
A DISSERTATION
..rbmiffed in pft A.MnMt of 00

requlrements for to end of to des
of

MASTER OF TECHNOLOGY
in

ELECTRONICS AND COMMUNICATION ENGINEERING
(WIh Specializilon in ComHiu Uon $ystm

DHEERAJ KUMAR SNARMA

'rs t i.l6 aE.

d't

is 	i ~: 	•: 	— 	i 	l~ C 	• ~!•"1 r —

.I i

CANDIDATE'S DECLARATION

I hereby declare that the work being presented in this dissertation entitled "Constriction
of Boolean fsmction by Heuristic search for Crypto-Syste®s" in partial fulfillment of the
requirements for the award or the degree of MASTER OF TECHNOLOGY with specialization
in COMMUNICATION SYSTEMS, submitted in the Department of Electronics and Computer
Bering, Indian Institute of Technology, Roorkee is an authentic record of my own work
carried out from July 2007 to June 2008, under the guidance and supervision of Mr. ` S.
CHAX.RAVORTHY, Assistant Professor, Department of Electronics and Computer
Engineering, Indian Institute of Technology, Roorkee and Dr. SUGATA GANGOPADHYAY,
Assistant Professor, Department of Mathem, Indian Institute of Technology, Roorkee.

I have not submitted the matter embodied in this dissertation for the award of any other
degree or diploma.

Dated

Place 	 DHEERAJ KUMAR SHARMA

CERTIFICATE

This is to certify that the above statement made by the candidate is correct to the best of our
knowledge and belief

Mr. S. caaxieAvoaxY
Assistant Professor,

Department of Mathematics,

IIT Roorkee,

Roorkee - 247667.

E&C Department,

UT Roorkee,

Roorkee - 247667.

ACKNOWLEDGEMENTS

It is my privilege and pleasure to express my profound sense of respect, gratitude and•

indebtedness to my guides, Mr. S. Chakravorty, Asst. Professor, Department of Electronics and
Computer Engineering and Dr. Sugata Gangopadhyay, Asst. Professor, Dept. of Mathematics,

Indian Institute of Technology, Roorkee, for their inspiration, guidance, constructive criticisms

and encouragement throughout this dissertation work.

Thanks are due to the Lab staff Communication Systems Lab, Department of Electronics and

Computer Engineering, IIT Roorkee for providing necessary facilities.

I gratefully acknowledge my sincere thanks to my family members for their inspirational impetus

and moral support during course of this work.

The pleasure of nearing completion of the course requirements is immense, but with it carries the

pain of leaving behind these wonderful two years of life in the sprawling green campus.of this

great historical institute..

I am greatly indebted to all my friends, who have graciously applied themselves to the task of

helping me with ample .morale support and 'valuable suggestions: Finally, I would like to extend

my gratitude to all those persons who directly or indirectly helped me in . the process and

contributed towards this work.

(DHEERAJ KUMAR SHARMA)

ii

ABSTRACT

In conventional cryptography, Boolean functions play a major role in the construction of

symmetric key primitives such as block ciphers and stream ciphers. Various criteria,

including balancedness, nonlinearity, autocorrelation, algebraic degree and algebraic

immunity are used for measuring the cryptographic strength of Boolean function. Block

and stream ciphers are made from Boolean functions that usually require a compromise

between several conflicting cryptographic criteria. This dissertation work focuses on

study of various properties of Boolean functions and construction of Boolean function by.

heuristic approach with 'a compromise between several conflicting cryptographic criteria

(nonlinearity, autocorrelation, algebraic immunity).

A Boolean function, when used in cryptosystems, should be designed properly to

resist algebraic attacks. Algebraic Immunity is a measure of the capability of a Boolean

function to withstand algebraic attacks. So far, the Boolean functions were designed

keeping in mind the other cryptographic criteria, and then it has been checked whether it

can provide good algebraic immunity too. In this dissertation, algebraic immunity has

chosen as one of the criterion along with nonlinearity and autocorrelation for search and

Boolean functions with highest possible algebraic immunity of [n2] have been constructed.

Results with optimum tradeoff among properties like nonlinearity, algebraic,

degree, algebraic immunity and autocorrelation have been obtained, that remained as an

open problem. For the first time, Boolean function of 5' variables with nonlinearity of 12,

autocorrelation value 8, algebraic immunity 3 and algebraic degree 3 has been

constructed.

TABLE OF CONTENTS

CANDIDATE'S DECLARATION 	 i
ACKNOWLEDGEMENTS
ABSTRACT

	

CHAPTER 1. INTRODUCTION ... 	1
1.1 Cryptology .. 	1
1.2 Motivation for Heuristic Search 4
1.3 Problem Statement 	... 	6
1.4 Organisation of Report 	...6

	

CHAPTER 2. DEFINITIONS AND PRELIMINARIES 	7
2.1 Truth Table representation .. 	8
2.2 Algebraic Normal Form 	... 	9
2.3 Walsh-Hadamard Transform ...11
2.4 Balancedness 	... 	16
2.5 Auto Correlation Function .. 	16
2.6 Non-linearity 	.. 	20
2.7 Algebraic immunity 	21
2.8 Algebraic degree ... 	22

CHAPTER 3. HILL CLIMBING TECHNIQUE FOR HEURISTIC SEARCH.. 23
3.1 Guided Search .. 	23
3.2 Gradient Search-Hill Climbing 	24

3.2.1 Non-linearity Targeted 	..26
3.2.2 Auto-Correlation Targeted ... 	27

iv

CHAPTER 4. SIMULATED ANNEALING ALGORITHM FOR HEURISTIC

	

SEARCH .. 	29

	

4.1 Cost Function .. 	29

	

4.1.1 Cost function for Nonlinearity .. 	30

	

4.1.2 Cost function for Autocorrelation ... 	32

	

4.2 Simulated Annealing Algorithm for Boolean function 	33

	

4.3 Simulated Annealing and Hill Climbing ... 	34

CHAPTER 5. RESULTS AND DISCUSSION 35
5.1 Search Results for Hill Climbing Method 	36

5.1.1 Results for Nonlinearity Targeted (NLT) Search 	36

	

5.1.2 Results for Autocorrelation Targeted (ACT) Search 	37

	

5.2 Search Results for Simulated Annealing Method 	38
5.3 Search Results for Simulated Annealing and Hill Climbing Method 40

5.3.1 Results for Nonlinearity Targeted (NLT) Search 	41
5.3.2 Results for Autocorrelation Targeted (ACT) Search 42
5.3.3 Results for Algebraic Immunity Targeted(AIT) Search 43

	

CHAPTER 6. CONCLUSION ... 	44
6.1 Future Work 	... 	44

REFERENCES .. 46

	

APPENDIX ... 	50
1. (5,3,12,8,3) Boolean function .. 	50
2. (6,5,24,16,3) Boolean function ..50
3. (7,6,54,18,3) Boolean function 	50
4. (8,7,110,40,4) Boolean function ... 	51
5. (9,8,232,59,4) Boolean function ... 	51
6. (10,10,479,80,5) Boolean function 	.. 	52

V

Chapter 1.

INTRODUCTION

Digital communication is increasingly replacing face to face contact and direct physical

exchange in transactions. Internet shopping is now high profile, many major payments in

shops and supermarkets are made by credit or debit card, electronic cash (e.g. Mondex) is

now emerging on the horizon, auctions are being held over the World Wide Web and a

• great deal of day-to-day communication is effected by email. The non-digital world has

developed mechanisms to ensure interactions take place in an appropriate manner. We

send confidential messages by special courier, we have passports against which our faces

may be checked, we sign documents in the presence of esteemed members of society who

may subsequently confirm any agreements made if there is a dispute. Stockbrokers

routinely have their telephone calls taped so that disputes about what was agreed at some

point may be resolved. The notes in one's wallet may be held to the light to reveal

watermarks and other indicators of authenticity. Moving to the digital world does not

relieve us of providing similar guarantees. We cannot see the people with whom we are

interacting and consequently issues of trust must arise. Since communications media are

generally shared between many parties, many of whom we may have little reason to trust,

we must cater for the possible subversion of our communications in transit. We need to

develop means of transacting that ensure legitimate expectations are met * despite a

potentially very hostile environment that is the medium. There will also be limits to how

far legitimate parties in transactions will be trusted [1].

1.1 Cryptology
Cryptology is at the heart of providing such guarantees. Cryptology is the uniting

name for a broad scientific field in which one studies the mathematical techniques of

designing, analysis and attacking information security services. Cryptology consists of
two subfields; cryptography and cryptanalysis. Cryptography is the field in which one

1

key

study techniques for providing security services and cryptanalysis is the field in which

one studies the techniques for attacking the security services [2]. Providing security

services is not an easy task.

The very nature of security makes more difficult the task at hand. Network

security measures are needed to protect data during transmission. A model for network

security is shown in figure 1.1.

Plain text input 	 Plain text
output

Fig.1.1 Model for Network Security.

Whereas most disciplines solve tasks unimpeded by external agents, the

cryptographer must develop techniques that are resilient to perverse, malicious and

potentially well funded attempts to subvert his or her efforts (i.e. break the system). In

contrast, although genetic algorithms researcher might well compete with colleagues for

computation time, it is unlikely he will face malicious attempts to subvert his techniques

in action.

Cryptographers are, in a sense, concerned with creating problems that are

artificially hard, so hard that an enemy will not be able to solve them. Suppose an

Embassy encrypts diplomatic communications using a particular cryptosystem and a

particular secret key K. Without knowledge of the secret key information it should be

impractical for an enemy to determine the contents of any message sent within its useful

life. Having intercepted the encrypted text (cipher text) in transit, an enemy could decrypt

with each possible secret key in turn (generally referred to as a `brute force' attack) to

determine the one actually used for encryption (the correct key will produce the original

and presumably intelligible text). If the secret key space is of sufficient size, this attack is

infeasible. The problem is just too hard to solve in this way. Brute force, however, is the

2

least sophisticated of attacks. There is an armory of devices available to the professional

cryptanalyst and a successful cryptosystem must resist each. A large keyspace may..

protect against brute force attack, but is no guarantee that a system cannot be broken by

more sophisticated means. In practice, cryptosystem designers aim to make breaking

systems using known types of attack infeasible (and in some cases provably so), aim to

reduce features that might form the basis of an attack, or else rely on past experience to

justify unproven assumptions (e.g. the difficulty of factoring)[1].

Cryptographic techniques are typically divided into two generic types: symmetric-

key and public-key. Symmetric key technique is the technique in which decryption key

can be derived from encryption key and vice-versa. Public key technique is the technique

in which encryption key is public but decryption key is private to receiver and decryption

key cannot be derived from encryption key [2].

Symmetric key systems [3] are broadly divided into two classes:-

1. Stream Ciphers.

2. Block Ciphers.

In Stream Cipher Cryptography, a pseudo random sequence of bits of length

equal to message length is generated. This sequence is then bitwise XOR ed with

message sequence and then message is transmitted. At the receiving end deciphering is

done by generating same pseudo random sequence and again XOR-ing the cipher bits

with random bits. The seed (initial start) of pseudo random generator is obtained from

secret key.

I LFSRI I
Plain Text

Boolean
LFSR2 	

Function 	
+ 	Cipher Text

Key Stream

ILFSR I

Fig. 1.2 Model for LFSR Based Encryption Scheme

3

Linear Feedback Shift registers (LFSR's) are important building blocks in stream

ciphers. A non- linear combiner model of stream ciphers, where the outputs of several

. linear feedback shift registers (LFSR's) are combined by using a nonlinear Boolean

function to produce a key stream, is shown in Fig. 1.2. To resist the cipher text from

attacks, different design criteria have been proposed for both the LFSR's and the

combining Boolean functions. Balancedness, high algebraic degree, a high nonlinearity,

correlation immunity, good autocorrelation and high algebraic immunity are main criteria

for design of Boolean function. A Boolean function used in stream cipher should be

balanced, which is required for pseudo randomness of key stream. To resist from divide

and conquer attack, the Boolean function should be correlation immune of high order [4].

In Block Cipher Cryptography, message is divided in blocks and each block is

separately enciphered with same key stream and transmitted. Most of the block ciphers

use S-boxes for introducing non-linearity.

Different construction methods of Boolean functions are

➢ Primary constructions, which produce functions directly.

> Secondary constructions which give new functions from previously

-designed ones. Some examples are: Direct sums of functions,

Siegenthaler's construction [4], Tarannikov's elementary construction [5],

construction by heuristic search [6] and Multiobjective Random bit

climber [7].

Multiobjective Random bit climber [7] used to find Boolean functions satisfying multiple

criteria.

Heuristic search is concerned with the development and application of general

purpose optimization techniques and has been successfully used across many scientific,

engineering and commercial domains.

1.2 Motivation for Heuristic Search

Mathematics remains the most powerful tool in science and engineering. A vast

number of techniques have been developed to solve problems posed. These techniques

often provide exact answers. There is, for example, a formula for the roots of a quadratic

4

equation. Still it is difficult to get solution of many practical problems. The well-known

Traveling Salesman Problem (TSP) is a good example:

Consider a set of N cities, indexed 1......N. Each pair (i, j) of

cities is connected by a road of length d13 . A salesman lives in

town 1. Starting from town 1, the salesman must carry out a tour,

visiting • each town in turn, and then return home. In what order

should he visit the cities to give the shortest round tour [1]?

There is no known efficient method for finding a minimal length tour of a large

number of cities. Enumeration over all tours would reveal the answer eventually but since

there are (N Z i)! possible tours this approach rapidly becomes infeasible. In practice, an

optimal solution to such problems is not expected. Rather, the solution space is navigated

in a practically effective way to reach excellent, but not necessarily optimal, solutions.

This is sensible since such problems are often concerned with efficient use of resources.

In practice, a planner is not asked `What is the shortest length tour?' He or she is asked

`What is the best tour you can suggest within a reasonable time?'

To construct Boolean functions achieving good properties (nonlinearity, algebraic

degree, autocorrelation, algebraic immunity) simultaneously from big sample space (e.g.

for 8 variable Boolean function, there is 22 8 = 264 sample points) is a difficult problem.

It is becoming exhaustive to construct a Boolean function with good tradeoff between

properties with construction methods like direct construction of Boolean functions,

Siegenthaler's construction [4], Tarannikov's elementary construction [5], etc. So,

heuristic search technique is used also for construction of Boolean function. But it does

not guarantee for the optimal solution.

Exchanging guarantees of optimality for computational tractability in this way is

at the heart of heuristic search. Often drawing loose inspiration from natural processes,

researchers have created combinatorial search techniques that can produce effective

answers where other techniques fail. Techniques such as simulated annealing [8] (based

loosely on the cooling process of molten metals) and Hill climbing method [9] have seen

effective application across a huge range of disciplines.

5

1.3 Problem statement
Construction of Boolean function with desired properties is not an easy task. The

objective of this dissertation is to construct Boolean functions by heuristic approach
while achieving following good properties:

> nonlinearity

> algebraic immunity

> autocorrelation

Specifically, the following tasks have been undertaken:

i) Representation of Boolean function (ANF, WHT)

ii) Review of heuristic approach

iii) Construction of Boolean function by hill climbing method, simulated annealing and

combination of both methods.

1.4 	Organization of Report
Including this introductory chapter, the report is organized in six chapters.

Chapter 2 provides the essential definitions and different representations of Boolean

functions. The essential properties of Boolean functions and their significance are

included in the same chapter.

Chapter 3 provides an overview of heuristic search. The uses of hill

climbing and simulated annealing algorithms for construction of Boolean function have

been discussed in detail in this chapter 3. Chapter 4 introduces the concept of cost

functions and outlines their importance. The details of cost functions used in the present

work are elaborated and optimization techniques used to minimize these cost functions

have been explained in detail in this chapter.

Chapter 5 contains results of the search for "good" Boolean functions

having good properties(algebraic degree, nonlinearity, autocorrelation and algebraic

immunity) with satisfactory tradeoff and compares the results with some of the earlier

results of other authors. Chapter 6 concludes the report and includes scope of future work

in the field.

E

Chapter 2

DEFINITIONS AND PRELIMINARIES

To resist cipher form attacks, it is necessary for a Boolean function to satisfy some

bounds on its cryptographic properties. It is difficult to obtain a Boolean function

satisfying all the cryptographic properties. There is a tradeoff between some of the

properties like Nonlinearity and Algebraic Immunity [10, 11]. Some of these properties

can be described in terms of Walsh Hadamard Transform, Auto-Correlation transform
and Hamming weight. Hamming Weight of a Boolean function, which is a measure of its

difference from null space, is defined as number of ones in the function. It is denoted by
wt (9. The Hamming distance between two n-variable Boolean functions f and g is

defined as size of the set f xc F? /f (x) # g(x) } . It is denoted by d (f, g)[12].

In this chapter several well known related representations and cryptographically

desirable properties of Boolean functions are described. First, the truth, table is defined

and some simple operations are discussed. Next, Algebraic Normal Form ANF is

considered in detail. The Walsh Hadamard transform (WHT) provides a unique

representation of Boolean functions that is vital to cryptographic work since it expresses

a Boolean function in terms of its correlation to all linear functions. It is presented along

with some important theorems that describe an essential tradeoff between cryptographic

properties.

The Galois field of order 2 will be denoted by F2 and Galois field of order 2" will

be denoted by F2,, and the corresponding vector space byF2 . Addition operator over FZ

is denoted by +. A Boolean function is essentially a function which maps one or more

binary input variables to one binary output variable. We write this as a mapping from a

vector x = (x1, xz... x„) to a single output f, where x; e F2 , 1 <_ i< n..

f: F2 	Fa

Pl

For n input variables there exists 2n possible combination of inputs and since each input

represents a particular monomial, so there will be 2° monomials. Therefore there exist

22 distinct Boolean functions and we denote set of all Boolean functions by /3„

2.1 Truth Table Representation

The binary truth table (TT) of a single output Boolean function f(x): FZ —* Fz is

a list of the outputs for every possible combination of input variables. Explicit storage of

a binary truth table requires 2n bits with the input ordering taken to be the natural

lexicographical ordering of binary n-tuples. A Boolean function may be implemented in

RAM as a look up table (LUT) if enough memory is available. Alternatively a Boolean

function can be implemented using combinational logic: a network of logic gates that

generates the output of the function corresponding to the input values. The complexity of

a Boolean function can be defined as the minimum number of gates required to construct

the circuit. Any circuit representation can be expressed as a formula using the basic

operations of AND, OR, XOR and inversion (complementation) [3].

From the truth table of representation, we can write Boolean function in sum of

products form. In the following example (Table 2.1), we have three inputs xj, x2 and x3

and output f. For m variable Boolean function, the table will consist of m columns for

input, one column for output and 2m rows for enumeration of input variables.

x1 x2 x3 f
0 0 0 0

0 0 1 1

0 1 0 0

0 1 1 0

1 0 0 0

1 0 1 1

1 1 0 1

1 1 1 1

Table 2.1 The Truth table of the Boolean function f (xl, x2, x3) = x1 x2 + x2 x3 + x j.

8

It is often useful to consider Boolean functions over the set { 1,-1 } rather than {0, 1) and

we introduce a "dash" notation to distinguish these forms. The state S of a Boolean

function can be defined by storing the truth table outputs of Boolean function in an array

For example, consider a 3 variable Boolean function of Table 2.1, and then the state S

will be-of Boolean function will be (01000111). Then, this Boolean function will have 2

states.

xl x2 X3 f f

0 0 0 0 1

0 0 1 1• -1

0 1 0 0 1

0 1 1 0 1

1 0 0 0 1

1 0 1 1 -1

1 1 0 1 -1

1 1 1 1 -1

Table 2.2 Polarity Truth table Representation of Boolean Functionf

The polarity truth table (Table 2.2),f (x) of Boolean function f(x) is given by

f(x) = (-1) f(x) = 1 - 2f(x) 	 (2.1)

The binary truth table can be obtained from the polarity truth table by

.f(x) = 1- '(x)
	

(2.2)

The state S of a Boolean function can be defined by storing the truth table outputs of

Boolean function in an array. For example, consider a 5 variable Boolean function, the

state S can be stored as (01100101010001100010100011000111) in the form of an array.

2.2 Algebraic Normal Form
The algebraic normal transform was introduced by Zhegalkin in 1927[13]. An n-

variable Boolean function,f(xl ... , x„) can be considered to be a multivariate polynomial

E

over F2 . This polynomial can be expressed as a sum of products representation of all

distinct r-th order products (0 <_ r _< n) of the variables. More precisely, f (xl , ... , x„) can

be written as

n

AXI, ... , xn) = Y Au 	x~ ' 	, A. E F2 , u = (u1.,u). 	(2.3)
ueF2 	1=1

where, u corresponds to an n-tuple.

This representation of f is called the algebraic normal form (ANF) of f The algebraic
degree of f, denoted by deg(f), is the maximal value of the Hamming weight of u such

that Au # 0. There is a one-to-one correspondence between the truth table and the ANF

via so called inversion formulae.

Example: f(xl, x2, x3, x4, xS) = x1 + x2 + x2x4 + x3x4 + (x2 + x3 + x1x4 + x2x4 + x3x4) x5

This function can be written asf(xi, x2 , x3, x4, xs) = 	(~5 1 x~ i) U£ F2

The set of x values for which Ax) = 1(1(x) = 0) is called the on-set (off-set), and is

denoted by S1(/) (So (f)). The ANF off is fully specified by its on-set using the following
expansion,

.f (x1,,xn) - — ZrFsi(f)(~i°1(xi. + zi + 1)) , 	z = (ri... zn) 	(2.4)

The Algebraic Normal Form (ANF) of a Boolean function is an XOR sum of

AND products. There are 2n possible combinations of n input variables for f, so there are

2" distinct product terms and every XOR sum is a formula for the corresponding Boolean

function. The number of different ANFs is equal to the number of different truth tables

and they are in one-to- one correspondence. It is therefore a unique representation: ANFf

= ANFg if and only if f(x) = g(x) for all x E F. . The ANF can be stored as 2° binary

coefficients A,, of the terms in the XOR sum.

The functions of degree at most one are called as affine functions. The affine

functions with constant term equal to zero are called as linear functions. The set of all
affine functions of n variables is denoted by An

Consider two n-1 variable Boolean functions f! and f2 over F2 then f = fl f f2 is an

n- variable Boolean function over F. is concatenation of f! and f2 [6]. It means that the

10

upper half part of the truth table of f correspond to f1 and the lower half to f2. The ANF of
f is then given by

f(xl, ... , x„) = (1+x)f (x1, .. - , xn-1) +Xn f2(xl, ... , xn-1). 	 (2.5)

2.3 Walsh-Hadamard Transform
The Walsh-Hadamard transform is an orthogonal transform like the discrete

Fourier transform. S. Golomb was apparently the first to consider the Walsh-Hadamard

transform of Boolean functions [14, 15]. The Walsh Hadamard transform (WHT) is one

of the important tools required for the analysis of Boolean functions. The WHT of an n-

variable function J(xl, ... , xn) is the real-valued function over Fa whose value at every a

e FZ is defined as

f (a) = ExcF; (-1)f 	Y 	 (2.6)

where a.x = ajx1+a2x2+...........+a„xn is a normal inner product in F. .

The WHT expresses a Boolean function uniquely in terms of its correlation with all linear

functions. This is also helpful in calculation of nonlinearity of Boolean functions.

Example: Given a truth table we can calculate Walsh Transform. Consider a function
f(x1, x2, x3) shown in Table 2.3

X3 X2 x1 f
0 .0 0 1
0 0 1 1
0 1 0 0
0 1 1 1
1 0 0 1
1 0 1 0
1 1 0 0
1 1 1 0

Table 2.3 Truth table of f(xl, X2, x3)

Consider a = (a3i a2,a1) and x = (x3,x2,x1)

(i) For a = (0,0,0) , a.x = 0.

11

X3 x2 x1 f ./ (x) _ (.4)1(x) a.x = 0 (-1)a.x (-1)f(x)+ a.x

0 0 0 1 -1 0 1 -1
0 0 1 1 -1 0 1 -1
0 1 0 0 1 0 1 1
0 1 1 1 -1 0 1 -1
1 0 0 1 -1 0 1 -1
1 0 1 0 1 0 1 1
1 1 0 0 .1 0 1 1
1 1 1 0 1 0 1 1

Therefore, f(000) _ (-1)+(-1)+1+(-1)+(-1)+1+1+1 = 0
(ii) For a = (0,0,1), a.x =xj

X3 X2 xl f f(x) = (-1) x a.x = x1 (-1)ax (-1)f (x)+ a.x

0 0 0 1 -1 0 1 -1
0 0 1 1 -1 1 -1 1
0 1 0 0 1 0 1 1
0 1 1 1 -1 1 -1 1
1 0 0 1 -1 0 1 -1
1 0 1 0 1 1 -1 -1
1 1 0 0 1 0 1 1
1 1 1 0 1 1 -1 -1

Therefore, f (001) = (-1)+1+1+1+(-1)+(-1)+1+(_1) = 0.
(iii) For a = (0,1,0) , ax = xz

x3 x2 x1 I .f'(x) = (-1) x a.x =x2 (-1)a.x (-1)f(x)+ a.x

0 0 0 1. -1 0 1 -1
0 0 1 1 -1 0 1 -1
0 1 0 0 1 1 -1 -1
0 1 1 1 -1 1 -1 1
1 0 0 1 -1 0 1 -1
1 0 1 0 .1 0 1 1
1 1 0 0 1 1 -1 -1
1 1 1 0 1 1 -1 -1

Therefore, f(O10) _ (-1)+(-1)+(-1)+1+(-1)+1+(-1)+(-1) _ -4

12

(iv) For a = (0,1,1) , a.x = xl+ X2

x3 x2 x1 f f(x) = (-1) x a.x = xl+x2 (-1y.x (-1) f(x)+ a.x

J 0 0 0 1 -1 0 1 -1
0 0 1 1 -1 1 -1. -1
0 1 0 0 1 1 -1 1
0 1 1 1 -1 0 1 -1
1 0 0 1 -1 0 1 -1
1 0 1 0 1 1 -1 -1
1 1 0 0 1 1 •-1 -1
1 1 1 0 1 0 1 1

Therefore, f (011) = (-1)+(-1)+(1)+(-1)+(-1)+(-1)+(-1)+(1) = -4

(v) For a = (1,0,0) , a.x = x3

x3 x2 x1 f f(x) =
(1)J(X)

 a.x = x3 (-1)a.x (1)f 	a.x

0 0 0 1 -1 0 1 -1
0 0 1 1 -1 0 1 -1
0 1 0 0 1 0 1 1
0 1 1 1 -1 0 1 -1
1 0 0 1 -1 1 -1 1
1 0 1 0 1 1 -1 -1
1 1 0 0 1 1 -1 -1
1 1 1 0 1 1 -1 -1

Therefore, f(100) = (-1)+(-1)+(1)+(-1)+(1)+(-1)+(-1)+(-1-) = -4
(vi) Fora= (1,0,1), a.x= x3+xJ

x3 x2 x1 f f(x) = (-1) x a.x = x3+ xl (-1)a.x (1)f 	a.x

0 0 0 1 -1 0 1 J -1
0 0 1 1 -1 1 -1 1
0 1 0 0 1 0 1 1
0 1 1 1 -1 1 -1 1
1 0 0 1 -1 1 -1 1
1 0 1 0 1 0 1 1
1 1 0 0 1 1 -1 -1
1 1 10 1 0 1 1

Therefore, f (101) _ (-1)+1+1+1+1+1+(-1)+1 = 4

13

(vii) For a = (1,1,0) , a.x = x3+ x2

xj x2 xl .f .f(x) = (-1) x a.x =x3+x2 (-1)a.x (-1) f(x)+a.x

0 0 0 1 -1 0 1 -1
0 0 1 1 -1 0 1 -1
0 1 0 0 1 1 -1 -1
0 1 1 1 -1 1 -1 1
1 0 0 1 -1 1 -1 1
1 0 1 0 1 1 -1 -1
1 1 0 0 1 0 1 1
1 1 1 0 1 0 1 1

Therefore, f(110) = (-1)+(-1)+(-1)+1+1+(-1)+1+1 = 0

(viii) For a = (1,1,1), a.x = x3+x2+xI

X3 X2 x1 f J (x) = (-1) x a.x= x3+ x2+ xl (-1)a.x (-1) f(x)+ a.x

0 0 0 1 -1 0 1 -1
0 0 1 1 -1 1 -1 -1
0 1 0 0 1 1 -1 1
0 1 1 1 -1 0 1 -1
1 0 0 1 -1 1 -1 1
1 0 1 0 1 0 1 1
1 1 0 0 1 0 1 1
1 1 1 0 1 1 -1 -1

Therefore, f (111) = (-1)+(-1)+1+(-1)+1+1+1+(-1) = 0

In this way, we can calculate the WHT off(x) as shown below in table

a3 a2 a1 f
0 0 0 0
0 0 1 0
0 1 0 -4
0 1 1 -4
1 0 0 -4
1 0 1 4
1 1 0 0
1 1 1 0

Table 2.4 Walsh Hadamard Transform off

14

Walsh Hadamard Transform is calculated by Fast WT algorithm [16].

Consider a function f(xi, x2, x3) shown in Table 2.3. Table 2.3 has been reproduced for

convenience.

X3 X2 x1 f
0 0 0 1
0 .o 1 1
0 1 0 0
0 1 1 1
1 0 0 1
1 0 1 0
1 1 0 0
1 1 1 0

First, we generate the polarity truth table (Fig 2.1) of f(x1 , x2, x3). Next, each pair

of elements is modified by an "in-phase butterfly"; that is, the values, in each pair produce

two results which replace the original pair, wherever they were originally located. The

left result will be the two values added; and the right will be the first less second. That is,

(a', b') = (a + b, a — b) where (a, b) is original pair. So for the values (-1, 1) we get (-

1+1, -1-1) or (0, -2). We start pairing out adjacent elements, then every other element,

then every 4th element, then every eighth element and so on until the correct pairing is

impossible, as shown in Figure 2.1.

Original 	1 	1 	0 	1 	1 	0 	0 	0

First 	-1 	-1 	1 	-1 	-1 	1 	1 	1 x ><><x
Second 	-2 	0 	0 	0 	-2 	2 	0

Third 	-2 	2 	-2 	-2 	2 	-2 	-2 	-2

Final 	0— 0— -4 -4 =4 —4 0 —0

Fig.2.1 An 8-element Fast Walsh Transform.

15

The WHT off is shown in Table 2.4. Table 2.4 has been reproduced here for

convenience.

x1 X2 X3 f
0 0 0 0
0 0 1 0
0 1 0 -4
0 1 1 -4
1 0 0 -4
1 0 1 4
1 1 0 0
1 1 1 0

Theorem 2.1(Parseval) Let f(xj ,,x„) be a real valued function with domain the vector
space Fz with Walsh Hadamard Transform f(a) where aeF? , then[15]

E F: f 2(a) = 22n
2

(2.7)

2.4 Balancedness
A Boolean function is said to be balanced if its truth table has equal number of l's

and 0's. In other words, iff is an n-variable Boolean function then it will be balanced if

wt(f) =2"-1 	 (2.11)

From the definition of Walsh Hadamard Transform, the sufficient and necessary

condition for a function to be balanced is [3]

f(0)=0 	 (2.12)

where 0= (0,0,0.......0) in F. .

2.5 Auto-Correlation Function
Consider a n-variable Boolean function ixl; . . x„) . Then auto-correlation

function will be defined as

rf(S) ='Exf'(x) f'(x + s) 	 (2.8)

where f'(x) = (-1)f(x) and x and s range over F;.

16

Therefore tf(s) will also in Fz .The maximum value of auto correlation is denoted as ACf

.i.e. ACf = maxs*o IZx f '(x) f '(x + s) I[3,9]. For every Boolean function we have rf(0)

=2" since (f (x))2 = 1.

For balanced Boolean function, Maitra conjecture [17] for even n provides the

bound on autocorrelation ACB(n) by relation

ACB(n) = 22 + ACB(2)

where ACB(n) represents autocorrelation bound for n variable Boolean function.

Example: Given a truth table we can calculate Auto-Correlation Transform. Consider a

function f(xj, x2, x3) shown in Table 2.5.

X3 X2 Xl f f
0 0 0 1 -1
0 0 1 1 -1
0 1 0 0 1
0 1 1 1 -1
1 0 0 1 -1
1 0 1 0 1

1 0 0 1
1 1 1 0 1

Table 2.5 Truth table of f(xl , x2, x3)

Consider s = (s3,s2,s1) and x=(x3,x2,xl)

(i) For s=(0,0,0)

X3 X2 Xl f(X) f(X) f(X+S) f(X)J (x+S)
o o 0 1 -1 -1 1
0 0 1 1 -1 -1 1
0 1 0 0 1 1 1
0 1 1 1 -1 -1 1
1 0 0 1 -1 -1 1
1 0 1 0 1 1 1
1 1 0 0 1 1 1
1 1, 1 0 1 1 1

17

!*0*

F11

Therefore, r" (s) = 1+1+1+1+1+1+1+1 8.

(ii) For s=(0,0,1)

X3 X2 xl f(x) f(x) f(x+s) f(x) f(x+s)
0 0 0 1 -1 -1 1
0 0 1 1 -1 -1 1
0 1 0• 0 1 .-1 -1
0 1 1 1 -1 1 -1
1 0 0 1 -1 1 -1
1 0 1 0 1 -1 -1
1 1 0 0 1 -1 -1
1 1 1 0 1 1 1

Therefore, r f(s) = 1+1+(-1)+(-1)+(-1)+(-1)+(-1)+1 = -2.

(iii) For s=(0,1,0)

X3 X2 Xl A) f(x) f(x+s). f(x) f(x+S)

0 0 0 1 -1 1 -1
0 0 1 1 -1 -1 1
0 1 0 0 1 -1 -1
0 1 1 1 -1 . 	-1 1
1 0 0 1 -1 1 -1
1 0 1 0 1 -1 -1
1 1 0 0 1 -1 -1
1 1 1 0 1 1 1

Therefore, rf(s) _ (-1)+1+(-1)+1+(-1)+(-1)+(-1)+1 = -2.
(iv) For s=(0,1,1)

X3 X2 X1 f(x) f(x) f(x+s) f(x) f(x+s)
0 0 0 1 -1 -1 1
0 0 1 1 -1 1 -1
0 1 0 0 1 -1 -1
0 1 1 1 -1 -1 1
1 0 0 1 -1 1 -1
1 0 1 0 1 -1 -1
1 1 0 0 1 1 1
1 1 1 0 1 -1 -1

Therefore, f-(s) =1+(-1)+(-1)+1+(-1)+(-1)+1+(-1) = -2.

18

(v) For s=(1,0,0)

X3 X2 XI J(x) f(x) ✓ (X+S) f (x) J (X +S)

0 0 0 1 -1 -1 1
0 0 1 1 -1 • 1 -1
0 1 0 0 1 1 1
0 1 1 1 -1 1 -1
1 0 0 1 -1 -1 1
1 0 1 0 1 -1 -1
1 1 0 0 1 1 1
1 1 1 0 1 -1 -1

Therefore, f(s) =1+(-1)+1+(-1)+1+(-1)+fl+(-1) = 0.
(vi) For s=(1,0,1)

X3 X2 xl f(x) f(x) f(x+s) f(x)f(x+s)
0 0 0 1 -1 1 -1
0 0 1 1 -1 -1 1
0 1 0 0 1 1 1
0 1 1 1 -1 -1 1
1 0 0 1 -1 -1 1
1 0 1 0 1 -1 -1
1 1 0 0 1 -1 -1
1 1 1 0 1 -1 1

Therefore, ff(s) =(-1)+1+1+1+1+(-1)+(-1)+1 = 2.
(vii) For s=(1,1,0)

X3 X2 xl f(x) f(x) f(x+s) f (x) f(x+s)

0 0 0 1 -1 -1 1
0 0 1 1 -1 1 -1
0 1 0 0 1 -1 -1
0 1 1 1 -1 1 -1
1 0 0 1 -1 1 -1
1 0 1 0 1 -1 -1
1 1 0 0 1 -1 -1
1 1 1 0 1 -1 -1

Therefore, f f(s) =1+(-1)+(-1)+(-1)+(-1)+(-1)+(-1)+(-1) = 6.

19

(viii) For s=(1,1,1)

X3 X2 xl f(x) f(x) f(x+s) f(x)f(x+s)
0 0 0 1 -1 1 -1

0 0 1 1 -1 1 -1

0 1 0 0 1 1 1
0 1 1 1 -1 -1 1
1 0 0 1 -1 -1 1
1 0 1 0 1 1 1
1 1 0 0 1 -1 -1
1 1 1 0 1 -1 -1

Therefore, ff(s) =(-1)+(-1)+1+1+1+1+(-1)+(-1) = 0.

So, for s ~ 0, we have
ACf= maxsI f (s) I = 6.

2.6 Non Linearity
The nonlinearity of a Boolean function is defined as the minimum Hamming

distance to any affine function [3,10]. Consider An be a set of all n-variable affine

functions. Then Nonlinearity nl () of Boolean function f is defined as

Nf= nl (f) = mingCAn d (f, g)
	

(2.9)

It is sometimes written in terms of WHT forms as

Nf = nl (f) = 2"-1 —' maxacFs lf (a)I 	 (2.10)

To maximize the nonlinearity, maxaEF„ If (a)I should be minimum and the minimum of
z

maxaeF, If (a) I is 2 1̀12 i.e. for maximum nonlinearity f (a) = ± 2' 2. So, the maximum

achievable value for nonlinearity for n-variable Boolean function is 2n-1-2(n-2y2 It is

achievable only for even n. The functions achieving this value are called as bent

functions [10].

For balanced Boolean functions, Dobertin's conjecture [18] states that on an even
n

number n of inputs, the highest achievable nonlinearity satisfies N1(n) = 2n .1 — 2Z +

N1(Z), where N1(n) represents nonlinearity of n-variable Boolean function.

High nonlinearity is required to resist affine approximations of Boolean function.

If we are able to fix some inputs of n-variable Boolean function then function can be

approximated by affine function [3,10,11].

Linear cryptanalysis is a very powerful cryptanalytic method for stream ciphers.

A function with low nonlinearity is prone to linear approximation attack. Linear

approximation means approximating the combining function by a linear. function. Thus

for symmetric cipher applications we need functions with high nonlinearity [19].

2.7 Algebraic Immunity
Very recently, a new attack that uses cleverly over defined systems of

multivariate nonlinear equations to recover the secret key has gained a lot of attention

(the idea of using such systems comes from Shannon , but the improvement in the

efficiency of the method is recent)[20]. It is known as algebraic attack. Given a Boolean

function on variables, different kinds of scenarios related to low-degree multiples of have

been studied in [21,22]. Consider f(x) and g(x) be two n-variable Boolean functions such

that f *g=0 or (1+J) *g=0 where '*1 is multiplication of GF(2) elements.. Then g(x) is

called as annihilator of f(x). The core of the analysis is to find minimum (or low) degree
annihilators of f(x) or (1+f(x)). To mount the algebraic attack, one needs only low-degree

annihilators [21,22]. The immunity of Boolean functions against algebraic attacks is

called as algebraic immunity. The highest possible algebraic immunity is

121[10,21,22,23].

It has been observed that a Boolean function used as a cryptographic primitive,

and interpreted as a multivariate polynomial over F2 , should not have low degree

multiples obtained by multiplication with low degree nonzero functions. The functions

with low nonlinearity are more prone to attack. Functions having low-degree

subfunctions are weak in terms of algebraic immunity. Some functions. are symmetric, so

they are at risk of attacks. Carlet et. al. present a construction method to generate Boolean

functions on n variables with highest possible algebraic immunity [2][23].

21

2.8 Algebraic degree
From Equation no. 2.3, the algebraic normal form (ANF) of j(xl, ... , x„) can

written as
n

... , x„) _ 	2U fl x; 	~u E F2 , 	u = (u,,,u„).
ueF2 	1=1

where, u corresponds to an n-tuple.

The algebraic. degree of f denoted by deg(f), is the maximal value of the Hamming

weight of u such that lu ~ 0.

High algebraic degree resists certain attacks and is therefore desirable in both

stream and block ciphers. In the stream cipher model, the combining function f is so

chosen that it increases the linear complexity of the resulting key stream. High algebraic

degree provides high linear complexity [22].

22

Chapter 3

HILL CLIMBING TECHNIQUE FOR HEURISTIC

SEARCH

The basic idea of heuristic search is that, rather than trying all possible search paths, we

try and focus on paths that seem to be getting us nearer our goal state. Of course, we

generally can't be sure that we are really near our goal state - it could be that we will have

to take some amazingly complicated and circuitous sequence of steps to get there. But we

might be able to have a good guess. Heuristics are used to help us make that guess:

There are very few applications of heuristic search techniques to modem-day

cryptological design or analysis problems. This is a little surprising since the heuristic

search and cryptology research communities seem, at a fundamental level, to share one

major interest — solving computationally `hard' problems. This chapter provides a brief

introduction to guided search techniques and use of hill climbing technique for search of
Boolean function of cryptological use.

301 Guided Search

To resist ciphers from Cryptanalytic attack, we need to construct Boolean

function with desirable properties. The main desirable properties are balancedness, high

nonlinearity, low autocorrelation, high algebraic immunity. The tradeoffs between these

have received a lot of attention in Boolean function literature [10,11,25]. The more

criteria that have to be taken into account, the more difficult it is to construct Boolean

function. In the past the main options for construction of Boolean functions were random

generation and direct construction. Direct constructions can produce functions that are

optimum with regard to the designed property, but they may be weak for other

cryptographic properties. So, there exists a tradeoff between main criteria and

determining the optimum compromise attainable is an open problem. Recent work has

23

moved to construction of Boolean function with the aspects of computer search. So,

guided search techniques are one of the solutions to find Boolean function with optimum

compromise in desirable properties. Some authors reported have good results with guided

search [16,24]. Guided search have been defined below in brief.

For some problems there may be no alternative to enumerative or sampling-based

approaches. This is generally due to lack of (approximate) continuity in the function f(x).

i.e. the value of f(x) at a. specific point x1 gives little exploitable information. Cryptology

revels in lack of continuity. Indeed, certain cryptographic goodness criteria can be.

thought of as discontinuity measures (e.g. for a 64-bit block cipher it might be required

that keys which differ by a single bit should produce ciphertexts that differ on average by

32 bits: small input changes can have radical output effects). Solutions (inputs to the cost

functions) that are `near-by' or `close' will not give outputs that are radically different.

Information gleaned from function evaluation will be used to influence the progress of

the search. This is guided search. The notion of closeness can be formalized as a

function. For a specific value .the set of all points that are in the immediate neighborhood

can be defined by some function N(x):

N: X—+ 2"

Here the search moves through a series of points x3,x2,x3........xf „al with each point being

in the neighborhood of the point which precedes it. At each point x„ the value of f(x) is
evaluated for one or more points in N(x„) and the information used to determine whether

the search should `move' to a particular point in that neighborhood. There are several

strategies for selecting points in the neighborhood and deciding which move, if any,

should be taken. Examples of this kind of strategies are Hill climb method [9], Simulated

Annealing method [8], Genetic Algorithms (GA) [25], Tabu Search [26] and some local

search methods.

32 Gradient Search-Hill Climbing

Gradient search methods sample or enumerate the values of f(x) in the
neighborhood of the current solution xcu,,.. If the search moves only to a neighbor if it

24

improves the value of f(x)then the search is a form of `hill-climbing' or gradient ascent. If

the neighborhood is huge then sampling may be carried out to find an improving move.

Accepting a move that makes the greatest improvement gives rise to what is known as

steepest ascent. If the search takes the first improving move it encounters, it is said to be

a `greedy' gradient ascent. The terms gradient ascent and gradient descent are used

depending on whether the problem at hand is couched as a maximization or a

minimization problem. The problem with such techniques is obvious. If the search starts

in the wrong place the result may be a local optimum [1].

The hill-climbing search algorithm is shown in Fig. 3.1 [27]. It is simply a loop

that continually moves in the direction of increasing value-that is, uphill. It terminates

when it reaches a "peak" where no neighbor has a higher value. The algorithm does not

maintain a search tree, so the current node data structure need only record the state. Hill-

climbing does not look ahead beyond the immediate neighbors of the current state [27].

Function 11L-CLIMBING(problem) returns a state that is a local maximum

inputs: problem, a problem

local variables: current, a node

neighbor, a node

current f— MAKE NODE(INITIAL-STATE[problem])

loop do .
neighbors a highest-valued successor of current.

if VALUE[neighbor] S VALUE[current] then return STATE[current]

currentE—neighbor

Fig. 3.1 The hill-climbing search algorithm

Hill climbing remains an important technique nevertheless sometimes one simply

has a hill to climb. Furthermore, robust non-linear optimization techniques may get close

to optimal solutions but use hill-climbing to carry out the very final stages of

optimization efficiently [1]. Hill climbing is used in Artificial Intelligence, Business

problems, Planted Bisection problems.

25

The hill climbing approach to Boolean function design was introduced by W.

Milan et. al. in 1997 as a means of improving the nonlinearity of a given Boolean

function by making well chosen alterations of one or two places of the truth table [9,28].
If AwHT(w) represents the change in WHT value, then it is easy to show that any single

truth table change causes IXwHT(w) e {-2,2) for all w. Similarly, any two truth table

changes cause OwHT(W) e {-4,0,4). By starting with a balanced function, we can hill

climb to a more nonlinear balanced Boolean function. The approach did not make an

alteration to the truth table unless the nonlinearity is improved by a change in WHT value

[9,28]. This approach can also be used for improvement of autocorrelation and for both

autocorrelation and nonlinearity.

3.2.1 Non-linearity Targeted

In this approach, the nonlinearity of Boolean function is targeted [9,28]. The truth

table outputs of Boolean function are changed if the nonlinearity increases. Derivation of

the rules for the change of two output values of Boolean function is given below.

Consider a given Boolean function Ax) in polarity truth table formf(x). Now let

the truth table output be complemented for two distinct inputs x1 and x2. We have g'(x,) =

-f(x1) for i e { 1,2) and g'(x) =f(x) for other x. Now consider the WHT of g(x).

9(w) = ExEFs (-1)9(x)+w.x

= (-1)9(xl)+ W.xi + (-1)9(x2)+ w.x2 + Ex#_ 1)9(x)+ w.x

9'(x1)(-1)w.xi +9'(x2)(-1)w.x2 +. Zx#{x1,x2)(-1)9(x)+w.x

_ —f'(xi)(-1)w.xl _f 1(x2)(-1)w.x2 +

=—(f(xi)(-1Y w.xl +f ' (x'2)(-1)w.x2
)+ EX#(X1,xz}(- 1)9(x)+W.x (3.1)

The change in the WHT value for all w is

A (w) = fl (w) — f (w) 	 (3.2)

It follows directly that

OWHT(w) = -2(f '(x1)(-1)w.x1 + f /(X2)(-1)w.x2) 	 (3.3)

This result is used to directly update the WHT in each iteration of a 2-step hill

climbing program. It is now a straightforward matter to determine the conditions required

for the choice of two distinct inputs x1 and x2 to complement so that the WHT values

W.

change as required. It is clear that the two truth table changes ensure tWJIT(W) e {--4,0,4}.

This method can also be used for change of four distinct inputs [9,28].

3.2.2 Auto-Correlation Targeted

Here, the autocorrelation of Boolean function is targeted [9,28]. If with the

change of truth table outputs, autocorrelation decreases, then change is kept as such.

Derivation of the rules for the change of two output values of Boolean function is given

below.

Consider changing a Boolean function, f(x) by complementing the output for two

distinct inputs xi and x2, creating a function g(x)with autocorrelation given by:

f(s) _ > g' (x) g' (x + s)
x

= 29'(x1)9'(x1 + s) + 2g'(x2)9'(x2 + S) + 	I 	9'(x)9'(x + s)
x * (xi,x2,xl +s,x2 +s}

= — 2 f'(x1) f'(xi + s) — 2f '(x2) f'(x2 + s) + EX*(X1 2,Xl+S,X2+s} f'(x) f '(x + s) (3.4)

For each s #0, the change in the value of autocorrelation is

AC (S) = rg (s) — (s)

—2f'(x1)9'(x1 + s) — 2f'(x2)9' (x2 + s) — 2f'(x1)f'(x1 + s) —
2f'(x2)f'(x2 + S)
	

(3.5)

For x1 + x2 = s , we have,

g'(x1 + s) = g'(x2) = —f'(x2) and g'(x2 + s) = g'(x1) = — f'(x1).

In this case the formula for autocorrelation changes collapses to

dAC(S = x1 + x2) = 0.

In the remaining general case, we have

dAC(s * x1 + x2) = —4f'(x1)f'(x1 + s) — 4f'(x2)f'(x2 + s)
Noting that the pair (x1,x2) was chosen so that f(x1) * f (x2), we can determine that

®AC(s) = —8 	f(x1) = f (xi + s) for i = { 1,2},

®AC() = +8 	f(x1) ~ f (xi + s) for i = { 1,2},

dAc(s) * —8 not both f(x1) = f (x1 + s) for i = { 1,2} and
®Ac(s) # +8 a not both f(x1) ~ f (xi + s) for i = {l,2}.

27

If there is requirement for improvement of autocorrelation only and wish to

maintain Hamming weight, then the truth table outputs for any pair (xi; x2) are

complemented that satisfies all of the following conditions [28]:

(1) f(xi) * f (x2)

(ii) x1 + x2 * s and both f(x1) = f (x1 + s) for i = { 1,2}, for all {s : f (s) = ACmax }
(iii) xl + x2 * s and both f (xL) ~ f (xi + s) for i = { 1,2}, for all [s: r(s) _ ACmax }
(iv) if xg + x2 * s then not both f(xi) * f (xi + s) for i = { 1,2}, for all (s : f (s) _
ACmax — 8).

(v) if x1 + x2 * s then not both f(x1) = f (xl + s) for t = { 1,2}, for all {s: r(s)

—ACmax + 8}.

28

Chapter 4

SIMULATED ANNEALING ALGORITHM.FOR

HEURISTIC SERACH

In 1983 Kirkpatrick et al.[8] proposed simulated annealing, a new search technique

inspired by the cooling processes of molten metal. There is a deep and useful connection

between statistical mechanics (the behavior of systems with many degrees of freedom in

thermal equilibrium at a finite temperature) and multivariate or combinatorial

optimization (finding the minimum of a given function depending on many parameters).

The analogy with annealing in solids provides a method for optimization of the properties

of very large and complex systems. This technique is a generic probabilistic heuristic

technique, namely locates a good approximation to the global minimum of a

given function in a large search space.

4,1 Cost Function

To use heuristic search we need an evaluation function/cost function that scores a

node in the search tree according to how close to the target/goal state it seems to be. This

will just be a guess, but it should still be useful. For example, for finding a route between

two towns a possible evaluation function might be a "as the crow flies" distance between

the town being considered and the target town. It may turn out that this does not

accurately reflect the actual (by road) distance - maybe there aren't any good roads from

this town to target town. However, it provides a quick way of guessing that helps in the

search [1,24].

The general aim is to find optimal solutions to problems that are structured as a

function of some decision variables, perhaps in the presence of some constraints [1].

These can be formulated as:

Minimize f(x) with respect to x e X, subject to constraint elements of C.

29

The set X of all possible vectors x = (xi... x,) of decision variables will generally

be referred to as the solution space for the search problem at hand. The set C represents

the imposition of constraints. Searches may be restricted to consider only elements of C.

Alternatively, the problem may be recast as `Minimize g(x) subject to x e X' where g(x)

contains a component that punishes x outside C. Such values of x are said to be `priced

out'. The function f (or g) is generally referred to as a cost function. When problems are

similarly couched as maximization problems the term fitness function is used. There is

complete freedom over which functions are used for the problem at hand. Experience

shows that the choice of function is an important success factor in applying many search

techniques. The best functions are those that give the best results when used.

Unfortunately, it is difficult to predict in advance which functions will work best.

Experimentation is the only solution to predict best cost function [1].

Solution vectors x may be designs (e.g. the truth table of a Boolean function used

as a component in a cryptosystem) or analysis artifacts (e.g. a vector of 64 key bits sought

by a cryptanalyst). To find them the designer or analyst is free to employ whatever

techniques seem most suitable from the vast array available. Solution techniques span a

range of sophistication.

An example can be considered as construction of a Boolean function with

desirable properties (balancedness, high nonlinearity, low autocorrelation). So, there is a

need to make a cost function -(fitness function) considering desirable properties of

Boolean function. Some of the well known cost functions used recently for construction

of Boolean functions is discussed in subsections 4.1.1 and 4.1.2.

4.1.1 Cost function for Nonlinearity

In chapter 3, hill climbing method has been explained for construction of Boolean

function with good cryptographic properties. In hill climbing method, we are targeting

nonlinearity (NLT) to construct Boolean function. The objective function is taken as

fitness function, i.e. the fitness of a function f on n input variables is given by

fitness(/) = N1= nl (f) = 2n-1 — Z maxacF2 if (a) I

30

From above equation, to maximize nonlinearity, maxaEFr 1 f (a) I has to be minimized.

So, maximization of nonlinearity can be viewed as minimization of maxaEF, If(a)I.

(WHT). Therefore, the cost function is given by

cost(/) = WHmax(t) = maxa€F1 if (a) I

From Theorem 2.1 (Parseval's equation),

2

This relation constrains WHm (fl = maxacFa I f (a) I to be at least 2. This bound can only

be achieved when, for each a, If (a)1 = 22. When some If (a) I are less than 22, then

Parseval's Theorem ensures that some l f (a)I is greater than 2. Thus minimizing the

spread of WHT seems to be a possible means for achieving good nonlinearity. For each

a, 11(a) I = 22 is achieved by bent function. But bent functions are not balanced, exist for

only even number of input variables and also have zero autocorrelation [29]. Therefore,

considering the minimization of spread of Walsh Hadamard Transform, a cost function

can be
n

cost(f) = 	Fz 111(a) I — 2z (4.1)

This cost function is a simple candidate for targeting nonlinearity and . autocorrelation.

Functions having, I f (a) I = 22, for all a, must also have f (Q = 22. But, for balanced

functions, f(Q) = 0 from Equation 2.12. So functions that achieve I f (a) I = 22, for each

a, cannot be balanced. Thus, a new cost function for balanced Boolean function can be
R

cost(f) = Eae Fz I If (a) I — X I 	 (4.2)

where X and R are variable parameters. It is difficult to predict the best values of X and R

for Boolean functions that are balanced and those with odd number of variables. Some

parametric flexibility is justified. With the help of parametric variations of X and R, one

can make variations on cost functions and it has been shown by Clark et. al. [1, 6] that it

is possible to get Boolean functions with desirable properties by making parametric

31

variations. Clark et. al. have taken X ranging from -16 to 30 and mostly R =3 in their
search[1,6].

Nonlinearity and autocorrelation criteria can be handled by the above cost

function. Taking into consideration of balancedness, starting function can be taken as

balanced Boolean function, and algebraic degree and algebraic immunity are ignored.

Simulated annealing algorithm is applied as an optimization technique on this cost

function. Algebraic degree and algebraic immunity criteria can be considered in

"Stopping Criteria" of Simulated Annealing algorithm.

4.1.2 Cost function for Autocorrelation

In hill climbing method, we are targeting autocorrelation (ACT) to construct

Boolean function. In this case, the objective function is taken as cost function, i.e. the cost
of a function f on n input variables is given by

cost(/) =ACf=max.,*0IE. f'(x)f'(x+s)I 	 (4.3)

Some modification in cost function related to autocorrelation has been done by Zhang

and Zheng in 1995[30]. A new cost function known as the sum of squares measure of

(considering all values of autocorrelation function rf (s)) has been introduced by Zhang

and Zheng [30]
2n—i

of = I if (s)2
s=o

Constructions for both even and odd n are offered by Zhang and Zheng.

A typical optimization approach to multi-criteria problems is to take a weighted

sum of the individual cost functions. For the target criteria, this would lead to

consideration of cost functions like

Cost(/) = a WHmax(~) + 6 ACf + y (n Degree(/)) + S Imbalance(/)
where a, /3, y and 6 are weighted values, Degree(/) shows the value of degree of Boolean
function and Imbalance(/) shows the difference of number of zero's of Boolean function

from balanced Boolean function.

32

4.2 -Simulated Annealing Algorithm for Boolean function

An example of application of simulated annealing can be shown in cryptography

for construction of Boolean function with desirable properties. To obtain Boolean

function with optimum tradeoff in properties, optimization of a cost function has to be

done. It becomes exhaustive to search Boolean function with optimum value of cost

function because of large no. of states of Boolean functions. Simulated annealing is one

of the guided search method used as a solution of this problem. This method used to

construct Boolean function is described below.

The simulated annealing algorithm is shown in Figure 4.1[1,6]. Consider a

function f(S) is varying with state S. Let search starts at some initial state S = So. We

define state S - by storing outputs of Boolean function in an array. There is a control

parameter T known as "synthetic temperature". There is another parameter J known as

State Selecting Parameter. For each value of J, we choose the new state N(S) from the

neighborhood of previous state S and we move a number MIL (Moves in Inner Loop) of

moves to new states. The change in value, a(f(Y) f(S)), of f is calculated. If it improves

the value of AS) (i.e., if (5 < 0 for a minimization problem) then a move to that state is

taken (S = Y); if not, then it is taken with some probability. The probability acceptance

has been done by generating a random value U(0,1) and performing the indicated

comparison in Figure 4.1. The algorithm terminates when the stopping criterion is met.

The common stopping criteria is met when some maximum number MaxIL (Maximum

number of Inner Loop) of consecutive unproductive inner loops have been executed. In

between measurement of desirable properties has also been done and stored at each state

S. The basic simulated annealing algorithm has proven remarkably effective over a range

of problems [6].

S=So
J=Jo
Repeat
I
for(inti=0;i<MIL;i++)

{
Select YEN(S)
6 =. Y) —.A(S)
if (6 < 0) then

33

S=Y
else

Generate U= U(0, 1)
if (U <exp(-6/T)) then S = Y

}
J=.I+MIL
}
Until stopping criterion is met

Fig. 4.1 Basic Simulated Annealing for Minimization Problems

403 Simulated Annealing and Hill climbing

Search has been conducted for both balanced and nonbalanced Boolean function.

For balanced Boolean function, a valid move simply swaps two dissimilar vector

elements and so preserves the balancedness of Boolean function. In formal terms, we can

define the neighborhood of a function f (x) as follows. The function g(x) is in the

neighborhood of f (x) if for two inputs xl and x2, g(x1) = f(x1) + 1 and g(x2)

f (x2) + 1. The approach is as follows:

1. Use an annealing-based search to minimize the value of cost function. Let the best

solution produced during the search be f a(x).

2. Hill-climb from fsa,(x) with respect to nonlinearity or autocorrelation or algebraic

immunity (we shall term these the Non-Linearity Targeted (NLT) and Auto-Correlation

Targeted (ACT) respectively) to produce the final solution fsahc(x).

3. Measure the nonlinearity, autocorrelation, algebraic degree and algebraic immunity

Of fsahc (x)
"Stopping Criteria" of Simulated annealing method can be used for targeting

cryptographic properties [1,6].

34

Chapter 5

RESULTS AND DISCUSSION

The following properties of Boolean function have been targeted in our search:
> nonlinearity

> autocorrelation

> algebraic immunity

Following heuristic methods have been used for search:
(i) Hill climbing method.

(ii) Simulated Annealing method.

(iii) Simulated Annealing and hill climbing

Search has been conducted for both balanced and nonbalanced Boolean functions. The
search programme is written in C language. In this program, we have defined the state S

of an n-variable Boolean function by storing the truth table outputs of the Boolean

function in an 2" element array. For example, for a 5 variable Boolean function, the state

can be stored as (01100101010001100010100011000111) in the form of an array.

The starting Boolean function has been taken with initial state So. This state has

been chosen randomly by taking random runs of 0's and l's. Consider an n-variable

Boolean. function with state So = (0011....1010). We calculate the properties of Boolean

function at state So. To choose the neighbor state, we randomly select two positions. Xi

and x2, 1 S (xi, x2) < 2", in the array and change the value of Boolean function at those

positions (i.e. if `0' then change to `1' and if `1' then change to `0'). Let the state

obtained after the change be S1. Next, we calculate properties at state S1. Following the

same procedure as above, we obtain states S2, S3, and so on and test these for the
Boolean properties.

To ensure that all successive states correspond to balanced Boolean functions, we

chose states by simply testing all pairs (xi; x2) such that the values at position xi and x2

are not equal i.e. f(x j) /=f(x2).

35

5.1 Search Results for Hill Climbing Method

Hill climbing method has been described in section 3.2. Let us assume that

present state is Si. We calculate properties of Boolean function at state Si. Next, we select

Si in the neighbor of State Si and calculate the properties at state S. If the targeted

property improves with the change of state then, state S3 is stored and used as the present

state. If the targeted property does not improve with the change of state then, state S3 is

not stored and previous state Si is used to search new state. This is continued till we reach

state Sf which achieves the target value of the property. The final state obtained by search

is stored in a file and corresponds to the desired Boolean function.

Higher values of the targeted property are obtained with a compromise in other

properties. For example, for an 8-variable Boolean function, we get a maximum

nonlinearity of 114, with autocorrelation of 56 and algebraic degree of 1, whereas much

lower autocorrelation (24) and higher algebraic degree (8) values may be obtained by

sacrificing nonlinearity.

5.1.1 Results for Nonlinearity Targeted (NLT) Search

In this method, we search for Boolean functions with higher nonlinearity. A target

value of nonlinearity is set and the search proceeds till this value is achieved. Table 5.1

shows the best values of nonlinearity obtained using NLT without consideration of

balancedness. The best values of nonlinearity obtained for balanced Boolean function are

shown in Table 5.2. Table 5.2 also compares the results for balanced Boolean function

reported by other authors. We observe that other authors have obtained significantly

better results than us for n> 8. The possible reason can be the use of starting Boolean

function with proper nonlinearity or use of other techniques or exhaustive search.

n 5 6 7 8 9 10 11 12

nl 12 26 54 114 234 481 972 1976

nl stands for nonlinearity

Table 5.1 Best values of Nonlinearity obtained using NLT

36

n 5 6 7 8 9 10 11 12
Dobertin"s
Con jecture 18

26 116 492 2010

Genetic
Algorithms[31]

12 26 56 116 236 484 980 1976

Clark[6] 12 26 56 116 238 486 984 1992
Our Results 12 24 54 114 234 481 972 1974

Table 5.2 Comparing the Nonlinearity of balanced Boolean functions

5.1.2 Results for Autocorrelation Targeted (ACT) Search

In this method, we search for Boolean functions with lower autocorrelation. A

target value for autocorrelation is set and the search proceeds till this value is achieved.

Table 5.3 shows the best values of autocorrelation obtained using ACT without

considering balancedness. Table 5.4 shows best values of autocorrelation obtained in our

search for balanced Boolean functions and compares the results with those of [30] and

[17].

n 5 6 7 8 9 10 11 12

ac 8 16 18 24 40 56 88 132
ac stands for autocorrelation

Table 5.3 Best values of auto correlation obtained using ACT

n 5 6 7. 8 9 10 11 12

Zhang 	and
Zheng[30]

8 16 16 .24 32 48 64 96

Maitra
Construction [17]

8 16 16 24 32 40 64 80

Maitra Conjecture
17

16 24 40 80

Clark[6] 8 16 16 16 40 56 88 128

Our Results 8 16 18 24 42 62 94 140

Table 5.4 Comparing the Autocorrelation of balanced Boolean functions

37

We observe that our results are much worse than those of others for n> 8. The
possible reason can be use of starting Boolean function with proper autocorrelation or use
of other techniques or exhaustive search.

5.2 Search Results for Simulated Annealing Method

In this method, we perform the search by varying X and R parameters of cost
function of Equation 4.1. Table 5.5 shows X and R values used together with the
parameters of the annealing algorithm (section 4.2). MIL is the number of Moves in Inner

Loop. MaxIL represents the Maximum number of Inner Loops used for the search. The

search proceeds as follows. At each value of J, the state selecting parameter, we select the

new state Sj from the neighbor of previous state Si. The properties of Boolean function

are measured at the end of each inner loop and stored in a file. Some results among these

stored results are selected. The best values of autocorrelation, nonlinearity and algebraic

immunity obtained for Boolean functions with the corresponding values of X and R is

shown in Tables 5.6, 5.7 and 5.8.

n X Range

(min 	max)

R values MIL MaxIL

5 (-10—+10) 3.0 50-100 400

6 (-10—*10) 2.5, 3.0 50-100 300-500

7 (-10—*15) 2.5, 3.0 100-200 200-300

8 (-16—+ 16) 2.0, 2.5, 3.0 100-200 200-300

9 (-16--20) 2.0, 2.5, 3.0 100-200 200-300

10 (-20--32) 2.0, 2.5, 3.0 50-100 200-300

11 (-20-*40) 2.0, 2.5, 3.0 50-100 100-200

12 (-30—+64) 2.0, 3.0 50-100 100-200

Table 5.5 Search Parameters used

38

n 5 	6 	7 	8 	9 	10 	11 	12

nl 12 	26 	56 	116 	234 	480 	970 	1990

(X,R) (10,3) (10,3) 	(15,2.5) 	(16,2.5) 	(20,3) 	(25,2.5) 	(30,2.5) 	(35, 3)

nl stands for nonlinearity

Table 5.6 Best values of nonlinearity obtained for Boolean functions

n 5 	6 	7 	.8 	9 	10 	11 	12

ac 8 	16 	18 	22 	42 	58 	94 	134.

(X,R) (10,3) 	(10,3) 	(12,3) 	(14,3) 	(20,2.5) 	(30,3) 	(25,2.5) 	(30,2.5)

ac stands for autocorrelation

Table 5.7 Best-values of autocorrelation obtained for Boolean function

n 5 	6 	7 	8 	9 	10 	11 	12

ai 3 	3 	4 	4 	5 	5 	6 	6

(X,R) (10,3) 	(10,3) 	(12,3) 	(16,2.5) (20,2.5) 	(30,3) 	(25,2.5) 	(30,2.5)

(5,2.5) 	(8,2) 	(15,2) 	(14,3) 	(15,2) 	(25,2) 	(30,3) 	(36,3)

ai stands for algebraic immunity

Table 5.8 Best values of algebraic immunity obtained for Boolean function

It may be observed that it is possible to get the same values of algebraic immunity

for different sets of values of X and R. But it is not true for nonlinearity or

autocorrelation. The possible reason might be that algebraic immunity is independent of

X and R parameters.
Table 5.9 and 5.10 show the best values of nonlinearity and autocorrelation

obtained in our search for balanced Boolean functions alongwith a comparison with the

results reported by other authors. It is apparent from Table 5.9 that for n < 8, our search

results has the same nonlinearity as those of others results while the autocorrelation

results are also nearby same. But for n > 8, other authors have obtained significantly

39

better results than us. The possible reason can be use of starting Boolean function with

proper value of property or use of other techniques or exhaustive search.

n 5 6 7 8 .9 10 11 12
Dobertin's
Con' ecture 18

26 116 492 2010

Genetic
Al orithms 31

12 26 56 116 236 484 980 1976

Clark[6] 12 26 56 116 238 486 984 1992
Our Results 12 26 56 116 234 474 970 1974

Table 5.9 Comparing the Nonlinearity of balanced Boolean functions

n 5 6 7 8 9 10 11 12
Zhang and Zheng[30] 8 16 16 24 32 48 64 96
Maitra
Construction 17]

8 16 16 24 32 40 64 80

Maitra Conjecture[17] 16 24 40 80
Clark[6] 8 16 16 16 40 56 88 128
Our Results 8 16 18 24 42 58 94 134

Table 5.10 Comparing the Autocorrelation of balanced Boolean functions

5.3 Search Results for Simulated Annealing and Hill Climbing Method

This method has been described in section 4.3. Consider Fig. 4.1 of Simulated

Annealing algorithm. In this algorithm, properties of Boolean function are calculated at

the end of each inner loop and "Stopping Criteria" is used for targeting values of

,properties.

Clark [6] has not considered algebraic immunity as a constraint for search of

Boolean function. Clark has considered only nonlinearity and autocorrelation as

constraints for search of Boolean function. We have searched for Boolean functions with

highest achievable algebraic immunity and for Boolean functions with tradeoff among

nonlinearity, autocorrelation and algebraic immunity. The best results of Boolean

function obtained during search with tradeoff among properties are shown in Table 5.11.

(5,3,12,8,3) balanced Boolean function is the best achievable 5-variable Boolean
function, where quadruplet (n, d, nl, ac, ai) represents n variable Boolean function with
algebraic degree d, nonlinearity nl, autocorrelation ac and algebraic immunity ai. This
Boolean function has highest achievable nonlinearity (12), lowest achievable

autocorrelation (8), and highest achievable algebraic immunity (3) and is balanced also.

However, it has a lower algebraic degree of 3, compared to the maximum possible value

of 4 for a 5-variable balanced Boolean function. For n < 8 variables, we are getting better

Boolean function than for n> 8 variables. Some Boolean functions of Table 5.12 are
given in Appendix.

(5,3,12,8,3) (6, 5,24,16,3) (7,6, 54,18,3) (8,7,110,40,4)
(9,8,232,59,4) (10,10,479,80,5) (11,9,970,110,6) (12,11,1974,176,6)

where quadruplet (n, d, nl, ac, ai) represents n variable Boolean function with al degree
d, nonlinearity nl, autocorrelation ac and algebraic immunity ai.

Table 5.11 Best values (n, d, nl, ac, ai) with a tradeoff among nonlinearity,
autocorrelation and algebraic immunity

5.3.1 Results for Nonlinearity Targeted (NLT) Search
In this method, we search for Boolean functions with higher nonlinearity. Table

5.12 shows the results obtained using NLT and a comparison with results of [6] and [7]

are shown in Table 5.13. These results are obtained by considering the tradeoff among

nonlinearity, autocorrelation and algebraic degree. We observe that some of our results

are same as those of other authors and one of them' is better than other author's results.

This might be because of collective use of simulated annealing and hill climbing method.

Boolean function (5,4,12,8) is better than what both [6] and [7] report.

(5,3,12,8) 	 (6,4,26,16) 	(7,6, 56,28) 	(8,1,118,62)
(5,4,12,8) 	 (6,5,26,16) 	 (8,7,112, 37)
(9,8,234,64) 	(10,9,481,80) 	(11,9,970,110) 	(12,11,1974,176)
(9,8,232,59)

where quadruplet (n, d, nl, ac) represents n variable Boolean function with degree d,
nonlinearity n and autocorrelation ac.

Table 5.12 Results using NLT (Nonlinearity Targeted)

41

J.A. (5,3,12,8) (6,5,26,16) (7, 6, 56, 16) (8,7,116,24)
Clark[6] (5,4,12,16) (8,5,112,16)

(9,8,238,40) (10,9,486,72) (11,9,984,96) (12,11,1974,176)
(10,9,484,64) (11,10,982,96) (12,10,1990,144)

Multiobje (5, 3, 12, 8) (6, 5, 26, 16) (7,5,56,16) (8,7,116,24)
ctive (5, 4, 12, 16) (7,6,54,16) (8,5,112,16)

Approach (5, 4, 10 8)
[7]
Our (5,3,12, 8) (6,5,26,16) (7,6,56,28) (8,1,118,62)

Results (5,4,12, 8) (6,5,24,16) (7,6,54,18) (8,7,112,3 7)
(9,8,234,64) (10,9,481,80) (11,9,970,110) (12,11,1974,176)
(9,8,232,59) (12,11,1972,176)

where quadruplet (n, d, nl, ac) represents n variable Boolean function with degree d,
nonlinearity n and autocorrelation ac.

Table 5.13 Comparison of results using NLT (Nonlinearity Targeted) with a tradeoff
among nonlinearity, autocorrelation and algebraic degree.

5.3.2 Results for Autocorrelation Targeted (ACT) Search
In this method, we search for Boolean functions with lower autocorrelation. Table

5.14 shows the results obtained by targeting autocorrelation. For n < 7, we are getting best
results obtained in known literature with a tradeoff among algebraic degree,

autocorrelation and nonlinearity. Table 5.15 shows the comparison of our results those of

[6] and [7] using ACT. These results are obtained by considering the tradeoff among

nonlinearity, autocorrelation and algebraic degree. We can observe from Table 5.15 that
for n <7, our results are better than other results.

	

(5,3,12,8) 	 (6,5,24,16) 	 (7,6,54,18) 	(8,7,112,32)

	

(5,4,12,8) 	 (8,7,112,37)

	

(9,8,232,59) 	 (10,9,479,71) 	(11,9,970,110) (12,11,1974,176)

where quadruplet (n, d, nI, ac) represents n variable Boolean function with degree d,
nonlinearity n and autocorrelation ac.

Table 5.14 Results using ACT (Autocorrelation Targeted)

42

J.A. (5,3,12,8) (6,5,26,16) (7, 6, 56, 16) (8,7,116,24)
Clark[6]

(5,4,12,16) (8,5,112,16)

(9,8,238,40) (10,9,484,56) (11,10,982,88) (12,11,1986,128)

Multiobje- (5,3,12, 8) (6,5,26,16) (7,5,56,16) (8,7,116,24)
-ctive

Approach (5,4,10,8) (7,6,54,16) (8,5,112,16)

[7]
Our (5,3,12,8) (6,5,26,16) (7,6,54,18) (8,7,112,32)

Results
(5,4,12,8) (6,5,24,16) (8,7,112,37)

(9,8,232,59) (10,9,479,71) (11,9,970,110) (12,11,1960,142)

where quadruplet (n, d, nl, ac) represents n variable Boolean function with degree d,

nonlinearity n and autocorrelation ac.

Table 5.15 Comparison of results using ACT (Autocorrelation Targeted) with a tradeoff
among nonlinearity, autocorrelation and algebraic degree.

5.3.3 Results for Algebraic Immunity Targeted (AIT) Search

In this method, algebraic immunity of Boolean function has been targeted. Table

5.16 shows the results obtained by targeting algebraic immunity. It is apparent from

Table 5.16 that we have obtained maximum achievable algebraic immunity of (zl for n-

variable Boolean function. Some Boolean functions obtained during search using NLT

and ACT also have good algebraic immunity.

n 5 6 7 8 9 10 11 12

ai 3 3 4 4 5 5 6 6

ai stands for algebraic immunity

Table 5.16 Best values obtained by targeting algebraic immunity

43

Chapter 6

CONCLUSION

Cryptography needs ways to find good Boolean functions so that ciphers can resist

cryptanalytic attack. The main properties required to resist cryptanalytic attack are high
nonlinearity, low autocorrelation and high algebraic immunity. The dissertation work has

focused on study of properties of Boolean function and construction of Boolean function
by heuristic approach for crypto-systems.

Heuristic Search is a simple search technique. Heuristic Search can be used to

solve -exhaustive search problems. In this dissertation work, heuristic approach has been

used for search of Boolean functions with tradeoff among nonlinearity, autocorrelation

and algebraic immunity. We have attained some results better than other techniques like
evolutionary multiobjective approach [7], direct construction [4,5] and exhaustive. search.

The Boolean functions (5,3,12,8,3) and (6,5,24,16,3) obtained by heuristic search are

unachievable to the best of my knowledge in known literature. We have got some results

better than Clark[6] results in lower variables.

The range of properties addressed shows that heuristic search is a flexible
framework for Boolean function investigation.

6.1 Future Work
Here, we come up with some proposals to continue the investigation performed in

this dissertation study.

> We get good results for n < 8 variable Boolean functions. But the limitations of

the techniques become apparent when one attempts to generate functions with

nine variables and above. So, there is a need to find better cost function for n > 9.

44

> The cost function considered in this dissertation does not asssumed algebraic

immunity and algebraic degree. So, one has to determine general relationship

between nonlinearity and algebraic immunity and evolve better cost function.

Other criteria which have not dealt within this work include:

• Correlation immunity (An n-variable Boolean function is m-th order correlation

immune if there is no change in probability distribution of its output when any of

its m inputs is kept constant)

45

REFERENCES

[1] J.A. Clark, "Metaheuristic Search as a Cryptological Tool", Ph.D. Thesis, University
of York, UK, Dec. 2001.

[2] W. Stallings, "Cryptography and network security: principles and practice", 4th
Edition , Prentice Hall, 2006.

[3] K.C. Gupta, "Cryptographic and combinational properties of Boolean functions and

S-boxes", Ph. D. thesis, Indian Statistical Institute, India, 2004.

[4] T. Siegenthaler, "Correlation-immunity of nonlinear combining functions for

cryptographic applications", IEEE Transactions on Information Theory, Vol. IT-30,
pp.776-780, September, 1984.

[5] C. Carlet, "On secondary construction of resilient function and bent functions", In

Progress in Computer Science and Applied Logic, Vol.23, pp. 3-28, Birkhauser-Verlag,
2004.

[6] J.A. Clark, J.L. Jacob, S. Stepney, S. Maitra, and W. Millan, `Evolving Boolean

Functions Satisfying Multiple Criteria'; Lecture Notes in Computer Science, Vol.2551,
pp. 246-259, 2002.

[7] Heman Aguirre, Hiroyuki Okazaki and Yasushi Fuwa, "An Evolutionary

Multiobjective Approach to Design Highly Non-linear Boolean Functions", Proceedings

of the 9th annual conference on Genetic and evolutionary computation, pp. 749-756,

July, 2007, London, England.

[8] S. Kirkpatrick, Jr.C.D. Gelatt, and M.P. Vecchi, "Optimization by Simulated

Annealing". Science, Vol. 220, pp. 671-680, May 1983.

[9] W. Millan, A. Clark and E. Dawson, "Boolean Function Design using Hill climbing

Methods", Lecture Notes in Computer Science, Vol.1587, pp. 1-11, Springer-Verlag,

1999.

it

[10] M. Lobanov, "Tight Bound Between Nonlinearity and Algebraic Immunity",
[Online]. Available: http://eprint.iacr.oro/

[11] E. Elsheh, A. BenHamza and A. Youssef, "On the nonlinearity profile of
cryptographic Boolean functions", Journal of Universal Computer Science, Vol. 4, Issue
No. 4, pp. 705-717, 1998.

[12] S.Lin, D.J. Costello, "Error Control Coding", Englewood Cliffs, New Jersey, 1983.

[13] P.E. Dunne, "The Complexity of Boolean Networks", A.P.I.C. Studies in Data
Processing No. 29, Academic Press, 1988.

[14] S.W. Golomb, "Shift Register Sequences". San Francisco: Holden-Day, 1967.

[15] G. Xiao and J.L. Massey, "A spectral characterization of correlation-immune
combining functions", IEEE Trans. On Information Theory, Vol. IT -34, pp. 569-571.
1988.

[16] F.J.M. Williams and N.J.A. Sloane, "The Theory of Error Correcting Codes", North

Holland Publishing Company, Amsterdam, 1977.

[17] S. Maitra, "Highly nonlinear balanced Boolean functions with very good

autocorrelation property", In Workshop on Coding and Cryptography - WCC, Electronic
Notes in Discrete Mathematics, Vol. 6, Elsevier Science, Paris, January, 2001.

[18] H: Dobbertin, "Construction of bent functions and balanced functions with high

nonlinearity", Lecture Notes in Computer Science, Vol. 1008, pp. 6.1-74, Springer-

Verlag, 1994.

119] N.T. Courtois, J. Pieprzyk, "Cryptanalysis of Block Ciphers with Overdefined

Systems of Equations", Lecture Notes in Computer Science, Vol.2501, pp. 267-287,

Springer-Verlag, 2002.

[20] C.E. Shannon, "Communication theory of secrecy systems," Bell Syst. Tech. J., Vol.
28, pp. 656-715, 1949.

47

[21] W. Meier, .E. Pasalic, and C. Carlet, "Algebraic Attacks and Decomposition of

Boolean Functions", Lecture Notes in Computer Science, Vol. 3027, pp. 474-491.
Springer Verlag, 2004.

[22] N.T. Courtois and W. Meier, "Algebraic Attacks on Stream Ciphers with Linear

Feedback", Lecture Notes in Computer Science, Vol. 2656, pp. 345-359, Springer

Verlag, 2003.

[23] C. Carlet, D.K. Dalai, K.C. Gupta, and S. Maitra, "Algebraic Immunity for

Cryptographically Significant Boolean Functions: Analysis and Construction", IEEE

Transactions on Information Theory, Vol. 52, pp. 3105-3121, July, 2006.

[24], J.A. Clark and J.L. Jacob, "Two-Stage Optimisation in the Design of Boolean

Functions", Lecture Notes in Computer Science, Vol. 1841, pp. 242-254. Springer

Verlag.. 2000

[25] P. Sarkar, S. Maitra, "Construction of Nonlinear Boolean Functions with Important

Cryptographic Properties", Lecture Notes in Computer Science, Vol. 1807, pp. 485-506.

Springer Verlag. 2003.

[26] F. Glover and M. Laguna, "Tabu Search", Kluwer, Norwell, MA, 1997.

[27] S. Russell, P. Norvig, "Artificial Intelligence: A Modem Approach", 2nd Edition,

Prentice Hall Series in Artificial Intelligence, 2003.

[28] W. Millan, A. Clark and E. Dawson, "Smart Hill Climbing Finds Better Boolean

Functions", In Workshop on Selected Areas in Cryptology, , Workshop Record, pp. 50-63,

1997.

[29] O.S. Rothaus, "On Bent Functions", Journal of Combinatorial Theory: Series A,

Vol. 20, pp. 300-305, 1976.

[30] X-M. Zhang and Y. Zheng, "GAC — the criterion for global avalanche characteristics

of cryptographic functions", Journal of Universal Computer Science, Vol.1, Issue No.5,

pp. 316-333, 1995.

48

[31] W. Millan, A. Clark and E. Dawson, "Heuristic Design of Cryptographically Strong

Balanced Boolean Functions", Lecture Notes in Computer Science, Vol. 1403, pp. 489-
499. Springer Verlag. 1998.

APPENDIX

1. (5,3,12,8,3) Boolean function

The best result obtained in 5 variable Boolean function with optimum

compromise in cryptographic criteria is given below:

00101110001011011001001101011100

This Boolean function is balanced also.

Algebraic degree: 3

Nonlinearity: 12

Autocorrelation: 8

Algebraic Immunity: 3

2. (6,5,24,16,3) Boolean function

The best result obtained in 6 variable Boolean function with optimum

compromise in cryptographic criteria is given below:

000100011001011101 10100010100000101001010010101000101010100l 1100

Algebraic degree: 5

Nonlinearity: 24

Autocorrelation: 16

Algebraic Immunity: 3

3. (7,6,54,18,3) Boolean function

The best result obtained in 7 variable Boolean function with optimum

compromise in cryptographic criteria is given below:

01000010010010111111001110010100 1000 1010010011101011101011101 101 10100111

00000111 10010100100000l00100101010100000001 1011101000111

Algebraic degree: 6

Nonlinearity: 54

Autocorrelation: 18

Algebraic Immunity: 3

4. (8,7,110,40,4) Boolean function

The best result obtained in 8 variable Boolean function with optimum

compromise in cryptographic criteria is given below:

01001101110001010010101100011101001001111101000101101010011101111000000011010

10101111011000101100111111110000001111000111011001000100000001101010100101110

10100001100011110011110001001101000100100011111110010001101101011001110011001

0011011001010010001101011

This Boolean function is balanced also.

Algebraic degree: 7

Nonlinearity: 110

Autocorrelation: 40

Algebraic Immunity: 4

5. (9,8,232,59,4) Boolean function

The best result obtained in 9 variable Boolean function with optimum

compromise in cryptographic criteria is given below:

011101111010110010100010111110011010100100110000001111011000111101111100

110111011 101010000101010l0111 10100010101 1111011110100000000101l 101011100

001111010000111111110011000000010001100000011011010000100010011001110000

101010101 1010100l00000010100010010000001001000001010010101 11000001011011

51

100101000101000100010010110111011000110000111001111010111100100100010000

011001111101010110101001000101000010000001101001011010011100110001111100

11000001011100101110010101000110001011001001011100111 1000101001011001010

11100001

Algebraic degree: 8

Nonlinearity: 232

Autocorrelation: 59

Algebraic Immunity: 4

6. (10,10,479,80,5) Boolean function
The best result obtained in 10 variable Boolean function with optimum

compromise in cryptographic criteria is given below:

011000100011000001010110100001000101101111010110111001110000111011111010
110001001010111101111011001000100101111110011001110101110110100100010111
110000000101011 100010100100I1001 1110010101101111000100001100000110000000
1110000001011000000100000111000101 101010101 10100010001110111010001111111
110110110000011001000100011110001111 100010010010100001000010010l01 111000
110001011100111110011011100011011111001100111101111100111010010001000111
010010010111100011111111010111111010001001100111100100110110110010011001
101000011111111110101011100110100101101101011101110101100101001011010110
100011010110010101100000001111111100101011001110011101001011010011011100
000101011101010110100110011100111111001000111100101110000011001111100001
010010110010001100100011000110110010011111111010110010101011011010011010
001111111110111100111110101001100000010001100011100111010111000100001100
1001110000111i1101001001011101011001101010101111011100100100001111011011-
100111010011110011011000100010001010101001011110101111010000101111010011
100100111001110101011000

Algebraic degree: 10

Nonlinearity: 479

Autocorrelation: 80

Algebraic Immunity: 5

52

	Title
	Abstract
	Chapter 1
	Chapter 2
	Chapter 3
	Chapter 4
	Chapter 5
	Chapter 6
	References
	Untitled

