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ABSTRACT 

Text document databases are growing rapidly due to the increasing amount of 
information available in electronic form, such as research publications, news articles, 
books, and e-mails. Most text databases are semi-structured in that they are neither 
fully unstructured nor completely structured. Clustering is performed to organize this 
text data in an unsupervised fashion. It also acts as a preprocessing step for further 
mining operations like indexing and classification. Time series data mining involves 
applying mining techniques to time sequences. Much work has been done in this field 
in the past few decades. But the idea of applying time series data mining techniques 
on text data mapped to sequences has not yet been explored. We intend to address this 
problem in this work. 

In this dissertation, an algorithm for clustering unstructured text documents 
using naive Bayesian concept and shape pattern matching has been proposed. The 
first step involves data preprocessing. This includes stop word removal, word 
stemming, and dimensionality reduction using locality preserving indexing scheme. In 
the proposed work, we use the Vector Space Model to represent our dataset as a term 
weight matrix. In any natural language, semantically linked terms tend to occur 
together in documents. Based on this observation, the co-occurrences of pairs of terms 
in the term weight matrix are observed. This information is then used to build an 
initial term cluster matrix where each term may belong to one or more clusters. The 
naive Bayesian concept and cluster conditional independence is used to uniquely 
assign each term to a single term-cluster. The text documents are assigned to clusters 
using the simple statistical measure of arithmetic mean. This completes the first level 
of clustering in our proposed algorithm. Mapping text documents to vectors based on 
a list of terms converts them to sequences. Shape pattern-based similarity is a well-
established technique in time series data mining. In this work, we apply shape pattern 
matching to group documents within the broad clusters obtained earlier, thus 
performing a second level of clustering. 

The proposed algorithm has been validated using benchmark datasets 
available on the internet. This includes two special datasets ADA (a marketing 
application) and SYLVA (an ecology application). Our results show that our proposed 
two-level text clustering scheme has a significantly better running time as compared 
to traditional algorithms. 
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Chapter 1 

INTRODUCTION 

In the last few years, there has been an explosion in the amount of data 

available in electronic form. This includes transactional data in bank databases, 

electronic news articles, satellite images of the earth, streaming video data from 

surveillance cameras, and all the data available on the World Wide Web. There is an 

imminent need for turning such data into useful information. The knowledge gained 

from this process can be used in a wide range of applications ranging from market 

analysis, fraud detection, and scientific discovery. Data mining or Knowledge 

Discovery from Data (KDD) refers to extracting or "mining" knowledge from large 

amounts of data [1]. This kind of knowledge is usually shown in the form of 

definitions, rules, patterns, etc. Data mining today has indeed found a diverse field of 

applications like helping in. recent discoveries in biomedical science, predicting 

weather and climatic changes, analyzing security scenarios in public places, and 

organizing thousands of documents in digital libraries. 

Alternatively, data mining is often viewed as a step in knowledge discovery. 

Knowledge discovery as a process is shown in Figure 1.1 and consists of the 

following steps [1]: 

1. Data cleaning (for removing noise and inconsistent data) 

2. Data integration (for combining data from multiple sources) 

3. Data selection (for retrieving data relevant to our task from the entire database) 

4. Data transformation (for transforming or consolidating the data into forms 

appropriate for mining) 

5. Data mining (the process where intelligent methods are applied in order to extract 

patterns hidden in the data) 

6. Pattern evaluation (for identifying the truly interesting patterns representing 

knowledge based on some interestingness measures) 

7. Knowledge presentation (where visualization and knowledge representation 

techniques are used to present the mined knowledge to the user) 
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Figure 1.1 Data mining as a step in the process of knowledge discovery 

Complex forms of data (like hypertext and multimedia, semi-structured and 

unstructured text data, spatial and temporal data) have grown explosively due to the 

rapid progress in advanced database system technologies. As a result, sophisticated 

data mining applications which are able to mine interesting patterns within these 

complex data forms are the need of the hour. In this work, we focus on mining 

unstructured text data, explained in Section 1.1. 

Data mining commonly involves three classes of task, out of which we focus 

on the first in this work: 

1. Clustering - Groups similar data items together in an unsupervised manner as the 

group labels are not known. For example, a clustering algorithm may form twelve 

clusters from an input of five hundred news articles such that data within one cluster 

are similar to one another and different from those of other clusters. Common 

algorithms include k-means and Expectation Maximization (EM). 

2. Classification - Arranges the data into predefined groups. For example, an email 

program classifies an email as legitimate or Spam. Common algorithms include the k-

Nearest Neighbor classifier (kNN) and the naive Bayesian classifier. 
3. Association rule mining - Searches for relationships between variables. For 

example, a computer store might gather data of what each customer buys and find that 

seventy-five percent of the customers buying desktop computers also buy printers. 
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Introduction 

Common algorithms include the Apriori algorithm and the Frequent Pattern (FP)-

growth. 

1.1 Text Mining 

Nowadays, a substantial portion of the available information is stored in text 

document databases, which consist of large collections of documents from various 

sources, such as news articles, research papers, books, digital libraries, and e-mail 

messages [1]. Text databases are rapidly growing due to the increasing amount of 

information available in electronic form, such as electronic publications, various kinds 

of electronic documents, e-mail, and the World Wide Web (which can also be viewed 

as a huge, interconnected, dynamic text database). Nowadays most of the information 

in government, industry, business, and other institutions are stored electronically, in 

the form of text databases. Data stored in most text databases are semistructured data 

in that they are neither completely unstructured nor completely structured. For 

example, a document may contain a few structured fields, such as title, authors, and 

publication date, but it also contains some largely unstructured components, such as 

the abstract and the contents. There have been a great deal of studies on the modelling 

and implementation of semi-structured and unstructured data in recent database 

research. Moreover, information retrieval techniques, such as text indexing methods, 

have been developed to handle unstructured documents. 

Traditional information retrieval techniques become inadequate for the 

increasingly vast amounts of text data. Typically, only a small fraction of the many 

available documents will be relevant to a given individual user. Without knowing 

what could be in the documents, it is difficult to formulate effective queries for 

analyzing and extracting useful information from the data. Users need tools to 

compare different documents, rank the importance and relevance of the documents, or 

find patterns and trends across multiple documents. Thus, text mining has become an 

increasingly popular and essential part of data mining. There are several aspects of 

mining text databases. The key ones include classification, clustering, and association 

rule mining. We focus on text clustering in this work. 
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Introduction 

1.2 Time Series Data Mining 

Time series data consists of sequences of values or events obtained over 

repeated measurements of time. With the growing deployment of large numbers of 

sensors, telemetry devices, and on-line data collection tools, the amount of time series 

data is increasing rapidly. The values are typically measured at equal time intervals. 

Databases storing time series data are called time series databases. A time series 

database is also a sequence database [1].  But a sequence database is any database that 

consists of sequences of ordered events, with or without concrete notions of time. 

The quest for finding correlation relationships within the data and the need for 

analysis of huge numbers of time series to find similar or regular patterns, trends, 

bursts (sudden sharp changes), and outliers, with fast or real-time on-line response 

leads us to perform various data mining operations on time series databases. 

Performing these functions on time series databases is referred to as time series data 

mining. There are several aspects of mining time series databases. The key ones 

include similarity search, trend analysis, mining periodic patterns, classification, 

clustering, and association rule mining. Techniques involving shape pattern-based 

similarity have been highly successful in the field of time series data mining (refer to 

Section 2.3). Since we are using the sequence representation of text documents in our 

work, and time series data are in essence sequences, exploring similar applications of 

such techniques in the field of text mining was a worthwhile effort. This required a 

basic understanding of time series data mining. 

1.3 Problem Statement 

The problem statement for this dissertation is stated as follows: 

"Clustering unstructured text documents using naive Bayesian concept and shape 

pattern based similarity. 

This problem can be broken down into the following smaller sub problems: 

• To discover term-clusters from the total term set using naïve Bayesian theory 
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• To find document clusters from the entire unstructured text document set on 

the basis of these term-clusters 

• To detect sub-clusters within the document clusters by making use of the shape 

pattern matching technique 

Assumption: The terms are arranged in an inherent sequence which remains fixed 

throughout the model. " 

1.4 Organization of Dissertation 

This report is organized as follows. It comprises of a total of six chapters 
including this chapter. This is preceded by the candidate's declaration, the certificate, 
acknowledgements, the abstract, the table of contents, and the list of figures and 
tables. The six chapters are followed by the references used for this work, the list of 
publications, and two appendices which contain the source code listing and a list of 
common stopwords in English. 

In Chapter 1, we give an introduction to data mining. We then briefly discuss 

text mining and time series data mining. In the end, we give our problem statement 

and the organization of this dissertation. 

In Chapter 2, we discuss about the literature review performed before doing 
this work. We also give the research gaps thus found and the motivation for our work. 

In Chapter 3, we focus on text preprocessing, a sequence of operations which 
is necessary before any mining task can be performed efficiently on a set of text data. 

In Chapter 4, we describe the proposed design for the complete clustering 
scheme in detail. 

In Chapter 5, we give our experimental results and the relevant discussion. 

In Chapter 6, we conclude this report by giving the conclusions drawn from 
the obtained results and the suggestions for future work. 
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Chapter 2 

LITERATURE REVIEW 

In this chapter, we discuss about the literature review performed as 

groundwork for this dissertation. 

2.1 Text Clustering 

Clustering is performed to organize text documents in an unsupervised 

manner. When text documents are represented in the form of vectors (refer to Section 

3.4), common clustering methods that employ the concepts of distances, hierarchies, 

and densities among data objects can be applied. But the vector space almost always 

has a very large number of dimensions, due to the great number of terms present. A 

projection of the documents into a lower dimensional subspace brings the semantic 

structure of the document to light. After the operations of dimension reduction have 

been performed, traditional clustering algorithms can be applied to obtain meaningful 

results efficiently. This -curse of dimensionality poses a tough challenge for clustering 

and other text mining operations. Now we describe a few recent text 'clustering 

approaches. 

Feature selection is an important method for improving the efficiency and 

accuracy of text clustering algorithms by removing redundant and irrelevant terms 

from the corpus. A supervised feature selection method, named CHIR [2], has been 

proposed which is based on the x2 statistic and new statistical data that can measure 

the positive term-cluster dependency. A new text clustering algorithm named TCFS 

has been proposed, which stands for Text Clustering with Feature Selection. TCFS 

can incorporate CHIR to identify relevant features (i.e terms) iteratively, and the 

clustering becomes a learning process. TCFS and the k-means clustering algorithm [3] 

have been compared in combination with different feature selection methods for 

various real data sets. Experimental results showed that TCFS with CHIR had a better 

clustering accuracy in terms of the F-measure. 
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An approach to text clustering has been proposed in [4] 'which combines the 

advantages of the k-means algorithm [3] and the Self-Organizing Map (SOM) [5] 

techniques. The experimental results indicate that the improved algorithm has a higher 

accuracy and a better stability, compared with the original algorithm. 

A text-clustering algorithm of Frequent Term Set-based Clustering (FTSC), 
which uses frequent term sets for texts clustering, has been proposed [6]. This 
algorithm can reduce the dimensionality of the text data (refer to Section 3.3) 
efficiently. Thus it can improve the accuracy rate and running speed of the clustering 
algorithm. The results of clustering text by the FTSC algorithm cannot reflect the 
overlap of texts' classes. Based on. the FTSC algorithm, its improved form, the 
Frequent Term Set-based Hierarchical Clustering algorithm (FTSHC) has also been 
proposed. This algorithm can determine the overlap of texts' classes by the overlap of 
frequent term-sets, and provide an understandable description of the discovered 
clusters by the frequent term-sets. The experiment results proved that the FTSC and 
the FTSHC algorithms are more efficient than the k-means algorithm [3] in clustering 

performance. 

2.2 Naive Bayesian Classifiers 

Now we will discuss about the application of the naive Bayesian concept in 
classification. We will explain it in detail as it is one of the fundamental concepts used 
in our algorithm. Bayesian classifiers are statistical classifiers [7, 8]. They can predict 
a class membership probability, i.e. the probability that a given tuple belongs to a 

particular class. Bayesian classification is based on Bayes' theorem, described below. 
Studies comparing classification algorithms have found a simple Bayesian classifier 
known as the naive Bayesian classifier to be comparable in performance with popular 
classifiers. Bayesian classifiers have also exhibited high accuracy and speed when 
applied to large databases. 

Naive Bayesian classifiers assume that the effect of an attribute value on a 

given class is independent of the values of the other attributes. This assumption is 

called class conditional independence. It is made to simplify the computations 

involved and, in this sense, is considered "naive" [1]. Let X be a data tuple. In 

Bayesian terms, X is considered "evidence." As usual, it is described by 
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measurements made on .a set of n attributes. Let H be some hypothesis, such as that 

the data tuple X belongs to a specified class C. For classification problems, we want 

to determine P(MX), the probability that the hypothesis H holds given the "evidence" 

or observed data tuple X. In other words, we are looking for the probability that tuple 

X belongs to class C, given that we know the attribute description of X. 

P(II}X) is the posterior probability, or a posteriori probability, of H 
conditioned on X. In contrast, P(H) is the prior probability, or a priori probability, of 

H. The posterior probability, P(HIX), is based on more information than the prior 

probability, P(H), which is independent of X. Similarly, P(XIH) is the posterior 

probability of X conditioned on H. P(X) is the prior probability of X. P(H), P(XI H), 

and P(X) may be estimated from the given data, as we shall see below. Bayes' 

theorem is useful in that it provides a way of calculating the posterior probability, 

P(II1X), from P(H), P(XI H), and P(X). 
Bayes' theorem is given as: 

P(HIX) = (P(X H) x P(H))/P(X) 	 (2.1) 

The naive Bayesian classifier, or simple Bayesian classifier, works as follows: 

1. Let D be a training set of tuples and their associated class labels. As usual, each 

tuple is represented by an n-dimensional attribute vector, X = (xi, x2, ... , x,), 

depicting n measurements made on the tuple from n attributes, respectively, A1, A2, ..., 

A. 

2. We suppose that there are m classes, Cl,- C2, ... , Cm. Given a tuple, X, the classifier 

will predict that X belongs to the class having the highest posterior probability, 

conditioned on X, i.e. the naive Bayesian classifier predicts that the tuple X belongs to 

the class C; if and only if 

P(C; IX)>P(Cj IX) for 1 <j m,j~i. 
Thus we maximize P(C,IX). The class C, for which P(C1 IX) is maximized is 

called the maximum posteriori hypothesis. By Bayes' theorem (Equation (2.1)), 

P(C,IX) = (P(X1C) x P(C)) /P() 	 (2.2) 
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3. As P(X) is constant for all classes, only (P(XI Ci) X P(Ci)) needs be maximized. If 

the class prior probabilities are not known, then it is commonly assumed that the 

classes are equally likely, that is, P(Ci) = P(C2) = ... = P(C„), and we would 

therefore maximize P(XI C). Otherwise, we maximize (P(X] C) X P(C)). We note that 

the class prior probabilities may be estimated by P(C, = I C,,DI / IDI, where IDI is the 

total number of training tuples, and I C;,DI is the number of training tuples of class C; in 

D. 

4. Given datasets with many attributes, it would be extremely computationally 

expensive to compute P(XI C~). In order to reduce computation in evaluating P(XI C), 
the naive assumption of class conditional independence is made. This presumes that 

the values of the attributes are conditionally independent of one another, given the 

class label of the tuple (i.e., that there are no dependence relationships among the 

attributes). Thus, 

P(XICi) = fk=1P(xkICi) 	 (2.3) 

P(XIC) =P(x i IC,) X P(x2Ic) x ... x P(x Ic) 	(2.4) 

We can easily estimate the probabilities P(x1 IC), P(x2I C), ... , P(x„IC) from 

the training tuples. Recall that here xk refers to the value of attribute Ak for tuple X. 

For each attribute, we look at whether the attribute is categorical or continuous-

valued. For instance, to compute P(XI C;), we consider the following: 

(a) If Ak is categorical, then P(xkl C) is the number of tuples of class C, in D having the 

value xk for Ak, divided by I C,,DI. 
(b) If Ak is continuous-valued, then we need to perform the following calculations. A 

continuous-valued attribute is typically assumed to have a Gaussian distribution with 

a mean p and standard deviation s, defined by 

1 _(x- p)2 
9 (x, it, or) _ 	z=c) e 262 	 (2.5) 

so that 

P(xkl C) = g(xk, PCj, 6C) 
	

(2.6) 
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We need to compute pct and crcj, which are the arithmetic mean and standard 

deviation, respectively, of the values of attribute Ak for training tuples of class C,. We 

then plug these two quantities into Equation (2.5), together with xk, in order to 

estimate P(xkIC,). 

5. In order to predict the class label of X, (P(Xl Ci) x P(Ci)) is evaluated for each class 

C,. The classifier predicts that the class label of tuple X is the class CI if and only if 

(P(XIC) xP(C,))>(P(XIC) xP(C.I)) 	for t <j<m,j~i. 	(2.7) 

In other words, the predicted class label is the class C1 for which (P(XI C,) x 

P(C,)) is the maximum. 

There is another modification to be introduced. In the product of Equation 

(2.3), if any of the P(xkI C,) is zero, it makes the whole product zero. But without the 

zero probability, we may have ended up with a high probability, suggesting that X 

may have belonged to class C. A zero probability cancels the effects of all of the 

.other posteriori probabilities (on C,) involved in the product. This problem is avoided 

as follows. We can assume that our training database, D, is so large that adding one to 

each count that we need would only make a negligible difference in the estimated 

probability value, yet would conveniently avoid the case of probability values of zero. 

This technique for probability estimation is known as the Laplacian correction. 

2.3 Shape Patterns in Time Series Data Mining 

Time series data mining (TSDM) techniques permit exploring large amounts 

of time series data in search of consistent patterns and / or interesting relationships 

between variables. TSDM is becoming increasingly important as a knowledge 

management tool where it is expected to reveal knowledge structures that can guide 

decision-making in conditions of limited certainty. The necessity of extraction of 

meaningful information from huge time series databases (TSDB), which can be useful 

for decision making, caused the development of the methods of time series data 

10 
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mining. In this section, we look at a few applications of the concept of shape pattern-

based similarity in the field of TSDM. 

Human decision-making in problems related with the analysis of time series 

databases is usually based on perceptions like "end of the day", "high temperature", 

"quickly increasing", "possible", etc. Though many effective algorithms of TSDM 

have been developed, the integration of TSDM algorithms with human decision 

making procedures is still an open problem. An architecture of a perception-based 

decision making system in a time series database domain has been proposed in [9] 

which integrates perception-based TSDM, computing with words and perceptions, 

and expert knowledge. The new tasks which should be solved by the perception-based 

TSDM methods to enable their integration in such systems have also been discussed. 

These tasks include the precisiation of perceptions, shape pattern identification, and 

pattern retranslation. 

Clipping is the process of transforming a real valued series into a sequence of 

bits representing whether each data is above or below the average [10]. It has been 

demonstrated how time series stored as bits can be very efficiently compressed and 

manipulated and that, under some assumptions, the discriminatory power with clipped 

series is asymptotically equivalent to that achieved with the raw data. Unlike other 

transformations, clipped series can be compared directly to the raw data series. It has 

been shown that this means we can form a tight lower bounding metric for Euclidean 

and dynamic time warping distance and hence efficiently query by content. Clipped 

data, can be used in conjunction with a host of algorithms and statistical tests that 

naturally follow from the binary nature of the data. Shape pattern-based similarity is 

one of the basic concepts used in this work. 

An algorithm has been proposed which applies a linguistic variable concept 

tree to describe the slope feather of time series, and has been named Shape Dynamic 

Time Warping [11]. For reducing the computational time and the local shape variance 

disturbance, the piecewise linear representation has been used to preprocess the 

warping path. Moreover, the linguist concept tree was developed based on the theory 

of cloud models which integrates randomness and the probability of uncertainty. 

11 
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2.4 Research Gaps Found 

• Traditional text clustering algorithms attempt to find clusters among the 

documents directly, based on term weight vectors. So they have to deal with 

vectors of a very high dimensionality. Very few attempts were made to first 

cluster the terms on the basis of semantic correlation and then cluster the 

documents based on these term-clusters. 

• The naive Bayesian theory had been applied only to classifiers. 

• Shape pattern-based similarity, a highly successful technique in time series 

data mining, had not yet been explored in the mining of text data, even though 

representing text documents as sequences has long been in practice. 

12 



Chapter 3 

TEXT PREPROCESSING 

In this chapter, we will explain how text data from raw files are prepared 
before any mining operation is performed on it. The process consists of a sequence of 
operations which include removal of stopwords, word stemming, and dimensionality 
reduction. Selecting a feature subset to represent the text and clustering on it is an 
effective method to minimize the problem posed by the curse of dimensionality [12]. 
In dimensionality reduction, we will mainly focus on Locality Preserving Indexing 
(LPI) [13], which gives the best results when the ultimate goal is clustering. Text 
preprocessing paving the way for the main mining operations is shown as a block 
diagram in Figure 3.1. In Section 3.4, we explain the Vector Space Model [14] which 
is used to mathematically represent the text documents. In Section 3.5, we explain the 
sparse matrix representation [151 which is used extensively in text mining for making 
memory and disk space utilization efficient. 

3.1 Stopword Removal 

For representing documents, the first step in most retrieval systems is to 
identify keywords by morphological analysis [16], a preprocessing step often called 
tokenization. To avoid indexing useless words called stopwords, a text retrieval 
system often associates a stop list with a set of documents [1]. A stop list is a set of 
words that are deemed "irrelevant." For example, a, the, of for, with, and so on are 
stopwords, even though they may appear frequently. Stop lists may vary per 
document set. For example, cricket could be considered an important keyword while 
clustering a set of random newspaper articles. However, it may be considered as a 
stopword in a set of articles about a cricket tournament. A list of the most common 
stop words in English [17] are given in Appendix B. 

3.2 Word Stemming 

A group of different words may share the same word stem. A text retrieval 
system needs to identify groups of words where the words in a group are small 
syntactic variants of one another and collect only the common word stem per group. 

13 
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Fig. 3.1 Preprocessing paving the way for text mining operations 
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For example, the group of words bowl, bowled, and bowling, share a common word 

stem, bowling, and can be viewed as different occurrences of the same word. The 

word stemming algorithm identifies words with a common stem and replaces all 

words sharing a common word stem with the word stem itself. The most famous of 

these is the Porter's Stemming Algorithm Ill  8 J, a part of which is presented next. 

The Porter's Stemming Algorithm is based upon a set of conditions of the 

stem, suffix, prefix, and associated actions given the condition. The measure, m, of a 

stem is a function of sequences of vowels and y (a, e, i, o, u, and y) followed by a 

consonant. If V is a sequence of vowels and C is a sequence of consonants, then m is: 

[C](VC) (m) [VJ 

where the initial C and final V are optional and (VC) {m) denotes VC repeated m times. 

Table 3.1 ExLm1p1L of n i ures and corresponding terms 

Some stem conditions are as follows: 

1. *<X> 	: Stem ends with letter X 

2. *v* 	: Stem contains one vowel 

3. *d 	: Stem ends in double consonant 

4. *o 	: Stem ends with consonant-vowel-consonant sequence where the final 

consonant is not w, x or y 

Suffix conditions take the form 	: Current suffix 	= Pattern 

Actions take the form 	 : Old suffix 	—* New suffix 
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Table 3.2 Examples of rules from Porter's Stemming Algorithm 

I a NULL ssess ss stresses --> stress 

lb *v* ing NULL bringing —+ bring 

l c *v* y i happy ) happi 

2a m>O icate is duplicate --> duplic 

2b m>O aliti al formality ---> formal 

3 NULL at ate inflat 	inflate 

4 m>1 able NULL adjustable ) adjust 

5 
m> 1 and *d 

and *<L> 
NULL single letter control! --> control 

Rules are divided into steps to define the order of applying the rules. The 

following is an example. Given the word "duplicatable", the following are the steps in 

the stemming process: 

Step 1: duplicatable —) duplicat 	(By Rule 4) 

Step 2: duplicat 	—* duplicate (By Rule 3) 

Step 3: duplicate 	—+ duplic 	(By Rule 2) 

We note that only one rule from each step can be applied. Steps have to be 
chosen in descending order. 

3.3 Dimensionality Reduction 

Due to the presence of the huge number of terms in the initial data set, the 

mining operations are faced with the curse of dimensionality. As a result, specialized 

dimensionality reduction techniques have been developed for text data. When these 

are applied, the documents are projected onto a lower dimensional subspace in which 

the semantic structure of the document space becomes clear. In the low-dimensional 

semantic space, clustering algorithms can be applied effectively. So these 

dimensionality reduction techniques yield a reduced set of terms which helps us 

proceed with our mining task in a more efficient manner. The most popular of these 
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techniques are locality preserving indexing (LPI) [13], latent semantic indexing (LSI) 
[19], and probabilistic latent semantic analysis (PLSA) [20]. LPI aims to discover the 
local geometrical structure of the document space. Since the neighboring documents 
(data points in high dimensional space) probably relate to the same topic, LPI can 
have a high discriminating power. Therefore, for document clustering and document 

classification, we might expect LPI to have a better performance than LSI and PLSA. 
This has been confirmed empirically [13]. So we now explain LPI briefly. 

We use xi, ... , _x,, € Rm to represent the n documents with in terms. They can 

be represented as a term-document matrix X = [xi, x2, ... , x,,]. The basic idea of LPI 

is to preserve the locality information (i.e. if two documents are near each other in the. 

original document space, LPI tries to keep these two documents close together in the 
reduced dimensionality space). Since the neighboring documents (data points in high-
dimensional space) probably relate to the same topic, LPI is able to map the 

documents related to the same semantics as close to each other as possible. Given x1, 

. , x,, € R"`, LPI constructs a similarity matrix S € Rn "'~. The transformation vectors 

of LPI can be obtained by solving the following minimization problem: 

aopt = arg mina >I, j (aT x, — aT x j) Z Sze = arg mina aT XLXT a 	 (3.1) 

with the constraint, 

aTXDXTa = 1 
	

(3.2) 

where L = D — S is the Graph Laplacian and D;; = 	D, measures the local density 

around x,. LPI constructs the similarity matrix S as 

S, 	= (x'xj II x,Txj I I) 	if x, is among the p nearest neighbors of xj, 

or if xj is among the p nearest neighbors of x, 

=0 	 otherwise 	 (3.3) 

Here p is a user input. Thus, the objective function in LPI incurs a heavy 

penalty if neighboring points x; and xj are mapped far apart. Therefore, minimizing it 
17 
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is an attempt to ensure that if xl and x1  are "close" then y;  (= aTxj) and y3  (= a xj) are 

close as well. Finally, the basis functions of LPI are the eigenvectors associated with 

the smallest eigenvalues of the following generalized eigen-problem: 

XLXTa = DXTa 	 (3.4) 

3.4 Vector Space Model 

Proposals of many models have been made for dealing with text mining 

problems. One of them is the Vector Space Model [14, 21], the use of which has been 

made in this work. We briefly explain it in this section. Let there be m documents and 

n terms in all. Then each document can be modelled as a vector v in an n-dimensional 

space. This is why this model is called the Vector Space Model. The term frequency 

of a term t in a document d is the number of occurrences of t in d. Let it be denoted by 

TF(d, t). There are ways to normalize this term frequency. For example, in our work, 

we use the Cornell-SMART (System for the Mechanical Analysis and Retrieval of 

Text) system that uses the following formula to compute the normalized term 

frequency [1]: 

TF(d, t) = 0 	 if freq(d, t) = 0 

= 1 + logio(l + loglo(freq(d, t))) 	otherwise 	 (3.5) 

There is another important measure called the Inverse Document Frequency 

(IDF) that represents the scaling factor, or the importance, of a term t. If a term t 

occurs frequently in many documents, its importance will be scaled down due to its 

reduced discriminative power. For example, the term `football' is likely to be less 

relevant if it occurs in a set of news articles about a football tournament. So we need 

to scale down its importance accordingly. According to the same Cornell-SMART 

system, IDF(t) is defined by the following formula: 

IDF(t) = log,o((I + Id[ / Idd[ 
	

(3.6) 

where Idl is the total number of documents, and Id1 I is the number of documents 

containing the term t. Here I dl cannot be zero as then we would not have included the 
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term t in our term-list. In a complete vector-space model, the TF and the IDF 

measures are combined together, which forms the TF-IDF measure used throughout 

this work: 

TF-IDF(d, t) = TF(d, t) x IDF(t) 
	

(3.7) 

Table 3.3 shows a sample TF-IDF matrix where the i h row represents a 

document vector for document d;, the j h column represents the TF-IDF values for 

term t~, and each entry registers TF-IDF(d; , 

Table 3.3 Sample TF-IDF matrix 

5--- ------ 
ft .o ff 

- --e 
3.5 Sparse Matrix Representation 

A sparse matrix is a matrix populated primarily with zeros. When storing and 

manipulating sparse matrices on a computer, it is beneficial and often necessary to use 

specialized algorithms and data structures that take advantage of the sparse structure 

of the matrix. Operations using standard matrix structures and algorithms are slow 

and consume large amounts of memory when applied to large sparse matrices. Sparse 
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data is by nature easily compressed, and this compression almost always results in 

significantly less memory usage. Indeed, some very large sparse matrices are 

impossible to manipulate with the standard algorithms. 

The naive data structure for a matrix is a two-dimensional array. Each entry in 

the array represents an element a(i, j) of the matrix and can be accessed by the two 

indices i and j. For an m X n matrix we need at least enough memory to store (m X n 

storage locations) entries to represent the matrix.. Many, if not most, entries of a 

sparse matrix are zeroes. An example of a sparse matrix is given in Table 3.4. The 

matrix has ten rows and ten columns, but has only eighteen non-zero values out of the 

total possible one hundred. The basic idea when storing sparse matrices is to store 

only the non-zero entries as opposed to storing all of them. Depending on the number 

and distribution of the non-zero entries, different data structures can be used and yield 

huge savings in memory when compared to a naive approach. 

Table 3.4 Example of a sparse matrix 

0 1 0 0 0 0 0 6 0 0 

0 0 0 4. 0 5 0 0 1 0 

0 0 0 9 0 0 2 0 0 0 

0 2 0 0 0 0 9 0 0 9 

0 0 1 0 0 7 0 0 0 0 

0 0 0 0 0 0 0 0 0 0 

0 4 0 0 0 0 0 5 0 0 

0 0 0 4 0 0 0 0 0 2 

0 0 0 0 0 0 0 0 0 0 

0 0 0 0 7 0 0 0 0 3 

In our work, we use the following representation for efficient memory usage. 

The matrix is stored as non-zero-only values. The rows appear as jagged two-

dimensional arrays. Each row is stored in a single-dimensional array (that grows as 

necessary), and the column indexes are stored accordingly. For example, the matrix in 

Table 3.4 would be internally stored as (assuming row and column indices start from 

1): 
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[1, 2], [1, 8] 

[2, 4], [2, 6], [2, 8] 

[3, 4], [3, 7] 

[4, 2], [4, 7], [4, 10] 

[5, 3], [5, 6] 

[7, 2], [7, 8] 
[8, 4], [8, 10] 

[10, 5],{10, 10] 

With this we come to the end of this chapter. In the next chapter, we discuss 

the proposed work in detail. 
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Chapter 4 

PROPOSED WORK 

In this chapter, we will describe the complete scheme of our proposed text 

clustering algorithm in detail. 

4.1 Overall Proposed Scheme 

In this section, we give a broad overview of our proposed work. The 

associated block diagram is given in Figure 4.1. As mentioned in Chapter 3, the first 

step in all text mining operations involves data preprocessing. Through a sequence of 

steps which include stopword removal, word stemming, and dimensionality reduction, 

we arrive at the final TF-IDF matrix which will act as the preprocessed dataset on 

which we will run our algorithm. Step 1 involves deriving the co-occurrences of terms 

from the TF-IDF matrix to build the co-occurrence matrix (details in Section 4.2). In 

the second step, we build term-clusters based on term co-occurrence and the naive 

Bayesian concept (details in Section 4.3). Next, in Step 3, we compute the arithmetic 
means of TF-IDF values corresponding to every term-cluster for each document and 

assign the document to the cluster with the highest mean, thus forming document 
clusters (details in Section 4.4). Finally, in Step 4, we apply shape pattern-based 

similarity to group documents within each document cluster to form document sub-

clusters (details in Section 4.5). 

4.2 The Co-occurrence Matrix 

We now have the TF-IDF matrix with us. Each row of the matrix corresponds 

to a document d and each column corresponds to a term t. We also assume that 

henceforth the sparse matrix representation is used wherever applicable. We will not 

explicitly explain sparse matrix operations repeatedly but instead focus on the concept 

of the clustering procedure. As we progress through the sequence of operations, we 
will explain the entire concept with a simple example. We will start from the small 
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Fig. 4.1 Complete block diagram of proposed clustering scheme 
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TF-IDF matrix given in Table 4.1. It has twenty rows and ten columns indicating that 

it corresponds to a set of twenty documents and ten features. 

Table 4.1 TF-IDF matrix for example dataset 

° se 

The TF-IDF matrix is generally stored as a data file on disk. As a result, 

before we can begin to use the matrix, we must load it (whole or the relevant portion) 

onto the main memory. We must also convert the character representation into a 

number format so that it can be used in future computations. The TF-IDF matrix is 

initially present in a CSV (Comma Separated Value) format. Non-printing characters 

like F— (CR) and ¶ (LF) are also present within it. Detection of these characters 

becomes useful when converting the file from a character-only text file to a matrix in 

a numeric format. This format is used as a standard nowadays and most commercial 
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text mining packages, including WEKA [22], accept files formatted this way to load 

their data. We use WEKA later on to compare our experimental results (Section 5.4). 

Once the conversion process is complete, we can build the co-occurrence matrix from 

it. We present the algorithm to build the co-occurrence matrix from the TF-IDF 

matrix in Figure 4.2. 

TFIDF-TO-COOCC(TFIDFMat, NumDocs, NumFeats) 
1 for every pair of features 1 to NumFeats 
2 	do for every document 1 to NumDocs 
3 	 min , minimum of TF-IDF values for feature pair in current 

document 
4 	increment co-occurrence measure between feature pair by min 
5 	insert co-occ-measure in proper position in co-occurrence matrix 
6 	do not repeat for feature pair] and i if co-occurrence between i and ] 

already computed 
7 return co-occurrence matrix 

Fig. 4.2 Algorithm to obtain co-occurrence matrix 

In this algorithm, we study the co-occurrences between terms. When two 

terms co-occur in a document, we take the minimum of the number of their 

occurrences as a co-occurrence measure. For example, if term 4 and term 5 occur 5 

and 15 times in a document respectively, the strength of their co-occurrence is 

appropriately represented only when we take 5 as the number as co-occurrences. The 

sum or the difference would not reflect the strength of their co-occurrence. It gives 

misleading interpretations. For example, let the same two terms occur in a document 2 

and 100 times respectively. If we add them, a value of 102 would not express the 

weak correlation between term 4 and term 5, as 102 is a misguidingly high number. 

Similarly, the difference is 98, which is also very high, and does not express their 

weak mutual relation. But we need not adopt any advanced formula; simply taking 

their minimum, which is 2, reflects the weak degree of correlation. This is also 

computationally very inexpensive. It also works when the terms are closely related, 

i.e., their co-occurrence is high. For example, if the same two terms occurred in a 

document 90 and 95 times respectively, taking the minimum of 90 reflects that their 

degree of co-occurrence is very high. Here it is understood that when we speak about 

number of term occurrences, we are referring to corresponding TF-IDF values and not 

simple term frequencies. This will not be repeated explicitly henceforth and will be 
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assumed throughout the remainder of this text. The co-occurrence matrix stores the 

total number of such co-occurrences between all pairs of terms across all documents. 

The co-occurrence measure between any two terms is a symmetric measure, i.e. 

Co-occurrence (term i, term]) = Co-occurrence(term j, term i) 	(4.1) 

As a result, if co-occurrence (term i, term]) has been computed previously, we 

need neither compute nor store co-occurrence (term j, term i). We proceed to build 

this matrix in a row-major fashion, so the resulting co-occurrence matrix is an upper 

triangular matrix. We can now formally state the method used to build the co-

occurrence matrix CoOccMat mathematically: 

CoOccMat(i,j) = Zk 1(minimum(TFIDFMat(k, i), TFIDFMat(k, j))} if i <i 
=-1 	 ifi=j 

=0 	 ifi>j 

(4.2) 

where m is the total number of documents 

and TFIDFMat is the input TF-IDF matrix 

For the trivial case of a term co-occurring with itself, we insert a value of -1 in 

the corresponding location. The co-occurrence matrix obtained from the TF-IDF 

matrix shown in Table 4.1 is given in Table 4.2. 

Table 4.2 Co-occurrence matrix for example dataset 

ti t2 t3 ... ... ... ... t8 t9 t10 

t1 -1 0 0 0 0 0 15 65 70 0 

t2 0 -1 0 43 38 56 0 0 1 0 

t3 0 0 -1 9 0 0 22 0 0 22 

... 0 0 -1 43 42 9 0 1 9 

... ... ... 0 0 -1 37 0 0 1 0 

... ... .:. ... 0 0 -1 0 0 1 0 

... ... ... ... ... 0 0 -1 15 15 22 

tg ... ... ... ... ... 0 0 -1 68 0 

t9 ... ... ... ... ... ... 0 0 -1 0 

ho ... ... ... ... 0 0 -1 
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We will illustrate how we obtain the values at location (1, 9). Since 1 < 9, the 

first condition of Equation 4.2 will hold. 

CoOccMat(l, 9) 	= 	minimum(TFIDFMat(1,l), TFIDFMat(1, 9)) + 

minimum(TFIDFMat(2, l ), TFIDFMat(2, 9)) + 

minimum(TFIDFMat(3,1), TFIDFMat(3, 9)) + 

minimum(TFIDFMat(4,1), TFIDFMat(4, 9)) + 

minimum(TFIDFMat(5,1), TFIDFMat(5, 9)) + 

minimum(TFIDFMat(6,1), TFIDFMat(6, 9)) + 

minimum(TFIDFMat(7,1), TFIDFMat(7, 9)) + 

minimum(TFIDFMat(8,1), TFIDFMat(8, 9)) + 

minimum(TFIDFMat(9,1), TFIDFMat(9, 9)) + 

minimum(TFIDFMat(10,1), TFIDFMat(lO, 9)) + 

minimum(TFIDFMat(11,1), TFIDFMat(1 1, 9)) + 

minimum(TFIDFMat(12,1), TFIDFMat(12, 9)) + 

minimum(TFIDFMat(13,1), TFIDFMat(13, 9)) + 

minimum(TFIDFMat(14,1), TFIDFMat(14, 9)) + 

minimum(TFIDFMat(15,1), TFIDFMat(15, 9)) + 

minimum(TFIDFMat(16,1), TFIDFMat(16, 9)) + 

minimum(TFIDFMat(17,1), TFIDFMat(17, 9)) + 

minimum(TFIDFMat(18,1), TFIDFMat(18, 9)) + 

minimum(TFIDFMat(19,1), TFIDFMat(19, 9)) + 

minimum(TFIDFMat(20,1), TFIDFMat(20, 9)) 

=8+0+8+0+0+7+0+8+0+8+7+0+8+0+0+9+ 

0+7+0+0 

= 70, which can be verified from Table 4.2. 

We are now ready to proceed to build the term cluster matrix using the co-

occurrence matrix. The algorithm for this procedure is given in Figure 4.3. 

4.3 The Term Cluster Matrix 

In this algorithm, we try to form clusters within our term-set. Terms which are 

linked semantically will be grouped under one cluster. We assume that terms which 
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have a high degree of co-occurrence are likely to be linked semantically. For example, 
the terms movies, films, actors, and director are all linked semantically. 

COOCC-TO-TERMCLUS(CoOccMat, NumFeats) 
1 for every term 1 to NumFeats 
2 	do identify which terms it co-occurs with 
3 	put each such term in cluster of current term 
4 terms which do not co-occur with any other term are put in their own 

clusters 
5 for every term 1 to NumFeats 
6 	do identify which clusters it belongs to 
7 	for every term in such cluster 
8 	 do calculate co-occurrence probability with itself 
9 	 compute products of all such probabilities (application of 

naive Bayesian concept) 
10 	select highest probability 
11 	assign term finally to cluster with highest probability 
12 terms which do not co-occur with any other term remain in their own 

clusters 
13 return term cluster matrix 

Fig. 4.3 Algorithm to obtain term-cluster matrix 

Indeed, in documents related to cinema, we do find these terms co-occurring to a large 

extent. But again, there exist terms which can be grouped into more than cluster as 

they co-occur often with more than one group of terms. For example, the term 

playback will be often found in a document set about films (playback singing), 

sharing occurrence with cinematic terms or in a document set concerned primarily 

about music, co-occurring with music terms like singer, music, and guitar. In our 

work, we assume that one term may belong to only cluster. We uniquely assign a term 

to a single cluster. This is done by the application of conditional probability and the 

naive Bayesian concept. We calculate the conditional probabilities of a term 

belonging to each of the possible clusters and assign it to the cluster with the highest 

probability. Now we will explain the algorithm which has been used. 

From the co-occurrence matrix obtained, we come to know which terms co-
occur. Initially, each term is treated as a cluster centre and all terms co-occurring with 
this term are put into the cluster corresponding to this term. Terms which do not co-
occur with any other term are the singular terms in their respective clusters. For 
example, if term 4 co-occurs with term 1, term 5, and term 7, then the fourth term 
cluster will contain terms 1, 4, 5, and 7. Again if term 6 co-occurs with terms 4, 9, and 
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10, then the sixth term cluster will contain terms 4, 6, 9, and 10. We note that the co-
occurrence of term 1 with term 4, and the co-occurrence of term 4 with term 6, does 
not imply the co-occurrence of term 1 with term 6, i.e., the co-occurrence relation is 
not transitive in nature. Had it been so, terms 1, 4, 5, 6, 7, 9, and 10 all would have 
been grouped under one large cluster. For example, the term actors and playback may 
co-occur frequently, as may playback and singing; but actors and singing may never 
co-occur. The initial term cluster matrix IntlTermClusMat is built from the co-
occurrence matrix CoOccMat according to the following equation: 

	

IntlTermClusMat(i, j) = 1 	if CoOccMat(i, j) # 0 or CoOccMat(j, i) ~ 0 

	

= 0 	otherwise 	 (4.3) 

In the newly obtained matrix, the rows correspond to initial clusters and the 
columns to the member terms. Following our example, since initially each term is a 
cluster centre, there are ten rows. The initial term cluster matrix obtained from the co-
occurrence matrix in Table 4.2 is given in Table 4.3. Since term 4 co-occurs with 
terms 2, 3, 5, 6, 7, 9, and 10, all corresponding entries in the fourth cluster (fourth 
row) are marked as 1. We will show how the useless terms are filtered out before 
determination of the final clusters. 

Table 4.3 Initial term cluster matrix for example dataset 

11 t2 13 14 15 t6 t7 t8 t9 t10 

Cl 1 0 0 0 0 0 1 1 1 0 

C2 0 1 0 1 1 1 0 0 1 0 

C3 0 0 1 1 0 0 1 0 0 1 

... ... ... ... ... ... ... ... ... ... 

... ... ... ... ... ... ... ... ... ... ... 

C8 1 0 0 0 0 0 1 1 1 0 

C9 1 1 0 1 1 1 1 1 1 0 

c10 0 0 1 1 0 0 1 0 0 1 
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So now we have the initial clusters as 

C1= {t1,t7,t8,t9} 

C2 = { t2, t4, 15, t6} 

C3 =(13,t4, (7,t10} 

C4={...} 

C6 = 

C7={...} 

C8 = { t1, t7, t8, t9} 

C9 = { tl , t2, (4, t5, t6, t7, t8, t9} 

C10 = ((3,t4,t7,to} 

We now have to remove the clashes and assign a term uniquely to a cluster. 

We use the naive Bayesian concept now. It is based on the assumption that a term's 

probability of belonging to - a particular cluster is independent of its probabilities of its 

belonging to the other clusters. This effectively translates to the fact that a term's 

probability of co-occurrence with one term is independent of its probability of co-

occurrence with another term. This assumption can be called cluster conditional 

independence. Just like the corresponding Bayesian classifiers, it is naive in this 

regard. The basis of this concept is the Bayes' theorem and conditional probability 

(refer to Section 2.2). We will use notations similar to that section for ease in 

understanding. Let X represent one of m terms and C1, C2, ... , C,, the term-clusters. 

Then, P(C1 	represents the posterior probability of term X belonging to cluster C;, 

given that we know X. It is also called the a posteriori probability of C, conditioned 

on X. In contrast, P(C,) is the prior probability, or apriori probability, of C,. This is 

the probability of the cluster C;  being chosen at random from the m clusters. The 

posterior probability, P(C ;JX), is based on more information (i.e. knowledge of term 

number) than the prior probability, P(C1), which is independent of X. Similarly, 

P(XI C;) is the posterior probability of X conditioned on C. It is the probability that 

given the cluster chosen is C,, the term chosen is X. P(X) is the prior probability of X, 

i.e. the probability of the term X being chosen at random from the list of all terms. By 

the Bayes Theorem (Equation (2.1)), we have 

P(C, I X) = (P(X Cj x P(C,)) / P(X) 	 (4.4) 
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Given a term X, our clustering scheme will predict that X belongs to the term-

cluster having the highest posterior probability, conditioned on X. So it predicts that 

term X belongs to the cluster C; if and only if 

P(C,IX) >P(CJ IX)for 1 Sj <m,I~i. 
Thus we maximize P(C; ~X). The cluster C, for which P(C,IX) is maximized is 

called the maximum posteriori hypothesis. P(C; jX) is given by Equation (4.4). As 

P(X) is constant for all clusters, only (P(X1 Ci) x P(Ci)) needs be maximized. Since 

the cluster prior probabilities are not known, it is assumed that the clusters are equally 

likely, that is, P(Cj) = P(C2) _ ... = P(C,,,), and we would therefore maximize 

P(XI C,. 

By the naive assumption of cluster conditional independence, we can estimate 

P(X C) in the following way: 

P (X I C1 ) = f Ik-1 P (co — occurrence of X and Xk ) 	 (4.5) 

where n is the number of terms in C J 

P(XI C,) 	= P(co-occurrence of X and Xi) x P(co-occurrence of X 

and X2) x ... x P(co-occurrence of X and X) 

where X1, X2, ... , X, .... Xn are the terms belonging to C; 	 (4.6) 

The probability of co-occurrence of terms Xl and X1 is defined by 

No.of co—occurrences of X1 and Xj P(co — occurrence of Xi and x1) _ 
No. of co—occurrences of Xi and all other terms 

(4.7) 

The probability of co-occurrence of a term with itself (trivial case) is assumed 

to be one. There is another important modification to be introduced. In the product of 

Equation (4.5), if any of the co-occurrence probabilities is zero, it makes the whole 

product zero. But a term need not co-occur with every other term in its cluster. But 

without any modification to our existing calculations, non-co-occurrence with even a 

single term in a term-cluster would nullify the whole product. Without the zero 
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probability, we may have ended up with a high probability, suggesting that X may 

have belonged to class C;. A zero probability cancels the effects of all of the other 

(posteriori) probabilities (on C;) involved in the product. There is a simple trick to 

avoid this problem. We can assume that our training database is so large that adding 

one to each count that we need would only make a negligible difference in the 

estimated probability value, yet would conveniently avoid the case of probability 

values of zero. This technique for probability estimation is known as the Laplacian 

correction (refer to Section 2.2). As a result, we treat the number of co-occurrences of 

a term with another term (with which it does not co-occur) as 1, and similarly the 

denominator also gets increased by 1 in the probability calculations. Now we present 

the algorithm (Figure 4.4) for calculating the co-occurrence probability between two 

terms. 

CALC-COOCC-PROBAB (term 1, term2, Co OccMat, NumFeats) 
1 numerator f— number of co-occurrences between terml and term2 

obtained from CoOccMat 
Min Val is the minimum of the two terms 
MaxVal is the maximum of the two terms 
numerator - CoOccMat[MinVal] [Max Val] 

2 denominator E— number of co-occurrences between terml and all other 
terms 
for every element in terml-th row and terml-th column in CoOccMat 

do increment denominator by corresponding value 
8 if numerator ~- 0 	► Laplacian correction 
9 	then numerator — numerator + 1 
10 	denominator — denominator + 1 
11 if denominator ~ 0 
12 	then probability numerator / denominator 
13 else 
14 	probability #- 0 
15 return probability 

Fig. 4.4 Algorithm to calculate co-occurrence probability 

Now we come back to our example. From the data presented in Table 4.3 and 

the ensuing initial cluster information, we find that term 4 is initially a member of 

eight clusters — C2, C3, C4, C5, C6, C7, C9, and C10. We will show the probability 

computations in detail for one of these clusters and give the cluster-belonging 

probabilities for the other ones. 
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To find the probability of term 4 belonging to cluster 2, we have to find the 

products of the probabilities of term 4 co-occurring with each term of cluster 2. 

Cluster 2 contains four terms — term 2, term 4, term 5, term 6, and term 9. 

Probability(co-occurrence of term 4 and term 2) 

= Number of co-occurrences of term 4 and term 2 / (Number of co- 

occurrences of term 4 with all other terms) 

=43/(43 +9+43 +42+9+1+9) 

=43/156  

= 0.2756 

Probability(co-occurrence of term 4 and term 4) = 1.0000 (Trivial case) 

Probability(co-occurrence of.term 4 and term 5) = 43 / 156 = 0.2756 

Probability(co-occurrence of term 4 and term 6) = 42 / 156 = 0.2756 

Probability(co-occurrence of term 4 and term 9) = 1 / 156 = 0.0064 

Thus, Probability(term 4 belonging to cluster 2) 

= P(X4 I C2) 

= 0.2756 x 1.0000 x 0.2756 x 0.2756 x 0.0064 

= 1.3113 x 10-4  

Similarly, 	P(X4]C3).= 2.1336 x 10-4  

P(X4I C4) = 2.5179 x 10-8  

P(X4I C5) = 1.3113 x 10' 

P(X4I C6) = 1.3113 x 10' 

P(X4I C7 ) = 4.993 8 x 

P(X4I C9) = 3.0691 x 

P(X4I C10) = 1.9202 x 10-4  

Clearly, P(X4jC3) is the highest and so P(C1FX4) is maximized for i = 3. Hence, 

term 4 is finally assigned to the third cluster. At the end of this process, the terms 
which did not co-occur with any other term still remain in their own clusters. After 
this round of final assignment, we obtain a term cluster matrix in which every term 
belongs to a single cluster only. So there is exactly a single one entry in a single 
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column. As we traverse a row columnwise (corresponding to an equivalent cluster), 

the terms which have 1 s in their corresponding locations belong to the cluster under 

consideration. By this time, we can understand the effectiveness of the use of the 

sparse matrix representation, as the various data matrices encountered have been 

shown to be getting sparser. The matrices keep getting sparser with an increase in the 

dataset size and the number of terms. Coming back to our discussion on the term 

clusters, finally we convert the term cluster matrix into a memory-efficient bag-of-

words representation. This means that instead of a row containing Os in locations of 

terms not belonging to the cluster and 1 s in locations of terms belonging to the cluster, 

the row directly contains the identifiers of the terms belonging to the cluster. This 

matrix is the final term cluster matrix and is used for document cluster and sub-cluster 

determination. 

Table 4.4 Term cluster matrix for example dataset 
• 

11 t2 t3 14 15 16 t7 is t9 tlo 

Cl  1 0 0 0 0 0 0 1 1 0 

C2  0 1 0 0 1 1 0 0 0 0 

C3  0 0 1 1 0 0 1 0 0 1 

... ... ... ... ... ... ... ... ... ... 

... ... ... ... ... ... ... ... ... ... 

... ... ... ... ... ... ... ... ... ... 

C8  0 0 0 0 0 0 0 0 0 0 

C9  0 0 0 0 0 0 0 0 0 0 

Clo  0 0 0 0 0 0 0 0 0 0 

Table 4.5 Final term cluster matrix for example dataset 

F 	t1 	12 13 14 

C1  1 8 9 0 

C2 2 5 6 0 

C3  3 4 7 10 
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Table 4.5 shows the memory-efficient bag-of-words form of the term cluster 

matrix shown in Table 4.4. As shown earlier, term 4 was assigned to cluster 3. Here 

we finally have terms 1, 8, and 9 in cluster 1, terms 2, 5, and 6 in cluster 2, and terms 
3, 4, 7, and 10 in cluster 3. Now we move on to the techniques used for document 

cluster and sub-cluster determination by the use of these matrices. 

4.4 Document Cluster Determination 

Now that we have determined our desired term-clusters, the next task is to use 

them to obtain the document clusters. We do this by computing the arithmetic mean 

of the TF-IDF values corresponding to the terms of every cluster, sequentially. The 

document will be assigned to the cluster yielding the highest mean. The main 

implication of this is that the number of document clusters is equal to the number of 

term-clusters. It does not vary with the number of documents, provided the number of 

terms remains fixed. This is very helpful as the number of documents D is generally 

much larger than the number of terms N (D >> N). As a result, the number of term-

clusters is also much lower than D. This helps us divide a large document set into a 

manageable number of clusters. Mathematically, the cluster number of document 

number i is given by 

Cluster(i) = maxp[(>k=1  TFIDFMat(i. FinalTermClusMat(p, k)))/ n] 	(4.8) 

where TFIDFMat is the TF-IDF matrix 

FinalTermClusMat is the final term-cluster matrix 

and, the maximization is performed over all p, i.e. all term-clusters; 

n is the number of terms in each cluster; so n may vary from cluster to 

cluster 

The algorithm for this procedure is given in Figure 4.5. The document 

clustering results are stored in a document cluster matrix which has three columns and 

a number of rows equal to the number of documents. The first column stores the 

document identifier, the second column stores the document cluster identifier, and 

third column is allocated to store the document sub-cluster identifier. After this first 
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level of clustering is performed, this matrix is returned but the third column, as 

expected, is still empty. It is filled in only after the sub-clustering procedure is also 

completed. 

CLUS-BY-MEAN(TFIDFMat, FinalTermClusMat, NumDocs, NumFeats) 
1 for every document from 1 to NumDocs 
2 	do for every term cluster 
3 	 do compute arithmetic mean of values in document vector of 

current document in TFIDFMat corresponding to 
terms in current term cluster 

4 	assign document to term cluster with highest mean 
5 return final document cluster matrix with cluster information but without 

sub-cluster information 

Fig. 4.5 Algorithm for document clustering 

The document cluster . matrix (with the first two columns filled) for our. 

example dataset is given in Table 4.6. We will show the cluster determination for one. 

example, document number 20. The term-clusters are terms { 1, 8, 9}, {2, 5, 6}, and 

{3, 4, 7, 10}. The corresponding cluster-wise means are as follows: 

Mean for cluster 1 = (0 + 0 + 1) / 3 = 0.33 

Mean for cluster 2 = (3 + 8 + 5)/3 = 5.33 

Mean for cluster 3 =(0+8+0+0)/4=2.00 

Since the mean for cluster 2 is the highest, the document belongs to the second 

cluster. Now that document clustering is complete, we proceed to finding sub-clusters 

in the next section. 

4.5 Document Sub-cluster Determination 

The document clusters provide us with a broad grouping of the documents. 

Often we require a finer level of clustering which is provided by our sub-clustering 

procedure. Here the representation of text documents as sequences in the form 

document vectors is of fundamental importance. Here we apply the concept of shape 

pattern-based similarity. We assume a logical graph consisting of the points in the 
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Table 4.6 Document cluster matrix for example dataset (after Level I) 

1 1 0 

2 2 0 

3 1 0 

4 2 0 

5 3 0 

16 1 0 

17 2 0 

18 1 0 

19 2 0 

20 2 0 

TF-IDF matrix corresponding to the cluster of the document. The TF-IDF values 

(equivalently term weights) (y-axis) are observed against the terms (x-axis). Here we 

use the word `observed' and not `plotted' because though we are conceptually dealing 

with shapes and graphs, explicit plotting and a manual study of the graphs are not 

necessary. The shape of this plot gives the inherent pattern associated with this 

document. Computations on the document vectors help us in performing the 

equivalent operations. The graphical representations, as provided in the figures later, 

help us in an easy illustration of the concept. The algorithm for the sub-clustering 

procedure is presented in Figure 4.6. 
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SUB-C LUS-BY-SHAPE (TFIDFMat, FinalTermClusMat, DCM, NumDocs, NumFeats) 
1 declare ShapeList to store list of unique patterns 
2 initially ShapeList contains only end-marker 
3 for every document from 1 to NumDocs 
4 	declare and initialize string to store associated shape pattern 
5 	do fetch TF-IDF values in document vector corresponding to terms 

of term cluster 
6 	for every pair of consecutive terms in term cluster 
7 	 do observe difference between corresponding TF-IDF values 
8 	 if TF-IDF value corresponding to second term higher 
9 	 then add U to current pattern as graph moves Up 

► Here graph refers to plot of TF-IDF values versus 
corresponding terms 

10 	 else if TF-IDF value corresponding to second term lower 
11 	 add D to current pattern as graph moves Down 
12 	 else (TF-IDF values equal) 
13 	 add L to current shape pattern as graph remains 

Level 
14 	compare shape pattern with every pattern in ShapeList sequentially 
15 	if match is found 
16 	 then associate document with current shape identifier 
17 	else 
18 	 add new shape to ShapeList 
19 	 push end marker by one position 
20 	 associate document with new shape identifier 
21 Sort in ascending order of shape indices within clusters 
22 Assign first document to first sub-cluster 
23 for i <--1 to NumDocs 
24 	do if shapes match and clusters match for consecutive documents 
25 	 then assign documents to previous sub-cluster 
26 	else if shapes do not match or clusters do not match 
27 	 then create new sub-cluster and assign document to it 
28 return final document cluster matrix with sub-cluster information 

Fig. 4.6 Algorithm for document sub-clustering 

The sub-clustering procedure is also fully unsupervised and based on the 

notion of the relative importance of the various terms in the term-cluster in the 

document under consideration. This is reflected by the changes that the TF-IDF 

values go through corresponding to the terms in the term-cluster of the document. 

Let there be k terms in the term-cluster of the document under consideration. 

This corresponds to k points on the x-axis. Corresponding to the k points in a term-

cluster, there are (k - 1) transition points of importance in the graph. The differences 

in the TF-IDF values over consecutive points are of interest to us and help in 
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determining the shape pattern present in the plot. These differences help us in 

-determining the gradient of the graph as it moves across these transition points. A (k - 

1)-character array for every document is maintained which stores the alphabets 

'U', `D , or 'L' according as the graph moves up, down, or remains level (three 

possibilities) across a transition point, in sequence, i.e. this array stores the 

description of the shape pattern present in the document's graph. As a result, there 

will be a total of 3k  - 1  possible shapes inherent in the document vectors, a number 

which may become quite large for a large k. But even for large real datasets, only a 

much reduced set of shape patterns appear (the number of patterns discovered are 

only of significance within a sub-category, and not across them; as explained later). 

This has been shown experimentally in Chapter 5. Whenever we come across a new 

document, the shape array for this document is compared to the arrays of the existing 

shapes, which are maintained separately in a text file. If the pattern matches with an 

existing one, the index number for this shape (shape identifier) is assigned to the 

document. If it is a new shape, the next unique serial number is assigned to the shape 

and the document, and the pattern is added to the list of existing shapes. This 

numbering is done on a global basis, i.e. two different shapes always have different 

serial numbers, even if they appear in different sub-categories only. This simplifies 

the indexing procedure without increasing any time or space requirements. The set of 

all the indices of the obtained shape patterns forms the shape alphabet. Shape 

identifier 0 (null) is reserved for documents with clusters where the number of terms 

is one, i.e. a case when no pattern can be formed. Documents within a particular 

cluster with the same shape pattern (or equivalently sharing the same shape identifier) 

form sub-clusters. This completes the clustering procedure within the clusters based 

on shape patterns. Let us take an example. Say, a document belongs to cluster with 

five terms in it. So k is 5. So we have k — 1, i.e. 4 transition points. Let the 

corresponding TF-IDF values be {9, 16, 16, 21, 6}. Then the associated graph can be 

said to move up, remain level, again move up, and finally move down. As a result, the 

associated shape pattern will be { U, L, U, D} (Figure 4.7). We note that only the 

shape of the pattern (and not the magnitude of a rise or a fall) is sufficient to reflect 

the importance of the respective terms within the document, which is the basis for our 

sub-clustering procedure. The shapes inherent in the documents of our example 

dataset are enlisted in Table 4.7 and shown pictorially in Figure 4.8. 
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The sub-cluster identifiers are copied back into the third column of the 

document cluster matrix. This matrix, for our example dataset, with the sub-cluster 

information filled in, has been given in Table 4.8. A vector from this matrix may be 

represented as 

{document_id, cluster_id, sub-cluster_id) 

Our test document from the previous section, document 20, has three terms in 

its term cluster, is associated with the second shape identifier ({ U, D}), and belongs 

to the sixth sub-cluster, which is the first sub-cluster in the second cluster. These 

details are evident from Tables 4.8 and 4.9 (sorted by cluster number, sub-cluster 

number, document number). Three clusters and ten sub-clusters (across all clusters) 

Fig. 4.7 Shape pattern { U, L, U, D} 

Table 4.7 Shape patterns in example dataset 

0 nil 

1 {D, L} 

2 {U, D} 

3 {L, L} 

4 {U, U} 

5 {D,U} 

6 {D, D} 

7 { U, U, D} 

8 {U,D,L} 
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(a) Shape Identifer 1: }D, L} 
(c) Shape Identifier 3: }L, L} 

(b) Shape Identifier 2: }U, D} 

(d) Shape Identifier 41: {U, U} 
(e) Shape Identifier 5: }D, U} 

(f) Shape Identifier 6: 

Proposed Work 

(g) Shape Identifier 7: }U, U, D} 	(h) Shape Identifier 8: }U, D, L} 

Fig. 4.8 Pictorial representation of shapes in example dataset 

Table 4.8 Document cluster matrix for example dataset (after Level II) 
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20 2 6 

12 2 7 

17 2 7 

2 2 8 

15 3 9 

5 3 10 

9 3 10 

were found in our example dataset. Thus the average number of sub-clusters per 

cluster came out to be 3.33. The average number of documents per cluster and sub-

cluster were 6.67 and 2.00 respectively. This summary of our example dataset 

concludes this chapter. The detailed results for the much larger datasets used for 

validation purposes have been provided in the next chapter. 
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Chapter 5 

RESULTS AND DISCUSSION 

In this chapter, we will elaborate on our experimental results and the 

associated discussion. We will describe the datasets used for validation and the 

implementation details in the first two sections. Our results are accompanied by 

comparisons with standard algorithms available in the popular data mining software 

suite WEKA [22]. We conclude this chapter by giving the time complexity of our 

algorithm. 

5.1 Datasets used for Validation 

We have used a variety of benchmark datasets [23] available on the internet to 

validate our algorithm. The details of these datasets are given below, in increasing 

order of complexity. 

Case 1: 	The TF-IDF matrix corresponds to a set of five thousand documents 

and fifty terms. The term set consists of groups of co-occurring terms, 

with no co-occurrence between terms of different groups. 

Case 2: 	The TF-IDF matrix corresponds to a set of five thousand documents 

and fifty terms. The term set consists of groups of co-occurring terms, 

but with co-occurrence between terms of different groups. 

Case 3: 	The TF-IDF matrix corresponds to a set of five thousand documents 

and two hundred terms. The term set consists of groups of co-occurring 

terms, with co-occurrence between terms of different groups. 

Case 4: 	We deal with two special cases in the last two datasets. The first one is 

named ADA [23, 24]. ADA has marketing applications. The task of 

ADA is to discover high revenue people from census data, presented in 

the form of a two-class classification problem. The raw data from the 
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census bureau is known - as the Adult database in the UCI machine-
learning repository. The fourteen original attributes (features) 
represented age, workclass, education, marital status, occupation, and 
native country. They included continuous, binary and categorical 
attributes. They were finally aggregated to form - a data matrix 
corresponding to forty six thousand and thirty three text documents, 
with forty eight terms, each term representing an attribute. We have 
used the first five thousand rows and all the forty eight columns for our 
work. Since the dataset is known to have only two classes (clusters), it 
gives us the opportunity to verify our algorithm in cases where large 
datasets have only a few underlying clusters. 

Case 5: 	The last dataset is named SYLVA [23, 24], an ecology application. 
The task of SYLVA is to classify forest cover types. The forest cover 
type for 30 x 30 metre cells was obtained from US Forest Service 
(USFS) Region 2 Resource Information System (RIS) data. The 
problem dealt with the study of Ponderosa pine versus everything else. 
The input matrix consisted of one lakh, forty five thousand, two 
hundred and fifty two rows (documents) (out of which we have used 
the first five thousand to maintain uniformity among the datasets) and 
two hundred and sixteen input variables (terms) (all have been 
considered). Half of these features are known to be distractors. As a 
result, it is known that there is only one major cluster within the entire 
dataset although it is not immediately apparent from the huge matrix 
with lots of stray variables having non-zero values. This also proved to 
be an interesting test case. 

5.2 Implementation Details 

This work has been fully programmed in Java, using the NetBeans IDE 
platform [25], which is open source and freely downloadable from the internet. The 
project was implemented on a system running Windows XP Professional Version 
with Service Pack 2, with a system memory of 1 GB and the processor used being 
Intel Core 2 Duo 2.13 GHz. 

I' 



Results and Discussion 

Six java classes were used --- Main, ReadFromFile, TFIDFToCoOcc, 

CoOccToTermClus, ClusByMean, and SubClusByShape. But since_ we have already 

provided the various algorithms used in our overall scheme (Chapter 4) and attached 

the source code listing (Appendix A), we will not elaborate on details like the 

methods present in each of these classes, their inputs and outputs, etc. in this section. 

We now proceed to the results obtained and the comparisons with standard 

algorithms. 

5.3 Experimental Results 

For each of the five datasets listed in Section 5.1, we give the number of 

documents (ND), terms (NT), clusters (NC) and sub-clusters (NSC), the average 

number of sub-clusters per cluster (ANSCPC), and the average number of documents 

per cluster (ANDPC) and sub-cluster (ANDPSC). This summary is given in Table 5.1 

(legend is given at the bottom of the table). Due to space constraints, we had to use 

the abbreviated forms in the column headers. We gradually vary the size of the dataset 

(number of documents) from one thousand through five thousand (with an increment 

of one thousand after each phase) and observe the change in our metrics, keeping the 

number of terms constant. We also record how our metrics vary with the number of 

terms when we vary the number of terms from forty through two hundred (with an 

increment of forty after each phase) for dataset 3, keeping the number of documents 

fixed at five thousand. For all the five cases (case 3 has two parts as shown in Table 

5.1), we plot graphs for the results (Figures 5.1 through 5.6) and then explain our 

findings. 

F.T.O. 
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Table 5.1 Summary of cluster information for all datasets - 
1 1000 
- 

50 
- 

16 51 3.189 62.500 19.608 

1 2000 50 16 77 4.813 125.000 25.974 

1 3000 50 16 80 5.000 187.500 37.500 

1 4000 50 16 89 5.563 250.000 44.944 

1 5000 50 16 90 5.625 312.500 55.556 

Avg. 3000 .  5016.0 77.4 4x838 187.500 36.716 

2 1000 50 16 57 3.563 62.500 17.544 

2 2000 50 16 79 4.938 125.000 25.316 

2 3000 50 16 83 5.188 187.500 36.145 

2 4000 50 16 93 5.813 250.000 43.011 

2 5000 50 16 95 5.938 312.500 52.632 

Avg. 3000 ;,- 50 16.E 814 5. 187 . 34.930 
3 1000 200 57 78 1.368 17.544 12.821 

3 2000 200 57 90 1.579 35.088 22.222 

3 3000 200 57 107 1.877 52.632 28.037 

3 4000 200 57 127 2.228 70.175 31.496 

3 5000 200 57 141 2.474 87.719 35.461 

Avg. 3000 206-  57.0 1084 L908 52.6332 26J$ 
3 5000 40 25 55 2.200 200.000 90.909 

3 5000 80 58 80 1.379 86.207 62.500 

3 5000 120 58 117 2.017 86.207 42.735 

3 5000 160 58 123 2.121 86.207 40.650 

3 5000 200 57 141 2.474 87.719 35.461 

Avg. 5 120 51.2. 163.2 2.038 109.2" 54451 

4 1000 48 2 19 9.500 500.000 52.632 

4 2000 48 3 15 5.000 666.667 133.333 

4 3000 48 1 9 9.000 3000.000 333.333 

4 4000 48 2 13 6.500 2000.000 307.692 

4 5000 48 2 13 6.500 2500.000 384.615 

Avg. 3000: 48 2.0. 13.0 7.30 1.7333333.. 242321 

5 1000 216 1 998 998.000 1000.000 1.002 

5 2000 216 1 1991 1991.000 2000.000 1.005 

5 3000 216 1 2768 2768.000 3000.000 1.084 

5 4000 216 1 3810 3819.000 4000.000 1.050 

5 5000 216 1 4837 4837.000 5000.000 1.034 

Avg. 3000 216 1.0 288" 2882.600 3088.009 1.035 

ND = Number of documents, NT = Number of terms, NC = Number of clusters, NSC = Number of sub-

clusters, ANSCPC = Average number of sub-clusters per cluster, ANDPC = Average number of documents per 
cluster, ANDPSC = Average number of documents per sub-cluster, Avg. = Average 
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Now that we have presented the graphs, we will explain the findings. To begin 

with, we observe that for each of the datasets 1, 2, and 3 (Part I), the number of 

clusters does not vary with the number of documents (resulting in the steady increase 

of ANDPC). This is due to the fact that the document clustering is a two stage 

process: the first being clustering of the terms, and the second being the assignment of 

the document to the term-cluster with the highest corresponding TF-IDF mean. So, if 

the number of terms is kept constant, the number of document clusters will not vary 

with the number of the documents. This has the great advantage of managing the large 

corpus with a reasonable number of clusters (since number of terms << number of 

documents). It is also a logical conclusion of the fact that for a reasonably large 

document database, unless the dictionary is expanded, the number of document 

categories will not change. The number of clusters detected in Cases 1 and 2 strongly 

prove that our naive Bayesian assumption works well. The difference between these 

two datasets was that there were terms overlapping with more than one well-formed 

cluster, strongly with one and weakly with the others. There were also stray 

distracting terms which did not form a cluster of their own but tried to destabilize the 

structure of well-formed clusters. Otherwise, the well-formed term-clusters were the 

same in both these datasets. Our scheme has been successful in nullifying the effect of 

the stray terms (also evident in Cases 4 and 5 analyzed later) and also in uniquely 

assigning overlapping terms to the cluster with whose terms which it had the strongest 

co-occurrence. 

To demonstrate the effect of a change in the number of terms, we have varied 

the number of terms from forty through two hundred keeping the number of 

documents fixed at five thousand for the dataset of Case 3 (referring to this as Part II 

in Figure 5.4 and to the normal operation as Part I in Figure 5.3). The results then 

display a change in the number of clusters initially, but later become almost constant. 

But simply the number of clusters does not reveal the full picture here. We observe 

that the numbers of clusters are 25, 58, 58, 58, and 57 when the numbers of features 

are 40, 60, 80, 120, and 160 respectively. But initially the 58 clusters all contained 

only one or two terms each. We had mostly single-term clusters of trivial real-world 

use. As the number of terms grew, the clusters became meaningful, and began to 

contain reasonable numbers of terms like three to six. For space constraints, we are 
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not able to provide the number of terms in each term-cluster formed or the number of 

documents in each document cluster; otherwise this behavior would have been 
apparent. With the increase in the number of terms, the number of associated shape 

patterns within term-clusters also increase, increasing steadily the sub-cluster count. 

But since the number of documents is kept constant, the average number of 
documents- per sub-cluster decreases monotonically, though at a very slow rate. This 
is because the rate of increase in the number of sub-clusters (due to the appearance of 

new shape patterns) is less than the rate at which new terms are added. But this step is 

done only as a demonstration, as increasing the number of terms while keeping the 

number of documents constant does not have much significance in real life, whereas 

the reverse is the case in most text clustering applications like organizing documents 

for a news agency or for a research conference. 

Adding new documents incrementally (keeping the number of terms constant) 

results in the appearance of new shape patterns within the existing clusters. As a 

result, we observe the trend of an increasing NSC, ANSCPC, and ANDPSC with an 

increase in the number of documents for each of the datasets 1 through 3 (Part I). 

Coming to the special datasets, we observe that although there were minor 

deviations, the average number of clusters detected for Case 4 data was two. This 

confirms our prior knowledge about the dataset. Case 5 data (SYLVA) was found to 

have only one cluster, again, as known earlier. This confirms that our algorithm is 

capable of detecting true clusters from large datasets even when a large number of the 
terms are distractors (having stray non-zero values) and the actual number of clusters 

is as low as one or two. For both cases, as the number of clusters is low, ANDPC is 

very high. For Case 5, since the number of terms in the special clusters is much higher 

than normal, the associated number of shape patterns that it may give rise to is also 

very high ( 3Number of terms in term cluster, refer to Section 4.5). As a result, we have a very 
high NSC and very low ANDPSC. But the notion of sub-clusters does not have much 
significance for these two cases. 

F.T.O. 
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5.4 Comparison of Running Times 

All traditional text clustering algorithms (k-means, EM, farthest-first, and 
density-based) require the number of desired clusters as user input. But our clustering 
scheme does not require any user input or domain knowledge. It determines the 
inherent clusters present within the documents based on semantically linked terms. 
There is also no sub-clustering feature available in standard algorithms. As a result, 
we have adopted running time to be the main performance metric between our scheme 
(level -  I) and the standard algorithms (available in WEKA [22]). A screenshot of the 
WEKA clustering tool is shown in Figure 5.7. Both of the systems have been run on 
the same Java platform (with the number of clusters detected by our system as the 
input to the standard algorithms). The time required by a program running on a Java 
platform is computed easily by the NetBeans CPU profiler. We provide such a 
snapshot in Figure 5.8. These results are tabulated in Table 5.2 (legend at the bottom). 

From Table 5.2 (especially the shaded regions) and the associated bar charts 
(Figures 5.9 through 5.12), we can easily see that our algorithm's average running 
time is significantly better than the standard algorithms for the same number of 
clusters detected. This is because all the standard algorithms tend to find clusters on a 
global basis, treating the entire document vector as a unit entity. As a result, they have 
to constantly deal -  with vectors of a very high dimensionality. Our algorithm tries to 
find local entities (term-clusters) within the term-set first and then clusters the 
documents on the basis of these local entities. Thus we look at local entities 
preserving the global structure of the document vector. The running times of the 
standard algorithms depend greatly on the number of desired clusters. As a result, 
when the number of clusters is known to be extremely low, they provide results in a 
very quick time. This explains their really low running times in Cases 4 and 5 
(consequently, these values will not be visible in the corresponding bar charts and 
hence are not shown). But since our scheme does not assume any prior knowledge 
about the number of clusters, it has to proceed in its usual algorithm for all data, 
explaining the general trend of rising running time with the increase in the number of 
documents and terms. In general, the comparison was fair as both were run on the 
same Java platform. For space constraints, it has not been possible to include the 
number of documents in each cluster separately, or which documents were put into 
which cluster, for each algorithm. 
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Table 5.2 Comparison of running times (in milliseconds) 

1 2000 50 16 2177 2691 2291 2347 2545 

1 3000 50 16 3298 3849 3458 3511 3801 

1 4000 50 16 4472 5055 4498 4527 4888 

1 5000 50 16 5653 6316 5723 5911 6089 

Avg. 3000 50 16.0 3305.4 3785.4 3384.4 3453.4 3666.0 

2 1000 50 16 1135 1475 1913 1698 3959 

2 2000 50 16 2261 3016 2453 2782 2946 

2 3000 50 16 3362 3875 4092 3045 3631 

2 4000 50 16 4682 4790 4699 4850 4751 

2 5000 50 16 5775 5905 5604 5811 5764 

Avg. 3000 50 16.0 3443.6 3812.2 3752.2 3637.2 4210.2 

3 1000 20(1 57 12645 13789 12680 13003 14804 

3 2000 200 57 27341 30067 28394 29561 29872 

3 3000 200 57 42091 49007 44509 46712 47222 

3 4000 200 57 57802 69691 59012 63423 61571 

3 5000 200 57 72524 89880 74789 77820 71453 

Avg. 3000 200 57.0 42480.6 50486.8 43876.8 46103.8 44984.4 

3 5000 40 25 4222 6169 4357 4562 5982 

3 5000 80 58 13046 14849 12971 13428 13991 

3 5000 120 58 28286 29238 29264 28327 30320 

3 5000 160 58 47172 50550 48954 48932 50113 

3 5000 200 57 72524 80891 81823 82341 79256 

Avg. 5000 120 51.2 33050.0 36339.4 35473.8 35518.0 35932.4 

4 1000 48 2 1115 17 16 17 17 

4 2000 48 3 1877 16 16 17 17 

4 3000 48 1 3036 16 16 18 16 

4 4000 48 2 4061 17 16 17 16 

4 5000 48 2 5723 16 16 16 17 

Avg. 3000 48 2.0 3162.4 16.4 16.0 17.0 16.6 

5 1000 216 I 2(1313 16 18 17 18 

5 2000 216 1 39360 17 16 17 17 

5 3000 216 1 58224 16 16 17 17 

5 4000 216 1 77844 16 18 17 17 

5 5000 216 1 95383 16 16 16 17 

Avg. 3000 216 1.0 58224.8 16.2 16.8 16.8 17.2 

ND - Number of documents. NT - Number of terms. NC = Number of clusters. EM 	I'.xpectation 

Maximization, Avg. = Average 

54 



■ Proposed scheme 

■ Simple K-Means 

■ EM 

■ Density-based 

■ Farthest-first 

4000 	5000 

Results and Discussion 

7000 

6000 R 
u 

n 	5000 

n 

4000 	- 
n 

g  3000 
T 

2000 	I 11 m 

i'i 

e 1000 

0 
1000 2000 	3000 

ND 

Fig. 5.9 Running times for Case I data (in ms) 

7000 

R  6000 

U 

n 5000 

n 

4000 
n 

g  3000 

T 
2000 

m 
e 1000 

0 i'i 
■ Proposed scheme 

■ Simple K-Means 

■ EM 

■ Density-based 

■ Farthest-first 

1000 	2000 	3000 	4000 	5000 

ND 

Fig. 5.10 Running times for Case 2 data (in ms) 

55 



Results and Discussion 

100000 

90000 

80000 1111111111111111 u 

n 	70000 
n U  

60000 – – — 	—  
■ Proposed scheme 

n 	50000 	 a Simple K-Means 
8 

40000.. – 	 OEM 

T 	 ■ Density-based 

'' I I 1 
30000 

Farthest-first 
m  20000 

10000 

0 
1000 	2000 	3000 	4000 	5000 

ND 

Fig. 5.11 Running times for Case 3 data (Part I) (in ms) 

90000 

80000  '  
R 
u 70000 	 - 
n 
n 60000 

n 50000 
	 ■ Proposed scheme 

9  40000 
	 ■ Simple K-Means 

■ EM 

t 30000 	 ■ Density-based 

m  20000 	 Farthest-first 

0 

 Ii II  
40 	80 	120 	160 	200 

NT 

Fig. 5.12 Running times for Case 3 data (Part II) (in ms) 

56 



Results and Discussion 

5.5 Analysis of Time Complexity 

In this section, we will give the time complexity of our algorithm in the 

document clustering and the document sub-clustering levels. Let the number of 

documents and terms be m and n respectively. The approximate total running of our 

algorithm in the document clustering level, T(m, n), is O(mn2), in the best, the worst, 

and the average cases. So the proposed algorithm in this level has a running time 

which varies linearly with the number of documents and quadratically with the 

number of terms, for all the three cases. 

For the sub-clustering level, the analysis is performed relative to a single 

cluster as it is a process associated with each cluster independently. Let there be p 

documents and q terms in the cluster. Let the total approximate running time be 

denoted by T(p, q). Then T(p, q) is O(p) in the best case and 0(3q-1p) in the worst and 

the average cases. So the proposed algorithm in the document-sub-clustering level has 

a running time which varies linearly with the number of documents p in the cluster in 

the best case, and with the order of 3' 'p in the worst and the average cases. 
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Chapter 6 

CONCLUSION AND FUTURE WORK 

In this final chapter of our report, we present our conclusions and the scope for 

future work on this topic. 

6.1 Conclusion 

In this work, we have proposed a novel two-level text clustering method based 

on the naive Bayesian concept and shape pattern matching. In the first  level, clusters 

are detected in the document set. Unlike traditional clustering algorithms, we first 

proceed to cluster the term-set based on their co-occurrence in the dataset. When a 

term is found to co-occur non-trivially with terms of more than one cluster, we use the 

naive Bayesian concept of conditional independence to assign the term uniquely to 

one of the clusters. The basis of this term-clustering operation is to bring out the 

underlying semantic linkages between the terms. The clustering of the documents is 

then performed on the basis of these term-clusters using simple arithmetic mean 

computations on the TF-IDF values corresponding to the various clusters. Knowledge 

of semantic relationships within the terms helps in producing better clusters 

qualitatively. The sparse matrix representation is used wherever possible to reduce 

memory usage, asmost of the data matrices used for stepwise computational purposes 

are not densely populated. The document clusters provide us with a broad grouping of 

the documents. In the second level, we exploit shape pattern-based similarity to find 

sub-clusters within the document clusters. Shape patterns inherent in the document 

vectors reflect the relative importance of the terms present within the document. They 

are used as a discriminatory measure to group documents within a cluster such that 

documents within a sub-cluster have the same relative importance attached to their 

terms. 

We performed an exhaustive comparison between the running times of our 

scheme and the traditional clustering algorithms available in WEKA. Our results 

show that the running time of our algorithm is significantly better than the others. 

58 



Conclusions and Future Work 

This is because all the standard algorithms tend to find clusters on a global basis, 

treating the entire document vector as a unit entity. As a result, they have to 

constantly deal with vectors of a very high dimensionality. Our algorithm tries to find 

local entities (term-clusters) within the term-set first and then clusters the documents 

on the basis of these local entities. Thus we look at local entities preserving the global 

structure of the document vector. It also detects the major clusters successfully in 

large datasets when a major number of the terms are of trivial importance, their stray 

non-zero values acting as distractors trying to destabilize the structure of well-formed 

clusters. Moreover, our clustering scheme does not require any user input or domain 

knowledge. It detects the inherent clusters present within the dataset based on 

semantically linked terms. The number of document clusters does not vary with the 

dataset size, as long as the term-set is kept fixed. This has a big advantage of 

managing a large corpus with a reasonable number of clusters (since number of terms 

number of documents).This is demonstrated by our results. It is also a logical 

conclusion from the fact that if our initial dataset size is reasonably large, then if the 

dictionary is not expanded by adding new terms, new clusters whose documents are 

semantically linked are also less likely to be produced. 

Our algorithm will be computationally expensive and will not work well when 

there is a large degree of co-occurrence between the terms, causing terms to be 

candidates for almost every initial term-cluster. But in these situations, the structures 

of the clusters are not well-defined; and as such any clustering algorithm would 

produce poor results. 

6.2 Future Work 

We conclude this report with suggestions for future work on this topic. This 

work ends with the detection of the clusters. As future work, we may devise efficient 

indexing methods that would allow us to store the cluster information and retrieve 

details relevant to a few clusters only (which we may want to work with). This will 

highly contribute to the saving of computational space required, and subsequently in 

the scalability of the overall process for dealing with large document sets. As a 

possible drawback, the memory requirements of our algorithm are still somewhat 
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high, as we had a trade-off between space and time. This is a potential area of 
improvement. Documents may be allowed to belong to multiple clusters, sorted in a 
decreasing order of probability. Dependence among terms may be introduced, in 
which case the use of Bayesian belief networks has to be made. Improving upon our 
design in which we increase the number of documents manually keeping the number 
of terms constant, a system may be designed which will dynamically adapt itself when 
new documents and terms are added automatically from a data source. This would 
make the system capable of dealing with incremental or streaming data. 

The concept of shape pattern-based similarity may be applied to other text 
mining operations. We may also introduce more precision if we analyze a single 

shape pattern further by its gradients. For example, the transition `up' can be made 
more specific by introducing `increasing', `slowly increasing', and `quickly 
increasing'. This would simply mean introducing gradient thresholds before the 
determination of the shapes. 
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APPENDIX A: 

SOURCE CODE LISTING 

Main. 

package Algorithms; 

import java.io.BufferedReader; 
import java.io.FilelnputStream; 
import java.io.IOException; 
import java.io.InputStreamReader; 

public class Main 
{ 

public static void main(String[] args) throws IOException 
{ 

BufferedReader br=new BufferedReader(new InputStreamReader(System.in)); 
System.out.println("\nWelcome to the project A TWO-LEVEL TEXT CLUSTERING SCHEME 

BASED ON NAIVE BAYESIAN CONCEPT AND SHAPE PATTERN MATCHING."); 
System.out.println("\nPress ENTER to BEGIN..."); 
int NumDocs=0; // No. of documents 
int NumFeats=0; // No. of features 

int[][] TFIDFMat = new int[NumDocs][NumFeats]; 

String str=new Strings; 

// Datasets used for validation 

// 	str = "example.txt"; 

// str = "datasetl .txt"; 
// str = "dataset2.txt "; 

// str = "dataset3100050NC.txt "; 
// str = "dataset3_2000_50NC.txt "; 
// str = "dataset3_3000_50NC.txt "; 
// str = "dataset34000_5ONC.txt "; 
// str = "dataset3 5000 50NC.txt"; 

// str = "dataset4_1000_50C.txt "; 
// str = "dataset4_2000_50C.txt "; 
// str = "dataset4_300050C.txt "; 
// str = "dataset4_400050C.txt "; 
// str = "dataset4_5000_50C.txt "; 

// str = "dataset5_1000_200C.txt "; 
// str = "dataset5 2000_200C.txt"; 
// str = "dataset5__3000_200C.txt "; 
// str = "dataset5_4000_200C.txt "; 
// str = "dataset5_5000 200C.txt"; 

// str = "dataset5_5000_40C.txt "; 
// str = "dataset5_5000_80C.txt "; 
// str = "dataset5_5000_120C.txt "; 
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Source Code Listing 

// 	str = "dataset55000_160C.txt"; 
// 	str = "dataset5 5000 200C.txt"; 

// 	str = "ada_train_1000.txt"; 
// 	str = "ada_train 2000.txt"; 
// 	str = "ada train 3000.txt"; 
// 	str = "ada train 4000.txt"; 
// 	str = "ada train 5000.txt"; 

// 	str = "sylva_train_1000.txt"; 
// 	str = "sylva train_2000.txt"; 
// 	str = "sylva train_3000.txt"; 
// 	str = "sylva_train_4000.txt"; 

str = "sylva train_5000.txt"; 

FileInputStream fin=new FilelnputStream(str); 
int index=0; 	// Will read characters from file 
int ctr=0; 	If Will count the number of commas 
boolean flag=false; // Checks whether NumFeats has been determined 
while(true) 
{ 

index = fm.read(); // Read one character 
if(index == -1) // EOF encountered 

break; 
else if(index = 

ctr++; 	// Counting number of commas helps us calculate 
// NumDocs 

else if(index==10 11 index==13) // LF or CR 

if(flag = false) 
{ 

// Determination of NumFeats - required only once - first 
// time 
NumFeats = ctr + 1; 
flag = true; 

} 
fm.closeO; 	// Close input file 
NumDocs = ctr/(NumFeats - 1); 
ctr = 0; 	// Reset ctr 

TFIDFMat = ReadFromFile.performRead(str, NumDocs, NumFeats); 

int[][] CoOccMat = new int[NumFeats][NumFeats]; 
// Co-occurrence matrix; will contain information about the 
// co-occurrence of a pair of terms in a document 
CoOccMat = TFIDFToCoOcc.matConvert(TFIDFMat, NumDocs, NumFeats); 

int[I[I FinalTermClusMat = new int[NumFeats + 1][NumFeats + 1]; 
// In the worst case, all terms may lie in one cluster 
// So no. of columns has to be made NumFeats 
// Made efficient using sparse matrix 

// The +ls are done to accomodate the end-of-cluster markers 

FinalTermClusMat = CoOccToTermClus.matConvert(CoOccMat, NumFeats); 
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int[] [] DCM = new int[NumDocs] [3]; // Document Cluster Matrix 
// Column 1 will store document id 
// Column 2 will store cluster no. 
// Column 3 will store sub-cluster no. 

DCM = ClusByMean.cluster(TFIDFMat, FinalTermClusMat, NumDocs, NumFeats); 
// Column 2 entries have been inserted . 

DCM = SubClusByShape.subCluster(TFIDFMat, FinalTermClusMat, DCM,. NumDocs, 
NumFeats); 

// Column 3 entries have been inserted now 

System.out.println("COMPLETE CLUSTERING PROCESS COMPLETED."); 

System.out.println("\nOPERATION SUMMARY:"); 
System.out.println("Name of feature extracted TFIDF file: " + str); 
System.out.println("Number of documents: " + NumDocs); 
System.out.println("Number of features: "+ NumFeats); 
int NumClus=1; 
// No. of document clusters 
// No. of times value changes in 2nd column of DCM - NumClus is the 
If counter 
for(int i=0; i<NumDocs-1; i++) 
{ 

if(DCM[i][1] != DCM[i+1][1]) 
NumClus++; 

} 
System. out.println("Total number of clusters: "+ NumClus); 
int NumSubClus=DCM[NumDocs-1][2] + 1; 	// Numbering starts at 0 
System.out.println("Total number of sub-clusters (across all clusters): "+ NumSubClus); 
System.out.println("Average number of sub-clusters per - cluster: 	+ 

((double)NumSubClus/(double)NumClus)); 
double NDC=(double)NumDocs/(double)NumClus; // No. of documents per 

// cluster 
System.out.println("Average number of documents per cluster: "+ NDC); 
double NDSC=(double)NumDocs/(double)NumSubClus; // No. of documents per 

// cluster 
System.out.println("Average number of documents per sub-cluster: "+ NDSC); 

System.out.println("\nTHIS DISSERTATION WORK HAS BEEN PROGRAMMED BY:"); 
System.out.println("Rishiraj Saha Roy"); 
System. out.println("M.Tech. I.T. (2nd Year)"); 
System.out.println("Enrolment No.: 074708"); 
System.out.println("Department of Electronics and Computer Engineering"); 
System.out.println("Indian Institute of Technology Roorkee."); 

System. out.println("\nTHANK YOU !\n"); 

ReadFromFile.iaya 

package Algorithms; 

import java.io.FileInputStream; 
import java.io.IOException; 
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public class ReadFromFile 
{ 

public static int[][] performRead(String FileName, int NumRows, int NumCols) throws IOException 
{ 

// NumRows is the no. of rows in the matrix into which data from file is 
// read into 
// NumCols is the no. of columns in the matrix into which data from file 
// is read into 

int[][] NewMat = new int[NumRows][NumCols]; 

FileInputStream fin=new FilelnputStream(FileName); 

int[] TwoChars=new int[2]; // Will store current and last 
// previously read characters from file 
// Necessary to distinguish between 
// single ASCII 10 and (ASCII 13 and 10) 
// as pair 

TwoChars[0] = 0; 	// Initialization 
TwoChars[1] = 0; 
double temp=0.0; 	// Stores temporary integer derived 
double j=0.0; 	// Used for 10's exponent 
boolean flag=hue; 	// Indicates when comma or end-of-line 

// is met 
int p=0; 	 // Row index of NewMat 
int q=0; 	 // Col index of NewMat 

outer: 
while(true) // Outer loop 
{ 

temp = 0.0; 
while (true) 
{ 

TwoChars[0] = TwoChars[l]; 
TwoChars[1] = fm.readO; // Read one ASCII character 
// System.out.println(TwoChars[ 1 ] + "\n"); 
// Useful for knowing ASCII values of non-printing (CR, LF, 
// etc.) and special characters like ',' 

if (TwoChars[1] == -1) 	// EOF encountered 
{ 

break outer; // Break with label 
} 
else if(TwoChars[ 1 ]== 10 && TwoChars[0] 13) 
{ 

// Number has already been evaluated due to preceding CR 
// Move on to next character 
continue; 

else if (((char)TwoChars[ 1 ]==',') 11 (TwoChars[1]==13) 11 (TwoChars [0]! = 13 && 
TwoChars[ 1 ]==10)) 

// Next no. or end of line encountered 
// ASCII of 13 corresponds to a carriage return (CR) (ENTER) 
// ASCII of 10 corresponds to paragraph mark, often present in 
// documents instead of newline or ENTER (Line Feed LF) 
// So we have to evaluate number now 
{ 
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flag = false; 
break; 

} 
else if(TwoChars[1]>=48 && TwoChars[1]<=57) // character is a digit 
{ 

TwoChars[l] _ (TwoChars[l]) -'0'; 
} 

temp = (temp * 10) + TwoChars[l]; 
// Calculating integer extracted 

} 
if (flag == false) 
{ 

NewMat[p][q] = (int)temp; 
q++; 

if (q % (NumCols) == 0) 
{ 

p++; 
q = 0; 

} 
} 

flag = true; 
} 

fm.closeO; // Close input file 

System.out.println("\nReading matrix from file......... Done.\n"); 

return NewMat; 
} 

} 

TFIDFToCoOcc.iava 

package Algorithms; 

public class TFIDFToCoOcc 
{ 

public static int[][] matConvert(int[][] TFIDFMat, int NumDocs, int NumFeats) 
{ 

int[][] CoOccMat = new int[NumFeats][NumFeats]; 
If Co-occurrence matrix; will contain information about the- 
// co-occurrence of a pair of terms in a document 
// To avoid redundancy, storing of CoOccMat[i][j] is enough and we 
If need not store CoOccMat[j][i]; also, CoOccMat[i][i] is meaningless 
If As a result, CoOccMat is an upper triangular matrix 
If We fill the diagonal elements with -1 as markers to aid in future 
// computation 
for(int i=0; i<NumFeats; i++) 
{ 

for(int j=0; j<NumFeats; j++) 
{ 

if(i==j) 
CoOccMat[i][j] _ -1; 

} 
} 
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int MinVal=O; // Will store minimum of two compared values 
for(int i=0; i<NumFeats- 1; i++) 	// Column index 1 for TFIDFMat 
{ 

for(int j=i+1; j<NumFeats; j++) // Column index 2 for TFIDFMat 
{ 

for(int k=0; k<NumDocs; k++) // Row index for TFIDFMat 
{ 

// Co-occurrence for a pair of terms 
// Minimum of 2 values taken from TFIDFMat 
MinVal = TFIDFToCoOcc.min(TFIDFMat[k][i], TFIDFMat[k]Li]); 
CoOccMat[i][j] = CoOccMat[i][j] + MinVal; 

} 
MinVal = 0; // Reset MinVal 

return CoOccMat; 
} 

public static int min(int a, int b) 
{ 

if(a <= b) 
return a; 

return b; 

CoOccToTermClus. i ava 

package Algorithms; 

import java.io.BufferedReader; 
import java.io.IOException; 
import java.io.InputStreamReader; 

public class CoOccToTermClus 
{ 

public static int[] [] matConvert(int[] [] CoOccMat, int NumFeats) throws IOException 
{ 

// Term and feature are used interchangeably 
int[][] IntlTermClusMat = new int[NumFeats][NumFeats]; 
// Will store initial term clusters 

// To begin with, each term is a cluster centre, before observing 
// co-occurrence patterns 

for(int i=0; i<NumFeats; i++) 
{ 

for(int j=0; j(NumFeats; j++) 

if(CoOccMat[i][j] != 0) 
{ 

IntlTermClusMat[i][j] = 1; 
IntlTermClusMat[j][i] = 1; 
If Term i belongs to initial cluster j and vice versa 
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// Since we have avoided redundancy by using an upper triangular 
// matrix, term i can occur only in clusters i or less, i.e., term 2 
// can occur only in clusters 0, 1, or 2 

BufferedReader br=new BufferedReader(new Input StreamReader(System.in)); 
// hr may be used to halt output later for stepwise checking 

int[][] TermClusMat = new int[NumFeats][NumFeats ]; 

// So now we will assign a term uniquely to a cluster using naive 
// bayesian theory of probability 
// The transpose of the IntlTermClusMat, or equivalently reading the 
// IntlTermClusMat columnwise gives us the initial clusters that a 
// particular term belongs to 

boolean[] WhetherAssigned = new boolean[NumFeats]; 
for(int i=0; i<NumFeats; i++) // Initialization 

WhetherAssigned[i] = false; 
// Boolean array to store whether every feature has been assigned to 
// a cluster 
// After probability calculations, those features which do not co-occur 
// with any other feature, are assigned to their own clusters 

TermClusMat[0][O] = 1; // Assumption: first term belongs to first 
// cluster; value set 

WhetherAssigned[0] = true; 

double probab=0.0; 	// Will store the individual probabilities 
- double ProbabProd=1.0; //Product of individual probabilities 
double MaxProbab=0.0; // Will store maximum conditional probability 

// of term belonging to particular cluster 
int MaxCluster=-1; // Will store fmal cluster number of term 
for(int i=0; i<NumFeats; i++) 	// Column index for IntlTermClusMat 
{ 

System.out.println("i loop entered for term " + i); 
MaxProbab = 0.0; 	// Reset MaxProbab 
for(int j=0; j<NumFeats; j++) // Row index for IntlTermClusMat 
f 

System.out.println("j loop entered for cluster " + j); 
ProbabProd = 1.0; 	// Reset ProbabProd 
if(IntlTermClusMat[j][i] == 1) 
{ 

// Term i belongs to initial cluster j 
if(i==0 && j=0) 

break; 	// term 0 already assigned to cluster 0 

// Now we have to calculate probability of term i belonging 
// to cluster j 
// According to the naive bayes theory, this is given by the 
// product of the individual probabilities of term i 
// co-occurring with each term of cluster j 

for(int k=0; k<NumFeats; k++) // k is a column index 

System.out.println("k loop entered for term " + i + " with term " + k); 
if(IntlTermClusMat[j][k]=1 && i!=k) 
{ 

// term i co-occurs with term k 
vii 



Source Code Listing 

// terms i and k are distinct 
probab = CoOccToTermClus.calcCoOccProbab(i, k, CoOccMat, NumFeats); 

// 	 System.out.println("Term " + i + ", Term " + k + "co-occurrence probability: "+ 
probab); 
// 	 br.readLine(); 
// 	 To halt output for checking 

ProbabProd = ProbabProd * probab; 
} 

} 
if(ProbabProd > MaxProbab) 
{ 

MaxProbab = ProbabProd; 
MaxCluster = j; // Cluster to which probability of 

// belonging maximum 
WhetherAssigned[i] = true; 

System.out.println("ProbabProd for Term "+ i + ", Cluster " +j +": " + ProbabProd); 
f/ 	br.readLineO; 

probab = 0.0; // Reset probab 

} 
if(WhetherAssigned[i]=—hue && i►=0) // Term 0 already assigned 

TermClusMat[MaxCluster][i] = 1; 
} 

for(int i=0; i<NumFeats; i++) 

if(WhetherAssigned[i] _= false) 
{ 

TermClusMat[i] [i] = 1; 

int[][] FinalTermClusMat=new int[NumFeats + 1][NumFeats + 1]; 
// Converting to bag-of-words representtion 
// The +ls are for end markers 

int RowPtr=O; 	// Row index for FinalTermClusMat 
int Co1Ptr=0; 	// Column index for FinalTermClusMat 
booleanflag=false; // Check whether any points exist in a particular 

// initial cluster 
for(int i=0; i<NumFeats; i++) 
{ 

ColPtr = 0; // Reset ColPtr 
for(int j=0; j<NumFeats; j++) 
{ 

if(TermClusMat[i][j] _= 1) 
{ 

FinalTermClusMat[RowPtr][ColPtr] = j; 
FinalTermClusMat[RowPtr][ColPtr+1] = -1; 
// End of current cluster 
FinalTermClusMat[RowPtr+l][0] = -1; 
// End of all clusters 
flag = true; 
ColPtr++; 
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if(flag == true) 
{ 

RowPtr++; 
} 
flag = false; 

} 
RowPtr = 0; // Reset RowPtr 
return FinalTermClusMat; 

public static double calcCoOccProbab(int term 1, int term2, int[] [1  CoOccMat, int NumFeats) 
{ 

double probab=0.0; 
int MinVal=TFIDFToCoOcc.min(terml, term2); // Will store lower numbered 

//term 
int MaxVal=0; 	 // Will store higher 

// numbered term 
if(term I = Min Val) 

MaxVal term2; 
else 

MaxVal = term l; 
int numr=CoOccMat[MinVal][MaxVal]; // As it is an upper triangular 

// matrix, value will be found at 
// this location only 

// numr is the numerator term for the probability 
// No. of co-occurrences of term 1 with term2 
int denr=0; 
// denr is the denominator term for the probability, hence not 
// initialized to 0 
// No. of co-occurrences of term 1 with all other terms 
// Denominator calculation 
for(int i=0; i<term 1; i++) 
{ 

denr = denr + CoOccMat[i] [term 1]; // 0 entries (terms with which 
// term 1 does not co-occur) do 
// not affect sum 

} 
for(int jrterml+1; j<NumFeats; j++) 
{ 

denr = denr + CoOccMat[terml][j]; // 0 entries (terms with which 
// terml does not co-occur) do 
// not affect sum 

// Does not add the -1 at (i, i) position 

if(numr = 0) // Laplacian correction 
{ 

numr++; 
deny++; 

} 
if(denr !° 0) 

probab = (double)numr / (double)denr; 
else 

probab = 0.0; 

return probab; 
} 

} 
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ClusByMean.iava 

package Algorithms; 

import java.io.BufferedReader; 
import java.io.IOException; 
import java.io.InputStreamReader; 

public class ClusByMean 
{ 

public static int[][] cluster(int[][] TFIDFMat, int[][] FinalTermClusMat, int NumDocs, int 
NumFeats) throws IOException 

{ 
int[][] DCM = new int[NumDocs][3]; 
// Document Cluster Matrix 
// Column 1 will store document id 
// Column 2 will store cluster no. 
// Column 3 will store sub-cluster no. 

for(int i=0; i<NumDocs; i++) 
{ 

DCM[i][0] i; // Filling in document id 
// Remaining 2 column values are not known yet 

} 
double mean=0.0; // Will store mean TFIDF value for a cluster 
double MaxMean=0.0; // Will store max of these means to determine 

// fmal cluster 
int ctr=0; 	// Will count number of terms in cluster for 

// division of sum 
int TermNo=O; 	//.Will store term no. of term in cluster 
int vat=0; 	// Will store required TFIDF value 
int sum=0; 	// Will store sum of corresponding TFIDF values 

BufferedReader br new BufferedReader(new InputStreamReader(System.in)); 
// br may be used to halt output later for stepwise checking 

for(int i=0; i<NumDocs; i++) 
{ 

// Each document has to be put into its respective cluster 
for(int p=0; p<NumFeats; p++) 	// p is row index for 

// FinalTermClusMat, i.e., 
// cluster no. 

if(FinalTermClusMat[p][0] ° -1) // End of all clusters 
{ 

break; 
// Cannot be encountered at the very beginning in case of 
// valid FinalTermClusMat 
// Loop will compulsorily exit on break condition and not 
// on for loop completion 

) 
for(int q=0; q<NumFeats; q++) 	// q is column index for 

// FinalTermClusMat, i.e., 
// term no. 

{ 
if(FinalTermClusMat[p][q] __ -1) 
{ 

break; 	 // End of current cluster 
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// Cannot be encountered at the very beginning in case 
If of valid FinalTermClusMat 
// Loop will compulsorily exit on break condition and 
// not on for loop completion 

} 
TermNo = FinalTermClusMat[p][q]; 
ctr++; 
val = TFIDFMat[i][TermNo]; 
sum = sum + val; 

System.out.println("Sum: " + sum); 
br.readLineO; 

} 
if(ctr != 0) 
{ 

mean = (double)sum / (double)ctr; 
System.out.println("Mean: "± mean); 

} 
if(mean >= MaxMean) 
{ 

MaxMean = mean; 	// Update MaxMean 
DCM[i][1] = p; 	// Update cluster no. of document 

} 
mean = 0.0; 	// Reset mean after dealing with one 

// cluster 
sum = 0; 	// Reset sum after dealing with one 

// cluster 
ctr = 0; 	// Reset ctr after dealing with one 

If cluster 
} 
MaxMean = 0.0; 	// Reset MaxMean after dealing with 

// one document 
// 	br.readLineO; 

} 

return DCM; 
} 

} 

SubClusByShape.iava 

package Algorithms; 

import java.io.BufferedReader; 
import java.io.IOException; 
import java.io.InputStreamReader; 

public class SubClusByShape 
{ 

public static int[][] subCluster(int[][] TFIDFMat, int[][] FinalTermClusMat, int[][] DCM, int 
NumDocs,int NumFeats) throws IOException 

{ 

int[][] IDCM=new int[NumDocs][5]; // Initial Document Cluster Matrix 
// Will contain number of terms in 
// respective cluster of document 
// in 3rd column 
// Will contain shape identifiers 
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// in the fourth column 

If Copying necessary information to IDCM 
for(int i=0; i<NumDocs; i++) 
{ 

IDCM[i][0] = DCM[i][0]; 
IDCM[i][1] =DCM[i][1]; 

BufferedReader br=new BufferedReader(new InputStreamReader(System.in)); 
// br may be used to halt output later for stepwise checking 

int tempo=0; // Temporary variables for current and future use 
int tempi=0; 
int temp2=0; 
// Sorting documents by cluster 
for(int i=0; i<NumDocs; i++) 
{ 

for(int j=i; j<NumDocs; j++) 
{ 

// Clusters in ascending order 
if(IDCM[i][1] >= IDCM[j][1]) 

// Swapping first column - document id 
tempo 	= IDCM[i][0]; 
IDCM[i][0] = IDCM[j][0]; 
IDCM[j][0] = tempo; 

// Swapping second column - cluster id 
tempi 	= IDCM[i][1]; 
IDCM[i][1] = IDCM[j][1]; 
IDCM[j][1] = tempi; 

} 
} 

int C1usCtr=O; 	// Counts the number of clusters 
for(int i=O; i<NumFeats; i++) 
{ 

if(FinalTermClusMat[i][0] == -1) 
break; 

ClusCtr++; 
} 
int[] NTC=new int[ClusCtr]; // Number of Terms in Cluster 

// Array will store number of terms in each 
// cluster 

// Counting number of terms in each cluster 
int ctr=0; 	 // Counter 
for(int i=O; i<NumFeats; i++) 	// i is row index - cluster number 
{ 

if(FinalTermClusMat[i][0] _ -1) 
break; 	// End of all clusters 

for(int j=0; j<NumFeats; j++) // j is column index - term number 
{ 

if(FinalTermClusMat[i][j] = -1) 
break; // End of current cluster 

ctr++; 
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NTC[i] = ctr; // Assign ctr 
ctr = 0; 	// Reset ctr 

ctr = 0; 	// Reset ctr for future use 

String CurShape=new StringO; 
CurShape=""; 	// Initialization 
// Will store shape pattern of current document 

String[] ShapeList=new String[NumDocs ± 1]; 
// Will contain list of unique shapes, in worst case all documents 
// may have different shapes to the varying length of their clusters 
/1+1 for end marker 
// Hence the size of the array 

ShapeList[O] = "end"; // End marker - end of all shapes 
// Initially at the beginning - no shapes in 
// list 

int C1usNum=O; 	// Will store cluster number of document 
// being processed 

int term 1=0; 	// Terms used to determine up, down, or level 
int term2=0; 
int vall=0; 	// Corresponding term 1, term2 values in 
int va12=0; 	// TFIDFMat 
int ptr=0; 	// Used as index to traverse ShapeList 
// Main loop - shape processing for all documents 
for(int i=0; i<NumDocs; i++) 
{ 

ClusNum = IDCM[i] [ 1 ]; 
IDCM[i][2] = NTC[ClusNuml; 
if(IDCM[i][2] ° 1) // 1 term in cluster 
{ 

IDCM[i][3] = 0; // Shape pattern 0 corresponds to nil or no 
// shape as there is only one term in cluster 
// No further sub-cluster 

else 
{ 

int p=0; 	// Column index for FinalTermClusMat 

while(true) 
{ 

if(FinalTermClusMat[C1usNum][p+l] = -1) 
{ 

break; 
} 
term 1 = FinalTermClusMat[ClusNum] [p]; 
term2 = FinalTermClusMat[ClusNum] [p+l ]; 
val l = TFIDFMat[i] [term 1 ]; 
vaI2 = TFIDFMat[i][term2]; 
if(vall < val2) 

CurShape = CurShape + "U"; 
else if(vall > val2) 

CurShape = CurShape + "D"; 
else if(vall = val2) 

CurShape = CurShape + "L"; 
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p++; 

while(true) 
{ 

// br.readLineO; 
// Traversing ShapeList array to check whether uncovered 
// pattern new or already present in list 
if((ShapeList[ptr]).equals("end") == true) 
{ 

// End of list encountered 
// Pattern is new 
ShapeList[ptr] = CurShape; 
IDCM[i][3] = ptr; 
ShapeList[ptr + 1 ] = "end"; // Push end marker by one 
break; 

} 
else if((ShapeList[ptr]).equals(CurShape) = true) 
{ 

IDCM[i][3] = ptr; If Insert column 3 value - shape 
//pattern id 

break; 
} 
ptr++; 	// Try next shape 

ptr = 0; 	// Reset ptr 
CurShape = "; // Reset CurShape 

} 
} 

ptr=0; 

// Now we sort in ascending order of shape indices within clusters 
int temp3=0; // More temporary variables 
int temp4=0; 
for(int i=0; i<NumDocs; i++) 
{ 

for(int j=i; j<NumDocs; j++) 
{ 

if((IDCM[i][1]==IDCM[j][1]) && (IDCM[i][3J>=IDCM[j][3])) 
{ 

tempo = IDCM[i][0]; 	// Swap document id 
IDCM[i][0] = IDCM[j][0]; 
IDCM[j][0] = tempo; 

// No need to swap column I as it is equal by condition 

temp2 = IDCM[i][2]; 	// Swap number of terms in 
IDCM[i][2] = IDCM[j][2]; // cluster 
IDCM[j][2] = temp2; 

temp3 = IDCM[i][3]; 	// Swap shape id 
IDCM[i][3] = IDCM[j][3]; 
IDCM[j][3] = temp3; 

// No need to swap fifth column as it is empty 
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// Sub-clustering starts 
IDCM[O][4] = 0; // Document 1 belongs to 1st sub-cluster (Number 0) 
for(int i=1; i<NumDocs; i±+) 
{ 

if((IDCM[i][3]==IDCM[i-1][3]) && (IDCM[i][1]==IDCM[i-1][1])) 
{ 

// If shapes match and clusters match 
IDCM[i][4] = IDCM[i-1][4]; // Same sub-cluster 

} 
else if((IDCM[i] [3] !=IDCM[i- 1 ][3]) (IDCM[i][1]!=IDCM[i-1][1])) 
{ 

// If shapes do not match or clusters do not match 
IDCM[i][4] = IDCM[i-1][4] + 1; // New sub-cluster 

If Sorting documents within a particular sub-cluster by document id 
for(int i=0; i<NumDocs; i++) 
{ 

for(int j=i; j<NumDocs; j++) 
{ 

// Documents in ascending order 
if((IDCM[i][0]>=IDCM[j][0]) && (IDCM[i] [4]==IDCM[j] [4])) 
{ 

// Swapping first column - document id 
temp 1 	= IDCM[i] [0]; 
IDCM[i][0] ° IDCM[j][0]; 
IDCM[j][0] =templ; 

// Swapping second colunm - cluster id 
temp2 	° IDCM[i][1]; 
IDCM[i][1] = IDCM[j][1]; 
IDCM[j][1] = temp2; 

// Swapping third column - number of terms in cluster 
temp3 	= IDCM[i][2]; 
IDCM[i][2] = IDCM[j][2]; 
IDCM[j][2] = temp3; 

// Swapping fourth column - shape id 
temp4 	= IDCM[i][3]; 
IDCM[i][3] = IDCM[j][3]; 
IDCM[j][3] = temp4; 

// No need to swap fifth column as it is equal by condition 
} 

} 
} 

// Copying back necessary information before return to main 
for(int i=0; i<NumDocs; i++) 
{. 

DCM[i][0] = IDCM[i][0]; 
DCM[i][1] = IDCM[i][1]; 
DCM[i][2] = IDCM[i][4]; 
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return DCM; 
} 

} 

SparseMatrix.iava 

public class SparseMatrix extends AbstractMatrix { 
protected double[][] nzValues; 

protected int[] [] columnlndices; 

protected int[] nzCounters; 

/* * 
* @param colCount number of columns 
* @param rowCount number of rows 
*/ 

public SparseMatrix(int colCount, int rowCount) { 
super(colCount, rowCount); 
this.nzValues = new double[rowCount][]; 
this.columnIndices = new int[rowCount][]; 
this.nzCounters = new int[rowCount]; 

/* * 
* Gets values at specified location 

* @param column column index 
* @param row row index 
* @return value 
*/ 
public double get(int column, int row) { 

if (this.columnlndices[row] _= null) { 
return 0.0; 

int columnlndex = binarySearch(this.columnIndices[row], 0, 
this.nzCounters[row] - 1, column); 

if (columnIndex < 0) { 
return 0.0; 

} 
return this.nzValues[row] [colunmindex]; 

/** V 
* Performs a binary search for a given value in sorted integer array. The 
* only difference from <b>Arrays.binarySearch()</b> is that this function 
* gets <i>start</i> and <i>end</i> indexes. The array <strong>must</strong> 
* be sorted prior to making this call. If it is not sorted, the results 
* are undefined. 

* @param array array to scan 
* @param startIndex start index of sub-array 
* @param endlndex end index of sub-array 
* @param value key to find 

xvi 



Source Code Listing 

* @return index of the search key, if it is contained in the list; 
* 	otherwise, <tt>(-(<i>insertion point</i>) - 1)</tt>. The 

<i>insertion point</i> is defined as the point at which the key 
* 	would be inserted into the list: the index of the first element 
* 	greater than the key, or <tt>list.size()</tt>, if all elements in 
* 	the 'list are less than the specified key. Note that this 
* 	guarantees that the return value will be &gt;= 0 if and only if 
* 	the key is found. 
*/ 

private static int binarySearch(int[] array, int startlndex, int endlndex, 
int value) { 

if (value < array[startIndex]) { 
return (-startlndex - 1); 

} 
if (value > array[endlndex]) { 

return (-(endlndex + 1) - 1); 

if (startlndex == endIndex) ( 
if (array[startIndex] = value) { 

return startlndex; 

else{ 	 - 
return (-(startlndex + 1) - 1); 

} 

int midlndex = (startIndex + endlndex) / 2; 
if (value == array[midlndex]) { 

return midIndex; 

if (value < array[midIndex]) { 
return binarySearch(array, startlndex, midIndex - 1, value); 

else{ 
return binarySearch(array, midlndex + 1, endlndex, value); 

/** 

* Sets value at specified location 
* 
* @param colunm column index 
* @param row row index 
* @param value value 
*/ 

public void set(int column, int row, double value) { 
if (this.columnlndices[row] _= null) { 

// first value in this row 
this.columnIndices[row] = new int[2]; 
this.nzValues[row] = new double[2]; 
this.columnlndices[row] [0] = column; 
this.nzValues[row][0] = value; 
this.nzCounters[row] = 1; 
return; 

} 

// search for it 
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int columnlndex = binarySearch(this.columnlndices[row], 0, 
this.nzCounters[row] - 1, column); 

if (columnIndex >= 0) { 
// already setLocation, just change 
this.nzValues [row] [columnlndex] = value; 
return; 

} 
else { 

// columnIndex = (-(insertion point) - 1) 
int insertionPoint = -(columnlndex + 1); 
// allocate new arrays 
int oldLength = this.nzCounters[row]; 
int newLength = oldLength + 1; 
// check if need to allocate 
if (newLength <= this.columnIndices[row].length) { 

//just copy 
if (insertionPoint != oldLength) { 

for (int i = oldLength; i> insertionPoint; i--) { 
this.nzValues[row][i] = this.nzValues[row][i - 1]; 
this. columnIndices [row] [i] = 

this. columnIndices [row] [i - 1]; 

} 
this.columnIndices[row] [insertionPoint] = column; 
this.nzValues[row] [insertionPoint] = value; 
this.nzCounters [row]++; 
return; 

int[] newColumnlndices = new int[2 * oldLength]; 
double[] newNzValues = new double[2 * oldLength]; 

if (insertionPoint == oldLength) { 
// special case - new column is the last 
System.arraycopy(this.columnIndices[row], 0, newColumnlndices, 

0, oldLength); 
System.arraycopy(this.nzValues[row], 0, newNzValues, 0, 

oldLength); 
} 
else { 

System.arraycopy(this.columnlndices[row], 0, newColunmindices, 
0, insertionPoint); 

System.arraycopy(this.nzValues[row], 0, newNzValues, 0, 
insertionPoint); 

System.arraycopy(this.columnlndices[row], insertionPoint, 
newColumnlndices, insertionPoint + 1, oldLength 
- insertionPoint); 

System.arraycopy(this.nzValues[row], insertionPoint, 
newNzValues, insertionPoint + 1, oldLength 
- insertionPoint); 

newColumnlndices[insertionPoint] = column; 
newNzValues[insertionPoint] = value; 
this.columnlndices[row] = null; 
this. columnIndices[row] = newColumnIndices; 
this.nzValues[row] = null; 
this.nzValues[row] = newNzValues; 
this.nzCounters[row]++; 
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/** 
* Dump to standard output 
*/ 

public void dump() { 
System.out.println("MATRIX " + this.rowCount + "*" + this.colCount); 
for (int row = 0; row < this.rowCount; row++) { 

int[] columnlndices = this.columnlndices[row]; 
if (columnlndices = null) { 

for (int col = 0; col < this.colCount; col++) { 
System.out.print("0.0 "); 

} 
else { 

int prevColumnlndex = 0; 
for (int collndex = 0; 

colIndex < this.nzCounters[row]; colIndex++) { 
int currColumnlndex = columnlndices[collndex]; 
// put zeroes 
for (int col = prevColumnlndex; 

col < currColumnlndex; col++) { 
System. out.print("0.0 U); 

} 
System.out.print(this.nzValues[row][collndex] + " "); 
prevColumnlndex = currColumnlndex + 1; 

} 
// put trailing zeroes 
for (int col = prevColumnlndex; col < this.colCount; col++) { 

System. out.print("0.0 "); 

System. out.println(); 
} 

} 

/* * 
* Dump to standard output as integer values 
*/ 

public void dumpint() { 
System.out.println("MATRIX " + this.rowCount + "*" + this.colCount); 
for (int row = 0; row < this.rowCount; row++) { 

int[] columnlndices = this.columnlndices[row]; 
if (columnlndices = null) { 

for (int col = 0; col < this.colCount; col++) { 
System. out.print("O "); 

} 
else { 

int prevColumnlndex = 0; 
for (int collndex = 0; 

collndex < this.nzCounters[row]; colIndex++) { 
int currColumnlndex = columnlndices[collndex]; 
// put zeroes 
for (int col = prevColumnIndex; 

col < currColumnlndex; col++) { 
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System.out.print("0 "); 
} 
System.out.print((int) this.nzValues[row][collndex] ±" 
prevColumnIndex = currColumnIndex + 1; 

} 
// put trailing zeroes 
for (int col = prevColumnIndex; col < this.colCount; col++) { 

System.out.print("0 "); 

System. out. p rintlnO; 
} 

} 

/** 

* Add empty (zero) columns to this matrix 

* @param columns number of columns to add 
*/ 

public void addEmptyColumns(int columns) { 
// just as easy as that 
this.colCount += columns; 

* Multiply this matrix by the specified column of another matrix. The 
* operation is linear in terms of count of non-zero values in the matrix 

* @param matrix the second matrix 
* @param column column index in the second matrix 
* @return vector result 
*/ 

public double[] multiply(Matrix matrix, int column) { 
if (this.getColumnCountO != matrix.getRowCountO) 

return null; 
} 
int n = this.getRowCountO; 
double[] result = new double[n]; 
for (int row = 0; row < n; row++) { 

double sum = 0.0; 
// go over all non-zero column of this row 
int[] nzlndexes = this.columnIndices[row]; 
int nzLength = nzCounters[row]; 
if (nzLength == 0) { 

continue; 
} 
for (int collndex = 0; collndex < nzLength; colIndex++) { 

double c = matrix.get(column, nzlndexes[collndex]); 
sum += (this.nzValues[row][collndex] * c); 

result[row] = sum; 
} 
return result; 
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* Get a column-wise representation of this matrix 

* @return column-wise matrix 
*1 

public SparseColumnMatrix getAsColumnMatrixO { 
SparseColumnMatrix result = new SparseColumnMatrix(this.colCount, 

this.rowCount); 
for (int row = 0; row < this.rowCount; row++) { 

int nzLength = nzCounters[row]; 
if (nzLength = 0) { 

continue; 
} 
for (int collndex = 0; collndex < nzLength; colIndex++) { 

int column = this.columnIndicesjrow][collndex]; 
result.set(column, row, this.nzValues[row] [colIndex]); 

return result; 
} 

public int getNzCount() { 
int allNz = 0; 
for (int i : this.nzCounters) { 

allNz += i; 
} 
return allNz; 
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COMMON STOPWORDS IN ENGLISH 

a 
according 
after 
ahead 
almost 
also 
amidst 
another 
anything 
appear 
around 
associated 
b 
became 
been 
being 
better 
but 
cannot 
causes 
c'mon 
comes 
contain 
couldn't 
dare 
did 
does 
down 
edu 
else 
entirely 
ever 
everything 
except 
few 
followed 
former 
four 

able 
accordingly 
afterwards 
ain't 
alone 
although 
among 
any 
anyway 
appreciate 
as 
at 
back 
because 
before 
believe 
between 
by 
cant 
certain 
co 
concerning 
containing 
course 
daren't 
didn't 
doesn't 
downwards 
eg 
elsewhere 
especially 
evermore 
everywhere 
f 
fewer 
following 
formerly 
from 

about 
across 
again 
all 
along 
always 
amongst 
anybody 
anyways 
appropriate 
aside 
available 
backward 
become 
beforehand 
below 
beyond 
c 
can't 
certainly 
co. 
consequently 
contains 
c's 
definitely 
different 
doing 
during 
eight 
end 
et 
every 
ex 
fairly 
fifth 
follows 
forth 
further  

above 
actually 
against 
allow 
alongside 
am 
an 
anyhow 
anywhere 
are 
ask 
away 
backwards 
becomes 
begin 
beside 
both 
came 
caption 
changes 
corn 
consider 
corresponding 
currently 
described 
directly 
done 
e 
eighty 
ending 
etc 
everybody 
exactly 
far 
first 
for 
forward 
furthermore 

abroad 
adj 
ago 
allows 
already 
amid 
and 
anyone 
apart 
aren't 
asking 
awfully 
be 
becoming 
behind 
besides 
brief 
can 
cause 
clearly 
come 
considering 
could 
d 
despite 
do 
don't 
each 
either 
enough 
even 
everyone 
example 
farther 
five 
forever 
found 
g 
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get 
go 
gotten 
half 
have 
he'll 
here 
hereupon 
him 
how 
I'd 
I'm 
inc. 
inner 
is 
its 
just 
know 
lately 
less 
liked 
looking 
m 
many 
mean 
mightn't 
moreover 
much 
n 
necessary 
never 
ninety 
nonetheless 
nothing 
0 

oh 
once 
onto 
otherwise 
ourselves 
P 
perhaps 

gets 
goes 
greetings 
happens 
haven't 
hello 
hereafter 
hers 
himself 
howbeit 
ie 
immediate 
indeed 
inside 
isn't 
it's 
k 
known 
later 
lest 
likely 
looks 
made 
may 
meantime 
mine 
most 
must 
name 
need 
nevertheless 
no 
no-one 
notwithstanding 
obviously 
ok 
one 
opposite 
ought 
out 
particular 
placed  

getting 
going 
h 
hardly 
having 
help 
hereby 
herself 
his 
however 
if 
in 
indicate 
insofar 
it 
itself 
keep 
knows 
latter 
let 
likewise 
low 
mainly 
maybe 
meanwhile 
minus 
mostly 
mustn't 
namely 
needn't 
new 
nobody 
nor 
novel 
of 
okay 
ones 
or 
oughtn't 
outside 
particularly 
please 

given 
gone 
had 
has 
he 
hence 
herein 
he's 
hither 
hundred 
ignored 
inasmuch 
indicated 
instead 
it'd 
i've 
keeps 
I 
latterly 
let's 
little 
lower 
make 
mayn't 
merely 
miss 
mr 
my 
near 
needs 
next 
non 
normally 
now 
off 
old 
one's 
other 
our 
over 
past 
plus 

gives 
got 
hadn't 
hasn't 
he'd 
her 
here's 
hi 
hopefully 
i 
i'll 
inc 
indicates 
into 
it'll 
J 
kept 
last 
least 
like 
look 
ltd 
makes 
me 
might 
more 
mrs 
myself 
nearly 
neither 
nine 
none 
not 
nowhere 
often 
on 
only 
others 
ours 
overall 
per 
possible 
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presumably probably provided provides q 
queue quite qv r rather 
rd re really reasonably recent 
recently regarding regardless regards relatively 
respectively right round s said 
same saw say saying says 
second secondly see seeing seem 
seemed seeming seems seen self 
selves sensible sent serious seriously 
seven several shall shan't she 
she'd she'll she's should shouldn't 
since six so some somebody 
someday somehow someone something sometime 
sometimes somewhat somewhere soon sorry 
specified specify specifying still sub 
such sup sure t take 
taken taking tell tends th 
than thank thanks thanx that 
that'll thats that's that've the 
their theirs them themselves -then 
thence there thereafter thereby there'd 
therefore therein there'll there're theres 
there's thereupon there've these they 
they'd they'll they're they've thing 
things think third thirty this 
thorough thoroughly those though three 
through throughout thru thus till 
to together too took toward 
towards tried tries truly try 
trying is twice two - u 
un under underneath undoing unfortunately 
unless unlike unlikely until unto 
up upon upwards us use 
used useful uses using usually 
v value various versus very 
via viz vs w want 
wants was wasn't way we 
we'd welcome well we'll went 
were we're weren't we've -what 
whatever what'll what's what've 
when whence whenever where whereafter 
whereas whereby wherein where's whereupon 
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wherever whether which whichever while 
whilst whither who who'd whoever 
whole who'll whom whomever who's 
whose why will willing wish 
with within without wonder won't 
would wouldn't x y yes 
yet you you'd you'll your 
you're yours yourself yourselves you've 
z zero 
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