
ADDRESSING EFFICIENCY ISSUES
OF.

VIDEO SURVEILLANCE ALGORITHMS

A DISSERTATION
Submitted in partial fulfillment of the

requirements for the award of the degree
of

MASTER OF TECHNOLOGY
in

COMPUTER SCIENCE AND ENGINEERING

KSHITIZ GUPTA

~~~tFOf 7ECHpd£ p Y 

DEPARTMENT OF ELECTRONICS AND COMPUTER ENGINEERING 
• INDIAN INSTITUTE OF TECHNOLOGY ROORKEE 

ROORKEE' =247 667: (INDIA) 
JUNE, 2009 



Candidate's Declaration 

I hereby declare that the work being presented in the dissertation report titled 
"Addressing efficiency issues of video surveillance algorithms" in partial fulfillment of 

the requirement for the award of the degree of Master of Technology in Computer 

Science and Engineering, submitted to the Department of Electronics and Computer 

Engineering, Indian Institute of Technology Roorkee, is an authentic record of my own 

work carried out under the guidance of Dr. Ankush Mittal, Associate Professor and Dr. 

Manoj Mishra, Professor in Department of Electronics and Computer Engineering, Indian 

Institute of Technology Roorkee. I have not submitted the matter embodied in this 

dissertation report for the award of any other degree. 

Dated: J~A S) 	20C y 	 (Kshitiz Gupta) 

Place: IIT Roorkee 

Certificate 
This is to certify that above statements made by the candidate are correct to the best of 

my knowledge and belief. 

Dated: ISM' JUtJE 2W9 

Place: IIT Roorkee 

T 

r. Ankush Mittal, 

Associate Professor, 

Department of Electronics 

and Computer Engineering, 

IIT Roorkee, Roorkee, 

247667 (India). 

Dr. Manoj Mishra, 

Professor, 

Department of Electronics 

and Computer Engineering, 

IIT Roorkee, Roorkee, 

247667 (India). 

1 



ACKNOWLEDGEMENTS 

I am thankful to Indian Institute of Technology Roorkee for giving me this opportunity. It 

is my privilege to express thanks and my profound gratitude to my mentor Dr. Ankush 

Mittal, Associate Professor for his invaluable guidance and constant encouragement 

throughout the dissertation. I was able to complete this dissertation in time due to the 

constant motivation and support received from him. 

I am also grateful to Dr. Manoj Mishra, Professor to allow me to independently explore 

my ideas by not allowing any necessary disturbances from administrative and academic 

work. 

I am also grateful to Dr. Praveen Verma, Postdoctoral Researcher in Department of 

Computer Science, University of Missouri at Columbia for helping me to understand 

some basic and important concepts explored in the dissertation work. I am grateful to Mr. 

Salil Shirish Sahasrabudhe, Mr. Khalil Sawant, Mr. Tarun Kumar, Mr. Nityam Parakh and 

Mr. Payas Goyal, my colleagues, for being excellent peers and creating a congenial 

environment for work. I am also thankful to all my friends who helped me directly and 

indirectly in completing this dissertation. 

Most importantly, I would like to extend my deepest appreciation to my family and 

friends for their love, encouragement and moral support. 

(Kshitiz Gupta) 

ii 



ABSTRACT 

Video surveillance systems have found widespread use in applications ranging from 

homeland security for human lives and property, traffic monitoring, law enforcement 

practices and military defense. The scientific challenge is to devise and implement 

automatic systems able to detect, and track moving objects, and interpret their activities 

and behaviors. The other issues that have come up are in terms of efficiency of the 

algorithms involved in video surveillance. Issues like robustness, scalability and real time 

processing are hindering the progress of video surveillance. 

The onset of affordable multiprocessors has triggered a shift from clusters to 

programming using multiprocessors. There is a great enthusiasm in the industry as well 

as the academic community about the change parallel programming is bringing in. The 

idea with parallel programming is to use the massive performance given by these 

multiprocessors to solve the algorithms of video surveillance in real time. Alternatively 

they can be used to work on video streams of better resolution as well. 

We have implemented video surveillance algorithms in a way to reduce the amount of 

time that is taken to process one frame. The implementations include a intuitive fusion 

algorithm. We have shown the applications of support vector machines to solve 

background modeling. We have also implemented background modeling, Embedded 

Zero Tree Wavelet algorithm, morphological operations and connected components 

labeling on the GPU and achieved considerable speed up. The idea was to find out the 

applicability of the GPUs in the field of video surveillance. 

iii 



Table of Contents 

Candidate's declaration ................................................................................i 
Acknowledgements ................................................................................. ii 
Abstract...............................................................................................iii 
Contents............................................................................................................................. iv 
Listof figures ........................................................................................vii 
Listof tables ..........................................................................................ix 

1. Introduction 	 1 
1.1 Introduction 	 1 
1.2 Motivation 	 2 
1.3 Problem Statement 	 2 
1.4 Organization of Report 	 3 

2. Fusion Algorithm 	 4 
2.1 Background Modeling 	 4 
2.2 Gaussian Distribution 	 6 
2.3 Using Gaussians for background modeling 	 7 
2.4 From Single Gaussian to Multiple Gaussians 	 8 
2.5 Motivation for fusion algorithm 	 10 
2.6 Design and Implementation 	 10 
2.7 Experimental Results 	 12 
2.8 Conclusions 	 14 

3. Background Modeling using Support Vector Machines 	 16 
3.1 Introduction to support vector machines 	 16 
3.2 One class classification 	 16 

iv 



3.3 Errors in one class classification 	 17 

3.4 Introduction to data description toolbox 	 18 

3.5 Applying one class classification to background modeling 	 18 

3.6 Results and observations 	 20 

4. Parallelization of EZW on CUDA architecture 	 23 
4.1 Introduction 23 

4.2 nVidia CUDA architecture 23 

4.2.1 Programming Model 25 

4.2.1.1 Thread Hierarchy 25 

4.2.1.2 Memory Hierarchy 26 

4.2.2 GPU Implementation 27 

4.3 EZW algorithm 28 

4.4 Our Algorithm 32 

4.5 Results 35 

4.6 Conclusions 37 

5 Background modeling on MultiCore Processors 	 38 
5.1 Background modeling using single Gaussian 38 

5.2 STI Cell BE 40 

5.2.1 Hardware Architecture 40 

5.2.1.1 PowerPC Processor Element 40 

5.2.1.2 Synergistic Processor Elements 41 

5.2.1.3 Element Interconnect Bus 41 

5.2.2 Software Development Kit 42 

5.3 Parallelization on Cell BE 42 

5.3.1 Work done on PPE 42 
5.3.2 Work done on SPE 43 

5.4 Parallelization on GPU 44 

5.5 Results and conclusions 46 

v 



6 Parallel Blob Segmentation 	 47 
6.1 Introduction 	 47 

6.2 Background modeling and detection of 

foreground and background regions 	 48 

6.3 Binary morphological operations 	 50 

6.4 Connected Components Labeling 	 52 

7 Conclusions and Future Work 
	

59 

References 	 61 

vi 



List of Figures 

Fig.2.1 Image and its residual after background subtraction .....................................4 
Fig 2.2 Gaussian distribution with different values of mean and standard deviation........7 
Fig 2.3 Fusion Algorithm .................................................................................11 
Fig 3.1 Images used as training data ........................................................................20 
Fig 3.2 Images showing the output of background modeling using SVM ......................21 
Fig 4.1 Figure showing number of floating point operations for CPU and the GPU....24 
Fig 4.2 Arrangement of threads ..................................................................25 
Fig 4.3 Figure showing how threads access global, shared and local memory ..............26 
Fig 4.4 Parent Child Dependencies of Subbands of wavelet coefficients .................28 
Fig 	4.5 Morton Scan order on a matrix of wavelet coefficients at three level 
decomposition......................................................... .............................29 
Fig 4.6 EZW Algorithm 	...........................................................................30 
Fig 4.7 Wavelet coefficients of an 8 x 8 image ....................................................31 

Fig 4.8 Figure showing the trees built for the horizontal, vertical and diagonal details ..32 
Fig 4.9 Comparison of running times of parallel implementation against linear 
implementation.....................................................................................36 
Fig 4.10 	Speed up of parallel implementation over linear implementation with varying 
imagesizes ........................................................................................... 37 
Fig 5.1 Flowchart for background modeling ................................................38 
Fig 5.2 Parallelization of background modeling on CBE .................................43 
Fig 5.3 Input and corresponding background modeled images ............................46 
Fig 6.1 Application of GMM, morphological operations and CCL algorithms ........48 
Fig 6.2 Tile structure on GPU where every pixel is processed by one thread ...........49 
Fig 6.3 A 3 x 3 structuring element ..........................................................51 
Fig 6.4 Figure shows the race conditions on boundary pixels ...........................52 
Fig 6.5 Output after applying CCL to an image ...........................................53 
Fig 6.6 Figure showing the 4 nbrs for pixel p ..............................................54 
Fig 6.7 Figure showing the pixels that need to checked for overlap ...........................55 
Fig 6.8 Algorithm for resolving two neighboring regions ...............................56 

vii 



List of Tables 

Table 2.1 Table showing the number of small objects and the time required to model 
frames when Mixure of Gaussians algorithm is used ................:........................13 
Table 2.2 Table showing the number of small objects and the time required to model 
frames when Fusion algorithm is used ..........................................................14 
Table 3.1 	Types of errors in one class classification problem ..........................18 
Table 3.2 	Table showing the training data for a 5 x 5 block of image ................19 
Table 3.3 	Running times for background modeling for three approaches .............21 
Table 4.1 Table showing the relative performance of parallel algorithm against a 
standard linear implementation ................................................................36 
Table 4.2 Table showing the corresponding speedups at different image size 
Table 5.1 Table showing the running times of background modeling for three 
implementations .................................................................................46 
Table 6.1 	Table showing the running time of GMM on image size of 320 x 240 pixels 
for sequential and parallel implementation ....................................................49 
Table 6.2 Table showing the running time of one morphological operation on an image 
of 320 x 240 pixels with different structuring elements ....................................52 
Table 6.3 	Running times of CCL on linear and parallel implementation for images of 
varyingsizes .....................................................................................56 

ix 



Chapter 1 
	

Introduction 

1.1 Introduction , 

Security of human lives and property has always been a major concern for civilization 

from several centuries. There is a growing need for improved safety and security 

against the ever increasing threats of theft, accidents, terrorists' attacks, riots and 

natural calamity. For negotiating these increasing threats video surveillance systems 

are finding wide spread usage. Video surveillance systems have been deployed in 

various areas , for providing homeland security, traffic monitoring etc. In April 2009 

India launched RISAT 2 to, provide surveillance along the Indian borders. The 300 

kilogram satellite shows any movement across the surface of earth from a height of 

550 kilometers. It is used for monitoring the country's borders round the clock, 

checking cross-border movement and helping the Indian security forces in anti-

infiltration or anti-terrorist operations. 

Video surveillance systems have undergone a lot of changes from the days of simple 

analog Closed Circuit. Television (CCTV) cameras to multimodal and distributed 

systems. Development of video surveillance systems has been helped by the reduction 

in prices of the cameras. Complex multimodal systems are being conceived because 

of the availability of affordable sensors.-Another area that has driven growth of video 

surveillance systems is the growth in networking infrastructure. IP-based cameras 

have enabled efficient deployment of cameras at any remote site over the existing 

wired or wireless network without the requirement of bulky co-axial fibre cable 

connections and dedicated,  processors. These have resulted in deployment of large 

scale video surveillance systems with potentially thousands of cameras distributed 

over widespread geographical locations. 

The scientific challenge is to devise and implement automatic systems that are able to 

detect and track moving objects, and interpret their activities and behaviours. The 

other issues that have come up are in terms of efficiency of the algorithms involved in 

video surveillance. Issues like robustness, scalability and real time processing are 

hindering the progress of video surveillance. 

1 



1.2 Motivation 

Video surveillance is one of the fastest growing sectors in commercial market. It is an 

active area of research. The aim of automatic video surveillance is to automatically 
detect the interesting objects in the monitored area, track their motion and 

automatically take appropriate action like alerting a human supervisor. Second-
generation surveillance systems constitute the current state of the art from a 

commercial viewpoint. The main technical innovation in second-generation 

surveillance systems is the introduction of digital video representation. Second-

generation surveillance systems had first separately explored the advantages of digital 

approaches to acquisition, transmission, processing, storage, and visualization. With 
the recent advancements in video and network technology, there is a proliferation of 

inexpensive network based cameras and sensors for widespread deployment at any 
location, as well as with the development of new video-processing and compiuter-

vision algorithms allowing more complex scenes to be considered. All this progress 

has made it possible and necessary to consider a new perspective in this field in order 

to exploit the advantages of a fully digital approach which finally led to the growth of 

third generation surveillance systems. Making video surveillance systems more robust 

and automated creates an opportunity to make use of newer and newer approaches. 

Nearly infinite variability of. the. environmental factors . and the open-ended goals of 

many surveillance problems conspire to create situations where even the most 

advanced detection, tracking and recognition algorithms falter. Making video 

surveillance systems real time is now more possible than ever because of availability 

of affordable parallel computing systems. Large amounts of video data can be 

processed in parallel in these systems which can help to process more frames (of 

larger resolution) per second. Any video surveillance system performs background 

modeling as the first task. In background modeling the frame's pixels are segregated 

in foreground and background pixels: The performance of the video surveillance 

system depends on the background modeling task. 

1.3 Problem Statement 

In this dissertation work we propose and implement the background modeling module 

for video surveillance while addressing the real time processing aspect of the 



problem. We aim to use parallel processing, support vector machines and a fusion 

algorithm to speed up background modeling. We focus on a compression algorithm 

Embedded Zero Tree Wavelet (EZW). We make use of parallel processing to speed 

up the execution of this algorithm to make it useful for real time transmission. We 

also focus on parallelizing morphological operations for binary images. The aim of 

morphological operations is to make the image smoother. Performing background 

modeling may leave some holes in the image; these holes are filled by using 

morphological operations. This image is then processed by connected components 

labelling logic. This code is also implemented in parallel. The idea behind connected 

components labelling is to group the foreground objects in logical objects. 

1.4 Organization of the report 

Chapter 2 gives the basics of background modeling explaining how Gaussians are 

used in background modeling. This chapters then proceeds to develop the fusion 

algorithm which answers the latency issue in an intuitive fashion. 	 _ 

Chapter 3 explains how support vector machines can be used to perform background 

modeling.. 	, :.:..:.. 

Chapter 4 gives a CUDA based implementation of the EZW algorithm explaining the 

tweaks done to parallely solve the algorithm. 

Chapter 5 gives a comparison of implementation of background modeling tasks on 

Cell BE and that using nVidia CUDA architecture. 

Chapter 6 gives a CUDA based implementation of parallel blob segmentation. This 

chapter covers three implementations Gaussian mixture models, binary morphological 

operations and Connected Components Labelling 

Chapter 7 presents the conclusions of the work and suggests future work that can be 

done to extend the work. 

S.. 
3 



Chapter 2 
	

Fusion Algorithm 

2.1 Background Modeling 

Background modeling can be understood as the procedure by which the background 
of a video file is modelled against changes. The aim is to separate out the foreground 
and background pixels. Background modeling is a very basic step. in the process of 
video surveillance. 

Many computer vision and image processing systems, particularly those in areas such 
as surveillance, human-computer interaction, and 3D model reconstruction, rely 

heavily on an early step, commonly called "background subtraction" that segments 
the scene into foreground and background regions [1].  Background subtraction 

approach is based on obtaining a background or reference model which is then 
subtracted with the current image. Background subtraction is quite adept at extracting 
object information but it is sensitive to dynamic changes in the environment and the 
background model needs to be dynamically updated. Other way of getting objects' 

information is to use inter-frame differences. This does not have any issues like that 
of being getting updated. However the objects are only seen by their. edges. 

(a) 	 (b) 
Figure 2.1 

(a) Original Image (b) Image of the residual got after background subtraction 

n 



Background modeling assumes that the video scene is composed of a relatively static 
model of the background, which becomes partially occluded by objects that enter the 

scene. These objects (usually people or vehieles) are assumed to have features that 

differ significantly from those of the background model (like their colour or edge 

features). The terms foreground and background are not scientifically defined 

however and thus their meaning may vary across applications. For example, a moving 

car should usually be considered as a foreground object but when it parks and remains 

still for a long period of time, it is expected to become background. Also, not all 

moving objects can be considered foreground. The simplest approach is to record an 

image when no objects are present and use this image as the background model. 

However, continuous updating of the model is required to make the foreground 

extraction more robust to the gradual changes in lighting and movement of static 

objects that are to be expected in outdoor scenes. A robust system should not depend 

on careful placement of cameras [2]. Background modeling finds numerous 

applications and is a module of every video surveillance task. It finds application in 

object tracking where it can be used to -.find a particular object, in a given frame. 

Background modeling is used in security, where it can be used to' identify foreground 

objects and activities and then alert the authorities in case of abnormal event. It will 

be an important part of the futuristic cars that shall drive on their own by figuring out 

what object lay ahead in the path. 

Gaussian distributions have been used for modeling background in [3] and [4]. 

Francois et. al [3] have preferred to use HSV (Hue Saturation Value) colour space 

over ROB (Red Green Blue) colour space. They point that the dissimilar information 

of HSV colour space axes offers a more intelligent way of modeling background. 

Stauffer et. al [4] have used -multiple Gaussians to improve the' robustness of 

background modeling in situations where the background is multimodal. [5] presents 

an interesting' discussion • on the type of issues that' can come up when performing 

background modeling.  

As an alternate to just use colour information various approaches have been discussed 

in which edge information has been used. Jabri et. al. [6] fused the information of 

edges as well as colour of pixels. They used sobel operator for edge detection. 

However the usage of colour information presented with an issue if the colour 

E 



changed too drastically. Jain et. al. [7] suggested using of sub pixels to capture very 

small translations of objects. Sub pixels are interpolations of existing pixels which are 
also used in video compression [8]. [9] shows how k-means clustering can be used for 
background modeling. They used two clusters, one for background pixels and other 
for foreground pixels. 

2.2 Gaussian Distribution 

We now give a brief description of the Gaussian distribution. Mixture of Gaussians 

has been one of the most widely used mathematical tools for background modeling. 

The Gaussian distribution may be defined by two parameters, location and scale: the 
mean ("average", µ) and variance (standard deviation squared) 62. 

The importance of the normal distribution as a model of quantitative phenomena in 

the natural and behavioural sciences is due in part' to the central limit theorem. Central 

limit theorem states that the sum of a large number of independent and identically-

distributed random variables will be approximately normally distributed (i.e., 

following a Gaussian distribution, or bell-shaped curve) if the random variables have 

a finite variance. Many measurements, ranging from psychological to physical 

phenomena can be approximated by the normal distribution. While the mechanisms 

underlying these phenomena are often unknown, the use of the normal model can be 

theoretically justified by assuming that many small, independent effects are additively 

contributing to each observation. We can think of the Gaussian distribution as the 

most "general" distribution when anything, comes to model a natural physical 

phenomenon.  

2.3 Using Gaussians for background modeling 

Every background pixel is modelled by using a Gaussian distribution. The distribution 

has its own mean and variance. A background model for every pixel is stored from 
some of the initial frames. If a frame is of 100 x 100 size then we will have 10000 

pixels and each of these pixels will have 3 components red, green and blue. So for 

storing the background model for this frame we need to store 30000 Gaussians. Each 

of these Gaussians will have its mean and variance. 

6 



1 

0.9 

0.8 

0.7 

0.6 

0.5 

0.4 

0.3 

0.2 

0.1 

µ= o,2=0.2 
µ= 0,a2= 1.0 
µ= 0,62=5.0 
µ=-2,6 =0.5 

	

0 r __-r 	_ _L- . 1 i 	, ~~ 	, 'I 

-5 	-4 	-3 	-2 	-1 	0 	1 	2 	3 	4 	5 
Figure 2.2: Gaussian distribution with different values of mean and standard deviation 

[7] 

Every pixel of every new frame is compared against the model distribution. The 

decision of whether the pixel is foreground or background is made on the basis of a 

threshold. The value of pixel is checked if it lies in between 2.5 standard deviations of 

mean of the model stored. If the value lies in between this range then it is considered 

as a background pixel and a pixel that matched the background model. Otherwise the 

pixel is considered as a foreground pixel. 

The background model for each pixel is then updated according to the pixel value in 

the newer frame. If µ is the mean of the background model and 6 is the standard 

deviation and x be the pixel under consideration of the incoming frame. 

1u*-(1—a)p+ax 

a2 <- max(a min t , (i - a)o 2 + a(x - ~l)2 ) 

7 



Here a is the learning rate. More the value of a quicker the system updates the 

background model with the incoming frames, a7 min is a value that is forced by the 

system so to ensure that the value of standard deviation does not become too small to 

accept background pixels. 

2.4 From Single Gaussian to Multiple Gaussians 

The drawback of using single Gaussian is that it cannot work well if the background 

contains a dynamic object. If every pixel was a result of a single surface under fixed 

lighting then this could be described by just one Gaussian. But the case is rarely so. In 

real life conditions the lighting changes and this requires the Gaussian distribution to 

be adaptive. This means that the mean and the variance of the Gaussian need to be 

updated to reflect the change in lighting. A further complexity comes about because a 

particular pixel could be a result of more than one surface. We can have the same 

pixel to be there because of the motion of a car when the car is moving across and 

then result to be something else when the car moves. "S"o we need more than one 

Gaussian to model the background. Incorporating both the complexities we need more 

than one adaptive Gaussian per pixel. 

Let us consider an example to explain the need of multiple Gaussians. Consider a tree 

with moving leaves. Further consider one pixel of that region where this moving tree 

is. Now this particular pixel can be lighted by either the green colour of the leaf of the 

tree or by the blue 'colour of the -sky. We would want both the surfaces to be 

considered as background. So for this we need two Gaussians. One of the Gaussian 

will accept the green colour of the leaf as background and other Gaussian will be 

accepting the blue colour of the sky as background. 

Now if some red coloured car. -becomes' an occluding object, both the Gaussians will 

not accept this pixel as background and the pixel will become marked as a foreground 

pixel. 

Initialisation of the Gaussians is done in the same way as it was done for the case of 

single Gaussian. However, now the Gaussians also store• a weight. Higher weight 



indicates that the Gaussian is more important to the model. Let us assume that we are 
storing 3 Gaussians per pixel. So for an image of 100 x 100 pixels, we have 30000 
Gaussians. Each Gaussian now stores a mean,. standard deviation and a weight. For 

every pixel of the newer frame now, this particular pixel is checked if it lies within 2.5 

standard deviations of the mean of every Gaussian of the model. If any of these 
Gaussian accepts this pixel as background then the pixel is marked as a background 
pixel. Each Gaussian also remembers if the pixel matched it or not. The weights of the 
Gaussians that matched the pixel are updated to increase their significance, in the 

model. 

Wvk r  = (1 - a)Cok ,,-1  + a (Mk,r 

Here cok  , is the weight of the kth  Gaussian for tth  pixel. Mk ,, is a variable that is either 

1 or 0 depending on whether the Gaussian matched the pixel or not. 

If none of the distributions matched the pixel in question then the least matching 

distribution is replaced to incorporate this new pixel. The new distribution has the 

current pixel value as its mean and a very high variance. A high variance is used so to 
ensure that anything even remotely related to this pixel in future is caught as 

background. 

The mean and deviations for the distribution that did not match are not. changed. The 

mean and deviations for the distributions that matched were however updated. The 

idea behind this is that a new pixel does not destroy the unmatched distributions. They 
are removed only when they become the least significant. The weight however for 

these distributions keeps on going down. This works in the case where one object 
enters the frame for just-enough time to become part of the background and then starts 

to leave the frame. To remedy this situation the previous background distribution are 
present with the same mean and deviation to take over. A per pixel/ per distribution 

threshold allows freedom to work with different parts of the frame. 

9 



2.5 Motivation for Fusion Algorithm 

High computation power and/or memory requirement is/are an important issue in 
background modeling. Using a single Gaussian takes considerably less time to model 

background than that taken by multiple Gaussians. Using a Single Gaussian implies 

lesser comparisons and fewer updations and a single Gaussian ends up being faster 

than Mixture of Gaussians. However, multiple Gaussians algorithm is more robust to 

repeated motions such as moving of a tree in wind or that of a flag. But when it comes 

to model background, when the background is static then we see that the performance 
of finding interesting pixels of a single Gaussian is comparable to that when Mixture 

of Gaussians is used. This interesting observation makes suggestion to fuse both the 

algorithms to exploit this trade-off. 

Consider a windy day when we are modeling the background for a moving tree. In the 

presence of the wind, the swaying tree can cause a false detection as a foreground 

object, so the logical choice is to use a mixture of Gaussian which will suppress these 

false detections. But when the wind velocity reduces and the tree ceases to move then 

it can be modelled well by only a single Gaussian, as it is now a static object. 

The work presented here is most similar to the work done by Shimada et. al [11]. 

They varied the number of Gaussians that are used to model a pixel depending on the 

nature of illumination changes that occur at that pixel. To speed up background 

modeling Hyo-kak et. al [12] segregated the pixels and used a near search technique. 

Their idea was based on - temporal persistence, spatial compactness and spatial 

translation. They reduced the number of pixels on the actual computation needed to be 

performed. 

2.6 Design and Implementation 

The fusion algorithm described in the Figure 2.3, models background for some of the 

frames by using just one Gaussian and for other frames by using a mixture of 

Gaussians. The fusion algorithm consists of 3 aspects. For a window of M frames 

some frames are modelled using a single Gaussian others by mixture of Gaussians. 

And this is followed by switching logic.` 

10. 



Start 

r Input values 
for thresholds, 
window size 

Initialise the Gaussians, 
single and mog such that 
single ± mog window 

No 

Stop 	Anymore 
frames? 

Yes 

Apply single Gaussian to 
next `single' frames 

. t . 
Apply mixture of 

Gau ian to next `mog' 
frames 

Apply switching 
algorithm to update 

`single' and `iuog' such 
that-sin e+inog window 

Figure 2.3: Fusion Algorithm 

To make the right choice about whether to use single Gaussian or to use a Mixture of 
Gaussians (MOG) the algorithm runs a logic after a window of every M frames. 
Amongst these M frames some of the frames will be modelled by single Gaussian and 
other by 

11 



MOG depending on the type of environment found. After these M frames the 

connected components algorithm is applied to the last frame. The objects detected are 
compared against a threshold for the size of the object. All the objects smaller than 
this threshold are counted. Then the.i.humber of such objects is compared against 

another threshold. If the number of small objects is more than a certain number this 
indicates the presence of a dynamic environment. Following this the number of 

frames 'for which MOG is supposed to run is .increased. If the number of objects 

detected is less than the threshold then the number of frames for which single 

Gaussian is run is increased: 

In a static environment the MOG algorithm will run just once per the window size. 
This may cause the MOG values to not stay updated with the current image pixels. 

For this the values of the single Gaussian are used to update the Gaussian which has 
the minimum. weight from .K: Gaussians..It: should be noticed that these, weights are 

maintained as part of the MOG implementation so their . updation does not add any 

overhead. 

It is to be noticed that the code that runs for the switching logic should not become the 

bottle neck for the entire algorithm. If it so happens that the switching logic itself is 
very slow then the gains by running the single Gaussian for more frames will be lost. 

But as it turns out that the switching logic makes use of connected components 

algorithm and thresholding for the size of the small objects and connected 

components algorithm is already part of any standard background modeling module. 

So the switching logic even though it may seem as an overhead is not really an 

overhead. 

2.7 Experimental Results 

We have used a set of images as input data that has the leaves of the tree moving for a 

certain amount of frames which are followed by some frames when the wind stops. 

The first part of image set points towards the dynamic environment and the second 

part of the image set points towards the static background case. 

12 



The experimental results presented here are under the fair underlying assumption that 
MOG is a better approach to model backgrounds for video surveillance. We have 

modelled the same video first with only MOG and then with the fusion algorithm. It is 
found that both the algorithm give a relatively similar performance in the number of 

small objects but the fusion algorithm makes smart decision when the wind stops and 

starts working on more frames with single Gaussian algorithm greatly reducing the 

amount of time taken. As we have already mentioned that switching logic is really not 

an overhead so we discount its running time for our calculations. 

Number Number 
Frame of Frame of 

Number Time (s) Objects Number Time (s) Objects 
36 6.453 1714 51 9.205 0 
37 6.135 1892 52 8.246 0 
38 6.176 1568 53 9.756 0 
39 6.239 1699 54 7.278 0 
40 6.344 1658 55 . 8.824 0 
41 6.352 1613 56 7,413 0 
42 6.376 1775 57 6.274 0 
43 8.777 1579 58 6.898 0 
44 9.165 1286 59 6.824 0 
45 7.114 0 60 7.79 0 
46 9.607 0 61 7.33 0 
47 - 6.576 0 62 6.442 0 
48 9.91 0._ 63 10.888 0 
49 9.198 0 64 11.328 0 
50 9.34 0 65 8.755 0 

66 9.533 0 

Table 2.1: Table showing the number of small objects and the time required to model 

frames when MOG algorithm is used. - Frames taken here correspond to that part of 

video where the. environment shifts from dynamic nature to static nature. 

Tables 2.1 and 2.2 show the relative performance of mixture of Gaussians against that 

of fusion algorithm. In case of fusion algorithm the values of number of objects are 

for every fifth frame because for our specific example we have taken a window size 

of 5 and we run the connected components algorithm once every 5 frames for our 

switching logic purpose. Switching time tells us the time that the code for making the 

decision took: 

13 



The point to be noticed here from the tables is that whenever switching logic was 

executed to make the choice the number of objects detected by the fusion stays same 

as it was in the corresponding case for pure MOG algorithm. As we can see from 

tables 2.1 and 2.2 frame number 40 has the same number of small objects for both the 

algorithms. This shows that we are not losing any object detection accuracy in the 
fusion algorithm. 

Number Number 
Frame Time of Switching Frame Time of Switching 

Number Algorithm (s) Objects Time Number Algorithm (s) Objects Time 
36 Single 0.104 51 Single 0.118 
37 MOG 6.21 52 Single 0.116 
38 MOG 6.296 53 Single 0.113 
39 MOG 6.71 54 MOG 6.726 
40 MOG 8.935 1658 2.349 55 MOG 9.646 0 0.026 
41 Single 0.184 56 Single 0.173 
42..... MOG :..8.839.:,::  :::._. 	;::: ;:  ; 	57 - ...Single ,. 0.204 
43 MOG 8.949 58 Single 0.156 
44 MOG 9.11 59 Single 0.167 
45 MOG 7.692 0 4.213 60 MOG 7.921 0 0.019 
46 Single 0.118 61 Single 0.113 
47 Single 0.106 ` 62 Single 0.102 
48 MOG 6.858 63 Single 0.114 
49 MOG 6.608 64 Single 0.104 
50 MOG 6.675 0 0.037 .65 MOG 6.527 0 0.054 

Table 2.2: Table showing the number of small objects and the time required to model 

frames when Fusion algorithm is used. Frames taken here correspond to that part of 

video where the environment shifts from dynamic nature to. static nature. One can see 

how the number of frames being modelled by single Gaussian . increase as the 

environment becomes static towards the end. 

2.8 Conclusions 

The results have been obtained on a. computer running on a Core2Duo 1.5 GHz 

processor with 2 GB RAM. The algorithms were coded in MATLAB 7. To test the 

14 



algorithm, we have used video sequences obtained from CAVIAR (Context Aware 
Vision using Imagebased Active Recognition) project site. 

Fusion algorithm maintains a good balance between performance and latency. The 

intelligent switching ensures that we are using the right number of Gaussians 
depending on the environment. We see that fusion algorithm runs 80% of frames 
using mixture of Gaussians for a window size of 5 for cases that have dynamic 

backgrounds. This ensures that we have good performance for multi modal 

backgrounds. Latency issue can be better answered by increasing the window size. 

However, doing so we may start to see some performance deterioration as the 

updations will now be delayed. 

15 



Chapter 3 	 Background Modeling using SVMs 

3.1 Introduction to SVMs 

Support vector machines (SVMs) are a new method for classification of data. Support 

vector machines search for a linear hyperplane to separate data from two classes. In 

our case we have data corresponding to two classes only, foreground pixels and 

background pixels. By hyperplanes we simple- mean planes of higher dimensions. 

SVMs take as input some training tuples and from this they try to find the optimal 

hyperplane. By optimal we mean that this particular hyperplane should have high 

accuracy in separating the classes. 

The training time of SVMs can be extremely slow, but they are extremely accurate. 

They are also less prone to overfitting. The time required for classification is quite 

less which makes them useful to be used for background modeling in real time. 

3.2 One Class Classification 

We will first explain the motivation for selecting one class classification for solving 

background modeling. The problem of background modeling is to classify the pixels 

of a frame as background or foreground. Till this the problem is similar to any general 

classification. But in case of normal classification the training tuples that we have are 

belonging to classes, target class and outlier. class. In case of background modeling 

the initial frames are all takes as background. So when we are creating the model we 

do not have any information about the class `foreground' and thus normal 

classification cannot be used for background modeling. 

The problem of one-class classification is a special type of classification problem. In 

one-class classification we are always dealing with a two-class classification problem, 

where each of the two classes has. a special meaning. The two classes are called the 

target and the outlier class respectively: 

Target class 

16 



This class is assumed to , be sampled well, in the sense that of this class many 
(training) example objects are available. It does not necessarily mean that the 
sampling of the training set is done completely according to the target distribution 
found in practice. It might be that the user sampled the target class according to 
his/her idea of how representative these objects are. It is assumed though, that the 

training data reflect the area that the target data covers in the feature space. 

Outlier class 

This class can be sampled very sparsely, or can be totally absent. It might be that this 

class is very hard to measure, or it might be very expensive to do the measurements 

on these types of objects. In principle, a one-class classifier should be able to work, 

solely on the basis of target examples. 

An example of one class classification could be the problem of machine diagnostics. 

Let the problem be to classify if the machine is running fine or faulty. It is simple to 

obtain measurements from; a machine ,that-_ is working. Please note that we are not 

indicating a situation where we want- • every possible measurement of a working 

machine. On the other hand getting a machine damaged in every possible way for 

training the model to learn about the faulty class is a very impractical and expensive 

approach. The consultant offering this solution has just lost his job. 

Another example could be that of facial recognition for surveillance purposes. For this 

the target class is well defined but the outlier class could be anything. This would 

generate too many false detections if two class classification is used. 

3.3 Errors in one class classification 

There are two types of errors in one class. classification that need to be minimized. 

These two errors are called false positives and false negatives 

17 



The fraction false negative can be estimated by using cross validation on the target 

training set. In cross validation we make B batches of the training data set. Of these 

we use the B-1 batches for training of the SVM and use the last batch for testing the 

True Class Label 

Target 
Target - Outlier 

True Positive 
Target Accepted 

False Positive 
Outlier Accepted 

Assigned 
Label 

Outlier False Negative 
Target Rejected 

True Negative 
Outlier Rejected 

Table 3.1: Types of errors in one class classification problem 

SVM. This process is repeated over and over by changing the batches. The fraction 

false positive is however even more difficult to estimate if we do not have any outlier 

object available. 

3.4 Introduction to data description toolbox 

Data description (dd_tools) [13] is a MATLAB toolbox that provides tools, classifiers 

and evaluation functions for researching one class classification. The dd tools is an 

extension - of prtools. Prtools [ 14] is a MATLAB toolbox for pattern recognition. 

Dd tools borrows and builds on the objects mapping and dataset provided by prtools. 

For our implementation we made extensive use of the function svddO which basically 

returns the model for a given data set. After the model is built this model is compared 

against the testing tuples. Based on, this comparison a. decision a decision is made if 

the object belongs to target class or outlier class. 

3.5 Applying one class classification to background modeling 

The task at hand is to create a model, of the area under surveillance and then use this 

model to separate the frame's pixels into background and foreground pixels. So the 

first task is to create the model. A model shall store data from a considerable number 

of frames. We use a number of frames to work around the acquisition noise of the 

18 



camera. If the same camera tries to capture an area twice the resulting images will not 

be identical because of the inherent acquisition of the camera. So we take more 

images of the area for building our model. This- shall make the model more robust and 

results in lesser false detections. Creating of a model is very time consuming so we 

have two implementation choices on our hand. Either there could be a model for 

every pixel. If the frame is 100 x 100'•in size then this means that we need to create 

10000 models. .The other choice is to, create a block of say 5 x 5 pixels and have a 

model for each block. This reduces the number of blocks from 10000 to 400 which 

has a significant impact, of the training time as well as the time required for 

classification. The downside is that we do lose some accuracy as we now get only 5 x 

5 pixel blocks marked as foreground inside of having information for every pixel. But 

this information does not deter good tracking. 

We now give a peek of what our training data looks like when we are creating a 

model. We used 34 frames to create the model. Each frame is 100 x 100 pixels in size 

and the block size for the model is 5 x 5 pixels. The training data is a 170 x 15 vector. 

• Column 
Numbers 
6-10 	11-15 1-5 

For frames Data for pixel Data for pixel Data for pixel 
1-34 (1,1-5) (1,6-10) (1,11-15) 
For frames Data for pixel Data for pixel Data for pixel 
35-68 
For frames 

(2,1-5) 
Data for pixel 

(2,6-10) 
Data for pixel 

(2,11-15) 
Data for pixel Row 

Numbers 69-102 
For frames ' 

(3,1-5) 
- Data for pixel 

(3,6-10) 
Data for pixel 

(3,11-15) 
Data for pixel 

93-136 (4,1-5) (4,6-10) (4,11-15) 
For frames Data for pixel Data for pixel Data for pixel 
127-170 (5.1-5) (5,6-10) (5,11-15) 

Table 3.2: Table showing the training data for a 5 x 5 block of image 

The model is a 20 x 20 array with one location holding the model for a 5 x 5 block of 

image. 

Creation of a model is time taking process; however background modeling of future 

frames is very fast and robust. For background modeling we read the frames and then 

make 5 x 5 pixel blocks of the image in, a similar way as we did when we created the 

19 



model. Dd tools provides a `*' operator to find a comparison to the test data with the 

model. 

3.6 Results and observations 

We now provide the results that were obtained when performing background 

modeling using support vector machines. The results were obtained using MATLAB 

R2008a. The computer system was a Core2Duo 1.5 GHz with 2 GB RAM. The image 

set used was taken from [13]. 

The training data was a set of 34 images that had the area under surveillance without 

any occluding objects. 

Frame 4 	Frame 9 	Frame 10 	Frame 30 

Figure 3.1: Images that were used as training data for the support vector machine 

The following are the background modelled images that were obtained when SVM 

was used and data was processed in a 5 x 5 block of pixel 

Frame 37 

20 



Frame 71 

Frame 84 

Frame 91 

Figure 3.2: Images showing the output after a 5 x 5 block has been used for 

background modeling for SVMs. 

The results obtained show the robustness of SVM for background modeling. There 

are very few outliers and since the outliers are of small size as compared to that of the 

actual object they can be suppressed easily by connected components algorithm. The 

following table gives the  running  times when background modeling is down for 66 

frames using three approaches. The first approach uses a mixture of Gaussians that 

has three Gaussians. In the other approach we use one class classification and 

maintain a model for every pixel. In the third approach we maintain a model for every 

5 x 5 pixels. 

Mixture of Gaussians with 3 Gaussians 	609.5709 seconds 
SVM model per pixel 	 388.7765 seconds 
SVM model per 5x5 block 	 12.7629 seconds 

Table 3.3: Running times of three approaches for performing background modeling 

for 66 frames 

The general idea for the approach is that any occluding object shall be larger than a 5 

x 5 pixel block. This approach will not give good results for outdoor surveillance as 

the environment can be dynamic with varying lighting condition and a dynamic 

21 



background. This approach can give good results for closed environments like ATM, 

cafeterias etc. 

A good extension to this work could be a parallelization of the SVM training 

algorithm. The classification_ task is quite fast and would not require any 
parallelization. However, if the training time can be reduced then the performance of 

the over all system can be improved drastically. Updated SVM models will be able to 

take in the gradual changes that may happen for closed environments like change of 

lighting as day progresses. 

22 



Chapter 4 	Parallelization of EZW on CUDA architecture 

4.1 Introduction 

The embedded zero tree wavelet (EZW) proposed by Shapiro [17] has a number of 
desirable properties. It has a superior compression efficiency which makes it suitable 

to be used for image and video compression. The algorithm works on the set of 

wavelet coefficients for the particular image to be compressed. Other aspect of EZW 

algorithm is its network resilience which makes it adept at handling situations that 

require real time transmission with low bandwidth. This makes the EZW algorithm 

suitable to be used for video surveillance. Another supporting reason for EZW to be 

used for video surveillance is that objects can be detected in the compressed domain, 

which can help avoid decoding of the EZW encoded bit stream [18]. 

Approaches to perform EZW in parallel have been proposed previously. In [19] 

Cheung et. al. discuss a parallel architecture for performing EZW compression. Ang 

et. al [20] give a good discussion about the merits and demerits of the scan order of 

the hierarchical trees of wavelet coefficients. They conclude that depth first search 

allows the complete encoding: of one - tree before proceeding on to the next tree. 

However their implementation caused a reduction in PSNR. 

4.2 nVidia CUDA architecture 

We now discuss a little about nVidia's CUDA (Code Unified Device Architecture) 

architecture which we have used to parallelize EZW. General purpose computing on 

the GPU is an active area of research. GPUs are already widespread. The performance 

of GPUs is improving at a rate faster than that of CPUs. The capabilities of the GPU 

have increased dramatically in the past few years and the current generation of GPUs 

has higher floating point performance than the most powerful (multicore) CPUs [16]. 

The GPU contains hundreds of cores that work great for parallel implementation. The 

programming is done in SIMD style where same code is worked on different data 

locations. Until recently a graphics API was needed to code on GPUs which made 

coding for non graphics oriented calculations tough. Trying to work around this 

23 



limitation nVidia released CUDA which allows GPUs to be programmed using a 
variation of C. This enables a low learning curve and makes programming easier. 

The three abstractions of the CUDA model are a hierarchy of thread groups, shared-
memories, and barrier synchronization. Threads are arranged in the form of a grid 

which is a two dimensional array of thread blocks. Each thread block is a three 

dimensional structure that houses the threads. This type of hierarchy is given to the 

programmer so that the arrangement of the threads is similar to the way programmer's 

data is arranged (in arrays). Threads within a block can cooperate among themselves 

by sharing memory. Shared memory is expected to behave like an L1 cache where it 

resides very close to the processor core. Synchronization points can be specified by 
calling the function _syncthreads. 

The memory available to the threads is of three types. Every thread has local memory. 

Number of threads which are in the same thread block can share memory. And the 

third type of memory is the global memory that every thread has access to. C code for 

both the GPU and the CPU resides in the same file. The CPU code follows a 

sequential flow. GPU code is called by a kernel call. This is where the code runs in 

parallel. A large number of threads are created by the kernel call. These threads then 
run parallely on the GPU. 

1000 — GT200 

NVID!A GPU 

-+-Liti,I Cpu 
G80 G92 

750 

G80 a 
O 

500 
G71 

a  G70 
250 	NV35 	NV O 3A GHz g 

NV30 Core2 Duo 

Jan Jun 	Apr Jun Mar 	Nov May Jun 
2003 	2004 2005 2006 	2007 2008 

Figure 4.1: Floating point operations for the CPU and the GPU [16] 

24 



The figure 4.1 shows the tremendous computational capability of the GPU. GTX 280 

a (IT 200 family GPU delivers a peak performance of 933 GFLOPS/sec. 

4.2.1 Programming Model 

In this part we will discuss aspects that will explain how the CUDA programming 
model works and what the various aspects of the model are 

4.2.1.1 Thread Hierarchy 

Threads in CUDA are arranged in the form of a hierarchy. A number of threads house 

within what is known as a thread block. These thread block can be 1 dimensional, 2 

dimensional or 3 dimensional. These thread blocks are placed in a structure known as 

thread grid. Thread grid can be either 1 dimensional or 2 dimensional. 

Figure 4.2: Figure showing arrangement of threads [16] 

25 



A maximum of 512 threads can be placed in a thread block. Thread block are 
expected to run independently of each other. This independence requirement allows 

thread blocks to be scheduled in any order across any number of cores, enabling 

scalable code to be written. Proper selection of grid size and block size is important to 
gain good speed up. 

4.2.1.2 Memory Hierarchy 

Threads may access memory from different memory spaces during their existence. 

Threads may declare local variable, may share memory with other threads that belong 

to the same block or may be accessing global memory. 
Thread 

Per-thread local 
memory 

Thread•Block 
Per=block shared 

~_ 	 memory.- 

Grid 0 

1 Block {O, 0) f' 	 k (1, O) 	Btock'(2, O 

     =J 

	

Block (O, 1) ~ Block (1, 1) 		Block (2, 1) 

JL t  
Grid 1 

I— 	Block (0, 0)1 ` 

L 

 

Block (1, 0) 

 
Block (0, 1) 	:^ J 

LIRE] 
Block (1, 1) 	l 

i 

fit___ _.1 
.Block (0, 2) - 	E 

LJ$[_1Li$iL 1 

Block (1, 2) 

Figure 4.3: Figure showing how threads access global, shared and local memory [16] 

26 



4.2.2 GPU Implementation 

In November 2006 nVidia significantly extended the GPU beyond graphics. It made 

available the massively parallel multithreaded GPU for general purpose applications. 

By scaling the number of processors and memory nVidia made available a wide range 

of products from the high ended GTX 280 with 240 cores and 1 GB RAM to 8400M 

GS with 16 cores and 128 Megabytes of RAM. The computing features enable a 

straightforward parallelization of the application by using C language. Some 

extensions have been made to C for CUDA specific code. 

When a CUDA program on the host CPU invokes a kernel grid, the blocks of the grid 

are enumerated and distributed to multiprocessors with available execution capacity. 

The threads of a thread block execute concurrently on one multiprocessor. As thread 

blocks terminate, new blocks are launched on the vacated multiprocessors. A 

multiprocessor consists -. of eight Scalar Processor (SP) cores. Every multiprocessor 

has 8192 registers of 32 - bit size each. The multiprocessor creates, manages, and 

executes concurrent threads in hardware with zero scheduling overhead. The general 

idea is to achieve very fine grained parallelism by assigning one thread to work on 

one data item. A data element could be a pixel of an image or a protein base when 

working with poly peptide chains. 

The multiprocessor creates, manages, schedules, and executes threads in groups of 32 

parallel threads called warps. Individual threads composing a • warp start together at 

the same program address but are otherwise free to branch and execute independently. 

When a multiprocessor is given one or more thread blocks to execute, it splits them 

into warps. The way a block is split into warps is always the same; each warp contains 

threads of consecutive, increasing thread IDs with the first warp containing thread 0. 

A warp executes one common instruction at a time, so full efficiency is realized when 

all 32 threads of a warp agree on their execution path. If threads of a warp diverge via 

a data dependent conditional branch, the warp serially executes each branch path 

taken, disabling threads that are not on that path, and when all paths complete, the 

threads converge back to the same execution path. Branch divergence occurs only 

within a warp; different warps execute independently regardless of whether they are 

executing common or disjointed code paths. 

27 



A multiprocessor can work on a maximum of 8 thread blocks. However, if the thread 

code required a large number of registers then lesser number of thread blocks are 
assigned to a multiprocessor. In case a thread block is too bulky to be assigned to a 
multiprocessor then in such cases the kernel simply fails to launch. 

4.3 EZW Algorithm 

In this section we explain the general EZW algorithm: We use the same matrix used 

by Shapiro in his original paper [17]. The algorithm starts off by selecting a threshold 
(T). This threshold is the largest power of two that is smaller or equal to the maximum 

of all wavelet coefficients. A wavelet coefficient x is significant if lxi > T and is 

insignificant otherwise. If a wavelet coefficient is insignificant at a coarser level then 
all children of that coefficient at finer levels will be insignificant. 

Figure 4.4: Parent Child Dependencies of Subbands of wavelet coefficients 

The parent-child dependencies of subbands are shown in the Figure 4.4 above. The 

arrows point from the subband of the parents to the subband of the children. The top 

left subband represents the lowest frequency, the coarsest scale. The bottom right 

subband represents the highest frequency, the finest scale. Any coefficient is an 

element of a zerotree if all its descendants are insignificant with respect to the given 

28 



threshold value. If an element of a zerotree is not predictably insignificant from the 
discovery of a zerotree root at a coarser scale at the same threshold, it is called the 
zerotree root. The scanning of the wavelet coefficients is done either in Morton scan 
order or raster scan order. For our implementation we have used Morton scan order to 
read the wavelet coefficients. 

Scanning of coefficients has two principles. The -rule is that the coefficients at parent 
or coarser level are always scanned before proceeding to the children or finer levels. 

And the second rule is that coefficients of the same sub band are scanned before 

moving to the next subband. Figure 4.5 clearly shows how the scanning proceeds in 
Morton scan order. 

LL3 HL3  

HL2 

HH3  

HLi 

LH 

LH2 	H H2  

••7VVV 

LH1  HH, 

Figure 4.5: Morton Scan order on a matrix of wavelet coefficients at three level 

decomposition 

The EZW algorithm has basically two parts the dominant pass and the subordinate 
pass 

29 



Threshold=2^floor(log2(max(all wavelet coefficients))) 
While(Threshold>O) 
{ 

Perform dominant pass(Threshold) 
Perform subordinate pass(Threshold) 
Threshold=Threshold/2 

} 

Figure 4.6: EZW Algorithm 

Dominant pass performs the task of encoding each wavelet coefficient as any of the 

following 4 symbols 

1. Zero tree root (t): This symbol is encoded if the coefficient is insignificant when 

compared with the threshold and also if all the descendants of the coefficient 

are insignificant when compared with the threshold. If such a symbol is 

encountered then none of the children of this coefficient are considered for this 

dominant pass 

2. Isolated zero (z): This symbol is encoded if the coefficient is insignificant when 

compared with the threshold but some descendant of the coefficient is 

significant when compared with the threshold 

3. Positive significant (p): This symbol is encoded if the coefficient is significant 

when compared with the threshold and is positive in sign. 

4. Negative significant (n): This symbol is encoded if the coefficient is significant 

when compared with the threshold and is negative in sign. 

We now take a specific case to explain how dominant pass works. The largest of all 

the wavelet coefficients is 63. This makes the threshold for the first dominant pass 

as 32. The scan starts at 63 which is encoded as a positive significant as it is greater 

than 32. This is followed by -34 which is negative in sign and is therefore encoded 

as negative significant. Next we read -31. This value is less than the threshold but 

one of its children 47 is greater than the threshold so -31 is encoded as isolated 

30 



uuuuuu 

Figure 4.7: Wavelet coefficients of an 8 x 8 image [17] 

zero. 23 is encoded as a zero tree root since all its 'children are less than the threshold. 

After this we move to the HL2 coefficients. -In these 49 is encoded as a positive 

significant while all others 10, 14 and -13 are zero tree roots. In the LH2 coefficients 

all except 14 are zero tree roots. 14 is an isolated zero as its child 47 is greater than 

the threshold. We do not encode any HH2 or HH3 coefficient as their parent 23 is a 

zero tree root. Among all the LH1- coefficients -1, 47,-3, 2- are encoded since only 

their parent was encoded. 47 is a positive significant while all others are zero tree 

roots. So our output after the first dominant pass is pnztpttttztttttttptt. 

Dominant pass is followed by subordinate pass. In this a binary string is stored in the 

file. The subordinate pass only looks at the nonzero values and refines them. It 

basically tries to store information about whether the coefficient lies in the upper half 

or the lower half. For this pass when the threshold is 32 all coefficients that have been 

encoded with a `p' or an `n' will have a value greater than 32 but less than 64. They 

have to be less than 64, else the threshold would have been 64 itself. The range [32, 

64) is partitioned into [32, 48) and [48, 64). All values lying in [32, 48) are encoded 

as a `0' and those lying in [48, 64) are encoded as a `1' in the subordinate pass. The 

output after the subordinate pass is 1010. After this the threshold is halved and then 

similar iterations of dominant and subordinate passes follow. 

31 



4.4 Our Algorithm 

Straightforward parallel implementation of EZW is not possible because the 
coefficients are needed to read in a sequence and each of these coefficients cannot be 

worked on in parallel. We have solved the EZW algorithm by creating three trees and 

solving them in parallel. The creation of the three trees is also done in parallel. Care 

has to be done so as to ensure that same code works on all three trees. We will use the 
same example of 8 x 8 image to explain its working on our example. 

Our tree structure for every tree is such at it is complete tree with every node having 

four children. We will refer to such a tree as quaternary tree for our discussion. The 

three trees created are in three directions of details horizontal, vertical and diagonal. 

For now we leave encoding of the dc coefficient 63 as its encoding depends on. the 

codes of its children -34, -31 and 23. 

The first step is to create the trees. The trees are separate in just their orientation. The 

coefficients are to be read in Morton order only. The trees we get are 

LO 	-34 

L 1 	49 10 14 	-13 

L2t 7 13 3 	4 -12 7 6 -1 5 -7 4 -2 3 9 3 2 

LO f -31 

L 1 	15 14 -9 -7 

L2 	-5 9 3 0 -1 47 -3 2 2 -3 5 11 6 -4 5 6 

LO 23 

L 1 	3 	-12 	-14 	8 

L2 	4 	6 	3 	-2 	-2 2 0 4131 6101 3 3 6 -4141  

Figure 4.8: Figure showing the trees built for the horizontal, vertical and diagonal 

details. 

32 



Here LO, L1 and L2- stand for levels 0, 1 and 2. This type of tree arrangement as a two 

dimensional array helps in a simple implementation for CUDA. The size of every tree 
is fixed from the beginning as every node will have 4 children and the depth of the 
tree is a direct function of the size of input image. Also locating of parent node and 

children node is simple. The size of one tree can hence be computed. Also locating 

parent node and children node is simple. For any node p at level i 

Parent (p) = (p/4) at level (i-1) for i ~ 0 

Children (p) = (4p), (4p+1), (4p+2), (4p+3) at level i+1 

These three trees are solved for their individual dominant passes level wise. After 

solving for threshold 32 in parallel and we get the following strings 

Tree 1: npttttttt 

Tree 2: ztztttptt 

Tree 3: t 

Once these are solved in parallel we merge these three trees by reading elements from 

every tree. We read exactly 4k elements from each of the trees where k starts from 0. 

So we read one element each individually 

Resultant String: nzt 

After this we increase. k by 1 so this means that now we have to add 4 elements from 

each of the tree. At this point tree 3 is complete 

Resultant String: nztpttttztt 

Again k is increased by 1 and now we need to read 16 elements from each tree. 

However only 4 are left which will be added to the string 

33 



Resultant String: nztpttttztttttttptt 

This string is same as that obtained when a dominant pass was ran over the entire 

matrix. To hide some of the latency in this process we perform the dominant pass on 

the GPU and the merging of these results on the CPU in parallel. So when dominant 
passes for threshold 16 are run on the GPU results of dominant pass for threshold 32 

are merged. This actually becomes more logical as there is always one dominant pass 

more than the number of subordinate passes. The last subordinate pass is of no 

importance because the threshold is 1 and every output of subordinate pass will be a 

0. 

The parallelizations achieved during in this approach'are 

1) Dominant Passes 

The dominant passes are performed level wise on all . the three trees. The logic of 

performing the dominant passes as three trees has been explained in section 4. To 

make the process further parallel we solve the three trees level wise. 

For(i=0;i<levels;i++) 

Dominantpass(trees,3 *pow(4.0,i)); 

By doing so we gain more-speed up. We first create just three threads to get symbols 
for all coefficients at LO for the three trees. This is followed by creation of 12 threads 

to get symbols for all coefficients at Li for all three trees. Likewise we get a general 

progression to generate 3 * 4k  threads to get symbols for all coefficients at level k. 

This basically increases the amount of parallelism as the size of the array becomes 

larger. For image size of 128x128 we have as many as 12288 threads at the last level. 

2) Subordinate Pass 
Another area of computation gain is the performing of the subordinate pass itself. The 

entire vector is processed in parallel This vector gets up to around 16000 elements for 

a 128 x 128 image which results in as many number of threads. The subordinate pass 

is a set of simple steps that put a 1 or a 0 for every significant wavelet coefficient. 

Subordinate (list d, threshold, output) 

For every thread i 

34 



if((abs(list_d[i])&(threshold))!=0) 
output[i]=' 1'; 

else 

output[i]='0'; 

3) Writing to file 

Writing into files is a time consuming process. Ideally we should have lesser number 

of file writes to increase speed up. We do this by using just one file write call instead 

of a number of character by character writes. For doing this we process the bit string 

in parallel and make it into a long string of characters and we write this string in one 

go instead of a number of character by character writes. This does change the 

implementation a little bit. The streaming character of the algorithm is lost as we now 

wait for the entire string to be ready to be written. 

4.5 Results 

The results were obtained on a system running on a Intel Core 2 Quad 2.4 GHz 

processor with 2.75 GB RAM. The graphics card on the system was GeForce GTX 

280. This particular GPU has 240 stream processors. The coding was done in Visual 

Studio 2005. The experimental results show the amount of time required for EZW 

encoding of images starting from sizes 128 x 128 to 1024 x 1024. We have not 

counted the times that the algorithm takes for console output as that itself becomes 

more expensive than the EZW encoding. 

The parallel implementation of EZW turns out to be slower for smaller images as the 

vectors are not long enough for effective parallelization. The stitching of the trees 

takes up significant amount of time and is something that cannot be done in parallel. 

However, as the image sizes grow parillelization starts becoming effective and 

gradually tries to reach the ideal speed up of 3_ which is the number of trees that have 

been solved in parallel. 

35 



Image Size Our Algorithm (on CUDA) Standard Algorithm 

128 x 128 32 ms 31 ms 

256 x 256 110 ms 141 ms 

512x512 406ms 657ms 

1024 x 1024 1703 ms 2953 ms 

Table 4.1: Table showing the relative performance of our parallel algorithm against a 

standard linear implementation 

Image Size Speed Up 

128 x 128 0.97 

256x 256 1.28 

512x 512 1.61 

1024 x 1024 1.74 

Table 4.2: Table showing the corresponding speedups at different image sizes 

Figure 4.9: Comparison of running times of parallel implementation against linear 

implementation 



Speed up of parallel implementation o%erlinear implementation 

2 

1.5 

—Speed up of parallel 
1 

d, 
implementation o%eriinear 
implementation 

0.5 

0 . 
128 x 128 	256 x 256 	512 x 512 	1024 x 1024 

Image Size in pixels 

Figure 4.10: Speed up of parallel implementation over linear implementation with 

varying image sizes. 

4.6 Conclusions 

We have presented a fresh approach to solve the latency issue of EZW encoding by 

utilizing the computation power of the GPU. We do the encoding in parallel based on 

the observation that the three trees for horizontal, vertical and diagonal details of 

wavelet coefficients are independent. For an image of 1024 x 1024 we were able to 

get a speed up of 1.74 times over the linear implementation. For an additional GPU 

we are able to gain a speed up of 1.74. 

5:'°'~'
~.rR~6- ti"rx+~-Fr'.4+'e~~~"}~' %~

R
~ X~̂` iS'✓

.''~,. y, 

37 



No 

I NO 

Chapter 5 Background Modeling on MultiCore Processors 

The aim of this chapter is to compare two implementations of single Gaussian on two 

multiprocessors. The implementations have been done on Cell BE processor (CBE) 

and on the GPU using nVidia's CUDA architecture. We will give the algorithm for 

performing background modeling using the single Gaussian and then we will go into 
the details of how this is parallelized on the two processors. 

5.1 Background modeling using Single Gaussian 

Background modeling uses one Gaussian per pixel. Information about the first frame 

is used to initialize the Gaussians' means. The standard deviations are set to zero. 

Figure 5.1: Flowchart for background modeling 

38 



After this every pixel of the incoming frame is compared to the corresponding 

Gaussian. If the value of the pixel lies within 2.5 standard deviations of the mean then 

the pixel is accepted as a background pixel. The idea is that we store information for 

every pixel which can be considered as a mathematical model of the background pixel 

process. Now if some pixel shows a lot of deviation from this model then the pixel 

can be safely considered as a foreground pixel. The choice of selecting the spread of 

2.5 standard deviations about the mean follows from the theory of normal distribution. 

The pixel values are assumed to follow normal distribution. The theory tells that 95 % 

of values fall within 2, standard deviations of mean and 3 standard deviations account 
for 99.7% of values [21]. So, 2.5 standard deviations should lie somewhere in 

between 95% and 99.7%. The idea is that the camera has some acquisition noise and 

by 2.5 standard deviations difference we are allowing some leniency in the system to 

compensate for this acquisition noise. 

If the difference about the mean is very less then we will have a situation where there 

will be many false detections' of foreground pixels as acquisition noise of the camera 

itself shall be enough to be detected as a foreground pixel. If the difference about the 

mean is too great then a situation can arise where actual foreground pixels too are not 

getting counted as foreground pixels. 

The Gaussian.per- pixel is needed to be .updated-  to take into account the changes that 

are gradually coming about in the setting. This has to be done to allow an object to•

become part of the background if it stays stationary for some time. Also if some 

object that was stationary and then start to move, then this object should be later 

counted as a foreground object. By updating of the Gaussian we mean updation of the 

mean and standard deviation of the Gaussian. 

The background model for each pixel is then updated according to the pixel value in 

the newer frame. If µ is the mean of the background model and a is the standard 

deviation and x be the pixel under consideration of the incoming frame. 

39 



a2 	max(6min 2 ,(1-a)a2  +a(x - tl)2 ) 

Here a is the learning rate. More the value of a quicker the system updates the 

background model with the incoming frames. a miii is a value that is forced by the 

system so to ensure that the value of standard deviation does not become too small to 

accept background pixels: 

5.2 STI Cell Broadband Engine 

We now discuss a little bit about the STI Cell Broadband engine that we will be using 

to parallelize background modeling. STI stands for Sony, Toshiba and IBM 

Corporation. Cell BE is an outcome of alliance between the mentioned companies in 

the year 2001.In year 2004 first operational Cell BE engine was released. Cell BE 

engines also found their way in the popular gaming console PlayStation 3. The CBE 

processor is the first implementation of a new family of multiprocessors conforming 

to the Cell Broadband Engine Architecture which extends 64 bit Power PC 

Architecture. The CBE processor was intended for heavy graphics usage applications 

like gaming console but the architecture has enabled a broad range of applications to 

gain performance. 

The CBE processor is a heterogeneous process with two type of processing elements. 

Their function is specialized into two types: the Power. Processor Element (PPE) and 

the Synergistic Processor Element (SPE). The CBE processor has one PPE and eight 

SPE' s. 

5.2.1 Hardware Architecture 

The hardware comprises of the following components 

5.2.1.1 PowerPC Processor Element (PPE) 

The PPE contains a 64-bit PowerPC Processor Unit (PPU) with associated caches that 

conform to PowerPC Architecture reduced instruction set computer (RISC) core with 

40 



a traditional virtual memory subsystem. It runs an operating system, manages system 

resources, and is intended primarily for control processing, including the allocation 

and management of SPE threads. The - PPE consists of two main units Power 
Processor Unit (PPU)-  and PowerPC Processor Storage Subsystem (PPSS). The PPU 

performs instruction execution, and it-has level 1 (L1) instruction cache, data cache of 

32KB each, and six execution units. The PPSS handles memory requests from PPU 
and external requests to the PPE from SPEs or I/O devices. It has a unified level 2 

(L2) instruction and data cache of 512KB. 

The primary function of the PPEs is the management and allocation of tasks for the 

SPEs in a system. When data enters the PPE, this element then distributes it among 

SPEs, schedules them to be processed on one or more of the SPEs, controls and 

synchronizes them. 

5.2.1.2 Synergistic Processor Elements (SPEs) 

Each of the eight Synergistic Processor Elements (SPEs) is a 128-bit RISC processor 

specialized for data-rich, compute-intensive SIMD applications. It consists of two 

main units, the Synergistic Processor Unit (SPU) and the Memory Flow Controller 

(MFC). The SPU deals with instruction control and execution. It includes a single 

register file with 128 registers (each one 128 bits wide).and'a unified (instructions and 

data) 256-KB local store (LS). Each SPU is an independent processor with its own 

program counter and - is optimized to run SPE threads spawned by the PPE. The SPU 

fetches instructions from its own LS, and it loads and stores data from and to its own 

LS. 	 - 

5.2.1.3 Element Interconnect Bus (EIB) 

The EIB is a communication bus internal to the Cell processor which connects the 

various on-chip system elements: the PPE processor, the memory controller (MIC), 

the eight SPE coprocessors, and two off-chip I/O interfaces, for a total of 12 

participants. The EIB also includes an arbitration unit which functions as a set of 

traffic lights. 	 - 

41 



5.2.2 Software Development Kit 

An SDK is available for the. Cell Broadband Engine. The SDK contains the essential 

tools required for developing programs for the Cell Broadband Engine. The SDK 

consists of numerous components including the following 

• The IBM Full System Simulator for the Cell Broadband Engine, systemsim. 

• System root image containing Linux execution environment for use within 

systemsim. 

• GNU tools including c and c++ compilers, linkers, assemblers and binary 

utilities for both PPU and SPU. 

5.3 Parallelization on CBE 

The basic idea when parallelizing background modeling is to split the image into eight 

parts and work on each partion one SPE. On CBE the code for PPE and SPE is written 

in two separate files. We will explain the work done by both PPE and SPE in two 

following sections. 

5.3.1 Work done on PPE 

The main work of the PPE is to read the images for the SPEs and to coordinate the 

SPEs. The images that were taken had a resolution of 100 x 100 for a total of 10000 

pixels. So the task to be assigned to every SPE was to work on 1250 pixels. For this 

the required pixels were first copied to the local store of every SPE. 

The first task done by the SPE is to copy 8 parts of the first frame to corresponding 

SPE. This is used to create a background model. These values are used by the SPEs 

for future processing. CBE enforces that every memory access be byte aligned. For 

our task we used 128 byte alignment. So instead of the original 1250 pixels of data 

every SPE was sent 1280 bytes of data. We padded up the last 30 pixels worth data 

with zeros to keep memory aligned. 

42 



After this 8 SPE threads are created, following which SPEs spring into action. The 
working of SPE will follow this section. After creating these 8 threads, PPE proceeds 

to read the next file. This data is also padded to keep the memory addresses aligned. 
When the PPE has finished read the file, it signals to the SPEs about the availability 

of next data and waits onto the mailbox. The PPE is waiting for the SPEs to send back 

the background modelled information so that it can Write this into an output file. 
When the SPEs have finished their background modeling they signal the PPE to 

proceed with writing the image. 

The PPE after getting the data from the SPEs writes the data sequentially into an 

output file and then proceeds to read the next image. 

8 Threads, 

•̂ •-___ PPU 	 SPU 

Initialize 	 Read 

	

Parameters 	 - Corresponding - 

,r` 

• Read Modeling using 

	

Frame;: ; . 	 Single Gaussian 

`- 

 

Update the 
-r ~Gaussians 

Read_back- 
_Modeled image 

Write 
• Frame ' 

Figure 5.2 Parallelization of background modeling on CBE 

5.3.2 Work done on SPE 

The responsibility of the SPE is to perform the actual background modeling as well as 

to read the information from the PPE and write the background modelled image part 

back to the PPE. 

43 



First thing that SPE. code performs is to identify which SPE it is. This is done by 

reading an environment variable. This number is used to identify as to from which 
array this SPE has to write the data to. Data is read using mfc_get from the arrays. 
Since data parallelization is done, by simply using the SPE number the SPE reads the 

corresponding part of the image.. Since the data has been put as 128 byte aligned, each 

SPE reads 1280 pixels worth of data instead of the planned. 1250 pixels. However the 
processing is done for just 1250 pixels of the data. 

The SPU first reads the first frame and stores the information from this frame to make 

its background frame. After this the background modeling process starts where the 

SPE code sits in a .loop that loops over all images. The loop starts with the SPE 

waiting on mailbox. The SPE waits for the PPE- to read the image and signal it. Once 

the SPE knows that the data is available then the SPE reads the corresponding part of 

image on which 'it is supposed to work on. After getting the data the actual 

background modeling starts. The image pixels are compared against the background 

model to see whether they-  lie within 2.5 standard deviations of the mean of the model. 

If the pixel falls outside 2.5 standard deviation then the pixels has to be marked 

otherwise the pixel is left as it is. 

The means are deviations are updated to update the model with the updated 

environment. The implementation uses a learning rate of 0.95. Updation of means is 

straightforward however updation of standard deviation is slightly different. A 

minimum value is forced for standard deviation. This is done so that the deviation 

does not become a very small number. If it so happens that the deviation becomes 

very small, then the acquisition noise of camera shall be enough to cause false 

positives. The data is written back using the mfc_put call. After writing the SPE 

informs the PPE that it can accept the next frame for processing and following this the 

SPE starts to wait for data to come from the PPE. 

5.4 Parallelization on GPU 

The focus when parallelizing using nVidia CUDA architecture is to process every 

pixel in parallel. The code for both the CPU and the GPU is in the same file unlike the 

case with CBE. nVidia GTX 280 has 240 cores on its 30 multiprocessors. The idea is 

44 



to create one thread for every pixel. The algorithm proceeds to see if the pixel is 
background or foreground. 

The first frame is read on the CPU. Memory for storing the background model is 

allocated on the GPU using cudaMalloc function call. cudaMalloc allocated one 
dimensional memory on the GPU. The first frame is then copied to the GPU memory 
by using the function call cudaMemcpy. In the case of CUDA cudaMemcpy is 

synchronous, that means that the control does not return to CPU till the copy 

operation is complete. cudaMemset is used in cases to initialise a GPU memory block 
with a particular value.. This is used to set the initial standard deviations of the 

background model to zero. 

The CPU code then proceeds to loop over all the images. The CPU reads every image 

one by one. After this the CPU proceeds to copy the image to the GPU using 

cudaMemcpy. The images that we have taken for background modeling are 100 x 100 

pixels. The kernel call creates 10000 threads and passes appropriate parameters. 

The first line of the CUDA thread identifies the thread number that is running. The 

parallel runs of threads shall not create any race problems as there is one thread per 

pixel. Each thread shall update only its memory so no race conditions will come up. 

This thread number is to access and update appropriate memory. The means and 

standard deviations are'.updated in a fashion similar to that on CBE. When the kernel 

finishes control proceeds on the CPU. Actually, kernel calls are asynchronous and 

pass the control back to CPU after initiating the call. Since there is no useful work 

that can be done on the CPU during this time, the CPU is blocked from proceeding by 

using cudaThreadSynchronize call. This call blocks the CPU till all previous CUDA 

calls are complete. When the control proceeds it is assured that the GPU has finished 

background modeling. Then the CPU initiates a cudaMemcpy to copy the background 

modelled image back to the CPU. After this the CPU writes the image character by 

character. The loop over all the images continues this process. 

45 



5.5 Results and 'Conclusions 

We now give the results when background modeling, was performed using a single 

Gaussian. The implementations were coded in C and ran in Visual Studio 2005. The 

running times were calculated only for the part where background modeling was 

performed and file I/O time was not considered as the time was these operations itself 

is higher than the code for background modeling. The results are presented when 

background modeling was performed over 150 images of size 100 x 100 pixels. 

Frame 57 

Frame 71 

Figure 5.3: Input and the corresponding background modelled images 

Processor 	Time in milliseconds 
Linear (Core2Duo 1.5 GHz) 

	
1329 

CBE 
	

210 
CUDA (GTX 280) 
	

79.5' 

Table 5.1: Table showing the running times of background modeling for three 

implementations 

The speedup for CBE was 6.3 while the same for CUDA was 16.7. The speed up for 

CUDA was better because of the thread level parallelism that offered 10000 parallel 

threads to be run on the 240 cores of GTX 280. The implementation for CBE was not 

the most optimum implementation as it lacked feature like double buffering which 

could have enhanced CBE's performance. 

46 



Chapter 6 
	

Parallel Blob Segmentation 

In this chapter we will cover parallelization of 3 algorithms on nVidia's CUDA 

architecture. We will talk about parallelization of Gaussian Mixture Model (GMM), 

Morphological operation and Connected Components Labelling (CCL). These three 

algorithms are used for performing object-  tracking. 

6.1 Introduction 

We will briefly talk about what these operations do and what is their role in the entire 
video surveillance module. 

GMM is a background modeling algorithm. It uses more than one Gaussian per pixel 

to handle dynamic backgrounds. By using more than one Gaussian more information 

is retained about every pixel and if there is some background object that is dynamic 

like moving trees or flag then those pixels can be caught as background pixels. 

Morphological operations, are used to fill up noisy pixels in an image. After 

performing GMM the image - has some false positives. Further some pixels that 

actually are foreground pixels may not have gotten marked as foreground. So to make 

this distinction clear morphological operations like dilation and erosion are coded. 
The idea is to make the video surveillance module more robust. After applying 

appropriate morphological operations CCL is run over the image. CCL labels and 

groups pixels into logical,  objects: -So after CCL. we get the number of objects that are 

there in the image. We can put a bounding box across these objects and this can give 

visual information about where the object is. It can be extended to find the path the 

object is taking. 

The figure 6.1 shows the changes the image undergoes when the three operations are 

performed. The first image has some irregularities that could be because the GMM 

algorithm was not able to filter out the pixels correctly. Such a thing is expected in a 

field like computer vision. However, application of morphological operations fixes up 

these outliers. CCL then proceeds to link these pixels into logical object. 

47 



Figure 6.1: Application of GMM, morphological operations and CCL algorithms 

6.2 Background modeling and detection of foreground and background regions 

This step forms the bulk of computation - which varies depending on the complexity 

and robustness of the algorithm used. 'We use pixel-level - Mixture of Gaussians 

(MOG) background model which has been used in a wide variety of systems because 

of its. efficiency in modeling multi-modal distribution of backgrounds (such as waving 

trees, ocean waves, light reflection, etc). and its ability to adapt to a change of the 

background (such as gradual light change, etc.). It models the intensity of every pixel 

by a mixture of K Gaussian=distribut orii  and henee becomes computationally very 

expensive for large image size and value of K. Furthermore, there is high degree of 

data parallelism in the algorithm as it involves independent operations for every pixel. 

Thus, compute intensive characteristic and available parallelism makes MOG suitable 

candidate for parallelizing on multi-core processors. 

Gaussian mixture model is a more robust algorithm for background modeling when 

compared.to single Gaussian. In addition to holding mean and standard deviations the 

Gaussians now hold a'weight as well to distinguish the Gaussians among themselves. 

This is also used to figure out the relative importance of the Gaussians. Parallelization 

of GMM too works like single Gaussian where one thread is allocated to work on 

every pixel. 

GMM threads are much heavier than single Gaussian threads as the amount of task 

done is much more. Now updations of Gaussians involve updations of K Gaussians. 

48 



-.... :Also. all. check;.are., performed, against KGaussians. Further GMM. has another concept 

where the number of Gaussians to be involved in background modeling can be 

changed. We suggest the reader to refer to [4] for details. 

For parallelization the choice of data partitioning is to either break the data in form of 

columns, rows or tiles. GPU have a high number of cores that allow for independent 
threads to . be scheduled on separate cores. Since GMM offers pixel-level data 

parallelism, it is very efficient for parallelization on CUDA. Figure 6.2 shows the tile 

structure on CUDA where every pixel is processed by one thread. One thread is 

invoked per pixel. So for an image of 320 x 240 pixels we have 76800 threads which 

are invoked in parallel. Programming on CUDA has no local memory limitations 

(only limited by the actual DRAM on the system). This allows for the entire image to 

be copied in one go from the DRAM to GPU memory. 

i i+1 i+2 i+3 

i+4 i+5 i+6 i+7 

i+8 i+9 i+10 i+11 

i+12 1+13 i+14 i+15 

Figure 6.2: Tile structure on GPU where every pixel is processed by one thread 

The running times for GMM implementations on linear as well CUDA architecture 

are given below. The running time is for 1 frame of size 320 x 240 size. The speed up 

of the parallel implementation is 7.59 times. 

CUDA 	0.586 ms 
Sequential 4.4511 ms 

Table 6.1: Table showing the running time of GMM on image size of 320 x 240 

pixels for sequential and parallel implementation 

49 



6.3 Binary morphological operations 

Morphological operations process an input image by applying a structuring element 

and producing an output image where each pixel is based on a comparison of the 
corresponding pixel ii the input image with its neighbours depending upon the size 

and shape of the str4icturing element. The most basic morphological operations are 

dilation and erosion and all others like opening, closing etc. consist of some 

combination of these two operations. Dilation, denoted by the operators ,adds pixels 

to the boundaries of objects in an image, while erosion, denoted by the operator ® , 

removes pixels on object boundaries. The rule for dilation is that the value of the 

output pixel is the maximum - value of all the pixels in the input pixel's 

neighbourhood. In a binary image, if any of the pixels is set to the value 1, the output 

pixel is set to 1. The rule for erosion is that the value of the output pixel is the 

minimum value of all the pixels in the input pixel's neighbourhood. In a binary image, 

if any of the pixels is set to 0, the output pixel is set to 0. This is described 

mathematically as 

A(E 	 (

A 

B) 
B =z 	 Ago 

 Z 

AOB =z I(B) cA 

A 

Where B is the reflection of set B and (B)Z  is the translation of set B by point 
z as per the set theoretic definition. 

Our implementation is restricted to binary morphological operations. Morphological 

elements have a structuring element. Structuring element can be understood as a 

window that is slid over the image to perform morphological operations. 

The center of this element is placed over that element on which the operation is to be 

performed. The difference between dilation and erosion is very small. In case of 

dilation if any element of the structuring element and the corresponding element of 

50 



1 0 1 

0 1 0 

1 0 1 

Figure 6.3: A 3 x 3 structuring element 

the image is 1 then the location where the center pixel of the structuring element is 

placed is changed to 1. So it is basically searches nearby pixels and if the region is 

foreground it enhances the region. This is used in cases where foreground objects 

have some anomalies. This enhances the objects and makes them complete. On the 

other hand, erosion is used to suppress false positive foreground detections. The 

erosion operation searches for Os in both the structuring element and the image. 

Morphological operation too offer a per pixel parallelization like the GMM algorithm. 

However there can be an issue with threads running in parallel. Since the structuring, 

elements of neighbouring pixels may overlap, we may get a race condition with 

threads trying to update a pixel that may not have been read till now. The parallel 

implementation was done in a straightforward convolution way by running parallel 

thread for each pixel. However on the boundary pixels due to overlap, we may get a 

race condition as shown in figure 6.4 with threads trying to update a pixel that may 

not have been read till now. To solve this problem we allocate a different memory that 

is written on the GPU and then this memory is copied back to the CPU. In the kernel 

we run a loop that traverses the structuring element one by one checking the 

neighbouring region of the pixel the thread is working upon. If the kernel is placed on 

a region that does not belong to the image then that memory access is stopped. This 

happens for the boundary pixels of the image. If the kernel size is larger, then the time 

required for morphological operation increases as the iterative structure of the kernel 

causes a significant delay. 

51 



Thread I trying' 
write pixel but 
required read c 
the pixel to the 
right for dilatlo 
or erosion 

Thread 2 trying 
to write pixel 
but requires 
read of the pixel. 
to left for dilation 
or erosion 

Read by both the threads 

Figure 6.4: Figure shows the race conditions on boundary pixels 

The table below shows the time required to. perform on morphological operation on an 

image of size 320 x 240 pixels 

Structuring Linear GPU Implementation 
Element Implementation Code 

Size 	Shape Time Speed Up 
7 x 7 	Ellipse 89.806 ms 7.8 ms 11.5 
5 x 5 47.74 ms 4.5 ms 10.6 
3 x 3 16.324 ms 3.2 ms 5.1 
7 x 7 	Rectangle 24.235 ms 8.3 ms 2.91 
5 x 5 18.782 ms 4.1 ms 4.5 
3 x 3 14.341 ms 2.5 ms 5.736 

Table 6.2: Table showing the running time of one morphological operation on an 

image of 320 x 240 pixels with different structuring elements• 

6.4 Connected Components Labelling -- 

After the application of binary morphological operations the objects have to be 

labelled so that they can be used for further processing. The idea is to mark every 

pixel with the object number they belong to. The linear algorithm of for CCL is very 

slow as it traverses every pixel of the image checking for connectedness of the pixel 

to the neighbouring pixels. This is a very slow process. Further for 8 connectivity the 

algorithm has to store equivalence lists. These lists get long for large images for a 

large number of objects. 

52. 



Figure 6.5: Output after applying CCL to an image 

The regions or blobs must be uniquely labelled, in' order to uniquely characterize the 

object pixels underlying each blob. Since there is spatial dependency at every pixel, it 

is not straightforward to parallelize. it. Although the underlying algorithm is simple in 

structure, the computational load increases with image size and the number of objects, 

the equivalence arrays become very large and hence the processing time. 

Furthermore, with all other steps being processed in parallel with high throughput, it 

becomes imperative to parallelize this step and to avoid, it from becoming a bottleneck 

in the processing stream. 

The parallelization of CCL is quite tricky as there as simply dividing the image into 

parts or working on pixels cannot be done. It may so happen that one object may get 

divided into two parts when we split the image for parallelization and this can cause 

one object to be counted as two. 

The approach for parallelizing CCL belongs to the class of divide and conquer 

algorithms [22]. The parallelization divides the image into 'small parts and labels the 

objects in the small parts. Then in the conquer phase the image parts are stitched back 

to see if the two adjoining parts have the same object or not. 

The steps of the parallel implementation are 

1) Initial labelling: The image is divided into N x N small regions and each area 

region is worked in parallel. Each part is read from left to right top to bottom. 

53 



Let 4— nbr denote the 4 neighbouring pixels in the directions N, NE, NW and 

W of the pixel'p that is under consideration. The choice for these neighbours is 
done because these pixels would have been processed before coming to pixel p 

if the read order is left to right top to bottom. If p is zero then this pixel is not 
part of any object and no processing is done. However, if p is 1 then the 
labelling depends on how many number of its neighbours are 1. If p is 1 and 

all the neighbours are 0 then this pixel is part of a new object and a new label 

is assigned to it. If however, any of its 4 — nbrs is 1 then the label for that 

object is copied into p and all the pixels 4 — nbrs and p are marked as 

equivalent as they all are part of the same object. 

NW N NE 

W P 

Figure 6.6: Figure showing the 4 nbrs for pixel p 

We have used a data structure known as label list that holds information about 

the number of objects in every small region. Note that this information is just 

local to every region and is not about the global object. 

2) Update label_list: In this step we increase the label number of the object in the 

region counting the number of objects already seen. For example, let us take a 
case where region I and region 2 both have one object each. The information 

of label list shall tell us that both regions have one object having label one. 

Now we will go over the structure label list to update the information of 

region 2 to have label 2 as label I will be taken by the object to region one. 

This way the entire list is update for all the N x N regions that we have divided 

the image into. This code is run linearly. 

3) Merge: This is part where we stitch the local information to find out objects 

globally. This code is not run in parallel. Let us- assume that two neighbouring 

regions 1 and 2 have an object in common. The information till now with 

54 



000 0 ■ D■■■ 

First pixel 
	

First Column First Row 

label list will be that there is one object labelled 1 in region 1 and there is one 

object labelled 2 in region 2. The idea to is to merge the objects in the two 

regions and to update label list to reflect this. 

We go over the regions left to right and top to bottom, for this processing. For 

doing this only three things need to be compared among two regions. We need 

to compare the top left pixel, the first row and the first column as these are the 

parts of the object that can overlap with the neighbouring region. And the 

overlap of these regions will be good enough to conclude that whether the two 

objects in the two regions are same or not. 

Figure 6.7: Figure showing the pixels that need to checked for overlap 

Let current region be the region number for pixel p. The first pixel needs to 

check 5 pixels. These '5 pixels' lie in 3" different regions, the regions being 

current region -1, current region — N -1 and current region — N. Every pixel 

in the first row needs to be checked with 3 pixels in region current region — N 

and similar logic follows for the first column. 

Let q be the pixel of the other region with which check is being performed if 

the pixel p is part of the same object. The first thing that is checked is that 

whether the pixel q is 1 or not. If q is zero then q is not part of any object and 

is not considered for resolving. If however q is 1 then the two regions may be 

having the same object. The algorithm for resolving the two regions is 

55 



Step 1: indexl=label_list[region no. q][label(q)] 
index2=label list[region i][label(p)] 
if(index 1 not equal to index 2) 

perform step 2 
Step 2: small ~lbl=min(indexl, index2) 

large_lbl=max(index l ,index2) 
for k=1 to i do 

for j=1 to size of an array for Region[k]. 
if (Label_List[k] [j] > Large_Lbl) then 

Label_List[k][j] = Label_List[k][j] —1; 
else if (Label_List[k] [j] = Large_Lbl) then 

Label List[k][j] = Small Lbl; 
end 

end 

Figure 6.8: Algorithm for resolving two neighbouring regions 

At this point the task of CCL is over, however to make bounding boxes we have to 

figure out the boundaries till where each object extends to. This code runs the entire 

image pixel by pixel. The bounding box has been implemented as a structure holding 

the four dimensions of the bounding box. 

For timings we have considered the code only that runs in parallel on CUDA and 

compared the same code with the linear implementation. 

Image Size Linear Implementation Parallel Implementation 
100 x 100 0.8 ms 0.8 ms 
400 x 400 12.8 ms 4.5 ms 
900 x 900 65.5 ms 14.5 ms 

1600 x 1600 183.5 ms 34 ms 

Table 6.3: Running times of CCL on linear and parallel implementation for images of 

varying sizes 

56 





 c:\Documents and Settings'Kshitiz\My DocumentsWisual Studio 200 
Tiber of objects 
milliseconds 

bet=1; Area= 3 782; BB= C2 68 73 328 134] 
bel=4; Area= 12 25; BB= C4 08 53 456 77] 
be1=6; Area= 25 56; BB= C7 35 46 809 79] 
bet=9; Area= 18 00; BB= C1 015 57 1089 801 
be1=12; Area= 4752; BB= C 138 94 209 1591 
be1=18; Area= 2 021; BB= C 404 107 446 1531 
be1=20; Area= 2 337; BB= C 568 109 608 1651 
be1=35; Area= 1 638; BB= C 817 125 842 18?1 
be1=37; Area 1 290; BB= C 971 134 1000 1761 
be1=39; Area= 3 20; BB= C1 146 143 1161 1621 
be1=49; A:yea= S 022; BB= C 139? 182 1450 2741 
bet=52; Area= 7905; BB= C 276 215 360 307] 
bel=56; Area= 3111; BB= C 554 231 614 2811 
be1=62; Area= 5481; BB= C 87 274 149 360] 
bet=71; Area= 2058; BB= C 993 256 1034 3041 
be1=73; Area= 4350; BB= C 1189 257 1246 3311 
bel=88; Area= 7198; BB= C ?61 308 821 4251 
bel=9?; Area= 3712 ; BB= C 451 322 514 379] 
be1=99; Area= 117; BB= L? 06 357 714 369] 
bet=105; Area 3108; BB= [1524 325 1551 4351 
bet=113; Area= 3300; BB= [935 380 984 4451 
bet=115; Area= 903; BB= C 1142 360 1162 4021 
be1=124; Area= 6045; BB= [1381 406 1473 4701 
be1=128; Area= 3619; BB= [641 471 687 5471 
be1=132; Area 2970; BB= [1250 47? 1294 5421 
bet=137; Area= 360; BB= [ 90 515 94 586] 
bel=138; Area 3510; BB= [350 51? 414 570] 
be1=143; Area= 3626; BB= [1039 SO4 1112 552] 
bel=149; Area 4214; BB= [163 541 205 638] 
bet=156; Area= 5312; BB= [809 531 891 594] 
be1=173; area 1485; BB= [1341 588 1373 6321 
het=177; Area= 3936; BB= [539 630 620 6771 
bel=180; Area= 3132; B8= [956 629 1013 682] 
he1=183; Area 3192; BB= [1120 620 1175 676] 
bel=190; Area 5220; BB= [799 666 858 752] 
be1=198; Area 9506; BB= [1412 677 1509 773] 
bet=207; Area= 1914; BB= [1237 686 1265 751] 
be1=212; Area 1998; BB= [83 757 119 810] 
bel=213; Area= 2765; BB= [239 724 317 758] 
be1=216; Area= 4453; BB= [493 739 553 811] 
be1=221; Area 2001; BB= 11013 748 1041 8161 
bel=223; Area 3120; BB= [1121 731 1168 7951 
bel=243; Area= 4012; BB= [623 824 690 8821 
be1=248; Area= 7304; BB= [1368 827 1455 9093 
bet=251; Area= 2418; BB= [156 875 217 913 ] 
bel=254; Area= 5208; BB= [359 855 420 9381 
bel=260; Area= 1845; BB= [873 876 917 916] 
be1=262 ; Area= 5508; BB= [98? 86? 1040 968] 
bet.=265; Area 1242; BB= [1086 859 1131 8851 
be1=267; Area= 1953; B8= [1214 857 1276 887] 
bel=293; Area= 13029; BB= [156 937 284 1037] 
bel=304; Area 9328; BB= [53 98? 140 1092] 
be1=312; Area= 1950; BB= [521 973 585 1002] 
be1=314; Area= 4347; BB= [666 964 728 10321 
bel=320; Area= 5376; -BB= [1091 981 1146 1076] 
bet=335; Area= 748; 1311= [ 991 1022 1007 1065] 
he1=339; Area= 7326; BB= [1339 1035 1437 1108] 
bel=355; Area= 3233; BB= [710 1080 762 1.1401 
be1=361; Area= 5451; BB= 1378 1134 446 1212] 
he1=367; Area= 12296; BB= [89? 1124 1002 12391 
bet=371; Area= 8798; BB= [110 1171 192 1276] 
bet=377; Area= 3200; BB= [498 1178 53? 12571 
het=383; Area 2907; BB= [1113 1181 1163 1237] 
bet=389; Area= 3864; BB= [332 1228 377 13111 
bet=403; Area= 5313; BB= [1438 1230 1506 13061 
.bel=418; Area= 6120; BB= [736 1281 803 1370] 
.be1=424; Area= 3325; BB= [159 1338 253 13721 
.bet=428; Area= 1080; BB= [480 1353 519 1379] 
.bet=432; Area= 5467; BB= 11298 1338 1368 1414] 
.be1=443; Area 2142; BB= 1930 1371 1031 13911 
.hel=452; Area= 4455; BB= [724 1471 804 1525] 
.bet=455; Area= 6649; BB= 1453 1491 561 1551] 
,het=462; Area 3710; BB= [964 1482 1033 1534] 
~be1=464; Area 3456; BB= [1247 1516 1318 15631 
.ess any key to continue - 



Chapter 7 	 Conclusions and Future work 

In this thesis we proposed a number Of ways to reduce the amount of time taken for 

video surveillance algorithms. We used the latency performance trade-off of MOG 

against that of single Gaussian for speeding up the time taken for background 

modeling in our fusion algorithm. The trade off exploited was that multiple Gaussians 

take a lot more time to perform background modeling, however' they are good at 

modeling, dynamic backgrounds. Based on the type of environment our algorithm 

intelligently switched among the algorithms to make a choice for keeping a good 

balance between performance and efficiency. 

We showed how support vector machines can be used to perform background 

modeling. Support vector machines are known to be very fast and robust tool for 

machine learning. We made models for every 5 x 5 block of the image thus reducing 

the number of models to be learnt making the algorithm even faster. 

We exploited the high performance delivered by multi processors to process large 

amounts to data in parallel to speed up well established algorithms. We implemented 

EZW by exploiting the 'parallelism that is exhibited in the vertical, horizontal and 

diagonal details of the wavelet coefficients. We reduced the amount of time taken for 

the dominant and subordinate passes of the algorithm by performing them level wise 

and in parallel. 

We then implemented a single Gaussian algorithm for background modeling on both 

STI CBE and nVidia CUDA architecture to compare the performance of CBE and 

CUDA. For single Gaussian background modeling CUDA architecture turned out to 

be faster than CBE because of the large number of cores that were available on the 

GPU. The higher speed up was also because of the fact that the threads for single 

Gaussian background modeling have less number of branch statements. 

We then implemented three commonly used video surveillance algorithm on nVidia's 

CUDA architecture namely, GMM, Morphological operations like dilation and 

erosion and connected components labelling (CCL). GMM and morphological 

operation offered a per pixel parallelism. One thread was created for every pixel and 

59 



thus entire image was processed in parallel. CCL parallelization was done as a divide 

and conquer algorithm. The image was divided into small tiles and each of the tiles 

was labelled in parallel. After this processing the tiles were merged to ensure that if an 
object was part of more than one tile then that object.is considered only once. This 

was followed by marking of bounding boxes across all the objects. 

A good future work could be fusion of information from multiple cameras to get more 

information .about the environment. This sort of information can be used to aid in 

suppression of shadows. Parallel implementation of various machine learning 

algorithms can be done and be applied to background modeling to be performed in 

real time. Another work that can be done is to perform object detection in the 

compressed domain. This work should have parallel implementations for wavelet 

transform, EZW and then the objects could be detected in the compressed domain. 

This can reduce the amount of time taken as the coefficient need not be decoded. Use 

of shared memory and other parallel techniques can be used to improve the speed up 

of the codes that have been implemented. 



References 

[1] Harville, M.; Gordon, G.; Woodfill, J., "Adaptive video background modeling 

using colour and depth,"" Proceedings of International Conference on Image 

Processing, vol.3, pp.90-93, October 7-10 2001, Thessaloniki, Greece. 

[2] Maddalena, L.; Petrosino, A., "A Self-Organizing Approach to Background 

Subtraction for Visual Surveillance Applications," IEEE Transactions on Image 

Processing, vol.17, no.7, pp.1168-1177, July 2008 

[3] Alexandre F., Gerald M., "Adaptive colour background modeling for real-time 

segmentation of video streams", Proceedings of International Conference on Imaging 

Science, System and Technology, pp.227-232, June 28, 1999, Las Vegas, Nevada, 

USA. 

[4] Stauffer, C.; Grimson, W.E.L., "Adaptive background mixture models for real-

time tracking," IEEE Computer Society Conference on Computer Vision and Pattern 

Recognition, vol.2, pp.-252, 23 — 25 June 1999, Ft. Collins, CO, USA. 

[5] Toyama, K.; Krumm, J.; Brumitt, B.; Meyers, B., "Wallflower: principles and 

practice of background. maintenance". The Proceedings of the Seventh IEEE 

International Conference on Computer Vision, vol.!, pp.255-261, 20-25 September, 

1999, Kerkyra, Corfu, Greece. 

[6] Javed, 0.; Shafique, K-.;• Shah,-  M.; "A hierarchical approach to robust background 

subtraction using colour and gradient information," Workshop on Motion and Video 

Computing, pp. 22-27, 5-6 Dec. 2002, Orlando, Florida. 

[7] Jain, V.; Kimia, B.B.; Mundy, J.L., "Background Modeling Based on Subpixel 

Edges," IEEE International' Conference on Image Processing, vol.6, pp.VI -321-VI - 

324, Sept. 16 2007-Oct. 19 2007, San Antonio, Texas, USA. 

[8] Richardson E. Iain "H.264 and MPEG 4 Video Compression" Wiley Publications. 

61 



[9] Indupalli, S.; Ali, M.A.; Boufama, B., "A Novel Clustering-Based Method for 

Adaptive Background Segmentation," The 3rd 'Canadian Conference on Computer 

and Robot Vision, pp. 37-37, 07-09 June 2006, Quebec City, Canada. 

[10]  
http ://upload.wikimedia.or wikipedia/commons/7/74/Normal Distribution PDF.svg, 

Last accessed on 29th  May 2009 

[11] Shimada, A., Arita, D., Taniguchi, R., "Dynamic Control of Adaptive Mixture-

of-Gaussians Background Model," IEEE International Conference on Video and 

Signal Based Surveillance, 2006, pp.5-5, Nov. 2006, Sydney, Australia. 

[12] Kim H., Suryanto, Kim D., Zhang D:, Ko S., "Fast object detection for video 

surveillance", Proceedings of International Technical Conference on 

Circuits/Systems, Computers and Communications, pp. 709 — 712, July 9 2008, 

Shimonoseki City, Japan. 

[13] DD Tools Homepage http://ict.ewi.tudelft.nt/—davidt/ddtools.html Last 

accessed on 29th  May 2009 

[14] PrTools Homepage http://www.prtools.org/ Last accessed on 29th  May 2009 

[ 15] "Caviar: Context aware .: vision using - image-based active recognition," 

http://homepages.inf.ed.ac.uk/rbf/CAVIAR/. 

[16] NVIDIA Corporation: NVIDIA CUDA compute unified device architecture 

programming guide. NVIDIA Corporation, Jan 2007. 

[ 17] J. M. Shapiro, "Embedded image coding using zerotrees of wavelet coefficients," 

IEEE Transactions on. Signal Processing, vol. 41, no. 12, pp. 3445-3462, Dec. 1993. 

[18] S. Kandadai and C. D. Creusure, "An experimental study of object detection in 

the wavelet domain", Conference record of the thirty-seventh Asilomar conference on 

Signals, Systems and Computers, vol. 2, pp 1620-1623, Nov 2003. 

62 



[19] H. N. Cheung, L. Ang and K. Eshraghian, "Parallel architecture for the 

implementation of the embedded zerotree wavelet algorithm", 5th Australasian 

conference on computer architecture 2000, pp 3 — 8, 31st. Jan — 3rd Feb 2000, 
Canberra, Australia. 

[20] L. Ang, H. N. Cheung and K. Eshraghian, ,"EZW algorithm using depth-first 

representation of the ; wavelet zerotree", Proceedings of the fifth international 

symposium on signal processing and its applications 1999, vol 1, pp 75-78, 22nd Aug 

— 25th Aug 1999, Brisbane, Australia. 

[21] "Normal Distribution — Wikipedia, the free encyclopaedia" 

http://en.wikipedia.org/wiki/Normal distribution Last Accessed 29th  May 2009 

[22] J. M. Park, C. G. Looney, H. C. Chen, "Fast Connected Component Labelling 

Algorithm Using A ' Divide and Conquer Technique." Technical report, 2000. 

http://cs.ua.edu/research/TechnicalReports/TR-2000-04.pdf Last Accessed 29th May 

2009 

63 



Publication 

i. K. Gupta and A. Mittal, "Parallelization of EZW on GP GPU programming paradigm", 

3 d̀  International Conference on Information Processing 2009. (Accepted May 2009) 


	Title
	Abstract
	Chapter 1
	Chapter 2
	Chapter 3
	Chapter 4
	Chapter 5
	Chapter 6
	Chapter 7
	References

