HARDWARE EFFICIENT DESIGN OF PARALLEL
FIR FILTERS AND ITS APPLICATION TO 2D DWT

A DISSERTATION

Submitted in partial fulfillment of the
requirements for the award of the degree
of '
MASTER OF TECHNOLOGY
in
ELECTRONICS AND COMMUNICATION ENGINEERING
(With Specialization in Semiconductor Devices & VLS| Technology)

. ’
SURESH KELLAMPALLI
CENTRAL LIBRASS

. ’ ACC-NO@.-L&{-‘%%?:IIII‘
’*

DEPARTMENT OF ELECTRONICS AND COMPUTER ENGINEERING
INDIAN INSTITUTE OF TECHNOLOGY ROORKEE
ROORKEE -247 667 (INDIA)

JUNE, 2008

Candidate’s Declaration

I hereby declare that the work being presented in the dissertation report titled
“HARDWARE EFFICIENT DESIGN OF PARALLEL FIR FILTERS AND ITS
APPLICATION TO 2D DWT?” in partial fulfillment of the requirement for the award
of the degree of Master of Technology in Semiconductor Devices & VLSI Technology,
submitted in the Department of Electronics and Computer Engineering, Indian Institute
of Technology Roorkee, is an authenticate record of my own work carried out under the
guidance of Dr. SDASGUPTA, Assistant Professor, Department of Electronics and

Computer Engineering, Indian Institute of Technology Roorkee.

I have not submitted the matter embodied in this dissertation report for the award of any

other degree.

VA S L&‘QD\/Z-
Dated: 2< [56]08 (SURESH Im/lPALLI)

Place: IIT Roorkee.

Certificate

This is to certify that above statements made by the candidate are correct to the best of

my knowledge and belief.

Dated: 26- 662688
Place: IIT Roorkee. ' Assistant Professor,

Department of Electronics and
Computer Engineering, IIT Roorkee,

Roorkee -247667 (India).

ACKNOWLEDGEMENTS

I am thankful to Indian Institute of Technology Roorkee for giving me this opportunity.
It is my privilege to express thanks and my profound gratitude to my supervisor
Dr.S.Dasgupta, Assistant Professor for his invaluable guidance and constant

encouragement throughout the dissertation.

I am also grateful to the staff of VLSI Design Laboratory for their kind cooperation
extended by them in the execution of this dissertation. I am thankful to research scholars
of VLSI, who. helped me consistently in doing this work. [am also thankful to all my

friends who helped me directly and indirectly in completing this dissertation.

Most importantly, I would like to extend my deepest appreciation to my family for their
love, encouragement and moral support. Finally I thank God for being kind to me and

driving me through this journey.

(SURESH KELLAMPALLI)

i

ABSTRACT

Finite impulse response (FIR) filter is regarded as one of the major operations in digital
signal processing. Parallel processing is a powerful technique because it can be used to
increase the throughput of a FIR filter or reduce the power consumption of a FIR filter.
Parallel FIR filters (1.e., realizing FIR filters in parallel) has got its various applications
in 2D Discrete wavelet Transform (DWT), Motion Estimation in Video Compression,
Equalizers and 2D FIR filters. However, a traditional parallel FIR filter implementation
causes a linear increase in the hardware cost (area) by a factor of L, the block size i.e.,
level of parallelism. In many design situations, this large hardware penalty cannot be
tolerated. Therefore, it is advantageous to produce pérallel FIR filter implementations

that require less area than traditional parallel FIR filtering structures.

An approach to increase the throughput of FIR filters, with reduced complexity
hardware based on fast FIR algorithms and fast short length linear convolution
algorithms, were presented. Although their basic idea is the same, i.e., first derive
smaller length fast parallel filters and then cascade or iterate these short-length filters for
long block sizes, their starting point is not the same. These methods will have a simple
and efficient control in the increase of hardware cost. These hardware efficient parallel
FIR filters can be used for the fast implementation of 2D Discrete Wavelet Transform

(DWT) than the other convolution and lifting based architectures.

The focus of this thesis is to present the recent methods to realize the hardware efficient
parallel FIR filters (i.e., by Fast FIR algorithms and Fast short convolution algorithms)
and its application to 2D Discrete Wavelet Transform. The hardware simulation of these
efficient structures are carried out in Modelsim and synthesized using Xilinx. A Matlab
code is developed for finding the computational complexity of each method. The
comparisons of these mefhods are also done. For 2D DWT the comparisons are done

with the recent convolution based architectures-

iii

TABLE OF CONTENTS

ABSTRACTcoviietiinicninnnnssnnssiiistissnisssscsssssssssssssssanessssssssssssosasssssssassossssssssessssssssssanssens iii
LIST OF FIGURESccoovessovresssssssssesssssssssssssssssssssssssssssssssasssssssssssssssssssssssssss vi
LIST OF TABLES ... ereereereeevosrrasensvssosssssssssssssssssssesssosssssssssssssssssssssssnssssossssssasses viii
1: Introduction to Parallel FIR filters.........cc.cccocvnieionreenncsisnnnrsnsessnssensennesasenersennns 1
L1 INtroductionveiienionicniismienisnmmnssscssssssnsssarsssssssssssssssssssaasss cetsesrrasrsasnnsaseanens 1
1.2 Organization of Thesis ettt s tsAeAemtt s Rttt Rt AR R0 3

2: Formulation of Parallel FIR filters using Polyphase

DeCOMPOSITIONcu.cenernncrrercrsensessissesiasersrsessisssassssssasssssssssassssesssssssssssessesssssaess 4
3: Parallel FIR filters based on fast FIR Algorithmscocoeccvcnnivnesnunnanens 8
3.1 Fast FIR AlZOTIthINSciniiniiiinniisscissisenniininimniniiiiniseisesmimissiesesisse 8
3.1.1 Two parallel Fast FIR fIlfer.........cocvvevrvsnniinnrenserssnsnssnsressnisassuesssssesssssasssssssasene 8
3.1.2 Matrix representation...........ienineincnieniienicnsisensnersesscinssesssssesassasssesseses 9
3.1.3 Parallel filters by transposmon 10
3.1.4 Three parallel fast FIR filter.........ccccvvnninviivcnnnncnsiiecninninenisnninannnssnisanee 11
3.1.5 Fast Parallel FIR algorithm for large block sizescccouervenvrreenuenninnen. 13

3.2 Fast FIR filters based on Frequency Spectrum........coeevsinnsisnsacssassuesacsnenes W
3.2.1 FFA structures for 2-parallel and 3-parallel FIR filterscccoeerr- 16
33,1 CASCABING FFAS covvoeeeeeesseeeesessseossssssrssesses 18
3.3.2 Selection of FFA tYPes ...cccvvniensiniissnisnssisiississnssnssisssssissssssssssessssssssssnesens 20

4: Parallel FIR Filter structures based on fast convolution

AIGOTIERINS.ouavvrricvrinsissrvasiresesersssesresssssssssssssssssessssssssossssssssssssssssnssses 21
4.1 Fast Parallel FIR filters based on linear convolutionouceecesssesssnnnccen 21
42 Iterated Short Convolution Algorithm(ISCA) ressssnssaenisseneaebenesnsssanes 22

4.2.1 Complexity COmPUtationcoceuiiniisnisenisnnienieessinicscnsisnesiessansssssssess 26
4.3 Improved Fast Parallel FIR filter Structure ..o vevenescnssvnsissersnssonsissseninnes 27
4.3.1 Improved structure AlOrithmcccuieviiviinnicensisnniisuisncsnesnessesssesnssnnns 28
4.3.2 Complexity COmPULationcvviviinniinseiniiinnnnniniisisieninsseesmensse 30

5: Parallel FIR filters based on 2-stage parallelism...................ccccoromves 32

5.1 2-stage ParalleliSm......cccceccrcescnsnnsnasssiensinsiisnisnisnisnessissnssnssessesssisssssnsssssssassaenss 32
5.1.1 Generalization (Method-1) of 2-stage Parallelismccccouvvveenvisinnnnnns 32

v

5.1.2 Method-2 of 2-stage paralleliSmccvcevvcerenrenisrisscerissnnicnsnessnnsssesssiessnnens 33

5.1.3 Complexity COmMPULALION c..ccccueririsnnisnnnnirenissecssnesssaesesssessassessasssssesssssssasssnne 3
5.1.4 Example for 2-Stage Parallelism realizationcceivveeiiienccnicsnnssinncnns 35
5.1.4.1 6-Parallel FIR Subfilter as a Shared Filtering Core.......ccccocvvnnererrsanns 40
5.1.4.2 Method-2 realization.........cc.ccvvveersercrirsnnisnanaans neesanesstsnssnsasianessanessansenes 41

6: Application of Parallel FIR fIlersccooooeeeeooosrereersssseeresessmessssemseeeees 43
6.1 2D Discrete Wavelet Transform ..., 43
6.1.1 2D Non separable DWT structure based on parallel FIR filters.............. 43
6.1.2 2D DWT of an Image by L- Parallel FIR Filteringc..cocceueeneen. 50
6.1.3 Complexity COmMPULALION ...ccccreerrveiiiicrerieniiicsiinsisssieseessessssssssssssssasssassns 3

7: Results and DiSCUSSION........couucvrerverinerssssisssrsssssssnssssnsissssisssisssssssisssisssssess 55
7.1 Hardware Simulation..........cceieniieinnnnnirennninniinneeinieeinsienssissssrssssssossnsssssses 55
7.1.1 Simulation results of FFA Structures.......ccccccccveiinecrerencrsinssiersossenssosaneas 55
7.2.2 Simulation results of ISCA Structureseiiniennciiinsnicccecsnnessenens 58
7.1.3 Simulation results of 2-stage paralleliSmcoocuieeviirnviisvnnnencneericecnnen 59
7.1.4 Simulation results of 2D DWT based on parallel FIR filters.................... 61

7.2 Comparison and ANalysiS......ccceeiiceeriennnicennsniennnserinissneisssnesssssssosssseessssrsscans 62
T2AFFA VSISCA....ciitiinnecnnnisnsresssesitesncsnsssstossesssasessossassssssssssssesssassesases 62
7.2.2 ISCA Vs 2-stage ParalleliSmuueevieneveninnniinnieninnnccceeeirecnreenneeees 64

-~ 7.2.3 Complexity for 2D DWT ..cuvvcuirireeescrsersersssensasasssnsesssasassessasssssssssrsasssssasassones 67
8: CONCIUSION.........crtn ettt reasesesbessessbesensssane 68
REFERENCES......cooc.coumsssssssssesssssssssssssssessassssssssassssassssssssssssssssssssssssssses 69
APPENDIX A :COOK-TOOM Algorithmccveennea. essnersssssentssansiens 72
APPENDIX B :WINOGRAD AIGOTithIccoorrermeerreesersereesnsessssnsssssnsenns 75

APPENDIX C :Some Efficient Linear Convolutionsccisescenn. 78

LIST OF FIGURES

11 Transposed form FIR filter cuuciveiiismsesmnnnninsunscsniisinsnnannenisnsiiissssioas 01
1.2 Sequential and 3-parallel architecture of an FIR filterccuiseiniiiccsisnnsiscsnssisesnnss 02
2.1 Traditional 2-parallel FIR fIIEET c.uuevuerureesreresensarsnsssereessassessarsesssssasssessassessassssansennss 05
22 Traditional 3-paratlel FIR fer semueueeoeroerssareseessmesmrsesesmsessessssmsesressserrenes 06
3.1 Reduced complexity 2-parallel fast FIR implementationeeeeessecsesscsssseresasseseness 09
3.2 Transposed reduced complexity 2-paralle]l FIR filter...ccouisisciisicrasnssnsesnisncnsnesessennns 11
33 Reduced complexity 3-parallel FIR implementation.......eeceereciseseinescrnsnenensacacacs 13
3.4 4-parallel fast FIR filter by cascading two 2-parallel FFA’s(Fp and F}) .ocoeeereeninenee 15
3.5 FFA1 structure of 2-parallel fast FIR filter.....cococcecssiverncnserseeriscssesnsunsesssassessesessesene 16
3.6 FFA1 structure for 3-paralle] FIR fIlter ccccvcicrussnsnisnsessnisnsensnssniacsresassesneceesasnsnsanans 17
3.7 FFAZ2 structure for 3-parallel FIR filterceeuee... bt en sk asne b aanenes 18
3.8 FFAOQ or FFA1 4-parallel FIR filter StruCture wuccssicessessnsssssssnesasanssesssssssessesasansaisanns 19
39 FFAY’ structure of 4-paralle] FIR filter c..occevrininscsssussnsensnssussesersenssnsessissssessnssesenss 19
4.1 ISCA based 4-parallel FIR filter...cvvrercesnesessissssesncsrisansanssssessessessasessessessessssessssenne 26
42 Implementation of N-tap FIR filter with NxN linear convolution......ssuesesseessseers 28
43 2-DALAIIE] 6-1aD FIR fET rvrvrssmereeeererossoseesssseseessssssessessssessessssssessssmssssssssssess 29
44 An improved 3-parallel structure for 2-paralle] 6-tap FIR filter..uuceerercrnrerareraranens .29
45 (2)3x 3 Delay Element Matrix (DEM) (b)Delay element functionees.sssenes 30
4.6 Shape of Delay Element Matrix (a) IL[M. >N/L (b) Irl M, <N/L vreveceivrarene 31
=1 i=1
5.1 Implementation of 3-parallel FIR filter vevvererieecneessririnesssnsnneiseereensennssennssenens 35
5.2 2-stage(method-1) parallelism of 3-parallel 36-tap FIR filter ...ccuirreeresrrenrercerenes 36
53 (a) 6x6 DEM (b) Delay element function.....eiiiiicnnesnsiirisceesessiesnssssssnsssnes 37
54 Preloading 6x 6 DEM when (2) k=0andi=0 (i.e.,t=0),(b) k=0andi=>5 (i.e.,
1= 5)erercrensestnnensnsnssnserestsesssssessssesesesestsasestsensesssesttssbstebetatarssbebarasbe bebarn b bersensaensbesesans 38
5.5 Preloading 6x 6 DEM when (a) k=6andi=0 (i.e.,t=6),(b) k=6andi=5 (ie,
1 11 eiserseanssssenenensssonenssussossnsassensonsnsssorssssssassasssnsassssnessonssensssssssasasssssssnssssassssssasansssansasns 38
5.6 Postloading 6x 6 DEM when (a) k=12 andi=0 (i.e.,t=0),(b) k=12andi=5
(1.€., 1= 17) rurrcrssssssssnsssssssssnsssnsssssssssssnssssssssssssnsssssssasassssessassensasasassssssssssesssassssssssnssesess 38

vi

5.7 Postloading 6x 6 DEM when (a) k=17 and i =0 (i.e.,t=0),(b) k=17andi=5

(164, 1= 23) reereereecessnsnstcntinuasassssossesatsnsasssassostosnesssssessassassssssssssensnasssnsnsanssnsanesssassessessenses 39
5.8 Timing of the 3-parallel 36-tap filter by 2-stage paralleliSm.ccrccscessnserareensecnneas 39
5.9 (a) 6-parallel FIR filter as shared filtering core (b) block diagram of (a).......eeeeenes 40
5.102-stage parallel FIR filter for an 6-parallel 36 tap FIR filteTu..uccsciusseirsscsussisscennse 42
5.11 Timing of 6-parallel 36-tap FIR fIlter....oevvvemvmerurrnririreinirrecsesiencnnssssessasesessasas 42
6.1 2-parallel 2-tap FIR fIllE evuiiersrirsrrenreresnssrersenrsnsassesssnsassssesseassesserenssssssssnssnsssssasses 45
62 1D DWT (i.e., after row filtering) based on 2-paralle]l FIR filtercccervrerreruerens 46
6.3 Input data flow of 2D DWT of 2-parallel FIR filter....ccovueesrsnssninsesserecssesissensens 48
6.4 Output data flow of 1D DWT of 2-parallel FIR filterccecerervrcererrerrerereenecserenes 48
65 (a) N 2/ 4 2D DWT structure for an 8x 8 image (b) 4 x 4 Delay Element Matrix

(c) Delay Element fUNCHION..iuceeesisienressssssrssssssssisstissssssnissssssssasssssssassnsssasssssssasassassasaass 50
6.6 Output data flow of 4x 4 DEM.....ccueeerereereeneuesesserennes veeresaesesnes s s siosessesaes s s aene 50
6.7 N?/2L 2D DWT structure for an N x N iMage.....ermrrrereresemssresssssssssensssssenessens 51
6.8 Output data flow of the firstlevel N?/42D) DWT SUUCIUTE covvusussssessssssessessssssssessssssssss 51
69 Interleaving structures of 2D DWT structures for an 8x 8 image...cvcesssncsessessesess 51

6.10 Hardware implementation of 2D DWT for an image of 8x8 size with J-level

1esolution in N2/3 clock CYCIES . ummminsssseereesssssesersasssseessssssersass renssasensessstisnassssessees 51
7.1 FFAQ 2-parallel FIR filter...cuiucsecsssissnessssesascsssseressanssssessasssasessansussasssossssessossssssaasase 55
7.2 FFAQ 3-paralle] FIR fIlter c.ceecvrcrvereinrusnrvsvssrssnsneerissiseesenssucsenessissesssssssssssssonsoss 55
T3FFA2 3-parallel FIR filter....cvrsecrernssssansrcreriesiscssnsecsesressssssssassassesncsssssnssssasanssssssesass 56
TAFFAOQ 4-parallel FIR filter. inmiiiasienininisimnimiiiseemoes 56
TSFFAL’ 4-parallel FIR fIHer cvuveineimerssssassessnsissssssnssnssnsinesssssasssssssassssssnsassasossassssesas 57
TOFFAT 2-paralle] FIR filter...cicieininccessssstssrensemeesinsnssnensecssrsressasaessnssnsssssssonsossosesses 57
7.7 FFA1 3-parallel FIR filterccceerenuensionsesrnsesrssnssisecsissessensssnesnsssssasnontossnessssasassssaenss 57
7.8 FFA1 4-paralle] FIR fllter iuicecrersessasserseesnssersersrsssrensssssssnressssesasassosssasssssassosenence 58
7.9 ISCA based 4-paralle] FIR fIlter ...cccurecsnisirsesesesssnsssssssessnsencssssssasesssssssssssosssasasassss 58
7.10ISCA based 6-parallel 24 tap parallel FIR filter.....covnsrcssecsernrisnsesssssnsensassnsssssens 59
7.11.1 Schematic of 6-parallel 36-tap FIR filter w..coivriuisnssseinisnsssssssusercsssssnsissasssssanis 59
7112 2-5tage 6-parallel 36-tap FIR fIHET erereeerrrsemssseesessessssesseeessesessesessssmesesesees 60

vii

7.122-5tage 3-parallel 36-tap FIR FIHEr .evorovreeserseoerreoenreseessseresssessenesene —— 60
7.13 Schematic of 2D DWT for an §x8 image based on 2-parallel 2-tap FIR filter61
7.14 Non separable 2D DWT for an 8x8 image based on 4-parallel 2-tap FIR filter...61
7.15 Hardware cost (i.e., complexity). comparison between ISCA and FFA for

N=144,576,1152 at different levels of parallelismcc.ceu... cersessesesensrsassesstnsessnsesnnsansnne 64

7.16 Comparison of complexities of N=144,1152 between ISCA and 2-stage parallelism

at different levels of paralleliSm cccccceiesisiessssssnssssesnrressisssssnsssnsesasseesssassusacsessessssassass 66
LIST OF TABLES

6.1 Data flow of 2-D DWT of a 8x8 image with 2-level resolution and computation of
N2 /3 CIOCK CYCIES evrrrsreasersasmrsrasssssssssassssesssssesassinssssssssasssssssassssssssssssanessasssesessasssens 54

7.1 Comparison between 2D DWT structure and previous convolution based

architectures for an N XN IHIAZE vrvreveerreesesesnsrsossrsasssssrrsasssasrssstssrsssressrsassassrassassassase 67

vili

1. Introduction to Parallel FIR filters

1.1 Introduction

Finite impulse response (FIR) filter is regarded as one of the major operations in digital
signal processing. A linear time invariant (LTI) FIR filter [24] is one of the basic building
blocks common to most DSP systems. The output of an FIR filter is a sequence generated

by convolving the sequence of the input samples with N filter coefficients. The filter

expression can be described by

()= S h(kpe (1) an

where N is the length of the filter (i.e. M-/ is the order), A(k)denotes the K" coefficient,
and x(n—k) denotes the sampled input data at time n—«.

x(n)

] e W yry R S ")

Fig 1.1.Transposed form FIR filter

The main operation of an FIR filter is convolution, which can be performed using
addition and multiplication. The high computational complexity of such an operation
makes the use of special hardware more suitable for enhancing the computational
performance. This special hardware used to realize a high-tap-number FIR filter is costly.v
Thus minimizing the hardware cost of this special hardware is an important issue
Consider the 3-tap FIR filter as described in equation (1.2) i.e., from (1.1) with length
N=3 . The system is single input and single output (SISO) system as described by the
equation

y(k) = ax (k) +bx{k-1)+c(k-2) (1.2)

To obtain a parallel processing structure, the SISO system must be converted into an

MIMO (multiple input and multiple output) system. For example the following set of

equations describe a parallel system with 3 inputs per clock cycle (i.e.) level of parallel
processing L=3).
y(3k) = ax (3k) +bx (3k —1) +¢(3k-2)
y(3k+1)= ax (3k+1)+bx(3k) + ¢ (3% —1) (13)
y(3k+2) = ax(3k +2) +bx(3k +1) +c(3k)

Parallel processing system is also called block processing, and the number of inputs
processed in a clock cycle is referred to as the block size. Each delay element is referred
to as a block delay, (i.e.) delaying the signal x(3k) by 1 clock cycle would result in x(3k-
3) instead of x(3k-1), which has been input in another input line. The sequential and 3-

parallel architecture for a/FIR filter is shown in figure 1.2,

x(Bk+)__p 1 y(3k+1)
@, g0 xGk+2)—p| viMO [—PYBK2)
| x(3k+3) —P y(3k+3)

Fig 1.2 Sequential and 3-parallel architecture of an FIR filter

The critical path of the block (or parallel) processing system remains unchanged. Parallel,
or block, processing can be applied to digital FIR filters to either increase the effective
throughput or reduce the power consumption of the original filter. Traditionally, the
application of paraliel processing to an FIR filter involves the replication of the hardware
units that exist in the originé] filter. If the area required by the original circuit is 4, then
the L-parallel circuit requires an area of L x A. With the continuing trend to reduce chip
size and integrate multi-chip solutions into a single chip solution, it is important to limit
the silicon area required to implement a parallel FIR digital filter. In many design
situations, the hardware overhead that is incurred by parallel processing cannot be
tolerated due to limitations in design area. Therefore, it is advantageous to realize parallel
FIR filtering structures that consume less area than traditional parallel FIR filtering

structures.

1.2 Organization of this thesis

This thesis is organized as follows. Chapter 2 begins with parallel FIR filters based on
polyphase decomposition. Chapter 3 analyzes the parallel FIR filters using Fast FIR
algorithms. This is followed by the description of those filters in matrix form and its
transposition. It also discusses the parallel FIR filters based on frequency spectrum and
-alse-on=linear-convolution. And the Chapter 4 presents the efficient short length linear
convolution algorithms by Winograd and Cook-Toom Algorithms. Then these short
efficient convolutions are iteratively convolved to obtain higher efficient convolutions by
Iterated Short Convolution Algorithm(ISCA). An improved structure for further
reduction of hardware cost of parallel FIR filters is also discussed .Chapter 5 analyzes the
two methods of 2-stage Parallelism with an example of 3-parallel 36-tap FIR filter.
Chapter 6 beginA with the presentation of the applications of parallel FIR ﬁlters(%- the
high speed implementation of 2D DWT structures. Chapter 7 will show the hardware
simulation results of all the structures for parallel FIR filters analyzed in previous
chapters and the comparisons of one over the other are also presented. Chapter 8

concludes this thesis with suggestions for future work.

2 Formulation of Parallel FIR filters using

Polyphase Decomposition

An N-tap FIR filter obtained from an input sequence x(n) of infinite length sequence and

the impulse sequence h(n) of length N, in z-domain as

0

Y(z)=H(z)X(z)= S‘lh(n)z'"z x('n)z‘" 2.1

n=0 n=0
The input sequence x(n) can be decomposed into even- numbered part and odd numbered

part as follows
X (z) = x(O) + z—]x(l) + z'2x(2)+ 2_3x(3) +...

=x(0)+z72x(2) +... 427 (x(1)+27x(3)+...) 2.2)

(e, ()
Where X, (22) and X, (22) are z-transforms of x(2k) and x(2k+1) (0 <k <). Similarly,
the length-N filter coefficients H (z) can be decomposed as

H(z)=H,(z*)+2"H, () | 2.3)

Where H, (z2) and H, (22) are of length N/2 and are referred to as even subfilter and odd
subfilter. The even numbered output sequence y(2k)and the odd numbered output

sequence y(2k +1) (0 < k < w) can be computed as
Y(2)=1,(2*)+2"%(2*) |
=(Xo(22)+27%,(2)) (B, (22)+ 2" Hi () 24
=X, () H, (22)+ 27 (X, (22) () + X, () Ho (22))+ 2%, (22) H, ()
Where %, (z*)and Y(z*) correspond toy(2k) andy(2k+1) in time domain,
respectively. The filtering operation in equation (2.4) process two inputs x(2k) and
x(2k+1) and generates two outputs y(2k) and y(2k +1) every iteration, and is referred

to as 2-parallel FIR filter. This 2-parallel FIR filter can be rewritten in matrix form as

Y, _|H, 27 H, || X, 2.5)
Y| |H A H || X '

Figure 2.1 shows the resulting traditional i.e. by polyphase decomposition, 2-parallel FIR
o

filtering structure, which requires 2N multiplications and 2(N-1) additions.

¥(2k)
I *? >
X .
—» H : *
% y(2k+1)
x(2k+1)! i :
—p H Z?

Fig 2.1 Traditional 2-parallel FIR filter -
Similarly 3-phase polyphase decomposition, the input sequence X(Z) and the filter
coefficients H(Z) can be decomposed as follows
X(2)=X,(2)+27%,(2°)+ 27X, () 06
H(z)=H,(')+z"H,(2*)+27H,(2)
Where Xo(z3),Xl(z3)and X, (23)correspond to x(3k),x(3k+1)and x(3k+2) in time
domain respectively and H,(Z), H,(Z)and H,(Z) are three sub filters of H(Z).The
output is given as o -
Y(z)=1,(2)+27'Y(2*)+ 7L, (2*) 2.7)

Hence,

AN
~~
N

w
~—
il
>
—~
N

w
—
X
—
N
w
~—
+
[N
s
e
—~~
N
w
~—
B
—_
[\
w
~—
+
N
w
Rel
—_~
N
W
.
N
—
N
w
R —

@.8)

2~
—
n
w
il
o
—_——
N
w
~~—
T
—_
[\

w
N
+

>
—
N
w
——
=
—
]
w
~—
+
N
w
2
—~
[\

w
~—
o
_—
N

w
S—

WhereYO(z3),Yl(z3) and Yz(z3) correspond to y(3k), y(3k+1)and y(3k +2)
respectively. This 3-parallel FIR filter processes 3 input samplesx(3k),x(3k+1)and

x(3k+2) and generates 3 output samples y(3k), y(3k +1) and y(3k+2) in one iteration

and can be rewritten in matrix form as

H, z’3H2 22H X
=| H, H, z'3H2 X, 2.9
HZ Hl HO XZ

o R

Figure 2.2 shows the resulting 3-parallel FIR filtering structure, which requires 3N
multiplications and 3(/N-1) additions.

—> H —>D »P Y
)¢ i ¢ ok
aC) N »D ant —
Y \6(3\44—2)
| »H
—> 1
x(3k+1) "
B,
H
(3k+2
2 n —z}
By —{]

N Fig 2.2 Traditional 3-parallel FIR filter .
Generally, the polyphase decomposition can be used to derive L-parallel FIR filters by

decomposing X(z), H(z) and Y(z) into L subsequences as follows:

X,(2)=3 2 x(Lk+i), i=0,1...L~1
k=0 .

(N/L)-1
H/(z)=). z*n(Lk+j), j=0,1...L~1 (2.10)
k=0

0

Y (2)=) 2" y(Lk+I), 1=0,1...L-1

k=0

The L output subsequences y(Lk+/) (0</< L~1,0<k <o)can be computed using an
combination of L sub filters from the L input subsequences x(Lk + i)

(0<i<L-1,0sk<o) as

L-1 k
YL,=z"> HX,, ,+Y HX,,, 0<ksL-2

L—l'1=k+l i=0 (2.1 1)
Y., = Z HX L1-i
i=0
This can also be rewritten in matrix form as
Y=HX

Y, H, z*'H,_, - z'H| X,
o A H, - ZH | X (2.12)
YL-l HL—] HL—Z e Ho XL—I

It should be noted that H is a pseudo-circulant matrix[1] as in (2.12). This L-parallel FIR
filter requires L? sub filtering operations, each of which is of length (N/L) and requires
(N7/L) multiply-add operations. Hence the L parallel FIR filter requires L*(N/L) or LN
multiply-add operations, which is linear in the block size L .Although the polyphase
formulation does not reduce the parallel filter complexity, it cah be exploited to derive

fast parallel FIR filter structures.

3 Paiallel FIR filters based on Fast FIR Algorithms |
3.1 Fast FIR Algorithms |

Since the complexity of a traditional block filter increases linearly with the block size or
the number of samples processed in parallel in a clock cycle, fast FIR algorithms are
developed [2][6] to reduce the hardware complexity. This Fast Filtering Algorithms
(FFA’s) will reduce the complexity of parallel filtering structures. Since the work of
Winograd [lﬂﬁ’], it is known that two polynomials of degree (L-1) can be multiplied using
onfy (2L- 1) product terms. Therefore, the L-parallel filter can be implemented using
approximately (2L-1) filtering operations of length (N/L). The resulting parallel filtering
structure would require (2N - N/L) multiplications. For large values of N, the FFA’s can
‘reduce the number of multiplications significantly at the expense of increasing the
number of additions. Replacing multipliers with add operations is advantageous because
- adders have a smaller implementation cost than multiplier in terms of silicon area. For
large values of I however, the number of adders becomes unmanageable. Therefore a

balance between multipliers and adders can be maintained.

In the general case, a (nxn) FFA produces a FIR filtering structure that is the functional
~ equivalent of a parallel FIR filter of block size n. The application of a (nxn) FFA
produces a set of filters each of which are length N/n, where N is the length of thé
original FIR filter. The set of filters that are produced by a (nxn) FFA will consist of the
n filters, Hy, H,, ..., H; , that afe produced by taking the polyphase decomposition of the
original filter with decomposition factor n, plus the filters that result from taking the
additive combinations of these # filters. The proper filter transfer function is realized with
the addition of some pre- and post-processing steps that are performed in conjunction

with the filtering operations.

3.1.1 Two parallel Fast FIR filter
The equations of polyphase decomposition of 2-parallel FIR filter can be rewritten as
Y,=H,X,+z7HJX,

3.1
Y; = HOXI +H1Xo = Ho+1X0+1 _HoXo ‘Hle

Where H,,, =H,+H, and X,

i+j

=X +X,
This 2-parallel fast FIR filter contains S subfilters, however, the 2 terms H X, and
H,X, are common and can be shared for the cbmputation of ¥, and ¥, .This low

complexity 2-parallel FIR filter structure is shown in ﬁguré'\,which computes a block of 2
outputs using 3 distinct subfilters of lengfh N/2 and 4 pre/post processing addition
operations. It requires 3N/2 multiplications and 3(N/2 -1)*a“dditions as opposed to 2N
multiplications and 2(N-1) additions in the traditional parallel FIR filter derived directly
from polyphase decomposition. The subfilters Hy ,H; and Hy+H; for N=6 contain the
filter coefficients of H={hy, h; hy h; hy hspas Hy-{ ho, hy, he} ,Hi-{ h;, h3 hs} and
Hyvi={ hothy, hyt+hs hyths} . It should be noted that the addition of H, and H; does not

cost anything in terms of the implementation because the filter coefficients are fixed and
| known prior to the implementation. Tl}is sum can be computed off-line. This low
complexity 2-parallel FIR filter requires 12 multiplications and 13 additions, as opposed
to 16 multiplications and 14 additions required for traditional parallel FIR filter.

X(2K) " y(2k)
- 2k+1
HtH,) y(2k+1)
“x(2k+1) - —
x(2k+1) 0| 5

Fig 3.1 Reduced complexity 2-parallel fast FIR implementation
Since the implementational cost of a multiplier is much greater than that of an adder, the
cost to implement the parallel filtering structure can be approximated as being
proportional to the number of multipliers required for implementation. This is a very
reasonable approximation for comparison purposes. Based upon this approximation, the
2-parallel fast FIR filtering structure requires about 25% less hardware (area) than the

traditional 2-parallel implementation.

3.1.2 Matrix representation
The L- parallel FIR filter can be represented in matrix form as

Y,=Q,HPX, (3.2)

Where Y, is an output matrix, O, is an post processing matrix which contain the post
additions, P, is an preprocessing matrix that determines the manner in which the inputs
are combined, X, is thé input matrix and H, is an L diagonal matrix. The entries of the
diagonal matrix H, are the subfilters of the parallel FIR filter. It should be noted that the

application of FFA diagonalizes the pseudo-circulant matrix of (2.12).

The 2-parallel FIR filter can be represented in matrix form as

Y,=Q,H,PX, (3.3)
The 2-parallel fast FIR filter in (3.3) is represented in matrix form as
~ H, 1 0
)6 1 0 27|, X,
= diag| Hy+ H, ||1 1 (3.4
e -1 1 -1 X,
H, 0 1

3.1.3 Parallel filters by transposition
Any parallel FIR filter can be used to derive another parallel equivalent structure by
transpose operation. Generally the transposed architecture has the same hardware
complexity, but different finite word length performance.
The transposition of L-parallel FIR filter can be obtained by transposing the equation
- 3.2) R ’

Y. =(QLHLPL)T Xp =PLTHLTQLTXF @3.5)
Where Y, =[Y,, Y, .. L], X, =[X,, X., ... X,] andP7,0, are the
post and preprocessing matrices which will determine the output and input combinations

for the parallel FIR filters. H,” is an L diagonal matrix which contains the subfilters.

The transposition of 2-parallel fast FIR filter in (3.3) leads to another equivalent structure

| V=B H 0, X, (3.6)
The 2-parallel fast FIR filter of (3.3) in transposition can be obtained as (3.6) and is
shown in figure 3.2 '

H 1 -1
¥ [t 1 0], ¢ X, -
rI7lo 1 1 diag| Hy+H, || 0 1 ¥ 3.7
0 Hl : Z—Z "'l 0

x(2k) : y(2k)

x(2k+1

A

—3p-1 Ho+Hi

- y(2k+1)
D Hi

Fig 3.2 Transposed reduced complexity 2-parallel FIR filter
The transposed architecture can also be obtained by tfansposing the signal flow graph of
the original parallel FIR filter. Generally both matrix transpositioh and signal flow graph
transpositions are applicable to any FFA to generate equivalent parallel FIR filtering
structures.
3.1.4 Three parallel fast FIR filter
A fast 3-parallel FIR algorithm can be derived by recursi?ely applying a 2-parallel fast
FIR algorithm. A
Y=Y, +z7'Y +z7%,
=(X,+27X,+27X,)(H, +2"'H +27H,) (3.8)
=(X,+zV)(H,+27W)

Where V =(X1 +g"X2) and W =(H_1 +z'1H2).Using the fast FIR algorithm Y can be

computed as

Y =H X, +27 ((Hy + W) (X, +V)~ H X, = VW) +z7VW

3.9
=[H,x, +z'2VW]+z‘1((Ho +H +2H) (X, + X, +27'X,) - H X, —VW) G9)
Where VW :(X] +z"X2)(H] +z”H2) can be computed as
' v = (X, +2X,)(H, +2"H,) 10

=[H X+ HX, |+ 27 [(H,+ H,) (X, + X,) - H X, ~ H, X,]

Substituting equation(3.10) in equation(3.9) we get
v <[HoXr 2 (X4 22 H T 2 [(4 H) (K4 X0) - B - .,

2 ((Hy+ Hy 427 H)) (X + X, + 27 0,) = HoXy ([H.X, + 272 H, X, [+ 27 [(H + H) (X, + X,) - H X, - H, X
() -, [

il

= H X, + 2" [(H, + H)(X, + X,) - H, X, ~ H X, |
+27 [H X, +(Hy+ H) X, + Hy (X, + X)) (H, + H,)) (X, + X,)+ H X, + H,X, |
+27 [(H,+ H,)(X,+ X,)~ HX, - H,X, + H,X, - H, X, | +z"H,X,
=H'X =2 H X, +2°[(H, + H,)(X, + X,)- H, X,]
+z"([(H +H)(X,+X,)- H X,]~ (HX, -2 H,X,))
+2 ([(Hy+H, + Hy) (X, + X, +X,)] - [(H +H,)(X, +X,)-HX, |-[(H,+H,)(X, +X) H.X,)

| (3.11)
The resulting 3-parallel FIR filter is given by
Y, = H,X, -z H, X, +2>[(H + H,)(X,+ X,)- H X,]
Y= 2 ([(Hy+ H)(X,+ X,) - H X,]~ (H,X, - 2" H,X,))
Y=z ([(H, + Hy+ H,)) (X, + X, + X,)][(Hy + H,) (X, + X,) - H X, | -[(H,+ H,) (X, + X,) - H X,])

(3.12)
The matrix form of 3-parallel FIR filter can be expressed as
Y, =QH,PX,
[H, [1 0 0]
H 010
Y, 1 -2 =z7 0 222 0] | ! | X, -
Yl={-1 -1 z® 1 0 o0|da 7, 00 1y (3.13)
: &\ g+l |11 ol ’
Y, 0 1 0 -1 -1 1 X,
H +H, 011
|H,+H,+H,||1 1 1]

The P, and Q, matrices are the pre-processing and post processing matrices respectively,
while the H, matrix is the diagonalized subfilter matrix. Hence, the 3-parallel FIR filter
is constructed using 6 subfiters of length N/3, including
H X, H X, HX,,(H,+ H)(X, + X,),(H +H,)(X, +X,),

(H,+H,+H,)(X,+X,+X,), and 3 pre processing and 7 post processing additions as

shown in figure 3.3 . The overall computation requirement includes 2N multiplications

“and 2N+4 additions. Comparing to the cost of the traditional and reduced complexity 3-

12

parallel structures, it is clear that the reduced complexity filtering structure provides a

savings of approximately 33% traditional structure.

x(3k) I —
x(3k+1) "
i

x(3k+2) > 1
2

-»é——» HotH,

Hy+H,

- 'i y(3k+2)
HytH+H, - < —

Fig 3.3 Reduced complexity 3-parallel FIR implementation

3.1.5 Fast Parallel FIR algorithm for large block sizes

Parallel FIR filters with long block sizes can be designed by cascading smaller length fast
parallel filters i.e., an m-paraliel FFA can be cascaded with an n-parallel FFA to produce
an (mxn) parallel FFA parallel filtering structure. The set of FIR filters that result from |
the application of the m-parallel FFA are further decomposed, one at a time by the
‘application of n-parallel FFA. The resulting set of filters will be of length N/(mxn).
When cascading the FFA'’s, it is important to keep track of both the number of
multiplications and the number of additions required for the filtering structure. The
number of required multiplications for an L-parallel FIR filter with L=L,L,...L, is given
by

M=rLIL[Mi | (3.14)

H L,' i=1
i=1

Where r is the number of FFA’s used, L; is the block size of FFA at step-i , M; is the
number of filters that result from the application of the i FFA and N is the length of the

filter. The number of required adders can be calculated as follows

13

A=A,I;IL,+§{Ai(gle](ﬁMJ]+(gM,) f}VL, -1 (3.15)

=1
Where A, is the number of pre/post processing adders required by the i" FFA. Consider
the case of cascading two 2-parallel FFA’s to obtain a 4-parallel FIR structure as shown
in figure 3.4. The resulting 4-parallel filtering structure would require 9N/4
multiplications and 20+9(N/4 -1) additions for implementation. The reduced complexity
4-parallel filtering structure represents an hardware (area) savings of nearly 44% when
compared to the 4N multiplications required in the traditional 4-parallel filtering

structure.

In matrix form, the reduced complexity 4-parallel FIR filter is represented as follows

Y4P=B4(]3><3®Q4)H4(P2®P2)X4P (3.16)
Y, [1 0 000 z*
Y 0100 1 0 1 0 z*
Where ¥,, =| '| ,B, = sy =
“”1’2“—1010—10Q“[—11—1}
Y, 0 -1 01 0 -1
_ A, _
H,+H,
H
2 X()
. H,+H, 1 0 ¥
H,=diag| H+H,+H,+H, |, P,=|1 1|and X,, = X‘
H,+H, 0 1 2
X3
Hl
H +H,
L H3' 4

Note that X4p and Ysp are permuted versions of X4 and Y4 respectively. B4 can be

obtained from Q, by replacing 1 by 7, , ,0 by 0,,, and by appropriate unfolding[4] of the

delay operator z™ of the 2-parallel FIR filter. The ® is the tensor or Kronecker product
operator[7]. The tensor product is extremely useful in signal processing applications

because it allows large matrices to be represented by small matrices. Using the tensor

14

product, the reduced complexity of 4-parallel FIR filter in relatively compact form can be
represented. It should be noted that the O, matrix is esséntially identical to the Q, matrix
of the 2-parallel FFA with the only difference being the power delay operator in the
matrices. The 4-parallel FIR filter structure shown in fig 3.4 can be thought of as 3
separate 2-parallel FFAs each producing 2 outputs, which are combined by B4 to produce
the 4 filter outputs. |

- HO - - ¥4k

x(4k) ‘ S ,
-i i y(4k+2)

»?——»
x(4kl+2)
x(4k)+x(4k+1) ;(4k+1)
;(4k+3)
x(4k+1)+x(4k+3
4k+1 o
+
X() Ho > ? - Lrl
- D

H0+H1 "?‘;\D'
RE
e iy o1

Fig 3.4 4-parallel fast FIR filter by cascading two 2-parallel FFA’s(Fj and F;)

3.2 Fast FIR filters based on Frequency Spectrum

In [25], it was shown that the power consumption of arithmetic units can be reduced if
statistical properties of the input signal is exploited. In [26], it is shown that the hardware
cost can be reduced by exploiting the frequency spectrum characteristics of the given
transfer function. This is achieved by selecting appropriate FFA structures out of many
possible FFA strt\ctures all of whom have similar hardware complexity at the word-level.
However, their complexity can differ significantly at the bit-level. For example, in

narrowband low-pass filters, the signs of consecutive unit sample response values do not

15

change much and therefore their difference can require fewer number of bits than their

sum. This favors the use of a parallel structure which requires subfilters which require

difference of consecutive unit sample response values as opposed to sum. In addition to

the appropriate selection of FFA structures, proper quantization of subfilters is important

for low-power or low hardware cost irﬂplementation of parallel FIR filters.

3.2.1 FFA structures for 2-parallel and 3-parallel FIR filters

By an simple modification of 2-parallel FIR filter in (3.1), the following FFA1 is derived
Y,=H,X,+z HX,

(3.17)
Yl = _HO—IXO—J +H0Xo + Hle

Where H, ,=H,—H,and X, ;=X -X,.

The structure derived by FFA1 [6] is shown in figure 3.5 where as the FFAOQ structure is

\

in figure 3.4. " -

x(2K)

x(2k+ l;

Fig 3.5 FFA1 structure of 2-parallel fast FIR filter

" The structures derived by FFAO énd FFA1 are essentially the same except some sign
changes. Notice that, in FFA1, Hy-; is used instead of Hp.;. When an FIR filter is
implemented using a multiplierless approach, the hardware complexity is directly
proportional to the number of nonzero bits in the filter coefficients. If the signs of the
given impulse response sequences do not change frequently as in the narrowband low-
pass filter cases, the coefficient magnitudes of Hp + H, are likely to be larger than those
of Hy — H,. Then, Hy + H| has more nonzero bits in the coefficients than H0 — H1 [5]. If
the signs of the given impulse response sequences change frequently as in the wide-band
low-paés filter cases, Hy — H, is likely to have more nonzero bits in the coefficients than
Hy + H,. Thus, to achieve minimum hardware cost, it is necessary to select either FFAQ
or FFA1 depending upon the frequency spectrum épeciﬁcations.

The (3 x3) FFA produces a parallel filtering structure of block size 3. With L=3, we have

16

Y,=H,X,+z” (H X, +H,X,)
Y, = HX,+HX,+z" (H,X,) (3.18)
Y =HX,+HX +H,X,
This can be written in FFAQ form as shown in equation (3.12).This structure computes a
block of 3 outputs using 6 length N/3 FIR filters and 10 preprocessing and postprocessing
additions, which requires 6(V/3) multipliers and 6(N/3 — 1) + 10 adders. Notice that (3 x
3) FFAQ structure provides a saving of approximately 33% over the traditional structure.
The (3 x3) FFA1 structure can be obtained by modifying (3.18) as follows:
Y,=H,X,+z" (H,X,)-z"(H,.,X,,~HX))
Y, =—(Hy X, — HX,)+(H X, + 2 H,X,) , (3.19)
Y,=Hy ,Xo0 —(Hy X, —H X)) -(H, X, — H X))
Figure 3.6 shows the filtering structure that results from the (3 x 3) FFAI. The following
(3 x3) FFAZ2 structure given by (3.20), which is efficient when the coefficient magnitudes
of Hy_, are smaller than those of Hy_14; or Hy+142-
Y,=HX,+z” (H,X,-H,_ X, ,+HX,)
Y =—H, X, +HX,+HX,+z°HX, (3.20)
Y=-H, ,X,,+HX,+HX, +H,X,

Figure 3.7 shows the i'esulting FFAZ2 structure for 3-parallel FIR filter.

x(3k) H
x(3k+1) .
1
3k+2 - 3k
=2 il > o =D 2

y(3k+1)

o LD

e
HZ'HI %\U 1
= * y(3k+2)
HO'HI +H2 | ANV »

. Fig 3.6 FFA1 structure for 3-parallel FIR filter

LTl | |

17

y(3k)

x(3k)

x(3k+1)
4

x(3k+2)

H2 - H1

Fig 3.7 FFA2 structure for 3-paralle] FIR filter

3.2.2 Cascading FFA’s
The (2 x 2) and (3 x 3) FFAs can be cascaded together to achieve higher levels of

. parallelism. The cascading of FFAs is a straightforward extension of the original FFA
application [2]. For example, the (4 x 4) FFA can be ob'tained by first applying the (2 x
2) FFAO to (2.1) and then applying the (2 x 2) FFAO or the (2 x 2) FFA1 to each of the
filtering operations that result from the first application of the FFAQ. The resulting (4. x
4) FFA structure is shown in figure 3.8. Each filter block Fy, Fo+Fy, and Fy represents a
(2x2) FFA structure and can be replaced separately by either (2 x 2) FFAO or (2 x 2)
FFA 1. Each filter block Fo, Fo + F1, and F is composed of three subfilters as follows:
(i) Fo : Ho,Hy,Hy = H,
(ii) Fo+ F1 : Hy+ H\,Hy + Hs, (Hy + H\) = (FH2 + H3),
(iii) F\ : Hy, Hy Hy + H, |
where
+ = +, for FFAQ,

{ —, for FFA1. 3.21)
When the filter block Fy + F is implemented using FFA1 structure, the subfilters are
How, Hp+3, and Hy +H; — Hy+Hs. Thus, even though FFAT1 structure is used for slowly

varying impulse response sequences, optimum performance is not guaranteed. In this

18

case, better performance can be obtained by using the FFA1’ shown in figure 3.9. Since
the subfilters in FFA1’ are Hy-i, H,-3, and Hy-; — H,-3, the FFA1’ gives smaller number
of nonzero bits than FFA1l for the case of slowly varying impulse response
sequences..Notice that the FFA1’ structure can be derived by first applying the (2 x 2)
FFA1 (instead of the (2 x 2) FFAO) to (2.1). When the filter block F;, + F; in Figure 3.8
is replaced by FFA1’ in Figure 3.9, it can be shown that the outputs are y(4k), —y(4k +
D, y(4k + 2), and —y(4k + 3). The complexity computation is similar to the fast parallel
FIR filter.

x(4k) % y(4k)
x(4k+2) Fo ™ y(4k+2)
Y *’
XA k) "é N v
F | -
x(41<+2)_+x(41(+3)ﬂ FotF, _i *ﬁ ~ ygiﬂ)
4Kk+1)
x(4k+1) >
o N | .
>
Fig 3.8 FFAO or FFA1 4-parallel FIR filter structure
4K) - x(4k+1 y(4k+1)
x(4K) - x() Ho-H, I ? \ |
p - y(4k+3)
K, - HyeH,+H; —>
+2)=x(4k+
X(4k+2)-x(4k+3) oo, | =

Fig 3.9 FFA1’ structure of 4-parallel FIR filter

19

3:2.3 Selection of FFA types
For given length N unit sample response values {#;} and block size L, the selection of best
FFA type can be roughly determined by comparing the signs of the values in subfilters
Hy H,, ..., Hy . For example, in the case of L =2 and even N, Hy, and H,
are

Hy=ho hy, ..., Ay,

H o =h,h, ..., h«y. (3.22)
From(3.22), the i value ofHy can be paired with the i value of H; as (ho, h1), (Mo, h3), . .
., (An-2, hny-1). Comparing the signs of the values in each pair, the number of pairs with
opposite signs and the number of pairs with the same signs can be determined. If the
number of pairs with opposite signs is larger than the number of pairs with the same
signé,Ho+H1 is likely to be more efficient than Hy —H;. The sign-comparing procedure

can be extended to any block size of L with appropriate modifications.

20

4 PARALLEL FIR FILTER STRUCTURES BASED ON
FAST CONVOLUTION ALGORITHMS

In this chapter, an approach to further improve the throughput of FIR filters can be done
with short length linear convolution algorithms. A set of fast short length linear
convolution algorithms has been developed to realize parallel processing of FIR filters
[8]. |

4.1 Fast Parallel FIR filters based on linear convolution

Any Lx L convolution algorithm can also be used to derive an L-parallel fast filter

structure. Generally, the L-paralle]l FIR filter

Y=HX “.1)
is first expressed as |
_ iy -
~L
- A X.
H, H, .. H H, 0 0]l ©
0 H H, H H, U
7 z7 X,
L 4 ... v,,] =0 0 H, H, H, 0 4.2)
: : : X,
' X,
| 0 0 H,, H_, H, | !
L X i

This form of the standard parallel filtering algorithm is similar to the transpose form of a
linear convolution [1]. Using this idea, reduced complexity of parallel filtering can be
generated. The basic idea is to start with an optimal linear convolution and take its
transposition to generate the parallel filtering algorithm. Some efficient fast short
convolutions based on Winograd algorithm, which have less number of multiplications
than FFAs, are shown in Appendix C. However, when the convolution length increases,
the number of additions increases dramatically, which leads to complex pre addition and
post addition matrices that are not practical for hardware implementation. Therefore, if
we could use fast convolu\tion algorithms to decompose the convolution matrix with
simple preaddition and post addition matrices, we can get computationally efficient

parallel FIR filter with reduced number of delay elements. Fortunately, the mixed radix

21

algorithm in [7], which decomposes the convolution matrix with tensor product into two
short convolutions can be used. This algorithm is combined with fast two and three point
convolution algorithms to obtain a general Iterated Short Convolution Algorithm (ISCA).
Although fast convolution of any length can be derived from Cook-Toom algorithm or
Winograd algorithm [4], their pre addition or post addition matrices may contain

elements not in the set {1,0,-1} (i.e., shown in Appendix C), which sometimes make

them not suitable for hardware implementation of iterated convolution algorithm.

4.2 ITERATED SHORT CONVOLUTION ALGORITHM (ISCA) IR
A long convolution can be decomposed into several levels of short convolutions. After
fast convolution algorithms for short convolutions are constructed, they can be iteratively
used to implement the long convolution [4].The mixed radix algorithm [7] is used to
derive the generalized iterated short convolution algorithm using the Tensor Product
operator in matrix form.

A M x M convolution can be decomposed into m x m convolution and a #x nconvolution,
whose short convolution algorithms can be constructed with fast convolution algorithms
such as Cook-~Toom algorithm[4] or Winograd algorithm [4][11] and represented as
Soma =0,H,P,X, and S, =0 HP, X, respectively. O, and Q, are post addition

matrices. P, and P, are pre addition matrices. H,, and H, are diagonal matrices, which

can be denoted as H, = diag[Pm x[hy B .. hm_,]T:l and

H, :diag[an[ho .. hn_l]T:l -respectively. They determine the number of

required multiplications in the iterated short convolution algorithm. X, and

(A, n .. hm_l]T are two column vectors, containing the two input sequences for

. T P
m x m convolution.. X,, and [h0 ho... h,,_l] are two column vectors, containing the

two input sequences fornxn convolution. These two convolutions result in two outputs:
Som-1 and Sz,.; of length (2m-1) and (2n-1) respectively.
Using the mixed radix algorithm [7], the resulting iterated short convolution algorithm

can be represented as

22

S2M—l =AM_mn (Qm®Qn)HM_mn (Pm®})n)XM | (43) .
Where H,, ,, = diag[(Pm ®PIx[hy, B ... hy,]T] and Ay ma is a 2M-1) by ((2m-

1)(2n-1)) matrix ,composed of (2»n-1) by (2n-1) unity matrices as shown in equation (4.4)

1 0 0 0
o1 o0 o\ 0 ...
00 - 0 1.0 0 0 }ﬂ—l
o 0o 0o 1| [0 1 0 0) .
N et 0 0 .0
Ttan w1yx (20m1) 0 0 0 1
ApM_n = . | Ifz""";‘@"'n 1 60 0 0
0 1 0 ¢
o 00 0o 1 0o o o
_____ Lo 0 0 1 0 1 06 0O
oo aiyorana=ny 00 0
0 H n 1
L 1(311—152(2'!;—1)

(4.4)

The order of convolution can be of any order, first i.e., mxm first followed by nxn
convolution or nxn fcénvolution followed by mxm conv-ol.ution to obtain M x M (mn or
nm) convolution. In this way, any long convolution can be decomposed can be
decomposed into any combination of fast short convolutions. A Lx L (L=L;.L;...L,)

linear convolution can be decomposed into r short convolutions

Sy,.=0, H, P, X, (i=1,2,..r). One of the resulting iterated convolution algorithm can |

be represented by
S, = AL(Q,q ®(-(0,,®0,)))HL (qu ®(.(p, ®FP,)))XL 4.5)
Where H, = dz'ag((P[4 ®(...(PL’_] P)))x[ho ho.. hH]T) and A4, can be computed

using the following procedure

23

4, = AL_L,LZLs '(Al ® 1(21,,-1)x(21,j~1))

A4, = AL_LII,zI,j,..L, (
A4, =4,

(4.6)

4® (2L, —1))><(2L,—1))

The above equation (4.4) is the iterated short convolution algorithm. The mixed radix
algorithm [7] combines two short convolutions to get a longer convolution, while this
iterated short convolution algorithm can combine any numbers of short convolutions and

thus it is more efficient.

The iterated convolution structure can be transposed to obtain a fast parallel FIR filter.

An L(L=L;L,..L,) parallel N-tap FIR filter based on iterated L xI
convolutions, S,, ,=Q, H, P, X, (i=1,2,..r) , can be expressed as

Y, =P"H,Q"A" X, 4.7)

X, =[X, o X X, X, .. oM, tx]
T X, (i=0,L...,L~1) inputs x,,.,,(k=0,1,2,..,7) |
H, = diag| Px[H, H, .. H,.T |
P =Py ®(+:(Pr 1, ®Pr)
H, (i=0,1,...,L~1) subfilters containing the coefficients #,,,;,(k=0,1,2,...r)
P’ =(PMT]X"| ®(..(Bl ., ®PL,)))

0 =(0l,, ®(- (0] ®CE)

A" is the transpose of the matrix defined by (4.4)
P and QT are the preprocessing and post processing matrices, which determine the

manner in which the inputs and outputs are combined, respectively [4].

24

Let us illustrate this through an example of 4-parallel FIR filter structure, implemented by

4 x4 convolution, which is done by the iterated two 2x2 convolutions as

=(®PT> (Q2®Q2)422X4

1 0 0 0 0 0 O] 11 01 1 0 0 0 0]
0100000 0 -1 00 -1 020 0 0
0010000 01 101 1 000
» 10010000 0 000 ~1~10 0 0
Where 4{ ,=(0 0 0 1 0 0 0[f®Q/=|0 0 00 1 0 0 0 0
| 0001000 0000 -1-1020 0
00007100 0001 1 0110
00000O0T1 0 00 00-100-10
000000 1} 0 0 00 1 1 0 I 1

1 1 01 1 00 00

PZT®P2T=O_]10 -1 1 0 0 O

00 00-1-11120

0 000 I -1 0 -11

'H,=diag([H, H,-H, H, H,-H H,~H-H,+H, H-H, H, H,-H, H)])
x,=[x, X, X, X, 7'X, °x, 7*x]

This 4-parallel FIR filter architecture is as shown in figure 4.1.Similarily a 6-parallel FIR
filter can be implemented by 2x2 and 3x 3 convolution. The order must be important as
it reduces the number of adders in its implementation. For ISCA, higher order
convolution should be first followed by lower order convolution for less number 6f

adders to be implemented.

25

x(4k+3 4k+3
(4K+3) = y(4hr3)

¥

>D

4k+2
X(4k+2) .

x(4k+ 12 y(4k+2)

x(4K)

y14k+1)

¥ y(4k)

Fig 4.1 ISCA based 4-parallel FIR filter

4.2.1 Complexity Computation:

The number of required multiplications is determined by the diagonal matrix H; in (4.7)

is given by

M= lL[M,. (4.8)

r

HLi i=1
- =l

Where r is the number of L x L, convolutions used, M; is the number of multiplications

used in the L x L, convolution, which is determined by H; , and N is the length of the

original filter. All multiplications lie in subfilters of the same length. The number of

i=1 i=]

subfilters is determined by [[A, , and the length of each subfilter is given by N/ Iz

. 26

"The number of required adders is determinedl by the adders used in pre and post

processing matrices and the adders used in subfilters, is given by

~

o8] (tho 1m0 - T o 3 (e)11 ot)|

i=l

(4.9)

The first sum gives the preprocessing adders and the second sum gives the numbers of

adders in the subfilters followed by the third one, which gives the post processing adders

of the parallel FIR filter. Function A(PmT‘_ x,,i) is the minimum number of adders in the

matrix P . Since each row of A4 has only one “1”, it will not increase the number of

adders. The number of required additions depend on the order of iteration.mxm
convolution is iterated ahead of convolution | (m>n), will lead to lowest adder
complexity.

The number of required delay elements is counted by the (L-1) delay elements in the

input side and the ones used in the subfilters, and is given by

D=L-1+]] M, TN———l | (4.10)

i=1 H L,-
i=l

4.3 Improved Fast Parallel FIR filter structure

When L is large, ISCA-based parallel filter involves many subfilters, which require a
large number of multiplication operations but the same hardware structure. Designing an
efficient core to share the computation of all these subfilters in different time slots can
reduce the hardware cost. Further reduction in the hardware i.e., no. of multiplications of
fast parallel FIR filters can be done by'transforming an FIR filter into linear convolution.
Then an iterated short convolution is used to implement this linear convolution. This

method will increase the no. of delay elements by decreasing the number of multipliers.

27

Simple control signals are used for the control of the data flow in the delay element
matrix (DEM).'

An N-tap FIR filter can be transformed into NxN linear convolution as shown in figure
4.2. The last N-1 rows of the 2N-1 outputs of NxN linear convolution are summed with
the upper N-1 rows of the 2N-1 outputs of the following convolution to get the N outputs
of the N-tap filter. Then the hardware cost will depend on the complexity of the NxN

linear convolution. The ‘D’ shown is an delay of N cycles for an Nx N linear convolution.

x(kN) ;? —p Y(KN)
x(KN+1) | _ - y(KN+N-2)
. NxN p Y(KN+N-1)
. linear
) D
x(kN4-N-1]. convolution : where k=0,1,2....
D

Fig 4.2 Implementation of N-tap FIR filter with NxN linear convolution
Based on the above property the algorithm for hardware reduced parallel FIR filter is as

follows:

- 4.3.1 Improved structure Algorithm: (4]

Improved structures for a given L-parallel N-tap FIR filter can be obtained as:

1. Form an ISC based FIR filter by (4.7);

2. Replace the subfilters with a core (V/L)x(N/L) linear convolution and two delay
element matrices to arrange the input and output of the (NV/L)x (N/L) linear convolution;
3. Implement the (N/L)x(N/L) linear convolution using the iterated short convolution

algorithm.

Consider an example of 2-parallel 6-tap FIR filter to illustrate this algorithm.
Y, =P H,Q X, “.11)

Where outputs ¥, =[y(2k) y(2k +1):|T

inputs X, =[x(2k+1) x(2k) x(2k-1)] ;k=0,1,2,..

28

H,=diag[H, H,-H, H,]

1

0

0

1

1

0

| 0 0
P=|1 -1|g,=]1 -1 1

0

1

The 2-parallel 6-tap FIR filter is as shown in figure 4.3. Ho , Hy—H,) H, are three 3-tap
subfilters of {ho,hohy} ,{ ho- by, ho- hs,hy - hs}, {h;,hshs} respectively.

x(2k+
x(2k

‘ Q'

> H, |—>
Hop-H) [—— P,
[1,

Fig 4.3 2-parallel 6-tap FIR filter

y(2k+1)
-—

y(2k)

By transforming the computation of 3-tap FIR filter into that of 3x3 linear convolution,

an improved structure is obtained as shown in figure 4.4.

(1)

HO,H0-HI,H1

T

x(3)

x(5) X0

A2)
x(4)

o]—

Q7|

[

L

[
>

—
>

3x3
Delay
Element
Matrix

\ 4

Fig 4.4 An improved 3-parallel structure for 2-parallel 6-tap FIR filter

3x3
linear

convolutio
n

CPO CPICP2
D
3x3
4 »| Delay
_ p| Element
Matrix

P’

The data flow of the Delay Element Matrix (DEM) in Fig. 4.5 is ‘horizontal in, vertical

out’ or ‘vertical in, horizontal out’ and controlled by C0, C1 and C2 signals. CO signal

controls whether the data are ‘horizontal’ in or ‘vertical in’. C1 signal controls whether

the data are ‘horizontal out’ or ‘vertical out’. C2 signal controls whether the data flow

horizontally or vertically in the delay element matrix. The delay element function is as

shown in figure 4.5. The structure can compute 6 input data in 3 clock cycles, thus it has

the same throughput rate as previous 2-parallel FIR filter structure.

29

T

Delay
Element
Matrix

'y

(b)
Fig 4.5 (a)3x 3 Delay Element Matrix (DEM) (b)Delay element function

4.3.2 Complexity Computation

For a L-parallel N-tap FIR filter, the computation is based on (NV/L) x (N/L) linear
convolution, which can be implemented with the iterated short convolution algorithm in
(5]@%;; number of required multiplications for the parallel FIR filter is equal to that of
(N/L) x (N/L) linear convolution. If N/L can be decomposed asL,L,L,... L , then the

number of required multiplications can be given as:

M= f[M, (4.12)
i=1

Where s is the number of L, x L, convolutions used to implement (N/L) x(N/L) linear
convolution .M is the number of multiplications used in the L x L, convolution, which is
determined by H, .The number of required additions is made up of three parts: 1).

additions used for the preprocessing and post proceséing matrices P’ and Q7 in (4.7);
2).additions used to implement the (N/L)x(N/L) linear convolution by iterated short
convolution ; 3). additions used in Fig. 4.2 for transforming (N/L)-tap FIR filter into
(N/L)x(N/L) linear convolution, which can be given by (N/L)-1. Therefore, the total

number of required addition can be given by:

30

i=1 [\j=1 k=i+]

[0 CYEINID:

Where 7 is the number of L xI, convolutions used to implement the L-parallel FIR

s Z[(ﬁm}(ﬂ kaA(PmTix”i)}r v' H i nj.][l_’-[m,,)A(QZ,.xn,)}

h
N
~. -~
O
x
S
N—
N
-
¥ :h
£
3
N———
b
—~
©
X
=
N——
—_

filter. The number of required delay elements is also made up of three parts: 1) (L-1)
delay elements in the input side as shown in Figure 4.3; 2). delay elements used in Figure

4.4 for transforming (N/L)-tap FIR filter into (N/L)x(N/L) linear convolution, which can

be given b M, iv——l ; 3). delay elements used in the two delay element matrices,
g y i\ 7 y

i=]

which can be noted as D, , where D, is given by

D, =1L[M,.ALI—+min((rrIMi),iZ—j. (HM)JZ—' (4.14)

Where HM,. is actually the number of output of matrix QT in (4.7) and is also the

i=1
number of input data that go into the delay element matrix before the (N/L) x (N/L) linear
convolution; it may be greater or less than N/L, and may be equal to N/L as in Fig. 4.4;
when it is less than N/L, the shape of the delay element matrix is like Fig. 4.6(a); when it
is greater than N/L, the shape of the Delay Element Matrix is like Fig. 4.6 (b).

N/LD N/LET
-
= r O
= TIMm N/L
Mi i=1
i=1 N/L
r 0 r D
IR TTIMi
i=1 i=
%) ()

Fig 4.6 Shape of Delay Element Matrix (a) HM,.-> N/L (b) HM . <N/L
=l i=]
Therefore, the total number of required delay elements can be given by:

. N
D=Ij1[Mi(~E—1)+2De+L—1 (4.15)

31

5 Parallel FIR filters based on 2-stage parallelism

Although the idea of improved fast parallel structure is applied for parallel FIR filters, the
computation of the subfilters is shared by a linear convolution processing core, its
structure is irregular for some cases. If a L-parallel N-tap FIR filter contains subfilters of
length (NV/L) is assumed, then previous ISCA-based structures can process nL input
samples in n clock cycles with all the » subfilters working simultaneously. » is also the
number of output samples from the preprocessing matrix Q’4” in (4.7) when L input
2

samples are input in each clock cycle, and thus the » subfitlers will process n

intermediate data, corresponding to the outputs of the preprocessing matrix, in » clock

cycles. If the computation of these »’ intermediate data in n clock cycles is obtained by
using one (N/L)-tap FIR filtering core, this core must‘ be able to process » data in one
clock cycle, i.e., the core must implement an n-parallel (N/L)-tap FIR subfilter, The
hardware complexity of this n-parallel FIR subfilter is far less than that of the » subfilters,
especially when N and L are large. This is the basic idea of the 2-stage parallel FIR filter -
structures. The improved structure for fast parallel FIR filter is an special case for 2-stage
parallel FIR filter.

5.1 2-stage parallelismC 21 - | .

There are two methods for the parallel FIR filter based on 2-stage parallelism;1).by
replacing the (N/L)x (N/L) linear convolution with (N/L) parallel FIR filter.

5.1.1 Generalization (Method-1) of 2-stage Parallelism

The structures for a given L-parallel N-tap FIR filter can be generalized as follows.

1) Form an ISCA-based -parallel FIR filter by (4.7) .

2) Replace its subfilters with a second stage r-parallel FIR subfilter, where n is the
number of subfilters involved in the first stage L-parallel implementation, and two DEMs
of size nx n each to arrange the input and output of the n—parallel FIR subfilter.

3) Implement the n-parallel FIR subfilter by first forming an ISCA-based »-parallel FIR
filter from (4.7), and then replacing each delay element ‘D’ with ‘nD’.

32

5.1.2 Method-2 of 2-stage parallelism

2). Direct application of the parallel FIR filter structures will have problems when L is
-large. Then the number of subfilters of the first stage L-parallel implementation, », will
increase dramatically. In this case, the number of required additions for preprocessing
and post-processing matrices of the second stage n-parallel FIR subfilter will dbmihate
the total number of required additions and lead to large amount of required additions.
Furthermore, large » will also lead to a dramatic increase in the number of required delay
elements because of the replacement of* ‘D’ with .‘nD’ in the implementation of the
second stage » -parallel FIR subfilter and the two DEM:s of size »* . Finally the latency

of the design will also be long since the computation latency is 2n clock cycles.

The improved implementation of L-parallel FIR filter structures (Method-2) by 2-stage
parallelism can be generalized as

1) Form an ISCA-based L -parallel. FIR filter by (4.7), where Lis the first stage
parallelism and it divides L . |

2) Replace its subfilters with a second stage L -parallel FIR subfilter, where

L =(L/ E)nand nis the number of subfilters involved in the first stage L -paraliel

implementation, and 2([;/ L') DEMs of size nx n needed to arrange the input and output

of the n-parallel FIR subfilter.
3) Implement the I -parallel FIR subfilter by first forming an ISCA-based L -parallel
FIR filter from (4.7), and then replacing each delay element “D > with “nD .

5.1.3 Complexity Computation
For the L-parallel N-tap FIR filter, where L has only 2 and/or 3 as its prime factors, the

number of subfilters of its first stage L -parallel structure (L=L;.L;...L,) can be given as

néllilM, (5.1)

33

Where r is the number of L x L convolutions used, A4 is the number of multiplications
used in the L, x , convolution, which is determined by H, in (4.7).It is obvious that
L= (L/ L’)n has only 2 and/or 3 as its prime factors and can be further decomposed as

(L'=L;.L,...Ls). The number of subfilters of the second stage L -parallel FIR subfilter

can be given as: HM ., which is also the total number of subfilters of the L—parallel N-

i=]

tap FIR filter. The final subfilter length is (N

7) Therefore the total number of required
n

multiplications is given by

_[N
M—(nL,)Ii;[M, (5.2)

Where n and M, are defined in (5.1).
The number of required additions is made up of three parts.

1) Additions A(L)required for the first stage L-parallel preprocessing and post-

processing matrices.

O 8 e

(5.3)
Where P’ and O

m;xn; mpxn;

are matrices with size m, xn, and m, xn, respectively.

2) Additions A(n) required for the second stage L —parallel preprocessing and post-

processing matrices

{3 e 1= e £ e o

3) Additions required for the subfilters in the second stage L -parallel FIR filter.

Therefore the total number of required additions can is given
A=A(L)+A(n)+(%—-l)HM, (5.5)
n i=1

where, 4(L) and A(n) are defined in (5.3) and (5.4), respectively.

34

The number of required delay elements is made up of four parts:

1) Delay elements on the input side of the first stage L—parallel FIR filter: (L/ L)(L - 1);

2) Delay elements on the input side of the second stagé L -parallel FIR filter: n(n-1);
3) Delay elements used in the two DEMs: 2n’ (L/ L) ,

4) Delay elements required for the subfilters in the second stage L -parallel FIR

filter: n[((N/nL) - l)li[M,.]

i=]

Therefore, the total number of required delay elements is given by
D=(L/L)(L-1)+n(n-1)+2r" (L/L')+n(((N/nL)— 1)f]M,) (5.6)
i=1

Note that when L= L, the direct implementation of Method-1 of 2-stage parallel FIR filter

structures can be obtained.

'5.1.4. Example for 2-Stage Parallelism realization
Consider an example of 3-parallel 36- tap FIR filter for the implementation of 2-stage
parallelism. Normally a 3-parall'el 36'-tap FIR filter can be implemented by ISCA as
shown in figure 5.1 is given by |

Y,=PTH,Q! X, 5.7)
WhereY,, P/ ,H,,0 and X, are the outputs, post processing, subfilters, preprocessing

and input matrices respectively as shown in figure 5.1.

y(3k+2

yG3kt1)

X(3k+2)
X(kt1)] J’r1-1-100- p[o —» |
x0K) Sl oo 2L w1 o110
- 00110 - [w Jr—>|010101] |
G == A
—oF>{| 000 01 T e 11—
—> [[)

Fig 5.1 Implementation of 3-parallel FIR filter

35

Where HyH;, H),Hy+H; Ho+Hy H;+H> are 6 subfilters of length 12-tap for an 36 tap
FIR filter, requiring an total of 72 multiplications. This design can process 18 input data

in 6 clock cycles with all the 6 subfilters working simultaneously. Six output data of the

preprocessing matrix) are generated when 3 input data are input in each clock cycle.
Each of these 6 output data of Q] is processed by one of the 6 subfilters. Therefore, in 6

clock cycles, 18 data will enter Q) and the 6 subfilters will process the generated 36

output data of with one subfilter processing 6 data.

The method-1 design will use the 12-tap FIR subfilter processing core to process in one
clock cycle those 6 data which enter one subfilter in a row, 36 output data of Q] can be

done in consecutive 6 clock cycles and maintain the same processing speed. The FIR
processing core, which can process 6 data in one clock cycle, is actually a 6-parallel FIR
filter. The hardware cost of a 6-parallel 12-tap FIR filter is less than that of six 12-tap
subfilters.. The 2-stage (method-1) parallel FIR filter structure for a 3-parallel 36-tap FIR
filter is shown in figure 5.2.)

The data flow of the Delay Element Matrix(DEM) in Fig. 5.3(a) is “horizontal in, vertical
out” or “vertical in, horizontal out” and controlled by C0, C1, and C2 signals. CO signal
controls whether the data are “horizontal in” or “vertical in.” C1 signal controls whether
the data are “horizontal out” or “vertical out.” C2 signal controls whether the data flow

horizontally or vertically in the DEM. The data flow is illustrated in Figs. 5.4-5.7.

i’j = 091)2’3!4’5 J =5,. . .,1, 0
k=0,6,12,18,24 ... +
s Qo cqt coz HIFHE, - HLHO cpg cin cP2
x(3(k+i)+2) + y(3(k+)+2)
X(3(k+i)+1 I Pre Post
loading 6 loading I(k+i)+1
X(3(k+i) : 6 6x6 6 llel 6 6 yG3(k+i)+1)
paralle 23 6x6 TH—>
Q' Q67(k+i)+|j Delay |7 FIR Delay Ps(kj A1y Ps
(] s | Element subfilter Element | 15 Yy (k)
b—@———» matrix matrix ‘

Fig 5.2 2-stage(method-1) parallelism of 3-parallel 36-tap FIR filter

36

In Fig. 5.4, Q,’s are the outputs of preprocessing matrix when and correspond to in Fig.

5.2. The data in preloading DEM with the same enter DEM at the same clock cycle,
while those data with the same will be processed by the same subfilter. In previous
parallel FIR structures, those data with the same should be each processed simultaneously
by 6 independent subfilters (i.e.,HyH;, H» Hyp+H; Hy+H,H,;+H). However, the 2-stage
parallel FIR structures will process ‘those data with the same by a shared filtering core in
one clock cycle. Both design structures process 18 data in 6 clock cycles, leading to an
effective 3-parallel processing. Fig. 5.5 shows the data flow in preloading DEM when
time ranges from 5 to 11. When time is 12, the pattern of data flow will return to that of

Fig. 5.4.Every 6 clock cycles, the pattern of data flow will switch between Figs. 5.4 and

e c
—° D D oD D D >
ST A o LCl
D D D D D D > CO(ch
. m N
'Co cl: ‘
; ?ﬂ D D D D D D o[—> .6
:CO | . 1l — —p| petay [
A _ b — . Element
L T D D D D D .l v _J Matrix | g
‘co i
‘l’| D D D D D 1
n Ci
- | []
(a)
2 +V°
|:> > D [Py,
H 0
Vi

(b)
Fig 5.3 (a) 6 x6 DEM (b) Delay element function

CQO0=0 CQ1=1 C$2=0

el LI LI
LSJLJI;IL_JLJD
] I

:Loos]L 11
] (IO
el T
.............. etk

CQ3=0 CQ1=1 CQ2=0

i [@o] [2a] [02] [0=] [@o] [0s] |
: [oa] [2] [o] [o] [o] [o] |
i [22] [2=] [@] [oa] [0a] [0a] |
: [os] [2a] [oa] o] [0 [o] |
: [@a] [2a] [2] [o] [2n] [on] |

: (o] [2=] [o] (o] [os] [o] |

Fig 5.4 Preloading 6x 6 DEM when (a)k=0andi=0 (i.e., t=0), and
(b)k=0andi=5(ie.,t=5).

CQO0=1 CQ1=0 CQ2=1

o] [oa] [ou] [for] [ou]
(o] [ea] o [[e] [oo]
(o] [o] o] [[o] g
: (o] [o] [ou] [o] [ou] [

H o o oo o o
 [2n] [u] [@n] [@a] [ou] [@n] :¥=6

L_]L&u_l[&]LQn,”Q_u“Qw :
: [oa] [oa] [o] [ea] o] [o] |
: [0a] [0u] [0-] [0e] [o] [oc] |
Iosslbzullesalloszll&I-

Fig 5.5 Preloading 6 x6 DEM when (a) k=6 and i = 0 (i.e., t = 6);
(b)k=6andi=>5 (i.e,t=11).
The post-loading 6x 6 DEM works the same way as the preloading DEM. The only

difference is that those £, ’s in Figs.5.6 and 5.7 with the same index j enter the post-

CP0=0 CPi=1 CP2=0

f ey | o o e |
:lelI 1
=11
N | | [|
4 2 |
11110
"""""" (@ "t

Fig 5.6 Post-loading 6 x 6 DEM when (a) k =
12andi=5 (i.e., t=17).

and (b) k =

38

CP0=0¢ CP1=1 CP2=0

[[[0 (o]] o]
mmmlvulmlrmlg

0

0

: | 25 I | Py I LPz: I P, le‘ ll Py l
o

o] O] G A [] |

o] [[Fo] [(] o] |
5 (o] G o] (2] |

12andi=0(.e.,t=12),

loading DEM, and those P, ’s with the same index will be processed by post-processing

matrix | at the same time. In Fig. 5.6(a), the first six P,(i=0,1,2,3,4,5) enter

postloading matrix when =12, because of the latency of 12 clock cycles, which will be
shown in timing analysis. Fig. 5.6 also shows the data flow in post-loading DEM when
time ranges from 12 to 17. When time is 18, the pattern of data flow will switch to that of
Fig. 5.7. Every 6 clock cycles, the pattern of data flow will switch between Figs. 5.6 and
5.7. The timing analysis of 3-parallel 36 tap FIR filter is as shown in fig 5.8.

CP0=1 CP1=0 CP2=1 CP0=1 CP1=0 CP2=1

N S S0 SN A A J

r -
' ’ ’ [
v | Pis Py Pys Py, || Pi | ST I o | Pso || Pao Py Py {{ P [[| Poo '
: . : [
. Pys Py Py | 9 Py Py ' . Py P, Py Py P, Py '
’ : : '
o P P P P P ' v] Ps P, P Purj| P Py |
' 3s 34 33 3 31 30 ; k=12 ! 2 32 12 2 :
L[] L]
v Ps 1 Pud | Ps || Pz |} P || Pao E ' Ps | P || P || P |} Pis)] Pos E
: o -
| Pss [[Psa [[Pss [| Pz || Pst | Poo | - ¢ | Pso || Pas {{ Pas | [Pos [| Pra[| Poa]’
- - — 118 | :
— [
E Py, Py Py, Py Py Pyl ! k v Pss Pys Py Py Pis Pos |
: ' : [

Fig 5.7 Post-loading 6 x6 DEM when (a) k=18 and i =0 (i.e., t = 18),
~ and(b)k=18andi=>5 (ie., t=23).

fme g 4 2 3 4 $i6 7 8 9 Jo HI2 13 44 15 16 578 19 W 1 2 N i 24
Q;" ('Iupu(18 data. outpui 36)f Input 18 data. output 36 (ﬁ!pn/ 1& dara. puipwr 36 \Llupul 18 data, onp 36 *
Pro-DEM (Proloading 36 data (Protoading 36 dara)L Proloading 36 duta \L Proloading 36 duta *
(;5‘;1;::3‘ r {die)(Processing 36 dat A Processing 36 daia \h(Processing 36 data) %
i : :
Pnsz-’m‘.z\i(Idie) Idte L Posiloading 36 data Postlvading 36 data j
» { , (It 3 'a > ,
£ (Jdle)\]d/(‘{)\inpnr & data,ouiput 18 jL""’"’ 36 data, output 18
. i : / i
CcQo low 1 high 4 low (high
CQt (high)(low)L high A low ;
Q2 (7 low)\ high low 4 high X
([unknown)(unknown { low (high ;
Cro
cel unknown { wuknown (high Jow
cP2 (nitknown)/ unknown (low j high *

Fig 5.8 Timing of the 3-parallel 36-tap filter by 2-stage parallelism

39

5.1.4.1 6-Parallel FIR Subfilter as a Shared Filtering Core
An ISCA-based 6-parallel FIR filter is described by

Y, =(P ®P)H, (0] ®0)) 4 ,X, (5.8)
Where P/ ® P, O] ® Q) , 4 ,,, X, are obtained by ISCA as in equation (4.5) with .
But Hs is defined as

H6=diag((]§T®P2T).|:SH0(j) SHl(f) SHz(j) SHs(j)'SH4(j) SHS(j)]T)

represents the subfilters of the /* one of the 6 subfilters Hy H;, Ho, Ho+Hy,Ho+Hy, Hi+H;

which are of length 12.

x(6k+5)
—>- y(3k+2)
X(6k+4) _ —
x(6k+3) - Y(3k+1)
alie) T "
x(6k+1) > §BK+2)
: —> [Csuz]
x(6k) | ‘ 3K+
> 430
8 ‘
(Q:T® @1 A 3,12 : (18,] »,"® P,T
b=
6D
(a)
i=5 4, 3, 2,10
H1+H2,H0+H2%1012H1,H2,H1.H0
Qs; Ps;
KT —.>
4j 4
—_— '
AR Pa:
-%EL—-> 6-parallel ———Féb
2j N FIR | 2
Qu: subfilter Py
L —p P :
Qo; 0j
—l—p —
(b)

Fig 5.9 (a) 6-parallel FIR filter as shared filtering core (b) block diagram of (a)

40

VLSI structure of a 6-parallel FIR subfilter as a shared filtering core is shown as in Fig.
5.9. This 6-parallel FIR subfilter is derived from the ISCA-based 6-parallel FIR filter by
replacing the delay element “D ” with “ 6D ” which is because this 6-parallel FIR
subfilter will be shared by the 6 subfilters Hp H;, H), Hy+H;, Hy+Hy, H;+H; .Therefore, the
hardware cost of this 6-parallel FIR subfilter is the same as that of the ISCA-based 6-
parallel FIR filter except the 6-fold increase in the number of the delay elements. The
total number of required multiplications, additions and delay elements of the 6-parallel
12-tap FIR subfilter are 36, 70 and 138 respectively. The preprocessing and post-
processing require 52 additions. The subfilter length of this 6-parallel 12-tap FIR subfilter
is 12/6=2. From Figs. 5.1 and 5.2, the computation process of preprocessing and post-
processing of the ISCA and the 2-stage design are exactly the same and the differences
are located in the subfilter part. The 2-stage 3-parallel 36-tap FIR filter can save 36

multiplications at the cost of 4 additions and 144 delay elements. -

5.1.4.2 Method-2 realization:

In method-2, the increase » will be controlled, when L is large. The first stage 3-parallel
FIR filter has 6 subfliters (» =6). If 36 data can be processed in 6 clock cycles, an
equivalent 6-parallel implementation can be obtained. When 1=3 , 36 data will generate

72 output data of Q] and the 6 subfilters of length 36/3=12 will process the generated 72‘

output data of with one subfilter processing 12 data. 12 data will be processed by one of
the 6 subfilters in one clock cycle. When a shared filtering core is designed, a 12-parallel

FIR sﬁbﬁlter of length 12/12=1 is used as shown in figure 4.10.As shown in the above

analysis, the 36 data must enter the 6x 6 preloading DEM in 6 clock cycles. But one Q;
can only process 18 inputs in 6 clock cycles. Therefore, two Q] and two 6 x 6 preloading

DEM?’s are used on the input side in Fig.4.10. Meanwhile, two B and two 6x 6 post-

loading DEM’s are used on the output side for the same reason. The second stage 12-
parallel FIR subfilter module requires 66 delay elements on its input side. Since its 54
subfilters are all 1-tap, the number of required multiplications, additions and delay
elements for subfilters are 54x 1=54, 54x 0=0 and 54 x0=0. The first stage preprocessing

and post-processing matrices require 24 additions. The second stage preprocessing and

41

postprocessing matrices require 192 additions. Thus the number of required
multiplications, additions and delay elements for the 6-parallel 36-tap FIR filter are 54,
192+24=216 and 36x4+11x6+4=214 respectively. The timing analysis of 6-paralle]l 36-
tap FIR filter is shown in figure 5.11.

i,j=0,1,2,34,5 s 10
k=0,6,12,1824 ... : J =00l
CQO0 CQ1 CQ2 HI-+H2,. . -1:‘251’“0 CPO CP1 CP2

x(6(k+i)+5) y(6(kti)+5)
——_’
x(6(k+i)+4 Pre Post >
loading loading .

i 6 6 6 6 6(k+i)+4
x(6(k+i)+h) =QT Sy 6x6 Ly Ly 6x6 W - y(6(k+i)+4)
@ > Q6 c+iy+ Delay Delay Pok+i-12)4§ 3

_=0(k '5)"’1 Eleme.nt Elemelnt §=0,.00sS y(6(k+i)+3)
\——E}—P =0 matrix matrix e
12)
CQo CQ1 CQ2 paratiel CP0 CP1 CP2
(6(kc+i)+2) subfilter (6(c+D)+2)
X 1 y 1!
x(6(k+iy+1) : Pre Post
e > loading loading {
x(6(k+1) . 6 6 6 6 . y(6(k+i)+1)
™ QT Vi l‘;e’: fy L S ge): :y f—lp,T —
b ‘ Qeacriyy El ¢ El Pok+i-12)4j)
=0,...,8 emen ement 20,5 Y(6(k+i))
L..l : I__> matrix matrix l———>

Fig 5.10 2-stage parallel FIR filter for an 6-parallel 36 tap FIR filter

me l g 3 2 3 4 $i6 7 8 § 10 |1k 14 Is 16 17 } i 18 20 2 22 23‘ 24
Q"’ Input 36 data, output 72 Y tnput 36 dasa. output 7'?J(Input 36 duta, output 72 X laput 36 data, owiput 72 X:
Pro-DEM L Proloading 72 data Proloading 72 daia Proloading 72 data Proloading 72 data E[
ll-pa;’fl]lel Kdte 4 Processing 72 data 3 Processing 72 data Processing 72 data t
subfhter) e 4
Post-NEM Idle Lidle L Paostloading 72 data Postloading 72 data)il:
I’;" tdle v Ietle 1 Input 72 data.ourtput 36 X Input 72 data, output 36
cQo (fow i High (tow Tigh)¥(:
cor | high)i(fow) high fow %C
CQ2 - low X; high) low high t
cPo unknawn X uinknown / C low high Xi:
CPl L unknown X: unknygwn A high fow %:
CP2 iitkitown X_ wnkinown) (e high X:

Fig 5.11 Timing of 6-parallel 36-tap FIR filter

42

6 Application of Parallel FIR filters

The main applications [4] of parallel FIR filters are in equalizers, 2D parallel FIR filters,
2D Discrete Wavelet Transform(DWT) . In this chapter, the high speed implementation
of 2D DWT based on hardware efficient parallel FIR filters are realized.

6.1 2D Discrete Wavelet Transform

The two-dimensional (2-D) discrete wavelet transform (DWT) ([12]-[14] is a
mathematical technique that decomposes a 2-D discrete signal in a multiresolution space
domain by using dilated/contracted and translated versions of a single finite duration
basis function, named the prototype wavelet. The discrete wavelet transform (DWT) has
been widely used in audio and image processing, digital communications and other
application fields. This computation transform has been widely implemented in very-
large-scale integration (VLSI) [12]-{16][21][22][23] because of the real-time
requirement. DWT has traditionally been implemented by convolution or FIR filter bank—
based structures [12]-[16][21][22][23]. At present, many VLSI afchitectures for the 2-D
DWT have been proposed to meet the requirements of real-time processing. However,
because the filtering operations are required in both the horizontal and vertical directions,

designing a highly efficient architecture at a low cost is difficult.

Fast algorithm based parallel FIR filter structures are designed to improve the processing
speed and control the increase of the hardware cost at the same time. This design can

reduce the computation time of the reported fastest 2-D DWT architectures [12] with

2 2
filter length 4 from — to—— , but the number of required multipliers is only 3 times
that of [12]. Higher processing speed can be achieved when parallel FIR structures with
higher parallelism levels [17] are used. Furthermore, since the filtering structures are

regular, the control signals are very simple.

6.1.1 2D Non separable DWT structure based on parallel FIR filters
The 2-D DWT consists of computing the 1-D DWT of each of the N rows of the original
N x N image and then computing the 1-D DWT of each of the resulting N columns [22].

43

An efficient 1-D DWT decimation filter has been described in [12] and [13]. Although
this decimation filter can save the number of both multipliers by a half, it has two
drawbacks: 1) the input sampling fréquency must be two times as fast as the output
frequency, in order to get an output at every clock cycle; 2) this decimation filter cannot
be easily operated at a higher processing speed.

The design is illustrated through an example .Let us take an image of size 8x8 as in

©6.1),

X=| 6.1)

filter length as 4, the low and high pass filter coefficients as H ={a,b,c,d} and
G={e, f,g,h} respectively. First apply low-pass 1-DDWT to (6.1) in the row
dimension. After low-pass filtering and down sampling by 2, (6.2) can be obtained from
6.1). Eqixation (6.2) can be simplified as (6.3), where i=0,1,...,7 and it can be
transformed into matrix form and represented as (6.4). From (6.4), 1-D DWT in (6.3) has
been transformed into two FIR filters each with a filter length of half of the original filter.
A low pass 2-parallel 2-tap FIR filter can be get from ISCA with H,

1 0 O
asH, =diag|b b+d d|, Q,=|-1 1 -1| and the remaining P,,X; ,Y> are same as
2 g 2
0 0 1

that equation (4.7) as shown in figure 6.1. Similarly a high pass filter can be obtained by
replacing b, d and a, ¢ with f, 2 and e, g respectively.

44

x(2k+1) III__’ y(2k+1)
— —> L~y
2Rl
El QT b+d P,T)ﬁk)

Moy My,
my,
My My

_| Mo My
My My,
sy Mgy
Mgy Mg,
RIS

Fig 6.1 2-parallel 2-tap FIR filter

X2 Xo3 Xoa Xos Xoe
XYoo X3 Xy X5 Xy
Xy Yoz Xpg Xps Xops
Xy Xz3 Xy X35 Xy
Xa2 Xa3 Xys Xas Xye
X5 Xs3 Xgq Xss Xsg
X2 Yoz Xea Xgs Xes
Xp X3 Xqy Xgs X

dx,, +cxy +bxy, +ax,
dx,, +cx, +bx, +ax,
dx,, +cx,, + bx,, +ax,,
dxy, +cx;, +bx;, +ax,,
dx,, +cx, +bx,, +ax,,

dxg, +cx5) +bx, +axs,
dx, +cx,, +bx,, +axg,
dx.,, +¢x, +bx,, +ax,,

My Mgz]

My My

My My

my, My

my, My

ms, Mg

Mg, Mgy

m;, My |

my]=[bx,+ax, dxg+ox, +bx,+ax, dx,+ex;+bx, +ax, dx,+cxg by, + ax, |

§<
S oo & -
o O o Q
S QU o
S O Q O
QU o ©

X717 J

dxy, + CXgy +bxy, +axys

dx,, +cx,; +bx,, +ax, .

dx,, + CXyy + b2y, +ax,,
dx,, +x55 +bx,, +ax;,
dx,, +cx; +bx, +ax,
dxs, + x5y +bxg, +axss
dx,, +cxg +bx,, +axgs
dx,, + CXoy + DX,y +ax,s

45

o Q © O
o o o
Q © O O

dx,, + cxps + bxy +axy,
dx,, +cx;5 +bx; + ax,,
dx,, +cx,5 + bx,, +ax,,
dx,, +cxy5 +bxy +ax;,
dx,, +cx, +bx, +ax,,
dx,, +cxg5 +bxg, +axg,
dx,, +cx g +bxg +axg,

dx,, +Cxp5 +bx,s +ax,, |

(6.2)

(6.3)

m, 0 0 x, x,|ld 0 x, 0 x,

Myl %o Xa Xy Xallel |Xe X [d}_ X, X, [c} 64)
m;, X, X3 X4 Xs||b Xy Xq LD X3 X5 L4y ‘
m;3 Xiq Xis X X7 L4 Xia X Xis X7

If 2-parallel FIR filter structure is - applied to (6.4), the computation of

[mo m, m, m;]| requires just two clock cycles, with [m, m,]coming out first

7

and then [m,, m,] coming out after two clock cycles; the row filtering of (6.1) can be

completed by the architecture shown in Fig.6.2. Only low pass section is shown, the high
pass section is similar to it having the same input data, can be obtained by just replacing
b, dand a, ¢ withf hand e, g respectively.

o o +IMyy My; Moy

=0 oy %om——] (b

t=1 x5 X9

. 14 .

o o o Mpq My My

* . *
* * *

t=15 X716 X714

=0 3 X01 " {a’ c}
t=1 X13 X11 . .

. L4 .

Fig 6.2 1D DWT (i.e., after row filtering) based on 2-parallel FIR filter

Note that “4D” in Fig. 6.2 is used to réplace every “D” in the original parallel FIR filter
shown in Fig.6.1 because the parallel filter is shared by four rows of input data, which are
processed as shown in Fig. 6.2. After filtering the first through fourth columns of the first
through fourth rows of (6.1), filter the fifth through eighth columns of the first through
fourth rows of (6.1). After filtering the first through fourth rows is finished, filter the first
through fourth rows starting from the first through fourth columns. Now apply high-pass
1-D DWT to (6.2) in column dimension. After high-pass filtering and down sampling by
2, we can get (6.5) from (6.2) .If low-pass 1-D DWT is applied to (6.2) in column
dimension, after low-pass filtering and down sampling by 2, equation (6.6) can be

obtained from (6.2) .It is obvious that the computations of the first row of (6.5) and of

46

(6.6) require that of the first and second rows of (6.2); the second rows of (6.5) and (6.6)

require that of the third and fourth rows and previously computed first and second rows

of (6.1); the computation of the i row of (6.9) and (6.10) requires that of (2i—1)" and

(2i)" and previously computed (2i-3)" and (2i-2) ™ yows of (6.6). Equation (6.5)

can be Simpliﬁed as equation (6.7) and equation (6.6) can be simplified as equaﬁon (6.8).

r

Jmy, +emy, Sy, +em,, Jmy, +em,, Jimy, +em,,
HG = hmy, + gmy, + fmy, +emy, hmy, +gm,, + fm, +em,, hmy, + gmy, + fmy, +em,, hmy +gmy; + fin,, +em,
hmy, + gmy + fimy, +emy, hmy, + gmy, + fm, +ems, hmy, + gmy, + fin, +emg, hmy, + gma, + fm,, +emy,
| Amy, + gms, + fmg, +em,, hmy, +gmg + fmg +emy hmy, + gmg, + fing, +emy, hmg, + gmg, + fing, +em,
-) .
HGy, HG, HG, HG,
_ HG, HG, HG, HG,
HG,, HG, HG, HG,
;_HGSO HG3I HGSZ HG33
(6.5)
i bmy, +am,, bm,, +am,, bmy, +am,, bm,, +am,,
HH = dmy, +cmyg +bmy, +amy, dmy, +omy +bmy, +amy, dmg, +emy, +bmy, +amy, hmy + gmy, + fimy, +emy,
dmy, +cmy, +bmyg +amgy dm,, +cmy +bm, +amg dm,, +cmy, +bm,, +amg, hmy + gmy, + fin,, +em;,
| dmy, +cmgy +bmg, +am,, dm, +cmg, +bmg +am, dm,, +cmg, +bmg, +am,, hm, + gmg, + fing, +em,,
HHOO HH()l HHOZ HH03
= HHI() . HHH_ HH]Z HHI3
HH,, HH, HH, HH,
_HH30 HH,, HH,, HH, .
(6.6)
HG,, Jmy, +em,, my;, 0 m, 0
HG,, | | hmy, +gm,, + fin, +em,, | |my, my, [f}L my, my [e] 67
HG,, hm, +gm; + fm, +em;, my, My (\Lh] [ms; m (&
HG,, hm, , + gm;, + fm, +em,, mg, my, my; M,
HH,, bm, , +am,, my, 0 m, 0
HH,, dm,, +cmy, +bm, +am;, m,, my \lb| [my, m, |la ©63)
= = + .
Hsz dmzj +omy, + bm4j +am, m,, m, || d my, my || c
HH,, am, +cms, +bm,, +am,, Mg, my, | |m, m

From (6.7) and (6.8), the computations of (6.5) and (6.6) have each been transformed into

two FIR filters each with a filter length of half of the original filter. If two 2-parallel FIR

filter are used as shown in Fig. 6.1, two column elements in each row of (6.2) is

47

Fig 6.4 Output data flow of 1D DWT of 2-parallel FIR filter

- computed in each clock cycle, and then if two 2-parallel FIR filters are used with m, as
input, two row elements in each column of (6.7) or (6.8) can be computed in one clock
cycle. The only problem is that the computation of (6.2) with two 2-parallelv FIR filters
outputs two data [m,, m,]or[m, m;] in one clock cycle, which has been shown in
Fig. 6.4, but that of (6.7) or (6.8) with two 2-parallel FIR filters requires four data
[mo ;omy, my my j:l as input in eaéh clock cycle. A 4x4 DEM similar to Fig. 6.5(b)

is used to solve this problem. The 2-D non-separable DWT structure for image size of
8x8, which computes the first resolution level of an N x N image in N’ / 4clock cycles,

is shown in Fig. 6.5. The delay elements in the 4x4 DEM have the functionality as
shown in Fig. 6.5.From Fig. 6.5, the 2-D non-separable DWT can finish computing the
first-resolution-level HG, HH ,GG and GH of an 8x8 image in 16 clock cycles. Output

~ data flow of delay element matrix is shown in Fig. 6.6.

48

Note that the two input data to the 2-parallel filter {a,c}are the same as those to{e, g} ;
thus, these two 2-parallel filers can share the same Q] block and delay element of the
input side as shown in Fig. 6.1 and four addition operations can be saved. Another four
adders can be saved from sharing the same input data to the two 2-parallel filters {5, d}
and {f,h} . This sharing can also lead to the saving of 4x2=8 delay elements of the first

level and 8x2=16 delay elements of the second level. The total hardware cost of this
architecture is 24 multiplications, 32 additions, and 40 delay elements. In general, the

computation time for the first-resolution-level 2-D DWT of anNxN image is

N? / 4 clock cycles by using 2-parallel FIR filters.

5)
6)
*03 X, 4x4
Xg3 Y01 1 :
. X1 X Delay ' .
i o Element 3 : .
X33 21 X X0 Matrix : :
X31 X5 X10 __-:ﬂ__r__'.EB i 'EGIOGGIO
M . X332 X20 : {‘h} :
: X0 . : \ HG(,GG

...............

C Decomyymyymyme; 3y, m'yim'y m'yy m'y; 5)...my; m's;mzem'zg 7)., mj; m'y; myp m'yg
L] LR t
2)-.. m3p My My My 4)l-lm30m20 %0 IB._D_O '6).;. my,; m'“ mje m'lo 8)..- my,; m'm Mg m'oo

b
4x4
Delay

—>
_ﬁ Element —>

Matrix

T

!

49

(§
O >

(c)
Figure 6.5 (a) N’ / 4 2D DWT structure for an 8x 8 image (b) 4 x 4 Delay Element Matrix

(c)Delay Element function

— —_
| ESA AAIEI R NN A EAEAT X EET EEEAT AL EAT LA
oo Mg M gy nMMgy M g Mg MM g38 M3
m'wiimlo:m'u:;ml1%'3111'123'"12:3“'13?:'"13?
m'yenmzg) M2y My (g5l My M 30 My
L [" () 1 L LY} [} " " * .o L]
Jn Mz N () ICPRL 1] 11 POYL 1] X1} .
o S e e M e Lt T L T e]
Iy My VI ey g P VIR LY VRS LR IR U PR
. 1 c: :.] ::] 1] o: . 1] !: :
m'sg iMgo |5y Mgy 2 M's0Msy . in's30ms;3 |

[} '- " L] L} []
m'sgl Mg i’y Mgy TMgiimegy } M35 mg3)
: " 0oy .: oo vy :l ’
D e teg e X M 72;M72 M0 7373 .

Fig 6.6 Output data flow of 4x4 DEM

6.2.2 2-D DWT of an N x N Image by L- Parallel FIR Filtering

Now, the algorithm for compl—xtiﬁg tHe first level 2-D DWT of an NxN image by
applying L-level parallel FIR filtering can,be generalized. For a 2-D DWT with low-pass
filter H and high-pass filter G, first decimate H and G by factor 2 into
{H,,H }and.{G,,G,}.H,,H,,G,,G, are all subfilters. The 2-D nonseparable DWT

structure, which computes the first-resolution-level of an Nx N image in N?/4clock
cycles, is shown in Fig. 6.7.From Fig. 6.7, the subfilters Hy and Gy share the same input
data for both the first and the second level of computation. Subfilters H; and G, also
share the same data for both levels of computation. This property can save large number
of delay elements especially for the second level of computation, because the saving of
each delay element in the second level filter structure will lead to the saving of N delay
elements of the final 2-DDWT structure. When parallelism level L is greater than 1,

adders can also be saved.

50

...............

L : :
x—1+-T—* HO r
X0 # ; 2l 5

HH'

L,
&
(2L) x :
2 QL) |1z
Interleave 7£§ Delay | ~ : BT
Element ! :
Matrix ; m :

TN LTI rTTYY T T

F.HH oot HH'o): ~HH'yy HHy

HH o HHp (HH,j HH

HH',0! HH', 'HH',; CHH
1 1 1 1

Fig 6.9 Interleaving structures of 2D DWT structures for an N x N image

(a)row interleave (b)column interleave

Input -

4

s GG,
1rs GH
level of HG.
2-parallel'rI—IH—>
2D DWT'| > storage
* | for HH'
1<)

Fig 6.10 Hardware implementation of 2D DWT for an image of

NxN size with J-level resolution in N?/3 clock cycles.

51

For an 8x8 image in (6.1), the hardware implementation of its 2-D DWT with J-level
resolution and a computation time of N?/3 is shown in Fig. 6.10. The 2-D DWT

structure in Fig. 6.7 works as follows. The outputs HH,; of the first resolution level

N?/ADWT structure are also the inputs of the second resolution level N?/4 DWT
structure. As shown in Fig. 6.5, HH, from a N 2/4DWT structure are generated in the
sequence shown in Fig. 6.8. Compariﬁg the data flow in Fig. 6.8 with the input data flow
ofaN’/4 DWT structure as shown in Fig. 6.3, N +8 storage elements are needed for the
output of the first resolution level HH before starting the computation of the second
resolution level 2-D DWT, and N/2+8 storage elements are needed for the output of the
second level HH before the start of the computation of the third level 2-D DWT, and so
on. Thus, the total storage elements for HH', i < jis given by
(N+8)+(N/2+8)+(N/4+8)+...=2N +8(J -1) (6.13)
Since the computation of different resolution levels of 2-D DWT are shared, the
computation of HH'will be interrupted whenever higher level HH'™' is ready to be
fetched from the storage and computed. In order to resume the computation of lower
level HH', we need to save the intermediate computation results for HH'and interleaving
filtering is used. ‘Tc-) interleave the filtering of the first-resolution-level N2/4DWT

structure shown in Fig. 6.5, replace “4D” and “8D” in Fig. 6.5 with Fig. 6.9(a) and (b),
respectively [4].In Fig. 6.9, every pair of DEMUX and MUX switch to next channel i
when the /" level of 2-D DWT is being computed.

The data flow of the hardWare implementation of the 2-D DWT of an .8><8 image with
two-level resolution and a computation time of N?/3is shown in Table 6.1. In Table
6.1,x, and y, are from two different 8x 8 images. Let us assume that these two images
are ﬁrocessed in arow. HH,; and HH]; are the outputs of the first and second resolution
levels of the image represented asx, . From Table 6.1, we can see that there is a latency
of 4 clock cycles between the input of HHY and the output of HH because of the

4x 4 delay element matrix in the first level DWT structure as shown in Fig. 6.5. From

52

Table 6.1, we can also see that input data of the i” resolution level will be interrupted by
those of the (i+1)" resolution level, (N /2 —(2L)2)clock cycles after the first input

data of the /" resolution level have been given. Only after the available data of resolution

level higher than i are processed, the available data of resolution level i can be processed.

6.2.3 Computational Complexity
The hardware cost of the 2D DWT structures of an N x N image in terms of the number
of required multipliers (R.M.), adders (R.A.), and delay elements (R.D.) with resolution

level J as

RM = 2.2(M(H,A,L)+M(G,«,L))-

R.A:Z.i(A(H,,L)+A(G,.,L)—A(Q,€,_,L)—'A(le,L))+4.L | (6.10)

RD=[(2.L)J+2N |+ le(D(H,,L)+ D(G,L))+4.I

i=0
Where M (H,,L),A(H,,L) and D (H,,L) are the number of required multipliers, adders
and delay elements for implementation of a L-parallel subfilter H. respectively.

- A(Qf, , L) is the number of required adders for the O}, block of a L-parallel subfilter H,.

The computation time is

N? 1 1) 2N?
—| l+=+—+... |= .
2L 4 16 3L

For =2, the computation time is N%/3 as shown in table 6.1.

A 4-parallel 2D DWT structure can be obtained by keeping L=4 in figure 6.7.The
interleaving structures will have a delay of 8D at both the row and column 1D DWT.
This structure will have an 8x8 DEM for the transition of data from row to column

process of DWT. The data flow is similar to the 2-parallel 2D DWT. The structure of 4-
parallel 2-tap FIR filter is in [27]. The computation time of 4-parallel 2D DWT is N?/6.

53

Table 6.1

Data flow of 2-D DWT of a 8x8 image with 2-level resolution

and a computation time of N2/3 clock cycles

{ HH HG GH- GG Input

» 0 - - - - Ko s Yoo s Xors Aos
1 - - - ~ Xig s Xy M Xy
2 - - - - Xans X1 ¥pzs ¥
3 - - - ~ KXyp o ¥yys Xap s Xis
4 - - GH&?, GH ,'(f GG’% GGy Xaar Yos o Xoa s Moy
5 HHY HHY | HGW HGE | - - - Xas Xgsy Nigs Xy
6 - 1 - GHY GHY | GGk 66l Xaas Xass Xago X
7 | HHY HHY | HGY HGY - - Xugs Fags Yigs ¥
8 | - - GHY GH); | GGl GG} Xaps Xaps Xaaa Xgs
9 | HHY HHY | HGY: HGY - - Xeas Xsps Xg» Ay
10 - - GHg GHji | GGy GGy oo s Xgys Naza X
11 | HH} HH); | HGY HG! - - Xpps Xzps Xy Fp3
12 - - GH), GHy, | GGy, GGy Xags Xas» ¥aps Xag

,”_i
W

| HHY, HHS,

HGY HGY

-

Xeg s Xss s Xzg s Koy

]
Y

GHY; GH};

PR
GGy GGy

- - Y11 Vg5 s Xens Fgr
15 | HHY HHY | HGY HGY - - Xrgs ¥pse Xogs ¥pa
16 - - | oHE GHY | GGE 66 ws Yors Yoo Yos
17-| HHY HRY | HGJ HGY - - Yips Yus Fizs iz
18 - - GHYL GHY | 66k GGy Vs Vi Fus ¥x
19 | HHY HHY | HGY HGY - - Vags ¥31s Vazs Faa
20 - , - GHY GHYY | GGy GG | HHY HH, (HHy , HH;
21 | By mHY | HGY HGE | . - - HH HHY HAYL HEY
22 - GHY GH)Y | GGY GG7 | HHY, ,HHY HHY HHY
23 | HHY HHY | HGY HGY - - HH,, ,HH| , HH;; , HH
24 - - GH, ;;}l GH j:}: GGS.: GG;E; Yoz 2 Yasz» Now s M
25 | HHE HHY | HGy HGGY - S Yias Fiss Vies Vi
26 - N GH,' GH)' | GGy GG Y s Yass Yags Xn2
27 | HHY BHY | HGY HGY - - Yigs Viss Yser Va7

54

7 Results and Discussion

7.1 HARDWARE SIMULATION |
An VHDL code is developed for the hardware efficient parallel FIR filters and 2D DWT,

and the corresponding simulation is carried out by MODELSIM.The synthesis is done
using XILINX XC3S5000-4FG1156. The simulation results for FFA structures, ISCA

structures; 2-stage parallelism structures followed 2D DWT are shown in fig 7.1-7.15

7.1.1 Simulation results of FFA structures

* ¥/ a0paraliol/ha,
A Halpareiel 3715 K
aUparzfiet3/E!

&
K3/ falpaialield/

55

e,

& 4

<

& ATEBRE

4 _'

@ /Mfa2paralield/s2 3

&

.
p

%
9 drgaHEoss

Hasparatieldh
520 allel 3 he]
e} H
h;

Ftta 2 paraliel 3 ho)
a2 naraliel 37h.
-itazpataliel3/ha

:

bl Sslel v 1Y
WW

{{«‘%

SEEEE

eoee

/ftatnatalield <11

i ahipatslizid nds

¢

iinsalsi 2
Fiita0pansleld g
Uy Tl

alleld

410 —

o AIENETEUE N

56

fit

!

/%1131 daparsizld ha)

I3ta1 gapaaiisid/hG,

¥t dapaiale ki

/11 dapaisbaid bl
TR,
a1 daparalield syl

1 a1 danaralleld ez

27x0
I
i1 pataliel2 the,
:

‘, /ttatparalkel?/ht

s patalleld /o

itn paraleic/i)

h;

~
15) pesstel3 e
Mialparafiel3/h7

57

& qEeEss:
1131 paralizty/ieset

P

Fig 7.9 ISCA based 4-parallel FIR filter

58

raiaieloiap: Y
v/ naisleblapdiseahy
'

i
.

o A AR .

5, e
¢ paralielbtap 2 4isea 9
parsielBtap 2 4isnal haf
B 12

¥ patzliaiflapldiscal

&

R

sim:/parallel6tapzaisca/nz0 § 999544 ps

-2147483648

i DI g X

Hontalielbiaptdiccnsoe ™
2 BB s AT
1

o s e S Sy

o, S g

Fig 7.10 ISCA based 6-parallel 24 tap parallel FIR filter

7.1.3 Simulation results of 2-stage parallelism

PiB@nnanneaennininnd

Fig 7.11.1 Schematic of 6-parallel 36-tap FIR filter

59

Jetap/cl] [

Searal

e/ daubieStanet.naral

/dm i&otanekpatslh
Faniiesanet parzl
Ydoublettagebporallel bt an/s

[fduubiestagebparaliel 36 ap/;
/doublestagebparallel3btap/.

e ihiegta
o,

/doublestaas Iparalisl 36
e bledtanelnaslelShlas]

/doublesageraap/
/doubtestage 3paiatiel 36t

In the above figures 7.11-7.12, a latency of 12 clock cycles can be seen. This is due to the
Delay Element Matrices for the transition of one stage to other stage of ISCA.

7.1.4 Simulation results of 2D DWT based on parallel FIR filters

7.2 Comparison and Analysis

7.2.1 FFA VSISCA :
An Matlab code is developed for the comparison of this methods. Compared with FFA-

based fast parallel FIR filter structures, ISC-based algorithm saves large amount of
hardware cost. Although ISC-based algorithm uses more additions than FFA based
structure with the increase of the level of parallelism, it can lead to large savings in the
number of multiplications and delay elements. The additions will also decrease when the
number of taps of FIR filter will be large. These are shown in figure 7.15 for different
levels of parallelism. Note that the number of required additions is dependent on the
order of iterations. The iteration order for short convolutibns should be4x4, 3x3
and2x 2, as this will lead to the IOWest implementation cost; while, in FFA-based

algorithm, the 2-parallel FFA is always applied first.

multipliers in 144 tap parallel FIR filters
B
3 2500 —
§A2000
g 1500 —e—ISCA
S 1000 —&—FFA
2 500
E o+
=.
level of parallelism
adders in 144 tap parallel FIR filters
4
§ —e—ISCA
g —&—FFA
3
E
3 .
< level of parallelism

62

delay elements of 144 tap FIR filters

> 1500 -
S
[}
v 8
5 £ 1000 —e—ISCA
. E
22 500 —®—FFA
E [
3
: 0 L S T . T 1
0 20 40 60 80
level of parallelism
multipliers of 5§76 tap paraliel FIR filters
52 4
- g —e—ISCA
2e
=3
EZ —=—FFA
e E
level of paraffelism
adders of 576 tap parallel FIR filters
5 15000
.'-g‘ 10000 ——ISCA
5 5000 —@—FFA
E !
2 0+
g
3 ——ISCA
4 ——FFA
H
:
' - ;;wel of paralielism
multipliers of 1152 tap parailel FIR filters
20000
15000 —e—ISCA
10000
0

number of multipliers

level of parallelism

63

adders of 1152 tap parallel FIR filter
£ 20000 : T T
S 15000 4t ik o ’
kd ppvens —&—ISCA
S 10000 {=— —8—FFA
2 5000 i :
c 0 T v » - " —_ T
Q 10 20 30 40 50 80 70 80
fevel of parallelism
delay elements of 1152 tap parallel FIR filter
>
S 20000 e
:; £ 15000 -t g e 5 —e—I|SCA
o £ 10000 +———— —B—FFA
.é’ 2 5000
3 0 - 1 r T 1 T r -
0 10 20 30 40 50 60 70 80
level of parallelism

Fig 7.15 Hardware cost (i.e., complexity) comparison between ISCA and HFFA for
N=144, 576, 1152 at different levels of parallelism

7.2.2 ISCA Vs 2-stage Parallelism ‘

Compared with ISCA-based fast parallel FIR filter structures, the improved structure can
reduce large amount of hardware cost. 2-stage Parallelism can even reduce the hardware
cost at the expense of more delay elements. Increasing the first stage parallelism will lead
to more savings of required multiplications. Although direct implementation of the 2-
stage paréllel FIR structures (Method-1) will lead to large number of req'uired delay
elements, an interesting phenomenon of 2-stage parallel FIR structure (Method-1) is that
the number of required multiplications is always less than or equal to the filter length N
and doesn’t increase as the parallelism level increases. A 2-stage L-parallel FIR structure

has latency of 2r, where # is defined in (.1).

Latency is only decided by first stage paréllelism and the 2-stage parallel FIR structure
(Method-2) has efficiently controlled the increase of latency when L increases. Note that
the ISCA-based parallel FIR design have no latency and L output data will be generated

in the same clock éycle as the corresponding L input data are injected. In [9], linear

64

convolution-based processing core is used as a parallel FIR filter for the proCeséing of
subfilters. It requires the number of subfilters to be equal to the subfilter length. This
requirement leads to irvregular preprocessing and post-processing DEMs with low
utilization efficiency and complex control signals. However, when the processing of
subfilters is assigned to a paralle1 filter design, this restriction does not exist. Even if the
filter length is not divisible by the parallelism level, zeros can be added at the end of the
filter coefficients to make the total length divisible by the parallelism level. The
computation results will be the same as the original filter and these are shown in figure

7.16

multipliers for 144 tap FIR filter

800 T
600 +
400
200 |-

——|SCA

number of
multipliers

: —l— 2-stage parallelism
0 5 10- 15 20 with L'=4

level of parallelism

adders of 144 tap FIR filter

S
S
s —e— ISCA
g
< —a— 2-stage parallelism
with L'=4
level of parallelism
delay elements of 144 tap FIR filters

5
3 , 1500
< £ 1000
S8 —e—ISCA
& £ 500
a2 .
E @ 0+ . e . { | —&— 2-stage parallelism
< 0) 10 | 16 20 with L'=4

leve! of parallelism

65

multipliers of 1152-tap FIR filter

10000 —— B .
5 £ o bt & —e—ISCA
28 5000
ES —8— 2-stage parallelism
cE 0 AT RN with L'=4
0 10 20 30 40 |-+ -2-stage parallelism
i with L'=8
level of parallelism
adders in 1152-tap FIR filters
4
S 10000
Ag ~——ISCA
® 5000
_§ -~ 2-stage parallelism
= 0 with L'=4
2 - 2-stage parallelism
- . with L'=8
- level of parallelism
delay elements in 1152-tap FIR filter
>
K
s 8 —e—ISCA
5§ .
g § —i-— 2-stage parallelism
EC with L'=4
€ 0 10 20 30 40 | -+ 2-stage parallelism
: - - - with L'=8
level of parallelism -

Fig 7.16 comparison of complexities of N=144,1152 between ISCA and 2-stage

parallelism at different levels of parallelism.

66

7.2.3 Complexity for 2D DWT
This section compares the 2D DWT structure based on hardware efﬁciént parallel FIR
filter for the first resolution level with fhe recent convolution based architectures in'
[12],[13] and [15]. The following table compares the 2D DWT structure and previous
convolution based architectures for an NxN image with filter length 4, resolution level
J=1 and L gives the level of parallelism of 2-tap FIR filter
Table 7.1
Comparison between 2D DWT structure and previous convolution based

architectures for an NxN image

2-D DWT # of | # of adders # of delay | Total
(convolution multipliers elements Computing
based time in # clks
architectures)
N? 48 92 4N N?
"4 2D DWT %
L=4
N? 24 32 2N N?
%4 2D DWT A
L=2
(12] 32 ‘ 24 NZ N2
/ /4
[13] 16 : 16 N? 2N?
/s A
[15] - 30 30 0 2 N7
3

67

CONCLUSION

These new algorithms like ISCA and 2-stage parallelism are very efficient in reducing
hardware cost, especially when the length of the FIR filter is large. Tensor products are
used to improve iterated short convolution algorithm in matrix form. Since preprocessing
and postprocessing matrices are tensor products without delay elements, the ISCA
facilitate automatic hardware implementation of parallel FIR filters, which is very
efficient when the filter coefficients, word length or level of parallelism change,
especially when the length of the FIR filter and the level of parallelism are large. The 2-
stage parallel FIR structures also have regular structures and simple control signals,

which utilizes the shared subfilters, is very easy for hardware implementation.

Hardware efficient parallel FIR filter structures are developed to speed up the processing
speed of 2-D DWT and to control the increase of hardware cost at the same time. This

design can be easily extended to achieve higher processing speed than the given highest
processing speed with computing time of N%z cycles. This design is suitable for high-

speed VLSI implementation of 2-D DWT because of its regular structure, simple control

and 100% hardware utilization for continuous images.

68

References:

[1]1 J. I. Acha, “Computational structures for fast implementation of L-path and L-block
digital filters,” IEEE Trans. Circuits Syst., vol. 36, pp. 805-812, June 1989.

[2] D. A. Parker and K. K. Parhi, “Low-area/power parallel FIR digital filter
1mplen51eniq;£:2rgi;J VLSI %}g’\?ﬁ,{ mgissmffgst v?:: 17 Qio ‘_L i)g “745:92 1997.

[3] L-S. Lin and S. K. Mitra, “Overlapped block-digital filtering,” IEEE Trans. Circuits
Syst. I, vol. 43, pp. 586596, Aug. 1996.

[4] K. K. Parhi, VLSI Digital Signal Processing Systems: Design and Implementation.
New York: Wiley, 1999.

[5] J. G. Chung and K. K. Parhi, “Frequency-spectrum-based low-area low-power
parallel FIR filter design,” EURASIP J. Appl. Signal Processing, vol. 2002, no. 9, pp.

444-453, 2002.

[6] Z. -J. Mou and P. Duhamel, “Short-length FIR filters and their use in fast
nonrecursive filtering,” IEEE Trans. Signal Processing, vol. 39, pp. 1322—-1332, June
1991. | |

[7] J. Granata, M. Conner, and R. Tolimiéri, “A tensor product factorization of the linear
convolution matrix,” IEEE Trans. Circuits Syst., vol. 38, pp. 1364—1366, Nov. 1991.

[8] I.-S. Lin and S. K. Mitra, “Overlapped block digital filtering ,” IEEE Trans. Circuits
Syst. II: Analog Digit. Signal Process., vol. 43, pp. 586596, Aug. 1996.

[9] C. Cheng and K. K. Parhi, “Further complexity reduction of parallel FIR filters,” in
Proc. IEEE Int. Symp. Circuits Syst. (ISCAS 2005), Kobe, Japan, May 2005.

[10] R. E. Blahut, Fast Algorithms for Digital Signal Processing. Reading, MA:
Addison-Wesley, 1985. '
[11] S. Winograd, “Some bilinear forms whose multplicative complexity depends on the
field of constants,” Math. Syst. Theory, vol. 10, pp.169-180, 1977.

[12] Q. Dai, X. Chen; and C. Lin, “A novel VLSI architecture for multidimensional
discrete wavelet transform,” IEEE Trans. Circuits Syst. Video Technol., vol. 14, no. 8, PpP-
1105-1110, Aug. 2004.

[13] P. C. Wu and L. G. Chen, “An efficient architecture for two-dimensional discrete
wavelet transform,” IEEE Trans. Circuits Syst. Video Technol., vol. 11, no. 4, pp. 536—
545, Apr. 2001.

70

[14] C. Chakrabarti, M. Vishwanath, and R. Owens, “Architectures for wavelet
transforms: A survey,” J. VLSI Signal Process., vol. 14, no. 2, pp. 171-192, Nov. 1996.
[15] F. Marino, “Two fast architectures for the direct 2-D discrete wavelet transform,”
IEEE Trans. Signal Process., vol. 49, no. 6, pp. 1248-1259, Jun. 2001.

[16] F. Marino, “Efficient High-Speed/Low-Power Pipelined Architecture for the Direct
2-D Discrete Wavelet Transform”, IEEE Transactions on Circuits and Systems-1I:
Analog and Digital Signal Processing, pp1476-i491,v01 47,n0.12,December 2000.

[17] Chao Cheng, K. K. Parhi, "Hardware Efficient Fast Parallel FIR Filter Structures
Based on Iterated Short Convolution," IEEE Transactions. on Circuits and System-I:
Regular Papers, vol. 51, No.8, August 2004.

[18] C. Cheng and K.K.Parhi, “Low-Cost Paralle] FIR filter structures with 2-Stage
Parallelism”, IEEE transactions on circuits and systems-I: Regular papers, pp280-290,
Vol-54, N0_.2, February 2007. »

[19] Richard. A 7Hédd_ad- and Thomas, W.Parsons, “Digital Signal Processing Theory ,
Applications &Hardware” , Computer Science Press, 1994.

[20] C. Cheng and K. K. Parhi, “Hardware efficient fast DCT based on novel cyclic
convolution structures,” IEEE Trans. Signal Process., vol. 54, no. 11, pp. 44194434,
Nov. 2006.

[21] T.K.Truong, I.S.Reed, R.G.Lipes and C.-Wu , “On the Application of a Fast
Polyhomial Transform and the Chinese Remainder Theorem to Compute a Two-
Dimensional Convolution” IEEE transactions on Acoustics, Speech and Signal |
Processing, vol-1,pp91-97, Feb 1981. ' |
[22] M. Vishwanath, R. Owens, and M. J. Irwin, “VLSI architectures for the discrete
wavelet transform,” IEEE Trans. Circuits Syst. II, Analog Digit. Signal Process., vol. 42,
no. 5, pp. 305-316, May 1995.

(23] Y.-N. Chahg and Li Yan-Sheng, “Design of highly efficient VLSI architectures for
2-D DWT and 2-D IDWT,” in Proc. IEEE Workshop on Signal Processing Systems, Sep.
2001, pp. 133-140. _

[24] Proakis, “Digital Signal Processing”, 3" edition, John Wiley publications,1999.

71

[25] M. Winzker, “Low-power arithmetic for the processing of video signals,” IEEE
Trans. on VLSI Systems, vol. 6, no. 3, pp. 493497, 1998.

[26] J.-G. Chung, Y.-B. Kim, H.-J. Jeong, K. K. Parhi, and Z.Wang, “Efficient parallel
FIR filter implementations using frequency spectrum characteristics,” in Proc. IEEE |
International Symposium on Circuits and Systems, vol. 5, pp. 483-486, Monterey,

Calif, USA, 31 May-3 June 1998.
[27] C. Cheng and K.K.Parhi, “High speed VLSI implementation of 2D discrete wavelet

transform”, IEEE transactions on Signal Processing, pp393-493, Vol-56, No.1, Jan 2008.

72

APPENDIX A : COOK-TOOM Algorithm

The Cook-Toom algorithm is a linear convolution algorithm for polynomial
multiplication. The goal of this fast convolution algorithm is to reduce the multiplication
complexity. One feature of the Cook-Toom method is it does not define a single solution;
instead, it defines an entire family of methods for efficient multiplication. The method
has considerable commonality with multiplication using the fast Fourier Transform, in
that it works on the same principles of polynomial multiplication. The input numbers are
split into limbs of a given size, and each is written as a polynomial, using the limb size as
radix. ‘Instead of multiplying the polynomials directly, they are evaluated at a set of
points, and the'values multiplied together at those points. The product polynomial is then
determined, based on the products at those points. Finally, substitution of the radix
returns the final answer. The degrees of freedom available to choose an appropriate
algorithm are the number of limbs the input is divided into, and the points at which the
polynomials are evaluated. It is based on Lagrange Interpolation Theorem, which states -

that

Lagrange Interpolation Theorem:

Let f,,...,[, be a set of n+I distinct points and let f(B,), for i=0,1,...,n be given.
"There is exactly one polynomial f(p) of degree n or less that has value f(4,) when

evaluated at B, for i=0,1,...,n. Itis given by

Hf#i(p_ﬂ/’) ,
I1.(8-5) (A1)

f(p)=§f(ﬁ,)

The linear convolution of an N-point sequence h={h,h,....h, ,} and an L-point

sequence x={x,,X,,...,X, ,}, Which are expressed in polynomials as

72

h(p)=h,_p"" +...+hp+h, and x(p)=xN_,pN"+...+x,p+x0 respectively, is a

L+N=-2

polynomial of degree L+N -1 expressed as s(p)=5,,,,0"" " +...+5p+s,can be

computed by Cook-Toom algorithm as follows.

Algorithm:
1. Choose L+N -1 different real numbers By, B;,..., B, y_s -

2. Compute h(p) and x(8), for i=0,1,..,L+N-2.

3. Compute s(B,)=h(B)x(B),for i=0,1,..,L+N-2.

4. Compute s(p)by Lagrange interpolation theorem, i.e., using equation (A.2),
given by

IR H#,:(P—ﬁf) A
s(p)= 2. S(ﬂi)l__[j#(/g‘.—ﬂj) -

i=0

The Cook-Toom algorithm, in general, can also be expressed in matrix form as
s =Tx=CHDx
Where T=convolution matrix , x, s are input and output matrices.

This algbrithm'pr(')viiies a way to factorize the convolution matrix T into multiplication of

one post addition matrix C, one diagonal matrix 4 with H,,i=0,1,..,L+N -2 on the

main diagonal which determines the total number multiplications, and one preaddition

matrix D. The Cook-Toom algorithm can reduce the complexity of multiplications from

O(LN Jto L+N -1 at the expense of an increase in the number of additions. Further

reduction of additions is obtained by the modification of the above algorithm.

The modified algorithm can be summarized as follows:
Modified Algorithm: .
1. Choose L+ N -2 different real numbers, £, B,,..., B,,y_3-

2. Compute #(p,) and x(ﬂ,),fér i=0,1,...L+N=3.

3. Compute s(B)=h(B)x(B), for i=0,1,..,L+N-3.

73

4. Compute s'(B)=s(B)— s,y B"" 2 fori=0,1,..,L+N-3.
5. Compute s'(p) using Lagrange Interpolation Theorem, i.e., using equation

(A.3), given by

o L+N2' Hm(v ﬂ) |
s'(p)=2, S(ﬂ,)Hm(5-7) (A3)

i=

L+N-2

6. Compute s(p)=s"(p)+S,noP

The Cook-Toom algorithm is efficient as measured by the number of multiplications.
However, it is not efficient when the size of the problem increases, because for a large

system, when the number of samples in the output sequence is large, # may take values
other than 0,%1,%2,+4, etc. This may not result in 51mple preaddition and post addition

matrices. For larger problems, the Winograd algorithm is more efﬁment

74

APPENDIX B : WINOGRAD Algorithm

The Winograd short convolution algorithm is based on the Chineese Remainder Theorem

(CRT) over an integer/polynomial ring. The CRT over an integer ring is stated as

Theorem B-1: CRT for Integers

Given ¢, =R, [c], for i=0,1,...,k, where nz, are moduli and are relatively prime, then

k
- - - - <¢=).¢NMmodM 7 (B.1)

i=0 -

k
where M=Hm,. , M,=M/m, and N, is the solution of

i=0
NM,+nm =ged(M, m)=1 (B.2)
provided that 0 < ¢ <M . The notation R, [c] represents the remainder when c is divided

by m,.

The CRT over an polynomial ring is stated as:

Theorem B-2: CRT for Polynomials
: i _ . (.-) . .
Given ¢ (p)= Rm(,_)(p) [c(p)], for i=0,1,...,k,where m"” (p) are relatively prime, then

- | | .
c(p)=Zc(')(p)N(’)(p)M(')(p)modM(p) (B.3)
where M (p)= ﬁ m®) (p), MY (p)= M(p)/m(i) (p) and NV (p) is the solution of
s
NO (p)M(') (p)+ o) (p) 0 (p)=gcd (M(f) (p),m(i) (p)) -1 (B.4)

provided that the degree of ¢(p) is less than the degree of M (p).

75

To solve (B.2) and (B.4) for N, and NO(p), one needs to use Euclidean GCD

algorithm. Efficient convolution can be constructed using the CRT by choosing and

factoring the polynomial M (p). Based on the above theorems, the winograd convolution

algorithm is summarized as follows:

Algorithm :
1. Choose the polynomial m(p)with degree higher than the degree of &(p)x(p)

and factor into k+/ relatively prime polynomials with real coefficients,
ie,m(p)=m"® (p)m" (p)...m" (p).
2. Let MY(p)=M(p)/ m® (p) énd use Euclidean GCD algorithm to solve
- N M (p)+n? (p)m? (p)= ged (14" (p),m? (p)) =1 for NO(p).
3. Compute A" (p)=h(p)modm?”(p) and xV(p)=x(p)modm®(p) for
i=0,L...,k.
4. Compute s (p)=h?(p)x" (p)modm? (p) for i=0,1,....k.

5. Compute s(p),using equation(B.5) ,given by

s(p)=§s<?>(p)N<ff'(p)M<f>(p)modm(p) @)

The number of multiplications is highly dependent on the degree of each m (p).
Therefore, the degree of m(p) should be as small as possible. According to CRT, the
extreme case Wwill be when degm(p)= (degs(p)+1). However , a more efficient form
of Winograd algorithm can be obtained by choosing m(p) with a degree equal to that
ofs(p) and applying the CRT to s'(p)=s(p)-h,_x,_m(p). Notice

thats(p)mod m(p)=s'(p)modm(p).

The modified Winograd convolution algorithm is explained as follows

76

Modified Algorithm:
1. Choose a polynomial m(p)with degree equal to that of s(p) and factor into

k+1 relatively prime polynomials i.c., m(p)=m® (p)m® (p)...m" (p).

2. Let M"”(p)=M(p)/m<">(p) and use Euclidean GCD algorithm to solve
NO (p) MY (p)+n" (p)m" (p) = g cd(M" (p),m" (p)) =1 for NV (p).

3. Compute h<">(p)=h(p)modm<")(p) and x(p)=x(p)modm® (p) for
i=0,1,...k. b ’

4. Compute s (p)=h"(p)x"(p)modm"(p) for i=0,1,...k.

5. Compute s'(p), using equation (B.é), given by -

s'(p)=és""(p)N“)(p)M(")(p)modm(p) (B.6)

6. Compute s(p)=s'(p)+hL_,xL_lm(p).

77

APPENDIX C: Efficient linear convolution examples

In this section, an efficient short length (i.e., 3x3 and 4x4 linear convolutions) are
addressed. These are derived from the modified Winograd algorithm.
C-1 Short length linear convolutions:

An efficient 3x3linear convolution, by Winograd algorithm, can be obtained by
choosing the polynomial m(p) as p(p—-1)(p-2)(p+1). Now
Step 1 .
m® (p)=p
n(p)=(p-1)
=6
m” (p)=(p+1)

and MO(p)=M(p)/m"(p)for i=0,1,23 and using the relationship

NO ()M (p)+n" (p)m? (p)= ged(M" (p),m" (p))=1 , the following table is

constructed.
i RO (») MO (») n(".)l(P) N(i),,,()
0 P p3—2p2—p+2) —(p*/2)+p+1/2
1 p-l pP-p-2p ~1/2 (/2)(p*-2)
2 p-2 P-p 1/6 (-1/6)(p* +2p+3) |
3 p+l p'-3p +2p -1/6 (/6)(p* -4p +6)
Step 3:

78

O)(P) (th +hp+h,)modp-:ho
h(l)(P) (th +hlp+h)m d(p ~1)=hy+h +h
K (p)=(mp* + hp+h)mod(p—2)=h ~h +h,
1O (p)=(hp? + hp+ 1, mod (p+1) = by + 2k +4h,
and
(0)(17 (xzpz-1-x,p+xo)modp=x0
)=(x,p" +x,p+x,)mod(p—1)=x, +x +x,
()(P)=(x,p" +x,p+x, fmod (p-2) = x, - x, +x,
| ’ x?(p) (x2P2+x1p+xO)m0d(p+1)=x0+2xl+4x2
Step 4:
i (O)(p) hyx, -
SO (p)=(hy +h +h) (5 45 43,)
s?(p) =ty =+ 1) (% =%, +x,)
sO (p) =y + 20 + 4,) (3, +2%,+4x,)
Step 5:

s'(p)=1s" (P)N (p) MO (p)+s” ()N (p) M? (p)
+59 (P)NO () M (p) +s7 (p) NP ()M (p)]
mod(p*~2p* - p’ +2p)
s'(p)=P’[(-112)s” (p)-(1/2)s” () +(1/6)s” (p) - (1/6)s® (p) |
+ [=50 (p)+(/2)s" (p)+ (1/2) s (?)] |
+p[(12)59 (p)+5 () - (1/6)s? ()~ (1/3)s (p)]
+p"[s”(p) |mod(p* -2p° - p* +2p)
s'(p)=P’[(~1/2)s”(p)-(1/2)s" (p)+(1/6)s (p) - (1/6)s ()]
+p* [(p)+(2)s” (p)+(1/2)s (p)]
+p' [(1/ 2)sV (p)+s"(p)-(1/6)s? (p)-(1/3)s") (p)]
+p"[s9(2)]

79

s(p)=s'(p)+hx,(p' -20" - p* +2p)
s(p)=P’[(-12)s” (p)-(12)s" (p)+(1/6)s” (p) - (1/6)s” ()]
+p*[= (p)+(12)s” (p)+(1/2)s (p)]
+2'[(12)57 (p)+5" (p)-(1/6)s® (p) - (/3)s” (p)]
+ 9" [0 (p) [+ bx,(p* 27" - p* +20)

Therefore the final result in matrix form can be obtained as

Ss = Q3.diag(H3)P3X3

Where H, =diag[l/2 12 16 1/6 1].B[h h k]

(2 0 0 0 0] T1 0 0
-1 2 -1 =2 2| 1 1 1
O,=|-2 1 0 3 =l |and B=|1 2 4.
1 -1 1 -1 =2 1 -1 1
0 0 0 0 1| 0 0 1]

Similarily, an 4x4 convolution can be obtained by choosing the polynomial m(p)

asp’ (p~1)(p+1)(p-2)(p+2). The efficient 4x4 short convolution in matrix form is

given by
S, =Q,diag(H,).P, X,
where
_ - [1 00 0]
40000000
1100
44400000
0100
S004 4224 |
Q55 55 44140k H=dgll4 414 Y6 6 J8 I8 LE[h A A)
1 00-1-122-5 |
-] 24 -8
11441410
12438
0000000 1
- S 0001

Therefore it requires 8 multiplications i.e., lesser than FFA implementation.

80

	Title
	Abstract
	Chapter 1
	Chapter 2
	Chapter 3
	Chapter 4
	Chapter 5
	Chapter 6
	Chapter 7
	Conclusion
	References
	Appendix

