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ABSTRACT 

In conventional cryptography, Boolean functions play a major role in the construction of 

symmetric key primitives such as block ciphers and stream ciphers. Various criteria, 

including balancedness, nonlinearity, autocorrelation, algebraic degree and algebraic 

immunity are used for measuring the cryptographic strength of Boolean function. Block 

and stream ciphers are made from Boolean functions that usually require a compromise 

between several conflicting cryptographic criteria. This dissertation work focuses on 

study of various properties of Boolean functions and construction of Boolean function by. 

heuristic approach with 'a compromise between several conflicting cryptographic criteria 

(nonlinearity, autocorrelation, algebraic immunity). 

A Boolean function, when used in cryptosystems, should be designed properly to 

resist algebraic attacks. Algebraic Immunity is a measure of the capability of a Boolean 

function to withstand algebraic attacks. So far, the Boolean functions were designed 

keeping in mind the other cryptographic criteria, and then it has been checked whether it 

can provide good algebraic immunity too. In this dissertation, algebraic immunity has 

chosen as one of the criterion along with nonlinearity and autocorrelation for search and 

Boolean functions with highest possible algebraic immunity of [n2]  have been constructed. 

Results with optimum tradeoff among properties like nonlinearity, algebraic, 

degree, algebraic immunity and autocorrelation have been obtained, that remained as an 

open problem. For the first time, Boolean function of 5' variables with nonlinearity of 12, 

autocorrelation value 8, algebraic immunity 3 and algebraic degree 3 has been 

constructed. 
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Chapter 1.  

INTRODUCTION 

Digital communication is increasingly replacing face to face contact and direct physical 

exchange in transactions. Internet shopping is now high profile, many major payments in 

shops and supermarkets are made by credit or debit card, electronic cash (e.g. Mondex) is 

now emerging on the horizon, auctions are being held over the World Wide Web and a

•  great deal of day-to-day communication is effected by email. The non-digital world has 

developed mechanisms to ensure interactions take place in an appropriate manner. We 

send confidential messages by special courier, we have passports against which our faces 

may be checked, we sign documents in the presence of esteemed members of society who 

may subsequently confirm any agreements made if there is a dispute. Stockbrokers 

routinely have their telephone calls taped so that disputes about what was agreed at some 

point may be resolved. The notes in one's wallet may be held to the light to reveal 

watermarks and other indicators of authenticity. Moving to the digital world does not 

relieve us of providing similar guarantees. We cannot see the people with whom we are 

interacting and consequently issues of trust must arise. Since communications media are 

generally shared between many parties, many of whom we may have little reason to trust, 

we must cater for the possible subversion of our communications in transit. We need to 

develop means of transacting that ensure legitimate expectations are met * despite a 

potentially very hostile environment that is the medium. There will also be limits to how 

far legitimate parties in transactions will be trusted [1]. 

1.1 Cryptology 
Cryptology is at the heart of providing such guarantees. Cryptology is the uniting 

name for a broad scientific field in which one studies the mathematical techniques of 

designing, analysis and attacking information security services. Cryptology consists of 
two subfields; cryptography and cryptanalysis. Cryptography is the field in which one 
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key 

study techniques for providing security services and cryptanalysis is the field in which 

one studies the techniques for attacking the security services [2]. Providing security 

services is not an easy task. 

The very nature of security makes more difficult the task at hand. Network 

security measures are needed to protect data during transmission. A model for network 

security is shown in figure 1.1. 

Plain text input 	 Plain text 
output 

Fig.1.1 Model for Network Security. 

Whereas most disciplines solve tasks unimpeded by external agents, the 

cryptographer must develop techniques that are resilient to perverse, malicious and 

potentially well funded attempts to subvert his or her efforts (i.e. break the system). In 

contrast, although genetic algorithms researcher might well compete with colleagues for 

computation time, it is unlikely he will face malicious attempts to subvert his techniques 

in action. 

Cryptographers are, in a sense, concerned with creating problems that are 

artificially hard, so hard that an enemy will not be able to solve them. Suppose an 

Embassy encrypts diplomatic communications using a particular cryptosystem and a 

particular secret key K. Without knowledge of the secret key information it should be 

impractical for an enemy to determine the contents of any message sent within its useful 

life. Having intercepted the encrypted text (cipher text) in transit, an enemy could decrypt 

with each possible secret key in turn (generally referred to as a `brute force' attack) to 

determine the one actually used for encryption (the correct key will produce the original 

and presumably intelligible text). If the secret key space is of sufficient size, this attack is 

infeasible. The problem is just too hard to solve in this way. Brute force, however, is the 
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least sophisticated of attacks. There is an armory of devices available to the professional 

cryptanalyst and a successful cryptosystem must resist each. A large keyspace may.. 

protect against brute force attack, but is no guarantee that a system cannot be broken by 

more sophisticated means. In practice, cryptosystem designers aim to make breaking 

systems using known types of attack infeasible (and in some cases provably so), aim to 

reduce features that might form the basis of an attack, or else rely on past experience to 

justify unproven assumptions (e.g. the difficulty of factoring)[1]. 

Cryptographic techniques are typically divided into two generic types: symmetric- 

key and public-key. Symmetric key technique is the technique in which decryption key 

can be derived from encryption key and vice-versa. Public key technique is the technique 

in which encryption key is public but decryption key is private to receiver and decryption 

key cannot be derived from encryption key [2]. 

Symmetric key systems [3] are broadly divided into two classes:- 

1. Stream Ciphers. 

2. Block Ciphers. 

In Stream Cipher Cryptography, a pseudo random sequence of bits of length 

equal to message length is generated. This sequence is then bitwise XOR ed with 

message sequence and then message is transmitted. At the receiving end deciphering is 

done by generating same pseudo random sequence and again XOR-ing the cipher bits 

with random bits. The seed (initial start) of pseudo random generator is obtained from 

secret key. 

I LFSRI I 
Plain Text 

Boolean 
LFSR2 	

Function 	
+ 	Cipher Text 

Key Stream 

ILFSR I 

Fig. 1.2 Model for LFSR Based Encryption Scheme 
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Linear Feedback Shift registers (LFSR's) are important building blocks in stream 

ciphers. A non- linear combiner model of stream ciphers, where the outputs of several 

. linear feedback shift registers (LFSR's) are combined by using a nonlinear Boolean 

function to produce a key stream, is shown in Fig. 1.2. To resist the cipher text from 

attacks, different design criteria have been proposed for both the LFSR's and the 

combining Boolean functions. Balancedness, high algebraic degree, a high nonlinearity, 

correlation immunity, good autocorrelation and high algebraic immunity are main criteria 

for design of Boolean function. A Boolean function used in stream cipher should be 

balanced, which is required for pseudo randomness of key stream. To resist from divide 

and conquer attack, the Boolean function should be correlation immune of high order [4]. 

In Block Cipher Cryptography, message is divided in blocks and each block is 

separately enciphered with same key stream and transmitted. Most of the block ciphers 

use S-boxes for introducing non-linearity. 

Different construction methods of Boolean functions are 

➢ Primary constructions, which produce functions directly. 

> Secondary constructions which give new functions from previously 

-designed ones. Some examples are: Direct sums of functions, 

Siegenthaler's construction [4], Tarannikov's elementary construction [5], 

construction by heuristic search [6] and Multiobjective Random bit 

climber [7]. 

Multiobjective Random bit climber [7] used to find Boolean functions satisfying multiple 

criteria. 

Heuristic search is concerned with the development and application of general 

purpose optimization techniques and has been successfully used across many scientific, 

engineering and commercial domains. 

1.2 Motivation for Heuristic Search 

Mathematics remains the most powerful tool in science and engineering. A vast 

number of techniques have been developed to solve problems posed. These techniques 

often provide exact answers. There is, for example, a formula for the roots of a quadratic 
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equation. Still it is difficult to get solution of many practical problems. The well-known 

Traveling Salesman Problem (TSP) is a good example: 

Consider a set of N cities, indexed 1......N. Each pair (i, j ) of 

cities is connected by a road of length d13  . A salesman lives in 

town 1. Starting from town 1, the salesman must carry out a tour, 

visiting • each town in turn, and then return home. In what order 

should he visit the cities to give the shortest round tour [1]? 

There is no known efficient method for finding a minimal length tour of a large 

number of cities. Enumeration over all tours would reveal the answer eventually but since 

there are  (N Z i)!  possible tours this approach rapidly becomes infeasible. In practice, an 

optimal solution to such problems is not expected. Rather, the solution space is navigated 

in a practically effective way to reach excellent, but not necessarily optimal, solutions. 

This is sensible since such problems are often concerned with efficient use of resources. 

In practice, a planner is not asked `What is the shortest length tour?' He or she is asked 

`What is the best tour you can suggest within a reasonable time?' 

To construct Boolean functions achieving good properties (nonlinearity, algebraic 

degree, autocorrelation, algebraic immunity) simultaneously from big sample space (e.g. 

for 8 variable Boolean function, there is 22 8  = 264 sample points) is a difficult problem. 

It is becoming exhaustive to construct a Boolean function with good tradeoff between 

properties with construction methods like direct construction of Boolean functions, 

Siegenthaler's construction [4], Tarannikov's elementary construction [5], etc. So, 

heuristic search technique is used also for construction of Boolean function. But it does 

not guarantee for the optimal solution. 

Exchanging guarantees of optimality for computational tractability in this way is 

at the heart of heuristic search. Often drawing loose inspiration from natural processes, 

researchers have created combinatorial search techniques that can produce effective 

answers where other techniques fail. Techniques such as simulated annealing [8] (based 

loosely on the cooling process of molten metals) and Hill climbing method [9] have seen 

effective application across a huge range of disciplines. 
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1.3 Problem statement 
Construction of Boolean function with desired properties is not an easy task. The 

objective of this dissertation is to construct Boolean functions by heuristic approach 
while achieving following good properties: 

> nonlinearity 

> algebraic immunity 

> autocorrelation 

Specifically, the following tasks have been undertaken: 

i) Representation of Boolean function (ANF, WHT) 

ii) Review of heuristic approach 

iii) Construction of Boolean function by hill climbing method, simulated annealing and 

combination of both methods. 

1.4 	Organization of Report 
Including this introductory chapter, the report is organized in six chapters. 

Chapter 2 provides the essential definitions and different representations of Boolean 

functions. The essential properties of Boolean functions and their significance are 

included in the same chapter. 

Chapter 3 provides an overview of heuristic search. The uses of hill 

climbing and simulated annealing algorithms for construction of Boolean function have 

been discussed in detail in this chapter 3. Chapter 4 introduces the concept of cost 

functions and outlines their importance. The details of cost functions used in the present 

work are elaborated and optimization techniques used to minimize these cost functions 

have been explained in detail in this chapter. 

Chapter 5 contains results of the search for "good" Boolean functions 

having good properties(algebraic degree, nonlinearity, autocorrelation and algebraic 

immunity) with satisfactory tradeoff and compares the results with some of the earlier 

results of other authors. Chapter 6 concludes the report and includes scope of future work 

in the field. 
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Chapter 2 

DEFINITIONS AND PRELIMINARIES 

To resist cipher form attacks, it is necessary for a Boolean function to satisfy some 

bounds on its cryptographic properties. It is difficult to obtain a Boolean function 

satisfying all the cryptographic properties. There is a tradeoff between some of the 

properties like Nonlinearity and Algebraic Immunity [10, 11]. Some of these properties 

can be described in terms of Walsh Hadamard Transform, Auto-Correlation transform 
and Hamming weight. Hamming Weight of a Boolean function, which is a measure of its 

difference from null space, is defined as number of ones in the function. It is denoted by 
wt (9. The Hamming distance between two n-variable Boolean functions f and g is 

defined as size of the set f xc F? /f (x) # g(x) } . It is denoted by d (f, g)[12]. 

In this chapter several well known related representations and cryptographically 

desirable properties of Boolean functions are described. First, the truth, table is defined 

and some simple operations are discussed. Next, Algebraic Normal Form ANF is 

considered in detail. The Walsh Hadamard transform (WHT) provides a unique 

representation of Boolean functions that is vital to cryptographic work since it expresses 

a Boolean function in terms of its correlation to all linear functions. It is presented along 

with some important theorems that describe an essential tradeoff between cryptographic 

properties. 

The Galois field of order 2 will be denoted by F2  and Galois field of order 2" will 

be denoted by F2,, and the corresponding vector space byF2 . Addition operator over FZ  

is denoted by +. A Boolean function is essentially a function which maps one or more 

binary input variables to one binary output variable. We write this as a mapping from a 

vector x = (x1, xz... x„) to a single output f, where x;  e F2 , 1 <_ i< n.. 

f: F2 	Fa 
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For n input variables there exists 2n  possible combination of inputs and since each input 

represents a particular monomial, so there will be 2°  monomials. Therefore there exist 

22  distinct Boolean functions and we denote set of all Boolean functions by /3„ 

2.1 Truth Table Representation 

The binary truth table (TT) of a single output Boolean function f(x): FZ —* Fz  is 

a list of the outputs for every possible combination of input variables. Explicit storage of 

a binary truth table requires 2n  bits with the input ordering taken to be the natural 

lexicographical ordering of binary n-tuples. A Boolean function may be implemented in 

RAM as a look up table (LUT) if enough memory is available. Alternatively a Boolean 

function can be implemented using combinational logic: a network of logic gates that 

generates the output of the function corresponding to the input values. The complexity of 

a Boolean function can be defined as the minimum number of gates required to construct 

the circuit. Any circuit representation can be expressed as a formula using the basic 

operations of AND, OR, XOR and inversion (complementation) [3]. 

From the truth table of representation, we can write Boolean function in sum of 

products form. In the following example (Table 2.1), we have three inputs xj, x2  and x3 

and output f. For m variable Boolean function, the table will consist of m columns for 

input, one column for output and 2m  rows for enumeration of input variables. 

x1 x2 x3 f 
0 0 0 0 

0 0 1 1 

0 1 0 0 

0 1 1 0 

1 0 0 0 

1 0 1 1 

1 1 0 1 

1 1 1 1 

Table 2.1 The Truth table of the Boolean function f (xl, x2, x3 ) = x1  x2  + x2  x3  + x j. 
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It is often useful to consider Boolean functions over the set { 1,-1 } rather than {0, 1) and 

we introduce a "dash" notation to distinguish these forms. The state S of a Boolean 

function can be defined by storing the truth table outputs of Boolean function in an array 

For example, consider a 3 variable Boolean function of Table 2.1, and then the state S 

will be-of Boolean function will be (01000111). Then, this Boolean function will have 2 

states. 

xl x2 X3 f f 

0 0 0 0 1 

0 0 1 1• -1 

0 1 0 0 1 

0 1 1 0 1 

1 0 0 0 1 

1 0 1 1 -1 

1 1 0 1 -1 

1 1 1 1 -1 

Table 2.2 Polarity Truth table Representation of Boolean Functionf 

The polarity truth table (Table 2.2),f (x) of Boolean function f(x) is given by 

f(x) = (-1) f(x) = 1 - 2f(x) 	 (2.1) 

The binary truth table can be obtained from the polarity truth table by 

.f(x) = 1- '(x) 
	

(2.2) 

The state S of a Boolean function can be defined by storing the truth table outputs of 

Boolean function in an array. For example, consider a 5 variable Boolean function, the 

state S can be stored as (01100101010001100010100011000111) in the form of an array. 

2.2 Algebraic Normal Form 
The algebraic normal transform was introduced by Zhegalkin in 1927[13]. An n-

variable Boolean function,f(xl ... , x„) can be considered to be a multivariate polynomial 
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over F2 . This polynomial can be expressed as a sum of products representation of all 

distinct r-th order products (0 <_ r _< n) of the variables. More precisely, f (xl , ... , x„) can 

be written as 

n 

AXI, ... , xn) = Y Au 	x~ ' 	, A. E F2 , u = (u1. .........,u). 	(2.3) 
ueF2 	1=1 

where, u corresponds to an n-tuple. 

This representation of f is called the algebraic normal form (ANF) of f The algebraic 
degree of f, denoted by deg(f), is the maximal value of the Hamming weight of u such 

that Au # 0. There is a one-to-one correspondence between the truth table and the ANF 

via so called inversion formulae. 

Example: f(xl, x2, x3, x4, xS) = x1 + x2 + x2x4 + x3x4 + (x2 + x3 + x1x4 + x2x4 + x3x4) x5 

This function can be written asf(xi, x2 , x3, x4, xs) = 	(~5 1 x~ i) U£ F2  

The set of x values for which Ax) = 1(1(x) = 0) is called the on-set (off-set), and is 

denoted by S1(/) (So (f)). The ANF off is fully specified by its on-set using the following 
expansion, 

.f (x1, .....,xn) - — ZrFsi(f)(~i°1(xi. + zi + 1)) , 	z = (ri... zn) 	(2.4) 

The Algebraic Normal Form (ANF) of a Boolean function is an XOR sum of 

AND products. There are 2n possible combinations of n input variables for f, so there are 

2" distinct product terms and every XOR sum is a formula for the corresponding Boolean 

function. The number of different ANFs is equal to the number of different truth tables 

and they are in one-to- one correspondence. It is therefore a unique representation: ANFf 

= ANFg if and only if f(x) = g(x) for all x E F. . The ANF can be stored as 2° binary 

coefficients A,, of the terms in the XOR sum. 

The functions of degree at most one are called as affine functions. The affine 

functions with constant term equal to zero are called as linear functions. The set of all 
affine functions of n variables is denoted by An 

Consider two n-1 variable Boolean functions f! and f2 over F2 then f = fl f f2 is an 

n- variable Boolean function over F. is concatenation of f! and f2 [6]. It means that the 

10 



upper half part of the truth table of f correspond to f1 and the lower half to f2. The ANF of 
f is then given by 

f(xl,  ... , x„) = (1+x)f (x1, .. - , xn-1)  +Xn  f2(xl, ... , xn-1). 	 (2.5) 

2.3 Walsh-Hadamard Transform 
The Walsh-Hadamard transform is an orthogonal transform like the discrete 

Fourier transform. S. Golomb was apparently the first to consider the Walsh-Hadamard 

transform of Boolean functions [14, 15]. The Walsh Hadamard transform (WHT) is one 

of the important tools required for the analysis of Boolean functions. The WHT of an n-

variable function J(xl, ... , xn ) is the real-valued function over Fa whose value at every a 

e FZ is defined as 

f (a) = ExcF; (-1)f 	Y 	 (2.6) 

where a.x = ajx1+a2x2+...........+a„xn  is a normal inner product in F. . 

The WHT expresses a Boolean function uniquely in terms of its correlation with all linear 

functions. This is also helpful in calculation of nonlinearity of Boolean functions. 

Example: Given a truth table we can calculate Walsh Transform. Consider a function 
f(x1, x2, x3) shown in Table 2.3 

X3  X2 x1 f 
0 .0 0 1 
0 0 1 1 
0 1 0 0 
0 1 1 1 
1 0 0 1 
1 0 1 0 
1 1 0 0 
1 1 1 0 

Table 2.3 Truth table of f(xl, X2, x3) 

Consider a = (a3i a2,a1) and x = (x3,x2,x1) 

(i) For a = (0,0,0) , a.x = 0. 
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X3 x2 x1 f ./ (x) _ (.4)1(x )  a.x = 0 (-1)a.x (-1)f(x)+ a.x 

0 0 0 1 -1 0 1 -1 
0 0 1 1 -1 0 1 -1 
0 1 0 0 1 0 1 1 
0 1 1 1 -1 0 1 -1 
1 0 0 1 -1 0 1 -1 
1 0 1 0 1 0 1 1 
1 1 0 0 .1 0 1 1 
1 1 1 0 1 0 1 1 

Therefore, f(000) _ (-1)+(-1)+1+(-1)+(-1)+1+1+1 = 0 
(ii) For a = (0,0,1), a.x =xj 

X3 X2  xl f f(x) = (-1) x  a.x = x1 (-1)ax (-1)f  (x)+ a.x 

0 0 0 1 -1 0 1 -1 
0 0 1 1 -1 1 -1 1 
0 1 0 0 1 0 1 1 
0 1 1 1 -1 1 -1 1 
1 0 0 1 -1 0 1 -1 
1 0 1 0 1 1 -1 -1 
1 1 0 0 1 0 1 1 
1 1 1 0 1 1 -1 -1 

Therefore, f (001) = (-1)+1+1+1+(-1)+(-1)+1+(_1) = 0. 
(iii) For a = (0,1,0) , ax = xz  

x3 x2 x1 I .f'(x) = (-1) x a.x =x2 (-1)a.x (-1)f(x)+ a.x 

0 0 0 1. -1 0 1 -1 
0 0 1 1 -1 0 1 -1 
0 1 0 0 1 1 -1 -1 
0 1 1 1 -1 1 -1 1 
1 0 0 1 -1 0 1 -1 
1 0 1 0 .1 0 1 1 
1 1 0 0 1 1 -1 -1 
1 1 1 0 1 1 -1 -1 

Therefore, f(O10) _ (-1)+(-1)+(-1)+1+(-1)+1+(-1)+(-1) _ -4 
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(iv) For a = (0,1,1) , a.x = xl+ X2 

x3 x2 x1 f f(x) = (-1) x  a.x = xl+x2 (-1y.x (-1) f(x)+ a.x 

J  0 0 0 1 -1 0 1 -1 
0 0 1 1 -1 1 -1. -1 
0 1 0 0 1 1 -1 1 
0 1 1 1 -1 0 1 -1 
1 0 0 1 -1 0 1 -1 
1 0 1 0 1 1 -1 -1 
1 1 0 0 1 1 •-1 -1 
1 1 1 0 1 0 1 1 

Therefore, f (011) = (-1)+(-1 )+(1)+(-1)+(-1)+(-1)+(-1)+(1) = -4 

(v) For a = (1,0,0) , a.x = x3  

x3 x2 x1 f f(x) = 
(1)J(X) 

 a.x = x3  (-1)a.x (1)f 	a.x 

0 0 0 1 -1 0 1 -1 
0 0 1 1 -1 0 1 -1 
0 1 0 0 1 0 1 1 
0 1 1 1 -1 0 1 -1 
1 0 0 1 -1 1 -1 1 
1 0 1 0 1 1 -1 -1 
1 1 0 0 1 1 -1 -1 
1 1 1 0 1 1 -1 -1 

Therefore, f(100) = (-1)+(-1)+(1)+(-1)+(1)+(-1)+(-1)+(-1-) = -4 
(vi) Fora= (1,0,1), a.x= x3+xJ 

x3 x2 x1 f f(x) = (-1) x  a.x = x3+ xl (-1)a.x (1)f 	a.x 

0 0 0 1 -1 0 1 J  -1 
0 0 1 1 -1 1 -1 1 
0 1 0 0 1 0 1 1 
0 1 1 1 -1 1 -1 1 
1 0 0 1 -1 1 -1 1 
1 0 1 0 1 0 1 1 
1 1 0 0 1 1 -1 -1 
1 1 10 1 0 1 1 

Therefore, f (101) _ (-1)+1+1+1+1+1+(-1)+1 = 4 
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(vii) For a = (1,1,0) , a.x = x3+ x2  

xj x2  xl .f .f(x) = (-1) x  a.x =x3+x2 (-1)a.x (-1)  f(x)+a.x 

0 0 0 1 -1 0 1 -1 
0 0 1 1 -1 0 1 -1 
0 1 0 0 1 1 -1 -1 
0 1 1 1 -1 1 -1 1 
1 0 0 1 -1 1 -1 1 
1 0 1 0 1 1 -1 -1 
1 1 0 0 1 0 1 1 
1 1 1 0 1 0 1 1 

Therefore, f(110) = (-1)+(-1)+(-1)+1+1+(-1)+1+1 = 0 

(viii) For a = (1,1,1), a.x = x3+x2+xI  

X3 X2  x1 f J (x) = (-1) x  a.x= x3+ x2+ xl (-1)a.x ( -1)  f(x)+ a.x 

0 0 0 1 -1 0 1 -1 
0 0 1 1 -1 1 -1 -1 
0 1 0 0 1 1 -1 1 
0 1 1 1 -1 0 1 -1 
1 0 0 1 -1 1 -1 1 
1 0 1 0 1 0 1 1 
1 1 0 0 1 0 1 1 
1 1 1 0 1 1 -1 -1 

Therefore, f (111) = (-1)+(-1)+1+(-1)+1+1+1+(-1) = 0 

In this way, we can calculate the WHT off(x) as shown below in table 

a3  a2  a1  f 
0 0 0 0 
0 0 1 0 
0 1 0 -4 
0 1 1 -4 
1 0 0 -4 
1 0 1 4 
1 1 0 0 
1 1 1 0 

Table 2.4 Walsh Hadamard Transform off 
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Walsh Hadamard Transform is calculated by Fast WT algorithm [16]. 

Consider a function f(xi, x2, x3) shown in Table 2.3. Table 2.3 has been reproduced for 

convenience. 

X3  X2  x1  f 
0 0 0 1 
0 .o 1 1 
0 1 0 0 
0 1 1 1 
1 0 0 1 
1 0 1 0 
1 1 0 0 
1 1 1 0 

First, we generate the polarity truth table (Fig 2.1) of f(x1 , x2, x3). Next, each pair 

of elements is modified by an "in-phase butterfly"; that is, the values, in each pair produce 

two results which replace the original pair, wherever they were originally located. The 

left result will be the two values added; and the right will be the first less second. That is, 

(a', b') = (a + b, a — b) where (a, b) is original pair. So for the values (-1, 1) we get (-

1+1, -1-1) or (0, -2). We start pairing out adjacent elements, then every other element, 

then every 4th  element, then every eighth element and so on until the correct pairing is 

impossible, as shown in Figure 2.1. 

Original 	1 	1 	0 	1 	1 	0 	0 	0 

First 	-1 	-1 	1 	-1 	-1 	1 	1 	1 x ><><x 
Second 	-2 	0 	0 	0 	-2 	2 	0 

Third 	-2 	2 	-2 	-2 	2 	-2 	-2 	-2 

Final 	0—  0—  -4 -4 =4 —4 0 —0 

Fig.2.1 An 8-element Fast Walsh Transform. 
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The WHT off is shown in Table 2.4. Table 2.4 has been reproduced here for 

convenience. 

x1  X2 X3 f 
0 0 0 0 
0 0 1 0 
0 1 0 -4 
0 1 1 -4 
1 0 0 -4 
1 0 1 4 
1 1 0 0 
1 1 1 0 

Theorem 2.1( Parseval ) Let f(xj , .....,x„) be a real valued function with domain the vector 
space Fz with Walsh Hadamard Transform f(a) where aeF? , then[15] 

E F: f 2(a)  = 22n 
2 

(2.7) 

2.4 Balancedness 
A Boolean function is said to be balanced if its truth table has equal number of l's 

and 0's. In other words, iff is an n-variable Boolean function then it will be balanced if 

wt(f) =2"-1 	 (2.11) 

From the definition of Walsh Hadamard Transform, the sufficient and necessary 

condition for a function to be balanced is [3] 

f(0)=0 	 (2.12) 

where 0= (0,0,0.......0) in F. . 

2.5 Auto-Correlation Function 
Consider a n-variable Boolean function ixl;  . . x„) . Then auto-correlation 

function will be defined as 

rf(S) ='Exf'(x) f'(x + s) 	 (2.8) 

where f'(x) = (-1)f(x)  and x and s range over F;. 

16 



Therefore tf(s) will also in Fz .The maximum value of auto correlation is denoted as ACf 

.i.e. ACf = maxs*o  IZx  f '(x) f '(x + s) I[3,9]. For every Boolean function we have rf(0) 

=2" since (f (x))2  = 1. 

For balanced Boolean function, Maitra conjecture [17] for even n provides the 

bound on autocorrelation ACB(n) by relation 

ACB(n) = 22 + ACB(2) 

where ACB(n) represents autocorrelation bound for n variable Boolean function. 

Example: Given a truth table we can calculate Auto-Correlation Transform. Consider a 

function f(xj, x2, x3) shown in Table 2.5. 

X3  X2  Xl f f 
0 0 0 1 -1 
0 0 1 1 -1 
0 1 0 0 1 
0 1 1 1 -1 
1 0 0 1 -1 
1 0 1 0 1 

1 0 0 1 
1 1 1 0 1 

Table 2.5 Truth table of f(xl , x2, x3) 

Consider s = (s3,s2,s1) and x=(x3,x2,xl) 

(i) For s=(0,0,0) 

X3 X2 Xl f(X) f(X) f(X+S) f(X)J (x+S) 
o o 0 1 -1 -1 1 
0 0 1 1 -1 -1 1 
0 1 0 0 1 1 1 
0 1 1 1 -1 -1 1 
1 0 0 1 -1 -1 1 
1 0 1 0 1 1 1 
1 1 0 0 1 1 1 
1 1, 1 0 1 1 1 
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Therefore, r" (s) = 1+1+1+1+1+1+1+1 8. 

(ii) For s=(0,0,1) 

X3 X2 xl f(x) f(x) f(x+s) f(x) f(x+s) 
0 0 0 1 -1 -1 1 
0 0 1 1 -1 -1 1 
0 1 0• 0 1 .-1 -1 
0 1 1 1 -1 1 -1 
1 0 0 1 -1 1 -1 
1 0 1 0 1 -1 -1 
1 1 0 0 1 -1 -1 
1 1 1 0 1 1 1 

Therefore, r f(s) = 1+1+(-1)+(-1 )+(-1)+(-1)+(-1)+1 = -2. 

(iii) For s=(0,1,0) 

X3 X2 Xl A) f(x) f(x+s). f(x) f(x+S) 

0 0 0 1 -1 1 -1 
0 0 1 1 -1 -1 1 
0 1 0 0 1 -1 -1 
0 1 1 1 -1 . 	-1 1 
1 0 0 1 -1 1 -1 
1 0 1 0 1 -1 -1 
1 1 0 0 1 -1 -1 
1 1 1 0 1 1 1 

Therefore, rf(s) _ (-1)+1+(-1)+1+(-1)+(-1)+(-1)+1 = -2. 
(iv) For s=(0,1,1) 

X3 X2 X1 f(x) f(x) f(x+s) f(x) f(x+s) 
0 0 0 1 -1 -1 1 
0 0 1 1 -1 1 -1 
0 1 0 0 1 -1 -1 
0 1 1 1 -1 -1 1 
1 0 0 1 -1 1 -1 
1 0 1 0 1 -1 -1 
1 1 0 0 1 1 1 
1 1 1 0 1 -1 -1 

Therefore, f-(s) =1+(-1)+(-1)+1+(-1)+(-1)+1+(-1) = -2. 
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(v) For s=(1,0,0) 

X3 X2 XI J(x) f(x) ✓ (X+S) f (x) J (X +S) 

0 0 0 1 -1 -1 1 
0 0 1 1 -1 • 1 -1 
0 1 0 0 1 1 1 
0 1 1 1 -1 1 -1 
1 0 0 1 -1 -1 1 
1 0 1 0 1 -1 -1 
1 1 0 0 1 1 1 
1 1 1 0 1 -1 -1 

Therefore, f(s) =1+(-1)+1+(-1)+1+(-1)+fl+(-1) = 0. 
(vi) For s=(1,0,1) 

X3 X2 xl f(x) f(x) f(x+s) f(x)f(x+s) 
0 0 0 1 -1 1 -1 
0 0 1 1 -1 -1 1 
0 1 0 0 1 1 1 
0 1 1 1 -1 -1 1 
1 0 0 1 -1 -1 1 
1 0 1 0 1 -1 -1 
1 1 0 0 1 -1 -1 
1 1 1 0 1 -1 1 

Therefore, ff(s) =(-1)+1+1+1+1+(-1)+(-1)+1 = 2. 
(vii) For s=(1,1,0) 

X3 X2 xl f(x) f(x) f(x+s) f (x) f(x+s) 

0 0 0 1 -1 -1 1 
0 0 1 1 -1 1 -1 
0 1 0 0 1 -1 -1 
0 1 1 1 -1 1 -1 
1 0 0 1 -1 1 -1 
1 0 1 0 1 -1 -1 
1 1 0 0 1 -1 -1 
1 1 1 0 1 -1 -1 

Therefore, f f(s) =1+(-1)+(-1)+(-1)+(-1)+(-1)+(-1)+(-1) = 6. 
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(viii) For s=(1,1,1) 

X3 X2 xl f(x) f(x) f(x+s) f(x)f(x+s) 
0 0 0 1 -1 1 -1 

0 0 1 1 -1 1 -1 

0 1 0 0 1 1 1 
0 1 1 1 -1 -1 1 
1 0 0 1 -1 -1 1 
1 0 1 0 1 1 1 
1 1 0 0 1 -1 -1 
1 1 1 0 1 -1 -1 

Therefore, ff(s) =(-1)+(-1)+1+1+1+1+(-1)+(-1) = 0. 

So, for s ~ 0, we have 
ACf= maxsI f (s) I = 6. 

2.6 Non Linearity 
The nonlinearity of a Boolean function is defined as the minimum Hamming 

distance to any affine function [3,10]. Consider An be a set of all n-variable affine 

functions. Then Nonlinearity nl () of Boolean function f is defined as 

Nf= nl (f) = mingCAn d (f, g) 
	

(2.9) 

It is sometimes written in terms of WHT forms as 

Nf = nl (f) = 2"-1 —' maxacFs lf (a)I 	 (2.10) 

To maximize the nonlinearity, maxaEF„ If (a)I should be minimum and the minimum of 
z 

maxaeF, If (a) I is 2 1̀12 i.e. for maximum nonlinearity f (a) = ± 2' 2. So, the maximum 

achievable value for nonlinearity for n-variable Boolean function is 2n-1-2(n-2y2 It is 

achievable only for even n. The functions achieving this value are called as bent 

functions [10]. 

For balanced Boolean functions, Dobertin's conjecture [18] states that on an even 
n 

number n of inputs, the highest achievable nonlinearity satisfies N1(n) = 2n .1 — 2Z + 

N1(Z), where N1(n) represents nonlinearity of n-variable Boolean function. 





High nonlinearity is required to resist affine approximations of Boolean function. 

If we are able to fix some inputs of n-variable Boolean function then function can be 

approximated by affine function [3,10,11]. 

Linear cryptanalysis is a very powerful cryptanalytic method for stream ciphers. 

A function with low nonlinearity is prone to linear approximation attack. Linear 

approximation means approximating the combining function by a linear. function. Thus 

for symmetric cipher applications we need functions with high nonlinearity [19]. 

2.7 Algebraic Immunity 
Very recently, a new attack that uses cleverly over defined systems of 

multivariate nonlinear equations to recover the secret key has gained a lot of attention 

(the idea of using such systems comes from Shannon , but the improvement in the 

efficiency of the method is recent)[20]. It is known as algebraic attack. Given a Boolean 

function on variables, different kinds of scenarios related to low-degree multiples of have 

been studied in [21,22]. Consider f(x) and g(x) be two n-variable Boolean functions such 

that f *g=0 or (1+J) *g=0 where '*1  is multiplication of GF(2) elements.. Then g(x) is 

called as annihilator of f(x). The core of the analysis is to find minimum (or low) degree 
annihilators of f(x) or (1+f(x)). To mount the algebraic attack, one needs only low-degree 

annihilators [21,22]. The immunity of Boolean functions against algebraic attacks is 

called as algebraic immunity. The highest possible algebraic immunity is 

121[10,21,22,23]. 

It has been observed that a Boolean function used as a cryptographic primitive, 

and interpreted as a multivariate polynomial over F2 , should not have low degree 

multiples obtained by multiplication with low degree nonzero functions. The functions 

with low nonlinearity are more prone to attack. Functions having low-degree 

subfunctions are weak in terms of algebraic immunity. Some functions. are symmetric, so 

they are at risk of attacks. Carlet et. al. present a construction method to generate Boolean 

functions on n variables with highest possible algebraic immunity [2][23]. 
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2.8 Algebraic degree 
From Equation no. 2.3, the algebraic normal form (ANF) of j(xl, ... , x„) can 

written as 
n 

... , x„) _ 	2U fl x; 	~u E F2 , 	u = (u,, .........,u„). 
ueF2 	1=1 

where, u corresponds to an n-tuple. 

The algebraic. degree of f denoted by deg(f), is the maximal value of the Hamming 

weight of u such that lu ~ 0. 

High algebraic degree resists certain attacks and is therefore desirable in both 

stream and block ciphers. In the stream cipher model, the combining function f is so 

chosen that it increases the linear complexity of the resulting key stream. High algebraic 

degree provides high linear complexity [22]. 
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Chapter 3 

HILL CLIMBING TECHNIQUE FOR HEURISTIC 

SEARCH 

The basic idea of heuristic search is that, rather than trying all possible search paths, we 

try and focus on paths that seem to be getting us nearer our goal state. Of course, we 

generally can't be sure that we are really near our goal state - it could be that we will have 

to take some amazingly complicated and circuitous sequence of steps to get there. But we 

might be able to have a good guess. Heuristics are used to help us make that guess: 

There are very few applications of heuristic search techniques to modem-day 

cryptological design or analysis problems. This is a little surprising since the heuristic 

search and cryptology research communities seem, at a fundamental level, to share one 

major interest — solving computationally `hard' problems. This chapter provides a brief 

introduction to guided search techniques and use of hill climbing technique for search of 
Boolean function of cryptological use. 

301 Guided Search 

To resist ciphers from Cryptanalytic attack, we need to construct Boolean 

function with desirable properties. The main desirable properties are balancedness, high 

nonlinearity, low autocorrelation, high algebraic immunity. The tradeoffs between these 

have received a lot of attention in Boolean function literature [10,11,25]. The more 

criteria that have to be taken into account, the more difficult it is to construct Boolean 

function. In the past the main options for construction of Boolean functions were random 

generation and direct construction. Direct constructions can produce functions that are 

optimum with regard to the designed property, but they may be weak for other 

cryptographic properties. So, there exists a tradeoff between main criteria and 

determining the optimum compromise attainable is an open problem. Recent work has 
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moved to construction of Boolean function with the aspects of computer search. So, 

guided search techniques are one of the solutions to find Boolean function with optimum 

compromise in desirable properties. Some authors reported have good results with guided 

search [16,24]. Guided search have been defined below in brief. 

For some problems there may be no alternative to enumerative or sampling-based 

approaches. This is generally due to lack of (approximate) continuity in the function f(x). 

i.e. the value of f(x) at a. specific point x1  gives little exploitable information. Cryptology 

revels in lack of continuity. Indeed, certain cryptographic goodness criteria can be. 

thought of as discontinuity measures (e.g. for a 64-bit block cipher it might be required 

that keys which differ by a single bit should produce ciphertexts that differ on average by 

32 bits: small input changes can have radical output effects). Solutions (inputs to the cost 

functions) that are `near-by' or `close' will not give outputs that are radically different. 

Information gleaned from function evaluation will be used to influence the progress of 

the search. This is guided search. The notion of closeness can be formalized as a 

function. For a specific value .the set of all points that are in the immediate neighborhood 

can be defined by some function N(x): 

N: X—+ 2" 

Here the search moves through a series of points x3,x2,x3........xf „al with each point being 

in the neighborhood of the point which precedes it. At each point x„ the value of f(x) is 
evaluated for one or more points in N(x„) and the information used to determine whether 

the search should `move' to a particular point in that neighborhood. There are several 

strategies for selecting points in the neighborhood and deciding which move, if any, 

should be taken. Examples of this kind of strategies are Hill climb method [9], Simulated 

Annealing method [8], Genetic Algorithms (GA) [25], Tabu Search [26] and some local 

search methods. 

32 Gradient Search-Hill Climbing 

Gradient search methods sample or enumerate the values of f(x) in the 
neighborhood of the current solution xcu,,.. If the search moves only to a neighbor if it 
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improves the value of f(x)then the search is a form of `hill-climbing' or gradient ascent. If 

the neighborhood is huge then sampling may be carried out to find an improving move. 

Accepting a move that makes the greatest improvement gives rise to what is known as 

steepest ascent. If the search takes the first improving move it encounters, it is said to be 

a `greedy' gradient ascent. The terms gradient ascent and gradient descent are used 

depending on whether the problem at hand is couched as a maximization or a 

minimization problem. The problem with such techniques is obvious. If the search starts 

in the wrong place the result may be a local optimum [1]. 

The hill-climbing search algorithm is shown in Fig. 3.1 [27]. It is simply a loop 

that continually moves in the direction of increasing value-that is, uphill. It terminates 

when it reaches a "peak" where no neighbor has a higher value. The algorithm does not 

maintain a search tree, so the current node data structure need only record the state. Hill-

climbing does not look ahead beyond the immediate neighbors of the current state [27]. 

Function 11L-CLIMBING(problem) returns a state that is a local maximum 

inputs: problem, a problem 

local variables: current, a node 

neighbor, a node 

current f— MAKE NODE(INITIAL-STATE[problem]) 

loop do . 
neighbors a highest-valued successor of current. 

if VALUE[neighbor] S VALUE[current] then return STATE[current] 

currentE—neighbor 

Fig. 3.1 The hill-climbing search algorithm 

Hill climbing remains an important technique nevertheless sometimes one simply 

has a hill to climb. Furthermore, robust non-linear optimization techniques may get close 

to optimal solutions but use hill-climbing to carry out the very final stages of 

optimization efficiently [1]. Hill climbing is used in Artificial Intelligence, Business 

problems, Planted Bisection problems. 
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The hill climbing approach to Boolean function design was introduced by W. 

Milan et. al. in 1997 as a means of improving the nonlinearity of a given Boolean 

function by making well chosen alterations of one or two places of the truth table [9,28]. 
If AwHT(w)  represents the change in WHT value, then it is easy to show that any single 

truth table change causes IXwHT(w) e {-2,2) for all w. Similarly, any two truth table 

changes cause OwHT(W)  e {-4,0,4). By starting with a balanced function, we can hill 

climb to a more nonlinear balanced Boolean function. The approach did not make an 

alteration to the truth table unless the nonlinearity is improved by a change in WHT value 

[9,28]. This approach can also be used for improvement of autocorrelation and for both 

autocorrelation and nonlinearity. 

3.2.1 Non-linearity Targeted 

In this approach, the nonlinearity of Boolean function is targeted [9,28]. The truth 

table outputs of Boolean function are changed if the nonlinearity increases. Derivation of 

the rules for the change of two output values of Boolean function is given below. 

Consider a given Boolean function Ax) in polarity truth table formf(x). Now let 

the truth table output be complemented for two distinct inputs x1  and x2. We have g'(x,) = 

-f(x1 ) for i e { 1,2) and g'(x) =f(x) for other x. Now consider the WHT of g(x). 

9(w) = ExEFs (-1)9(x)+w.x 

= (-1)9(xl)+ W.xi  + (-1)9(x2)+ w.x2 + Ex#_ 1)9(x)+ w.x 

9'(x1)(-1)w.xi  +9'(x2)(-1)w.x2  +. Zx#{x1,x2)(-1)9(x)+w.x 

_ —f'(xi)(-1)w.xl  _f 1(x2)(-1)w.x2 +  

=—(f(xi)(-1Y w.xl  +f ' (x'2)(-1)w.x2
)+ EX#(X1,xz}(- 1)9(x)+W.x (3.1) 

The change in the WHT value for all w is 

A (w) = fl (w) — f (w) 	 (3.2) 

It follows directly that 

OWHT(w) = -2(f '(x1)(-1)w.x1  + f /(X2)(-1)w.x2) 	 (3.3) 

This result is used to directly update the WHT in each iteration of a 2-step hill 

climbing program. It is now a straightforward matter to determine the conditions required 

for the choice of two distinct inputs x1 and x2 to complement so that the WHT values 
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change as required. It is clear that the two truth table changes ensure tWJIT(W) e {--4,0,4}. 

This method can also be used for change of four distinct inputs [9,28]. 

3.2.2 Auto-Correlation Targeted 

Here, the autocorrelation of Boolean function is targeted [9,28]. If with the 

change of truth table outputs, autocorrelation decreases, then change is kept as such. 

Derivation of the rules for the change of two output values of Boolean function is given 

below. 

Consider changing a Boolean function, f(x) by complementing the output for two 

distinct inputs xi and x2, creating a function g(x)with autocorrelation given by: 

f(  s) _ > g' (x) g' (x + s) 
x 

= 29'(x1)9'(x1 + s) + 2g'(x2)9'(x2 + S) + 	I 	9'(x)9'(x + s) 
x * (xi,x2,xl +s,x2 +s} 

= — 2 f'(x1) f'(xi + s) — 2f '(x2) f'(x2 + s) + EX*(X1 2,Xl+S,X2+s} f'(x) f '(x + s) (3.4) 

For each s #0, the change in the value of autocorrelation is 

AC (S) = rg (s) — (s) 

—2f'(x1)9'(x1 + s) — 2f'(x2)9' (x2 + s) — 2f'(x1)f'(x1 + s) — 
2f'(x2)f'(x2 + S) 
	

(3.5) 

For x1 + x2 = s , we have, 

g'(x1 + s) = g'(x2 ) = —f'(x2 ) and g'(x2 + s) = g'(x1) = — f'(x1). 

In this case the formula for autocorrelation changes collapses to 

dAC(S = x1 + x2) = 0. 

In the remaining general case, we have 

dAC(s * x1 + x2) = —4f'(x1)f'(x1 + s) — 4f'(x2)f'(x2 + s) 
Noting that the pair (x1,x2) was chosen so that f(x1) * f (x2 ), we can determine that 

®AC(s) = —8 	f(x1) = f (xi + s) for i = { 1,2}, 

®AC() = +8 	f(x1) ~ f (xi + s) for i = { 1,2}, 

dAc(s) * —8 not both f(x1) = f (x1 + s) for i = { 1,2} and 
®Ac(s) # +8 a not both f(x1) ~ f (xi + s) for i = {l,2}. 
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If there is requirement for improvement of autocorrelation only and wish to 

maintain Hamming weight, then the truth table outputs for any pair (xi; x2) are 

complemented that satisfies all of the following conditions [28]: 

(1) f(xi) * f (x2) 

(ii) x1 + x2 * s and both f(x1) = f (x1 + s) for i = { 1,2}, for all {s : f (s) = ACmax } 
(iii) xl + x2 * s and both f (xL ) ~ f (xi + s) for i = { 1,2}, for all [s: r(s) _ ACmax } 
(iv) if xg + x2 * s then not both f(xi ) * f (xi + s) for i = { 1,2}, for all (s : f (s) _ 
ACmax — 8 ). 

(v) if x1 + x2 * s then not both f(x1) = f (xl + s) for t = { 1,2}, for all {s: r(s) 

—ACmax + 8}. 
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Chapter 4 

SIMULATED ANNEALING ALGORITHM.FOR 

HEURISTIC SERACH 

In 1983 Kirkpatrick et al.[8] proposed simulated annealing, a new search technique 

inspired by the cooling processes of molten metal. There is a deep and useful connection 

between statistical mechanics (the behavior of systems with many degrees of freedom in 

thermal equilibrium at a finite temperature) and multivariate or combinatorial 

optimization (finding the minimum of a given function depending on many parameters). 

The analogy with annealing in solids provides a method for optimization of the properties 

of very large and complex systems. This technique is a generic probabilistic heuristic 

technique, namely locates a good approximation to the global minimum of a 

given function in a large search space. 

4,1 Cost Function 

To use heuristic search we need an evaluation function/cost function that scores a 

node in the search tree according to how close to the target/goal state it seems to be. This 

will just be a guess, but it should still be useful. For example, for finding a route between 

two towns a possible evaluation function might be a "as the crow flies" distance between 

the town being considered and the target town. It may turn out that this does not 

accurately reflect the actual (by road) distance - maybe there aren't any good roads from 

this town to target town. However, it provides a quick way of guessing that helps in the 

search [1,24]. 

The general aim is to find optimal solutions to problems that are structured as a 

function of some decision variables, perhaps in the presence of some constraints [1]. 

These can be formulated as: 

Minimize f(x) with respect to x e X, subject to constraint elements of C. 
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The set X of all possible vectors x = (xi... x,) of decision variables will generally 

be referred to as the solution space for the search problem at hand. The set C represents 

the imposition of constraints. Searches may be restricted to consider only elements of C. 

Alternatively, the problem may be recast as `Minimize g(x) subject to x e X' where g(x) 

contains a component that punishes x outside C. Such values of x are said to be `priced 

out'. The function f (or g) is generally referred to as a cost function. When problems are 

similarly couched as maximization problems the term fitness function is used. There is 

complete freedom over which functions are used for the problem at hand. Experience 

shows that the choice of function is an important success factor in applying many search 

techniques. The best functions are those that give the best results when used. 

Unfortunately, it is difficult to predict in advance which functions will work best. 

Experimentation is the only solution to predict best cost function [1]. 

Solution vectors x may be designs (e.g. the truth table of a Boolean function used 

as a component in a cryptosystem) or analysis artifacts (e.g. a vector of 64 key bits sought 

by a cryptanalyst). To find them the designer or analyst is free to employ whatever 

techniques seem most suitable from the vast array available. Solution techniques span a 

range of sophistication. 

An example can be considered as construction of a Boolean function with 

desirable properties (balancedness, high nonlinearity, low autocorrelation). So, there is a 

need to make a cost function -(fitness function) considering desirable properties of 

Boolean function. Some of the well known cost functions used recently for construction 

of Boolean functions is discussed in subsections 4.1.1 and 4.1.2. 

4.1.1 Cost function for Nonlinearity 

In chapter 3, hill climbing method has been explained for construction of Boolean 

function with good cryptographic properties. In hill climbing method, we are targeting 

nonlinearity (NLT) to construct Boolean function. The objective function is taken as 

fitness function, i.e. the fitness of a function f on n input variables is given by 

fitness(/) = N1= nl (f) = 2n-1  — Z maxacF2  if (a) I 
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From above equation, to maximize nonlinearity, maxaEFr  1 f (a) I has to be minimized. 

So, maximization of nonlinearity can be viewed as minimization of maxaEF, If(a)I. 

(WHT). Therefore, the cost function is given by 

cost(/) = WHmax(t) = maxa€F1  if (a) I 

From Theorem 2.1 (Parseval's equation), 

2 

This relation constrains WHm  (fl = maxacFa  I f (a) I to be at least 2. This bound can only 

be achieved when, for each a, If (a)1 = 22. When some If (a) I are less than 22, then 

Parseval's Theorem ensures that some l f (a)I is greater than 2. Thus minimizing the 

spread of WHT seems to be a possible means for achieving good nonlinearity. For each 

a, 11(a)  I = 22 is achieved by bent function. But bent functions are not balanced, exist for 

only even number of input variables and also have zero autocorrelation [29]. Therefore, 

considering the minimization of spread of Walsh Hadamard Transform, a cost function 

can be 
n 

cost(f) = 	Fz 111(a) I — 2z (4.1) 

This cost function is a simple candidate for targeting nonlinearity and . autocorrelation. 

Functions having, I f (a) I = 22, for all a, must also have f (Q = 22. But, for balanced 

functions, f(Q) = 0 from Equation 2.12. So functions that achieve I f (a) I = 22, for each 

a, cannot be balanced. Thus, a new cost function for balanced Boolean function can be 
R 

cost(f) = Eae Fz I If (a) I — X I 	 (4.2) 

where X and R are variable parameters. It is difficult to predict the best values of X and R 

for Boolean functions that are balanced and those with odd number of variables. Some 

parametric flexibility is justified. With the help of parametric variations of X and R, one 

can make variations on cost functions and it has been shown by Clark et. al. [1, 6] that it 

is possible to get Boolean functions with desirable properties by making parametric 
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variations. Clark et. al. have taken X ranging from -16 to 30 and mostly R =3 in their 
search[1,6]. 

Nonlinearity and autocorrelation criteria can be handled by the above cost 

function. Taking into consideration of balancedness, starting function can be taken as 

balanced Boolean function, and algebraic degree and algebraic immunity are ignored. 

Simulated annealing algorithm is applied as an optimization technique on this cost 

function. Algebraic degree and algebraic immunity criteria can be considered in 

"Stopping Criteria" of Simulated Annealing algorithm. 

4.1.2 Cost function for Autocorrelation 

In hill climbing method, we are targeting autocorrelation (ACT) to construct 

Boolean function. In this case, the objective function is taken as cost function, i.e. the cost 
of a function f on n input variables is given by 

cost(/) =ACf=max.,*0IE. f'(x)f'(x+s)I 	 (4.3) 

Some modification in cost function related to autocorrelation has been done by Zhang 

and Zheng in 1995[30]. A new cost function known as the sum of squares measure of 

(considering all values of autocorrelation function rf (s)) has been introduced by Zhang 

and Zheng [30] 
2n—i 

of = I if (s)2 
s=o 

Constructions for both even and odd n are offered by Zhang and Zheng. 

A typical optimization approach to multi-criteria problems is to take a weighted 

sum of the individual cost functions. For the target criteria, this would lead to 

consideration of cost functions like 

Cost(/) = a WHmax(~) + 6 ACf + y (n Degree(/)) + S Imbalance(/) 
where a, /3, y and 6 are weighted values, Degree(/) shows the value of degree of Boolean 
function and Imbalance(/) shows the difference of number of zero's of Boolean function 

from balanced Boolean function. 
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4.2 -Simulated Annealing Algorithm for Boolean function 

An example of application of simulated annealing can be shown in cryptography 

for construction of Boolean function with desirable properties. To obtain Boolean 

function with optimum tradeoff in properties, optimization of a cost function has to be 

done. It becomes exhaustive to search Boolean function with optimum value of cost 

function because of large no. of states of Boolean functions. Simulated annealing is one 

of the guided search method used as a solution of this problem. This method used to 

construct Boolean function is described below. 

The simulated annealing algorithm is shown in Figure 4.1[1,6]. Consider a 

function f(S) is varying with state S. Let search starts at some initial state S = So. We 

define state S - by storing outputs of Boolean function in an array. There is a control 

parameter T known as "synthetic temperature". There is another parameter J known as 

State Selecting Parameter. For each value of J, we choose the new state N(S) from the 

neighborhood of previous state S and we move a number MIL (Moves in Inner Loop) of 

moves to new states. The change in value, a(f(Y) f(S) ), of f is calculated. If it improves 

the value of AS) (i.e., if (5 < 0 for a minimization problem) then a move to that state is 

taken (S = Y); if not, then it is taken with some probability. The probability acceptance 

has been done by generating a random value U(0,1) and performing the indicated 

comparison in Figure 4.1. The algorithm terminates when the stopping criterion is met. 

The common stopping criteria is met when some maximum number MaxIL (Maximum 

number of Inner Loop) of consecutive unproductive inner loops have been executed. In 

between measurement of desirable properties has also been done and stored at each state 

S. The basic simulated annealing algorithm has proven remarkably effective over a range 

of problems [6]. 

S=So  
J=Jo  
Repeat 
I 
for(inti=0;i<MIL;i++) 

{ 
Select YEN(S) 
6 =. Y) —.A(S) 
if (6 < 0) then 
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S=Y 
else 

Generate U= U(0, 1) 
if (U <exp(-6/T)) then S = Y 

} 
J=.I+MIL 
} 
Until stopping criterion is met 

Fig. 4.1 Basic Simulated Annealing for Minimization Problems 

403 Simulated Annealing and Hill climbing 

Search has been conducted for both balanced and nonbalanced Boolean function. 

For balanced Boolean function, a valid move simply swaps two dissimilar vector 

elements and so preserves the balancedness of Boolean function. In formal terms, we can 

define the neighborhood of a function f (x) as follows. The function g(x) is in the 

neighborhood of f (x) if for two inputs xl  and x2, g(x1) = f(x1) + 1 and g(x2) 

f (x2) + 1. The approach is as follows: 

1. Use an annealing-based search to minimize the value of cost function. Let the best 

solution produced during the search be f a(x). 

2. Hill-climb from fsa,(x) with respect to nonlinearity or autocorrelation or algebraic 

immunity (we shall term these the Non-Linearity Targeted (NLT) and Auto-Correlation 

Targeted (ACT) respectively) to produce the final solution fsahc(x). 

3. Measure the nonlinearity, autocorrelation, algebraic degree and algebraic immunity 

Of fsahc (x) 
"Stopping Criteria" of Simulated annealing method can be used for targeting 

cryptographic properties [1,6]. 
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Chapter 5 

RESULTS AND DISCUSSION 

The following properties of Boolean function have been targeted in our search: 
> nonlinearity 

> autocorrelation 

> algebraic immunity 

Following heuristic methods have been used for search: 
(i) Hill climbing method. 

(ii) Simulated Annealing method. 

(iii) Simulated Annealing and hill climbing 

Search has been conducted for both balanced and nonbalanced Boolean functions. The 
search programme is written in C language. In this program, we have defined the state S 

of an n-variable Boolean function by storing the truth table outputs of the Boolean 

function in an 2" element array. For example, for a 5 variable Boolean function, the state 

can be stored as (01100101010001100010100011000111) in the form of an array. 

The starting Boolean function has been taken with initial state So. This state has 

been chosen randomly by taking random runs of 0's and l's. Consider an n-variable 

Boolean. function with state So = (0011....1010). We calculate the properties of Boolean 

function at state So. To choose the neighbor state, we randomly select two positions. Xi 

and x2, 1 S (xi, x2) < 2", in the array and change the value of Boolean function at those 

positions (i.e. if `0' then change to `1' and if `1' then change to `0'). Let the state 

obtained after the change be S1. Next, we calculate properties at state S1. Following the 

same procedure as above, we obtain states S2, S3, .... and so on and test these for the 
Boolean properties. 

To ensure that all successive states correspond to balanced Boolean functions, we 

chose states by simply testing all pairs (xi; x2) such that the values at position xi  and x2  

are not equal i.e. f(x j) /=f(x2). 
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5.1 Search Results for Hill Climbing Method 

Hill climbing method has been described in section 3.2. Let us assume that 

present state is Si. We calculate properties of Boolean function at state Si. Next, we select 

Si in the neighbor of State Si and calculate the properties at state S. If the targeted 

property improves with the change of state then, state S3 is stored and used as the present 

state. If the targeted property does not improve with the change of state then, state S3 is 

not stored and previous state Si is used to search new state. This is continued till we reach 

state Sf which achieves the target value of the property. The final state obtained by search 

is stored in a file and corresponds to the desired Boolean function. 

Higher values of the targeted property are obtained with a compromise in other 

properties. For example, for an 8-variable Boolean function, we get a maximum 

nonlinearity of 114, with autocorrelation of 56 and algebraic degree of 1, whereas much 

lower autocorrelation (24) and higher algebraic degree (8) values may be obtained by 

sacrificing nonlinearity. 

5.1.1 Results for Nonlinearity Targeted (NLT) Search 

In this method, we search for Boolean functions with higher nonlinearity. A target 

value of nonlinearity is set and the search proceeds till this value is achieved. Table 5.1 

shows the best values of nonlinearity obtained using NLT without consideration of 

balancedness. The best values of nonlinearity obtained for balanced Boolean function are 

shown in Table 5.2. Table 5.2 also compares the results for balanced Boolean function 

reported by other authors. We observe that other authors have obtained significantly 

better results than us for n> 8. The possible reason can be the use of starting Boolean 

function with proper nonlinearity or use of other techniques or exhaustive search. 

n 5 6 7 8 9 10 11 12 

nl 12 26 54 114 234 481 972 1976 

nl stands for nonlinearity 

Table 5.1 Best values of Nonlinearity obtained using NLT 
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n 5 6 7 8 9 10 11 12 
Dobertin"s 
Con jecture 18 

26 116 492 2010 

Genetic 
Algorithms[31]  

12 26 56 116 236 484 980 1976 

Clark[6] 12 26 56 116 238 486 984 1992 
Our Results 12 24 54 114 234 481 972 1974 

Table 5.2 Comparing the Nonlinearity of balanced Boolean functions 

5.1.2 Results for Autocorrelation Targeted (ACT) Search 

In this method, we search for Boolean functions with lower autocorrelation. A 

target value for autocorrelation is set and the search proceeds till this value is achieved. 

Table 5.3 shows the best values of autocorrelation obtained using ACT without 

considering balancedness. Table 5.4 shows best values of autocorrelation obtained in our 

search for balanced Boolean functions and compares the results with those of [30] and 

[ 17]. 

n 5 6 7 8 9 10 11 12 

ac 8 16 18 24 40 56 88 132 
ac stands for autocorrelation 

Table 5.3 Best values of auto correlation obtained using ACT 

n 5 6 7. 8 9 10 11 12 

Zhang 	and 
Zheng[30] 

8 16 16 .24 32 48 64 96 

Maitra 
Construction [17]  

8 16 16 24 32 40 64 80 

Maitra Conjecture 
17 

16 24 40 80 

Clark[6] 8 16 16 16 40 56 88 128 

Our Results 8 16 18 24 42 62 94 140 

Table 5.4 Comparing the Autocorrelation of balanced Boolean functions 
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We observe that our results are much worse than those of others for n>  8. The 
possible reason can be use of starting Boolean function with proper autocorrelation or use 
of other techniques or exhaustive search. 

5.2 Search Results for Simulated Annealing Method 

In this method, we perform the search by varying X and R parameters of cost 
function of Equation 4.1. Table 5.5 shows X and R values used together with the 
parameters of the annealing algorithm (section 4.2). MIL is the number of Moves in Inner 

Loop. MaxIL represents the Maximum number of Inner Loops used for the search. The 

search proceeds as follows. At each value of J, the state selecting parameter, we select the 

new state Sj from the neighbor of previous state Si. The properties of Boolean function 

are measured at the end of each inner loop and stored in a file. Some results among these 

stored results are selected. The best values of autocorrelation, nonlinearity and algebraic 

immunity obtained for Boolean functions with the corresponding values of X and R is 

shown in Tables 5.6, 5.7 and 5.8. 

n X Range 

(min 	max) 

R values MIL MaxIL 

5 (-10—+10) 3.0 50-100 400 

6 (-10—*10) 2.5, 3.0 50-100 300-500 

7 (-10—*15) 2.5, 3.0 100-200 200-300 

8 (-16—+ 16) 2.0, 2.5, 3.0 100-200 200-300 

9 (-16--20) 2.0, 2.5, 3.0 100-200 200-300 

10 (-20--32) 2.0, 2.5, 3.0 50-100 200-300 

11 (-20-*40) 2.0, 2.5, 3.0 50-100 100-200 

12 (-30—+64) 2.0, 3.0 50-100 100-200 

Table 5.5 Search Parameters used 
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n 5 	6 	7 	8 	9 	10 	11 	12 

nl 12 	26 	56 	116 	234 	480 	970 	1990 

(X,R) (10,3) (10,3) 	(15,2.5) 	(16,2.5) 	(20,3) 	(25,2.5) 	(30,2.5) 	(35, 3) 

nl stands for nonlinearity 

Table 5.6 Best values of nonlinearity obtained for Boolean functions 

n 5 	6 	7 	.8 	9 	10 	11 	12 

ac 8 	16 	18 	22 	42 	58 	94 	134.  

(X,R) (10,3) 	(10,3) 	(12,3) 	(14,3) 	(20,2.5) 	(30,3) 	(25,2.5) 	(30,2.5) 

ac stands for autocorrelation 

Table 5.7 Best-values of autocorrelation obtained for Boolean function 

n 5 	6 	7 	8 	9 	10 	11 	12 

ai 3 	3 	4 	4 	5 	5 	6 	6 

(X,R) (10,3) 	(10,3) 	(12,3) 	(16,2.5) (20,2.5) 	(30,3) 	(25,2.5) 	(30,2.5) 

(5,2.5) 	(8,2) 	(15,2) 	(14,3) 	(15,2) 	(25,2) 	(30,3) 	(36,3) 

ai stands for algebraic immunity 

Table 5.8 Best values of algebraic immunity obtained for Boolean function 

It may be observed that it is possible to get the same values of algebraic immunity 

for different sets of values of X and R. But it is not true for nonlinearity or 

autocorrelation. The possible reason might be that algebraic immunity is independent of 

X and R parameters. 
Table 5.9 and 5.10 show the best values of nonlinearity and autocorrelation 

obtained in our search for balanced Boolean functions alongwith a comparison with the 

results reported by other authors. It is apparent from Table 5.9 that for n < 8, our search 

results has the same nonlinearity as those of others results while the autocorrelation 

results are also nearby same. But for n > 8, other authors have obtained significantly 
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better results than us. The possible reason can be use of starting Boolean function with 

proper value of property or use of other techniques or exhaustive search. 

n 5 6 7 8 .9 10 11 12 
Dobertin's 
Con' ecture 18 

26 116 492 2010 

Genetic 
Al orithms 31 

12 26 56 116 236 484 980 1976 

Clark[6] 12 26 56 116 238 486 984 1992 
Our Results 12 26 56 116 234 474 970 1974 

Table 5.9 Comparing the Nonlinearity of balanced Boolean functions 

n 5 6 7 8 9 10 11 12 
Zhang and Zheng[30] 8 16 16 24 32 48 64 96 
Maitra 
Construction 17]  

8 16 16 24 32 40 64 80 

Maitra Conjecture[17] 16 24 40 80 
Clark[6] 8 16 16 16 40 56 88 128 
Our Results 8 16 18 24 42 58 94 134 

Table 5.10 Comparing the Autocorrelation of balanced Boolean functions 

5.3 Search Results for Simulated Annealing and Hill Climbing Method 

This method has been described in section 4.3. Consider Fig. 4.1 of Simulated 

Annealing algorithm. In this algorithm, properties of Boolean function are calculated at 

the end of each inner loop and "Stopping Criteria" is used for targeting values of 

,properties. 

Clark [6] has not considered algebraic immunity as a constraint for search of 

Boolean function. Clark has considered only nonlinearity and autocorrelation as 

constraints for search of Boolean function. We have searched for Boolean functions with 

highest achievable algebraic immunity and for Boolean functions with tradeoff among 

nonlinearity, autocorrelation and algebraic immunity. The best results of Boolean 

function obtained during search with tradeoff among properties are shown in Table 5.11. 



(5,3,12,8,3) balanced Boolean function is the best achievable 5-variable Boolean 
function, where quadruplet (n, d, nl, ac, ai) represents n variable Boolean function with 
algebraic degree d, nonlinearity nl, autocorrelation ac and algebraic immunity ai. This 
Boolean function has highest achievable nonlinearity (12), lowest achievable 

autocorrelation (8), and highest achievable algebraic immunity (3) and is balanced also. 

However, it has a lower algebraic degree of 3, compared to the maximum possible value 

of 4 for a 5-variable balanced Boolean function. For n < 8 variables, we are getting better 

Boolean function than for n> 8 variables. Some Boolean functions of Table 5.12 are 
given in Appendix. 

(5,3,12,8,3) (6, 5,24,16,3) (7,6, 54,18,3) (8,7,110,40,4) 
(9,8,232,59,4) (10,10,479,80,5) (11,9,970,110,6) (12,11,1974,176,6) 

where quadruplet (n, d, nl, ac, ai) represents n variable Boolean function with al degree 
d, nonlinearity nl, autocorrelation ac and algebraic immunity ai. 

Table 5.11 Best values (n, d, nl, ac, ai) with a tradeoff among nonlinearity, 
autocorrelation and algebraic immunity 

5.3.1 Results for Nonlinearity Targeted (NLT) Search 
In this method, we search for Boolean functions with higher nonlinearity. Table 

5.12 shows the results obtained using NLT and a comparison with results of [6] and [7] 

are shown in Table 5.13. These results are obtained by considering the tradeoff among 

nonlinearity, autocorrelation and algebraic degree. We observe that some of our results 

are same as those of other authors and one of them' is better than other author's results. 

This might be because of collective use of simulated annealing and hill climbing method. 

Boolean function (5,4,12,8) is better than what both [6] and [7] report. 

(5,3,12,8) 	 (6,4,26,16) 	(7,6, 56,28) 	(8,1,118,62) 
(5,4,12,8) 	 (6,5,26,16) 	 (8,7,112, 37) 
(9,8,234,64) 	(10,9,481,80) 	(11,9,970,110) 	(12,11,1974,176) 
(9,8,232,59) 

where quadruplet (n, d, nl, ac) represents n variable Boolean function with degree d, 
nonlinearity n and autocorrelation ac. 

Table 5.12 Results using NLT (Nonlinearity Targeted) 
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J.A. (5,3,12,8) (6,5,26,16) (7, 6, 56, 16) (8,7,116,24) 
Clark[6] (5,4,12,16) (8,5,112,16) 

(9,8,238,40) (10,9,486,72) (11,9,984,96) (12,11,1974,176) 
(10,9,484,64) (11,10,982,96) (12,10,1990,144) 

Multiobje (5, 3, 12, 8) (6, 5, 26, 16) (7,5,56,16) (8,7,116,24) 
ctive (5, 4, 12, 16) (7,6,54,16) (8,5,112,16) 

Approach (5, 4, 10 8) 
[7] 
Our (5,3,12, 8) (6,5,26,16) (7,6,56,28) (8,1,118,62) 

Results (5,4,12, 8) (6,5,24,16) (7,6,54,18) (8,7,112,3 7) 
(9,8,234,64) (10,9,481,80) (11,9,970,110) (12,11,1974,176) 
(9,8,232,59) (12,11,1972,176) 

where quadruplet (n, d, nl, ac) represents n variable Boolean function with degree d, 
nonlinearity n and autocorrelation ac. 

Table 5.13 Comparison of results using NLT (Nonlinearity Targeted) with a tradeoff 
among nonlinearity, autocorrelation and algebraic degree. 

5.3.2 Results for Autocorrelation Targeted (ACT) Search 
In this method, we search for Boolean functions with lower autocorrelation. Table 

5.14 shows the results obtained by targeting autocorrelation. For n < 7, we are getting best 
results obtained in known literature with a tradeoff among algebraic degree, 

autocorrelation and nonlinearity. Table 5.15 shows the comparison of our results those of 

[6] and [7] using ACT. These results are obtained by considering the tradeoff among 

nonlinearity, autocorrelation and algebraic degree. We can observe from Table 5.15 that 
for n <7,  our results are better than other results. 

	

(5,3,12,8) 	 (6,5,24,16) 	 (7,6,54,18) 	(8,7,112,32) 

	

(5,4,12,8) 	 (8,7,112,37) 

	

(9,8,232,59) 	 (10,9,479,71) 	(11,9,970,110) (12,11,1974,176) 

where quadruplet (n, d, nI, ac) represents n variable Boolean function with degree d, 
nonlinearity n and autocorrelation ac. 

Table 5.14 Results using ACT (Autocorrelation Targeted) 
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J.A. (5,3,12,8) (6,5,26,16) (7, 6, 56, 16) (8,7,116,24) 
Clark[6] 

(5,4,12,16) (8,5,112,16) 

(9,8,238,40) (10,9,484,56) (11,10,982,88) (12,11,1986,128) 

Multiobje- (5,3,12, 8) (6,5,26,16) (7,5,56,16) (8,7,116,24) 
-ctive 

Approach (5,4,10,8) (7,6,54,16) (8,5,112,16) 

[7]  
Our (5,3,12,8) (6,5,26,16) (7,6,54,18) (8,7,112,32) 

Results 
(5,4,12,8) (6,5,24,16) (8,7,112,37) 

(9,8,232,59) (10,9,479,71) (11,9,970,110) (12,11,1960,142) 

where quadruplet (n, d, nl, ac) represents n variable Boolean function with degree d, 

nonlinearity n and autocorrelation ac. 

Table 5.15 Comparison of results using ACT (Autocorrelation Targeted) with a tradeoff 
among nonlinearity, autocorrelation and algebraic degree. 

5.3.3 Results for Algebraic Immunity Targeted (AIT) Search 

In this method, algebraic immunity of Boolean function has been targeted. Table 

5.16 shows the results obtained by targeting algebraic immunity. It is apparent from 

Table 5.16 that we have obtained maximum achievable algebraic immunity of (zl for n- 

variable Boolean function. Some Boolean functions obtained during search using NLT 

and ACT also have good algebraic immunity. 

n 5 6 7 8 9 10 11 12 

ai 3 3 4 4 5 5 6 6 

ai stands for algebraic immunity 

Table 5.16 Best values obtained by targeting algebraic immunity 
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Chapter 6 

CONCLUSION 

Cryptography needs ways to find good Boolean functions so that ciphers can resist 

cryptanalytic attack. The main properties required to resist cryptanalytic attack are high 
nonlinearity, low autocorrelation and high algebraic immunity. The dissertation work has 

focused on study of properties of Boolean function and construction of Boolean function 
by heuristic approach for crypto-systems. 

Heuristic Search is a simple search technique. Heuristic Search can be used to 

solve -exhaustive search problems. In this dissertation work, heuristic approach has been 

used for search of Boolean functions with tradeoff among nonlinearity, autocorrelation 

and algebraic immunity. We have attained some results better than other techniques like 
evolutionary multiobjective approach [7], direct construction [4,5] and exhaustive. search. 

The Boolean functions (5,3,12,8,3) and (6,5,24,16,3) obtained by heuristic search are 

unachievable to the best of my knowledge in known literature. We have got some results 

better than Clark[6] results in lower variables. 

The range of properties addressed shows that heuristic search is a flexible 
framework for Boolean function investigation. 

6.1 Future Work 
Here, we come up with some proposals to continue the investigation performed in 

this dissertation study. 

> We get good results for n < 8 variable Boolean functions. But the limitations of 

the techniques become apparent when one attempts to generate functions with 

nine variables and above. So, there is a need to find better cost function for n > 9. 
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> The cost function considered in this dissertation does not asssumed algebraic 

immunity and algebraic degree. So, one has to determine general relationship 

between nonlinearity and algebraic immunity and evolve better cost function. 

Other criteria which have not dealt within this work include: 

• Correlation immunity (An n-variable Boolean function is m-th order correlation 

immune if there is no change in probability distribution of its output when any of 

its m inputs is kept constant) 
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APPENDIX 

1. (5,3,12,8,3) Boolean function 

The best result obtained in 5 variable Boolean function with optimum 

compromise in cryptographic criteria is given below: 

00101110001011011001001101011100 

This Boolean function is balanced also. 

Algebraic degree: 3 

Nonlinearity: 12 

Autocorrelation: 8 

Algebraic Immunity: 3 

2. (6,5,24,16,3) Boolean function 

The best result obtained in 6 variable Boolean function with optimum 

compromise in cryptographic criteria is given below: 

000100011001011101 10100010100000101001010010101000101010100l 1100 

Algebraic degree: 5 

Nonlinearity: 24 

Autocorrelation: 16 

Algebraic Immunity: 3 

3. (7,6,54,18,3) Boolean function 

The best result obtained in 7 variable Boolean function with optimum 

compromise in cryptographic criteria is given below: 



01000010010010111111001110010100 1000 1010010011101011101011101 101 10100111 

00000111 10010100100000l00100101010100000001 1011101000111 

Algebraic degree: 6 

Nonlinearity: 54 

Autocorrelation: 18 

Algebraic Immunity: 3 

4. (8,7,110,40,4) Boolean function 

The best result obtained in 8 variable Boolean function with optimum 

compromise in cryptographic criteria is given below: 

01001101110001010010101100011101001001111101000101101010011101111000000011010 

10101111011000101100111111110000001111000111011001000100000001101010100101110 

10100001100011110011110001001101000100100011111110010001101101011001110011001 

0011011001010010001101011 

This Boolean function is balanced also. 

Algebraic degree: 7 

Nonlinearity: 110 

Autocorrelation: 40 

Algebraic Immunity: 4 

5. (9,8,232,59,4) Boolean function 

The best result obtained in 9 variable Boolean function with optimum 

compromise in cryptographic criteria is given below: 

011101111010110010100010111110011010100100110000001111011000111101111100 

110111011 101010000101010l0111 10100010101 1111011110100000000101l 101011100 

001111010000111111110011000000010001100000011011010000100010011001110000 

101010101 1010100l00000010100010010000001001000001010010101 11000001011011 
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100101000101000100010010110111011000110000111001111010111100100100010000 

011001111101010110101001000101000010000001101001011010011100110001111100 

11000001011100101110010101000110001011001001011100111 1000101001011001010 

11100001 

Algebraic degree: 8 

Nonlinearity: 232 

Autocorrelation: 59 

Algebraic Immunity: 4 

6. (10,10,479,80,5) Boolean function 
The best result obtained in 10 variable Boolean function with optimum 

compromise in cryptographic criteria is given below: 

011000100011000001010110100001000101101111010110111001110000111011111010 
110001001010111101111011001000100101111110011001110101110110100100010111 
110000000101011 100010100100I1001 1110010101101111000100001100000110000000 
1110000001011000000100000111000101 101010101 10100010001110111010001111111 
110110110000011001000100011110001111 100010010010100001000010010l01 111000 
110001011100111110011011100011011111001100111101111100111010010001000111 
010010010111100011111111010111111010001001100111100100110110110010011001 
101000011111111110101011100110100101101101011101110101100101001011010110 
100011010110010101100000001111111100101011001110011101001011010011011100 
000101011101010110100110011100111111001000111100101110000011001111100001 
010010110010001100100011000110110010011111111010110010101011011010011010 
001111111110111100111110101001100000010001100011100111010111000100001100 
1001110000111i1101001001011101011001101010101111011100100100001111011011-
100111010011110011011000100010001010101001011110101111010000101111010011 
100100111001110101011000 

Algebraic degree: 10 

Nonlinearity: 479 

Autocorrelation: 80 

Algebraic Immunity: 5 
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