
CLUSTERING UNSTRUCTURED TEXT
DOCUMENTS USING NAIVE BAYESIAN

CONCEPT AND SHAPE PATTERN MATCHING

A DISSERTATION
Submitted in partial fulfillment of the

requirements for the award of the degree
of

MASTER OF TECHNOLOGY
in

INFORMATION TECHNOLOGY

RISHIRAJ SAHA ROY

I (4 1.(:ii -

7

1 	t

I

DEPARTMENT OF ELECTRONICS AND COMPUTER ENGINEERING
INDIAN INSTITUTE OF TECHNOLOGY ROORKEE

ROORKEE -247 667 (INDIA)
JUNE, 2009

ACKNOWLEDGEMENTS

First of all, I would like to thank Dr. Durga Toshniwal, my supervisor, for

getting me interested in the area of data mining, and her consistent encouragement of

my ideas and work. I am particularly grateful for her enthusiasm and constant support.

This dissertation would not have been a reality without her insightful advice. Working

under her guidance will always remain a cherished experience in my memory.

I am also thankful to the Indian Institute of Technology Roorkee for giving me

this opportunity. I extend my sincere thanks to Dr. S. N. Sinha, Professor and Head

of the Department of Electronics and Computer Engineering. I am also grateful to the

research scholars and the staff of our department, for their kind cooperation. I thank

all my friends who have helped me directly or indirectly in completing this

dissertation.

Most importantly, I would like to extend my deepest appreciation to my

family for their love, encouragement and moral support. Finally I thank God for being

kind to me and driving me through this journey.

Rishiraj Saha Roy

M.Tech. (I.T.)

ii

ABSTRACT

Text document databases are growing rapidly due to the increasing amount of
information available in electronic form, such as research publications, news articles,
books, and e-mails. Most text databases are semi-structured in that they are neither
fully unstructured nor completely structured. Clustering is performed to organize this
text data in an unsupervised fashion. It also acts as a preprocessing step for further
mining operations like indexing and classification. Time series data mining involves
applying mining techniques to time sequences. Much work has been done in this field
in the past few decades. But the idea of applying time series data mining techniques
on text data mapped to sequences has not yet been explored. We intend to address this
problem in this work.

In this dissertation, an algorithm for clustering unstructured text documents
using naive Bayesian concept and shape pattern matching has been proposed. The
first step involves data preprocessing. This includes stop word removal, word
stemming, and dimensionality reduction using locality preserving indexing scheme. In
the proposed work, we use the Vector Space Model to represent our dataset as a term
weight matrix. In any natural language, semantically linked terms tend to occur
together in documents. Based on this observation, the co-occurrences of pairs of terms
in the term weight matrix are observed. This information is then used to build an
initial term cluster matrix where each term may belong to one or more clusters. The
naive Bayesian concept and cluster conditional independence is used to uniquely
assign each term to a single term-cluster. The text documents are assigned to clusters
using the simple statistical measure of arithmetic mean. This completes the first level
of clustering in our proposed algorithm. Mapping text documents to vectors based on
a list of terms converts them to sequences. Shape pattern-based similarity is a well-
established technique in time series data mining. In this work, we apply shape pattern
matching to group documents within the broad clusters obtained earlier, thus
performing a second level of clustering.

The proposed algorithm has been validated using benchmark datasets
available on the internet. This includes two special datasets ADA (a marketing
application) and SYLVA (an ecology application). Our results show that our proposed
two-level text clustering scheme has a significantly better running time as compared
to traditional algorithms.

111

CONTENTS

Candidate's Declaration i
Certificate i

Acknowledgements ii

Abstract iii

Table of Contents iv

List of Figures vi
List of Tables vii

Chapter 1: Introduction I

1.1 Text Mining 3

1.2 Time Series Data Mining 4

1.3 Problem Statement 4
1.4 Organization of Dissertation 5

Chapter 2: Literature Review 6

2.1 Text Clustering 6

2.2 Naive Bayesian Classifiers 7

2.3 Shape Patterns in Time Series Data Mining 10

2.4 Research Gaps Found 12

Chapter 3: Text Preprocessing 13

3.1 Stopword Removal 13

3.2 Word Stemming 13
3.3 Dimensionality Reduction 16
3.4 Vector Space Model - 	18
3.5 Sparse Matrix Representation 19

Chapter 4: Proposed Work 22
4.1 Overall Proposed Scheme 22
4.2 The Co-occurrence Matrix 22
4.3 The Term Cluster Matrix 27

iv

	

4.4 	Document Cluster Determination 	 35

	

4.5 	Document Sub-cluster Determination 	 36

Chapter 5: 	Results and Discussion 43

5.1 	Datasets used for Validation 43

5.2 	Implementation Details 44

5.3 	Experimental Results 45

5.4 	Comparison of Running Times 52

5.5 	Analysis of Time Complexity 57

Chapter 6: 	Conclusion and Future Work 58

6.1 	Conclusion 58

6.2 	Future Work 59

References 61

List of Publications 64

Appendix A: Source Code Listing i

Appendix B: Common Stopwords in English xxii

u

LIST OF FIGURES

Fig. No. Description Pg. No.
1.1 Data mining as a step in the process of knowledge discovery 2

3.1 Preprocessing paving the way for text mining operations 14

4.1 Complete block diagram of proposed clustering scheme 23

4.2 Algorithm to obtain co-occurrence matrix 25

4.3 Algorithm to obtain term-cluster matrix 28

4.4 Algorithm to calculate co-occurrence probability 32

4.5 Algorithm for document clustering 36

4.6 Algorithm for document sub-clustering 38

4.7 Shape pattern { U, L, U, D} 40

4.8 Pictorial representation of shapes in example dataset 41

5.1 Graphs for Case 1 data 47

5.2 Graphs for Case 2 data 47

5.3 Graphs for Case 3 data (Part I) 48

5.4 Graphs for Case 3 data (Part II) 48

5.5 Graphs for Case 4 data (ADA) 49

5.6 Graphs for Case 5 data (SYLVA) 49

5.7 Snapshot of the WEKA clustering tool 53

5.8 Snapshot of the NetBeans CPU profiler 53

5.9 Running times for Case 1 data (in ms) 55

5.10 Running times for Case 2 data (in ms) 55

5.11 Running times for Case 3 data (Part I) (in ms) 56

5.12 Running times for Case 3 data (Part I) (in ms) 56

VI

LIST OF TABLES

Table No. Description Pg. No.

3.1 Examples of measures and corresponding terms 15

3.2 Examples of rules from Porter's Stemming Algorithm 16

3.3 Sample TF-IDF matrix 19

3.4 Example of a sparse matrix 20

4.1 TF-IDF matrix for example dataset 24

4.2 Co-occurrence matrix for example dataset 26

4.3 Initial term cluster matrix for example dataset 29

4.4 Term cluster matrix for example dataset 34

4.5 Final term cluster matrix for example dataset 34

4.6 Document cluster matrix for example dataset (after Level I) 37

4.7 Shape patterns in example dataset 40

4.8 Document cluster matrix for example dataset (after Level II) 41

5.1 Summary of cluster information for all datasets 46

5.2 Comparison of running times (in milliseconds) 54

VII

Chapter 1

INTRODUCTION

In the last few years, there has been an explosion in the amount of data

available in electronic form. This includes transactional data in bank databases,

electronic news articles, satellite images of the earth, streaming video data from

surveillance cameras, and all the data available on the World Wide Web. There is an

imminent need for turning such data into useful information. The knowledge gained

from this process can be used in a wide range of applications ranging from market

analysis, fraud detection, and scientific discovery. Data mining or Knowledge

Discovery from Data (KDD) refers to extracting or "mining" knowledge from large

amounts of data [1]. This kind of knowledge is usually shown in the form of

definitions, rules, patterns, etc. Data mining today has indeed found a diverse field of

applications like helping in. recent discoveries in biomedical science, predicting

weather and climatic changes, analyzing security scenarios in public places, and

organizing thousands of documents in digital libraries.

Alternatively, data mining is often viewed as a step in knowledge discovery.

Knowledge discovery as a process is shown in Figure 1.1 and consists of the

following steps [1]:

1. Data cleaning (for removing noise and inconsistent data)

2. Data integration (for combining data from multiple sources)

3. Data selection (for retrieving data relevant to our task from the entire database)

4. Data transformation (for transforming or consolidating the data into forms

appropriate for mining)

5. Data mining (the process where intelligent methods are applied in order to extract

patterns hidden in the data)

6. Pattern evaluation (for identifying the truly interesting patterns representing

knowledge based on some interestingness measures)

7. Knowledge presentation (where visualization and knowledge representation

techniques are used to present the mined knowledge to the user)

1

Introduction

Selection and
Cleaning and integration7

ehuse~~

transformation -

Databases

Knowledge 	 I 	 I 	Relevant Patterns 	 ' dataset

Evaluation 	 Data mining
and

presentation j

Figure 1.1 Data mining as a step in the process of knowledge discovery

Complex forms of data (like hypertext and multimedia, semi-structured and

unstructured text data, spatial and temporal data) have grown explosively due to the

rapid progress in advanced database system technologies. As a result, sophisticated

data mining applications which are able to mine interesting patterns within these

complex data forms are the need of the hour. In this work, we focus on mining

unstructured text data, explained in Section 1.1.

Data mining commonly involves three classes of task, out of which we focus

on the first in this work:

1. Clustering - Groups similar data items together in an unsupervised manner as the

group labels are not known. For example, a clustering algorithm may form twelve

clusters from an input of five hundred news articles such that data within one cluster

are similar to one another and different from those of other clusters. Common

algorithms include k-means and Expectation Maximization (EM).

2. Classification - Arranges the data into predefined groups. For example, an email

program classifies an email as legitimate or Spam. Common algorithms include the k-

Nearest Neighbor classifier (kNN) and the naive Bayesian classifier.
3. Association rule mining - Searches for relationships between variables. For

example, a computer store might gather data of what each customer buys and find that

seventy-five percent of the customers buying desktop computers also buy printers.

2

Introduction

Common algorithms include the Apriori algorithm and the Frequent Pattern (FP)-

growth.

1.1 Text Mining

Nowadays, a substantial portion of the available information is stored in text

document databases, which consist of large collections of documents from various

sources, such as news articles, research papers, books, digital libraries, and e-mail

messages [1]. Text databases are rapidly growing due to the increasing amount of

information available in electronic form, such as electronic publications, various kinds

of electronic documents, e-mail, and the World Wide Web (which can also be viewed

as a huge, interconnected, dynamic text database). Nowadays most of the information

in government, industry, business, and other institutions are stored electronically, in

the form of text databases. Data stored in most text databases are semistructured data

in that they are neither completely unstructured nor completely structured. For

example, a document may contain a few structured fields, such as title, authors, and

publication date, but it also contains some largely unstructured components, such as

the abstract and the contents. There have been a great deal of studies on the modelling

and implementation of semi-structured and unstructured data in recent database

research. Moreover, information retrieval techniques, such as text indexing methods,

have been developed to handle unstructured documents.

Traditional information retrieval techniques become inadequate for the

increasingly vast amounts of text data. Typically, only a small fraction of the many

available documents will be relevant to a given individual user. Without knowing

what could be in the documents, it is difficult to formulate effective queries for

analyzing and extracting useful information from the data. Users need tools to

compare different documents, rank the importance and relevance of the documents, or

find patterns and trends across multiple documents. Thus, text mining has become an

increasingly popular and essential part of data mining. There are several aspects of

mining text databases. The key ones include classification, clustering, and association

rule mining. We focus on text clustering in this work.

3

Introduction

1.2 Time Series Data Mining

Time series data consists of sequences of values or events obtained over

repeated measurements of time. With the growing deployment of large numbers of

sensors, telemetry devices, and on-line data collection tools, the amount of time series

data is increasing rapidly. The values are typically measured at equal time intervals.

Databases storing time series data are called time series databases. A time series

database is also a sequence database [1]. But a sequence database is any database that

consists of sequences of ordered events, with or without concrete notions of time.

The quest for finding correlation relationships within the data and the need for

analysis of huge numbers of time series to find similar or regular patterns, trends,

bursts (sudden sharp changes), and outliers, with fast or real-time on-line response

leads us to perform various data mining operations on time series databases.

Performing these functions on time series databases is referred to as time series data

mining. There are several aspects of mining time series databases. The key ones

include similarity search, trend analysis, mining periodic patterns, classification,

clustering, and association rule mining. Techniques involving shape pattern-based

similarity have been highly successful in the field of time series data mining (refer to

Section 2.3). Since we are using the sequence representation of text documents in our

work, and time series data are in essence sequences, exploring similar applications of

such techniques in the field of text mining was a worthwhile effort. This required a

basic understanding of time series data mining.

1.3 Problem Statement

The problem statement for this dissertation is stated as follows:

"Clustering unstructured text documents using naive Bayesian concept and shape

pattern based similarity.

This problem can be broken down into the following smaller sub problems:

• To discover term-clusters from the total term set using naïve Bayesian theory

0

Introduction

• To find document clusters from the entire unstructured text document set on

the basis of these term-clusters

• To detect sub-clusters within the document clusters by making use of the shape

pattern matching technique

Assumption: The terms are arranged in an inherent sequence which remains fixed

throughout the model. "

1.4 Organization of Dissertation

This report is organized as follows. It comprises of a total of six chapters
including this chapter. This is preceded by the candidate's declaration, the certificate,
acknowledgements, the abstract, the table of contents, and the list of figures and
tables. The six chapters are followed by the references used for this work, the list of
publications, and two appendices which contain the source code listing and a list of
common stopwords in English.

In Chapter 1, we give an introduction to data mining. We then briefly discuss

text mining and time series data mining. In the end, we give our problem statement

and the organization of this dissertation.

In Chapter 2, we discuss about the literature review performed before doing
this work. We also give the research gaps thus found and the motivation for our work.

In Chapter 3, we focus on text preprocessing, a sequence of operations which
is necessary before any mining task can be performed efficiently on a set of text data.

In Chapter 4, we describe the proposed design for the complete clustering
scheme in detail.

In Chapter 5, we give our experimental results and the relevant discussion.

In Chapter 6, we conclude this report by giving the conclusions drawn from
the obtained results and the suggestions for future work.

5

Chapter 2

LITERATURE REVIEW

In this chapter, we discuss about the literature review performed as

groundwork for this dissertation.

2.1 Text Clustering

Clustering is performed to organize text documents in an unsupervised

manner. When text documents are represented in the form of vectors (refer to Section

3.4), common clustering methods that employ the concepts of distances, hierarchies,

and densities among data objects can be applied. But the vector space almost always

has a very large number of dimensions, due to the great number of terms present. A

projection of the documents into a lower dimensional subspace brings the semantic

structure of the document to light. After the operations of dimension reduction have

been performed, traditional clustering algorithms can be applied to obtain meaningful

results efficiently. This -curse of dimensionality poses a tough challenge for clustering

and other text mining operations. Now we describe a few recent text 'clustering

approaches.

Feature selection is an important method for improving the efficiency and

accuracy of text clustering algorithms by removing redundant and irrelevant terms

from the corpus. A supervised feature selection method, named CHIR [2], has been

proposed which is based on the x2 statistic and new statistical data that can measure

the positive term-cluster dependency. A new text clustering algorithm named TCFS

has been proposed, which stands for Text Clustering with Feature Selection. TCFS

can incorporate CHIR to identify relevant features (i.e terms) iteratively, and the

clustering becomes a learning process. TCFS and the k-means clustering algorithm [3]

have been compared in combination with different feature selection methods for

various real data sets. Experimental results showed that TCFS with CHIR had a better

clustering accuracy in terms of the F-measure.

6

Literature Review

An approach to text clustering has been proposed in [4] 'which combines the

advantages of the k-means algorithm [3] and the Self-Organizing Map (SOM) [5]

techniques. The experimental results indicate that the improved algorithm has a higher

accuracy and a better stability, compared with the original algorithm.

A text-clustering algorithm of Frequent Term Set-based Clustering (FTSC),
which uses frequent term sets for texts clustering, has been proposed [6]. This
algorithm can reduce the dimensionality of the text data (refer to Section 3.3)
efficiently. Thus it can improve the accuracy rate and running speed of the clustering
algorithm. The results of clustering text by the FTSC algorithm cannot reflect the
overlap of texts' classes. Based on. the FTSC algorithm, its improved form, the
Frequent Term Set-based Hierarchical Clustering algorithm (FTSHC) has also been
proposed. This algorithm can determine the overlap of texts' classes by the overlap of
frequent term-sets, and provide an understandable description of the discovered
clusters by the frequent term-sets. The experiment results proved that the FTSC and
the FTSHC algorithms are more efficient than the k-means algorithm [3] in clustering

performance.

2.2 Naive Bayesian Classifiers

Now we will discuss about the application of the naive Bayesian concept in
classification. We will explain it in detail as it is one of the fundamental concepts used
in our algorithm. Bayesian classifiers are statistical classifiers [7, 8]. They can predict
a class membership probability, i.e. the probability that a given tuple belongs to a

particular class. Bayesian classification is based on Bayes' theorem, described below.
Studies comparing classification algorithms have found a simple Bayesian classifier
known as the naive Bayesian classifier to be comparable in performance with popular
classifiers. Bayesian classifiers have also exhibited high accuracy and speed when
applied to large databases.

Naive Bayesian classifiers assume that the effect of an attribute value on a

given class is independent of the values of the other attributes. This assumption is

called class conditional independence. It is made to simplify the computations

involved and, in this sense, is considered "naive" [1]. Let X be a data tuple. In

Bayesian terms, X is considered "evidence." As usual, it is described by

6

Literature Review

measurements made on .a set of n attributes. Let H be some hypothesis, such as that

the data tuple X belongs to a specified class C. For classification problems, we want

to determine P(MX), the probability that the hypothesis H holds given the "evidence"

or observed data tuple X. In other words, we are looking for the probability that tuple

X belongs to class C, given that we know the attribute description of X.

P(II}X) is the posterior probability, or a posteriori probability, of H
conditioned on X. In contrast, P(H) is the prior probability, or a priori probability, of

H. The posterior probability, P(HIX), is based on more information than the prior

probability, P(H), which is independent of X. Similarly, P(XIH) is the posterior

probability of X conditioned on H. P(X) is the prior probability of X. P(H), P(XI H),

and P(X) may be estimated from the given data, as we shall see below. Bayes'

theorem is useful in that it provides a way of calculating the posterior probability,

P(II1X), from P(H), P(XI H), and P(X).
Bayes' theorem is given as:

P(HIX) = (P(X H) x P(H))/P(X) 	 (2.1)

The naive Bayesian classifier, or simple Bayesian classifier, works as follows:

1. Let D be a training set of tuples and their associated class labels. As usual, each

tuple is represented by an n-dimensional attribute vector, X = (xi, x2, ... , x,),

depicting n measurements made on the tuple from n attributes, respectively, A1, A2, ...,

A.

2. We suppose that there are m classes, Cl,- C2, ... , Cm. Given a tuple, X, the classifier

will predict that X belongs to the class having the highest posterior probability,

conditioned on X, i.e. the naive Bayesian classifier predicts that the tuple X belongs to

the class C; if and only if

P(C; IX)>P(Cj IX) for 1 <j m,j~i.
Thus we maximize P(C,IX). The class C, for which P(C1 IX) is maximized is

called the maximum posteriori hypothesis. By Bayes' theorem (Equation (2.1)),

P(C,IX) = (P(X1C) x P(C)) /P() 	 (2.2)

E

Literature Review

3. As P(X) is constant for all classes, only (P(XI Ci) X P(Ci)) needs be maximized. If

the class prior probabilities are not known, then it is commonly assumed that the

classes are equally likely, that is, P(Ci) = P(C2) = ... = P(C„), and we would

therefore maximize P(XI C). Otherwise, we maximize (P(X] C) X P(C)). We note that

the class prior probabilities may be estimated by P(C, = I C,,DI / IDI, where IDI is the

total number of training tuples, and I C;,DI is the number of training tuples of class C; in

D.

4. Given datasets with many attributes, it would be extremely computationally

expensive to compute P(XI C~). In order to reduce computation in evaluating P(XI C),
the naive assumption of class conditional independence is made. This presumes that

the values of the attributes are conditionally independent of one another, given the

class label of the tuple (i.e., that there are no dependence relationships among the

attributes). Thus,

P(XICi) = fk=1P(xkICi) 	 (2.3)

P(XIC) =P(x i IC,) X P(x2Ic) x ... x P(x Ic) 	(2.4)

We can easily estimate the probabilities P(x1 IC), P(x2I C), ... , P(x„IC) from

the training tuples. Recall that here xk refers to the value of attribute Ak for tuple X.

For each attribute, we look at whether the attribute is categorical or continuous-

valued. For instance, to compute P(XI C;), we consider the following:

(a) If Ak is categorical, then P(xkl C) is the number of tuples of class C, in D having the

value xk for Ak, divided by I C,,DI.
(b) If Ak is continuous-valued, then we need to perform the following calculations. A

continuous-valued attribute is typically assumed to have a Gaussian distribution with

a mean p and standard deviation s, defined by

1 _(x- p)2
9 (x, it, or) _ 	z=c) e 262 	 (2.5)

so that

P(xkl C) = g(xk, PCj, 6C)
	

(2.6)

9

Literature Review

We need to compute pct and crcj, which are the arithmetic mean and standard

deviation, respectively, of the values of attribute Ak for training tuples of class C,. We

then plug these two quantities into Equation (2.5), together with xk, in order to

estimate P(xkIC,).

5. In order to predict the class label of X, (P(Xl Ci) x P(Ci)) is evaluated for each class

C,. The classifier predicts that the class label of tuple X is the class CI if and only if

(P(XIC) xP(C,))>(P(XIC) xP(C.I)) 	for t <j<m,j~i. 	(2.7)

In other words, the predicted class label is the class C1 for which (P(XI C,) x

P(C,)) is the maximum.

There is another modification to be introduced. In the product of Equation

(2.3), if any of the P(xkI C,) is zero, it makes the whole product zero. But without the

zero probability, we may have ended up with a high probability, suggesting that X

may have belonged to class C. A zero probability cancels the effects of all of the

.other posteriori probabilities (on C,) involved in the product. This problem is avoided

as follows. We can assume that our training database, D, is so large that adding one to

each count that we need would only make a negligible difference in the estimated

probability value, yet would conveniently avoid the case of probability values of zero.

This technique for probability estimation is known as the Laplacian correction.

2.3 Shape Patterns in Time Series Data Mining

Time series data mining (TSDM) techniques permit exploring large amounts

of time series data in search of consistent patterns and / or interesting relationships

between variables. TSDM is becoming increasingly important as a knowledge

management tool where it is expected to reveal knowledge structures that can guide

decision-making in conditions of limited certainty. The necessity of extraction of

meaningful information from huge time series databases (TSDB), which can be useful

for decision making, caused the development of the methods of time series data

10

Literature Review

mining. In this section, we look at a few applications of the concept of shape pattern-

based similarity in the field of TSDM.

Human decision-making in problems related with the analysis of time series

databases is usually based on perceptions like "end of the day", "high temperature",

"quickly increasing", "possible", etc. Though many effective algorithms of TSDM

have been developed, the integration of TSDM algorithms with human decision

making procedures is still an open problem. An architecture of a perception-based

decision making system in a time series database domain has been proposed in [9]

which integrates perception-based TSDM, computing with words and perceptions,

and expert knowledge. The new tasks which should be solved by the perception-based

TSDM methods to enable their integration in such systems have also been discussed.

These tasks include the precisiation of perceptions, shape pattern identification, and

pattern retranslation.

Clipping is the process of transforming a real valued series into a sequence of

bits representing whether each data is above or below the average [10]. It has been

demonstrated how time series stored as bits can be very efficiently compressed and

manipulated and that, under some assumptions, the discriminatory power with clipped

series is asymptotically equivalent to that achieved with the raw data. Unlike other

transformations, clipped series can be compared directly to the raw data series. It has

been shown that this means we can form a tight lower bounding metric for Euclidean

and dynamic time warping distance and hence efficiently query by content. Clipped

data, can be used in conjunction with a host of algorithms and statistical tests that

naturally follow from the binary nature of the data. Shape pattern-based similarity is

one of the basic concepts used in this work.

An algorithm has been proposed which applies a linguistic variable concept

tree to describe the slope feather of time series, and has been named Shape Dynamic

Time Warping [11]. For reducing the computational time and the local shape variance

disturbance, the piecewise linear representation has been used to preprocess the

warping path. Moreover, the linguist concept tree was developed based on the theory

of cloud models which integrates randomness and the probability of uncertainty.

11

Literature Review

2.4 Research Gaps Found

• Traditional text clustering algorithms attempt to find clusters among the

documents directly, based on term weight vectors. So they have to deal with

vectors of a very high dimensionality. Very few attempts were made to first

cluster the terms on the basis of semantic correlation and then cluster the

documents based on these term-clusters.

• The naive Bayesian theory had been applied only to classifiers.

• Shape pattern-based similarity, a highly successful technique in time series

data mining, had not yet been explored in the mining of text data, even though

representing text documents as sequences has long been in practice.

12

Chapter 3

TEXT PREPROCESSING

In this chapter, we will explain how text data from raw files are prepared
before any mining operation is performed on it. The process consists of a sequence of
operations which include removal of stopwords, word stemming, and dimensionality
reduction. Selecting a feature subset to represent the text and clustering on it is an
effective method to minimize the problem posed by the curse of dimensionality [12].
In dimensionality reduction, we will mainly focus on Locality Preserving Indexing
(LPI) [13], which gives the best results when the ultimate goal is clustering. Text
preprocessing paving the way for the main mining operations is shown as a block
diagram in Figure 3.1. In Section 3.4, we explain the Vector Space Model [14] which
is used to mathematically represent the text documents. In Section 3.5, we explain the
sparse matrix representation [151 which is used extensively in text mining for making
memory and disk space utilization efficient.

3.1 Stopword Removal

For representing documents, the first step in most retrieval systems is to
identify keywords by morphological analysis [16], a preprocessing step often called
tokenization. To avoid indexing useless words called stopwords, a text retrieval
system often associates a stop list with a set of documents [1]. A stop list is a set of
words that are deemed "irrelevant." For example, a, the, of for, with, and so on are
stopwords, even though they may appear frequently. Stop lists may vary per
document set. For example, cricket could be considered an important keyword while
clustering a set of random newspaper articles. However, it may be considered as a
stopword in a set of articles about a cricket tournament. A list of the most common
stop words in English [17] are given in Appendix B.

3.2 Word Stemming

A group of different words may share the same word stem. A text retrieval
system needs to identify groups of words where the words in a group are small
syntactic variants of one another and collect only the common word stem per group.

13

Text Preprocessing

Entire
Text

Database

Relevant portion gathered

I >
Unstructured

text data

Tokenization

List of all
extracted terms

Stop word
removal

Word stemming

List of all extracted non-trivial terms with 	 List of all

unique word stems 	 extracted non-
trivial terms

Dimensionality
Reduction techniques like

LSI, LPI, or PLSI
- — - 	 Preprocessing

ends here
List of all extracted non-trivial terms with

unique word stems and discriminatory
features

Indexing

Indexed
Document
Database

Obtain matrix
representation

Query Processing j 'K-:;'-----•--::;J
Final term

weight
Clustering 	 matrix

r
Classification and Prediction

Association
Rule Mining 	

Other text
mining

operations

Fig. 3.1 Preprocessing paving the way for text mining operations

14

Text Preprocessing

For example, the group of words bowl, bowled, and bowling, share a common word

stem, bowling, and can be viewed as different occurrences of the same word. The

word stemming algorithm identifies words with a common stem and replaces all

words sharing a common word stem with the word stem itself. The most famous of

these is the Porter's Stemming Algorithm Ill 8 J, a part of which is presented next.

The Porter's Stemming Algorithm is based upon a set of conditions of the

stem, suffix, prefix, and associated actions given the condition. The measure, m, of a

stem is a function of sequences of vowels and y (a, e, i, o, u, and y) followed by a

consonant. If V is a sequence of vowels and C is a sequence of consonants, then m is:

[C](VC) (m) [VJ

where the initial C and final V are optional and (VC) {m) denotes VC repeated m times.

Table 3.1 ExLm1p1L of n i ures and corresponding terms

Some stem conditions are as follows:

1. *<X> 	: Stem ends with letter X

2. *v* 	: Stem contains one vowel

3. *d 	: Stem ends in double consonant

4. *o 	: Stem ends with consonant-vowel-consonant sequence where the final

consonant is not w, x or y

Suffix conditions take the form 	: Current suffix 	= Pattern

Actions take the form 	 : Old suffix 	—* New suffix

15

Text Preprocessing

Table 3.2 Examples of rules from Porter's Stemming Algorithm

I a NULL ssess ss stresses --> stress

lb *v* ing NULL bringing —+ bring

l c *v* y i happy) happi

2a m>O icate is duplicate --> duplic

2b m>O aliti al formality ---> formal

3 NULL at ate inflat 	inflate

4 m>1 able NULL adjustable) adjust

5
m> 1 and *d

and *<L>
NULL single letter control! --> control

Rules are divided into steps to define the order of applying the rules. The

following is an example. Given the word "duplicatable", the following are the steps in

the stemming process:

Step 1: duplicatable —) duplicat 	(By Rule 4)

Step 2: duplicat 	—* duplicate (By Rule 3)

Step 3: duplicate 	—+ duplic 	(By Rule 2)

We note that only one rule from each step can be applied. Steps have to be
chosen in descending order.

3.3 Dimensionality Reduction

Due to the presence of the huge number of terms in the initial data set, the

mining operations are faced with the curse of dimensionality. As a result, specialized

dimensionality reduction techniques have been developed for text data. When these

are applied, the documents are projected onto a lower dimensional subspace in which

the semantic structure of the document space becomes clear. In the low-dimensional

semantic space, clustering algorithms can be applied effectively. So these

dimensionality reduction techniques yield a reduced set of terms which helps us

proceed with our mining task in a more efficient manner. The most popular of these

16

Text Preprocessing

techniques are locality preserving indexing (LPI) [13], latent semantic indexing (LSI)
[19], and probabilistic latent semantic analysis (PLSA) [20]. LPI aims to discover the
local geometrical structure of the document space. Since the neighboring documents
(data points in high dimensional space) probably relate to the same topic, LPI can
have a high discriminating power. Therefore, for document clustering and document

classification, we might expect LPI to have a better performance than LSI and PLSA.
This has been confirmed empirically [13]. So we now explain LPI briefly.

We use xi, ... , _x,, € Rm to represent the n documents with in terms. They can

be represented as a term-document matrix X = [xi, x2, ... , x,,]. The basic idea of LPI

is to preserve the locality information (i.e. if two documents are near each other in the.

original document space, LPI tries to keep these two documents close together in the
reduced dimensionality space). Since the neighboring documents (data points in high-
dimensional space) probably relate to the same topic, LPI is able to map the

documents related to the same semantics as close to each other as possible. Given x1,

. , x,, € R"`, LPI constructs a similarity matrix S € Rn "'~. The transformation vectors

of LPI can be obtained by solving the following minimization problem:

aopt = arg mina >I, j (aT x, — aT x j) Z Sze = arg mina aT XLXT a 	 (3.1)

with the constraint,

aTXDXTa = 1
	

(3.2)

where L = D — S is the Graph Laplacian and D;; = 	D, measures the local density

around x,. LPI constructs the similarity matrix S as

S, 	= (x'xj II x,Txj I I) 	if x, is among the p nearest neighbors of xj,

or if xj is among the p nearest neighbors of x,

=0 	 otherwise 	 (3.3)

Here p is a user input. Thus, the objective function in LPI incurs a heavy

penalty if neighboring points x; and xj are mapped far apart. Therefore, minimizing it
17

Text Preprocessing

is an attempt to ensure that if xl and x1 are "close" then y; (= aTxj) and y3 (= a xj) are

close as well. Finally, the basis functions of LPI are the eigenvectors associated with

the smallest eigenvalues of the following generalized eigen-problem:

XLXTa = DXTa 	 (3.4)

3.4 Vector Space Model

Proposals of many models have been made for dealing with text mining

problems. One of them is the Vector Space Model [14, 21], the use of which has been

made in this work. We briefly explain it in this section. Let there be m documents and

n terms in all. Then each document can be modelled as a vector v in an n-dimensional

space. This is why this model is called the Vector Space Model. The term frequency

of a term t in a document d is the number of occurrences of t in d. Let it be denoted by

TF(d, t). There are ways to normalize this term frequency. For example, in our work,

we use the Cornell-SMART (System for the Mechanical Analysis and Retrieval of

Text) system that uses the following formula to compute the normalized term

frequency [1]:

TF(d, t) = 0 	 if freq(d, t) = 0

= 1 + logio(l + loglo(freq(d, t))) 	otherwise 	 (3.5)

There is another important measure called the Inverse Document Frequency

(IDF) that represents the scaling factor, or the importance, of a term t. If a term t

occurs frequently in many documents, its importance will be scaled down due to its

reduced discriminative power. For example, the term `football' is likely to be less

relevant if it occurs in a set of news articles about a football tournament. So we need

to scale down its importance accordingly. According to the same Cornell-SMART

system, IDF(t) is defined by the following formula:

IDF(t) = log,o((I + Id[/ Idd[
	

(3.6)

where Idl is the total number of documents, and Id1 I is the number of documents

containing the term t. Here I dl cannot be zero as then we would not have included the

Text Preprocessing

term t in our term-list. In a complete vector-space model, the TF and the IDF

measures are combined together, which forms the TF-IDF measure used throughout

this work:

TF-IDF(d, t) = TF(d, t) x IDF(t)
	

(3.7)

Table 3.3 shows a sample TF-IDF matrix where the i h row represents a

document vector for document d;, the j h column represents the TF-IDF values for

term t~, and each entry registers TF-IDF(d; ,

Table 3.3 Sample TF-IDF matrix

5--- ------
ft .o ff

- --e
3.5 Sparse Matrix Representation

A sparse matrix is a matrix populated primarily with zeros. When storing and

manipulating sparse matrices on a computer, it is beneficial and often necessary to use

specialized algorithms and data structures that take advantage of the sparse structure

of the matrix. Operations using standard matrix structures and algorithms are slow

and consume large amounts of memory when applied to large sparse matrices. Sparse

19

Text Preprocessing

data is by nature easily compressed, and this compression almost always results in

significantly less memory usage. Indeed, some very large sparse matrices are

impossible to manipulate with the standard algorithms.

The naive data structure for a matrix is a two-dimensional array. Each entry in

the array represents an element a(i, j) of the matrix and can be accessed by the two

indices i and j. For an m X n matrix we need at least enough memory to store (m X n

storage locations) entries to represent the matrix.. Many, if not most, entries of a

sparse matrix are zeroes. An example of a sparse matrix is given in Table 3.4. The

matrix has ten rows and ten columns, but has only eighteen non-zero values out of the

total possible one hundred. The basic idea when storing sparse matrices is to store

only the non-zero entries as opposed to storing all of them. Depending on the number

and distribution of the non-zero entries, different data structures can be used and yield

huge savings in memory when compared to a naive approach.

Table 3.4 Example of a sparse matrix

0 1 0 0 0 0 0 6 0 0

0 0 0 4. 0 5 0 0 1 0

0 0 0 9 0 0 2 0 0 0

0 2 0 0 0 0 9 0 0 9

0 0 1 0 0 7 0 0 0 0

0 0 0 0 0 0 0 0 0 0

0 4 0 0 0 0 0 5 0 0

0 0 0 4 0 0 0 0 0 2

0 0 0 0 0 0 0 0 0 0

0 0 0 0 7 0 0 0 0 3

In our work, we use the following representation for efficient memory usage.

The matrix is stored as non-zero-only values. The rows appear as jagged two-

dimensional arrays. Each row is stored in a single-dimensional array (that grows as

necessary), and the column indexes are stored accordingly. For example, the matrix in

Table 3.4 would be internally stored as (assuming row and column indices start from

1):
20

Text Preprocessing

[1, 2], [1, 8]

[2, 4], [2, 6], [2, 8]

[3, 4], [3, 7]

[4, 2], [4, 7], [4, 10]

[5, 3], [5, 6]

[7, 2], [7, 8]
[8, 4], [8, 10]

[10, 5],{10, 10]

With this we come to the end of this chapter. In the next chapter, we discuss

the proposed work in detail.

21

Chapter 4

PROPOSED WORK

In this chapter, we will describe the complete scheme of our proposed text

clustering algorithm in detail.

4.1 Overall Proposed Scheme

In this section, we give a broad overview of our proposed work. The

associated block diagram is given in Figure 4.1. As mentioned in Chapter 3, the first

step in all text mining operations involves data preprocessing. Through a sequence of

steps which include stopword removal, word stemming, and dimensionality reduction,

we arrive at the final TF-IDF matrix which will act as the preprocessed dataset on

which we will run our algorithm. Step 1 involves deriving the co-occurrences of terms

from the TF-IDF matrix to build the co-occurrence matrix (details in Section 4.2). In

the second step, we build term-clusters based on term co-occurrence and the naive

Bayesian concept (details in Section 4.3). Next, in Step 3, we compute the arithmetic
means of TF-IDF values corresponding to every term-cluster for each document and

assign the document to the cluster with the highest mean, thus forming document
clusters (details in Section 4.4). Finally, in Step 4, we apply shape pattern-based

similarity to group documents within each document cluster to form document sub-

clusters (details in Section 4.5).

4.2 The Co-occurrence Matrix

We now have the TF-IDF matrix with us. Each row of the matrix corresponds

to a document d and each column corresponds to a term t. We also assume that

henceforth the sparse matrix representation is used wherever applicable. We will not

explicitly explain sparse matrix operations repeatedly but instead focus on the concept

of the clustering procedure. As we progress through the sequence of operations, we
will explain the entire concept with a simple example. We will start from the small

22

Proposed Work

Unstructured
text

documents

p1m
.-----------------------------

1. Text preprocessing

a. Stopword removal

b. Word stemming

c. Dimensionality reduction

TF-IDF matrix i

J7

Observe
co-occurrence of

terms

Co-occurrence
matrix

Determine term-clusters using
naïve Bayesian concept

Term-cluster
matrix

For each term-cluster, compute
cluster mean of TF-IDF values

Assign document to cluster
with highest mean

Document
clusters

J Shape pattern-based
similarity within each

document cluster

Document
sub-clusters

Fig. 4.1 Complete block diagram of proposed clustering scheme

23

Proposed Work

TF-IDF matrix given in Table 4.1. It has twenty rows and ten columns indicating that

it corresponds to a set of twenty documents and ten features.

Table 4.1 TF-IDF matrix for example dataset

° se

The TF-IDF matrix is generally stored as a data file on disk. As a result,

before we can begin to use the matrix, we must load it (whole or the relevant portion)

onto the main memory. We must also convert the character representation into a

number format so that it can be used in future computations. The TF-IDF matrix is

initially present in a CSV (Comma Separated Value) format. Non-printing characters

like F— (CR) and ¶ (LF) are also present within it. Detection of these characters

becomes useful when converting the file from a character-only text file to a matrix in

a numeric format. This format is used as a standard nowadays and most commercial

Proposed Work

text mining packages, including WEKA [22], accept files formatted this way to load

their data. We use WEKA later on to compare our experimental results (Section 5.4).

Once the conversion process is complete, we can build the co-occurrence matrix from

it. We present the algorithm to build the co-occurrence matrix from the TF-IDF

matrix in Figure 4.2.

TFIDF-TO-COOCC(TFIDFMat, NumDocs, NumFeats)
1 for every pair of features 1 to NumFeats
2 	do for every document 1 to NumDocs
3 	 min , minimum of TF-IDF values for feature pair in current

document
4 	increment co-occurrence measure between feature pair by min
5 	insert co-occ-measure in proper position in co-occurrence matrix
6 	do not repeat for feature pair] and i if co-occurrence between i and]

already computed
7 return co-occurrence matrix

Fig. 4.2 Algorithm to obtain co-occurrence matrix

In this algorithm, we study the co-occurrences between terms. When two

terms co-occur in a document, we take the minimum of the number of their

occurrences as a co-occurrence measure. For example, if term 4 and term 5 occur 5

and 15 times in a document respectively, the strength of their co-occurrence is

appropriately represented only when we take 5 as the number as co-occurrences. The

sum or the difference would not reflect the strength of their co-occurrence. It gives

misleading interpretations. For example, let the same two terms occur in a document 2

and 100 times respectively. If we add them, a value of 102 would not express the

weak correlation between term 4 and term 5, as 102 is a misguidingly high number.

Similarly, the difference is 98, which is also very high, and does not express their

weak mutual relation. But we need not adopt any advanced formula; simply taking

their minimum, which is 2, reflects the weak degree of correlation. This is also

computationally very inexpensive. It also works when the terms are closely related,

i.e., their co-occurrence is high. For example, if the same two terms occurred in a

document 90 and 95 times respectively, taking the minimum of 90 reflects that their

degree of co-occurrence is very high. Here it is understood that when we speak about

number of term occurrences, we are referring to corresponding TF-IDF values and not

simple term frequencies. This will not be repeated explicitly henceforth and will be
25

Proposed Work

assumed throughout the remainder of this text. The co-occurrence matrix stores the

total number of such co-occurrences between all pairs of terms across all documents.

The co-occurrence measure between any two terms is a symmetric measure, i.e.

Co-occurrence (term i, term]) = Co-occurrence(term j, term i) 	(4.1)

As a result, if co-occurrence (term i, term]) has been computed previously, we

need neither compute nor store co-occurrence (term j, term i). We proceed to build

this matrix in a row-major fashion, so the resulting co-occurrence matrix is an upper

triangular matrix. We can now formally state the method used to build the co-

occurrence matrix CoOccMat mathematically:

CoOccMat(i,j) = Zk 1(minimum(TFIDFMat(k, i), TFIDFMat(k, j))} if i <i
=-1 	 ifi=j

=0 	 ifi>j

(4.2)

where m is the total number of documents

and TFIDFMat is the input TF-IDF matrix

For the trivial case of a term co-occurring with itself, we insert a value of -1 in

the corresponding location. The co-occurrence matrix obtained from the TF-IDF

matrix shown in Table 4.1 is given in Table 4.2.

Table 4.2 Co-occurrence matrix for example dataset

ti t2 t3 t8 t9 t10

t1 -1 0 0 0 0 0 15 65 70 0

t2 0 -1 0 43 38 56 0 0 1 0

t3 0 0 -1 9 0 0 22 0 0 22

... 0 0 -1 43 42 9 0 1 9

... 0 0 -1 37 0 0 1 0

...:. ... 0 0 -1 0 0 1 0

... 0 0 -1 15 15 22

tg 0 0 -1 68 0

t9 0 0 -1 0

ho 0 0 -1

26

Proposed Work

We will illustrate how we obtain the values at location (1, 9). Since 1 < 9, the

first condition of Equation 4.2 will hold.

CoOccMat(l, 9) 	= 	minimum(TFIDFMat(1,l), TFIDFMat(1, 9)) +

minimum(TFIDFMat(2, l), TFIDFMat(2, 9)) +

minimum(TFIDFMat(3,1), TFIDFMat(3, 9)) +

minimum(TFIDFMat(4,1), TFIDFMat(4, 9)) +

minimum(TFIDFMat(5,1), TFIDFMat(5, 9)) +

minimum(TFIDFMat(6,1), TFIDFMat(6, 9)) +

minimum(TFIDFMat(7,1), TFIDFMat(7, 9)) +

minimum(TFIDFMat(8,1), TFIDFMat(8, 9)) +

minimum(TFIDFMat(9,1), TFIDFMat(9, 9)) +

minimum(TFIDFMat(10,1), TFIDFMat(lO, 9)) +

minimum(TFIDFMat(11,1), TFIDFMat(1 1, 9)) +

minimum(TFIDFMat(12,1), TFIDFMat(12, 9)) +

minimum(TFIDFMat(13,1), TFIDFMat(13, 9)) +

minimum(TFIDFMat(14,1), TFIDFMat(14, 9)) +

minimum(TFIDFMat(15,1), TFIDFMat(15, 9)) +

minimum(TFIDFMat(16,1), TFIDFMat(16, 9)) +

minimum(TFIDFMat(17,1), TFIDFMat(17, 9)) +

minimum(TFIDFMat(18,1), TFIDFMat(18, 9)) +

minimum(TFIDFMat(19,1), TFIDFMat(19, 9)) +

minimum(TFIDFMat(20,1), TFIDFMat(20, 9))

=8+0+8+0+0+7+0+8+0+8+7+0+8+0+0+9+

0+7+0+0

= 70, which can be verified from Table 4.2.

We are now ready to proceed to build the term cluster matrix using the co-

occurrence matrix. The algorithm for this procedure is given in Figure 4.3.

4.3 The Term Cluster Matrix

In this algorithm, we try to form clusters within our term-set. Terms which are

linked semantically will be grouped under one cluster. We assume that terms which

27

Proposed Work

have a high degree of co-occurrence are likely to be linked semantically. For example,
the terms movies, films, actors, and director are all linked semantically.

COOCC-TO-TERMCLUS(CoOccMat, NumFeats)
1 for every term 1 to NumFeats
2 	do identify which terms it co-occurs with
3 	put each such term in cluster of current term
4 terms which do not co-occur with any other term are put in their own

clusters
5 for every term 1 to NumFeats
6 	do identify which clusters it belongs to
7 	for every term in such cluster
8 	 do calculate co-occurrence probability with itself
9 	 compute products of all such probabilities (application of

naive Bayesian concept)
10 	select highest probability
11 	assign term finally to cluster with highest probability
12 terms which do not co-occur with any other term remain in their own

clusters
13 return term cluster matrix

Fig. 4.3 Algorithm to obtain term-cluster matrix

Indeed, in documents related to cinema, we do find these terms co-occurring to a large

extent. But again, there exist terms which can be grouped into more than cluster as

they co-occur often with more than one group of terms. For example, the term

playback will be often found in a document set about films (playback singing),

sharing occurrence with cinematic terms or in a document set concerned primarily

about music, co-occurring with music terms like singer, music, and guitar. In our

work, we assume that one term may belong to only cluster. We uniquely assign a term

to a single cluster. This is done by the application of conditional probability and the

naive Bayesian concept. We calculate the conditional probabilities of a term

belonging to each of the possible clusters and assign it to the cluster with the highest

probability. Now we will explain the algorithm which has been used.

From the co-occurrence matrix obtained, we come to know which terms co-
occur. Initially, each term is treated as a cluster centre and all terms co-occurring with
this term are put into the cluster corresponding to this term. Terms which do not co-
occur with any other term are the singular terms in their respective clusters. For
example, if term 4 co-occurs with term 1, term 5, and term 7, then the fourth term
cluster will contain terms 1, 4, 5, and 7. Again if term 6 co-occurs with terms 4, 9, and

28

Proposed Work

10, then the sixth term cluster will contain terms 4, 6, 9, and 10. We note that the co-
occurrence of term 1 with term 4, and the co-occurrence of term 4 with term 6, does
not imply the co-occurrence of term 1 with term 6, i.e., the co-occurrence relation is
not transitive in nature. Had it been so, terms 1, 4, 5, 6, 7, 9, and 10 all would have
been grouped under one large cluster. For example, the term actors and playback may
co-occur frequently, as may playback and singing; but actors and singing may never
co-occur. The initial term cluster matrix IntlTermClusMat is built from the co-
occurrence matrix CoOccMat according to the following equation:

	

IntlTermClusMat(i, j) = 1 	if CoOccMat(i, j) # 0 or CoOccMat(j, i) ~ 0

	

= 0 	otherwise 	 (4.3)

In the newly obtained matrix, the rows correspond to initial clusters and the
columns to the member terms. Following our example, since initially each term is a
cluster centre, there are ten rows. The initial term cluster matrix obtained from the co-
occurrence matrix in Table 4.2 is given in Table 4.3. Since term 4 co-occurs with
terms 2, 3, 5, 6, 7, 9, and 10, all corresponding entries in the fourth cluster (fourth
row) are marked as 1. We will show how the useless terms are filtered out before
determination of the final clusters.

Table 4.3 Initial term cluster matrix for example dataset

11 t2 13 14 15 t6 t7 t8 t9 t10

Cl 1 0 0 0 0 0 1 1 1 0

C2 0 1 0 1 1 1 0 0 1 0

C3 0 0 1 1 0 0 1 0 0 1

...

...

C8 1 0 0 0 0 0 1 1 1 0

C9 1 1 0 1 1 1 1 1 1 0

c10 0 0 1 1 0 0 1 0 0 1

29

Proposed Work

So now we have the initial clusters as

C1= {t1,t7,t8,t9}

C2 = { t2, t4, 15, t6}

C3 =(13,t4, (7,t10}

C4={...}

C6 =

C7={...}

C8 = { t1, t7, t8, t9}

C9 = { tl , t2, (4, t5, t6, t7, t8, t9}

C10 = ((3,t4,t7,to}

We now have to remove the clashes and assign a term uniquely to a cluster.

We use the naive Bayesian concept now. It is based on the assumption that a term's

probability of belonging to - a particular cluster is independent of its probabilities of its

belonging to the other clusters. This effectively translates to the fact that a term's

probability of co-occurrence with one term is independent of its probability of co-

occurrence with another term. This assumption can be called cluster conditional

independence. Just like the corresponding Bayesian classifiers, it is naive in this

regard. The basis of this concept is the Bayes' theorem and conditional probability

(refer to Section 2.2). We will use notations similar to that section for ease in

understanding. Let X represent one of m terms and C1, C2, ... , C,, the term-clusters.

Then, P(C1 	represents the posterior probability of term X belonging to cluster C;,

given that we know X. It is also called the a posteriori probability of C, conditioned

on X. In contrast, P(C,) is the prior probability, or apriori probability, of C,. This is

the probability of the cluster C; being chosen at random from the m clusters. The

posterior probability, P(C ;JX), is based on more information (i.e. knowledge of term

number) than the prior probability, P(C1), which is independent of X. Similarly,

P(XI C;) is the posterior probability of X conditioned on C. It is the probability that

given the cluster chosen is C,, the term chosen is X. P(X) is the prior probability of X,

i.e. the probability of the term X being chosen at random from the list of all terms. By

the Bayes Theorem (Equation (2.1)), we have

P(C, I X) = (P(X Cj x P(C,)) / P(X) 	 (4.4)
30

Proposed Work

Given a term X, our clustering scheme will predict that X belongs to the term-

cluster having the highest posterior probability, conditioned on X. So it predicts that

term X belongs to the cluster C; if and only if

P(C,IX) >P(CJ IX)for 1 Sj <m,I~i.
Thus we maximize P(C; ~X). The cluster C, for which P(C,IX) is maximized is

called the maximum posteriori hypothesis. P(C; jX) is given by Equation (4.4). As

P(X) is constant for all clusters, only (P(X1 Ci) x P(Ci)) needs be maximized. Since

the cluster prior probabilities are not known, it is assumed that the clusters are equally

likely, that is, P(Cj) = P(C2) _ ... = P(C,,,), and we would therefore maximize

P(XI C,.

By the naive assumption of cluster conditional independence, we can estimate

P(X C) in the following way:

P (X I C1) = f Ik-1 P (co — occurrence of X and Xk) 	 (4.5)

where n is the number of terms in C J

P(XI C,) 	= P(co-occurrence of X and Xi) x P(co-occurrence of X

and X2) x ... x P(co-occurrence of X and X)

where X1, X2, ... , X, Xn are the terms belonging to C; 	 (4.6)

The probability of co-occurrence of terms Xl and X1 is defined by

No.of co—occurrences of X1 and Xj P(co — occurrence of Xi and x1) _
No. of co—occurrences of Xi and all other terms

(4.7)

The probability of co-occurrence of a term with itself (trivial case) is assumed

to be one. There is another important modification to be introduced. In the product of

Equation (4.5), if any of the co-occurrence probabilities is zero, it makes the whole

product zero. But a term need not co-occur with every other term in its cluster. But

without any modification to our existing calculations, non-co-occurrence with even a

single term in a term-cluster would nullify the whole product. Without the zero

31

Proposed Work

probability, we may have ended up with a high probability, suggesting that X may

have belonged to class C;. A zero probability cancels the effects of all of the other

(posteriori) probabilities (on C;) involved in the product. There is a simple trick to

avoid this problem. We can assume that our training database is so large that adding

one to each count that we need would only make a negligible difference in the

estimated probability value, yet would conveniently avoid the case of probability

values of zero. This technique for probability estimation is known as the Laplacian

correction (refer to Section 2.2). As a result, we treat the number of co-occurrences of

a term with another term (with which it does not co-occur) as 1, and similarly the

denominator also gets increased by 1 in the probability calculations. Now we present

the algorithm (Figure 4.4) for calculating the co-occurrence probability between two

terms.

CALC-COOCC-PROBAB (term 1, term2, Co OccMat, NumFeats)
1 numerator f— number of co-occurrences between terml and term2

obtained from CoOccMat
Min Val is the minimum of the two terms
MaxVal is the maximum of the two terms
numerator - CoOccMat[MinVal] [Max Val]

2 denominator E— number of co-occurrences between terml and all other
terms
for every element in terml-th row and terml-th column in CoOccMat

do increment denominator by corresponding value
8 if numerator ~- 0 	► Laplacian correction
9 	then numerator — numerator + 1
10 	denominator — denominator + 1
11 if denominator ~ 0
12 	then probability numerator / denominator
13 else
14 	probability #- 0
15 return probability

Fig. 4.4 Algorithm to calculate co-occurrence probability

Now we come back to our example. From the data presented in Table 4.3 and

the ensuing initial cluster information, we find that term 4 is initially a member of

eight clusters — C2, C3, C4, C5, C6, C7, C9, and C10. We will show the probability

computations in detail for one of these clusters and give the cluster-belonging

probabilities for the other ones.

32

Proposed Work

To find the probability of term 4 belonging to cluster 2, we have to find the

products of the probabilities of term 4 co-occurring with each term of cluster 2.

Cluster 2 contains four terms — term 2, term 4, term 5, term 6, and term 9.

Probability(co-occurrence of term 4 and term 2)

= Number of co-occurrences of term 4 and term 2 / (Number of co-

occurrences of term 4 with all other terms)

=43/(43 +9+43 +42+9+1+9)

=43/156

= 0.2756

Probability(co-occurrence of term 4 and term 4) = 1.0000 (Trivial case)

Probability(co-occurrence of.term 4 and term 5) = 43 / 156 = 0.2756

Probability(co-occurrence of term 4 and term 6) = 42 / 156 = 0.2756

Probability(co-occurrence of term 4 and term 9) = 1 / 156 = 0.0064

Thus, Probability(term 4 belonging to cluster 2)

= P(X4 I C2)

= 0.2756 x 1.0000 x 0.2756 x 0.2756 x 0.0064

= 1.3113 x 10-4

Similarly, 	P(X4]C3).= 2.1336 x 10-4

P(X4I C4) = 2.5179 x 10-8

P(X4I C5) = 1.3113 x 10'

P(X4I C6) = 1.3113 x 10'

P(X4I C7) = 4.993 8 x

P(X4I C9) = 3.0691 x

P(X4I C10) = 1.9202 x 10-4

Clearly, P(X4jC3) is the highest and so P(C1FX4) is maximized for i = 3. Hence,

term 4 is finally assigned to the third cluster. At the end of this process, the terms
which did not co-occur with any other term still remain in their own clusters. After
this round of final assignment, we obtain a term cluster matrix in which every term
belongs to a single cluster only. So there is exactly a single one entry in a single

33

Proposed Work

column. As we traverse a row columnwise (corresponding to an equivalent cluster),

the terms which have 1 s in their corresponding locations belong to the cluster under

consideration. By this time, we can understand the effectiveness of the use of the

sparse matrix representation, as the various data matrices encountered have been

shown to be getting sparser. The matrices keep getting sparser with an increase in the

dataset size and the number of terms. Coming back to our discussion on the term

clusters, finally we convert the term cluster matrix into a memory-efficient bag-of-

words representation. This means that instead of a row containing Os in locations of

terms not belonging to the cluster and 1 s in locations of terms belonging to the cluster,

the row directly contains the identifiers of the terms belonging to the cluster. This

matrix is the final term cluster matrix and is used for document cluster and sub-cluster

determination.

Table 4.4 Term cluster matrix for example dataset
•

11 t2 t3 14 15 16 t7 is t9 tlo

Cl 1 0 0 0 0 0 0 1 1 0

C2 0 1 0 0 1 1 0 0 0 0

C3 0 0 1 1 0 0 1 0 0 1

...

...

...

C8 0 0 0 0 0 0 0 0 0 0

C9 0 0 0 0 0 0 0 0 0 0

Clo 0 0 0 0 0 0 0 0 0 0

Table 4.5 Final term cluster matrix for example dataset

F 	t1 	12 13 14

C1 1 8 9 0

C2 2 5 6 0

C3 3 4 7 10

34

Proposed Work

Table 4.5 shows the memory-efficient bag-of-words form of the term cluster

matrix shown in Table 4.4. As shown earlier, term 4 was assigned to cluster 3. Here

we finally have terms 1, 8, and 9 in cluster 1, terms 2, 5, and 6 in cluster 2, and terms
3, 4, 7, and 10 in cluster 3. Now we move on to the techniques used for document

cluster and sub-cluster determination by the use of these matrices.

4.4 Document Cluster Determination

Now that we have determined our desired term-clusters, the next task is to use

them to obtain the document clusters. We do this by computing the arithmetic mean

of the TF-IDF values corresponding to the terms of every cluster, sequentially. The

document will be assigned to the cluster yielding the highest mean. The main

implication of this is that the number of document clusters is equal to the number of

term-clusters. It does not vary with the number of documents, provided the number of

terms remains fixed. This is very helpful as the number of documents D is generally

much larger than the number of terms N (D >> N). As a result, the number of term-

clusters is also much lower than D. This helps us divide a large document set into a

manageable number of clusters. Mathematically, the cluster number of document

number i is given by

Cluster(i) = maxp[(>k=1 TFIDFMat(i. FinalTermClusMat(p, k)))/ n] 	(4.8)

where TFIDFMat is the TF-IDF matrix

FinalTermClusMat is the final term-cluster matrix

and, the maximization is performed over all p, i.e. all term-clusters;

n is the number of terms in each cluster; so n may vary from cluster to

cluster

The algorithm for this procedure is given in Figure 4.5. The document

clustering results are stored in a document cluster matrix which has three columns and

a number of rows equal to the number of documents. The first column stores the

document identifier, the second column stores the document cluster identifier, and

third column is allocated to store the document sub-cluster identifier. After this first
35

Proposed Work

level of clustering is performed, this matrix is returned but the third column, as

expected, is still empty. It is filled in only after the sub-clustering procedure is also

completed.

CLUS-BY-MEAN(TFIDFMat, FinalTermClusMat, NumDocs, NumFeats)
1 for every document from 1 to NumDocs
2 	do for every term cluster
3 	 do compute arithmetic mean of values in document vector of

current document in TFIDFMat corresponding to
terms in current term cluster

4 	assign document to term cluster with highest mean
5 return final document cluster matrix with cluster information but without

sub-cluster information

Fig. 4.5 Algorithm for document clustering

The document cluster . matrix (with the first two columns filled) for our.

example dataset is given in Table 4.6. We will show the cluster determination for one.

example, document number 20. The term-clusters are terms { 1, 8, 9}, {2, 5, 6}, and

{3, 4, 7, 10}. The corresponding cluster-wise means are as follows:

Mean for cluster 1 = (0 + 0 + 1) / 3 = 0.33

Mean for cluster 2 = (3 + 8 + 5)/3 = 5.33

Mean for cluster 3 =(0+8+0+0)/4=2.00

Since the mean for cluster 2 is the highest, the document belongs to the second

cluster. Now that document clustering is complete, we proceed to finding sub-clusters

in the next section.

4.5 Document Sub-cluster Determination

The document clusters provide us with a broad grouping of the documents.

Often we require a finer level of clustering which is provided by our sub-clustering

procedure. Here the representation of text documents as sequences in the form

document vectors is of fundamental importance. Here we apply the concept of shape

pattern-based similarity. We assume a logical graph consisting of the points in the

36

Proposed Work

Table 4.6 Document cluster matrix for example dataset (after Level I)

1 1 0

2 2 0

3 1 0

4 2 0

5 3 0

16 1 0

17 2 0

18 1 0

19 2 0

20 2 0

TF-IDF matrix corresponding to the cluster of the document. The TF-IDF values

(equivalently term weights) (y-axis) are observed against the terms (x-axis). Here we

use the word `observed' and not `plotted' because though we are conceptually dealing

with shapes and graphs, explicit plotting and a manual study of the graphs are not

necessary. The shape of this plot gives the inherent pattern associated with this

document. Computations on the document vectors help us in performing the

equivalent operations. The graphical representations, as provided in the figures later,

help us in an easy illustration of the concept. The algorithm for the sub-clustering

procedure is presented in Figure 4.6.

37

Proposed Work

SUB-C LUS-BY-SHAPE (TFIDFMat, FinalTermClusMat, DCM, NumDocs, NumFeats)
1 declare ShapeList to store list of unique patterns
2 initially ShapeList contains only end-marker
3 for every document from 1 to NumDocs
4 	declare and initialize string to store associated shape pattern
5 	do fetch TF-IDF values in document vector corresponding to terms

of term cluster
6 	for every pair of consecutive terms in term cluster
7 	 do observe difference between corresponding TF-IDF values
8 	 if TF-IDF value corresponding to second term higher
9 	 then add U to current pattern as graph moves Up

► Here graph refers to plot of TF-IDF values versus
corresponding terms

10 	 else if TF-IDF value corresponding to second term lower
11 	 add D to current pattern as graph moves Down
12 	 else (TF-IDF values equal)
13 	 add L to current shape pattern as graph remains

Level
14 	compare shape pattern with every pattern in ShapeList sequentially
15 	if match is found
16 	 then associate document with current shape identifier
17 	else
18 	 add new shape to ShapeList
19 	 push end marker by one position
20 	 associate document with new shape identifier
21 Sort in ascending order of shape indices within clusters
22 Assign first document to first sub-cluster
23 for i <--1 to NumDocs
24 	do if shapes match and clusters match for consecutive documents
25 	 then assign documents to previous sub-cluster
26 	else if shapes do not match or clusters do not match
27 	 then create new sub-cluster and assign document to it
28 return final document cluster matrix with sub-cluster information

Fig. 4.6 Algorithm for document sub-clustering

The sub-clustering procedure is also fully unsupervised and based on the

notion of the relative importance of the various terms in the term-cluster in the

document under consideration. This is reflected by the changes that the TF-IDF

values go through corresponding to the terms in the term-cluster of the document.

Let there be k terms in the term-cluster of the document under consideration.

This corresponds to k points on the x-axis. Corresponding to the k points in a term-

cluster, there are (k - 1) transition points of importance in the graph. The differences

in the TF-IDF values over consecutive points are of interest to us and help in

38

Proposed Work

determining the shape pattern present in the plot. These differences help us in

-determining the gradient of the graph as it moves across these transition points. A (k -

1)-character array for every document is maintained which stores the alphabets

'U', `D , or 'L' according as the graph moves up, down, or remains level (three

possibilities) across a transition point, in sequence, i.e. this array stores the

description of the shape pattern present in the document's graph. As a result, there

will be a total of 3k - 1 possible shapes inherent in the document vectors, a number

which may become quite large for a large k. But even for large real datasets, only a

much reduced set of shape patterns appear (the number of patterns discovered are

only of significance within a sub-category, and not across them; as explained later).

This has been shown experimentally in Chapter 5. Whenever we come across a new

document, the shape array for this document is compared to the arrays of the existing

shapes, which are maintained separately in a text file. If the pattern matches with an

existing one, the index number for this shape (shape identifier) is assigned to the

document. If it is a new shape, the next unique serial number is assigned to the shape

and the document, and the pattern is added to the list of existing shapes. This

numbering is done on a global basis, i.e. two different shapes always have different

serial numbers, even if they appear in different sub-categories only. This simplifies

the indexing procedure without increasing any time or space requirements. The set of

all the indices of the obtained shape patterns forms the shape alphabet. Shape

identifier 0 (null) is reserved for documents with clusters where the number of terms

is one, i.e. a case when no pattern can be formed. Documents within a particular

cluster with the same shape pattern (or equivalently sharing the same shape identifier)

form sub-clusters. This completes the clustering procedure within the clusters based

on shape patterns. Let us take an example. Say, a document belongs to cluster with

five terms in it. So k is 5. So we have k — 1, i.e. 4 transition points. Let the

corresponding TF-IDF values be {9, 16, 16, 21, 6}. Then the associated graph can be

said to move up, remain level, again move up, and finally move down. As a result, the

associated shape pattern will be { U, L, U, D} (Figure 4.7). We note that only the

shape of the pattern (and not the magnitude of a rise or a fall) is sufficient to reflect

the importance of the respective terms within the document, which is the basis for our

sub-clustering procedure. The shapes inherent in the documents of our example

dataset are enlisted in Table 4.7 and shown pictorially in Figure 4.8.

39

Proposed Work

The sub-cluster identifiers are copied back into the third column of the

document cluster matrix. This matrix, for our example dataset, with the sub-cluster

information filled in, has been given in Table 4.8. A vector from this matrix may be

represented as

{document_id, cluster_id, sub-cluster_id)

Our test document from the previous section, document 20, has three terms in

its term cluster, is associated with the second shape identifier ({ U, D}), and belongs

to the sixth sub-cluster, which is the first sub-cluster in the second cluster. These

details are evident from Tables 4.8 and 4.9 (sorted by cluster number, sub-cluster

number, document number). Three clusters and ten sub-clusters (across all clusters)

Fig. 4.7 Shape pattern { U, L, U, D}

Table 4.7 Shape patterns in example dataset

0 nil

1 {D, L}

2 {U, D}

3 {L, L}

4 {U, U}

5 {D,U}

6 {D, D}

7 { U, U, D}

8 {U,D,L}

40

(a) Shape Identifer 1: }D, L}
(c) Shape Identifier 3: }L, L}

(b) Shape Identifier 2: }U, D}

(d) Shape Identifier 41: {U, U}
(e) Shape Identifier 5: }D, U}

(f) Shape Identifier 6:

Proposed Work

(g) Shape Identifier 7: }U, U, D} 	(h) Shape Identifier 8: }U, D, L}

Fig. 4.8 Pictorial representation of shapes in example dataset

Table 4.8 Document cluster matrix for example dataset (after Level II)

IIucUWnUUt it] (lu to Id iih-cli►.ccr id

Proposed Work

20 2 6

12 2 7

17 2 7

2 2 8

15 3 9

5 3 10

9 3 10

were found in our example dataset. Thus the average number of sub-clusters per

cluster came out to be 3.33. The average number of documents per cluster and sub-

cluster were 6.67 and 2.00 respectively. This summary of our example dataset

concludes this chapter. The detailed results for the much larger datasets used for

validation purposes have been provided in the next chapter.

42

Chapter 5

RESULTS AND DISCUSSION

In this chapter, we will elaborate on our experimental results and the

associated discussion. We will describe the datasets used for validation and the

implementation details in the first two sections. Our results are accompanied by

comparisons with standard algorithms available in the popular data mining software

suite WEKA [22]. We conclude this chapter by giving the time complexity of our

algorithm.

5.1 Datasets used for Validation

We have used a variety of benchmark datasets [23] available on the internet to

validate our algorithm. The details of these datasets are given below, in increasing

order of complexity.

Case 1: 	The TF-IDF matrix corresponds to a set of five thousand documents

and fifty terms. The term set consists of groups of co-occurring terms,

with no co-occurrence between terms of different groups.

Case 2: 	The TF-IDF matrix corresponds to a set of five thousand documents

and fifty terms. The term set consists of groups of co-occurring terms,

but with co-occurrence between terms of different groups.

Case 3: 	The TF-IDF matrix corresponds to a set of five thousand documents

and two hundred terms. The term set consists of groups of co-occurring

terms, with co-occurrence between terms of different groups.

Case 4: 	We deal with two special cases in the last two datasets. The first one is

named ADA [23, 24]. ADA has marketing applications. The task of

ADA is to discover high revenue people from census data, presented in

the form of a two-class classification problem. The raw data from the
43

Results and Discussion

census bureau is known - as the Adult database in the UCI machine-
learning repository. The fourteen original attributes (features)
represented age, workclass, education, marital status, occupation, and
native country. They included continuous, binary and categorical
attributes. They were finally aggregated to form - a data matrix
corresponding to forty six thousand and thirty three text documents,
with forty eight terms, each term representing an attribute. We have
used the first five thousand rows and all the forty eight columns for our
work. Since the dataset is known to have only two classes (clusters), it
gives us the opportunity to verify our algorithm in cases where large
datasets have only a few underlying clusters.

Case 5: 	The last dataset is named SYLVA [23, 24], an ecology application.
The task of SYLVA is to classify forest cover types. The forest cover
type for 30 x 30 metre cells was obtained from US Forest Service
(USFS) Region 2 Resource Information System (RIS) data. The
problem dealt with the study of Ponderosa pine versus everything else.
The input matrix consisted of one lakh, forty five thousand, two
hundred and fifty two rows (documents) (out of which we have used
the first five thousand to maintain uniformity among the datasets) and
two hundred and sixteen input variables (terms) (all have been
considered). Half of these features are known to be distractors. As a
result, it is known that there is only one major cluster within the entire
dataset although it is not immediately apparent from the huge matrix
with lots of stray variables having non-zero values. This also proved to
be an interesting test case.

5.2 Implementation Details

This work has been fully programmed in Java, using the NetBeans IDE
platform [25], which is open source and freely downloadable from the internet. The
project was implemented on a system running Windows XP Professional Version
with Service Pack 2, with a system memory of 1 GB and the processor used being
Intel Core 2 Duo 2.13 GHz.

I'

Results and Discussion

Six java classes were used --- Main, ReadFromFile, TFIDFToCoOcc,

CoOccToTermClus, ClusByMean, and SubClusByShape. But since_ we have already

provided the various algorithms used in our overall scheme (Chapter 4) and attached

the source code listing (Appendix A), we will not elaborate on details like the

methods present in each of these classes, their inputs and outputs, etc. in this section.

We now proceed to the results obtained and the comparisons with standard

algorithms.

5.3 Experimental Results

For each of the five datasets listed in Section 5.1, we give the number of

documents (ND), terms (NT), clusters (NC) and sub-clusters (NSC), the average

number of sub-clusters per cluster (ANSCPC), and the average number of documents

per cluster (ANDPC) and sub-cluster (ANDPSC). This summary is given in Table 5.1

(legend is given at the bottom of the table). Due to space constraints, we had to use

the abbreviated forms in the column headers. We gradually vary the size of the dataset

(number of documents) from one thousand through five thousand (with an increment

of one thousand after each phase) and observe the change in our metrics, keeping the

number of terms constant. We also record how our metrics vary with the number of

terms when we vary the number of terms from forty through two hundred (with an

increment of forty after each phase) for dataset 3, keeping the number of documents

fixed at five thousand. For all the five cases (case 3 has two parts as shown in Table

5.1), we plot graphs for the results (Figures 5.1 through 5.6) and then explain our

findings.

F.T.O.
45

Results and Discussion

Table 5.1 Summary of cluster information for all datasets -
1 1000
-

50
-

16 51 3.189 62.500 19.608

1 2000 50 16 77 4.813 125.000 25.974

1 3000 50 16 80 5.000 187.500 37.500

1 4000 50 16 89 5.563 250.000 44.944

1 5000 50 16 90 5.625 312.500 55.556

Avg. 3000 . 5016.0 77.4 4x838 187.500 36.716

2 1000 50 16 57 3.563 62.500 17.544

2 2000 50 16 79 4.938 125.000 25.316

2 3000 50 16 83 5.188 187.500 36.145

2 4000 50 16 93 5.813 250.000 43.011

2 5000 50 16 95 5.938 312.500 52.632

Avg. 3000 ;,- 50 16.E 814 5. 187 . 34.930
3 1000 200 57 78 1.368 17.544 12.821

3 2000 200 57 90 1.579 35.088 22.222

3 3000 200 57 107 1.877 52.632 28.037

3 4000 200 57 127 2.228 70.175 31.496

3 5000 200 57 141 2.474 87.719 35.461

Avg. 3000 206- 57.0 1084 L908 52.6332 26J$
3 5000 40 25 55 2.200 200.000 90.909

3 5000 80 58 80 1.379 86.207 62.500

3 5000 120 58 117 2.017 86.207 42.735

3 5000 160 58 123 2.121 86.207 40.650

3 5000 200 57 141 2.474 87.719 35.461

Avg. 5 120 51.2. 163.2 2.038 109.2" 54451

4 1000 48 2 19 9.500 500.000 52.632

4 2000 48 3 15 5.000 666.667 133.333

4 3000 48 1 9 9.000 3000.000 333.333

4 4000 48 2 13 6.500 2000.000 307.692

4 5000 48 2 13 6.500 2500.000 384.615

Avg. 3000: 48 2.0. 13.0 7.30 1.7333333.. 242321

5 1000 216 1 998 998.000 1000.000 1.002

5 2000 216 1 1991 1991.000 2000.000 1.005

5 3000 216 1 2768 2768.000 3000.000 1.084

5 4000 216 1 3810 3819.000 4000.000 1.050

5 5000 216 1 4837 4837.000 5000.000 1.034

Avg. 3000 216 1.0 288" 2882.600 3088.009 1.035

ND = Number of documents, NT = Number of terms, NC = Number of clusters, NSC = Number of sub-

clusters, ANSCPC = Average number of sub-clusters per cluster, ANDPC = Average number of documents per
cluster, ANDPSC = Average number of documents per sub-cluster, Avg. = Average

46

3000 	4000 	5000

ND

Results and Discussion

100

90

N B0

C 70

60

40 _ 	 t NC
N
S 30 _ 	 - - NSC

C 20

10

	

1000 	2000 	3000 	4000 	5000

ND

350 	 - -

300 -

250
A

N 200 	 -
D
P 150 	-

C

50

0

	

1000 	2000 	3000 	4000 	5000

ND

6

A 4
N
S

C

P
2

C

1 -

0

1000 	2000 	3000 	4000

ND

1000

1000 	2000 	3000
	

4000 	5000

ND

5000

60 - 	-

50

A 40
N

D
P 30

S
20

C

10 -_ __

0-s------ y

Fig. 5.1 Graphs for Case 1 data

100

90
N 60 	 -

C 70

60 -

/ 	50 -

40
N
S 30- 	 -i- NSC

C 20 ----
10

0-

1000 2000 3000 4000 5000 1000 2000 3000

ND ND

4000 	5000

60 r 	 __ 350

300 50

A 250 	 - A
40 1 N

N 200
D D

p 150

S C 100 20

50 10

0 p

1000 	2000 	3000 	4000 	5000 1000 	2000

ND

Fig. 5.2 Graphs for Case 2 data

47

Results and Discussion

	

160 	 3 	_

140
N 	 2.5
C 120 A

	

80 	 S 15
-ANC

	

N 60 	
P 1 f NSC

	

40 	 -- 	 C

C 	 0.5 	-

	

20 	
0

	

0 	 -

1000 	2000 	3000 	4000 	5000 	 1000 	2000 	3000 	4000 	5000

ND 	 ND

	

80 	 -

A 70 + 	 A 30

	

-

D 50 	 D
P 20

	

P 40 	 S 15

C 10

0 r 	 0

1000 	2000 	3000 	4000 	5000 	1000 	2000 	3000 	4000 	5000

ND 	 ND

Fig. 5.3 Graphs for Case 3 data (Part I)

3.

2.5 	-
A

N 2'

S
C 1.5

tNC

P
t NSC C

1 4

0.5 -~,

0 -

160

140 -
N
C 120

100-

80

60

0

.

- N
5 40

20

-
40 80 120 160 200

NT

40 80 120 160 200

NT

250 - 100

90 - 	-
200 9

A 	 A 70
N 150 N

D 	 D 50 + -
P 100 	

P
C 	 S

C 30

50 1 -- 20 - :__

10 '
0 0 -

40 80 120 160 200 40 80 120 160 200

NT 	 NT

Fig. 5.4 Graphs for Case 3 data (Part II)

48

5000

Results and Discussion

20

18

N 16 +

C 14

12

g 	 tNC

S 6 - t NSC

C 4

2

0

1000 2000 3000 4000 5000

ND

3500

3000

A 2500 —

N 2000 —

D
P 1500

C 1000

500

1000 2000 3000 4000 5000

ND

to —

8

N 6
S

C 5

P 4

C 3
2

1

0
1000 2000 3000 4000 5000

ND

450 - -

400 -

350
A 	 -

D 250

P 200

S 150
C

100

50

0

1000 2000 3000 4000

ND

Fig. 5.5 Graphs for Case 4 data (ADA)

6000

5000 ---
A
N 4000

S

C 3000.-

2000
C

1000 --
1 1 1 1 1

0 0

1000 2000 3000 4000 5000 1000 2000 3000 4000 5000

ND ND

6000 ------------------------------ 	-------------- 	11

5000 	 - 	

IJ

~

4---

1000 --._ 	- 	- _- 	 -

0.98

0 - - -- 	- 	 0.96 +--- --
1000 2000 3000 4000 5000 1000 2000 3000 4000 5000

ND ND

Fig. 5.6 Graphs for Case 5 data (SYLVA)

6000

N 5000

C
4000

p 3000

N 2000
S

C 1000

ANC
-- NSC

49

Results and Discussion

Now that we have presented the graphs, we will explain the findings. To begin

with, we observe that for each of the datasets 1, 2, and 3 (Part I), the number of

clusters does not vary with the number of documents (resulting in the steady increase

of ANDPC). This is due to the fact that the document clustering is a two stage

process: the first being clustering of the terms, and the second being the assignment of

the document to the term-cluster with the highest corresponding TF-IDF mean. So, if

the number of terms is kept constant, the number of document clusters will not vary

with the number of the documents. This has the great advantage of managing the large

corpus with a reasonable number of clusters (since number of terms << number of

documents). It is also a logical conclusion of the fact that for a reasonably large

document database, unless the dictionary is expanded, the number of document

categories will not change. The number of clusters detected in Cases 1 and 2 strongly

prove that our naive Bayesian assumption works well. The difference between these

two datasets was that there were terms overlapping with more than one well-formed

cluster, strongly with one and weakly with the others. There were also stray

distracting terms which did not form a cluster of their own but tried to destabilize the

structure of well-formed clusters. Otherwise, the well-formed term-clusters were the

same in both these datasets. Our scheme has been successful in nullifying the effect of

the stray terms (also evident in Cases 4 and 5 analyzed later) and also in uniquely

assigning overlapping terms to the cluster with whose terms which it had the strongest

co-occurrence.

To demonstrate the effect of a change in the number of terms, we have varied

the number of terms from forty through two hundred keeping the number of

documents fixed at five thousand for the dataset of Case 3 (referring to this as Part II

in Figure 5.4 and to the normal operation as Part I in Figure 5.3). The results then

display a change in the number of clusters initially, but later become almost constant.

But simply the number of clusters does not reveal the full picture here. We observe

that the numbers of clusters are 25, 58, 58, 58, and 57 when the numbers of features

are 40, 60, 80, 120, and 160 respectively. But initially the 58 clusters all contained

only one or two terms each. We had mostly single-term clusters of trivial real-world

use. As the number of terms grew, the clusters became meaningful, and began to

contain reasonable numbers of terms like three to six. For space constraints, we are

50

Results and Discussion

not able to provide the number of terms in each term-cluster formed or the number of

documents in each document cluster; otherwise this behavior would have been
apparent. With the increase in the number of terms, the number of associated shape

patterns within term-clusters also increase, increasing steadily the sub-cluster count.

But since the number of documents is kept constant, the average number of
documents- per sub-cluster decreases monotonically, though at a very slow rate. This
is because the rate of increase in the number of sub-clusters (due to the appearance of

new shape patterns) is less than the rate at which new terms are added. But this step is

done only as a demonstration, as increasing the number of terms while keeping the

number of documents constant does not have much significance in real life, whereas

the reverse is the case in most text clustering applications like organizing documents

for a news agency or for a research conference.

Adding new documents incrementally (keeping the number of terms constant)

results in the appearance of new shape patterns within the existing clusters. As a

result, we observe the trend of an increasing NSC, ANSCPC, and ANDPSC with an

increase in the number of documents for each of the datasets 1 through 3 (Part I).

Coming to the special datasets, we observe that although there were minor

deviations, the average number of clusters detected for Case 4 data was two. This

confirms our prior knowledge about the dataset. Case 5 data (SYLVA) was found to

have only one cluster, again, as known earlier. This confirms that our algorithm is

capable of detecting true clusters from large datasets even when a large number of the
terms are distractors (having stray non-zero values) and the actual number of clusters

is as low as one or two. For both cases, as the number of clusters is low, ANDPC is

very high. For Case 5, since the number of terms in the special clusters is much higher

than normal, the associated number of shape patterns that it may give rise to is also

very high (3Number of terms in term cluster, refer to Section 4.5). As a result, we have a very
high NSC and very low ANDPSC. But the notion of sub-clusters does not have much
significance for these two cases.

F.T.O.
51

Results and Discussion

5.4 Comparison of Running Times

All traditional text clustering algorithms (k-means, EM, farthest-first, and
density-based) require the number of desired clusters as user input. But our clustering
scheme does not require any user input or domain knowledge. It determines the
inherent clusters present within the documents based on semantically linked terms.
There is also no sub-clustering feature available in standard algorithms. As a result,
we have adopted running time to be the main performance metric between our scheme
(level - I) and the standard algorithms (available in WEKA [22]). A screenshot of the
WEKA clustering tool is shown in Figure 5.7. Both of the systems have been run on
the same Java platform (with the number of clusters detected by our system as the
input to the standard algorithms). The time required by a program running on a Java
platform is computed easily by the NetBeans CPU profiler. We provide such a
snapshot in Figure 5.8. These results are tabulated in Table 5.2 (legend at the bottom).

From Table 5.2 (especially the shaded regions) and the associated bar charts
(Figures 5.9 through 5.12), we can easily see that our algorithm's average running
time is significantly better than the standard algorithms for the same number of
clusters detected. This is because all the standard algorithms tend to find clusters on a
global basis, treating the entire document vector as a unit entity. As a result, they have
to constantly deal - with vectors of a very high dimensionality. Our algorithm tries to
find local entities (term-clusters) within the term-set first and then clusters the
documents on the basis of these local entities. Thus we look at local entities
preserving the global structure of the document vector. The running times of the
standard algorithms depend greatly on the number of desired clusters. As a result,
when the number of clusters is known to be extremely low, they provide results in a
very quick time. This explains their really low running times in Cases 4 and 5
(consequently, these values will not be visible in the corresponding bar charts and
hence are not shown). But since our scheme does not assume any prior knowledge
about the number of clusters, it has to proceed in its usual algorithm for all data,
explaining the general trend of rising running time with the increase in the number of
documents and terms. In general, the comparison was fair as both were run on the
same Java platform. For space constraints, it has not been possible to include the
number of documents in each cluster separately, or which documents were put into
which cluster, for each algorithm.

52

Results and Discussion

Classify Cluster Associate Select attributes 	uakze

Clusterer

choose eM -I 100 -N 10 -5 100 -M 1.0E-6

Cluster mode

0 Use trairwV set

o Suppled test set

Q Percentage spit
0 Classes to clusters evaluation

2) Store clusters for vfsuaization

Igrwre attrbutes

Start

Resuk ist (rght-c►ck for options)

Status

OK

Clusterer output

Normal Distribution. Mean = 0 StdDev = 130.5587
Attribute: a46
Normal Distribution. Mean - 0 StdDev - 0.0744
Attribute: a47
Normal Distribution. Mean = 424.375 StdDev = 276.3605
Attribute: e48
Normal Distribution. Mean - 0 StdDev - 0.0001
Clustered Instances

0 	59
1 	139
2 	22
4 	74
6 	41 (4%)
7 	65 (7%)
8 	259 (26%)
9 	341 (34%)

Log likelihood: -202.68461

ra

Loq A x0

Fig. 5.7 Snapshot of the WEKA clustering tool

Cal Tree - Method Time [SI] v Time 	 Invocatiore
Al ttreads 1135 ms 	: ro >I 1

d G7 main 1135 ms 	. 1
Q 'A Wgohms,Main,main 1135ms 1

ji 11 AI9orttms,TFIDFToCoOcc,matConvert 703ms 1
Q 5eF we 206 as 	:: _ . 1
Q Algorithms.Reai ro n ie.perforn 	ead 171 ins 	:- 1 ® PJ9Otl1fl5,SthCkiS8YSbM,SIiiClusteF rj1, ir,-[I 	rt ' 44.8 ms 	a : 1
Q Algorlfms.CkxBylean.duster 6.98 ms 	f.-;

IUgathn)s,CoOccToTamdus.matConvert mti 1,73ms 	i:I., 1

Y

Hot Spots - Method Self tine [SI] v Self tine 	Invocations
Wgonttms.hlain.awil - • 206 ms - - 1
Algorithms.ReaFroirFie.perfotmRead 171 ms i 1E: 1
Al9onthrts.TFID FToCoOcc.matConvert 144 as r 1
AlgotRhms.TFIC ToCoOcc,min , 112 ms 1225633
A4ytNm,5I 3us9y5hape.wbCWer 	nrJl. I 44,8 ms 	4 1
Algorthn.OusO t4ean,duster I 6,98 ms 1
Algorihns.CoOccToTermCkis,matConvert 0.779 as 1
Algorttms,CoOccToTermck6,cakCo(kd)n ba 	rcll_: ri 0.432 rtes 633

Fig. 5.8 Snapshot of the NetBeans CPU profiler

53

Results and Discussion

Table 5.2 Comparison of running times (in milliseconds)

1 2000 50 16 2177 2691 2291 2347 2545

1 3000 50 16 3298 3849 3458 3511 3801

1 4000 50 16 4472 5055 4498 4527 4888

1 5000 50 16 5653 6316 5723 5911 6089

Avg. 3000 50 16.0 3305.4 3785.4 3384.4 3453.4 3666.0

2 1000 50 16 1135 1475 1913 1698 3959

2 2000 50 16 2261 3016 2453 2782 2946

2 3000 50 16 3362 3875 4092 3045 3631

2 4000 50 16 4682 4790 4699 4850 4751

2 5000 50 16 5775 5905 5604 5811 5764

Avg. 3000 50 16.0 3443.6 3812.2 3752.2 3637.2 4210.2

3 1000 20(1 57 12645 13789 12680 13003 14804

3 2000 200 57 27341 30067 28394 29561 29872

3 3000 200 57 42091 49007 44509 46712 47222

3 4000 200 57 57802 69691 59012 63423 61571

3 5000 200 57 72524 89880 74789 77820 71453

Avg. 3000 200 57.0 42480.6 50486.8 43876.8 46103.8 44984.4

3 5000 40 25 4222 6169 4357 4562 5982

3 5000 80 58 13046 14849 12971 13428 13991

3 5000 120 58 28286 29238 29264 28327 30320

3 5000 160 58 47172 50550 48954 48932 50113

3 5000 200 57 72524 80891 81823 82341 79256

Avg. 5000 120 51.2 33050.0 36339.4 35473.8 35518.0 35932.4

4 1000 48 2 1115 17 16 17 17

4 2000 48 3 1877 16 16 17 17

4 3000 48 1 3036 16 16 18 16

4 4000 48 2 4061 17 16 17 16

4 5000 48 2 5723 16 16 16 17

Avg. 3000 48 2.0 3162.4 16.4 16.0 17.0 16.6

5 1000 216 I 2(1313 16 18 17 18

5 2000 216 1 39360 17 16 17 17

5 3000 216 1 58224 16 16 17 17

5 4000 216 1 77844 16 18 17 17

5 5000 216 1 95383 16 16 16 17

Avg. 3000 216 1.0 58224.8 16.2 16.8 16.8 17.2

ND - Number of documents. NT - Number of terms. NC = Number of clusters. EM 	I'.xpectation

Maximization, Avg. = Average

54

■ Proposed scheme

■ Simple K-Means

■ EM

■ Density-based

■ Farthest-first

4000 	5000

Results and Discussion

7000

6000 R
u

n 	5000

n

4000 	-
n

g 3000
T

2000 	I 11 m

i'i

e 1000

0
1000 2000 	3000

ND

Fig. 5.9 Running times for Case I data (in ms)

7000

R 6000

U

n 5000

n

4000
n

g 3000

T
2000

m
e 1000

0 i'i
■ Proposed scheme

■ Simple K-Means

■ EM

■ Density-based

■ Farthest-first

1000 	2000 	3000 	4000 	5000

ND

Fig. 5.10 Running times for Case 2 data (in ms)

55

Results and Discussion

100000

90000

80000 1111111111111111 u

n 	70000
n U

60000 – – — 	—
■ Proposed scheme

n 	50000 	 a Simple K-Means
8

40000.. – 	 OEM

T 	 ■ Density-based

'' I I 1
30000

Farthest-first
m 20000

10000

0
1000 	2000 	3000 	4000 	5000

ND

Fig. 5.11 Running times for Case 3 data (Part I) (in ms)

90000

80000 '
R
u 70000 	 -
n
n 60000

n 50000
	 ■ Proposed scheme

9 40000
	 ■ Simple K-Means

■ EM

t 30000 	 ■ Density-based

m 20000 	 Farthest-first

0

 Ii II
40 	80 	120 	160 	200

NT

Fig. 5.12 Running times for Case 3 data (Part II) (in ms)

56

Results and Discussion

5.5 Analysis of Time Complexity

In this section, we will give the time complexity of our algorithm in the

document clustering and the document sub-clustering levels. Let the number of

documents and terms be m and n respectively. The approximate total running of our

algorithm in the document clustering level, T(m, n), is O(mn2), in the best, the worst,

and the average cases. So the proposed algorithm in this level has a running time

which varies linearly with the number of documents and quadratically with the

number of terms, for all the three cases.

For the sub-clustering level, the analysis is performed relative to a single

cluster as it is a process associated with each cluster independently. Let there be p

documents and q terms in the cluster. Let the total approximate running time be

denoted by T(p, q). Then T(p, q) is O(p) in the best case and 0(3q-1p) in the worst and

the average cases. So the proposed algorithm in the document-sub-clustering level has

a running time which varies linearly with the number of documents p in the cluster in

the best case, and with the order of 3' 'p in the worst and the average cases.

57

Chapter 6

CONCLUSION AND FUTURE WORK

In this final chapter of our report, we present our conclusions and the scope for

future work on this topic.

6.1 Conclusion

In this work, we have proposed a novel two-level text clustering method based

on the naive Bayesian concept and shape pattern matching. In the first level, clusters

are detected in the document set. Unlike traditional clustering algorithms, we first

proceed to cluster the term-set based on their co-occurrence in the dataset. When a

term is found to co-occur non-trivially with terms of more than one cluster, we use the

naive Bayesian concept of conditional independence to assign the term uniquely to

one of the clusters. The basis of this term-clustering operation is to bring out the

underlying semantic linkages between the terms. The clustering of the documents is

then performed on the basis of these term-clusters using simple arithmetic mean

computations on the TF-IDF values corresponding to the various clusters. Knowledge

of semantic relationships within the terms helps in producing better clusters

qualitatively. The sparse matrix representation is used wherever possible to reduce

memory usage, asmost of the data matrices used for stepwise computational purposes

are not densely populated. The document clusters provide us with a broad grouping of

the documents. In the second level, we exploit shape pattern-based similarity to find

sub-clusters within the document clusters. Shape patterns inherent in the document

vectors reflect the relative importance of the terms present within the document. They

are used as a discriminatory measure to group documents within a cluster such that

documents within a sub-cluster have the same relative importance attached to their

terms.

We performed an exhaustive comparison between the running times of our

scheme and the traditional clustering algorithms available in WEKA. Our results

show that the running time of our algorithm is significantly better than the others.

58

Conclusions and Future Work

This is because all the standard algorithms tend to find clusters on a global basis,

treating the entire document vector as a unit entity. As a result, they have to

constantly deal with vectors of a very high dimensionality. Our algorithm tries to find

local entities (term-clusters) within the term-set first and then clusters the documents

on the basis of these local entities. Thus we look at local entities preserving the global

structure of the document vector. It also detects the major clusters successfully in

large datasets when a major number of the terms are of trivial importance, their stray

non-zero values acting as distractors trying to destabilize the structure of well-formed

clusters. Moreover, our clustering scheme does not require any user input or domain

knowledge. It detects the inherent clusters present within the dataset based on

semantically linked terms. The number of document clusters does not vary with the

dataset size, as long as the term-set is kept fixed. This has a big advantage of

managing a large corpus with a reasonable number of clusters (since number of terms

number of documents).This is demonstrated by our results. It is also a logical

conclusion from the fact that if our initial dataset size is reasonably large, then if the

dictionary is not expanded by adding new terms, new clusters whose documents are

semantically linked are also less likely to be produced.

Our algorithm will be computationally expensive and will not work well when

there is a large degree of co-occurrence between the terms, causing terms to be

candidates for almost every initial term-cluster. But in these situations, the structures

of the clusters are not well-defined; and as such any clustering algorithm would

produce poor results.

6.2 Future Work

We conclude this report with suggestions for future work on this topic. This

work ends with the detection of the clusters. As future work, we may devise efficient

indexing methods that would allow us to store the cluster information and retrieve

details relevant to a few clusters only (which we may want to work with). This will

highly contribute to the saving of computational space required, and subsequently in

the scalability of the overall process for dealing with large document sets. As a

possible drawback, the memory requirements of our algorithm are still somewhat
59

Conclusions and Future Work

high, as we had a trade-off between space and time. This is a potential area of
improvement. Documents may be allowed to belong to multiple clusters, sorted in a
decreasing order of probability. Dependence among terms may be introduced, in
which case the use of Bayesian belief networks has to be made. Improving upon our
design in which we increase the number of documents manually keeping the number
of terms constant, a system may be designed which will dynamically adapt itself when
new documents and terms are added automatically from a data source. This would
make the system capable of dealing with incremental or streaming data.

The concept of shape pattern-based similarity may be applied to other text
mining operations. We may also introduce more precision if we analyze a single

shape pattern further by its gradients. For example, the transition `up' can be made
more specific by introducing `increasing', `slowly increasing', and `quickly
increasing'. This would simply mean introducing gradient thresholds before the
determination of the shapes.

60

REFERENCES

[1] J. Han, M. Kamber, "Data Mining: Concepts and Techniques", Second

Edition, Elsevier Inc., Rajkamal Electric Press, 2006, pp. 1-628.

[2] L. Yanjun, L. Congnan, S. M. Chung, "Text Clustering with Feature Selection
by Using Statistical Data", IEEE Transactions on Knowledge and Data

Engineering, IEEE Journal, Volume 20, Issue 5, May 2008, pp. 641-652.

[3] J. B. - MacQueen, "Some Methods for Classification and Analysis of
Multivariate Observations", Proc. Fifth Berkeley Symposium on Mathematical

Statistics and Probability, University of California Press, 1967, Volume 1, pp.

281-297.

[4] L. Xinwu, "Research on Text Clustering Algorithm Based on K means and
SOM", International Symposium on Intelligent Information Technology

Application Workshops 2008, IITAW 2008, 21-22 Dec. 2008, pp. 341-344.

[5] T. Kohonen, "The Self-organizing Map", International Journal of
Neurocomputing, Elsevier Science B. V., Volume 21, Issues 1-3, .6 Nov. 1998,

pp. 1-6.

[6] X. Liu, P. He, H. Wang, The Research of Text Clustering Algorithms Based
on Frequent Term Sets", Proc. 2005 International Conference on Machine

Learning and Cybernetics 2005, Volume 4, 18-21 Aug., 2005, pp. 2352-2356.

[7] I. Rish, "An Empirical Study of the Naive Bayes Classifier", Proc.

Seventeenth International Joint Conference on Artificial Intelligence, 2001,

IJCAI '01, 4-10 Aug. 2001, pp. 1-7.

[8] B. Wang, S. Zhang, "A Novel Text Classification Algorithm based on Naive
Bayes and KL-divergence", Proc. Sixth International Conference on Parallel

61

References

and Distributed Computing, Applications, and Technologies, 2005, PDCAT

2005, 5 -8 Dec. 2005, pp. 913-915.

[9] I.Z. Batyrshinl, L.B. Sheremetova, "Perception-based Approach to Time
Series Data Mining", A Research Program in Applied Mathematics and

Computing (PIMAyC), Forging the Frontiers - Soft Computing, Applied Soft

Computing, Mexican Petroleum Institute, Mexico, Volume 8, Issue 3, Jun.
2008, pp. 1211-1221.

[10] A. Bagnall, C. A. Ratanamahatana, E. Keogh, S. Lonardi, G. Janacek, "A Bit
Level Representation for Time Series Data Mining with Shape Based
Similarity", Data Mining and Knowledge Discovery (DMKD) Journal,

Springer Netherlands, Volume 13, Number 1, Jul. 2006, pp. 11-40.

[11] Y. Weng, Z. Zhu, "Time Series Clustering Based on Shape Dynamic Time
Warping Using Cloud Models", Proc. International Conference on Machine

Learning and Cybernetics 2003, Volume 1, 2-5 Nov., 2003, pp. 236-241.

[12] X. Junling, X. Baowen, Z. Weifeng, C. Zifeng, Z. Wei, "A New Feature
Selection Method for Text Clustering", Wuhan University Journal of Natural

Sciences 2007 (WUJNS 2007), Volume 12, No. 5, 2007, pp. 921-916.

[13] X. He, D. Cai, H. Liu, W.-Y. Ma, "Locality Preserving Indexing for
Document Representation", Proc. Twenty-seventh Annual International ACM

SIGIR Conference on Research and Development in Information Retrieval,

2004, SIGIR 2004, 25-29 Jul. 2004, pp. 96-103.

[14] G. Salton, A. Wong, C. S. Yang, "A Vector Space Model for Automatic
Indexing", Communications of the ACM, Volume 18, Issue 11, Nov. 1975, pp.
613-620.

[15] M. T. Heath, "Sparse Matrix Computations", Proc. Twenty-third IEEE
Conference on Decision and Control, 1984, Volume 23, Part 1, Dec. 1984, pp.
662-665.

62

References

[16] K. W. Church, P. Hanks, "Word Association Norms, Mutual Information and
Lexicography", Computational Linguistics, Vol.6, No.1, 1990, pp. 22-29.

[17] English stopwords, http://www.webconfs.com/stop-words.php

[18] C.J. Rijsbergen, S.E. Robertson, M.F. Porter, "An Algorithm for Suffix
Stripping", Readings in Information Retrieval, Morgan Kaufmann Multimedia
Information and Systems Series, 1997, pp. 313-316.

[19] S. Deerwester, S. T. Dumais, G. W. Furnas, T. K. Landauer, R. Harshman,
"Indexing by Latent Semantic Analysis", Journal of the American Society for
Information Science, 1990, ASIS 1990, Volume 41, Issue 6, 1990, pp. 391 -
407.

[20] T. Hofmann, "Probabilistic Latent Semantic Indexing", Proc. Twenty-second
Annual International SIGIR Conference on Research and Development in
Information Retrieval, SIGIR 1999, 15-19 Aug. 1999, pp. 50-57.

[21] I. R. Silva, J. N. Souza, K. S. Santos, "Dependence among Terms in Vector
Space Model", Proc. International Database Engineering and Applications
Symposium 2004 (IDEAS 2004), 7-9 Jul. 2004, pp. 97-102.

[22] WEKA, http://www.cs.waikato.ae.nz/ml/weka/

[23] National Science Foundation (NSF), http://www.modelselect.inf.ethz.ch/

[24] I. Guyon, A. Saffari, G. Dror, G. Cawley, "Analysis of the IJCNN 2007
Agnostic Learning versus Prior Knowledge Challenge", Proc. International
Joint Conference on Neural Networks, 2007, IJCNN 2007, Volume 21, No. 2-
3, 2008, pp. 544-550.

[25] NetBeans IDE, http://www.netbeans.org/

63

LIST OF PUBLICATIONS

[1] Rishiraj Saha Roy and Durga Toshniwal, "Using Shape Patterns for

Clustering Unstructured Text Documents", Proc. 18th International

Conference on Software Engineering and Data Engineering 2009 (SEDE

2009), 22-24 Jun. 2009, Las Vegas, Nevada, USA. (Paper accepted for

presentation and publication in the conference proceedings; Conference

proceedings will be indexed in INSPEC and DBLP)

[2] Rishiraj Saha Roy and Durga Toshniwal, "A Hierarchical Clustering Scheme

for Unstructured Text Data", Proc. 2009 International Conference on

Information and Knowledge Engineering (IKE 2009), 13-16 Jul. 2009, The

2009 World Congress in Computer Science, Computer Engineering and

Applied Computing, WORLDCOMP 2009, Las Vegas, Nevada, USA. (Paper
accepted for presentation and publication in the conference proceedings;

Conference proceedings will be indexed in INSPEC, DBLP, and IET)

[3] Rishiraj Saha Roy and Durga Toshniwal, "A Two-level Text Clustering

Scheme using Naive Bayesian Concept and Shape Pattern Matching", Special

Issue on "Knowledge Engineering and Management for the Intelligent

Enterprise ", International Journal of Knowledge Engineering and Data

Mining (IJKEDM), Inderscience Publishers, Seventh Framework Programme,

2009. (Paper submitted and currently under review)

64

APPENDIX A:

SOURCE CODE LISTING

Main.

package Algorithms;

import java.io.BufferedReader;
import java.io.FilelnputStream;
import java.io.IOException;
import java.io.InputStreamReader;

public class Main
{

public static void main(String[] args) throws IOException
{

BufferedReader br=new BufferedReader(new InputStreamReader(System.in));
System.out.println("\nWelcome to the project A TWO-LEVEL TEXT CLUSTERING SCHEME

BASED ON NAIVE BAYESIAN CONCEPT AND SHAPE PATTERN MATCHING.");
System.out.println("\nPress ENTER to BEGIN...");
int NumDocs=0; // No. of documents
int NumFeats=0; // No. of features

int[][] TFIDFMat = new int[NumDocs][NumFeats];

String str=new Strings;

// Datasets used for validation

// 	str = "example.txt";

// str = "datasetl .txt";
// str = "dataset2.txt ";

// str = "dataset3100050NC.txt ";
// str = "dataset3_2000_50NC.txt ";
// str = "dataset3_3000_50NC.txt ";
// str = "dataset34000_5ONC.txt ";
// str = "dataset3 5000 50NC.txt";

// str = "dataset4_1000_50C.txt ";
// str = "dataset4_2000_50C.txt ";
// str = "dataset4_300050C.txt ";
// str = "dataset4_400050C.txt ";
// str = "dataset4_5000_50C.txt ";

// str = "dataset5_1000_200C.txt ";
// str = "dataset5 2000_200C.txt";
// str = "dataset5__3000_200C.txt ";
// str = "dataset5_4000_200C.txt ";
// str = "dataset5_5000 200C.txt";

// str = "dataset5_5000_40C.txt ";
// str = "dataset5_5000_80C.txt ";
// str = "dataset5_5000_120C.txt ";

7

Source Code Listing

// 	str = "dataset55000_160C.txt";
// 	str = "dataset5 5000 200C.txt";

// 	str = "ada_train_1000.txt";
// 	str = "ada_train 2000.txt";
// 	str = "ada train 3000.txt";
// 	str = "ada train 4000.txt";
// 	str = "ada train 5000.txt";

// 	str = "sylva_train_1000.txt";
// 	str = "sylva train_2000.txt";
// 	str = "sylva train_3000.txt";
// 	str = "sylva_train_4000.txt";

str = "sylva train_5000.txt";

FileInputStream fin=new FilelnputStream(str);
int index=0; 	// Will read characters from file
int ctr=0; 	If Will count the number of commas
boolean flag=false; // Checks whether NumFeats has been determined
while(true)
{

index = fm.read(); // Read one character
if(index == -1) // EOF encountered

break;
else if(index =

ctr++; 	// Counting number of commas helps us calculate
// NumDocs

else if(index==10 11 index==13) // LF or CR

if(flag = false)
{

// Determination of NumFeats - required only once - first
// time
NumFeats = ctr + 1;
flag = true;

}
fm.closeO; 	// Close input file
NumDocs = ctr/(NumFeats - 1);
ctr = 0; 	// Reset ctr

TFIDFMat = ReadFromFile.performRead(str, NumDocs, NumFeats);

int[][] CoOccMat = new int[NumFeats][NumFeats];
// Co-occurrence matrix; will contain information about the
// co-occurrence of a pair of terms in a document
CoOccMat = TFIDFToCoOcc.matConvert(TFIDFMat, NumDocs, NumFeats);

int[I[I FinalTermClusMat = new int[NumFeats + 1][NumFeats + 1];
// In the worst case, all terms may lie in one cluster
// So no. of columns has to be made NumFeats
// Made efficient using sparse matrix

// The +ls are done to accomodate the end-of-cluster markers

FinalTermClusMat = CoOccToTermClus.matConvert(CoOccMat, NumFeats);

ii

Source Code Listing

int[] [] DCM = new int[NumDocs] [3]; // Document Cluster Matrix
// Column 1 will store document id
// Column 2 will store cluster no.
// Column 3 will store sub-cluster no.

DCM = ClusByMean.cluster(TFIDFMat, FinalTermClusMat, NumDocs, NumFeats);
// Column 2 entries have been inserted .

DCM = SubClusByShape.subCluster(TFIDFMat, FinalTermClusMat, DCM,. NumDocs,
NumFeats);

// Column 3 entries have been inserted now

System.out.println("COMPLETE CLUSTERING PROCESS COMPLETED.");

System.out.println("\nOPERATION SUMMARY:");
System.out.println("Name of feature extracted TFIDF file: " + str);
System.out.println("Number of documents: " + NumDocs);
System.out.println("Number of features: "+ NumFeats);
int NumClus=1;
// No. of document clusters
// No. of times value changes in 2nd column of DCM - NumClus is the
If counter
for(int i=0; i<NumDocs-1; i++)
{

if(DCM[i][1] != DCM[i+1][1])
NumClus++;

}
System. out.println("Total number of clusters: "+ NumClus);
int NumSubClus=DCM[NumDocs-1][2] + 1; 	// Numbering starts at 0
System.out.println("Total number of sub-clusters (across all clusters): "+ NumSubClus);
System.out.println("Average number of sub-clusters per - cluster: 	+

((double)NumSubClus/(double)NumClus));
double NDC=(double)NumDocs/(double)NumClus; // No. of documents per

// cluster
System.out.println("Average number of documents per cluster: "+ NDC);
double NDSC=(double)NumDocs/(double)NumSubClus; // No. of documents per

// cluster
System.out.println("Average number of documents per sub-cluster: "+ NDSC);

System.out.println("\nTHIS DISSERTATION WORK HAS BEEN PROGRAMMED BY:");
System.out.println("Rishiraj Saha Roy");
System. out.println("M.Tech. I.T. (2nd Year)");
System.out.println("Enrolment No.: 074708");
System.out.println("Department of Electronics and Computer Engineering");
System.out.println("Indian Institute of Technology Roorkee.");

System. out.println("\nTHANK YOU !\n");

ReadFromFile.iaya

package Algorithms;

import java.io.FileInputStream;
import java.io.IOException;

iii

Source Code Listing

public class ReadFromFile
{

public static int[][] performRead(String FileName, int NumRows, int NumCols) throws IOException
{

// NumRows is the no. of rows in the matrix into which data from file is
// read into
// NumCols is the no. of columns in the matrix into which data from file
// is read into

int[][] NewMat = new int[NumRows][NumCols];

FileInputStream fin=new FilelnputStream(FileName);

int[] TwoChars=new int[2]; // Will store current and last
// previously read characters from file
// Necessary to distinguish between
// single ASCII 10 and (ASCII 13 and 10)
// as pair

TwoChars[0] = 0; 	// Initialization
TwoChars[1] = 0;
double temp=0.0; 	// Stores temporary integer derived
double j=0.0; 	// Used for 10's exponent
boolean flag=hue; 	// Indicates when comma or end-of-line

// is met
int p=0; 	 // Row index of NewMat
int q=0; 	 // Col index of NewMat

outer:
while(true) // Outer loop
{

temp = 0.0;
while (true)
{

TwoChars[0] = TwoChars[l];
TwoChars[1] = fm.readO; // Read one ASCII character
// System.out.println(TwoChars[1] + "\n");
// Useful for knowing ASCII values of non-printing (CR, LF,
// etc.) and special characters like ','

if (TwoChars[1] == -1) 	// EOF encountered
{

break outer; // Break with label
}
else if(TwoChars[1]== 10 && TwoChars[0] 13)
{

// Number has already been evaluated due to preceding CR
// Move on to next character
continue;

else if (((char)TwoChars[1]==',') 11 (TwoChars[1]==13) 11 (TwoChars [0]! = 13 &&
TwoChars[1]==10))

// Next no. or end of line encountered
// ASCII of 13 corresponds to a carriage return (CR) (ENTER)
// ASCII of 10 corresponds to paragraph mark, often present in
// documents instead of newline or ENTER (Line Feed LF)
// So we have to evaluate number now
{

iv

Source Code Listing

flag = false;
break;

}
else if(TwoChars[1]>=48 && TwoChars[1]<=57) // character is a digit
{

TwoChars[l] _ (TwoChars[l]) -'0';
}

temp = (temp * 10) + TwoChars[l];
// Calculating integer extracted

}
if (flag == false)
{

NewMat[p][q] = (int)temp;
q++;

if (q % (NumCols) == 0)
{

p++;
q = 0;

}
}

flag = true;
}

fm.closeO; // Close input file

System.out.println("\nReading matrix from file......... Done.\n");

return NewMat;
}

}

TFIDFToCoOcc.iava

package Algorithms;

public class TFIDFToCoOcc
{

public static int[][] matConvert(int[][] TFIDFMat, int NumDocs, int NumFeats)
{

int[][] CoOccMat = new int[NumFeats][NumFeats];
If Co-occurrence matrix; will contain information about the-
// co-occurrence of a pair of terms in a document
// To avoid redundancy, storing of CoOccMat[i][j] is enough and we
If need not store CoOccMat[j][i]; also, CoOccMat[i][i] is meaningless
If As a result, CoOccMat is an upper triangular matrix
If We fill the diagonal elements with -1 as markers to aid in future
// computation
for(int i=0; i<NumFeats; i++)
{

for(int j=0; j<NumFeats; j++)
{

if(i==j)
CoOccMat[i][j] _ -1;

}
}

V

Source Code Listing

int MinVal=O; // Will store minimum of two compared values
for(int i=0; i<NumFeats- 1; i++) 	// Column index 1 for TFIDFMat
{

for(int j=i+1; j<NumFeats; j++) // Column index 2 for TFIDFMat
{

for(int k=0; k<NumDocs; k++) // Row index for TFIDFMat
{

// Co-occurrence for a pair of terms
// Minimum of 2 values taken from TFIDFMat
MinVal = TFIDFToCoOcc.min(TFIDFMat[k][i], TFIDFMat[k]Li]);
CoOccMat[i][j] = CoOccMat[i][j] + MinVal;

}
MinVal = 0; // Reset MinVal

return CoOccMat;
}

public static int min(int a, int b)
{

if(a <= b)
return a;

return b;

CoOccToTermClus. i ava

package Algorithms;

import java.io.BufferedReader;
import java.io.IOException;
import java.io.InputStreamReader;

public class CoOccToTermClus
{

public static int[] [] matConvert(int[] [] CoOccMat, int NumFeats) throws IOException
{

// Term and feature are used interchangeably
int[][] IntlTermClusMat = new int[NumFeats][NumFeats];
// Will store initial term clusters

// To begin with, each term is a cluster centre, before observing
// co-occurrence patterns

for(int i=0; i<NumFeats; i++)
{

for(int j=0; j(NumFeats; j++)

if(CoOccMat[i][j] != 0)
{

IntlTermClusMat[i][j] = 1;
IntlTermClusMat[j][i] = 1;
If Term i belongs to initial cluster j and vice versa

vi

Source Code Listing

// Since we have avoided redundancy by using an upper triangular
// matrix, term i can occur only in clusters i or less, i.e., term 2
// can occur only in clusters 0, 1, or 2

BufferedReader br=new BufferedReader(new Input StreamReader(System.in));
// hr may be used to halt output later for stepwise checking

int[][] TermClusMat = new int[NumFeats][NumFeats];

// So now we will assign a term uniquely to a cluster using naive
// bayesian theory of probability
// The transpose of the IntlTermClusMat, or equivalently reading the
// IntlTermClusMat columnwise gives us the initial clusters that a
// particular term belongs to

boolean[] WhetherAssigned = new boolean[NumFeats];
for(int i=0; i<NumFeats; i++) // Initialization

WhetherAssigned[i] = false;
// Boolean array to store whether every feature has been assigned to
// a cluster
// After probability calculations, those features which do not co-occur
// with any other feature, are assigned to their own clusters

TermClusMat[0][O] = 1; // Assumption: first term belongs to first
// cluster; value set

WhetherAssigned[0] = true;

double probab=0.0; 	// Will store the individual probabilities
- double ProbabProd=1.0; //Product of individual probabilities
double MaxProbab=0.0; // Will store maximum conditional probability

// of term belonging to particular cluster
int MaxCluster=-1; // Will store fmal cluster number of term
for(int i=0; i<NumFeats; i++) 	// Column index for IntlTermClusMat
{

System.out.println("i loop entered for term " + i);
MaxProbab = 0.0; 	// Reset MaxProbab
for(int j=0; j<NumFeats; j++) // Row index for IntlTermClusMat
f

System.out.println("j loop entered for cluster " + j);
ProbabProd = 1.0; 	// Reset ProbabProd
if(IntlTermClusMat[j][i] == 1)
{

// Term i belongs to initial cluster j
if(i==0 && j=0)

break; 	// term 0 already assigned to cluster 0

// Now we have to calculate probability of term i belonging
// to cluster j
// According to the naive bayes theory, this is given by the
// product of the individual probabilities of term i
// co-occurring with each term of cluster j

for(int k=0; k<NumFeats; k++) // k is a column index

System.out.println("k loop entered for term " + i + " with term " + k);
if(IntlTermClusMat[j][k]=1 && i!=k)
{

// term i co-occurs with term k
vii

Source Code Listing

// terms i and k are distinct
probab = CoOccToTermClus.calcCoOccProbab(i, k, CoOccMat, NumFeats);

// 	 System.out.println("Term " + i + ", Term " + k + "co-occurrence probability: "+
probab);
// 	 br.readLine();
// 	 To halt output for checking

ProbabProd = ProbabProd * probab;
}

}
if(ProbabProd > MaxProbab)
{

MaxProbab = ProbabProd;
MaxCluster = j; // Cluster to which probability of

// belonging maximum
WhetherAssigned[i] = true;

System.out.println("ProbabProd for Term "+ i + ", Cluster " +j +": " + ProbabProd);
f/ 	br.readLineO;

probab = 0.0; // Reset probab

}
if(WhetherAssigned[i]=—hue && i►=0) // Term 0 already assigned

TermClusMat[MaxCluster][i] = 1;
}

for(int i=0; i<NumFeats; i++)

if(WhetherAssigned[i] _= false)
{

TermClusMat[i] [i] = 1;

int[][] FinalTermClusMat=new int[NumFeats + 1][NumFeats + 1];
// Converting to bag-of-words representtion
// The +ls are for end markers

int RowPtr=O; 	// Row index for FinalTermClusMat
int Co1Ptr=0; 	// Column index for FinalTermClusMat
booleanflag=false; // Check whether any points exist in a particular

// initial cluster
for(int i=0; i<NumFeats; i++)
{

ColPtr = 0; // Reset ColPtr
for(int j=0; j<NumFeats; j++)
{

if(TermClusMat[i][j] _= 1)
{

FinalTermClusMat[RowPtr][ColPtr] = j;
FinalTermClusMat[RowPtr][ColPtr+1] = -1;
// End of current cluster
FinalTermClusMat[RowPtr+l][0] = -1;
// End of all clusters
flag = true;
ColPtr++;

viii

Source Code Listing

if(flag == true)
{

RowPtr++;
}
flag = false;

}
RowPtr = 0; // Reset RowPtr
return FinalTermClusMat;

public static double calcCoOccProbab(int term 1, int term2, int[] [1 CoOccMat, int NumFeats)
{

double probab=0.0;
int MinVal=TFIDFToCoOcc.min(terml, term2); // Will store lower numbered

//term
int MaxVal=0; 	 // Will store higher

// numbered term
if(term I = Min Val)

MaxVal term2;
else

MaxVal = term l;
int numr=CoOccMat[MinVal][MaxVal]; // As it is an upper triangular

// matrix, value will be found at
// this location only

// numr is the numerator term for the probability
// No. of co-occurrences of term 1 with term2
int denr=0;
// denr is the denominator term for the probability, hence not
// initialized to 0
// No. of co-occurrences of term 1 with all other terms
// Denominator calculation
for(int i=0; i<term 1; i++)
{

denr = denr + CoOccMat[i] [term 1]; // 0 entries (terms with which
// term 1 does not co-occur) do
// not affect sum

}
for(int jrterml+1; j<NumFeats; j++)
{

denr = denr + CoOccMat[terml][j]; // 0 entries (terms with which
// terml does not co-occur) do
// not affect sum

// Does not add the -1 at (i, i) position

if(numr = 0) // Laplacian correction
{

numr++;
deny++;

}
if(denr !° 0)

probab = (double)numr / (double)denr;
else

probab = 0.0;

return probab;
}

}

Source Code Listing

ClusByMean.iava

package Algorithms;

import java.io.BufferedReader;
import java.io.IOException;
import java.io.InputStreamReader;

public class ClusByMean
{

public static int[][] cluster(int[][] TFIDFMat, int[][] FinalTermClusMat, int NumDocs, int
NumFeats) throws IOException

{
int[][] DCM = new int[NumDocs][3];
// Document Cluster Matrix
// Column 1 will store document id
// Column 2 will store cluster no.
// Column 3 will store sub-cluster no.

for(int i=0; i<NumDocs; i++)
{

DCM[i][0] i; // Filling in document id
// Remaining 2 column values are not known yet

}
double mean=0.0; // Will store mean TFIDF value for a cluster
double MaxMean=0.0; // Will store max of these means to determine

// fmal cluster
int ctr=0; 	// Will count number of terms in cluster for

// division of sum
int TermNo=O; 	//.Will store term no. of term in cluster
int vat=0; 	// Will store required TFIDF value
int sum=0; 	// Will store sum of corresponding TFIDF values

BufferedReader br new BufferedReader(new InputStreamReader(System.in));
// br may be used to halt output later for stepwise checking

for(int i=0; i<NumDocs; i++)
{

// Each document has to be put into its respective cluster
for(int p=0; p<NumFeats; p++) 	// p is row index for

// FinalTermClusMat, i.e.,
// cluster no.

if(FinalTermClusMat[p][0] ° -1) // End of all clusters
{

break;
// Cannot be encountered at the very beginning in case of
// valid FinalTermClusMat
// Loop will compulsorily exit on break condition and not
// on for loop completion

)
for(int q=0; q<NumFeats; q++) 	// q is column index for

// FinalTermClusMat, i.e.,
// term no.

{
if(FinalTermClusMat[p][q] __ -1)
{

break; 	 // End of current cluster
x

Source Code Listing

// Cannot be encountered at the very beginning in case
If of valid FinalTermClusMat
// Loop will compulsorily exit on break condition and
// not on for loop completion

}
TermNo = FinalTermClusMat[p][q];
ctr++;
val = TFIDFMat[i][TermNo];
sum = sum + val;

System.out.println("Sum: " + sum);
br.readLineO;

}
if(ctr != 0)
{

mean = (double)sum / (double)ctr;
System.out.println("Mean: "± mean);

}
if(mean >= MaxMean)
{

MaxMean = mean; 	// Update MaxMean
DCM[i][1] = p; 	// Update cluster no. of document

}
mean = 0.0; 	// Reset mean after dealing with one

// cluster
sum = 0; 	// Reset sum after dealing with one

// cluster
ctr = 0; 	// Reset ctr after dealing with one

If cluster
}
MaxMean = 0.0; 	// Reset MaxMean after dealing with

// one document
// 	br.readLineO;

}

return DCM;
}

}

SubClusByShape.iava

package Algorithms;

import java.io.BufferedReader;
import java.io.IOException;
import java.io.InputStreamReader;

public class SubClusByShape
{

public static int[][] subCluster(int[][] TFIDFMat, int[][] FinalTermClusMat, int[][] DCM, int
NumDocs,int NumFeats) throws IOException

{

int[][] IDCM=new int[NumDocs][5]; // Initial Document Cluster Matrix
// Will contain number of terms in
// respective cluster of document
// in 3rd column
// Will contain shape identifiers

xi

Source Code Listing

// in the fourth column

If Copying necessary information to IDCM
for(int i=0; i<NumDocs; i++)
{

IDCM[i][0] = DCM[i][0];
IDCM[i][1] =DCM[i][1];

BufferedReader br=new BufferedReader(new InputStreamReader(System.in));
// br may be used to halt output later for stepwise checking

int tempo=0; // Temporary variables for current and future use
int tempi=0;
int temp2=0;
// Sorting documents by cluster
for(int i=0; i<NumDocs; i++)
{

for(int j=i; j<NumDocs; j++)
{

// Clusters in ascending order
if(IDCM[i][1] >= IDCM[j][1])

// Swapping first column - document id
tempo 	= IDCM[i][0];
IDCM[i][0] = IDCM[j][0];
IDCM[j][0] = tempo;

// Swapping second column - cluster id
tempi 	= IDCM[i][1];
IDCM[i][1] = IDCM[j][1];
IDCM[j][1] = tempi;

}
}

int C1usCtr=O; 	// Counts the number of clusters
for(int i=O; i<NumFeats; i++)
{

if(FinalTermClusMat[i][0] == -1)
break;

ClusCtr++;
}
int[] NTC=new int[ClusCtr]; // Number of Terms in Cluster

// Array will store number of terms in each
// cluster

// Counting number of terms in each cluster
int ctr=0; 	 // Counter
for(int i=O; i<NumFeats; i++) 	// i is row index - cluster number
{

if(FinalTermClusMat[i][0] _ -1)
break; 	// End of all clusters

for(int j=0; j<NumFeats; j++) // j is column index - term number
{

if(FinalTermClusMat[i][j] = -1)
break; // End of current cluster

ctr++;

xii

Source Code Listing

NTC[i] = ctr; // Assign ctr
ctr = 0; 	// Reset ctr

ctr = 0; 	// Reset ctr for future use

String CurShape=new StringO;
CurShape=""; 	// Initialization
// Will store shape pattern of current document

String[] ShapeList=new String[NumDocs ± 1];
// Will contain list of unique shapes, in worst case all documents
// may have different shapes to the varying length of their clusters
/1+1 for end marker
// Hence the size of the array

ShapeList[O] = "end"; // End marker - end of all shapes
// Initially at the beginning - no shapes in
// list

int C1usNum=O; 	// Will store cluster number of document
// being processed

int term 1=0; 	// Terms used to determine up, down, or level
int term2=0;
int vall=0; 	// Corresponding term 1, term2 values in
int va12=0; 	// TFIDFMat
int ptr=0; 	// Used as index to traverse ShapeList
// Main loop - shape processing for all documents
for(int i=0; i<NumDocs; i++)
{

ClusNum = IDCM[i] [1];
IDCM[i][2] = NTC[ClusNuml;
if(IDCM[i][2] ° 1) // 1 term in cluster
{

IDCM[i][3] = 0; // Shape pattern 0 corresponds to nil or no
// shape as there is only one term in cluster
// No further sub-cluster

else
{

int p=0; 	// Column index for FinalTermClusMat

while(true)
{

if(FinalTermClusMat[C1usNum][p+l] = -1)
{

break;
}
term 1 = FinalTermClusMat[ClusNum] [p];
term2 = FinalTermClusMat[ClusNum] [p+l];
val l = TFIDFMat[i] [term 1];
vaI2 = TFIDFMat[i][term2];
if(vall < val2)

CurShape = CurShape + "U";
else if(vall > val2)

CurShape = CurShape + "D";
else if(vall = val2)

CurShape = CurShape + "L";

Source Code Listing

p++;

while(true)
{

// br.readLineO;
// Traversing ShapeList array to check whether uncovered
// pattern new or already present in list
if((ShapeList[ptr]).equals("end") == true)
{

// End of list encountered
// Pattern is new
ShapeList[ptr] = CurShape;
IDCM[i][3] = ptr;
ShapeList[ptr + 1] = "end"; // Push end marker by one
break;

}
else if((ShapeList[ptr]).equals(CurShape) = true)
{

IDCM[i][3] = ptr; If Insert column 3 value - shape
//pattern id

break;
}
ptr++; 	// Try next shape

ptr = 0; 	// Reset ptr
CurShape = "; // Reset CurShape

}
}

ptr=0;

// Now we sort in ascending order of shape indices within clusters
int temp3=0; // More temporary variables
int temp4=0;
for(int i=0; i<NumDocs; i++)
{

for(int j=i; j<NumDocs; j++)
{

if((IDCM[i][1]==IDCM[j][1]) && (IDCM[i][3J>=IDCM[j][3]))
{

tempo = IDCM[i][0]; 	// Swap document id
IDCM[i][0] = IDCM[j][0];
IDCM[j][0] = tempo;

// No need to swap column I as it is equal by condition

temp2 = IDCM[i][2]; 	// Swap number of terms in
IDCM[i][2] = IDCM[j][2]; // cluster
IDCM[j][2] = temp2;

temp3 = IDCM[i][3]; 	// Swap shape id
IDCM[i][3] = IDCM[j][3];
IDCM[j][3] = temp3;

// No need to swap fifth column as it is empty

xiv

Source Code Listing

// Sub-clustering starts
IDCM[O][4] = 0; // Document 1 belongs to 1st sub-cluster (Number 0)
for(int i=1; i<NumDocs; i±+)
{

if((IDCM[i][3]==IDCM[i-1][3]) && (IDCM[i][1]==IDCM[i-1][1]))
{

// If shapes match and clusters match
IDCM[i][4] = IDCM[i-1][4]; // Same sub-cluster

}
else if((IDCM[i] [3] !=IDCM[i- 1][3]) (IDCM[i][1]!=IDCM[i-1][1]))
{

// If shapes do not match or clusters do not match
IDCM[i][4] = IDCM[i-1][4] + 1; // New sub-cluster

If Sorting documents within a particular sub-cluster by document id
for(int i=0; i<NumDocs; i++)
{

for(int j=i; j<NumDocs; j++)
{

// Documents in ascending order
if((IDCM[i][0]>=IDCM[j][0]) && (IDCM[i] [4]==IDCM[j] [4]))
{

// Swapping first column - document id
temp 1 	= IDCM[i] [0];
IDCM[i][0] ° IDCM[j][0];
IDCM[j][0] =templ;

// Swapping second colunm - cluster id
temp2 	° IDCM[i][1];
IDCM[i][1] = IDCM[j][1];
IDCM[j][1] = temp2;

// Swapping third column - number of terms in cluster
temp3 	= IDCM[i][2];
IDCM[i][2] = IDCM[j][2];
IDCM[j][2] = temp3;

// Swapping fourth column - shape id
temp4 	= IDCM[i][3];
IDCM[i][3] = IDCM[j][3];
IDCM[j][3] = temp4;

// No need to swap fifth column as it is equal by condition
}

}
}

// Copying back necessary information before return to main
for(int i=0; i<NumDocs; i++)
{.

DCM[i][0] = IDCM[i][0];
DCM[i][1] = IDCM[i][1];
DCM[i][2] = IDCM[i][4];

xv

Source Code Listing

return DCM;
}

}

SparseMatrix.iava

public class SparseMatrix extends AbstractMatrix {
protected double[][] nzValues;

protected int[] [] columnlndices;

protected int[] nzCounters;

/* *
* @param colCount number of columns
* @param rowCount number of rows
*/

public SparseMatrix(int colCount, int rowCount) {
super(colCount, rowCount);
this.nzValues = new double[rowCount][];
this.columnIndices = new int[rowCount][];
this.nzCounters = new int[rowCount];

/* *
* Gets values at specified location

* @param column column index
* @param row row index
* @return value
*/
public double get(int column, int row) {

if (this.columnlndices[row] _= null) {
return 0.0;

int columnlndex = binarySearch(this.columnIndices[row], 0,
this.nzCounters[row] - 1, column);

if (columnIndex < 0) {
return 0.0;

}
return this.nzValues[row] [colunmindex];

/** V
* Performs a binary search for a given value in sorted integer array. The
* only difference from Arrays.binarySearch() is that this function
* gets <i>start</i> and <i>end</i> indexes. The array must
* be sorted prior to making this call. If it is not sorted, the results
* are undefined.

* @param array array to scan
* @param startIndex start index of sub-array
* @param endlndex end index of sub-array
* @param value key to find

xvi

Source Code Listing

* @return index of the search key, if it is contained in the list;
* 	otherwise, <tt>(-(<i>insertion point</i>) - 1)</tt>. The

<i>insertion point</i> is defined as the point at which the key
* 	would be inserted into the list: the index of the first element
* 	greater than the key, or <tt>list.size()</tt>, if all elements in
* 	the 'list are less than the specified key. Note that this
* 	guarantees that the return value will be >= 0 if and only if
* 	the key is found.
*/

private static int binarySearch(int[] array, int startlndex, int endlndex,
int value) {

if (value < array[startIndex]) {
return (-startlndex - 1);

}
if (value > array[endlndex]) {

return (-(endlndex + 1) - 1);

if (startlndex == endIndex) (
if (array[startIndex] = value) {

return startlndex;

else{ 	 -
return (-(startlndex + 1) - 1);

}

int midlndex = (startIndex + endlndex) / 2;
if (value == array[midlndex]) {

return midIndex;

if (value < array[midIndex]) {
return binarySearch(array, startlndex, midIndex - 1, value);

else{
return binarySearch(array, midlndex + 1, endlndex, value);

/**

* Sets value at specified location
*
* @param colunm column index
* @param row row index
* @param value value
*/

public void set(int column, int row, double value) {
if (this.columnlndices[row] _= null) {

// first value in this row
this.columnIndices[row] = new int[2];
this.nzValues[row] = new double[2];
this.columnlndices[row] [0] = column;
this.nzValues[row][0] = value;
this.nzCounters[row] = 1;
return;

}

// search for it
xvii

Source Code Listing

int columnlndex = binarySearch(this.columnlndices[row], 0,
this.nzCounters[row] - 1, column);

if (columnIndex >= 0) {
// already setLocation, just change
this.nzValues [row] [columnlndex] = value;
return;

}
else {

// columnIndex = (-(insertion point) - 1)
int insertionPoint = -(columnlndex + 1);
// allocate new arrays
int oldLength = this.nzCounters[row];
int newLength = oldLength + 1;
// check if need to allocate
if (newLength <= this.columnIndices[row].length) {

//just copy
if (insertionPoint != oldLength) {

for (int i = oldLength; i> insertionPoint; i--) {
this.nzValues[row][i] = this.nzValues[row][i - 1];
this. columnIndices [row] [i] =

this. columnIndices [row] [i - 1];

}
this.columnIndices[row] [insertionPoint] = column;
this.nzValues[row] [insertionPoint] = value;
this.nzCounters [row]++;
return;

int[] newColumnlndices = new int[2 * oldLength];
double[] newNzValues = new double[2 * oldLength];

if (insertionPoint == oldLength) {
// special case - new column is the last
System.arraycopy(this.columnIndices[row], 0, newColumnlndices,

0, oldLength);
System.arraycopy(this.nzValues[row], 0, newNzValues, 0,

oldLength);
}
else {

System.arraycopy(this.columnlndices[row], 0, newColunmindices,
0, insertionPoint);

System.arraycopy(this.nzValues[row], 0, newNzValues, 0,
insertionPoint);

System.arraycopy(this.columnlndices[row], insertionPoint,
newColumnlndices, insertionPoint + 1, oldLength
- insertionPoint);

System.arraycopy(this.nzValues[row], insertionPoint,
newNzValues, insertionPoint + 1, oldLength
- insertionPoint);

newColumnlndices[insertionPoint] = column;
newNzValues[insertionPoint] = value;
this.columnlndices[row] = null;
this. columnIndices[row] = newColumnIndices;
this.nzValues[row] = null;
this.nzValues[row] = newNzValues;
this.nzCounters[row]++;

xviii

Source Code Listing

/**
* Dump to standard output
*/

public void dump() {
System.out.println("MATRIX " + this.rowCount + "*" + this.colCount);
for (int row = 0; row < this.rowCount; row++) {

int[] columnlndices = this.columnlndices[row];
if (columnlndices = null) {

for (int col = 0; col < this.colCount; col++) {
System.out.print("0.0 ");

}
else {

int prevColumnlndex = 0;
for (int collndex = 0;

colIndex < this.nzCounters[row]; colIndex++) {
int currColumnlndex = columnlndices[collndex];
// put zeroes
for (int col = prevColumnlndex;

col < currColumnlndex; col++) {
System. out.print("0.0 U);

}
System.out.print(this.nzValues[row][collndex] + " ");
prevColumnlndex = currColumnlndex + 1;

}
// put trailing zeroes
for (int col = prevColumnlndex; col < this.colCount; col++) {

System. out.print("0.0 ");

System. out.println();
}

}

/* *
* Dump to standard output as integer values
*/

public void dumpint() {
System.out.println("MATRIX " + this.rowCount + "*" + this.colCount);
for (int row = 0; row < this.rowCount; row++) {

int[] columnlndices = this.columnlndices[row];
if (columnlndices = null) {

for (int col = 0; col < this.colCount; col++) {
System. out.print("O ");

}
else {

int prevColumnlndex = 0;
for (int collndex = 0;

collndex < this.nzCounters[row]; colIndex++) {
int currColumnlndex = columnlndices[collndex];
// put zeroes
for (int col = prevColumnIndex;

col < currColumnlndex; col++) {
xix

Source Code Listing

System.out.print("0 ");
}
System.out.print((int) this.nzValues[row][collndex] ±"
prevColumnIndex = currColumnIndex + 1;

}
// put trailing zeroes
for (int col = prevColumnIndex; col < this.colCount; col++) {

System.out.print("0 ");

System. out. p rintlnO;
}

}

/**

* Add empty (zero) columns to this matrix

* @param columns number of columns to add
*/

public void addEmptyColumns(int columns) {
// just as easy as that
this.colCount += columns;

* Multiply this matrix by the specified column of another matrix. The
* operation is linear in terms of count of non-zero values in the matrix

* @param matrix the second matrix
* @param column column index in the second matrix
* @return vector result
*/

public double[] multiply(Matrix matrix, int column) {
if (this.getColumnCountO != matrix.getRowCountO)

return null;
}
int n = this.getRowCountO;
double[] result = new double[n];
for (int row = 0; row < n; row++) {

double sum = 0.0;
// go over all non-zero column of this row
int[] nzlndexes = this.columnIndices[row];
int nzLength = nzCounters[row];
if (nzLength == 0) {

continue;
}
for (int collndex = 0; collndex < nzLength; colIndex++) {

double c = matrix.get(column, nzlndexes[collndex]);
sum += (this.nzValues[row][collndex] * c);

result[row] = sum;
}
return result;

rUn

Source Code Listing

* Get a column-wise representation of this matrix

* @return column-wise matrix
*1

public SparseColumnMatrix getAsColumnMatrixO {
SparseColumnMatrix result = new SparseColumnMatrix(this.colCount,

this.rowCount);
for (int row = 0; row < this.rowCount; row++) {

int nzLength = nzCounters[row];
if (nzLength = 0) {

continue;
}
for (int collndex = 0; collndex < nzLength; colIndex++) {

int column = this.columnIndicesjrow][collndex];
result.set(column, row, this.nzValues[row] [colIndex]);

return result;
}

public int getNzCount() {
int allNz = 0;
for (int i : this.nzCounters) {

allNz += i;
}
return allNz;

xxi

APPENDIX B:

COMMON STOPWORDS IN ENGLISH

a
according
after
ahead
almost
also
amidst
another
anything
appear
around
associated
b
became
been
being
better
but
cannot
causes
c'mon
comes
contain
couldn't
dare
did
does
down
edu
else
entirely
ever
everything
except
few
followed
former
four

able
accordingly
afterwards
ain't
alone
although
among
any
anyway
appreciate
as
at
back
because
before
believe
between
by
cant
certain
co
concerning
containing
course
daren't
didn't
doesn't
downwards
eg
elsewhere
especially
evermore
everywhere
f
fewer
following
formerly
from

about
across
again
all
along
always
amongst
anybody
anyways
appropriate
aside
available
backward
become
beforehand
below
beyond
c
can't
certainly
co.
consequently
contains
c's
definitely
different
doing
during
eight
end
et
every
ex
fairly
fifth
follows
forth
further

above
actually
against
allow
alongside
am
an
anyhow
anywhere
are
ask
away
backwards
becomes
begin
beside
both
came
caption
changes
corn
consider
corresponding
currently
described
directly
done
e
eighty
ending
etc
everybody
exactly
far
first
for
forward
furthermore

abroad
adj
ago
allows
already
amid
and
anyone
apart
aren't
asking
awfully
be
becoming
behind
besides
brief
can
cause
clearly
come
considering
could
d
despite
do
don't
each
either
enough
even
everyone
example
farther
five
forever
found
g

Common Stopwords in English

get
go
gotten
half
have
he'll
here
hereupon
him
how
I'd
I'm
inc.
inner
is
its
just
know
lately
less
liked
looking
m
many
mean
mightn't
moreover
much
n
necessary
never
ninety
nonetheless
nothing
0

oh
once
onto
otherwise
ourselves
P
perhaps

gets
goes
greetings
happens
haven't
hello
hereafter
hers
himself
howbeit
ie
immediate
indeed
inside
isn't
it's
k
known
later
lest
likely
looks
made
may
meantime
mine
most
must
name
need
nevertheless
no
no-one
notwithstanding
obviously
ok
one
opposite
ought
out
particular
placed

getting
going
h
hardly
having
help
hereby
herself
his
however
if
in
indicate
insofar
it
itself
keep
knows
latter
let
likewise
low
mainly
maybe
meanwhile
minus
mostly
mustn't
namely
needn't
new
nobody
nor
novel
of
okay
ones
or
oughtn't
outside
particularly
please

given
gone
had
has
he
hence
herein
he's
hither
hundred
ignored
inasmuch
indicated
instead
it'd
i've
keeps
I
latterly
let's
little
lower
make
mayn't
merely
miss
mr
my
near
needs
next
non
normally
now
off
old
one's
other
our
over
past
plus

gives
got
hadn't
hasn't
he'd
her
here's
hi
hopefully
i
i'll
inc
indicates
into
it'll
J
kept
last
least
like
look
ltd
makes
me
might
more
mrs
myself
nearly
neither
nine
none
not
nowhere
often
on
only
others
ours
overall
per
possible

Common Stopwords in English

presumably probably provided provides q
queue quite qv r rather
rd re really reasonably recent
recently regarding regardless regards relatively
respectively right round s said
same saw say saying says
second secondly see seeing seem
seemed seeming seems seen self
selves sensible sent serious seriously
seven several shall shan't she
she'd she'll she's should shouldn't
since six so some somebody
someday somehow someone something sometime
sometimes somewhat somewhere soon sorry
specified specify specifying still sub
such sup sure t take
taken taking tell tends th
than thank thanks thanx that
that'll thats that's that've the
their theirs them themselves -then
thence there thereafter thereby there'd
therefore therein there'll there're theres
there's thereupon there've these they
they'd they'll they're they've thing
things think third thirty this
thorough thoroughly those though three
through throughout thru thus till
to together too took toward
towards tried tries truly try
trying is twice two - u
un under underneath undoing unfortunately
unless unlike unlikely until unto
up upon upwards us use
used useful uses using usually
v value various versus very
via viz vs w want
wants was wasn't way we
we'd welcome well we'll went
were we're weren't we've -what
whatever what'll what's what've
when whence whenever where whereafter
whereas whereby wherein where's whereupon

xxiv

Common Stopwords in English

wherever whether which whichever while
whilst whither who who'd whoever
whole who'll whom whomever who's
whose why will willing wish
with within without wonder won't
would wouldn't x y yes
yet you you'd you'll your
you're yours yourself yourselves you've
z zero

xxv

	Title

	Abstract�
	Chapter 1

	Chapter 2

	Chapter 3

	Chapter 4

	Chapter 5

	Chapter 6

	References

	Appendix

