 192.168.111.118. Figures 5.9 and 5.10

show the snap shot of Bulletin Board and Tracing Agent outputs respectively at that

instance.

File I.Agent T.Agent.
rNIDS

	
rHIDS

One 1 ttak came
ping of death reboot
in /192.168.111.144
from /192.168.111.111
Attack Time4:32:11PM

One Attak came
syndrop/teardrop reboot
in /192.168.111.146
from /192.168.111.118
Attack Time4:34:22PM

. -Rr~tar.arxx~t~er :rrt~tr+aterax ea:t,rf ~xirx~

-, Host Rased- [Time Based 1

IP Address 192,168.111.1880

TIME :4:12:33PM
TIME :4:12:33PM
TIME :4:12:36PIvl
TIME :4:13:36PM
TIME :4:13:36PM
TIME :4:13:3EPNI
TIME :4:14:25PN1
TIME :4:14:Z6PM
TIME :4:14:26PM
TIME :4:16:59PM
TIME :4:15:59PM
TIME :4:16:59P1A
TIME :4:34:18PM
TIME :4:34:18PM
TIME :4:34:22 PM

Figure5.9 Bulletin board

45

File Edit.: view -:Terminal Help
@@@@@@@@Attack time is4:32:11PMfor attack i is +1@@@@@@@@
i am tracing agent : i Attack found in 192.168.111.190 time4:33:58PM
i am tracing agent : i Attack found in 192.168.111.190 time4:33:58PM
i am tracing agent : i Attack found in 192.168.111.190 time4:33:58PM
i am tracing agent : i Attack found in 192.168.111.190 time4:33:58PM
i am tracing agent : i Attack found in 192.168.111.190 time4:33:58PM
i am tracing agent : i Attack found in 192.168.111.190 time4:33:58PM
1 host 192.168.111.190
@@@@@@@@Attack_time is4:32:11PMfor attack i is +1@@@@@@(a@

i am tracing agent : i Attack found in 192.168.111.190 time4:34:28PM
i am tracing agent : i Attack found in 192.168.111.190 time4:34:28PM
i am tracing agent i Attack found in 192.168.111.190 time4:34:28PM
i am tracing agent : i Attack found in 192.168.111.190 time4:34:28PM
i am tracing agent : i Attack found in 192.168.111.190 time4:34:28PM
i am tracing agent : i Attack found in 192.168.111.190 time4:34:28PM
@@@@@@@@Attack time is4:34:22PMfor attack.i is +2@@@@@@@@
i am tracing agent : i Attack found in 192.168.111.188 time4:34:28PM

1,...-+- 	10.) 1O 1 1 1 1 nn

Figure5.1 0 Tracing agent output

Next, to tests the system with winnuke attack, we generated winnuke attack at

192.168.111.189. Figures 5.11 and 5.12 show the snap shot of Bulletin board and Target

System outputs respectively at that instance.

-ne i.Aaen[i .,.gent
NIDS
Ding of death reboot
in /192.158.111.'144
from (192.15$.111.111
Attack Time4:32: 11PM

One s tt ak came
syndrop/teardrop reboot
in /192.158.111.145
from /192.1'53.111.:L18
AttackTime4:34:22PM

One .flak came
Atinnuke reboot
in /192.18.111.14
from /192.158.111.189
AttacKTime4:39:5©PM1
. fY+~.F xtytT 4T'naF hT :F T'7r7t t'ht 41ry1-it!v A~:th~ Yfr? ~FYr?

One Attak. came.............................
vinnuke reboot
in /192.168.111.145
from /192.168.111.189
,Attack Time4:41:2 OPM

t8ased.~= Tirane Based

IP Address 12. 168. 111.1891

TIME 	:4:24:2PM
TIME 	:4:24:2PM
TIME 	:4:24:2PM
TIME 	:4:24:2PM
TIME 	:4:24:2PM
TIME 	:4:24:2PM
TIME 	:4:24:25PM
TIME 	:4:?4:26PM
TIh,1E 	:4:24:25PNI
TIME 	:4:24:25PNI
TIME 	:4:24:26PM
TIME 	:4:24:26PM
TIME 	:4:24:26PtMA
TIME 	:4:39:43PM
TIME 	:4:39.43 PM
TIME 	:4:41:2OPMI

Ili 	I ►

Figure5.11 Bulletin board

*** STOP: Ox 008 (Ox 00000004,0x00000002 Ox00000000,0x1'CCDC4B5) IRQL_NOT,_LESS- OR_EQUA Met* Address fccdc4b5 has base at £cccc000 - tcrip.sys

CPUID:Genuinelntel 6.e.c irtl:lf DPC SYSUER 0x£0000565

DI1 Base
80100000

DateStny 	-.
3255a915

Name
- ntosl<rnl.exe

DI1 Base
80010000

DateStMp
31ee6c52 -

- Name

80001000 31ed06b4 - atap i.sgs 80006000 3lec6c74
hal all

- SCSIPORT.SYS
802ed000 31ed237c - DisJC s s 802f1000 3lec6c7a - CLASS2.SYS
3038c000 3leedd07 - Fast£a s ys £76f0000 31ec6c8d - F10 py.SYS
17700090 31ec6cal -- Cd:roro.SXS 1790a000 3lee6d£7 - Ss._tec.SYS
f79c9000 31ec6c99 - Null.SYS £7888000 31ed868h - KSecDD.SYS
179ca000 31ec6c?8 - Beel.SYS 57730000 31ec6c90 3 - i8042prt.sys
17890000
£7748000
17760000

31ec6c97
31£50722
3lec6cch

- Mouclass.s s
- VIDEOPRT.SYS
- Msfs.SYS

£7898000
£?8a8000
£7400000

3tec6c4
3lec6c6d
3lec6cc?

- khdclass.sys
- vaa.sy s
- Npfs.SYS

fedbe000 31eed262 - NDIS.SYS a0000000 31£954£7 - win32)t.sys
fcd80000 3lee8583 - vga.dll fcdha000 3.Lec6e6c - TDI.SYS
fcefe000 31efe3£9 - nwlnkivx.sys fcced000 31ed0750 - nw1nknb.sy3 fcccc000 31f1311a7 - 	to 	il.sys fcch0080 31f50a65 - 	netht.sys
£7808000 31ec6e04

31ec6e7a
- aMS ycn.sgs £7640000

fcc4f 000
3118£864 - afd.sys

£76c0000
fcc10000 31f5003h

- nethios.sys
- r.dr.sys fchff000

325o3856
31f7alha

- sru.sys
- nup.sys

17470000 31.ed0752 - nwlnkspx.sys

ddress dword dunp 	Build £1381] - Nar~e
01470e8 fccdc4h5 fccdc4b5 00000002 00000246 00000246 fccb0'da7 - tc i .sys
01470£8 fcnhlda7 fccb0da? 806984e8 806a6a28 80785690 8069e5dc - nerbt.sys
0147110 1cce5208 foce5208 00900000 80147178 00000000 focdt023 - tcpip.S s
01471.18 80147178 80147178 00000000 fccd0023 806a0023 00200000 - ntoskrni.exe
0147120 fccd8023 fecd0023 806a0023 00200000 8014719c £1111111 - tchi1p.sys
014712c 8014.719c 8014719c ffffffff 8062),3e8 111111ff 00000030 - ntoskrnl.exe
014714c 80147178 80147178 00000000 fccdc4b5 00000008 00010296 - ntoskrnl.exe
0147154 fccdc4h5 fccdc4h5 00000008 00010296 806a6acc 806a6a28 - tcpi .sgs
0147174 801471.a8 801471a8 80147la8 £ecd3a72 00000000 8014719c - ntoskrnl.exe
0147178 001471a8 8014.71a8 fccd3a72 00000000 801471.9c 11111111 - ntosknnl.exe
014717c focdSa72 fcci3a72 00000000 80i4719c 11111111 806a6a2c - tcri .s s
0147184 8014719c 8014719c 11111111' 806a6a2c 806a6a28 80782462 - ntos rn .exe
014719c fcch0630 focb9630 00000000 130000003 801471ec fccd3074 - netht.595
01471a8 8014.7lec 801471ec 1ccd3074 806a6a28 00003850 80147264 - ntoskrnl.exe
01471ac fccd3074 fcca3074 806a6a28 00003850 80147264 00000002 - tcPip.sgs
014711,8 80147264 80147264 00000002 8076a8ac 8078244e 80782457 - ntos1<rnl.exe
01471ec 80147230 80147230 fcocflOf 8076a8a8 926fa8c0 bd6fa8cO - ntosks•nl.exe

eginniny du,p of physical McMory

6. CONCLUSION

6.1 Summary of Work Done

The number of security-breaking attempts, originating inside the organizations is

increasing steadily. Attacks made in this way, usually done by "authorized" users of the

system, cannot be immediately located by existing DIDS. As the load increase in the

network existing DIDS may not detect all the attacks in the network. The reason for the

same is that there is a chance for packet loss at monitor station. Existing DIDS requires

more bandwidth between hosts systems and monitor stations. In our proposed work, we

have implemented novel IDS which address the problems of existing DIDS.

By replicating NIDS at secondary monitor station and providing synchronization between

replicated monitor stations we addressed the problem of detection rate drop due to

increase in load on the network. To trace the point of origin of an attack we used mobile

agents along with a NIDS. By sending only required summaries between hosts and

monitor stations we have minimized bandwidth requirement. We have tested our

proposed system with the Ping of death, Teardrop, Winnuke and Syndrop attacks. We

have showed that it successfully finds the origin of the attacks.

6.2 Suggestions for Further Work

The work in this dissertation can be extended as follows

> The proposed system can be extended to multi level Tracing system. In that

monitor station creates one Tracing Agent for each attack that is found by NIDS.

This Tracing agent is dispatched to the host from where the attack is generated.

Tracing agent observes the log to ;check whether that attack is really generated by

that system or remote station. If the attack is generated by remote station Tracing

Agent is dispatched to that corresponding remote station to find point of origin of

attack this process continue until Tracing find exact position.

> The proposed IDS can be combined with techniques like probabilistic packet

marking and bloom filters to trace the attacks that are from outside the network.

m

REFERENCES

[1] Mukherjee, B.Heberlein, T.Levitt, "Network Intrusion Detection", IEEE

network, pages26-41, 1994.

[2] James P. Anderson Co., Fort Washington, "Computer Security Threat

Monitoring and Surveillance" Technical report, pages 1-56, 1980.

[3] D. E. Denning, "An intrusion-detection model"-, IEEE Transactions on

Software Engineering", Vol. SE-13(No. 2):pages 222-232, Feb. 1987.

[4] Karen 'Scarfone, Peter Mell, "Guide to Intrusion Detection and Prevention

Systems", National Institute of Standards Technology Special Publication on

Intrusion Detection Systems 2001, SP 800-94, pages 1-124, Feb 2007.

[5] Peng Ning, Sushil Jajodia, "Intrusion Detection Systems Basics", in Hossein

Bidgoli (Ed), Handbook of Information Security, John Wiley & Sons, pages

685-700, 2005.

[6] Nita Patil, Chhaya Das, Shreya Patankar, Kshitija Pol, . "Analysis of

Distributed Intrusion Detection Systems using Mobile Agents" First

International Conference on Emerging Trends in Engineering and Technology

ICETET, pages 1255-1260,2008.

[7] Aaron Hector and V. Lakshmi Narasimhan, "A New Classification Scheme for

Software Agents", Proceedings of the Third International Conference on

Information Technology and Applications, pages 1-6, 2005.

[8] Lange, Danny, and Mitsuru Oshima, "Mobile agents with Java: The Aglet

API. World Wide Web, vol. 1, no. 3 , pages 111-121, 1998.

[9] G.A. Aderounmu, B.O. Oyatokun,. "Remote Method Invocation and Mobil

Agent: Remote Method Invocation and Mobil Agent", Issues in Informing

Science and Information Technology, Volume 3,pages 1-11, 2006.

[10] Abdulrahman Hijazi, Nidal Nasser, "Using Mobile Agents for Intrusion

Detection in Wireless Ad Hoc Networks", Second IFIP International

Conference on Wireless and Optical Communications Networks, pages 362 —

366, 2005.

[11] Pham V.A. and Karmouch A., "Mobile Software Agents: An Overview";

IEEE Communication Magazine, pp. 26-37,1998.

[12] J. S. Balasubramaniyam, J. O. Garcia-Fernandez, D. Isacoff, E. Spafford, and

D. Zamboni. "An architecture for intrusion detection using autonomous

agents". In Proceedings of the 14th Annual Computer Security Applications

Conference, pages 13-24, 1998.

[13] Midori Asaka, Atsushi Taguchi, Shigeki Goto. "The Implementation of IDA:

An Intrusion Detection Agent System". Technical report, pages 1-10, 1999.

[14] F. Barika, N. EL Kadhi, and K. Ghedira, "Intelligent and mobile agent for

intrusion detection system: Ima-ids," Technical Report, pages 294-309, 2003.

[15] J. D. De Queiroz, L. F. R. Da Costa, and L. Pirmez. "Micael: An autonomous

mobile agent system to protect new generation networked application". In 2nd

Annual Workshop on Recent Advances in Intrusion Detection, pages 1-10,

1999.

[16] M. Benattou, and K. Tamine. "Intelligent Agents for Distributed Intrusion

Detection System", Proceeding of World Academy of Science, Engineering

and Technology, Volume 6 pages 190-194, 2005.

[17] "A signature of an attack", [Last Accessed: Feb 2009]

http://www.symantec.com/business/security response/attacksignatures/index.i

[18] F. Cuppens and R. Ortalo. "LAMBDA: A Language to Model a Database for

Detection of Attacks". Proceedings of the Third International Workshop on

the Recent Advances in Intrusion Detection (RAID'2000), Toulouse, France,
October 2000.

[19] Peter Jay Salzman, Michael Burian On Pomerantz "The Linux Kernel Module

Programming Guide" ,Peter Jay Salzman, ver 2.6.4,2007.

[20] "An overview of inotify-java", http://www.den-4.com/pa eg /31, [last accessed:

March: 2009].

[21] "An overview of jpcap 0.7: a Java Iibrary for capturing and sending network
packets", http://netresearch.ics.uci.edu/kfuiii/ipcap/, [last accessed:
Feb 2009].

APPENDIX - A

Jpcap:

Jpcap[21] is an open source library for capturing and sending network packets from

Java applications. It provides facilities to:

➢ capture raw packets live from the wire.

save captured packets to an offline file, and read captured packets from an

offline file.

automatically identify packet types and generate corresponding Java objects

(for Ethernet, IPv4, IPv6, ARP/RARP, TCP, UDP, and ICMPv4 packets).

filter the packets according to user-specified rules before dispatching them to

the application.

> send raw packets to the network.

In our work, for reading packets in the network we have used JpcapCaptor class from

Jpcap open library. For capturing packets from a network, the first thing we have

obtained list of various network interfaces on our machine. To do so, we have used

getDeviceList() method. This getDeviceList() method is provided by Jpcap's

JpcapCpator class. Once we have obtained the list of network interfaces and choose

which network interface to capture packets from, we can open the network interface

by using Jpcap's openDevice() method,: which is also method from JpcapCaptor

class.

NetworkInterface[] devices = JpcapCaptor. getDeviceList();

int index=...; // set index of the interface that you want to open.

//Open an interface with openDevice(Networklnterface intrface, int snaplen, boolean

promics, int toms)

JpcapCaptor captor=JpcapCaptor.openDevice(device[index], 65535, true, 20);

When calling the JpcapCaptor.openDevice() method, we have specified the
following parameters:

Name: 	Purpose
Networklnterface Network interface that you want to open. intrface
int snaplen 	Max number of bytes to capture at once.
booleanpromics True if you want to open the interface in promiscuous mode, and

otherwise false.
In promiscuous mode, you can capture packets every packet from
the wire, i.e., even if its source or destination MAC address is not
same as the MAC address of the interface you are opening.

int toms 	Set a capture timeout value in -milliseconds.

JpcapCaptor.openDevice() returns an instance of JpcapCaptor. Once we obtained an

instance of JpcapCaptor, we captured packets from the interface. The PacketReceiver

interface defines a receivePacket() method, so we have implemented a receivePacketO

method in our work such that, it stored the packets that it captured in

ArrayBlockingQueue. The following sample implement a receivePacket() method

which simply prints out a captured packet.

class PacketPrinter implements PacketReceiver {

//this method is called every time Jpcap captures a packet

public void receivePacket(Packet packet) {

//just print out a captured packet

System. out. println(packet);

}
}

	Title

	Abstract

	Chapter 1

	Chapter 2

	Chapter 3

	Chapter 4

	Chapter 5

	Chapter 6

	References

	Appendix

