
MULTICORE PARALLELIZATION OF AN INDEXER
IN QUESTION ANSWERING SYSTEM

AND PAGE RANK ALGORITHM

A DISSERTATION
Submitted in partial fulfillment of the

requirements for the award of the degree
of

MASTER OF TECHNOLOGY
in

COMPUTER SCIENCE AND ENGINEERING

TARUPi KUMAR~'-'—~~

'~►. seesfre~►

DEPARTMENT OF ELECTRONICS AND COMPUTER ENGINEERING
INDIAN INSTITUTE OF TECHNOLOGY ROORKEE

ROORKEE -247 667 (INDIA)
JUNE, 2009

Candidate's Declaration

I hereby declare that the work being presented in the dissertation report titled "Multicore

Parallelization of an Indexer in Question Answering System and PageRank

Algorithm" in partial fulfillment of the requirement for the award of the degree of

Master of Technology in Computer Science and Engineering, submitted in the

Department of Electronics and Computer Engineering, Indian Institute of Technology

Roorkee, is an authentic record of my own work carried out under the guidance of Dr.

Ankush Mittal, Associate Professor in Department of Electronics and Computer

Engineering, Indian Institute of Technology Roorkee. I have not submitted the matter

embodied in this dissertation report for the award of any other degree.

`'aw lh ~ AvnAK
Dated: 	(O' O 6 — 05 	 (Tarun Kumar)
Place: IIT Roorkee

Certificate
This is to certify that above statements made by the candidate are correct to the best of

my knowledge and belief.

Dated:

Place: IIT Roorkee.

D 	nkush Mittal,

Associate Professor,

Department of Electronics

and Computer Engineering,

IIT Roorkee, Roorkee,

247667 (India).

F

ACKNOWLEDGEMENTS

I am thankful to Indian Institute of Technology Roorkee for giving me this opportunity. It

is my privilege to express thanks and my profound gratitude to my supervisor Dr. Ankush

Mittal, Associate Professor for his invaluable guidance and constant encouragement

throughout the dissertation. I was able to complete this dissertation in time due to the

constant motivation and support received from him.

I am also grateful to Mr. Parikshit Sondhi, Ph. D Scholar in Department of Computer

Science, University of Illinois at Urbana Champaign for helping me understand some

basic and important concepts explored in the dissertation work. His valuable help and

constant support proved immensely beneficial for my work so did his ability to motivate

me. I am grateful to Mr. Salil Shirish Sahasrabudhe, Mr. Khalil Sawant, Mr. Kshitiz Gupta,

Mr. Nityam Parakh and Mr. Payas Goyal, my colleagues, for being excellent peers and

creating a congenial environment for work. I am also thankful to all my friends who helped

me directly and indirectly in completing this dissertation.

Most importantly, I would like to extend my deepest appreciation to my family for their

love, encouragement and moral support.

(Tarun Kumar)

ii

ABSTRACT

Explosive growth of information over internet and increasing number of users of WWW

are throwing major challenges to the web applications. In order to deal with this growth,

web applications are utilizing increased processing hardware. The need of hardware is

currently served by connecting thousands of computers in cluster. But faster and less

complex alternatives to this system can be found as a multi-core processor. A recent

breakthrough with introduction of the STI Cell Processor and GPU multiprocessors has

provided a new alternative for the researchers to port computationally intensive

applications on them.

A question answering system is an information retrieval application which allows users to

directly obtain appropriate answers to a question. Over the time, in order to provide more

accurate and relevant answer, processing stages in question answering systems have

increased many times. Tasks like indexing a huge document set and retrieving answer to

the user query are highly computational intensive and consume significant processing

time. As a part of this dissertation we identify major issues involved in porting a general

question answering framework on Cell processor and their possible solutions. The work

is evaluated by porting the indexing algorithm of a biomedical question answering

system, INDOC (Internet Doctor) on Cell processor.

In order to provide most relevant results to a search query, search engine Google

implemented a ranking technique (called PageRank algorithm) for assigning ranks to all

web pages. Page rank of a particular web page is determined by page rank of all those

web pages which are pointing to this web page. 'Besides this, PageRank algorithm works

upon a large number of web pages. Thus the PageRank calculation is computational

intensive. In this dissertation we identify major issues involved in porting PageRank

algorithm on Cell BE Processor and CUDA, and their possible solutions. The work is

evaluated by taking three input graphs of different size ranging from 0.35 million nodes

to 1.3 million and comparing results with previous implementation of PageRank on Cell

BE.

111

Table of Contents

Candidate's declaration......... 	i
Acknowledgements ...ii
Abstract..iii
Tableof Contents ..iv
Listof figures ..vi
Listof tables ..vii

1. Introduction 	 1

1.1 Question Answering System 	 1
1.2 PageRank Algorithm 	 . 2
1.3 Multicore Processor 	 2
1.4 Problem Statement 	 3
1.5 Organization of Report 	 3

2. Multi-core Processors 	 5
2.1 STI CELL Broadband Engine 	 5
2.2 CUDA (Compute Unified Device Architecture) 	 8

3. Question-Answering System and PageRank 	 13

3.1 Question Answering System 	 13

3.2 Issues of porting a QA system on Cell BE processor 	 14

3.3 Potential solutions to the issues 	 15

3.4 PageRank algorithm 	 16
3.5 Implementation issues of PageRank on Cell Processor 	 18

3.6 Possible Solution to the issues 	 19

iv

4. INDOC — Indexing on Cell Processor 	 20
4.1 INDOC- Introduction 20

4.2 INDOC — Indexing 21

4.3 Design and Implementation OF INDOC Indexing algorithm on CELL BE 24

4.4 General observations 27

4.5 Results 27

5. PageRank on Cell BE Processor 	 30
5.1 PageRank 	 30

5.2 Link Structure of Web 	 31

5.3 Algorithm 	 33

5.4 Design and Implementation of PageRank on cell BE Processor 	33

5.5 Results 	 39

6 PageRank on CUDA 	 42

6.1 Issues of implementing PageRank on CUDA 	 42

6.2 Design and Implementation on CUDA 	 42

6.3 Results 	 45

7 Conclusion and Future work 	 48

References 	 50

Publication 	 53

v

List of Figures

Fig.2.1 	Architecture of Cell BE Processor ..6
Fig 2.2 Comparison of floating point operations per seconds on GPU and CPU.........9
Fig 2.3 Comparison of number of transistor devoted to CPU and GPU9
Fig 2.4 A grid of thread blocks and block of threads ...10
Fig 2.5 Memory hierarchy which can be accessed by threads11
Fig 2.6 Overall program flow in CUDA 	...12
Fig 4.1 Complete Architecture of the INDOC ..20
Fig 4.2 Indexing Algorithm of INDOC ..23
Fig 4.3 Working of a PPE PThread ..25
Fig 4.4 File read operation by SPE and signaling to PPE for next read26
Fig 4.5 Comparison of time with number of SPUs:............29
Fig 5.1 Rank contribution from one page-to another31
Fig 5.2 Structure of text file containing web graph ...32
.Fig 5.3 Algorithm of PageRank calculation ...33
Fig 5.4 Overall working of cell processor for PageRank Algorithm37
Fig 5.5 Synchronization between PPE thread and SPE38
Fig 5.6 Data flow in memory between PPE and SPE40
Fig 5.7 Comparison of time between XEON and CELL BE processor41
Fig 6.1 An example showing the division of work between GPU and CPU............44
Fig 6.2 Program flow of PageRank calculation on CUDA ..46
Fig 6.3 Comparison of timing on Xeon and CUDA processors47
Fig 6.4 Comparison of timing on Xeon and CUDA and Cell BE processors47

vi

List of Tables

Table 4.1 	Comparison of execution times ...28
Table 4.2 Table showing low variation in Speedup when all documents are

ofsame size ..29
Table 5.1 Comparison of timing of PageRank implementation on

Xeon and Cell processor d their associated protocols41

vii

CHAPTER 1

INTRODUCTION

1.1 Question Answering System

Question Answering (QA) systems represent the next step in information retrieval

applications as they allow users to directly obtain answers to questions rather than

following the search engine style approach of returning a list of documents for queries.

QA system has to deal with wide variety of question like fact, list, definition, how, why

etc. There are two types of QA systems: Closed domain QA systems which deal with

questions under a specific domain such as medicines and Open domain QA systems

which deal with questions about everything [1]. A general QA system framework usually

involves steps such as document preprocessing, parsing, indexing, question classification,

question keyword weighing, document ranking and answer extraction. Thus, there is

often a deeper level of document and question processing involved both in the indexing

and retrieval stages. While such an extended pipeline of NLP operations greatly helps in

improving accuracy, it also greatly increases the time and processing power required for

indexing and retrieval operations. This makes it infeasible to run sophisticated

information extraction systems over very large corpora where these operations are really

required.

A rapid increase in size of document set and information has led to a huge growth in

WWW in recent years: If we talk about a particular domain, say biomedical literature

where there are currently an estimated 17 million citations in PUBMED [2], the current

breed of search engines have been proven to be grossly inadequate [3] as they lack the

knowledge of biomedical terminology [4]. As a solution to these problems, [5] suggests a

biomedical question answering system— INDOC , which is designed and developed at IIT

Roorkee. It is based on the novel idea of indexing, document ranking and extracting the

answer to the question posed. The system achieves an accuracy of 76% over first five
documents and increases up to 83% for 50 documents retrieved. However, the drawback

of this algorithm is that it is slow to be used because of the large document set to be

1

processed. Beside this, the number of searches. on biomedical domains has been increased

rapidly to nearly 120 million searches yearly on PUBMED database alone [6]. In order

to reduce the response time to these many queries, QA system should be fast at query
processing and answer extraction. Besides this, as the document set increases rapidly in
size, indexing of these document set need to be done more frequently in order to produce

more accurate results. In this dissertation, we focus on a faster implementation of
indexing module of INDOC.

1.2 PageRank Algorithm

The most used search engine, Google produces high precision results. The main reason of

its better results is the use of link structure of web to calculate a quality ranking for each

web page. This ranking technique is called PageRank [7]. PageRank assigns a relative

importance called rank of the page, to each web page. Rank of a particular web page
depends upon the rank of the web pages which are linked to this page. Higher the page

rank more important is the page. PageRank approach, introduced in [8] has been the most

successful ranking technique for determining the relative importance of web pages.

PageRank algorithm itself is computational intensive and it has to work upon billions of

web pages. It takes time in order of days to solve the PageRank algorithm [9]. Web pages

are updated, added, removed to and from WWW continually, therefore the frequent

computation of rank of pages is required. Besides this, some applications of PageRank

like topic sensitive search and personalized web search require large number of page rank

scores recomputed to reflect the user preferences [10]. Thus, some new ways to calculate

rank of web pages in minimum possible time are always sought. Different possibilities

and ways have been devised to reduce the time to solve PageRank algorithm like

reducing I/O time of disk, improving convergence rate of algorithm, and calculating

PageRank of web pages in parallel on a cluster of computers. An alternative approach can

be thought in the form of multicore processors like. Cell Processor and GPU. We have

explored this approach in our dissertation.

2

1.3 Multicore Processor
A multicore processor is an integrated circuit to which two or more processors have been

attached for enhanced performance, reduced power consumption, and more efficient
simultaneous processing of multiple tasks [11]. Multicore processors can be used for the

type of problems which are computationally intensive. They can provide a significant
amount of performance gain as compared to the uniprocessor. Different multicore

processors differ to each other in terms of memory organization, communication between

different cores, processing units, type of parallelization etc. The Cell Broadband Engine

(Cell BE) processor is a multicore processor. It is designed with the computationally

intensive applications in mind and is often used to achieve real time processing and

reduce the execution time considerably for various applications. GPU (Graphics

Processing Unit) is also a multicore processor. It is a highly parallel, multi-threaded

processor with tremendous computing power. GPUs were designed to work on images

and graphics oriented applications. CUDA (Compute Unified Device Architecture)

provides a programming environment which facilitates programmer to design general

purpose applications on GPU. We will explore these two multicore architectures in the

present work.

1.4 Problem Statement
In this dissertation work we

1. Identify major issues involved in porting a general Question Answering framework
on a Cell BE processor and propose potential solutions to these issues. The evaluation

of these solutions is done by porting indexing algorithm of a biomedical QA system,

INDOC on Cell BE processor.

2. Identify the issues and their possible solution of porting PageRank algorithm on Cell

BE Processor followed by the implementation of PageRank algorithm on Cell BE.

We also provide an implementation of PageRank algorithm on CUDA.

1.5 Organization of Report
Chapter 2 discusses the hardware architecture of the multicore processor STI Cell BE. It

also provides a brief introduction about GPU and CUDA.

3

Chapter 3 discusses the background details of a Question Answering system and

PageRank algorithm. It also points out the issues of implementing a general QA system

and PageRank algorithm on Cell BE processor, and then provides solutions to those
issues.

Chapter 4 discusses the indexing algorithm of a Biomedical Question Answering system-

INDOC and then describes implementation of this indexing algorithm on Cell BE

Processor. It also shows the performance of Cell BE processor on indexing algorithm.

Chapter 5 discusses the PageRank algorithm, link structure of web and describes design

and implementation of PageRank algorithm on Cell BE processor. It also shows the

performance of Cell BE processor on PageRank algorithm.

Chapter 6 provides the design and implementation details of PageRank algorithm on

CUDA and compare it with results on Cell BE Processor.

Chapter 7 concludes the dissertation work and gives suggestions for future work.

t

n

CHAPTER 2

MULTICORE PROCESSORS

A multicore processor is a processing system composed of two or more independent
cores (or CPUs). The cores are typically integrated onto a single integrated circuit die. In

this chapter we are going to describe two multicore architectures- STI Cell BE and

CUDA.

2.1 STI Cell Broadband Engine

Cell Broadband Engine (Cell BE) is a joint venture of Sony, Toshiba and IBM.

Corporation formed in 2001. This collaboration of three companies is known as STI. The

Cell BE processor is the first implementation of a new family of multiprocessors

conforming to the Cell Broadband Engine architecture which extends 64 bit Power PC

Architecture.

2.1.1 Cell BE Architecture

The Cell BE [12] is a heterogeneous multicore chip that is significantly different from

conventional multiprocessors. Architecture of Cell BE is shown in figure 2.1. It consists

of a central microprocessor called the Power processing element (PPE), eight SIMD co-

processing units called synergistic processor elements (SPE), a high speed memory

controller, and a high bandwidth bus interface, all integrated on a single chip. The Cell

BE operates on the fundamentals of increasing concurrency through the use of multiple

processing cores and increasing specialization in execution through non-homogeneous
parallelization. It employs 8 SPEs onto which threads of an application can be mapped

parallely and controlled by PPE. PPE and SPEs communicate through a common- internal

high-speed Element Interconnect Bus (EIB). The SPE offers a high bandwidth interface

to a direct memory access (DMA) that can transfer 32 GB/sec to and from the 256 KB

local store memory. The Cell BE has clock speed of 3.2 GHz.

5

Power Processor Element (PPE)
(64 bit PowerPC with VMX)

1/O
Controiler 	 Memory

Controller 	 RAM

— 	I/O
Controller

SPE 1

Memory
Controller LRAM 1

SPE 2

SPE3

SPE 4

S5
E16 	

PE

SPE 6

SPE 7

SPE D

Figure 2.1: Architecture of Cell BE Processor [13]

Power Processor Element (PPE)

PPE is responsible for overall control of Cell BE. It runs an operating system, manages

system resources, and is intended primarily for control processing, including the

allocation and management of SPE threads. It has 32KB L I instruction cache, 32KB L I

data caches and 512 KB L2 instruction and data cache. The instruction set for PPE is an

extension of the PowerPC instruction set. It also includes a vector multimedia extension

unit, called Single Instruction, Multiple Data (SIMD), so that it can do multiple

operations simultaneously with a single instruction.

Synergistic Processor Element (SPE)

Eight homogeneous SPEs are Single Instruction Multiple Data (SIMD) processor

elements that are optimized for data-rich operations allocated to them by PPE. It consists

of two main units, the Synergistic Processor Unit (SPU) and the Memory Flow Controller

(MFC). The SPE deals with instruction control and execution. It includes mainly a single

G

register file with 128 registers (each one 128 bits wide), a unified (instructions and data)
256-KB local store (LS), an instruction-control unit, a load and store unit, and DMA

interface. The SPE implements a new SIMD instruction set, the SPE Instruction Set

Architecture. The MFC contains a DMA controller that supports DMA transfers.

Programs running on the SPE use the MFC's DMA ' transfers to move instructions and

data between the SPE's LS and main storage. To support DMA transfers, the MFC

maintains and processes queues of DMA commands. After a DMA command has been

queued to the MFC, the SPE can continue to execute instructions while the MFC

processes the DMA command autonomously and asynchronously.

Element Interconnect Bus (EIB)

The EIB is a communication bus, internal to the Cell BE processor which connects

various on-chip system elements: the PPE processor, the memory controller (MIC), eight

SPE processors, and two off-chip I/O interfaces, for a total of 12 participants.

2.1.2 Level of parallelism in Cell BE

Cell BE offers several level of parallelism to achieve high performance such as.

• SIMD processing

• Multithreading

• Double Buffering

• Multiple execution units with heterogeneous architectures

2.1.3 Cell BE Programming

Programming on Cell BE involves developing two separate set of codes, one that is

executed on PPE and another for SPE. Execution of program starts with PPE code. PPE

creates threads and load the SPE code onto SPEs for execution. Different SPEs may run

same program or they may have separate programs. PPE manages data, input/output for

all SPEs. Main programming components of Cell BE involve SIMD instructions, DMA

transfer and mailbox.

7

SIMD

Both the PPE and SPE support parallel processing of SIMD (Single Instruction Multiple

Data). They can execute four single precision floating-point operations in one cycle.
Loop unrolling is also preferred on both PPE and SPEs. One SPE has 128 registers of 128

bit which can provide deeper level of loop unrolling and support for SIMD operations.

Branches on Cell BE are expensive and each branch mis-prediction results in loss of 18

cycles. This also forces a programmer to use loop unrolling sothat number of branches in

loop can be reduced.

ICU

DMA is an operation which is used to transfer data between main memory and local store

of SPE. SPEs can use this to directly access the main memory in parallel to its execution.

The instruction set for DMA operations provides a lot of flexibility to double buffer the

memory operations and program execution. DMA transfer can be initiated either from

PPE or SPE. PPE initiated DMA transfer have more latency than the SPE initiated DMA

transfer. DMA transfer can take place between main memory and local store or between

local-store of one SPE to another.

Mailbox
The communication between any two SPEs or SPE and PPE can be done with the help of

mailbox. Mailboxes are considered from the point of view of SPEs. Each SPE has three

mailboxes. Two mailboxes are used for sending data from SPE to PPE or other SPE, and

third is used for sending data from PPE to SPE.

2.2 GPU and CUDA

GPU (Graphics Processing Unit) is a highly parallel, multi-threaded and many-core

processor with tremendous computing power. Over the past few years the capabilities of

GPU have increased drastically and performance has been increasing many folds

compared to CPUs. Figure 2.2 shows a comparison of floating point operations per

second on CPU and GPU [14].

i)00 GT200

--+-NVIDIA GPU

—f.Int.t CPU G80 G92 7 750 Ultra
a G80
0 J

500

•
G71

a
250

G70
W3o 	

NV40 3.2 GHz
3.0 GHz Harpertown

N'V30 Core2 Duo

0

Jan Jun 	Apr Jun 	Mar 	Nov May Jun
2003 	2004 2005 	2006 	2007 2008

Figure2.2: Comparison of floating point operations per seconds on GPU and CPU [14]

The reason behind the better capability of GPU over CPU is that GPU is specially

designed for computation in such a way that more transistors are devoted to computation

rather than flow control and caching. Figure 2.3 shows that transistors for ALU (in green

color) are more in GPU than CPU. Besides this, GPU is specially designed to address the

problems which require data parallel computation.

Control 	ALU ALU

ALU ALU

Cache

DRAM DRAM

CPU 	 GPU

Figure2.3: Comparison of number of transistor devoted to CPU and GPU [14]

GPU has evolved from special purpose processor to a programmable processor. Until

recently a graphics API was needed to code on GPUs which made coding for non

graphics oriented calculations tough. NVIDIA removed this limitation of programming

and introduced a new programming environment known as CUDA (Compute Unified

A"

Device Architecture). CUDA provides access to the native instruction set and memory of

the parallel computational elements in GPUs [14].

2.2.1 CUDA Programming Environment

NVIDIA developed a programming environment for CUDA that uses an extension to C

language. CUDA programming model emphasizes on mainly two goals. It extends the

C/C++ language to ease the programming, and it is designed for writing scalable code

which can run simultaneously on tens of thousands of threads running in parallel.

A CUDA program is organized into a host program having a main thread of execution

running on CPU, and kernel programs which run on GPU device and invoked by main

thread of host. A kernel program is executed by a set of parallel threads. These threads

are spawns by the host program at the time of kernel invocation. The threads, thus

spawned are organized into a grid of blocks. Each block can contain maximum 512

numbers of threads. This organization is shown in the figure 2.4.

Grid

Block

1JJiJJJJ
Block

JJ!JJJJJJJ
Block

JJJJJJJJJJJ
Block (0, 1)- Block (1, 1)

IJJJJL
'•t}lock (2, 1)

Block (1, 1)

Thread (2, 0) (3,

1
read (1, 0)

___ ___ ___

Thread (0, 1) Thread (1, 1) Thread (2, 1) Thread (3, 1

Thread (3, ?l Thread (0, 2) Thread (1, 2) Thread (2, 2)

Figure 2.4: A grid of thread blocks and block of threads [14]

10

A GPU consists of some number of multiprocessors in it. Each multiprocessor consists of

eight scalar processors. Host program invokes kernel and spawns threads. Threads are

organized at the time of kernel invocation into a number of blocks such that each block

contains same number of threads. All the bocks generated are enumerated and distributed

to the multiprocessor. Block is further divided into groups of 32 threads. These groups

are known as warp. Threads of a warp execute concurrently on a multiprocessor. As soon

as execution of one block finishes and multiprocessor become vacant new thread block is

launched on vacated multiprocessor.

There are three memory spaces which are accessed by threads of GPU. Figure 2.5 shows

the memory hierarchy of the GPU. Each thread has its own memory called local memory.

Threads in a block can share a memory which is called shared memory. Threads of one

block cannot have access to the shared memory of other block. The third type of memory

called global memory. All the threads running on GPU have access to the global memory.

Memory bandwidth of these memories is different [14].

Thread

_ Per-thread local
memory

Thread Block

Per-block shared
memory

4

Grid 0

Black (0, 0) 	Block .'1, 0) 	Block (2, O)

IIIiJJiJIJIZ ø1iJJflSI 1flJJJ11J
Block (0, 1) 	8kxk 1, 1) 	Block (2, 1)

1JØ#.JJ5 JJiJiJ11 JIJ31J5JJflJ
Global memory

Figure 2.5: Memory hierarchy which can be accessed by threads [14]

2.2.2 Program Execution on CUDA

A CUDA Program is divided into a host program and several kernel programs. Host

program is run by CPU; kernel programs run on GPU. These kernels are invoked by host

program as and when required. Although the host program uses the legacy C/C++

constructs but kernel program uses extended C/C++ language function. The overall

program flow on CUDA is shown in figure 2.6. The data to be used by kernels is copied

to the GPU memory space from main memory. As soon as CPU invokes a kernel, all the

threads specified in invocation are created and start execution of the kernel code

parallely. After the calculation of all kernels is finished result is copied back to the main

memory [15].

Main
Memory (T) 	CPU

processing

Instruct the processing

4
2

Copy the result
Memory

for GPU

GPU 	 Execute parallel
in each core

® 3

Figure 2.6: Overall program flow in CUDA [15]

12

CHAPTER 3

QUESTION-ANSWERING SYSTEM AND PAGERANK
ALGORITHM

3.1 Question Answering System

A Question Answering (QA) system is considered a next step to the search engine for

retrieving information. Unlike to the search engine which produce information in the
form of links to documents, a QA system generate a precise answer to the question posed.

A QA system is considered more complex than a search engine because of extra steps

such as document preprocessing, parsing, indexing, question classification, question

keyword weighing, document ranking and answer extraction. Since, effectiveness of a

QA system highly depends upon the size of corpus therefore, domain specific QA

systems are more likely to be efficient and popular [16].

There has been going a research on QA system for a long time but accuracy and
relevance of answer generated to the question is always a matter of interest. A biomedical

QA system — INDOC [5], which is designed and developed at IIT Roorkee and is based

on the novel ideas of indexing, document ranking and extracting the answer to the

question posed. The system achieves an accuracy of 76% over first five documents and

increases up to 83% for 50 documents retrieved.

Though the results produced by this QA system are satisfactory in terms of relevance and

accuracy, yet it suffers from problem of high response time. In order to reduce the

response time, answer retrieval processing should be fast. Besides this, QA systems may

have to face another challenge. They need to index a large document set and documents
are parsed Iine by line, therefore, time of processing is very high. Incremental nature of

document set produces the need of frequent indexing of document set.

One possible solution to reduce the time of processing is to make a cluster of thousands

of computers and run QA system on that [17]. Though the scheme is used widely and
considered successful yet it is proved a very complex and costly approach. Beside this,

13

computers in a cluster are connected through a high speed network, which causes a delay
and hence, a bottleneck in performance. The technology of cluster can be replaced with a

Multicore processor. Cell BE and GPU as discussed in previous chapter have proved very
effective in high computational algorithms.

In chapter 4, we provide the implementation of INDOC indexing algorithm on Cell BE
Processor.

3.2 Issues of porting a QA system on Cell BE processor
We now enumerate various issues that arise during porting of a_ QA system on Cell

processor.

1. Each SPE of Cell BE has 256KB local store. This local store is shared by code

segment and data segment. This limited memory may not allow the entire document to
fit on SPE store.

2. The SPEs cannot directly read or write a file. This means that the PPE needs to read

files for all SPEs, the SPEs then perform the task of indexing and send back the output

to the PPE. Thus, it can potentially become a bottleneck if all these operations are not

performed efficiently enough.

3. The NLP toolkits such as the MMTX server [18] are not implemented for the Cell BE

processor. Porting them is non-trivial task. Thus these toolkits need to run on the PPE

which makes it a bottleneck and puts severe limitations on the amount of gain that

could be achieved. Moreover, the APIs provided by MMTX are in Java which cannot

be accessed through C/C++.

4. Unlike the multimedia or scientific computing domains where the -Cell BE has been

largely successful, information retrieval applications tend to involve a lot more of string

processing over variable sized strings rather than mathematical calculations over mostly

fixed sized matrices or arrays. We thus need to come up with efficient ways leveraging

the unique capabilities of Cell BE such as vector processing to manipulate strings.

14

5. The sizes of the documents involved may also vary considerably. This issue needs to

be taken into consideration while designing the overall approach. Otherwise, it may

lead to severe load imbalances across SPEs.
6. Work allocation by the PPE has to be done in a way that vouches to keep SPEs equally

busy for maximum amount of time.

7. To send a document in parts from PPE to SPE synchronization is required between

them.

8. It should be noted that the task at hand has a lot of file processing. This type of data

needs to be read sequentially causing a bottleneck in the performance.

9. At the time of retrieving answer to a question, it can be difficult to figure out a global

strategy to rank relevance of documents across all SPEs.

3.3 Potential solutions to the issues
This section discusses the solution to the issues arising in indexing the document set.

1. Since limited memory of SPE may not allow entire document to fit at once, the

document should be worked upon in such a way that only a part of document is

required at a time for indexing purpose. Since SPE cannot directly read the document,

PPE is required to read the document and send its contents in parts to the SPEs as and

when required.

2. To deal with programming language issues of MMTX toolkit, we can interface the kit

programmatically so that they receive input and generate -output which is then used

for indexing purpose. Thus, Cell processor need not worry about Java APIs. In that

case SPE is required to have a networking support.

3. A solution to the problem of variable sized documents is to let PPE read many

documents and built a sort of pool of read documents. Whenever an SPE finishes off

with its current document, it simply requests the PPE for the next. One may not pre-

assign a set number of documents to SPEs. Instead, one can just let them request the

documents whenever they need it

4.. A large number of DMA operations take place, so instead of sequentially reading line

and making DMA, these operations are overlapped. This compensates the time of

transferring the content from PPE to SPE.

15

5. Since many files are needed to be opened on PPE for serving many SPE's

simultaneously, many threads can be spawned on PPE so that I/O overhead of

opening, closing and reading can be minimized.
6. Synchronization between SPE and PPE can be done through mailboxes.
7. In order to deal with the string processing efficiently, the strings are needed to be

converted into vectors and then SIMD operations can be applied to these vectors.

3.4 PageRank algorithm
World Wide Web is a vast collection of extremely -diverging WebPages ranging from

sports, fun to the journals for information retrieval. Besides this, more than 150 million

pages add on to the web in less than a year [8]. In addition to these challenges, web

search engine also contend with inexperienced users. Overcoming. these challenges, the

most used search engine, Google produces a high precision search results. The main

reason of its better results is the use of link structure of web to calculate a quality ranking

for each web page [7]. This ranking of web pages helps search engines to make sense of

the heterogeneity of World Wide Web.

The PageRank algorithm determines the relative importance of web pages. It has become

the most important technique used by search engines. The. PageRank takes as input a

matrix which represents the link structure of web, which runs in size of order in

Gigabytes. Thus PageRank calculation is time consuming [9].

There has been a sincere effort to reduce the time of computation of PageRank algorithm.

Major stress is given to reduce the IO time of disk access, technique of PageRank

calculation is also tried to be improved so that convergence could come in less number of

iterations. Besides this, parallel' implementation of PageRank on a cluster of computers

has also been done.

Chen et. aI. [191 has proposed some I/O efficient technique to reduce the disk reads and

writes. They analyzed the link structure . of the web in detail and perform the

preprocessing of the web graph and propose IO efficient algorithm. Their approach

16

shows significant benefits over original PageRank algorithm when main memory of the

system to be worked upon is very small of the order of MBs. But in real scenario main

memory size. has been increased very much therefore their approach becomes of no use.

Another technique for solving rank of web pages which exploits block structure of web

was presented by Kamvar et. al. [20]. Web graph has majority of hyperlinks which link

pages on a host to other pages on the same host, many of those that do not link pages to

within the same domain. They exploited this structure of web by a 3 stage algorithm

whereby (1) the local ranks of pages for each host are computed independently using the
link structure of that host, (2) these local ranks are then weighted by the importance of

the corresponding host, and (3) the standard PageRank algorithm is then run using as its

starting vector the weighted aggregate of local PageRanks. They achieved a speedup of 2

times with this approach.

Manaskasemsak et. al. [21] presented a parallel PageRank Computation on a Gigabit PC

cluster. They conducted this experiment on a large web graph of over 1.5 billion links

and their implementation took only 15 seconds for one iteration. They addressed the

issues of porting PageRank on cluster and communication required between PCs. Again

Manaskasemsak et. al. [22] presented a comparison study on the bases of I/O cost,

memory usages and synchronization cost with other two techniques.

PageRank is a highly computational intensive and Cell BE Processor is also designed for

computational intensive algorithm. With this idea, Brehrer et. al. [23] implemented

PageRank algorithm on Cell BE. But, because of large number of random memory

writes, and data transfer between PPE and SPE required by PageRank algorithm,

implementation took more time than on single processor Xeon. They also presented a

comparison of time taken by different processors to calculate ranks of pages for a

particular graph and found that their implementation on Cell BE is 22 times slow in

comparison to Xeon processor.

17

There. may be a scope of improving the performance on Cell BE by reducing the data

transfer between SPEs and PPE. Besides this, if vector operations of Cell BE are properly

applied during calculation, time of calculation can be reduced drastically. In the chapter 5

we are going to implement PageRank on Cell BE processor by a new technique which
reduces the data transfer between SPEs and PPE and utilizes SIMD operations.

3.5 Implementation issues of PageRank on Cell BE Processor
1. PageRank operate on a huge amount of data. To achieve a better performance gain all

calculations should be done on SPEs. Since SPE's local store is small (256 KB) and

data to be worked upon is large and available at PPE, therefore a large number of

DMA transfer need to be done between PPE and SPE producing a bottleneck in

performance.

2. PageRank requires copying an array of output ranks to the array of input ranks and
both array are present at PPE, therefore this operation cannot be done on SPE. This

means that only some part of PageRank algorithm can be parallelized on Cell BE.

3. Rank of a particular node depends upon any number of nodes in the complete range

of nodes. That means data to be worked upon is not continuous (rather scattered in

memory arbitrarily). So on the direct input, data level parallelism is not possible. To

achieve data level parallelism some modification are required.

4. Since DMA is done on sequential data while requirement in PageRank is of any

random node. Thus many DMA may be required for small data.

5. PageRank implementation requires random writes and reads but Cell BE Processor is

not good at this point.

3.6 Possible solutions to the issues
1. Since the complete algorithm cannot be ported on SPEs, therefore some

parallelization technique like SIMD can be applied on that part which is done at PPE.

In case of copying with a large array, loop unrolling can also be applied.

2. In order to provide data level parallelism and reducing the unnecessary DMAs, data is

first arranged on PPE in such a way that the division of data corresponding to SPEs

always lead in such partition that each partition contains nodes whose PageRank

18

depends upon only nodes of that groups. This remedy may also require insertion of
some redundant data.

3. Data to be fetched by SPE's must be arranged in continuous memory locations for

reducing the DMA overhead.

Thus the study of both a question answering system and PageRank reveals that both

problems are computationally heavy and have a scope of parallelization. In the following

chapters these two problems will be implemented on Cell BE processor.

19

CHAPTER 4

INDEXING ON CELL BE PROCESSOR

4.1 INDOC- Introduction
INDOC [5] is a biomedical Question Answering system based on idea of indexing and

extracting the answer to the question posed. Major tasks in it are indexing, question

processing, document ranking, clustering, and display results. Complete architecture of

INDOC is shown in figure 4.1.

ICD database 	 User

Question processing module

MMTX server 	 Weighing/ranking module 	Clustering & display

Indexing module

Document repository 	
Index

Figure 4.1: Complete Architecture of the INDOC [5]

4.1.1 MMTX Server

MMTX server [18] is a program which maps the free text received by it into the UMLS

concepts [24]. This program is used by indexing module to make an indexed database

from a document repository and Question processing module to find concepts of the

question.

4.1.2 Indexing Module
Indexing module takes input a document repository. An indexed database is prepared

with the help of MMTX Server. Indexing here is not just to select important keywords,

20

rather documents are represented in the form of sections and these sections are actually
indexed on the basis of concepts present in a particular section. At the time of document

retrieval, a document is considered useful if some or all question concepts are present in
one section.

4.1.3 Question Processing Module
As soon as the query arrives, concepts present in the question are extracted with the help

of MMTX server. Since all the concepts are not of equal importance therefore a relative

weight is assigned to each concept. These weights become useful in the determination of

document Ranking. Further this, the concept with highest weight is sent to ICD database

[25] in order to find the related concepts. Answer retrieval is made on all these concepts.

4.1.4 Document Ranking
On the bases of concepts found in question by the question processing module, for each

document all those sections which contain at least one concept are of interest. All such

sections are assigned weights. Weight of a section is equal to the sum of weight of

concepts of the sentence present in it. Weight to the document is equal to the weight of
the best section and number of lines in the best section of document. Documents are then

ranked in decreasing order of their weights.

Thus, first the entire document set is processed by the indexing module and an indexed

database is prepared. At run time, as soon as the system receives a query, the question

processing module recognizes the keywords of question and finds the UMLS concepts

corresponding to these keywords with the help of MMTX server. The ranking module

searches the indexed database for retrieving the documents and assigning them a rank on

the basis of their relevance to the question concepts. Finally the display module displays

the documents in decreasing order of their weights.

4.2 INDOC — Indexing
Indexing module for preparing • indexed database not only selects the important keywords

and concepts from document; but also represents the entire document in the form of

21

sections. Each section has a section heading and number of sentences in it. Section
heading consists of concepts that represent the section. One sentence can belong to only

one section and a section can contain only consecutive sentences [5].

4.2.1 Algorithm

The algorithm to perform the task of indexing is shown in figure 4.2.

Algorithm in Figure 4.2 obtains the concepts of title and stores them in file. Beside this,

sections are formed on the basis of concept present in the sentences. A new sentence is

added to the current section till intersection of concepts of the current section and

sentence to be added is not empty. But there are two restrictions on the size of section.

If size of the current section < M (a Const.), the sentence is added to the section and

section concept will be intersection of concepts of the current section and sentence to be

added.

If size of the current section > M, the sentence is added to the current section only if

sentence's concept are a subset of concepts of the current section.

If size of the current section <L (minimum number of sentence in a section), then the

current section is merged with previous section.

An indexed file containing the concepts of titles of all the documents in the document set
is also prepared. This file is used by the ranking module at the time of retrieval of

documents corresponding to a question submitted by the user.

22

1. Obtain the concepts of the title and store their.
2. initialize i =1 and j=1 and set all Xi, SCj, XCi to be empty where

Sj : jth sentence in the document.
Xi: ith section.
SCj : set of concepts in jth sentence (concepts in an individual sentence).
XCi : set of concepts in ith section.
L: min number. of sentences necessary in a section.
M : minimum in ber of sentences ln'a section so that merging is not
necessary.

3. Formation of Sections
Set. XCi to concepts in the first sentence.
Define I S I as the number of elements in set S.
For each sentence Sj left in the document to process
I

If(IXil=Q)

Add Sj to Xi
Add SCj to XCi

}
else

if((IxiI<M && Ixcinscjl>O) II xci=5cj)
{

AddSj toXi
Set XCi = XCinSCj

I
else
{

i=i e 1
Add Sj to the new section Xi
Add SCj to XC

}

}

}
4. Final Section merging step
for each section Xi
{ 	If(ii1 && (IXi[<Ll II XCi is a subset of XCi-l))

{ 	Merge Xi with Xi- I
}

Figure 4.2: Indexing Algorithm of INDOC [5]

23

4.3 Design and Implementation of INDOC Indexing algorithm on Cell BE
This section presents the implementation of some of the solutions provided in chapter 3

by applying them while porting indexing algorithm of biomedical QA system, INDOC on

Cell BE processors.

Cell BE offers a number of ways to achieve parallelism viz. SIMD processing,
multithreading, shared memory multiprocessing, multiple execution units with

heterogeneous architectures. Of all these, we have selected to use multithreaded and

double buffering approaches to achieve data level parallelism. The data is partitioned

such that entire document set is divided into eight subsets and one thread at PPE

corresponding to one SPE, is responsible for assigning one such document subset to that

SPE. We have done so because I/O operations in opening, reading and closing files by

multiple threads may be overlapped with other computations. The logic used on PPE and

SPEs is as follows:

4.3.1 PPE
The main task of PPE is to read files for the SPEs. PPE creates one thread each for one

SPE and has one file allocated per SPE. Once this specific file is indexed completely,

PPE picks up the next file for that particular SPE. PPE reads the file character by

character until it reads one complete line in a temporary buffer. Later the corresponding

SPE is directed to pick up this line of text by using SPE read inbound mailbox. Status

variable of mailbox represents the number of free entries in mailbox. Initially its value is

4. A write operation on mailbox by PPE decreases the status value by 1 and read

operation by SPE increases the value by 1.
Value of status is checked repeatedly. If the value is 4 then temporary buffer is copied to

original buffer whose address is available to the SPE. Status variable is updated to 3 to

indicate that buffer is ready to be read by SPE. Status variable is updated with a write

operation to the mailbox value. This value is used to indicate the SPE about end of file.

SPE reads the line with DMA operation and perform the task of indexing on this line of

text. During this time PPE is busy reading the file, constantly generating raw data for the

8 SPEs. Working of PPE is shown in figure 4.3.

24

Value of the status variable of mailbox is 4 when it is reset by the SPE after completing

DMA. As soon as PPE updates the buffer, it sets the status to 3 to indicate SPE about

update of buffer. In this way tasks occur simultaneously both on the PPE and the SPE.

Start

function

no

Read next line in 	read mailbox 	Is 	Yes 	copy temporary buffer
open file 	 status 	status =4 ? 	into buffer

temporary buffer

File 	~Updatestatus--3
End?

no

yes

Figure 4.3: Working of a PPE Pthread

4.3.2 SPE

SPE has the task of creating sections of the input lines that were sent to it from the PPE.

To receive the data from main memory (PPE) to the SPE we use DMA operations. This

also allows us to make use of double buffering.

Initially value of status of mailbox is 0 therefore SPE waits to perform DMA until status

becomes 1. As soon as a DMA operation of taking one line from PPE to SPE is over, the

mailbox which was earlier used by PPE to signal to SPE to indicate the presence of a new

line of data is now used by the SPE to ask for next line of data. Here value of status

variable represents number of occupied entries in the mailbox. Initially it is 0. A write

operation by PPE increases the value of status by 1 and read operation by SPE decreases

the value by 1. The value read from mailbox is helpful in deciding whether the document/

file has finished or not. Working of a particular SPE is as shown in figure 4.4.

25

Yes

rt function 	Read mailbox
Status

Is N
Status =D ?

Use DMA to read

No 	line from Memory

No

Is
Finish 	 File end ?

Yes 	I

Update
Status=0

Figure 4.4: File read operation by SPE and signaling to PPE for next read

Status variable of the mailbox in the SPE remains 0 till the buffer is not updated by PPE.

As soon as SPE finds the values of status non zero, it starts DMA to read the buffer. After

the DMA operation is over, it resets the status to 0 by reading the mailbox. On the basis

of read value from mailbox it is checked whether file ended or not. The line just read is

used for making sections. Since DMA is a non blocking call, task of processing current
line on SPE overlaps the next DMA operation.

As soon as the line is received, a counter which keeps track number of sentences is

incremented. If the sentence is first sentence then first section is initialized with the

sentence. Current sentence is added to the current section if either of the following two

conditions is satisfied: (1) whether the length of intersection of concepts of current

section and current sentence is greater than 0 and length of current section is less than a

const and (2) whether the number of concepts in current section and current sentence are

equal. If neither of the condition is satisfied then a new section is made and initialized

with current sentence. Here the, operations performed are mainly subset finding, string

comparison, string matching therefore, vector operations were difficult to be applied.

26

4.4 General observations

During the implementation of indexing algorithm on Cell BE Processor, some important

observations worth pointing out are as follows:

1. The size of the documents was varying greatly. This causes an imbalance of work

among the SPE's. For maximum speed up we would ideallywant all the SPEs to stay

busy for same amount of time. For example, in video compression, the sizes of all

video frames are same as against our case.

2. In some of the cases, it was observed that synchronization between the PPE and SPE

resulted in some periods of time when either of the machines was idle. For example if

we have a long line followed by a small line, in such a case the DMA transfer of the

long line shall take considerable more time keeping the PPE idle. for some time.

3. While implementing the indexing system for INDOC, it was observed that the issues
encountered were likely to be fairly general to a lot of other QA systems.

4.5 Results

Performance of the code built for Cell BE is evaluated on Georgia Tech Cell Buzz [26].

Number of documents used for measuring performance has been varied from 8 — 40.

Three samples :were taken for each observation and an average time was calculated.

Results show a comparison with Intel Xeon dual core (2.0 Ghz) processors with 2 GB

RAM. Table 4.1 shows the observed comparison. It is found that speedup in execution

times on Cell Buzz is about 22+ times against Intel Xeon.

From table 4.1, It can be observed that there is variation of speedup for different number

of documents. The reason behind this is variation in size of documents. Size of

documents vary from 1 KB to 95 KB , which actually hinders the speedup because of an
imbalance of work distribution among the SPEs.

27

Table 4.1: Comparison of execution times

8 does 16 does 24 does 32 does 40 does

(µs) (µs) (µs) (µs) (ps)

2194 6769 9210 9771 14901

8 SPE 4270 7749 7229 8738 10814

3703 7043 8614 9274 10233

Average(tl) 3389 7187 8351 9261 11982

86440 161749 216708 259634 310906

Intel Xeon 87072 164603 218688 259771 314959

(2.0 Ghz) 87030 163615 215714 258467 312666

Average(t2) 86847 163322 217036 259290 312843

Speed up (t2/tl) 25.6 22.7 25.9 27.9 26.1

On the other hand if we take documents of same size for measuring performance, results

are consistent and better because of equal amount of work for all SPEs. The results are

shown in table 4.2.

28

Table 4.2: Table showing low variation in speedup when all documents are of same size.

8 does 16 does 24 does 32 does 40 does

(µs) (xs) (µs) (vs) (µs)

780 1542 2232 3212 4067

8 SPE 731 1403 2214 3020 3518

791 1591 2209 3149 4220 -

Average(t1) 767 1512 2218 3127 3 935

30239 59741 90173 120283 150184

Intel Xeon 29955 60050 90094 120352 150136
(2.0 Ghz) 30362 60219 88071 117889 150782

Average(t2) 30065 60003 89446 119508 150367

Speed up (t2/tl) 39.1 39.7 40.32 38.2 38.2

Figure 4.5 shows the comparison of timing observed keeing number of documents same

but increasing the number of SPUs. It was observed that as we increase the number of

SPUs the time of computation also decreases.

Comparison of Execution Time with number of SPUs
30000

931 '
25000

~a"d 	x

20000 	 9208 > 	s 	,4

11858.'
E 10000

$ 	a

CI
E 	5000

0

0 	1 	2 	3 	4 5 	6 	7 8 	9

No. of SPUs

Figure 4.5: Comparison of time with number of SPUs

29

CHAPTER 5

PAGERANK ON CELL BE PROCESSOR

5.1 PageRank
PageRank is an algorithm to determine the relative ranking of web pages among them.

The concept of PageRank is based on an idea that if a page v of interest has many other

pages u with pointing to , then the pages u are implicitly conferring some importance to

page v. Let C(u) be the number of links which page u points out, and let PR(u) be the

rank of page u, then hyperlink u —> v confers PR(u)/C(u) units of rank to page v.

Mathematically, page rank of a web page at any iteration can be defined as follows:

PR. (T, } 	 PR._ (Tn)
PR; (A) _ (1— d) + d * 	C-T) + — — — — — — — + ~(7,) 	---------------------------- 5.1

1 	 n

Where,

PR; (A) is the PageRank of page A, calculated in ith iteration.

PRi_1(Ti) is the PageRank of pages Ti which link to page A, calculated in 11th iteration.

C(Ti) is the number of outbound links on page Ti and

d is a damping factor which can be set between 0 and 1.

So, first of all, we see that PageRank does not rank web sites as a whole, but is

determined for each page individually. Further, the rank of page A is recursively defined

by the rank of those pages which link to page A. Rank of a page T which links to a page

A, does not influence rank of A uniformly as the rank of a page T is always weighted by

the number of outbound links C(T) on page T. This means that more outbound Iinks a

page T has, less will page A get benefit from a link to it on page T. Figure 5.1 shows how

PageRank from one page to another page are passed.

Figure 5.1: Rank contribution from one page to another[8]

The PageRank algorithm is based on the idea of Random Surfer Model [8]. The

probability that a random surfer clicks on a link is given by the number of links on that

page. Therefore, the probability for the random surfer reaching one page is the sum of

probabilities for the random surfer following links to this page. Now, this probability is

reduced by the damping factor d. The justification within the random surfer model,

therefore, is that the surfer does not click on an infinite number of links, but gets bored

sometimes and jumps to another page at random. Damping factor d is the probability for

the random surfer not stopping to click on links. Since the surfer jumps to another page at

random after he stopped clicking links, the probability therefore is implemented as a

constant (1-d) into the algorithm. Regardless of inbound links, the probability for the

random surfer jumping to a page is always (1-d), so a page has always a minimum

PageRank [8].

5.2 Link Structure of Web

World Wide Web can be considered as a directed graph where each Web page is treated

as a node of graph and hyperlinks as edges of graph which is known as web graph. Every

node of web graph has some number of forward links and backward links. A web graph

is the input to the PageRank algorithm. Standard web graphs are available on WWW in

compressed form which can be accessed through [27]. The web graphs which are used

for experiments are: EU-2005, IN-2004, and CNR-2000. These are prepared with ubi-

Crawler[28]. These compressed graphs are extracted into a text file with the help of a

31

tool called WebGraph [29]. WebGraph is a framework to study the compressed web graph.

It provides APIs in JAVA, Matlab and C++ to explore the web graph. It provides simple

ways to manage very large graphs by exploiting modem compression techniques and can be

used to generate the web graph in a text file [30].

The output text file containing the web graph has three columns in it. First column consists of
one integer referring to the destination webpage. Second column refers to the in-degree of the

web pages referred in column one. The last column refers to the source web pages to the web

page referred in column one. Structure of Text file containing the web graph is shown in
figure 5.2

(dest id) 	(in decree) (Source nodes)

1 2 37

2 4 4579

3 3 279

4 1 1

Figure 5.2: Structure of text file containing web graph

32

5.3 Algorithm

1. Two arrays Vi [] , V2 [] for having ranks of nodes in ith and (i+ 1
2. T is total number of nodes.
3. d is damping factor.
4. Ci is number of out links of node i.

5. for: all u=1toT

6. V1[u] := 1;

7 for: number of iterations do { //loop 1

8. for:allu=1toT

9. V2[u] := 0;

10. for: all nodes x in the web graph do { // loop2

11. for all source nodesy of node x do{ // loop3

12. V2[x] = V2[x] + V1[y]/C

13.

}

14. V2[x] _ (1- d) + d* V2[x];

15. }

16. V1=V2;

17.]

iteration.

Figure 5.3: Algorithm of PageRank calculation .

5.4 Implementation of PageRank on Cell BE Processor

5.4.1 Design 1

First of all, we make two arrays V1[] and V2[] to keep rank for (11)th iteration and ith

iteration at PPE. Another array GRAPH[] is made to keep nodes and their source nodes.

For one iteration,

1. Divide all nodes of the web graph equally among all SPEs.
2. Calculate rank of those nodes (on a SPE) using array VI [] and GRAPH[], and

then send back the ranks to PPE.

33

3. Receive ranks at PPE in a vector V2.

4. Update V l by V2.

Since the number of nodes dedicated to an SPE is very large, no SPE can accommodate
all dedicated nodes at same time to calculate rank. So the SPE brings nodes in, using

multiple DMA, few nodes at a time. In one time it brings as many nodes it can
accommodate. Since the rank of any particular node (e.g. node x on SPE) depends upon

any number of source nodes (which . point to node x) and these source nodes can be

present in any section of the input rank array Vi, so we need complete rank vector Vi in

SPE (for calculation of any given node x). SPE cannot accommodate Vi into it, so it will

be brought in parts (for calculation of each given node x). It may also happen that for

each node to calculate its rank complete vi is brought. Thus number of DMA operations

will be large. Therefore the approach seems of no benefit.

5.4.2 Design 2
Following the idea of approach 1, and making some changes in data structures, DMA

operations can be decreased by significant amount of times.

The data structures design is as follows:

1. The web graph is read on PPE and stored into two arrays such that,

a. Array 1 (referred as Node array) contains

i. First node followed by its in-degree, followed by the source nodes, then

ii. Second node followed by its in-degree, followed by its source nodes then.

iii. Third node and so on. .

nil deg l I s l 1s21s3......n2ideg2js4Js5 js6j.....

here n 1, n2 are nodes.

deg 1, deg2 are in-degree of n 1, n2 respectively and s 1, s2 represent the source node
to node nl.

b. Array2 (referred as Degree array) contains the .out-degree of nodes in the indices
corresponding to source nodes in Arrayl

34

nl jdegl Jdl jd2]d3I....In2Ideg2Jd4Id5Id6......

here nl and n2 are same as in arrayl, degl and deg2 are same as in arrayl but di

represents the out-degree of node si (present in array l)

2. Two arrays VI [] and V2[] are maintained to keep rank of nodes at i0, and (i+I) h̀. Vi []

is used as a reference array containing the page ranks as calculated from the previous

iterations and used in calculation of V2[].

3. Size of V1[] is equal to the size of arrayl[] and array2[] while size of V2[] is equal to

number of nodes. Here thing to be noted is that VI[] contains rank of all nodes in the

sequence same to the sequence of nodes of array1. That means there is redundancy of

rank value of a particular node several times in V1[]. This is because, a particular node

may be the source node of multiple nodes and hence present multiple times in array1.

Algorithm proceeds in the following way,

1. Array Vi is initialized to 1.

2. For each iteration,

i. Array2 (array of degree) and Vi are equally divided among number of SPEs.

ii. Since number of nodes dedicated to an SPE is large so SPE reads array2 and Vi

in parts. In one time SPE reads as many elements of arry2 and Vi as it can

accommodate in its local store. Since a particular node, its in-degree, source

nodes and their out-degree all are present in array2 and Vi so rank of node can be

calculated easily, and same section of VI need not be read again for calculations

of two nodes. As soon as the rank of nodes is calculated in one time it is sent back

to the PPE where it is stored in V2.

iii. As soon as all SPEs calculate the rank of all nodes dedicated to them and V2 is

updated at PPE, Vi is updated from V2.

5.4.3 Implementation details

This section presents the implementation details of the PageRank algorithm. The

approaches used to achieve data level parallelism at PPU are multithreading and loop

unrolling while at SPU are double buffering and SIMD. The logic used on PPE and SPEs

is as follows:

35

PPE
Processing starts with PPE by reading the web graph and preparing data structures. As

soon as data structures are prepared, PPE spawns pthreads equal in number to SPEs. Each
pthread spawns a SPE thread. As soon as SPE thread is created, it starts calculating rank

of nodes assigned to it. During this time PPE's pthread goes into a blocking wait giving

control to other ptheads of PPE'while waiting for a signal by SPE. Figure 5.4 shows the

overall working of PPE and SPEs for one iteration of PageRank algorithm. Pthreads

update their data structures from the shared memory which is updated by corresponding

SPE. Shared memory synchronization is required between pthread and SPE.

SPE
As soon as the SPE thread is created by PPE, SPE starts reading two arrays of degree and

rank. Since the task is equally divided among all SPEs so each SPE reads from a

particular array location which is determined by the number of SPE. Each SPE starts

reading at (SIZE/N)*i location where size of arrays is given by SIZE, N represents total

number of SPEs and i is between 0 to N-1 for different SPEs. SPE reads data from

memory through DMA operation. Since DMA transfers are limited by 16KB per transfer,

therefore only 4096 integer elements can be brought at one time. Thus 4096 elements of

degree array and 4096 elements of rank array are brought by two successive DMA

transfer. The calculation of PageRank is done with SIMD operation. New rank of nodes

present in these 4096 elements is calculated and sent back to PPE by writing into the

shared memory. Before writing into shared memory SPE waits for a signal by PPE. After

writing into the shared memory SPE sends a signal to PPE about the update of memory

and start reading next data from input arrays.

36

1. Read File
2. Prepare Input data structure

Spawn Pthreads equal to number of SPEs

Wait for all pthreads to finish

Update input data structure

SPE1

Spawn SPE Thread

Read from Memory

Wait for Signal from SPE 	; 	
Calculate Ranks

- - - 4
 Wart for signal from PPEthread

Update data structure

Upadate Ranks

___________T 	
into shared Memory

Signal to SPE

- 	H 	Signal to PPE thread

Figure 5.4: Overall working of Cell BE processor for PageRank Algorithm

37

Synchronization

Communication and shared memory synchronization between PPE thread and SPE is

achieved with mailbox. The mailbox used is SPE write outbound mailbox. The SPE

informs PPE each time after updating shared memory. The status of mailbox at PPE is 1

when mailbox is full and 0 when mailbox has been read by PPE while at SPE its value is

1 when there is no data in it and 0 when SPE writes data in mailbox. The communication

synchronization between PPE and SPE is shown is figure 5.5.

getting control from other pthread

---------- --------------------------
Pthread at PPE

0

Check
Status ?

1
Read from shared

memory 	-

Update status = 0

Give control to
' 	 other pthread 	'

'------------------------- 	- 	------•

SPE

1
Check
Status ?

0
Write to the shared

memory

Update status = 1

Read Need data
and

calculate ranks

------------------------------------'

Figure 5.5: Synchronization between PPE thread and SPE

38.

Data Flow in Memory
Web graph is read from disk into main memory and maintained by PPE. Graph is actually

kept into two arrays one for holding degrees of nodes and other for holding rank. SPE are
directed to read these arrays equally from different locations. The complete flow of data

in memory is shown in figure 5.6. Data read by SPEs from main memory is shown by

path 1 <1>. SPEs calculate PageRank and update the shared memory between PPE and

particular SPE though path 2 <2>. Threads at PPE receive data from shared memory

through path3 <3>and finally update the input array of ranks through path4 <4> for the

next iteration.

5.5 Results

The PageRank algorithm works upon a large web graph in practice. Therefore, the web

graphs used for experiments are EU — 2005 and In-2004. EU-2005 graph contains 862664

nodes and 19235140 links. Graph In-2004 contains 1382908 nodes and 18534900 links.

The Cell BE processor used for execution and testing results is Cellbuzz provided by

Georgia Tech University [26]. Comparison of Cell BE implementation is done with Xeon

dual core 2.0 Ghz. The measurement of time is done for 1, 2, 4, 8, 16, 32 number of

iterations of PageRank calculations.

Table 5.1 shows results obtained for both Xeon and Cell BE processor for graph EU-
2005. It shows a constant increase in time with increase in number of iterations. Also, the

ratio of time between Xeon and Cell BE processor was nearly constant for all iterations.

The Cell BE processor shows a speed up of nearly 5% over Xeon. The speed up obtained

over Xeon does not show a marked improvement but when compared to Brehrer et. al.

[23]'s implementation of PageRank algorithm on Cell BE, our implementation of

algorithm is 22 times faster.

Figure 5.7 shows the comparison of execution time between Xeon and Cell BE for graphs

EU-2005 and In-2004. These timings are for 32 iterations.

39

(PPE memory having arrays for degree and ranks)

Figure5.6: Data flow in memory between PPE and SPE. <1> <2> <3> <4> are paths of
flow

Table 5.1: comparison of timing of PageRank implementation on Xeon and Cell BE
processor

Iteration
number

Time(seconds) on
Xeon

Time (seconds) on Cell
BE Processor

1 .390146 .38

2 .823685 .691557

4 1.551 139 1.379249

8 3.22564 3.03875

16 6.314917 5.80895

32 12.43 1 1.61 175

Comparison of timing on XEON and CELL BE Processor

12.6

	

12.4 	12.35

	

12.2 	 -
i

	

12

11.8 	 -_
1161

	

E 11.6 	 ■)EON

	

11.4 	 ■ CELL BE

	

11.2 	 1t18 	11 14 	H
11

10.8

10.6

10.4
eu-2005 	 in-2004

graphs

Figure 5.7: Comparison of time between XEON and Cell BE processor

C!I

CHAPTER 6

PAGERANK ON CUDA

GPU (Graphics Processing Unit) is a highly parallel, multi-threaded and many-core

processor with tremendous computing power. CUDA provides a programming

environment to the programmer to utilize GPU in a simpler fashion. Execution of

program starts with CPU. GPU is used by the CPU to execute parallel threads. In this

chapter we present implementation of PageRank Algorithm on CUDA.

6.1 Issues of implementing PageRank on CUDA

1. Architecture of CUDA requires threads of same code path to be running in parallel on

a multiprocessor. Execution on CUDA takes place in form of warps. Warps are 32

thread units that are executed on a multiprocessor. CUDA stops all divergent threads

within a warp. So if any branch statement is encountered the amount of parallelization

gets reduced as divergent threads are no longer running in parallel. Real world

scenario web graphs have varying number of in-degrees for nodes. Now processing in

the PageRank algorithm works on every node. We have initiated one thread for every

node. Since these nodes have varying number of in-degrees the amount of iterations

performed by every thread is different which creates a number of divergent threads.

2. Memory synchronization constructs for global memory are not available in CUDA.

3. CUDA does not provide atomic statements for floating point values while PageRank

works totally on floating point values.

4. PageRank calculation performs read operations from a wide range of memory area

with very less localization of reference. This generates a lot of page faults.

6.2 Design and Implementation on CUDA

CUDA provides the facility of generating tens of thousands of threads at a time with no

generation time. These threads can run on multiprocessors of GPU in parallel. CUDA

threads run on different multiprocessors simultaneously, therefore there should not be any

data dependency among threads.

42

6.2.1 Design 1

PageRank algorithm calculates rank of nodes such that rank of a particular node depends

on rank of other nodes which have a link with that node. There is no data dependency

present between any two nodes of web graph. We create threads equal to the number of

nodes. CUDA's limitations disallow this direct approach of solving PageRank algorithm

efficiently. The limitations of CUDA with respect to PageRank are as follows:

1. Number of nodes in a web graph is very large (of the order of billion) and such a

large number of threads cannot be generated on GPU (limited by hardware).

2. Rank of a node may depend upon any number of nodes; therefore a loop to calculate

rank of different nodes runs for different number of iterations and hence causing

different code paths for threads. This means a large number of threads diverge and

they cannot run in parallel.

The above stated problems were further eliminated in the following manner.

1. Threads corresponding to all nodes should not be spawned at the same time; therefore

threads are created in multiple passes in a loop.

2. To avoid the problem of divergence an extra level of parallelism is added. Instead of

calculating rank of a node on a single thread, rank of one node is calculated by as

many threads as the in degree of node. We create threads equal to the total in-degree

of all the nodes. For each node, threads equal to its in-degree calculate parallely their

respective shares of rank and add that share to the rank of node (which is kept 0

initially). This causes threads to have equal amount of work to be done and hence the

code path is same for each thread. This approach requires the rank of a node modified

by several threads running in parallel which causes the problem of synchronization

among the threads. CUDA does not provide synchronization tools for global memory.

Though it provides atomic operations (means once a thread is using a particular

memory location no other thread can use that location) for integers only but

PageRank requires floating point values. Thus this approach could not be used.

43

6.2.2 Design 2

The main problem with design 1 is that it hinders the performance because of the variable

loop length of each thread. In order to avoid this problem, we run a fixed length loop (say

N) on GPU for all threads. Value of N depends upon the web graph to be worked upon.

Ideally we want most of the computations to be performed on GPU. GPU prefers threads

of similar amount of computation. We select N in such a way that more GPU threads are

similar in computation. The idea is to run GPU and CPU parallely such that while GPU is

running loop of length N for all threads, CPU calculates partial rank of those nodes which

have in-degree more than N by running a loop from N to in-degree of the node.

Figure 6.1 shows an example of small web graph. Value of N is kept 4. Rank of all nodes

is calculated with 4 (or less) source nodes at GPU. Host at the same time calculates

partial rank of nodes 4, 5, 7, 8, 11 with those source nodes participating that have index

more than N (= 4) . For example for node 4 partial ranks with source nodes 2, 5, 6, 7 is

calculated on GPU and partial rank with source nodes 8, 9, 12 is calculated at Host.

apu I 	 CPU

Node In-deg 	Source nodes 	 I'T=4

1 2 6 7

2 3 • 2 4 9

3 1 1

4 7 2 5 6 7 8 9 12

5 11 1 2 3 4 5 6 7 9 11 14 16

6 3 6 9 12

7 5 1 4 7 9 11

8 6 2 5 6 8 11 12

9 5 3 7 9 11 12

Figure 6.1: An example showing the division of work between GPU and CPU

The work of PageRank calculation is divided onto GPU and Host in such a way that

when GPU is calculating partial rank of all nodes with the help of N (or less) source

nodes, Host at same time calculates partial rank of all nodes with remaining source nodes

(other than N nodes if any). GPU calculates the share of N source nodes which point to a

destination node by running loop N times for each thread. Host calculates share of rest of

the nodes by running a loop from N to their corresponding in degree. In this way host and

GPU calculate partial rank of nodes. These partial ranks are then added and used for next

iteration.

6.2.3 Implementation Details

This section presents implementation details of design 2 described in previous section.

Program for calculating PageRank consists of mainly two parts, host and kernel. Figure

6.2 shows the overall control flow of PageRank calculation on CUDA. Execution of

PageRank algorithm starts with host program. Host program reads the web graph and

copies it to the GPU's memory. Host invokes the kernel to be run on GPU for calculating

partial rank with N source nodes. GPU starts processing. Since kernel calls are non-

blocking for host, therefore Host also starts rank calculation of nodes having in-degree

more than N. As soon as calculation on both GPU and Host are finished, partial rank of

all nodes from Host is brought into GPU memory and added with partial rank calculated

at GPU. Thus the new rank of all nodes is calculated and input vectors for next iteration

is updated both at GPU and Host.

6.3 Results

The approach . used assigns only that much amount of task on GPU that reduces thread

divergence and rest of the task is performed on the host at the same time when kernel is

being executed on GPU. Though the approach ensures better performance yet there is

always an issue of exact amount of work to be divided between GPU and CPU. Speed up

obtained will not be same for all the web graphs. Experiments are performed for two

graphs. Graph EU- 2005 contains 862664 nodes and 19235140 links and graph CNR-

2000 contains 325557 nodes and 32161-52 links. GPU used for experiments is GTX 280.

45

This GPU consists of 1 GB of memory and 30 multiprocessors. Each multiprocessor has
8 scalar processors.

Start Host Program

Read Graph

Copy data to GPUs Memory

More
Iteration ?

Yes

Invoke Kernel and spawn 	 Calculation on Host
thread to run on GPU 	 Machine

Add Results

Update Iteration result on
Host and GPU

Figure 6.2: Program flow of PageRank calculation on CUDA

Figure 6.3 shows a comparison of timing on Xeon dual core 3.0 Ghz and CUDA. It can

be observed that for graph EU-2005 a speed up of nearly 2.8 times is obtained on CUDA
over Xeon dual core 3.0 while for CNR-2000 speed up is nearly 2.2.

End

Comparison of Timing on Xeon and CUDA
10 	9 047 	 ---
9
8
7
6
5

4 	 3.25
3 	 -
2 	 1.703
1 ~ 	 0.782

EU-2005
	

CNR-2000

Graphs 	 •Xeon

•
CUD

A

Figure 6.3: Comparison of timing on Xeon and CUDA

We compare the implementation on CUDA with Cell BE for graph EU-2005. It is found

that CUDA performs much better over Cell BE. Figure 6.4 shows a comparison of timing

on Xeon dual core 2.0 Ghz, Cell BE and CUDA. It shows that implementation on CUDA

is 2.6 times faster than implementation on Cell BE.

EU- 2005
14

12

10

in 8
E 6
E
m

4

2

0
Xeon 	 CELL BE 	CUDA

Processors

Figure 6.4: Comparison of timing on Xeon and CUDA and Cell BE processors

H E
m
E P

47

CHAPTER 7

CONCLUSION AND FUTURE WORK

In this dissertation, we have implemented two algorithms on multicore processor. Firstly,

we identified the major issues which may encounter during implementation of a general

question answering system on Cell BE processor and then proposed solutions to them.

We then implemented the indexing component of a domain specific QA system on Cell

BE processor. While there were a number of major challenges involved and some of

them were only partially dealt with, we still managed to obtain reasonable speedup. This

suggests that Cell BE processor holds considerable amount of potential for information

retrieval applications.

Secondly, in PageRank we indentified the major issues of porting PageRank algorithm on

Cell BE Processor. Possible solutions to these issues were drawn. Previous

implementation of PageRank on Cell BE resulted in poor performance because of the

high data transfer operation between PPE and SPE. A new approach is implemented

which reduces the data transfer between PPE and SPE drastically and leads to a better

performance. We also presented issues of porting PageRank algorithm on CUDA

followed by its implementation on CUDA. It was found that implementation of

PageRank on CUDA is performing much, better than on Cell BE.

In future, one can try implementing NLP toolkits like MMTX on the Cell BE processor

so that they will lead better compatibility while used with application designed on Cell

BE processor. Information retrieval applications can also be implemented so that a

complete Question Answering system can be ported on Cell BE. We showed in our

results in chapter 4 that if documents to be indexed are of same size then speed up is high

and also no fluctuation appears in results. This high speed up is obtained because of equal

workload on all SPEs. In real scenario where documents will vary greatly, performance

will deteriorate, thus this opens a scope for further improvement in proposed work. Some

new approach for balancing the work load between the SPEs can be devised.

As far as future work for PageRank algorithm is concerned, a better performance in

current implementation can be found by dividing the graph in small blocks and then

determine the value of N (number of iterations to be run on GPU for a thread) for each

block. Performance of PageRank algorithm on multicore processor can be improved by

analyzing the web graph in detail and preprocess it according to the restrictions and

features of multicore architecture like sorting the web graph on the basis of in-degree of

nodes.

REFERENCES

[1] Question Answering System: http://en.wikipedia.org/wiki/Question_answering
[2] National Library of Medicine, http://www.nlm.nih.gov/news/pubmed_15_mill.html
[3] P. Jacquemart and P. Zweigenbaum, "Towards a medical question-answering system:

a feasibility study," in Proceeding of Medical Informatics Europe (MIE '03), P. L. Beux

and R. Baud, Eds., vol. 95 of Studies in Health Technology and Informatics, IOS Press,

San Palo, Calif, USA, 2003, pages: 463-468
[4] S. Schultz, M. Honeck, and H. Hahn, "Biomedical text retrieval in languages with

complexmorphology," in Proceedings of the Workshop on Natural Language Processing

in the Biomedical domain, Philadelphia, Pa, USA, July 2002, pages: 61-68.
[5] Parikshit Sondhi , Purushottam Raj , V. Vinod Kumar, and Ankush Mittal, "Question

processing and clustering in INDOC: a biomedical question answering system,"

EURASIP Journal on Bioinformatics and Systems Biology, v.2007 n.3, July 2007, pages:
1-7.

[6] MEDLINE to PubMed and Beyond,

http://www.nlm.nih.gov/bsd/historypresentation.html
[7] S. Brin and L. Page, "The Anatomy of a Large-Scale Hypertextual Web Search
Engine," in Proceddings of the 7th International world wide web conference, Brisbane,
Australia, April 1998, pages: 107-117
[8] L. Page, S. Brin, R. Motwani, and T. Winograd. "The PageRank citation ranking:

Bringing order to the web," in Stanford Digital Library Working Paper, 1998.
[9] PageRank GoogIe's Original Sin: http://www.google-watch.org/pagerank.html
[10] T. H. Haveliwala, "Topic Sensitive PageRank," IEEE Transactions on Knowledge

and Data Engineering,Volume 15, Issue 4, July-Aug. 2003 pages: 784 - 796
[11] Multicore processor: http://searchdatacenter.techtarget.com/sDefinition/0„sid8C_gci
1015740,00.html
[12] IBM alphaWorks Cell BE SDK: http://www.alpliaworks.ibm.com/topics/cell
[13] Cell Broadband Engine — An introduction. Cell Programming Workshop, IBM
System and Technology Group, April 14-18, 2007.

50

[14] Cuda Programming Guide 2.0,

http://developer.download.nvidia.com/compute/cuda/2-0/docs/NVIDIA CUDA Progra

mming_Guide_2.0.pdf, July 6, 2008

[15]CUDA: http://en.wikipedia.org/wiki/CUDA

[16] Y. Niu, G. Hirst, G. McArthur, and P. Rodriguez-Gianolli, "Answering clinical

questions with role identification," in Proceedings of 41St annual meeting of the

Association for Computational Linguistics, Workshop on Natural Language Processing in

Biomedicine, Sapporo Japan, 2003 pages: 73-80

[17] L. A. Barroso, J. Dean, and U. Holzle, "Web Search for a Planet: The Google

Cluster Architecture," IEEE Micro, vol. 23, number 2, Mar/Apr, 2003, pages: 22-28.

[18] MetaMap Portal: http://mmtx.nlm.nih.gov/

[19] Y.Y. Chen , Q. Gan, and T. Suel, "I/O-efficient techniques for computing

PageRank," in Proceedings of the eleventh international conference on Information and

knowledge management, McLean, Virginia, USA 2002 Pages: 549 - 557

[20] S. D. Kamvar, T.H. Haveliwala, C.D. Manning, and G.H. Golub, "Exploiting the

block Structure of the Web for Computing PageRank," Technical Report CSSM-03-02,

Computer Science Department, Stanford University, 2003.

[21] B. Manaskasemsak and A. Rungsawang, "Parallel PageRank Computation on

gigabit PC Cluster," in Proceedings of 18th International Conference on Advanced

Information Networking and Applications AINA, Fukuoka Japan, March 2004, Vol. 1

pages: 273-277.

[22] B. Manaskasemsak and A. Rungsawang, "An efficient partition-based parallel

PageRank algorithm," in the proceedings of 11th International Conference on Parallel

and Distributed Systems, Fuduoka, Japan, July 2005, Vol. 1, pages: 257-263

[23] G. Buehrer, S. Parthasarathy, and M. Goyder, "Data mining on the Cell broadband

engine," in the Proceedings of the 22nd annual international conference on

Supercomputing, Island of Kos, Greece, June 2008, pages: 26-35.
[24] National Library of Medicines, Unified Medical Language System:

http://www.nlm.nih. gov/research/umis
[25] International Classification of Diseases: http://www.cdc.gov/nchs/about/otheract/
icd9/abticd9.htm

51

PUBLICATIONS

1 T. Kumar, P. Sondhi, . and A. Mittal, "Parallelization Issues of a Domain Specific

Question Answering System on Cell BE Processor," in International Conference on
Contemporary Computing, August 2009. [Accepted in May 2009, to be published in the
series of Communications in Computer and Information Science, Springer]

53

	Title
	Abstract
	Chapter 1
	Chapter 2
	Chapter 3
	Chapter 4
	Chapter 5
	Chapter 6
	References

