
HARDWARE EFFICIENT DESIGN OF PARALLEL
FIR FILTERS AND ITS APPLICATION TO 2D DWT

A DISSERTATION
Submitted in partial fulfillment of the

requirements for the award of the degree
of

MASTER OF TECHNOLOGY
in

ELECTRONICS AND COMMUNICATION ENGINEERING
(With Specialization in Semiconductor Devices & VLSI Technology)

By
SURESH IKELLAMPALLI

DEPARTMENT OF ELECTRONICS AND COMPUTER ENGINEERING
INDIAN INSTITUTE OF TECHNOLOGY ROORKEE

ROORKEE -247 667 (INDIA)
JUNE, 2008

Candidate's Declaration

I hereby declare that the work being presented in the dissertation report titled

"HARDWARE EFFICIENT DESIGN OF PARALLEL FIR FILTERS AND ITS

APPLICATION TO 2D DWT" in partial fulfillment of the requirement for the award

of the degree of Master of Technology in Semiconductor Devices & VLSI Technology,

submitted in the Department of Electronics and Computer Engineering, Indian Institute

of Technology Roorkee, is an authenticate record of my own work carried out under the

guidance of Dr. S.DASGUPTA, Assistant Professor, Department of Electronics and

Computer Engineering, Indian Institute of Technology Roorkee.

I have not submitted the matter embodied in this dissertation report for the award of any

other degree.

Dated: 2 4 l b6Ibg

Place: IIT Roorkee.

VA
(SURESH I LLAMPALLI)

Certificate
This is to certify that above statements made by the candidate are correct to the best of

my knowledge and belief.

Dated: 2.6. Q6'2-n$'

Place: IIT Roorkee. Assistant Professor,

Department of Electronics and

Computer Engineering, IIT Roorkee,

Roorkee -247667 (India).

i

ACKNOWLEDGEMENTS

I am thankful to Indian Institute of Technology Roorkee for giving me this opportunity.

It is my privilege to express thanks and my profound gratitude to my supervisor

Dr.S.Dasgupta, Assistant Professor for his invaluable guidance and constant

encouragement throughout the dissertation.

I am also grateful to the staff of VLSI Design Laboratory for their kind cooperation

extended by them in the execution of this dissertation. I am thankful to research scholars

of VLSI, who helped me consistently in doing this work. I am also thankful to all my

friends who helped me directly and indirectly in completing this dissertation.

Most importantly, I would like to extend my deepest appreciation to my. family for their

love, encouragement and moral support. Finally I thank God for being kind to me and

driving me through this journey.

(SURESH KELLAMPALLI)

ii

ABSTRACT
Finite impulse response (FIR) filter is regarded as one of the major operations in digital

signal processing. Parallel processing is a powerful technique because it can be used to

increase the throughput of a FIR filter or reduce the power consumption of a FIR filter.

Parallel FIR filters (i.e., realizing FIR filters in parallel) has got its various applications

in 2D Discrete wavelet Transform (DWT), Motion Estimation in Video Compression,

Equalizers and 2D FIR filters. However, a traditional parallel FIR filter implementation

causes a linear increase in the hardware cost (area) by a factor of L, the block size i.e.,

level of parallelism. In many design situations, this large hardware penalty cannot be

tolerated. Therefore, it is advantageous to produce parallel FIR filter implementations

that require less area than traditional parallel FIR filtering structures.

An approach to increase the throughput of FIR filters, with reduced complexity

hardware based on fast FIR algorithms and fast short length linear convolution

algorithms, were presented. Although their basic idea is the same, i.e., first derive

smaller length fast parallel filters and then cascade or iterate these short-length filters for

long block sizes, their starting point is not the same. These methods will have a simple

and efficient control in the increase of hardware cost. These hardware efficient parallel

FIR filters can be used for the fast implementation of 2D Discrete Wavelet Transform

(DWT) than the other convolution and lifting based architectures.

The focus of this thesis is to present the recent methods to realize the hardware efficient

parallel FIR filters (i.e., by Fast FIR algorithms and Fast short convolution algorithms)

and its application to 2D Discrete Wavelet Transform. The hardware simulation of these

efficient structures are carried out in Modelsim and synthesized using Xilinx. A Matlab

code is developed for finding the computational complexity of each method. The

comparisons of these methods are also done. For 2D DWT the comparisons are done

with the recent convolution based architectures.

iii

TABLE OF CONTENTS
ABSTRACT
LISTOF FIGURES ... vi
LISTOF TABLES ... viii
1: Introduction to Parallel FIR filters ...1

1.1 Introduction ...1
1.2 Organization of Thesis ..3

2: Formulation of Parallel FIR filters using Polyphase

Decomposition ... 4
3: Parallel FIR filters based on fast FIR Algorithms 8

3.1 Fast FIR Algorithms ... 8
3.1.1 Two parallel Fast FIR filter .. 8
3.1.2 Matrix representation ... 9
3.1.3 Parallel filters by transposition ..10
3.1.4 Three parallel fast FIR filter ..11
3.1.5 Fast Parallel FIR algorithm for large block sizes13

3.2 Fast FIR filters based on Frequency Spectrum.. 15
3.2.1 FFA structures for 2-parallel and 3-parallel FIR filters16
3.3.1 Cascading FFA's ...18
3.3.2 Selection of FFA types .. 20

4: Parallel FIR Filter structures based on fast convolution

Algorithms.. 21
4.1 Fast Parallel FIR filters based on linear convolution 21
4.2 Iterated Short Convolution Algorithm(ISCA) ... 22

4.2.1 Complexity Computation ... 26
4.3 Improved Fast Parallel FIR filter structure ...27

4.3.1 Improved structure Algorithm .. 28
4.3.2 Complexity Computation ... 30

5: Parallel FIR filters based on 2-stage parallelism 32
5.1 2-stage Parallelism ... 32

5.1.1 Generalization (Method-1) of 2-stage Parallelism 32
iv

5.1.2 Method-2 of 2-stage parallelism .. 33
5.1.3 Complexity Computation ... 33
5.1.4 Example for 2-Stage Parallelism realization .. 35

5.1.4.1 6-Parallel FIR Subfilter as a Shared Filtering Core 40
5.1.4.2 Method-2 realization 41

6: Application of Parallel FIR filters ..43

6.1 2D Discrete Wavelet Transform .. 43

6.1.1 2D Non separable DWT structure based on parallel FIR filters 43
6.1.2 2D DWT of an Image by L- Parallel FIR Filtering 50
6.1.3 Complexity Computation ... 53

7: Results and Discussion ..55
7.1 Hardware Simulation .. 55

7.1.1 Simulation results of FFA structures .. 55
7.2.2 Simulation results of ISCA structures .. 58
7.1.3 Simulation results of 2-stage parallelism .. 59
7.1.4 Simulation results of 2D DWT based on parallel FIR filters 61

7.2 Comparison and Analysis ... 62
7.2.1 FFA VS ISCA ..62
7.2.2 ISCA Vs 2-stage Parallelism .. 64
7.2.3 Complexity for 2D DWT .. 67

8: Conclusion .. 68
REFERENCES... 69

APPENDIX A :COOK-TOOM Algorithm ..72
APPENDIX B : WINOGRAD Algorithm .. 75
APPENDIX C :Some Efficient Linear Convolutions 78

►iA

LIST OF FIGURES
1.1 	Transposed form FIR filter ..01

1.2 Sequential and 3-parallel architecture of an FIR filter ..02
2.1 Traditional 2-parallel FIR filter ...05

2.2 Traditional 3-parallel FIR filter ...06

3.1 Reduced complexity 2-parallel fast FIR implementation ..09

3.2 Transposed reduced complexity 2-parallel FIR filter ..11

33 Reduced complexity 3-parallel FIR implementation ...13

3.4 4-parallel fast FIR filter by cascading two 2-parallel FFA's(Fo and Fi)15

3.5 FFAI structure of 2-parallel fast FIR filter ..16

3.6 FFAI structure for 3-parallel FIR 	filter ..17

3.7 FFA2 structure for 3-parallel FIR filter ...18

3.8 FFAO or FFA 1 4-parallel FIR filter structure ..19

3.9 FFAI' structure of 4-parallel FIR filter ...19

4.1 ISCA based 4-parallel FIR filter ..26
4.2 Implementation of N-tap FIR filter with N x N linear convolution28
4.3 2-parallel 6-tap FIR filter ...29
4.4 An improved 3-parallel structure for 2-parallel 6-tap FIR filter29
4.5 (a) 3 x 3 Delay- Element Matrix (DEM) (b)Delay element function30

r 	 r

4.6 Shape of Delay Element Matrix (a) [M; > NIL (b) fl M; < N/L 31

5.1 Implementation of 3-parallel FIR filter ...35

5.2 2-stage(method-1) parallelism of 3-parallel 36-tap FIR filter36

53 (a) 6 x 6 DEM (b) Delay element function ...37
5.4 Preloading 6x 6 DEM when (a) k = 0 and-i = 0 (i.e., t = 0), (b) k = 0 and i = 5 (i.e.,
t= 5) ... 38

5.5 Preloading 6x 6 DEM when (a) k = 6 and i = 0 (i.e., t = 6), (b) k = 6 and i = 5 (i.e.,
t = 	11) ... 38

5.6 Postloading 6x 6 DEM when (a) k = 12 and i = 0 (i.e., t = 0), (b) k = 12 and i = 5
(i.e., t = 	17) ..38

vi

5.7 Postloading 6x 6 DEM when (a) k = 17 and i = 0 (i.e., t = 0), (b) k = 17 and i = 5
(i.e., t = 23) .. 39

5.8 Timing of the 3-parallel 36-tap filter by 2-stage parallelism39

5.9 (a) 6-parallel FIR filter as shared filtering core (b) block diagram of (a)40

5.102-stage parallel FIR filter for an 6-parallel 36 tap FIR filter42

5.11 Timing of 6-parallel 36-tap FIR filter ...42

6.1 	2-parallel 2-tap FIR filter ... 45

6.2 1D DWT (i.e., after row filtering) based on 2-parallel FIR filter 46

63 Input data flow of 2D DWT of 2-parallel FIR filter ...48

6.4 Output data flow of 1D DWT of 2-parallel FIR filter ... 48

6.5 (a) N 2 /4 2D DWT structure for an 8 x 8 image (b)4x 4 Delay Element Matrix
(c) 	Delay Element function ...50

6.6 Output data flow of 4 x 4 DEM ...:.................... 50

6.7 N 2 /2L 2D DWT structure for an N x N image ...51

6.8 Output data flow of the first level N2/4 2D DWT structure ...51

6.9 Interleaving structures of 2D DWT structures for an 8x 8 image 51

6.10 Hardware implementation of 2D D WT for an image of 8 x 8 size with J-Ievel
resolution in 	N2/3 clock cycles ...51

7.1 FFAO 2-parallel FIR f lter ...55

7.2 FFAO 3-parallel FIR filter ..55

7.3 FFA2 3-parallel FIR filter ..56

7.4 FFAO 4-parallel FIR filter ... 56
7.5FFA 1' 4-parallel FIR filter ..57
7.6 FFA 1 2-parallel FIR filter ... 57
7.7 FFA 1 3-parallel FIR filter ..57
7.8 FFA 1 4-parallel FIR filter .. 58

7.9 ISCA based 4-parallel FIR filter ..58

7.10ISCA based 6-parallel 24 tap parallel FIR filter ...59

7.11.1 Schematic of 6-parallel 36-tap FIR filter ..59

7.11.2 2-stage 6-parallel 36-tap FIR filter. ..60

vi'

7.12 2-stage 3-parallel 36-tap FIR filter ...60

7.13 Schematic of 2D DWT for an 8 x 8 image based on 2-parallel 2-tap FIR filter 61

7.14 Non separable 2D DWT for an 8 x 8 image based on 4-parallel 2-tap FIR filter...61
7.15 Hardware cost (i.e., complexity)., comparison between ISCA and 	FFA for
N=144,576,1152 at different levels of parallelism ..64

7.16 Comparison of complexities of N=144,1152 between ISCA and 2-stage parallelism
atdifferent levels of parallelism .. 66

LIST OF TABLES

6.1 Data flow of 2-D DWT of a 8 x 8 image with 2-level resolution and computation of
N2 /3 clock cycles .. 54

7.1 Comparison between 2D DWT structure and previous convolution based
architecturesfor an NxN image ..67

viii

1. Introduction to Parallel FIR filters
1.1 Introduction
Finite impulse response (FIR) filter is regarded as one of the major operations in digital

signal processing. A linear time invariant (LTI) FIR filter [24] is one of the basic building

blocks common to most DSP systems. The output of an FIR filter is a sequence generated

by convolving the sequence of the input samples with N filter coefficients. The filter

expression can be described by
N-1

Y(n) _ ~h(k)x(n—k)
k=O

where N is the length of the filter (i.e. N-1 is the order), h(k)denotes the k`h coefficient,

and x(n—k) denotes the sampled input data at time n—k.

x(n)

Fig 1.1.Transposed form FIR filter

The main operation of an FIR filter is convolution, which can be performed using

addition and multiplication. The high computational complexity of such an operation

makes the use of special hardware, more suitable for enhancing the computational

performance. This special hardware used to realize a high-tap-number FIR filter is costly.

Thus minimizing the hardware cost of this special hardware is an important issue

Consider the 3-tap FIR filter as described in equation (1.2) i.e., from (1.1) with length

N=3 . The system is single input and single output (SISO) system as described by the

equation

y(k) = ax(k)+bx(k—l)+c(k-2) 	 (1.2)

To obtain a parallel processing structure, the SISO system must be converted into an

MIMO (multiple input and multiple output) system. For example the following set of

1

equations describe a parallel system with 3 inputs per clock cycle (i.e.) level of parallel

processing L=3).

y(3k) = ax(3k)+bx(3k-1)+c(3k-2)

y(3k+1)=ax(3k+1)+bx(3k)+c(3k-1) 	 (1.3)

y (3k + 2) = ax (3k +2) + bx (3k +1) + c (3k)

Parallel processing system is also called block processing, and the number of inputs

processed in a clock cycle is referred to as the block size. Each delay element is referred

to as a block delay, (i.e.) delaying the signal x(3k) by 1 clock cycle would result in x(3k-

3) instead of x(3k-1), which has been input in another input line. The sequential and 3-

parallel architecture for ar~FIR filter is shown in figure 1.2.

n x(3k+1) 	 y(3k+1)

x(n) SISO y 	 x(3k+2) MIMO Y(3k+2)
x(3k+3) 	 y(3k+3)

Fig 1.2 Sequential and 3-parallel architecture of an FIR filter

The critical path of the block (or parallel) processing system remains unchanged. Parallel,

or block, processing can be applied to digital FIR filters to either increase the effective

throughput or reduce the power consumption of the original filter. Traditionally, the

application of parallel processing to an FIR filter involves the replication of the hardware

units that exist in the original filter. If the area required by the original circuit is A, then

the L-parallel circuit requires an area of L x A. With the continuing trend to reduce chip

size and integrate multi-chip solutions into a single chip solution, it is important to limit

the silicon area required to implement a parallel FIR digital filter. In many design

situations, the hardware overhead that is incurred by parallel processing cannot be

tolerated due to limitations in design area. Therefore, it is advantageous to realize parallel

FIR filtering structures that consume less area than traditional parallel FIR filtering

structures.

2

1.2 Organization of this thesis

This thesis is organized as follows. Chapter 2 begins with parallel FIR filters based on

polyphase decomposition. Chapter 3 analyzes the parallel FIR filters using Fast FIR

algorithms. This is followed by the description of those filters in matrix form and its

transposition. It also discusses the parallel FIR filters based on frequency spectrum and

•als©=-oninear convolution. And the Chapter 4 presents the efficient short length linear

convolution algorithms by Winograd and Cook-Toom Algorithms. Then these short

efficient convolutions are iteratively convolved to obtain higher efficient convolutions by

Iterated Short Convolution Algorithm(ISCA). An improved structure for further

reduction of hardware cost of parallel FIR filters is also discussed .Chapter 5 analyzes the

two methods of 2-stage Parallelism with an example of 3-parallel 36-tap FIR filter.

Chapter 6 begin with the presentation of the applications of parallel FIR filters`' o. the

high speed implementation of 2D DWT structures. Chapter 7 will show the hardware

simulation results of all the structures for parallel FIR filters analyzed in previous

chapters and the comparisons of one over the other are also presented. Chapter 8

concludes this thesis with suggestions for future work.

3

2 Formulation of Parallel FIR filters using

Polyphase Decomposition
An N-tap FIR filter obtained from an input sequence x(n) of infinite length sequence and

the impulse sequence h(n) of length N, in z-domain as
N-1 ~

Y(z) = H(z)X(z) _ 	 (2.1)

The input sequence x(n) can be decomposed into even- numbered part and odd numbered

part as follows

X(z) = x(0)+z-'x(1)+z-2x(2)+z-3x(3)+...

= x(0)+z-2x(2)+...+z-'(x(1)+z-2x3)+...) 	 (2.2)

=X°(z2)+z^'X, (z2)

Where X° (z2) and X1 (z2) are z-transforms of x(2k) and x(2k+1) (0 <_ k <_ oo) . Similarly,

the length-N filter coefficients H (z) can be decomposed as

	

H(z)=H° (z2)+z'H,(z2)
	

(2.3)

Where H° (z2) and H, (z2) are of length N/2 and are referred to as even subfilter and odd

subfilter. The even numbered output sequence y(2k) and the odd numbered output

sequence y(2k + 1) (0 5 k S cc) can be computed as

Y(z) =Y° (z2)+z-'Y, (z2)

= (X° (z2)+z-'X, (z2))(HO (z2)+z-'H, (z2)) 	 (2.4)

=X0(z2)H0 (z2)+z -1 (X0 (z2)H1 (z2)+X,(z 2)H0 (z2))+z 2 X,(z 2)H I (z2)

Where Y° (z2) and Y (zz) correspond to y(2k) and y(2k +1) in time domain,
7

respectively. The filtering operation in equation (2.4) process two inputs x(2k) and

x (2k + 1) and generates two outputs y(2k) and y(2k + 1) every iteration, and is referred

to as 2-parallel FIR filter. This 2-parallel FIR filter can be rewritten in matrix form as

Y° [HO z2Hlrxl
(2.5)

Y, 	H, 	H° JL xii

n OU

v(2k)

x(

k+ 1)

Figure 2.1 shows the resulting traditional i.e. by polyphase decomposition, 2-parallel FIR

filtering structure, which requires 2N multiplications and 2(N-1) additions.

Fig 2.1 Traditional 2-parallel FIR filter

Similarly 3-phase polyphase decomposition, the input sequence X(Z) and the filter

coefficients H(Z) can be decomposed as follows

X(z)=: X0 (z3) + Z-' X, (Z3) + Z-2X2 (z)

H(z)=HO (z3)+ z H,(z3)+z 2 H2 (z3)

Where x0 (z), X,(z3)and X2 (z3)correspondto x(3k),x(3k+l)and x(3k+2) in time

domain respectively and Ho (Z), H, (Z) and H2 (Z) are three sub filters of H(Z) .The

output is given as

Y(Z) = Yo (Z3)+Z 'Y, (Z3)+Z-2Yz (z3) 	 (2.7)

Hence,

YO (Z3)= X0 (Z3)HO (Z3)+Z-3X1 (z3) H2 (Z3)+Z-3X2 (z3)H1 (Z3)
Y(Z 3)=X0 (Z I)H,(z3)+X,(z3)Hp(23)+z 3x2 {z3)H Z (Z 3) 	 (2.8)

Where Yo (z3) , y (z3) and y (z3) correspond to y(3k) , y(3k + 1) and y(3k + 2)

respectively. This 3-parallel FIR filter processes 3 input samples x (3k), x (3k + 1) and

x (3k + 2) and generates 3 output samples y(3k) , y(3k + 1) and y (3k + 2) in one iteration

and can be rewritten in matrix form as

W

Y0 H0 	Z 3H2 	z 3 H1 X0

Y, = H1 	H0 	z-3 H2 X1 (2.9)
YZ H2 	H, 	H0 X 2

Figure 2.2 shows the resulting 3-parallel FIR filtering structure, which requires 3N

multiplications and 3(N-1) additions.

x(3k-

x(3k+.

Fig 2.2 Traditional 3-parallel FIR filter

Generally, the polyphase decomposition can be used to derive L-parallel FIR filters by

decomposing X(z), H(z) and Y(z) into L subsequences as follows:.

X; (z) _ 	 z-k x(Lk+i), i=0,l...L--1
k=0
(N/L)-1

H; (z)= Y z-k h(Lk+j), j=0,l...L-1 	 (2.10)
k=0

Y, (z)= z-k y(Lk+l), 1=0,1...L-1
k=0

The L output subsequences y (Lk + 1) (0 51 S L —1, 0 5 k S oo) can be computed using an

combination of L sub filters from the L input subsequences x (Lk + i)

(0<—i <_L-1,0<_k5co) as

G'!

L-1 	 k
Yk =Z-L 	HrXL+k—i+ H ; X k _; , 0<—k<_L-2

i=k+l 	 i=0 	 (2.11)
L-1

YL-1 = I Hi X L-1—i =o

This can also be rewritten in matrix form as

Y=HX

Yo i r Ho z-LH
L-I
 ... z-

LH1 1[Xo

	

Z -LHZ X, 	
(2.12)

YL-1

H_1 	HL _2 	
... 	Ho 	X L—1

It should be noted that H is a pseudo-circulant matrix[1] as in (2.12). This L-parallel FIR

filter requires L2 sub filtering operations, each of which is of length (N/L) and requires

(N/L) multiply-add operations. Hence the L parallel FIR filter requires L2(N/L) or LN

multiply-add operations, which is linear in the block size L .Although the polyphase

formulation does not reduce the parallel filter complexity, it can be exploited to derive

fast parallel FIR filter structures.

7

3 Parallel FIR filters based on Fast FIR Algorithms .

3.1 Fast FIR Algorithms

Since the complexity of a traditional block filter increases linearly with the block size or

the number of samples processed in parallel in a clock cycle, fast FIR algorithms are

developed [2][6] to reduce the hardware complexity. This Fast Filtering Algorithms

(FFA's) will reduce the complexity of parallel filtering structures. Since the work of

Winograd [141, it is known that two polynomials of degree (L-1) can be multiplied using

only (2L- 1) product terms. Therefore, the L-parallel filter can be implemented using

approximately (2L-1) filtering operations of length (N/L). The resulting parallel filtering

structure would require (2N - NIL) multiplications. For large values of N, the FFA's can

reduce the number of multiplications significantly at the expense of increasing the

number of additions. Replacing multipliers with add operations is advantageous because

adders have a smaller implementation cost than multiplier in terms of silicon area. For

large values of L, however, the number of adders becomes unmanageable. Therefore a

balance between multipliers and adders can be maintained.

In the general case, a (n x n) FFA produces a FIR filtering structure that is the functional

equivalent of a parallel FIR filter of block size n. The application of a (n x n) FFA

produces a set of filters each of which are length N/n, where N is the length of the

original FIR filter. The set of filters that are produced by a (n x n) FFA will consist of the

n filters, H0, H1, ...,HL , that are produced by taking the polyphase decomposition of the

original filter with decomposition factor n, plus the filters that result from taking the

additive combinations of these n filters. The proper filter transfer function is realized with

the addition of some pre- and post-processing steps that are performed in conjunction

with the filtering operations.

3.1.1 Two parallel Fast FIR filter
The equations of polyphase decomposition of 2-parallel FIR filter can be rewritten as

Ya =HO X0 +z-2H1 X,
(3.1)

Y = HO X1 + H1 X0 = H0+1X0+1 — HO X0 — H1 X1

8

v(7k)

y(2k+1)

Where H;+~ = H; + H1 and X = X ; + X X

This 2-parallel fast FIR filter contains 5 subfilters, however, the 2 terms HO X0 and

H,X, are common and can be shared for the computation of Yo and Y, This low

complexity 2-parallel FIR filter structure is shown in figure'~which computes a block of 2

outputs using 3 distinct subfilters of length N/2 and 4 pre/post processing addition

operations. It requires 3N12 multiplications and 3(N/2 -1)tadditions as opposed to 2N

multiplications and 2(N-1) additions in the traditional parallel FIR filter derived directly

from polyphase decomposition. The subfilters Ho ,HI and Ho+H1 for N=6 contain the

filter coefficients of H={ho, hi, h2, h3, h4, hs}as Ho={ h0, h2, h4} ,H j=(h1, h3, h5} and

Ho+1={ ho+h1, h2+h3, h4+h5} . It should be noted that the addition of Ho and HI does not

cost anything in terms of the implementation because the filter coefficients are fixed and

known prior to the implementation. This sum can be computed off-line. This low

complexity 2-parallel FIR filter requires 12 multiplications and 13 additions, as opposed

to 16 multiplications and 14 additions required for traditional parallel FIR filter.

Fig 3.1 Reduced complexity 2-parallel fast FIR implementation

Since the implementational cost of a multiplier is much greater than that of an adder, the

cost to implement the parallel filtering structure can be approximated as being

proportional to the number of multipliers required for implementation. This is a very

reasonable approximation for comparison purposes. Based upon this approximation, the

2-parallel fast FIR filtering structure requires about 25% less hardware (area) than the

traditional 2-parallel implementation.

3.1.2 Matrix representation

The L- parallel FIR filter can be represented in matrix form as

Y f = QL H LPP X L 	 (3.2)

7

Where YL is an output matrix, QL is an post processing matrix which contain the post

additions, PL is an preprocessing matrix that determines the manner in which the inputs

are combined, X L is the input matrix and HL is an L diagonal matrix. The entries of the

diagonal matrix HL are the subfilters of the parallel FIR filter. It should be noted that the

application of FFA diagonalizes the pseudo-circulant matrix of (2.12).

The 2-parallel FIR filter can be represented in matrix form as

	

Y2 = Q2H2PZX2 	 (3.3)

The 2-parallel fast FIR filter in (3.3) is represented in matrix form as

Z 	Ho 	1 0
Yo 	1 0 z- diag H

o + H, 1 1 X° 	 (3.4)
Y,

L j=[_1 1 —1 	H iLo 1 X'

3.1.3 Parallel filters by transposition

Any parallel FIR filter can be used to derive another parallel equivalent structure by

transpose operation. Generally the transposed architecture has the same hardware

complexity, but different finite word length performance.

The transposition of L-parallel FIR filter can be obtained by transposing the equation

(3.2)

	

YF = (QLH LPL)T XF — PLT HL T QLT XF
	 (3.5)

Where YF =['L_1 YL_2 ... Yo
]T , X F =[X L_, X L-2 ... X D]T and PLT ,QLT are the

post and preprocessing matrices which will determine the output and input combinations

for the parallel FIR filters. HLT is an L diagonal matrix which contains the subfilters.

The transposition of 2-parallel fast FIR filter in (3.3) leads to another equivalent structure

	

Y = PZT H2T Q2T X 2F 	 (3.6)

The 2-parallel fast FIR filter of (3.3) in transposition can be obtained as (3.6) and is

shown in figure 3.2

[H0 1[1 —1
Fi1 ni i 01 	I

Y 	0 1 1 diag Ho + H, 0 	1 X' 	(3.7)
o 	 Hl 	z z _ 1 	0

10

v(2k)

(2k+1)

x(

Fig 3.2 Transposed reduced complexity 2-parallel FIR filter

The transposed architecture can also be obtained by transposing the signal flow graph of

the original parallel FIR filter. Generally both matrix transposition and signal flow graph

transpositions are applicable to any FFA to generate equivalent parallel FIR filtering

structures.

3.1.4 Three parallel fast FIR filter

A fast 3-parallel FIR algorithm can be derived by recursively applying a 2-parallel fast

FIR algorithm.

+z-'Y; +z 2},

=(x0 +z—' X, +z-2 X2)(H0 +z-'H, +z-2H2) 	 (3.8)

=(X,,.+z-'V)(H.+z 'W)

Where V =(x1 + z-'X Z) and W = (H, + z-' H2) .Using the fast FIR algorithm Y can be

computed as

Y = HO X0 +z-' ((Ho +W)(X 0 +V)—H0 X0 —VW)+z-ZVW
(3.9)

_ [H0 X0 +z-2VW]+z-' ((Ho +H, +z-'H2)(Xo +X, +z-'X2)— H,,X0 —VW)

Where VW =(x1 + z-' X2) (H, + z-' H Z) can be computed as

VW =(X,+z-'X2)(H,+z-'H2)
(3.10)

_ [H,X, +z-2 H2 X2
]+

z —' [(H, + H2)(X , + X2) —H,X, —H2 X 2]

Substituting equation(3. 10) in equation(3.9) we get

Y=[H0 X0 +z-2 ([H,X,+z 2 H 2 X 2]+z-'[(H,+H 2)(X 1 +X 2)— H,X,—H 2 X 2])1

+z`'[((H0 +H,+z-'H2)(X o +X,+z-l X Z)— H0 Xo —([H,X,+z-2HZXZ]+z-' [(H,+H 2)(X,+ X 2)—H,X 2 —H 2 X 2]))]

11

=HO Xo +zf'[(Ho +H I)(Xo +X,)—HO Xo —H,X,]

+z-2 [H,X, +(Ho +H1)X 2 +H2 (X o +X,)—(H, +H2)(X1 +X 2)+ H1 X1 +H2 X 2]

+z-3 [(H, +H2)(X 1 +X2)-H1 X 1 -H 2 X 2 +H2X2 -H2X2]+z_4H2X2

= H0 X 0 -z-3H 2 X 2 +z-3 [(H, +H Z)(X, 	 H1 X 1]

+z-'([(H0 +H1)(X0 +X,) — H1 X1]—(H0 X0 — z 3H2 X 2
))

+z-2 ([(H0 +H, +H2)(X0 +X, +X 2)]—[(H0 +H1)(X0 +X,)—H,X,]—[(H, +H2)(X 1 +X 2)—H1 X 1])

(3.11)

The resulting 3-parallel FIR filter is given by

Yo = H0 X0 —z-3 H 2 X 2 +z- [(H1 +H 2)(X 1 +X 2)— H1 X1

Y= z-' ([(H0 +H1)(X o +X.)— H1 X,]— (H0 X0 —z 3H2X2))

YZ =z-2 ([(Ho +H,+H 2)(X o +X,+X 2)]—[(Ho +H,)(Xo +X,)—H,X,]—[(H,+H 2)(X,+X 3)—H,X,])

(3.12)

The matrix form of 3-parallel FIR filter can be expressed as

Y = Q3H3PX3

Y0 	1 -Z-3 -Z_3 0 Z-3 0
Y= —1 —1 	z-3 	1 	0 0 diag
YZ 	0 1 	0 —1 —1 1

Ho 1 	0 	0
H, 0 	1 	0

X
Hz 00 	

l 0

X,
Ho +H, 1 	1 	0
H, + H Z 0 	1 	1 Z

H0 +H1 +H2 1 	1 	1

(3.13)

The P3 and Q3 matrices are the pre-processing and post processing matrices respectively,

while the H3 matrix is the diagonalized subfilter matrix. Hence, the 3-parallel FIR filter

is 	constructed 	using 	6 	subfiters 	of 	length 	N/3, 	including

HO Xo , H,X,, HZ X2 ,(Ho +H,)(Xo + X,) ,(H I +H2)(X I +X2) ,

(Ho +H1 + H2) (Xo +X1 +x2), and 3 pre processing and 7 post processing additions as

shown in figure 3.3 . The overall computation requirement includes 2N multiplications

and 2N+4 additions. Comparing to the cost of the traditional and reduced complexity 3-

12

parallel structures, it is clear that the reduced complexity filtering structure provides a

savings of approximately 33% traditional structure.

+2)

Fig 3.3 Reduced complexity 3-parallel FIR implementation

3.1.5 Fast Parallel FIR algorithm for large block sizes

Parallel FIR filters with long block sizes can be designed by cascading smaller length fast

parallel filters i.e., an m-parallel FFA can be cascaded with an n-parallel FFA to produce

an (m x n) parallel FFA parallel filtering structure. The set of FIR filters that result from

the application of the m-parallel FFA are further decomposed, one at a time by the

application of n-parallel FFA. The resulting set of filters will be of length N/(m x n).

When cascading the FFA's, it is important to keep track of both the number of

multiplications and the number of additions required for the filtering structure. The

number of required multiplications for an L-parallel FIR filter with L=LIL2...Lr is given

by

M= ,N fl M, 	 (3.14)
L; r

i=1

Where r is the number of FFA's used, Li is the block size of FFA at step-i , Mi is the

number of filters that result from the application of the i`h FFA and N is the length of the

filter. The number of required adders can be calculated as follows

13

r 	r 	r 	i-1 	 r
A=A,fJL,+Z A; f Lj ITMk + f M; rN 1 	(315)

i=2 	i=2 	j=i+l 	k=1 	 i=1 	 fJ Li
i=1

Where A, is the number of.pre/post processing adders required by the i`h FFA. Consider

the case of cascading two 2-parallel FFA's to obtain a 4-parallel FIR structure as shown

in figure 3.4. The resulting 4-parallel filtering structure would require 9N/4

multiplications and 20+9(N/4 -1) additions for implementation. The reduced complexity

4-parallel filtering structure represents an hardware (area) savings of nearly 44% when

compared to the 4N multiplications required in the traditional 4-parallel filtering

structure.

In matrix form, the reduced complexity 4-parallel FIR filter is represented as follows

Ya1. = B4(J3x3®Q4)H4(P2®P2)X4P 	 (3.16)

Yo 	1 0 0 0 0 z-4
Y 	0 1 0 0 1 0 	_ 1 0 z-4

Where Y4P = Y2 ,B4 = _1 0 1 0 —1 0 ' Q4 —1 1 —1
Y3 	0 —1 0 1 0 —1

H4 = diag]

Ho
Ho + H2

H2
Ho + H1

Ho +Hl +H2 +H3
H2 + H3

H1
H1 + H3

H3

Xo
1 01 	I X

P2 = 1 1 and X4p=
X'

Loi 	 2
X3

Note that X4p and Y4P are permuted versions of X4 and Y4 respectively. B4 can be

obtained from Q2 by replacing 1 by'2x2 ,0 by 02x2 and by appropriate unfolding[4] of the

delay operator z-2 of the 2-parallel FIR filter. The ® is the tensor or Kronecker product

operator[7]. The tensor product is extremely useful in signal processing applications

because it allows large matrices to be represented by small matrices. Using the tensor

14

_ 	HO 	- _ v(ak)

4k+2)

k+1)

4k+3)

product, the reduced complexity of 4-parallel FIR filter in relatively compact form can be

represented. It should be noted that the Q4 matrix is essentially identical to the Q2 matrix

of the 2-parallel FFA with the only difference being the power delay operator in the

matrices. The 4-parallel FIR filter structure shown in fig 3.4 can be thought of as 3

separate 2-parallel FFAs each producing 2 outputs, which are combined by B4 to produce

the 4 filter outputs.

x(4

x(4k+1

Fig 3.4 4-parallel fast FIR filter by cascading two 2-parallel FFA's(Fo and F1)

3.2 Fast FIR filters based on Frequency Spectrum
In [25], it was shown that the power consumption of arithmetic units can be reduced if

statistical properties of the input signal is exploited. In [26], it is shown that the hardware

cost can be reduced by exploiting the frequency spectrum characteristics of the given

transfer function. This is achieved by selecting appropriate FFA structures out of many

possible FFA strikctures all of whom have similar hardware complexity at the word-level.

However, their complexity can differ significantly at the bit-level. For example, in

narrowband low-pass filters, the signs of consecutive unit sample response values do not

15

change much and therefore their difference can require fewer number of bits than their

sum. This favors the use of a parallel structure which requires subfilters which require

difference of consecutive unit sample response values as opposed to sum. In addition to

the appropriate selection of FFA structures, proper quantization of subfilters is important

for low-power or low hardware cost implementation of parallel FIR filters.

3.2.1 FFA structures for 2-parallel and 3-parallel FIR filters

By an simple modification of 2-parallel FIR filter in (3.1), the following FFAI is derived

Yo = HO X0 + z-ZH,X, 	
(3.17)

Y, = — H0 _1 X0_1 + HO X0 + H,X,

Where H, = H. — H j and X ; = X. — X. .

The structure derived by FFA 1 [6] is shown in figure 3.5 where as the FFAO structure is

in figure 3.4.

x(2k) 	 ~y(2k)

--' ~i''~

x(2k+1)
Ho 	D

Fig 3.5 FFA 1 structure of 2-parallel fast FIR filter

The structures derived by FFAO and FFA I are essentially the same except some sign

changes. Notice that, in FFA1, Ho_, is used instead of H0+1. When an FIR filter is

implemented using .a multiplierless approach, the hardware complexity is directly

proportional to the number of nonzero bits in the filter coefficients. If the signs of the

given impulse response sequences do not change frequently as in the narrowband low-

pass filter -cases, the coefficient magnitudes of Ho + Hl are likely to be larger than those

of Ho — H1. Then, Ho + H1 has more nonzero bits in the coefficients than HO — Hl [5]. If

the signs of the given impulse response sequences change frequently as in the wide-band

low-pass filter cases, Ho — H, is likely to have more nonzero bits in the coefficients than

Ho + H1 . Thus, to achieve minimum hardware cost, it is necessary to select either FFAO

or FFA1 depending upon the frequency spectrum specifications.

The (3 x3) FFA produces a parallel filtering structure of block size 3.With L=3, we have

16

Y0 =H0 X0 +z 3 (H,X 2 +H2 X,)

Y = HO X, +H,X0 +z-3 (H2 X 2) 	 (3.18)

YZ =HO X2 +H,X,+H2 Xo

This can be written in FFAO form as shown in equation (3.12).This structure computes a

block of 3 outputs using 6 length N/3 FIR filters and 10 preprocessing and postprocessing

additions, which requires 6(N13) multipliers and 6(N13 — 1) + 10 adders. Notice that (3 x

3) FFAO structure provides a saving of approximately 33% over the traditional structure.

The (3 x3) FFA1 structure can be obtained by modifying (3.18) as follows:

Yo =Ho Xo+z-3(HZX2) — z 3 (H2_1X2-1`H1X1)
Y =—(Ho-1X0-, — HIX1)+(H0X0 +z-3H2X2) 	 (3.19)

Yz = H0-1+2X0-1+2 — (H0_1x0_1 — HIX1) — (H2-1X2_1 — HX1)

Figure 3.6 shows the filtering structure that results from the (3 x 3) FFA1. The following

(3 x3) FFA2 structure given by (3.20), which is efficient when the coefficient magnitudes

of H0_2 are smaller than those of H0-1+2 or

Yo = HO X0 + z -3 (H2 X2 — H2-1X2-1 + H1X1)
Y, =—H0 1 X0 +H,X, +HO X0 +z 3 H2 X2 	 (3.20)
Yz = —H0-2 X0-2 +HO X0 +H,X, + H2 X 2

Figure 3.7 shows the resulting FFA2 structure for 3-parallel FIR filter.

+1)

+2)

Fig 3.6 FFA1 structure for 3-parallel FIR filter

17

2)

Fig 3.7 FFA2 structure for 3-parallel FIR filter

3.2.2 Cascading FFA's

The (2 x 2) and (3 x 3) FFAs can be cascaded together to achieve higher levels of

parallelism. The cascading of FFAs is a straightforward extension of the original FFA

application [2]. For example, the (4 x 4) FFA can be obtained by first applying the (2 X

2) FFAO to (2.1) and then applying the (2 x 2) FFAO or the (2 x 2) FFA 1 to each of the

filtering operations that result from the first application of the FFAO. The resulting (4 X

4) FFA structure is shown in figure 3.8. Each filter block Fo, Fo+F, and F represents a

(2 x2) FFA structure and can be replaced separately by either (2 x 2) FFAO or (2 x 2)

FFA 1. Each filter block Fo, Fo + F1, and Fl is composed of three subfilters as follows:

(i) Fo : Ho,H2,Ho + Hi,

(ii) Fo +F1 : Ho+Hi,H2+H3, (Ho +HI)+(H2+H3),

(iii) F1 : H1 ,H3,H1 + H3 ,

where

±= 	+, for FFAO,

—,for FFA 1. 	 (3.21)

When the filter block Fo + Fl is implemented using FFA1 structure, the subfilters are

H0+1, H2+3, and Ho +H1 — H2+H3. Thus, even though FFA1 structure is used for slowly

varying impulse response sequences, optimum performance is not guaranteed. In this

18

+2)

3)

x(4k) - x(4k+1) y(4k+1)

4k+3)

x(4k+2)-x('

Fig 3.8 FFAO or FFA1 4-parallel FIR filter structure

case, better performance can be obtained by using the FFA 1' shown in figure 3.9. Since

the subfilters in FFAI' are H0-1, H2_3, and Ho-1 - H2_3 , the FFAI' gives smaller number

of nonzero bits than FFAI for the case of slowly varying impulse response

sequences. .Notice that the FFA 1' structure can be derived by first applying the (2 x 2)

FFAI (instead of the (2 x 2) FFAO) to (2.1). When the filter block Fo + F, in Figure 3.8

is replaced by FFA I' in Figure 3.9, it can be shown that the outputs are y(4k), —y(4k +
1), y(4k + 2), and —y(4k + 3). The complexity computation is similar to the fast parallel

FIR filter.

Fig 3.9 FFA 1' structure of 4-parallel FIR filter

19

3.2.3 Selection of FFA types

For given length N unit sample response values {h;} and block size L, the selection of best

FFA type can be roughly determined by comparing the signs of the values in subfilters

Ho,H2, ... , HL_ I . For example, in the case of L = 2 and even N, Ho, and H1

are

Ho = ho, h2, ... , hN-2,

H1 = hi, h3, ... , hN-1. 	 (3.22)

From(3.22), the ith value ofHo can be paired with the ith value of H1 as (ho, h1), (h2, h3), . .

. , (hN-2, hN_ 1). Comparing the signs of the values in each pair, the number of pairs with

opposite signs and the number of pairs with the same signs can be determined. If the

number of pairs with opposite signs is larger than the number of pairs with the same

signs,Ho+Hi is likely to be more efficient than Ho —H1 . The sign-comparing procedure

can be extended to any block size of L with appropriate modifications.

hi

PA

4 PARALLEL FIR FILTER STRUCTURES BASED ON

FAST CONVOLUTION ALGORITHMS

In this chapter, an approach to further improve the throughput of FIR filters can be done

with short length linear convolution algorithms. A set of fast short length linear

convolution algorithms has been developed to realize parallel processing of FIR filters

[8].

4.1 Fast Parallel FIR filters based on linear convolution
Any Lx L convolution algorithm can also be used to derive an L-parallel fast filter

structure. Generally, the L-parallel FIR filter

Y=HX

is first expressed as

H L—, H L— z ... H,
0 HL—, ... H2

[Yo Y, ... YL_,]T = 	0 	0 	... H3

0 	0

(4.1)

Z-LX 1

Ho 	0 	0 z LX 2

H, 	Ho 	... 	0 _i ..
Z 	X `-' HZ 	H I 	... 	0 (4.2)

H L-I 	HL-2 	... 	Ho X,

X L_,

This form of the standard parallel filtering algorithm is similar to the transpose form of a

linear convolution [1]. Using this idea, reduced complexity of parallel filtering can be

generated. The basic idea is to start with an optimal linear convolution and take its

transposition to generate the parallel filtering algorithm. Some efficient fast short

convolutions based on Winograd algorithm, which have less number of multiplications

than FFAs, are shown in Appendix C. However, when the convolution length increases,

the number of additions increases dramatically, which leads to complex pre addition and

post addition matrices that aTe not practical for hardware implementation. Therefore, if

we could use fast convolution algorithms to decompose the convolution matrix with

simple preaddition and post addition matrices, we can get computationally efficient

parallel FIR filter with reduced number of delay elements. Fortunately, the mixed radix

21

algorithm in [7], which decomposes the convolution matrix with tensor product into two

short convolutions can be used. This algorithm is combined with fast two and three point

convolution algorithms to obtain a general Iterated Short Convolution Algorithm (ISCA).

Although fast convolution of any length can be derived from Cook—Toom algorithm or

Winograd algorithm [4], their pre addition or post addition matrices may contain

elements not in the set { 1, 0, —1 } (i.e., shown in Appendix C), which sometimes make

them not suitable for hardware implementation of iterated convolution algorithm.

4.2 ITERATED SHORT CONVOLUTION ALGORITHM (ISCA) U
A long convolution can be decomposed into several levels of short convolutions. After

fast convolution algorithms for short convolutions are constructed, they can be iteratively

used to implement the long convolution [4].The mixed radix algorithm [7] is used to

derive the generalized iterated short convolution algorithm using the Tensor Product

operator in matrix form.

A M x M convolution can be decomposed into in x m convolution and a n x n convolution,

whose short convolution algorithms can be constructed with fast convolution algorithms

such as Cook—Toom algorithm[4] or Winograd algorithm [4][11] and represented as

= Qm Hm Pm X m and Stn-, = QQ Hn Pn X„ respectively. Q„z and Q,, . are post addition

matrices. P,,, and P„ are pre addition matrices. Hm and H„ are diagonal matrices, which

can 	be 	denoted 	as 	H,, = diag [Pm x [h0 h, ... h,,,_,]T]
	and

H,, = diag [P x [ho h, 	h„_, 1T] respectively. They determine the number of

required multiplications in the iterated short convolution algorithm. Xm and

[ho h, ... h,,,_,]T are two column vectors, containing the two input sequences for

mx m convolution.. X„ and [ho h, ... h„_,]T are two column vectors, containing the

two input sequences for n x n convolution. These two convolutions result in two outputs:

S2,,,_1 and S211 _1 of length (2m-1) and (2n-1) respectively.

Using the mixed radix algorithm [7], the resulting iterated short convolution algorithm

can be represented as

22

S2M-1 AM mn(Qm ® Qn) HM mn(Pm ®Pn) X M
	 (4.3)

Where HM m„ = diag [(Pm ®Pn) x [ho h, ... h]T] and AM_m„ is a (2M-1) by ((2m-

1)(2n-1)) matrix ,composed of (2n-l) by (2n-1) unity matrices as shown in equation (4.4)

Mm—mrb =

1 0 0 o

	

o a 	0 	1 0 0 0
i! 41 0 1 0 --0 0

t{2n.—])]C(Y•.i-1} 	0 0 0 1

• I(2nt-1.}X('?'ra.—Y} 	 1 	0 	0 	0

0 1 (l 0
0 C) •• 0

	

.d- 1— -- 0 tl 	0 	1

10 o 0
0 1 0 \1

0 0 . 0
0 0 0 1.

- I))c(2._ I

(4.4)

The order of convolution can be of any order, first i.e., m x m first followed by n x n

convolution or n x n convolution followed by m x m convolution to obtain M x M (mn or

nm) convolution. In this way, any long convolution can be decomposed can be

decomposed into any combination of fast short convolutions. A L x L (L=L j.L2 ... Lr)
linear convolution can be decomposed into r short convolutions

S2L.-1 = QL, H L; PL, X L (i = 1, 2,...r) . One of the resulting iterated convolution algorithm can

be represented by

S21-1 = AL(QL, 0(...(QL,-, 0QL,)))HL(P, ®(...(PL.
-t ®PL,)))XL 	(4.5)

Where H L = diag ((P, ®(... (PL ®PL))) x [ho 1 ... hL_,]T) and AL can be computed

using the following procedure

23

A, = AL_ LlL2

4 = AL-4L2L3'(A1 ®I(2L,-1)x(2L,-1) /

...... 	 (4.6)

A,-, = ALL .(A, ®I(2L,-1)x(2L,-1)1

AL = An

The above equation (4.4) is the iterated short convolution algorithm. The mixed radix

algorithm [7] combines two short convolutions to get a longer convolution, while this

iterated short convolution algorithm can combine any numbers of short convolutions and

thus it is more efficient.

The iterated convolution structure can be transposed to obtain a fast parallel FIR filter.

An L(L=L j.L2...Lr) parallel N-tap FIR filter based on iterated L. x L;

convolutions, S2L,_, = QL, H L P,, X L, (i = 1, 2,...r) , can be expressed as

YL =PTHLQTA"X, 	 (4.7)

Where 	Y,_2 ... Yo JT ;

X L = [X L_, 	X1 X0 Z-LXL_t 	Z / XZ Z -L X~ T .

X ; 	(i=0,1,...,L-1) inputs x,k+; ,(k=0,1,2,...,x)

H L =diagIPx[H. H, ... H L_,]T

P = (P x„ ® (.. . (P,,, , <11r, 0 Pm xn,)))

H, (i = 0,1,..., L —1) subfilters containing the coefficients hckl, , (k = 0,1, 2,..., r)

PT (r~xn, ®(...(P 	0P,,Txn,)))

QT (Qjpxn1 ®(... (Qm,_I xn ®Q ,)))
AT is the transpose of the matrix defined by (4.4)

PT and QT are the preprocessing and post processing matrices, which determine the

manner in which the inputs and outputs are combined, respectively [4].

24

Let us illustrate this through an example of 4-parallel FIR filter structure, implemented by

4 x 4 convolution, which is done by the iterated two 2 x 2 convolutions as

Y4 = (P2T ®P2T) H4 (Q2 ® Q2) A4 22 X 4

Where A4 22 =

1 0 0 0 0 0 0
0 1 0 0 0 0 0
0 0 1 0 0 0 0
0 0 1 0 0 0 0
0 0 0 1 0 0 0 QQ ®QZ =
0 0 0 1 0 0 0
0 0 0 0 1 0 0
0 0 0 0 0 1 0
0 0 0 0 0 0 1

1 	1 0 1 1 0 0 0 	0
0 	—1 0 0 —1 0 0 0 	0
0 	1 1 0 1 1 0 0 	0
0 	0 0 0 —1 —1 0 0 	0
0 	0 0 0 1 0 0 0 	0
0 	0 0 0 —1 —1 0 0 	0
0 	0 0 1 1 0 1 1 	0
0 	0 0 0 —1 0 0 —1 	0
0 	0 0 0 1 1 0 1 	1

1 1 0 1 1 0 0 0 0

PT®PT
0 —1 1 0 —1 1 0 0 0

=
0 0 0 0 —1 —1 1 1 0
0 0 0 0 1 —1 0 —1 1

H4 = diag ([HO H0 —H, H, H0 —H1 Ho — H, — H2 + H3

X 4 =[X3 X2 X1 Xp z-4 X3 z-4 X2 z -4 X1]T

H, — [13 H2 H2 — H3 H3])

This 4-parallel FIR filter architecture is as shown in figure 4.1.Similarily a 6-parallel FIR

filter can be implemented by 2 x 2 and 3 x 3 convolution. The order must be important as

it reduces the number of adders in its implementation. For ISCA, higher order

convolution should be first followed by lower order convolution for less number of

adders to be implemented.

25

3)

k+2)

4k)

Fig 4.1 ISCA based 4-parallel FIR filter

4.2.1 Complexity Computation:

The number of required multiplications is determined by the diagonal matrix HL in (4.7)

is given by

M= ,N fJM; 	 (4.8)

fl L, 1'

Where r is the number of L, x L, convolutions used, M; is the number of multiplications

used in the L; x L, convolution, which is determined by HL, and N is the length of the

original filter. All multiplications lie in subfilters of the same length. The number of

subfilters is determined by JJM; , and the length of each subfilter is given by N HL; .

26

The number of required adders is determined by the adders used in pre and post

processing matrices and the adders used in subfilters, is given by

~r 	 -1 	r 	r 1V T7 	r 	i-1 	r
A= I I HnJ fl mk A(Pmxn;)H,- + 	 —1 + 	ll I f ni 	mk A(Qrxn) i=1 	j=1 	k=i+l 	 i=111 	 fl L

i=1

(4.9)

The first sum gives the preprocessing adders and the second sum gives the numbers of

adders in the subfilters followed by the third one, which gives the post processing adders

of the parallel FIR filter. Function A(P,„ X7,) is the minimum number of adders in the

matrix PTxn . Since each row of AT has only one "1", it will not increase the number of

adders. The number of required additions depend on the order of iteration. m x m

convolution is iterated ahead of convolution (m>n), will lead to lowest adder

complexity.

The number of required delay elements is counted by the (L-1) delay elements in the

input side and the ones used in the subfilters, and is given by

	

D=L-1+f M; N —1 	 (4.10)
fl L,

4.3 Improved Fast Parallel FIR filter structure
When L is large, ISCA-based parallel filter involves many subfilters, which require a

large number of multiplication operations but the same hardware structure. Designing an

efficient core to share the computation of all these subfilters in different time slots can

reduce the hardware cost. Further reduction in the hardware i.e., no. of multiplications of

fast parallel FIR filters can be done by transforming an FIR filter into linear convolution.

Then an iterated short convolution is used to implement this linear convolution. This

method will increase the no. of delay elements by decreasing the number of multipliers.

27

Simple control signals are used for the control of the data flow in the delay element

matrix (DEM).

An N-tap FIR filter can be transformed into NxN linear convolution as shown in figure

4.2. The last N-1 rows of the 2N -1 outputs of NxN linear convolution are summed with

the upper N-I rows of the 2N-1 outputs of the following convolution to get the N outputs

of the N-tap filter. Then the hardware cost will depend on the complexity of the NxN

linear convolution. The ̀ D' shown is an delay of N cycles for an NxN linear convolution.

x(kN) 	 y(kN)

x(kN+ I) 	 y(kN+N-2)
• NxN 	 y(kN+N-1)
• linear 	D

x(kN+N-1 	convolution 	 where k =0,1,2....

Fig 4.2 Implementation of N-tap FIR filter with NxN linear convolution

Based on the above property the algorithm for hardware reduced parallel FIR filter is as

follows:

4.3.1 Improved structure Algorithm: L]

Improved structures for a given L-parallel N-tap FIR filter can be obtained as:

1. Form an ISC based FIR filter by (4.7);

2. Replace the subfilters with a core (N/L) x (N/L) linear convolution and two delay

element matrices to arrange the input and output of the (N/L) x (N/L) linear convolution;

3. Implement the (N/L) x (N/L) linear convolution using the iterated short convolution

algorithm.

Consider an example of 2-parallel 6-tap FIR filter to illustrate this algorithm.

YZ =FFTH2Q2XL 	 (4.11)

Where outputs YZ _-[y(2k) y(2k+1)]T

inputs X2 =[x(2k+1) x(2k) x(2k-1)]T ; k=0,1,2,

28

H2 =diag[H0 Ho — H, H,]

10 	1 0 0

P2 = 1 —1 Q2 	1 —1 1
01 	0 0 1

The 2-parallel 6-tap FIR filter is as shown in figure 4.3. Ho Ho — H1, H, are three 3-tap

subfilters of {ho, h2, h4} ,{ho- h, , h1- h3 , h4 - hs}, {hl, h3, hs} respectively.
v(2k+11

Fig 4.3 2-parallel 6-tap FIR filter

By transforming the computation of 3-tap FIR filter into that of 3 x 3 linear convolution,

an improved structure is obtained as shown in figure 4.4.

HO,HO-H1,H1

CQO Cl qQ2 F1 to CPO CP ICP2

~1) 3x3 3x3

Delay 3 x 3 Delay
x(5) x(0) Element linear Element

x(2) Q2T 	Matrix convolutio 	3D Matrix 	P2T

Fig 4.4 An improved 3-parallel structure for 2-parallel 6-tap FIR filter

The data flow of the Delay Element Matrix (DEM) in Fig. 4.5 is `horizontal in, vertical

out' or `vertical in, horizontal out' and controlled by CO, Cl and C2 signals. CO signal

controls whether the data are `horizontal' in or `vertical in'. Cl signal controls whether

the data are `horizontal out' or `vertical out'. C2 signal controls whether the data flow

horizontally or vertically in the delay element matrix. The delay element function is as

shown in figure 4.5. The structure can compute 6 input data in 3 clock cycles, thus it has

the same throughput rate as previous 2-parallel FIR filter structure.

Y(l)
y(3)
y(5)

y(0)
y(2)
y(4)

29

2
0 	 a lC

o 	 D 	D 	D

' 	 cl:
CO 	 3x3 D D D ~ 	 Delay

C1; 	 Element
' 	 o 	 Matrix D 	D 	D 	e

(a)

. C2 __.. V° 	2 	V°
H; a D Ho 	 H, 	I

(b)

Fig 4.5 (a) 3 x 3 Delay Element Matrix (DEM) (b)Delay element function

4.3.2 Complexity Computation

For a L-parallel N-tap FIR filter, the computation is based on (N/L) x (N/L) linear

convolution, which can be implemented with the iterated short convolution algorithm in

[.The number of required multiplications for the parallel FIR filter is equal to that of

(N/L) x (N/L) linear convolution. If N/L can be decomposed as L,L2 L3 ... L., then the

number of required multiplications can be given as:
s

M = fl M; 	 (4.12)

Where s is the number of L, x L, convolutions used to implement (N/L) x (N/L) linear

convolution .M; is the number of multiplications used in the L, x L, convolution, which is

determined by H L, The number of required additions is made up of three parts: 1).

additions used for the preprocessing and post processing matrices pT and QT in (4.7);

2).additions used to implement the (N/L)x(N/L) linear convolution by iterated short

convolution ; 3). additions used in Fig. 4.2 for transforming (N/L)-tap FIR filter into

(N/L)x(N/L) linear convolution, which can be given by (N/L)-1. Therefore, the total

number of required addition can be given by:

30

r i-1 r r ri;-1 r

`Q — ~ flnl fl mk
A (] T xn,) +~ fl ni fJ mk A(QTim,)

i=1 	j=1 	k=i+l 	 ;=1 	j=1 	k=;+1
(4.13)

;—t 	. 	 s 	;-1 	S

+~ fJnJ 	mk A (rmxn) +I flnl fJ mk 4(Qm,xn~ /
i=1 	j=1 	k=i+1 	 i=1 	j=1 	k=i+l

Where r is the number of L; x L, convolutions used to implement the L-parallel FIR

filter. The number of required delay elements is also made up of three parts: 1) (L-1)

delay elements in the input side as shown in Figure 4.3; 2). delay elements used in Figure

4.4 for transforming (N/L)-tap FIR filter into (N/L)x(N/L) linear convolution, which can

be given by f1M1 (i —1J ; 3). delay elements used in the two delay element matrices,
i=t l

which can be noted as De , where De is given by

DD =fiM.N+min fjM; ,N riM; —N 	 (4.14)
=1 	L 	+=1 	L

r

Where [f M; is actually the number of output of matrix QT in (4.7) and is also the
i=1

number of input data that go into the delay element matrix before the (N/L) x (N/L) linear

convolution; it May be greater or less than N/L, and may be equal to N/L as in Fig. 4.4;

when it is less than N/L, the shape of the delay element matrix is like Fig. 4.6(a); when it

is greater than N/L, the shape of the Delay Element Matrix is like Fig. 4.6 (b).

N/LO

___1.

1T M;

r Q
M;

i=1
C b!)

N/LU

r

M;
i=1

r Q
TT M;
i=1 (0.)

C~
NIL

r 	 r

Fig 4.6 Shape of Delay Element Matrix (a) fl M; > N/L (b) JJ Mi < N/L

Therefore, the total number of required delay elements can be given by:

D=fMi ~~-1)+2DQ +L-1
i=1

(4.15)

31

5 Parallel FIR filters based on 2-stage parallelism

Although the idea of improved fast parallel structure is applied for parallel FIR filters, the

computation of the subfilters is shared by a linear convolution processing core, its

structure is irregular for some cases. If a L-parallel N-tap FIR filter contains subfilters of

length (N/L) is assumed, then previous ISCA-based structures can process nL input

samples in n clock cycles with all the n subfilters working simultaneously. n is also the

number of output samples from the preprocessing matrix QTAT in (4.7) when L input

samples are input in each clock cycle, and thus the n subfitlers will process n2

intermediate data, corresponding to the outputs of the preprocessing matrix, in n clock

cycles. If the computation of these nz intermediate data in n clock cycles is obtained by

using one (N/L)-tap FIR filtering core, this core must be able to process n data in one

clock cycle, i.e., the core must implement an n-parallel (N/L)-tap FIR subfilter. The

hardware complexity of this n-parallel FIR subfilter is far less than that of the n subfilters,

especially when N and L are large. This is the basic idea of the 2-stage parallel FIR filter

structures. The improved structure for fast parallel FIR filter is an special case for 2-stage

parallel FIR filter.

5.1 2-stage parallelism i 2,7

There are two methods for the parallel FIR filter based on 2-stage parallelism;1).by

replacing the (N/L) x (N/L) linear convolution with (N/L) parallel FIR filter.

5.1.1 Generalization (Method-I) of 2-stage Parallelism

The structures for a given L-parallel N-tap FIR filter can be generalized as follows.

1) Form an ISCA-based -parallel FIR filter by (4.7) .

2) Replace its subfilters with a second stage n-parallel FIR subfilter, where n is the

number of subfilters involved in the first stage L-parallel implementation, and two DEMs

of size n x n each to arrange the input and output of the n—parallel FIR subfilter.

3) Implement the n-parallel FIR subfilter by first forming an ISCA-based n-parallel FIR

filter from (4.7), and then replacing each delay element ̀ D' with 'nD'.

32

5.1.2 Method-2 of 2-stage parallelism

2). Direct application of the parallel FIR filter structures will have problems when L is

large. Then the number of subfilters of the first stage L-parallel implementation, n, will

increase dramatically. In this case, the number of required additions for preprocessing

and post-processing matrices of the second stage n-parallel FIR subfilter will dominate

the total number of required additions and lead to large amount of required additions.

Furthermore, large n will also lead to a dramatic increase in the number of required delay

elements because of the replacement of' 'D' with `nD' in the implementation of the

second stage n -parallel FIR subfilter and the two DEMs of size n2 . Finally the latency

of the design will also be long since the computation latency is 2n clock cycles.

The improved implementation of L-parallel FIR filter structures (Method-2) by 2-stage

parallelism can be generalized as

1) Form an ISCA-based L -parallel. FIR filter by (4.7), where Lis the first stage

parallelism and it divides L.

2) Replace its subfilters with a second stage L -parallel FIR subfilter, where

= (L/L) n and n is -the number of subfilters involved in the first stage L -parallel

implementation, and 2 (Ll) DEMs of size n x n needed to arrange the input and output

of the n-parallel FIR subfilter.

3) Implement the L -parallel FIR subfilter by first forming an ISCA-based L -parallel

FIR filter from (4.7), and then replacing each delay element "D " with "nD ".

5.1.3 Complexity Computation

For the L-parallel N-tap FIR filter, where L has only 2 and/or 3 as its prime factors, the

number of subfilters of its first stage L -parallel structure (L =L1.L2...Lr) can be given as
r

n=f M; 	 (5.1)

33

Where r is the number of L1 x L, convolutions used, M is the number of multiplications

used in the L. x L. convolution, which is determined by HL in (4.7),It is obvious that

= (L/L) n has only 2 and/or 3 as its prime factors and can be further decomposed as

(L =L1.L2...LS). The number of subfilters of the second stage L -parallel FIR subfilter

can be given as: fl M. , which is also the total number of subfilters of the L—parallel N-
i=1

tap FIR filter. The final subfilter length is ~ N I . Therefore the total number of required
nL I

multiplications is given by

M=
 NJ

s

	

fM ; 	 (5.2)

Where n and M; are defined in (5.1).

The number of required additions is made up of three parts.

1) Additions A(L) required for the first stage 1 -parallel preprocessing and post-

processing matrices.

r -1 r i-1

A\L.)= 	[(fi j nj)(fr j Mk)A(Pinxn;) +Z f nj fl mk `4(Qm;xn) \L/LJ
i=1 	j=1 	k=i+] 	 i=1 	j=1

(5.3)

Where Pm xn, and QnT xn are matrices with size m. x ni and m. x n, respectively.

2) Additions A(n) required for the second stage L —parallel preprocessing and post-

processing matrices

S 1-1 s

s i
1

A(n)= I [Tnl m A(PT) +~ 	 n. 	m A(QT) (5.4) k 	m; xn; 	 k 	m; xn
i=1 j=1 k=i+1 i=1 j=1 k=i+l

3) Additions required for the subfilters in the second stage L -parallel FIR filter.

Therefore the total number of required additions can is given
s

(5.5)

	

nL 	i=1

where, A(L) and A(n) are defined in (5.3) and (5.4), respectively.

34

The number of required delay elements is made up of four parts:

1) Delay elements on the input side of the first stage L—parallel FIR filter: (L/L)(L —1);

2) Delay elements on the input side of the second stage L -parallel FIR filter: n(n-1);

3) Delay elements used in the two DEMs: 2n2 (L/L)

4) Delay elements required for the subfilters in the second stage L -parallel FIR

filter: n ((N/nL)-1)J]jM;

Therefore, the total number of required delay elements is given by
s

D=(L/L)(L —1)+n(n-1)+2n2 (L/L)+n ((N/nL)-1)f M; 	 (5.6)

Note that when L= L, the direct implementation of Method-1 of 2-stage parallel FIR filter

structures can be obtained.

5.1.4. Example for 2-Stage Parallelism realization

Consider an example of 3-parallel 36- tap FIR filter for the implementation of 2-stage

parallelism. Normally a 3-parallel 36-tap FIR filter can be implemented by ISCA as

shown in figure 5.1 is given by

Y3 =P3TH3Q3X3
	 (5.7)

Where Y3 , P3T , H3 , Q3 and X3 are the outputs, post processing, subfilters, preprocessing

and input matrices respectively as shown in figure 5.1.

x(3k+2)

x(3k+I' 1-1-100 	 "o
0 -1 1 -1 0 	5 	' 	1 	hoe 1 1 0
00-110 	 Hz 	 Jololo
0'1 0 0 0 	 10010111
0 0 0 1 0 	

HD+HI

0 0 0 01 	 H0+H2

HI+H2

T

y(3 k+

y(3k+1)

y(3k)

P T 3

Fig 5.1 Implementation of 3-parallel FIR filter

35

Where Ho,H1, H2,Ho+H,,Ho+H2,H1+H2 are 6 subfilters of length 12-tap for an 36 tap

FIR filter, requiring an total of 72 multiplications. This design can process 18 input data

in 6 clock cycles with all the 6 subfilters working simultaneously. Six output data of the

preprocessing matrix Q3 are generated when 3 input data are input in each clock cycle.

Each of these 6 output data of Q3 is processed by one of the 6 subfilters. Therefore, in 6

clock cycles, 18 data will enter Q3 and the 6 subfilters will process the generated 36

output data of with one subfilter processing 6 data.

The method-1 design will use the 12-tap FIR subfilter processing core to process in one

clock cycle those 6 data which enter one subfilter in a row, 36 output data of Q3 can be

done in consecutive 6 clock cycles and maintain the same processing speed. The FIR

processing core, which can process 6 data in one clock cycle, is actually a 6-parallel FIR

filter. The hardware cost of a 6-parallel 12-tap FIR filter is less than that of six 12-tap

subfilters.. The 2-stage (method-1) parallel FIR filter structure for a 3-parallel 36-tap FIR

filter is shown in figure 5.2.

The data flow of the Delay Element Matrix(DEM) in Fig. 5.3(a) is "horizontal in, vertical

out" or "vertical in, horizontal out" and controlled by CO, Cl, and C2 signals. CO signal

controls whether the data are "horizontal in" or "vertical in." Cl signal controls whether

the data are "horizontal out" or "vertical out." C2 signal controls whether the data flow

horizontally or vertically in the DEM. The data flow is illustrated in Figs. 5.4-5.7.
i,j = 0,1,2,3,4,5
k=0,6,12,18,24 ...

CQO

x(3(k+i)+2)
x(3(k+i)+1

x(3(k+i 	 6

j=5,...,1,0
H1+A2__ .._N1 _-10

2)

y(3(k+i)+1)

y(3(k+i))

Fig 5.2 2-stage(method-1) parallelism of 3-parallel 36-tap FIR filter

36

Vo

In Fig. 5.4, Q;,, 's are the outputs of preprocessing matrix when and correspond to in Fig.

5.2. The data in preloading DEM with the same enter DEM at the same clock cycle,

while those data with the same will be processed by the same subfilter. In previous

parallel FIR structures, those data with the same should be each processed simultaneously

by 6 independent subfilters (i.e.,Ho,Hj, H2,H0+H1,HO+H2,H1+H2). However, the 2-stage

parallel FIR structures will process those data with the same by a shared filtering core in

one clock cycle. Both design structures process 18 data in 6 clock cycles, leading to an

effective 3-parallel processing. Fig. 5.5 shows the data flow in preloading DEM when

time ranges from 5 to 11. When time is 12, the pattern of data flow will return to that of

Fig. 5.4.Every 6 clock cycles, the pattern of data flow will switch between Figs. 5.4 and

5.5.
•-------- 	 ----------------------- ----------- 	-----.

6x6
Delay

Element
Matrix

(a)

2 V0

I > 	 D
Hi 	Ho

V.

(b)

Fig 5.3 (a) 6 x 6 DEM (b) Delay element function

37

CQ= o CQq=1 CQ2=o

r ----

• Q50

Q40 Q30

Q20

Q10

--

Q00

•
Q51 Q41 Q3]

El
Q21 Q]]

ED
QOl
ED

Q52 Q42 Q32 Q22 012 Q02

• Q53
• ED

Q43
El Q33

Q23
El Q13

Q03
El

•
• Q54 Q44 Q34

ED
Q24
~

Q10
ED

Q04

: 	Q55 Q45 Q3S Q25 QIS QOS

(b)

Fig 5.4 Preloading 6x 6 DEM when (a) k = 0 and i = 0 (i.e., t = 0), and
(b) k= 0 and i=5 (i.e., t= 5).

CQO=1 CQ1=0 CQ2=1

--- ---- -- - -- --- -

CQO=1 C 1=0 CQ2=1

Qsl 	Q41 	Q31 	Qzl 	Qll 	Qol 	;
-------- - - ------- - ---
Qos 	Qo4 	Qo3 	Qnz 	Q01 	Qoo

El Q42 	Q32 	Q22 	Q12 	Q02 • I Q15 II QI4 II Ql3 I1 Q12 I[9I jI Q1u I
• V 	 Q24 	Q23 	Q22 	Q21 	Q20 - • Q53 	Q43 	Q33 	Q23 	Ql3 	Q03 	: ~n 	• 	Q2S El Li El El

• Q54 	Q44 	Q34 	Q24 	Ql4 	Qo4 ; 	Q33 	Q3J 	Q33 	Q32 	Q31 	Q30

Q55 	Q45 	Q3S 	Q20 	Q15 	I_ 	j : 	Q45 	Q44 	Q43 	Q42 	Q41 	Q40

k6 	; 	Q55 	Q54 	x[53 	Q52 	Q51 	Q50 Q 	Q04 	Q03 	Q02 	Q01 	Q00

- - - - - - - - - - - - - - - - - - - _ - - - _ - - - - •

-(a)-
- - _ - - - - - - - - - - - - - - - - - _ - - - - - - -

(b)

Fig 5.5 Preloading 6 x 6 DEM when (a) k = 6 and i = 0 (i.e., t = 6);
(b)k=6andi= 5(i.e.,t=11).

The post-loading 6 x 6 DEM works the same way as the preloading DEM. The only

difference is that those P. 's in Figs.5.6 and 5.7 with the same index j enter the post-

=0 CP1 =1 C P2=0 CPO=O C P1= 1 CP2-0

r ------------------------------

Poo EJ E] E]

r ------ ------------------------

pos 	Pn4 	Poi 	Pnz 	Pm 	Pno

ElED I_i 	 I_I I_I ;

aEI====
i ED 	p14 	p13 	P12 	Pl1 	Pl0 	i

aoocaoo 20 25 24 23 22 21 z0 1

p 34 33 32 31 30 ;

E]===== • ;El P44 	P- 	P42 	P41 	P40

~ 30 •
+ 	 •

• SI 30
•

55 54 53 32
ED

(a) (b)

Fig 5.6 Post-loading 6x 6 DEM when (a) k = 12 and i = 0 (i.e., t = 12),

and (b) k = 12 and i = 5 (i.e., t = 17).

38

loading DEM, and those 's with the same index will be processed by post-processing

matrix P3T at the same time. In Fig. 5.6(a), the first six Po (i = 0,1, 2, 3, 4, 5) enter

postloading matrix when t=12, because of the latency of 12 clock cycles, which will be

shown in timing analysis. Fig. 5.6 also shows the data flow in post-loading DEM when

time ranges from 12 to 17. When time is 18, the pattern of data flow will switch to that of

Fig. 5.7. Every 6 clock cycles, the pattern of data flow will switch between Figs. 5.6 and

5.7. The timing analysis of 3-parallel 36 tap FIR filter is as shown in fig 5.8.

CP0=1

--

CP1=0 CP2=1

---. ------.- -------- -
Pl
-

 P14 13 	Plz 	Pll 	EPlo

: 	25 24
El 23 22 21 20 ~

® ,

35 	34
El

33 	32 	3] 	30 	 12
❑ ❑ El 	,

P45 	P44
El

P43 	P42 	P41 	P40
El El

El 	- 	Psi 	Psz El Pso 	i

s0 40 00000a :k=18
30 20 10 00

=-------------- ---
(
a) -----------~

CP0=1 CP1=0 CP2=1

+ ++ _

r-

Pso P40 P30 Pzo Plo Poo

Psl 	Pal 	P31 	P21 	Pll I

Psz 	P4z 	Paz 	Pzz 	Plz 	Poz

J P53 IJ P43 IJ 3 lI P II I'13 JJ Po3 l

Pss 	P4s 	P3s 	P2s 	pls 	Pos

(b)

Fig 5.7 Post-loading 6 x 6 DEM when (a) k = 18 and i = 0 (i.e., t = 18),

and (b) k = 18 and i = 5 (i.e., t = 23).

01 2 3 4 5 1 6 7 F 9 10 11 32 13 34 IS 16 17 1 18 19 20 21 22 23 24

luput 1$ data. output 36 	dnput 1!3 data. output 34 Inpa(18 data output 36 	Input 18 data. output 36

i'a/oadiug 36 dnfrt 	PtalaadlnA 8 data Prolu ydinx 36 dura 	Prol000rng 36 data

j Idle 	 Prorrsstng 36 data Prose sing 36 data 	Processing 36 data

Idtc 	 lots Postloading $6 data 	Postloodiag 36 data

Idle 	 Idle lnpnt 36 dala,nulpul 3$ 	l,tput 36 data, output 1$

low 	 high lam 	 high

high 	 Imp high 	 low

low 	 high low 	 high

unknown 	 uniloICn lour 	 high

unknown unknown high lot'

unknown 	 unknown tame, 	 High

Qa

Pru-DEM

(;parallel
subi l itc r

POSt 1►'EA1

py

CQO

CQ1

CQ2

CPO

CPI.

CP2

Fig 5.8 Timing of the 3-parallel 36-tap filter by 2-stage parallelism

39

5.1.4.1 6-Parallel FIR Subfilter as a Shared Filtering Core

An ISCA-based 6-parallel FIR filter is described by

Y6 -(P3T ®PT)H6(Q3 ®Q2)"6T 32X6 	 (5.8)

Where P3T ® P2T , Q3 ®QZ , A6T 32 , X6 are obtained by ISCA as in equation (4.5) with

But 	 H6 	 is 	 defined 	as

H6 = dia ((P3T ®P2T).[SH0 (j) SH 1 (~) SH2 (j) SH3 () SH4 () SH S (j)]T)

represents the subfilters of the j`" one of the 6 subfilters Ho H1, H2,Ho+H1,Ho+H2,H1+H2 ,

which are of length 12.
x(6k+5) 	3k+2

x(6k+3) 	 -

x(6k+2)

SHO

SHO+SH1

SH1

SH2

SH2+SH3

SH1+SH5,

SH2+SH4

SH2+SH3+
SH4+SH5

SH3+SH5

6D

y()

y(3k+1)

y(3k)

TO QT) 4
T 18 	P3T ® PZT

(.3k+2)

(3k+1)

(a)

	

3, 	2, 1, 0
0+H1,H2,HI.HO
12

Ps'

P4j

	

6-parallel 	P3
FIR 	P2'

	

subfilter 	P.

Po;

(b)

Fig 5.9 (a) 6-parallel FIR filter as shared filtering core (b) block diagram of (a)

j = 5, 	4,
H1+H2,HO+

Qs ~~Q4 j

40

VLSI structure of a 6-parallel FIR subfilter as a shared filtering core is shown as in Fig.

5.9. This 6-parallel FIR subfilter is derived from the ISCA-based 6-parallel FIR filter by

replacing the delay element "D " with " 6D " which is because this 6-parallel FIR

subfilter will be shared by the 6 subfilters H0,H1, H2,Ho+H1,Ho+H2,H1+H2 .Therefore, the

hardware cost of this 6-parallel FIR subfilter is the same as that of the ISCA-based 6-

parallel FIR filter except the 6-fold increase in the number of the delay elements. The

total number of required multiplications, additions and delay elements of the 6-parallel

12-tap FIR subfilter are 36, 70 and 138 respectively. The preprocessing and post-

processing require 52 additions. The subfilter length of this 6-parallel 12-tap FIR subfilter

is 12/6=2. From Figs. 5.1 and 5.2, the computation process of preprocessing and post-

processing of the ISCA and the 2-stage design are exactly the same and the differences

are located in the subfilter part. The 2-stage 3-parallel 36-tap FIR filter can save 36

multiplications at the cost of 4 additions and 144 delay elements.

5.1.4.2 Method-2 realization:

In method-2, the increase. n will be controlled, when L is large. The first stage 3-parallel

FIR filter has 6 subfliters (n =6). If 36 data can be processed in 6 clock cycles, an

equivalent 6-parallel implementation can be obtained. When L=3 , 36 data will generate

72 output data of Q3 and the 6 subfilters of length 36/3=12 will process the generated 72

output data of with one subfilter processing 12 data. 12 data will be processed by one of

the 6 subfilters in one clock cycle. When a shared filtering core is designed, a 12-parallel

FIR subfilter of length 12/12=1 is used as shown in figure 4.10.As shown in the above

analysis, the 36 data must enter the 6 x 6 preloading DEM in 6 clock cycles. But one Q3

can only process 18 inputs in 6 clock cycles. Therefore, two Q3 and two 6 x 6 preloading

DEM's are used on the input side in Fig.4.10. Meanwhile, two PT and two 6x 6 post-

loading DEM's are used on the output side for the same reason. The second stage 12-

parallel FIR subfilter module requires 66 delay elements on its input side. Since its 54

subfilters are all 1-tap, the number of required multiplications, additions and delay

elements for subfilters are 54 x 1=54, 54 x 0=0 and 54x00. The first stage preprocessing

and post-processing matrices require 24 additions. The second stage preprocessing and

41

time

Qi

Pro-DE Ni

12-parn1lel
subfiker

Pott-DFM
1 .r.

CQO

C'Q

CQ2

CPO

GPI

CP2

0 1 2 :1 4 5 j 6 7 8 Y 10 II 12 11 14 IS l6 17 1R /9 20 2.1 22 23

hilurt-36 data, on/pal 72 	Input 36 data. iru(pui 72 1. pnl 36 data, atrtput 72 Input 36 data, output 72

Pni1oatlng 72 darn 	Pro/oat/lug 72 doi Ppo1obdinn 72 dart /rradorufing 72 data

Idle 	 ProcessIng 72 data Processing 72 data Processing 72 data

Idfe 	 Idle Pu.slloading 72 data Post/oat/tog 72 dater

Idle 	 Id/n Input 72 dota.ouiput 36 dnpar! 72 data, atrtltttt $6

low 	 Irish low high

high 	 low bigA low

row 	 high low high

.,nktt(11N1t 	 Hn ~i77t31Vn IOW high

unknown 	 unknq'rr=n high lou-

tat known 	 unknown low high

24

O

postprocessing matrices require 192 additions. Thus the number of required

multiplications, additions and delay elements for the 6-parallel 36-tap FIR filter are 54,

192+24=216 and 36 x 4+11 x 6+4=214 respectively. The timing analysis of 6-parallel 36-

tap FIR filter is shown in figure 5.11.
i,j = 0,1,2,3,4,5
k=0,6,12,18,24... 	 j=5,...,1,0

CQO CQ1 CQ2 H1+112,. , ,H1,H0 CPO CP1 CP2
12

x(6(k+i)+5) 	 y(6(k+i)+5)
x(6 (k+i)+4) 	 Pre 	 Post

x(6(k+i)+ 6
loading

6 6
loading

6 Y(6(k+i)+4)
T

Q3
6 x 6 6 x 6 T

P3
Q6(k+i}Fi

p 6(k+i-12)+j D Delay Delay
Element Element

D t~""'S matrix matrix

12

CQO CQ1 CQ2 parallel CPO CP1 CP2
subfilter

x(6(k+i)+2) y(6(k+i +2)

x(6(k+i)+ 1) Pre Post
loading 6 6 loading 6 y(6(k+i)+1)

T 6x6 6x6 p T
Q6(kti;j P6(k+i-12j+j D 3 Delay D¢lay 3

,,5 Element Element j— 	s y(6(k+i))
matrix matrix

Fig 5.10 2-stage parallel FIR filter for an 6-parallel 36 tap FIR filter

Fig 5.11 Timing of 6-parallel 36-tap FIR filter

42

6 Application of Parallel FIR filters
The main applications [4] of parallel FIR filters are in equalizers, 2D parallel FIR filters,

2D Discrete Wavelet Transform(DWT) . In this chapter, the high speed implementation

of 2D DWT based on hardware efficient parallel FIR filters are realized.

6.1 2D Discrete Wavelet Transform
The two-dimensional (2-D) discrete wavelet transform (DWT) [12]—[14] is a

mathematical technique that decomposes a 2-D discrete signal in a multiresolution space

domain by using dilated/contracted and translated versions of a single finite duration

basis function, named the prototype wavelet. The discrete wavelet transform (DWT) has

been widely used in audio and image processing, digital communications and other

application fields. This computation transform has been widely implemented in very-

large-scale integration (VLSI) [12]—[16][21][22][23] because of the real-time

requirement. DWT has traditionally been implemented by convolution or FIR filter bank-

based structures [12]—[16][21][22][23]. At present, many VLSI architectures for the 2-D

DWT have been proposed to meet the requirements of real-time processing. However,

because the filtering operations are required in both the horizontal and vertical directions,

designing a highly efficient architecture at a low cost is difficult.

Fast algorithm based parallel FIR filter structures are designed to improve the processing

speed and control the increase of the hardware cost at the same time. This design can

reduce the computation time of the reported fastest 2-D DWT architectures [12] with

N Z N Z filter length 4 from 3 to 12 , but the number of required multipliers is only 3 times

that of [12]. Higher processing speed can be achieved when parallel FIR structures with

higher parallelism levels [17] are used. Furthermore, since the filtering structures are

regular, the control signals are very simple.

6.1.1 2D Non separable DWT structure based on parallel FIR filters

The 2-D DWT consists of computing the 1-D DWT of each of the N rows of the original

N x N image and then computing the 1-D DWT of each of the resulting N columns [22].

43

An efficient 1-D DWT decimation filter has been described in [12] and [13]. Although

this decimation filter can save the number of both multipliers by a half, it has two

drawbacks: 1) the input sampling frequency must be two times as fast as the output

frequency, in order to get an output at every clock cycle; 2) this decimation filter cannot

be easily operated at a higher processing speed.

The design is illustrated through an example .Let us take an image of size 8 x 8 as in

(6.1),

x00 x01 X02 'x03 x04 x05 x06 X07

x10 x11 x12 X13 'x14 x15 x16 X17

X20 X21 X22 X23 X24 X25 X26 X27

X X30 X31 X32 X33 X34 X35 X36 X37 (6.1)
x40 x41 x42 X43 X44 x45 ' x46 X47

x50 'x51 x52 X53 x54 x55 X56 x57

X60 x61 'x62 X63 'x64 x65 x66 x67

x70 x71 x72 X73 'x74 'x75 x76 - x77

filter length as 4, the low and high pass filter coefficients as H = {a, b, c, d} and

G = {e, f,g, h} respectively. First apply low-pass 1-DDWT to (6.1) in the row

dimension. After low-pass filtering and down sampling by 2, (6.2) can be obtained from

(6.1). Equation (6.2) can be simplified as (6.3), where i = 0,1,..., 7 and it can be

transformed into matrix form and represented as (6.4). From (6.4), 1-D DWT in (6.3) has

been transformed into two FIR filters each with a filter length of half of the original filter.

A low pass 2-parallel 2-tap FIR filter can be get from ISCA 	with H2

1 0 0
as H2 = diag [b b + d d] , 	= — 1 1 —1 and the remaining P2,X2 ,Y2 are same as

0 0 1

that equation (4.7) as shown in figure 6.1. Similarly a high pass filter can be obtained by

replacing b, d and a, c with f, h and e, g respectively.

x 	 y(2k+1) (2k+1)

x(2k

Q2T 	b+d~ P2T y(2k) D

Fig 6.1 2-parallel 2-tap FIR filter

xol X02 'x03 X04 X05 'x06

'x11 'xl2 x13 ' l4 'x15 'x16

x21 X22 x23 X24 x25 x26

x31 X32 'x33 x34 X35 x36

X41 x42 'x43 x44 'x45 'x46

X52 x53 X54 X55 x56

x62 'x63 'x64 'x65 x66

x72 'x73 X74 X75 x76

dx00 + cxol + bx02 + ax03
dxlo + cxl l + bx12 + ax13
dx20 + CX21 + bx22 + ax23

dx30 + Cx3 , + bx32 +a 33
dx40 + Cx41 + bx42 + ax43
dx + cx51 + bx52 + ax53

dx60 + Cx61 + bx62 + ax63
dx70 + Cx71 + bx72 + ax73

moo mol m02 m03

111l0 11111 m12 m13

m20 m21 m22 m23

m30 m31 m32 m33

m40 m41 m42 m43

m50 m51 m52 11753

m60 m61 m62 m63

m70 m71 m72 m73

x07
x17
	

T
x27 b a 0 0 0 0 0 0

x37 d c b a 0 0 0 0

x47 0 0 d c b a 0 0
x57 0 0 0 0 d c b a
x67

x77

dx02 + CX03 + bx04 + ax05 dx04 + cx05 + bx06 + ax07

dx12 +Cx13 +bx14 +ax,5 dxI4 +cx15 + bx16 + ax,7

dx22 + Cx23 + bx24 + ax25 dx24 + cx25 + bx26 + ax27

d 32 + Cx33 + bx34 + ax35 dx34 + Cx35 + bx36 + ax37

dx42 + CX43 + bx44 + ax45 dx44 + Cx45 + bx46 + ax47
dx52 + Cx53 + bx54 + ax55 dx54 + cx55 + bx56 + ax57

dx62 + Cx63 + bx64 + ax65 dx64 + Cx65 + bx66 + ax67

UJ1.72 + Cx73 + bx74 + ax75 dx74 + cx75 + bx76 + ax77

xoo

x10

x20

x30 m=
x40

x50

X60

x70

x51

x61

x71

bxoo + ax01
bx10 + ax„
bx20 + ax21
bX 30 + ax3,

bx40 + ax41
bx50 + ax51
bC60 + ax61
bx70 + ax7 ,

(6.2)

[m0 Milm;2 m.3] = [bx,0 + ax;, dxi0 + cx;, + bxi2 + axt3 dx;2 + cxi3 + bx;4 + ax,5 dx;4 + cx,5 + bxi6 + axi7]

(6.3)

45

mio 	0 	0 x;o x;, lIdl F 0 xio 1 	F 0 xi,

min = xio xi, x12 xi3 c __ xio xiz [d] + x,, x13 Cl 6.4
mi2 xi2 xi3 xi4 x!5 h x12 xi4 b x13 xis a ()

m,3 	x5 xi6 'x17 a 'x14 'xi6 	LXI5 xi7

If 	2-parallel FIR filter 	structure 	is 	applied 	to 	(6.4), the 	computation 	of

[m;0 	Mil 	mi2 m.3] requires just two clock cycles, with [m;0 m,1] coming out first

and then [M,2 mr3] coming out after two clock cycles; the row filtering of (6.1) can be

completed by the architecture shown in Fig.6.2. Only low pass section is shown, the high

pass section is similar to it having the same input data, can be obtained by just replacing

b, d and a, c with f, h and e, g respectively.

. . • m2 m11 m01

t=0 X02 x0 	{b d
~-:

• 	20 • M m10 moo

t=1 x12 X10 	; 	 t= 2 1 0

t=15 X76 X74

t=1 X13 X11 •
• • 	• 	 4D ;

t=15 X-7 X-g

Fig 6.2 1D DWT (i.e., after row filtering) based on 2-parallel FIR filter

Note that "4D" in Fig. 6.2 is used to replace every "D" in the original parallel FIR filter

shown in Fig.6.1 because the parallel filter is shared by four rows of input data, which are

processed as shown in Fig. 6.2. After filtering the first through fourth columns of the first

through fourth rows of (6.1), filter the fifth through eighth columns of the first through

fourth rows of (6.1). After filtering the first through fourth rows is finished, filter the first

through fourth rows starting from the first through fourth columns. Now apply high-pass

1-D DWT to (6.2) in column dimension. After high-pass filtering and down sampling by

2, we can get (6.5) from (6.2) If low-pass 1-D DWT is applied to (6.2) in column

dimension, after low-pass filtering and down sampling by 2, equation (6.6) can be

obtained from (6.2) It is obvious that the computations of the first row of (6.5) and of

46

(6.6) require that of the first and second rows of (6.2); the second rows of (6.5) and (6.6)

require that of the third and fourth rows and previously computed first and second rows

of (6.1); the computation of the i`h row of (6.9) and (6.10) requires that of (2i—l) `h and

(2i) `h and previously computed (2i — 3) rd and (2i-2) nd rows of (6.6). Equation (6.5)

can be simplified as equation (6.7) and equation (6.6) can be simplified as equation (6.8).

fmoo + em10 	 fmo1 + em11 fm02 + em12 fM03 + ems 3

hm00 + gm,o + fm20 +em3o 	hmo, +gm„ + fm2, +em3, hm02 + gm,Z + fm22 +em32 hmo3 +gm,3 + fin23 +em33 HG =
hm20 + gm3o + fm4o + em5o 	hm2, + gm31 + fm41 +ems, hm22 + gm32 + fm42 + em52 hm23 + gm33 + fm43 + em53
hm4o + gm50 + fm60 + em70 	hm4, + gins, + fm61 + em71 hm42 + gm52 + fm62 + em72 hm43 + gm53 + fm63 + em73
HGoo 	HGo , 	HG02 	HG03
HG,o 	HG„ 	HG12 	HG13
HG20 	HG2 , 	HG22 	HG23
HG30 	HG31 	HG32 	HG33

(6.5)

bmoo +am,o 	 bmo , +am„ bm02 +am12 bmo, +am„
+ cm, o + bm2o + am30 	dmo , + cm„ + bm21 + am31

HH
dm00 dm02 + cm12 + bm22 + am 2 hm03 + gm1 3 + fm23 + em33

=
dm20 + cm30 + bm40 + am50 	dm2 , + cm31 + bm4 , + ams dm22 + cm32 + bm42 + am52 hm23 + gm33 + fm43 + em53
dm40 + croso + bm60 + am70 	dm4 , + cm5 , + bm6 , + am„ dm42 + cm52 + bm62 + am72 hm43 + gm53 + fmb3 + em73

HHoo 	HHoi 	HH02 	HH03
HH,o 	HH„ 	HH12 	HH13
HH 20 	HH21 	HH22 	HH 23
HH30 	HH31 	HH32 	HH33

(6.6)

HG01 fm01 +em,1 mot 	0 m1 j 	0
HG11 hm01 +gm,1 + fm21 +em31 = i21 	m01 f

+ m3' 	m''
HG21 hm21 +gm3j + fm41 +ems m4j 	m21 h m51 	m31

[e]

[g]
(6.7)

HG31 hm41 +gms~ + fm61 +em7 m61 	m4~ m71 	m51

HH01 	bm01 + aml ~ 	mop 0 	m,~ 0
HH,1 	dmo1 + cm,, + bm2j + am3i = m21 m01 [b]+ m3' m'' [a] (6.8)
Hi-I21 	dm21 +cm33 +bm4~ + am51 	m41 m21 d 	m51 m31 c
HH31 	dm43 +cro51 +bm61 +am71 	m6j m41 	m,1 m51

From (6.7) and (6.8), the computations of (6.5) and (6.6) have each been transformed into

two FIR filters each with a filter length of half of the original filter. If two 2-parallel FIR

filter are used as shown in Fig. 6.1, two column elements in each row of (6.2) is

47

x44 X4i _ Xq2 303; ' N 	Xos Xod XoT
l0 Xl X12 X13' 'X14 _xii X16 XL`1

X20 X21 X22 X23 ' X4 X25 XZ6 X~7

30X31 X32 -X33, .Y34 X35 36X37

x=
?t40 ?~41 ?K42 - ?K43r

45 _ 	6- 	2

50 ?t5 ?~52.?t53 15 115.7

W60 x61 X62 X6 P '̀ X64 X65 X66 •X67

7o.Xzi X1z.Xz : •X?~ _X~s X. _Xai

Fig 6.3 Input data flow of 2D DWT of 2-parallel FIR filter

mQ3
m:

_
 _mi3

•6f20 mii 22 m23S
~rn30 ~m31: m3Z • 3)

:m.: .42 m4Q ma3:

.m60 m61 X62 '!!63'
?!'7p :1 w: :€ :

Fig 6.4 Output data flow of 1D DWT of 2-parallel FIR filter

computed in each clock cycle, and then if two 2-parallel FIR filters are used with m as

input, two row elements in each column of (6.7) or (6.8) can be computed in one clock

cycle. The only problem is that the computation of (6.2) with two 2-parallel FIR filters

outputs two data [m;0 m,1] or [mi2 m.3] in one clock cycle, which has been shown in

Fig. 6.4, but that of (6.7) or (6.8) with two 2-parallel FIR filters requires four data

[mo~ m1j r2j m3] as input in each clock cycle. A 4 x 4 DEM similar to Fig. 6.5(b)

is used to solve this problem. The 2-D non-separable DWT structure for image size of

8 x 8, which computes the first resolution level of an N x N image in N2/4 clock cycles,

is shown in Fig. 6.5. The delay elements in the 4x4 DEM have the functionality as

shown in Fig. 6.5.From Fig. 6.5, the 2-D non-separable DWT can finish computing the

first-resolution-level HG, HH , GG and GH of an 8 x 8 image in 16 clock cycles. Output

data flow of delay element matrix is shown in Fig. 6.6.

48

X13 °"I

X23 X11 XOr-
X33 X21 X12 100

X31 X22 X10

X32 X20

X30
10

8D

Note that the two input data to the 2-parallel filter {a, c} are the same as those to {e, g} ;

thus, these two 2-parallel filers can share the same Q2 block and delay element of the

input side as shown in Fig. 6.1 and four addition operations can be saved. Another four

adders can be saved from sharing the same input data to the two 2-parallel filters {b, d}

and { f , h} . This sharing can also lead to the saving of 4 x 2=8 delay elements of the first

level and 8x2=16 delay elements of the second level. The total hardware cost of this

architecture is 24 multiplications, 32 additions, and 40 delay elements. In general, the

computation time for the first-resolution-level 2-D DWT of an N x N image is

N 2 /4 clock cycles by using 2-parallel FIR filters.

1)... m31 m21 m11 m01 	3)... m'31m'21 m'11 m'01 5)... m31 m'31 m30 m'30 7)... m21 m'21 m20 m'20.
2)... m30 m20 m10 m00 	4)... m'30 m'20 	0 m'oo 6)... m11 m'11 m10 m'10 8)... m01 m'01 moo m'00

(a)

4x4
Delay

Element
Matrix

(b)

C2 V~ 	 2 Vo

	

H~ ' 	p 	Ho

	

. 	D I 	 D

	

Hi 	Ho

(c)

Figure 6.5 (a) N2/4 2D DWT structure for an 8x 8 image (b)4x 4 Delay Element Matrix

(c)Delay Element function

m 	 rn ..m 02~. m02I.m 03, .m03
n10,,m10,)n 11,:m11 	12..l2'J 13,.m13 ,
m' 	1 ~20:; m20; P1 2,m21.!n'22,, m22, x'23 : ,m23
.m'30:. m30 • i"'31 "m31 "m'32" m32"m'33"m33 '

n 	:' 42::m42:!1 43::m43: 4d:m40:? 41::m41 t~
:m'5 0:m50 :x'51::m51 r '52::m52: i'53::M53
:m'6d:m60 in 61,,m61 ,n 62,1m62 • 	P1 6311m63 ,
'm17d'm70'm171"m71 "m'72"m72'm'73"m73'

Fig 6.6 Output data flow of 4 x 4 DEM

6.2.2 2-D DWT of an N x N Image by L- Parallel FIR Filtering

Now, the algorithm for computing the first level 2-D DWT of an N x N image by

applying L-level parallel FIR filtering canbe generalized. For a 2-D DWT with low-pass

filter H and high-pass filter G, first decimate H and G by factor 2 into

{H0 , H1) and. {Go , G1 } . Ho , H,, G0, Gt are all subfilters. The 2-D nonseparable DWT

structure, which computes the first-resolution-level of an N x N image in N2/4 clock

cycles, is shown in Fig. 6.7.From Fig. 6.7, the subfilters Ho and Go share the same input

data for both the first and the second level of computation. Subfilters H1 and G1 also

share the same data for both levels of computation. This property can save large number

of delay elements especially for the second level of computation, because the saving of

each delay element in the second level filter structure will lead to the saving of N delay

elements of the final 2-DDWT structure. When parallelism level. L is greater than 1,

adders can also be saved.

50

L HO I
HO

Xl 	 M 	 (2L) x 	 HH L 	 Hl 	 2 (2L) L 	 Hl 	 GH X0 	 Interleave 	Delay 	 HH Element L

GO J 	 Matrix 	 GO
M 	 GG

G1 	 GI 	 HG
GG

LLD 	 ND 	
HG

Fig 6.7 N 2/2L 2D DWT structure for an N x N image

1
IIH oo ;

1
:HH o1;

1 . HH o~ ~ 	1
93; :HH

J4H10 : :HH111: ; HH11] ;HH113:
HH1 = :i::. e :::f:. c -::i-, -::i-.

$ H 20 , HH 21. HH 22 :HH 23:
:H11 31: i-IH130 ;

1 HH132 :HH133;

Fig 6.8 Output data flow of the first level N2/4 2D DWT structure

2LDri- -- iiD
M #2 	E
U 	

zLD 	M

X
#I zLD 	X

#1 	(a)

M #2 	E
U ND M

X #J ND 	X
(b)

Fig 6.9 Interleaving structures of 2D DWT structures for an N x N image

(a)row interleave (b)column interleave

GG
4 First GH

In ut
level of HG 2-parallel
2D DWT

f

Fig 6.10 Hardware implementation of 2D DWT for an image of

N x N size with J-level resolution in N2/3 clock cycles.

51

For an 8 x 8 image in (6.1), the hardware implementation of its 2-D DWT with J-level

resolution and a computation time of N 2 J3 is shown in Fig. 6.10. The 2-D DWT

structure in Fig. 6.7 works as follows. The outputs HH, of the first resolution level

N2 /4 DWT structure are also the inputs of the second resolution level N2 /4 DWT

structure. As shown in Fig. 6.5, HH;, from a N2/4DWT structure are generated in the

sequence shown in Fig. 6.8. Comparing the data flow in Fig. 6.8 with the input data flow

of a N2 /4 DWT structure as shown in Fig. 6.3, N + 8 storage elements are needed for the

output of the first resolution level HH before starting the computation of the second

resolution level 2-D DWT, and N/2 + 8 storage elements are needed for the output of the

second level HH before the start of the computation of the third level 2-D DWT, and so

on. Thus, the total storage elements for HH', i < j is given by

(N+8)+(N/2+8)+(N/4+8)+... = 2N+8(J-1) 	 (6.13)

Since the computation of different resolution levels of 2-D DWT are shared, the

computation of HH' will be interrupted whenever higher level HH'+' is ready to be

fetched from the storage and computed. In order to resume the computation of lower

level HH', we need to save the intermediate computation results for HH` and interleaving

filtering is used. To interleave the filtering of the first-resolution-level N 2/4DWT

structure shown in Fig. 6.5, replace "4D" and "8D" in Fig. 6.5 with Fig. 6.9(a) and (b),

respectively [4].In Fig. 6.9, every pair of DEMUX and MUX switch to next channel i

when the i h̀ level of 2-D DWT is being computed.

The data flow of the hardware implementation of the 2-D DWT of an 8 x 8 image with

two-level resolution and a computation time of N 2/3 is shown in Table 6.1. In Table

6.1, x;, and yj are from two different 8 x 8 images. Let us assume that these two images

are processed in a row. HH oo and HH oo are the outputs of the first and second resolution

levels of the image represented as x;, . From Table 6.1, we can see that there is a latency

of 4 clock cycles between the input of HH oo and the output of HH oo because of the

4x 4 delay element matrix in the first level DWT structure as shown in Fig. 6.5. From

52

Table 6.1, we can also see that input data of the ith resolution level will be interrupted by

those of the (i +l) `h resolution level, (N12'-' — (2L)2) clock cycles after the first input

data of the i`h resolution level have been given. Only after the available data of resolution

level higher than i are processed, the available data of resolution level i can be processed.

6.2.3 Computational Complexity

The hardware cost of the 2D DWT structures of an N x N image in terms of the number

of required multipliers (R.M.), adders (R.A.), and delay elements (R.D.) with resolution

level J as
I

R.M = 2.E (M(H , L)+M(G; , L))

R.A = 2.E(A(H; ,L)+A(G; ,L)—A(QH , ,L)— A(Q~ ,L))+4.L 	 (6.10)

R.D =[(2.L).J+2N]+E(D(H; ,L)+D(G; ,L))+4.L2
;=o

Where M(H; ,L), A(H; ,L) and D(H,,L) are the number of required multipliers, adders

and delay elements for implementation of a L-parallel subfilter H, respectively.

A(Qy , L) is the number of required adders for the QT block of a L-parallel subfilter H1 .

The computation time is

N2(
(L

z

L+
	= 2416 3

 .

For L=2, the computation time is N2/3 as shown in table 6.1.

A 4-parallel 2D DWT structure can be obtained by keeping L=4 in figure 6.7.The

interleaving structures will have a delay of 8D at both the row and column ID DWT.

This structure will have an 8 x 8 DEM for the transition of data from row to column

process of DWT. The data flow is similar to the 2-parallel 2D DWT. The structure of 4-

parallel 2-tap FIR filter is in [27]. The computation time of 4-parallel 2D DWT is N2/6.

53

Table 6.1

Data flow of 2-D DWT of a 8 x 8 image with 2-level resolution
and a computation time of N 2 /3 clock cycles

t HI-i HG GU GO Input
0 - - - - X, 	L03

1 - - - - x1 	,
2 - - - - x, X,21 	X22 	x,
3 - -
4 - - Gll GG GG x, x 	• 	•
5 HHO"Y HG - - x 	x, x1•, X17

6 - GE 	GH' I GG GG' x24, X2
5

7 HH 	1JJ-J HG HG - . 	6

8 Ix GI-11" GG GG X41 	x, x
9 H11J Jifi 11GJ "i:; - , x, x
10 - - GH GH' GG 	GG:; , 	• 	;, 	-V6,1

ii H1I HH HG HGTy - - X71), X7 I X7 ,)73

12 30 Gif GHlx 2 GG GG X44 	x, x, X47

13 HH HH HGHG - - X54, X55 I

14
15

-
HH HH

-
HG HG

QUIT GE

-
GG OG

-
, x

x 	1 x 	X-76

16 - - GH &H GG GG

17 HH"BH 2 HG MIx H G,11 12, ii 	.
18 - GII 	GH GG' GQ Y2• 	Yi, Y2, 	Yxi

19 J"fb J!H, 11G,J /1G - " I 	Y.k2, 	Y-43
20 - - GU 	G11 10 GG' GG J-JJ1, 11H 	H1J 	, f1if

21 H1-1' .11N .ffG 	HG - iii 	1il1 	RH 	HHJA

22 - GI1 	GI1' 01 GG GG: HI1•, HH t'T HH I1E

23
24

HII 	HI!:

-
HG HG

-
-

GH 	GH2,

-
GG GC-'A

HH , HI! 	1111"MN

25 HH HH HO HO' Yii s 	Yi, 	y1f, , 	Y17
26 - - GH 2 v GIII' GG GG Y& 	Y27
27 JJJj 	IIII HG 	iic, - - Y34

54

7 Results and Discussion

7.1 HARDWARE SIMULATION
An VHDL code is developed for the hardware efficient parallel FIR filters and 2D DWT,

and the corresponding simulation is carried out by MODELSIM.The synthesis is done

using XILINX XC3S5000-4FGI 156. The simulation results for FFA structures, ISCA

structures, 2-stage parallelism structures followed 2D DWT are shown in fig 7.1-7.15

7.1.1 Simulation results of FFA structures

Fig 7.1 FFAO 2-parallel FIR filter

Fig 7.2 FFAO 3-parallel FIR filter

55

IE

0

~ t

- 	 Jr 	 H

I; UI-
I tC 	I

1• [j 	
•.

- 	 •- ~ ;+

7.2 Comparison and Analysis

7.2.1 FFA VS ISCA

An Matlab code is developed for the comparison of this methods. Compared with FFA-

based fast parallel FIR filter structures, ISC-based algorithm saves large amount of

hardware cost. Although ISC-based algorithm uses more additions than FFA based

structure with the increase of the level of parallelism, it can lead to large savings in the

number of multiplications and delay elements. The additions will also decrease when the

number of taps of FIR filter will be large. These are shown in figure 7.15 for different

levels of parallelism. Note that the number of required additions is dependent on the

order of iterations. The iteration order for short convolutions should be 4 x 4, 3 x 3

and 2 x 2, as this will lead to the lowest implementation cost; while, in FFA-based

algorithm, the 2-parallel FFA is .always applied first.

multipliers in 144 tap parallel FIR filters

2500

e . 2000

0 1000 	n, n 	 --~—FFA

500

0
0 	10 	20 	30 	40 	50 	60 	70 	80

level of parallelism

adders in 144 tap parallel FIR filters

62

multipliers of 576 tap parallel FIR filters

1

ft

IS

 --R-- FFA
 !•

0 20 40 60 80

level of parallelism

adders of 576 tap parallel FIR filters

0 15000
0

10000 	 "~ 	 ---0 ISCA
--~FFA

0

0 10 20 30 40 50 60 70 80

level of paral]eliem

multipliers of 1152 tap parallel FIR filters

20000
Q 15000 -~ISCA

10000
£ 5000 —i— FFA

r.
0
d 	0 - 	20 	40 	60 	80
E 	 level of parallelism
C

63

delay elements of 1152 tap parallel FIR filter

20000
,° 	15000

jJ 10000
5000

0
` 	0 	10 	20 	30 	40 	50 	60 	70 	80

level of parallelism

Fig 7.15 Hardware cost (i.e., complexity) comparison between ISCA and FFA for

N=144, 576, 1152 at different levels of parallelism

7.2.2 ISCA Vs 2-stage Parallelism

Compared with ISCA-based fast parallel FIR filter structures, the improved structure can

reduce large amount of hardware cost. 2-stage Parallelism can even reduce the hardware

cost at the expense of more delay elements. Increasing the first stage parallelism will lead

to more savings of required multiplications. Although direct implementation of the 2-

stage parallel FIR structures (Method-1) will lead to large number of required delay

elements, an interesting phenomenon of 2-stage parallel FIR structure (Method-1) is that

the number of required multiplications is always less than or equal to the filter length N

and doesn't increase as the parallelism level increases. A 2-stage L-parallel FIR structure

has latency of 2n, where n is defined in (5.1).

Latency is only decided by first stage parallelism and the 2-stage parallel FIR structure

(Method-2) has efficiently controlled the increase of latency when L increases. Note that

the ISCA-based parallel FIR design have no latency and L output data will be generated

in the same clock cycle as the corresponding L input data are injected. In [9], linear

convolution-based processing core is used as a parallel FIR filter for the processing of

subfilters. It requires the number of subfilters to be equal to the subfilter length. This

requirement leads to irregular preprocessing and post-processing DEMs with low

utilization efficiency and complex control signals. However, when the processing of

subfilters is assigned to a parallel filter design, this restriction does not exist. Even if the

filter length is not divisible by the parallelism level, zeros can be added at the end of the

filter coefficients to make the total length divisible by the parallelism level. The

computation results will be the same as the original filter and these are shown in figure

7.16

adders of 144 tap FIR filter

.. 1500

—+—ISCA , fl:1:i 500
0

,L

—.-2-stage parallelism
0 5 	10 	15 	20 with L'=4

level of parallelism

delay elements of 144 tap FlRfilters

—1— ISCA

—.-- 2-stage parallelism
w ith L'=4

level of parallelism

65

multipliers of 1152-tap FIR filter

---♦-- ISCA

-s-2-stage parallelism
with L'=4

2-stage parallelism
with L'=8

adders in 1152-tap FIR filters

N

-0 10000
eo
o 5000

0
= 10 	20 	30

level of parallelism

—* ISCA

--U-2-stage parallelism
with L'=4

40 	---H--2-stage parallelism
with L'=8

delay elements in 1152-tap FlRfilter

+ ISCA

—a— 2-stage parallelism
with L'=4

2-stage parallelism
with L'=8

Fig 7.16 comparison of complexities of N=144,1152 between ISCA and 2-stage

parallelism at different levels of parallelism.

7.2.3 Complexity for 2D DWT

This section compares the 2D DWT structure based on hardware efficient parallel FIR

filter for the first resolution level with the recent convolution based architectures in

[12],[13] and [15]. The following table compares the 2D DWT structure and previous

convolution based architectures for an NxN image with filter length 4, resolution level

J=1 and L gives the level of parallelism of 2-tap FIR filter

Table 7.1

Comparison between 2D DWT structure and previous convolution based

architectures for an N x N image

2-D DWT # 	 of # of adders # 	of 	delay Total

(convolution multipliers elements Computing

based time in # clks

architectures)

N g 2D DWT 48 92 4N
N2 6

L=4

N 4 2D DWT 24 32 2N
N 3

L=2

[12] 32 24 N/ 4 N/
3

[13] 16 16
N 4 2N2 3

[15] 30 30 0 2N2 3

67

CONCLUSION
These new algorithms like ISCA and 2-stage parallelism are very efficient in reducing

hardware cost, especially when the length of the FIR filter is large. Tensor products are

used to improve iterated short convolution algorithm in matrix form. Since preprocessing

and postprocessing matrices are tensor products without delay elements, the ISCA

facilitate automatic hardware implementation of parallel FIR filters, which is very

efficient when the filter coefficients, word length or level of parallelism change,

especially when the length of the FIR filter and the level of parallelism are large. The 2-

stage parallel FIR structures also have regular structures and simple control signals,

which utilizes the shared subfilters, is very easy for hardware implementation.

Hardware efficient parallel FIR filter structures are developed to speed up the processing

speed of 2-D DWT and to control the increase of hardware cost at the same time. This

design can be easily extended to achieve higher processing speed than the given highest

processing speed with computing time of N 2 12 cycles. This design is suitable for high-

speed VLSI implementation of 2-D DWT because of its regular structure, simple control

and 100% hardware utilization for continuous images.

References:
[I] J. I. Acha, "Computational structures for fast implementation of L-path and L-block

digital filters," IEEE Trans. Circuits Syst., vol. 36, pp. 805-812, June 1989.

[2] D. A. Parker and K. K. Parhi, "Low-area/power parallel FIR digital filter

implementations," J. VLSI Signal Processing Syst., vol. 17, no. 1, pp. 75-92, 1997.
S 	~ 	 I ' 	fi nw.a i1 	G 	l- 	4 ~, 	(~ uj o. t

[3] I.-S. Lin and S. K. Mitra, "Overlapped block-digital-filtering," IEEE Trans. Circuits

Syst. II, vol. 43, pp. 586-596, Aug. 1996.

[4] K. K. Parhi, VLSI Digital Signal Processing Systems: Design and Implementation.

New York: Wiley, 1999.

[5] J. G. Chung and K. K. Parhi, "Frequency-spectrum-based low-area low-power

parallel FIR filter design," EURASIP J. Appl. Signal Processing, vol. 2002, no. 9, pp.

444-453, 2002.

[6] Z. -J. Mou and P. Duhamel, "Short-length FIR filters and their use in fast

nonrecursive filtering," IEEE Trans. Signal Processing, vol. 39, pp. 1322-1332, June

1991.

[7] J. Granata, M. Conner, and R. Tolimieri, "A tensor product factorization of the linear

convolution matrix," IEEE Trans. Circuits Syst., vol. 38, pp. 1364-1366, Nov. 1991.

[8] I.-S. Lin and S. K. Mitra, "Overlapped block digital filtering ," IEEE Trans. Circuits

Syst. IT Analog Digit. Signal Process., vol. 43, pp. 586-596, Aug. 1996.

[9] C. Cheng and K. K. Parhi, "Further complexity reduction of parallel FIR filters," in

Proc. IEEE Int. Symp. Circuits Syst. (ISCAS 2005), Kobe, Japan, May 2005.

[10] R. E. Blahut, Fast Algorithms for Digital Signal Processing. Reading, MA:

Addison-Wesley, 1985.

[11] S. Winograd, "Some bilinear forms whose multplicative complexity depends on the

field of constants," Math. Syst. Theory, vol. 10, pp.169-180, 1977.

[12] Q. Dai, X. Chen, and C. Lin, "A novel VLSI architecture for multidimensional

discrete wavelet transform," IEEE Trans. Circuits Syst. Video Technol., vol. 14, no. 8, pp.

1105-1110, Aug. 2004.

[13] P. C. Wu and L. G. Chen, "An efficient architecture for two-dimensional discrete

wavelet transform," IEEE Trans. Circuits Syst. Video Technol., vol. 11, no. 4, pp. 536-

545, Apr. 2001.

70

[14] C. Chakrabarti, M. Vishwanath, and R. Owens, "Architectures for wavelet

transforms: A survey," J. VLSI Signal Process., vol. 14, no. 2, pp. 171-192, Nov. 1996.

[15] F. Marino, "Two fast architectures for the direct 2-D discrete wavelet transform,"

IEEE Trans. Signal Process., vol. 49, no. 6, pp. 1248-1259, Jun. 2001.

[16] F. Marina, "Efficient High-Speed/Low-Power Pipelined Architecture for the Direct

2-D Discrete Wavelet Transform", IEEE Transactions on Circuits and Systems-II:

Analog and Digital Signal Processing, pp1476-1491,vol 47,no.12,December 2000.

[17] Chao Cheng, K. K. Parhi, "Hardware Efficient Fast Parallel FIR Filter Structures

Based on Iterated Short Convolution," IEEE Transactions. on Circuits and System-I:

Regular Papers, vol. 51, No.8, August 2004.

[18] C. Cheng and K.K.Parhi, "Low-Cost Parallel FIR filter structures with 2-Stage

Parallelism", IEEE transactions on circuits and systems-I: Regular papers, pp280-290,

Vol-54, No.2, February 2007.

[19] Richard. A. Haddad and Thomas, W.Parsons, "Digital Signal Processing Theory ,

Applications &Hardware", Computer Science Press, 1994.

[20] C. Cheng and K. K. Parhi, "Hardware efficient fast DCT based on novel cyclic

convolution structures," IEEE Trans. Signal Process., vol. 54, no. 11, pp. 4419-4434,

Nov. 2006.

[21] T.K.Truong, I.S.Reed, R.G.Lipes and C.Wu , "On the Application of a Fast

Polynomial Transform and the Chinese Remainder Theorem to Compute a Two-

Dimensional Convolution" IEEE transactions on Acoustics; Speech and Signal

Processing, vol-I,pp9l-97, Feb 1981.

[22] M. Vishwanath, R. Owens, and M. J. Irwin, "VLSI architectures for the discrete

wavelet transform," IEEE Trans. Circuits Syst. II, Analog Digit. Signal Process., vol. 42,

no. 5, pp. 305-316, May 1995.

[23] Y.-N. Chang and Li Yan-Sheng, "Design of highly efficient VLSI architectures for

2-D DWT and 2-D IDWT," in Proc. IEEE Workshop on Signal Processing Systems, Sep.

2001, pp. 133-140.

[24] Proakis, "Digital Signal Processing", 3 d̀ edition, John Wiley publications, 1999.

71

[25] M. Winzker, "Low-power arithmetic for the processing of video signals," IEEE

Trans. on VLSI Systems, vol. 6, no. 3, pp. 493-497, 1998.

[26] J.-G. Chung, Y.-B. Kim, H.-J. Jeong, K. K. Parhi, and Z.Wang, "Efficient parallel

FIR filter implementations using frequency spectrum characteristics," in Proc. IEEE

International Symposium on Circuits and Systems, vol. 5, pp. 483-486, Monterey,

Calif, USA, 31 May-3 June 1998.
[27] C. Cheng and K.K.Parhi, "High speed VLSI implementation of 2D discrete wavelet

transform", IEEE transactions on Signal Processing, pp393-493, Vol-56, No.1, Jan 2008.

72

APPENDIX A: COOK-TOOM Algorithm

The Cook-Toom algorithm is a linear convolution algorithm for polynomial

multiplication. The goal of this fast convolution algorithm is to reduce the multiplication

complexity. One feature of the Cook-Toom method is it does not define a single solution;

instead, it defines an entire family of methods for efficient multiplication. The method

has considerable commonality with multiplication using the fast Fourier Transform, in

that it works on the same principles of polynomial multiplication. The input numbers are

split into limbs of a given size, and each is written as a polynomial, using the limb size as

radix. - Instead of multiplying the polynomials directly, they are evaluated at a_set of

points, and the values multiplied together at those points. The product polynomial is then

determined, based on the products at those points. Finally, substitution of the radix

returns the final answer. The degrees of freedom available to choose an appropriate

algorithm are the number of limbs the input is divided into, and the points at which the

polynomials are evaluated. It is based on Lagrange Interpolation Theorem, which states

that

Lagrange Interpolation Theorem:

Let 80 ,...,,8n be a set of n+1 distinct points and let f (A) , for i = 0,1, ..., n be given.

There is exactly one polynomial f (p) of degree n or less that has value f (/3;) when

evaluated at 83; for i = 0,1, ..., n . It is given by

f .(p) _~ f .rf') fl1 1(p—f1)

~
Lot l 	

~ 	_ii),~~~ — i~
(A.1)

The linear convolution of an N-point sequence h = (ho , h,, ..., hN _, } and 	an L-point

sequence x = {x0 , x, , ..., XL_, } , which 	are expressed in polynomials 	as

72

h(p)=hN_,p'-'+...+hi p+ho and x(p)=xN _,pN-'+...+x,p+xo respectively, is a

 of degree L + N —1 expressed as 	s 	L+N-2 + ... + S + s can be polynomial 	 ~ 	 p 	 (P~ = L+N-zP 	 ~P o

computed by Cook-Toom algorithm as follows.

Algorithm:

1. Choose L + N —1 different real numbers A, A,,..., /3L+N-2 .

2. Compute h(/1) and x(Q;), for i=0,1,...,L+N-2.

3. Compute s(/3;)=h(/3,)x(A),for i=0,1,...,L+N-2.

4. Compute s(p)by Lagrange interpolation theorem, i.e., using equation (A.2),

given by

L+N-2 	 _ f
) s(P)= E s(A) ~~"' I p ~

il 	
(Al)

i-° 	1.Lj#i(A -9

The Cook-Toom algorithm, in general, can also be expressed in matrix form as

s = Tx = CHDx

Where T=convolution matrix, x, s are input and output matrices.

This algorithm provides a way to factorize the convolution matrix T into multiplication of

one post addition matrix C, one diagonal matrix H with H; , i = 0,1,..., L + N —2 on the

main diagonal which determines the total number multiplications, and one preaddition

matrix D. The Cook-Toom algorithm can reduce the complexity of multiplications from

0 (LN) to L + N —1 at the expense of an increase in the number of additions. Further

reduction of additions is obtained by the modification of the above algorithm.

The modified algorithm can be summarized as follows:

Modified Algorithm:

1. Choose L + N —2 different real numbers, po , A, •••> QL+N-3

2. Compute h(/3,) and x(/3;),for i=0,1,...,L+N-3.

3. Compute s(/3;)=h(,8;)x(/3;), for i =0,1,...,L+N-3.

73

4. Compute s' (/C3;) = s (A3;) — sL+N_2
f/L+N-2 , for i = 0,1, ..., L + N — 3 .

5. Compute s'(p) using Lagrange Interpolation Theorem, i.e., using equation

(A.3), given by

L+N-2 	H (p - fl .) s'(p)= 	s 	 j i 	~ 	 (A.3)

6. Compute s (p) =

The Cook-Toom algorithm is efficient as measured by the number of multiplications.

However, it is not efficient when the size of the problem increases, because for a large

system, when the number of samples in the output sequence is large, /3 may take values

other than 0,±1,_±2,±4, etc. This may not result in simple preaddition and post addition

matrices. For larger problems, the Winograd algorithm is more efficient.

74

APPENDIX B : WINOGRAD Algorithm

The Winograd short convolution algorithm is based on the Chineese Remainder Theorem

(CRT) over an integer/polynomial ring. The CRT over an integer ring is stated as

Theorem B-1: CRTfor Integers

Given c, = R,„ [c], for i = 0,1,...,k, where m; are moduli and are relatively prime, then

k

-c = X c;N;M; mod M 	 (B.1)

k
where M = fl m; , M; = M/m; 	and N; is the solution of

=o

N,M,+n;m; =gcd(M1 ,m1)= 1 	 (B.2)

provided that 0 <_ c <_ M. The notation Rm [c] represents the remainder when c is divided

by m; .

The CRT over an polynomial ring is stated as:

Theorem B-2: CRTfor Polynomials

Given c{'i (p) = R,(,)(,) [c (p)] , for i = 0,1,..., k ,where mi') (p) are relatively prime, then

c (p) = Zc(') (p) N' (p)M ('1 (p) mod M(p)
	

(B.3)
=o

where M (p) _ fl mi'i (p) , Mi') (p) = M (p)/mi'i (p) and N' (p) is the solution of
=o

NO (p) Mi'i (p) + n('i (p) mi') (p) = g cd (M (') (p) , m' (p)) =1 	(B.4)

provided that the degree of c (p) is less than the degree of M (p) .

75

To solve (B.2) and (B.4) for N, and N(') (p), one needs to use Euclidean GCD

algorithm. Efficient convolution can be constructed using the CRT by choosing and

factoring the polynomial M (p) . Based on the above theorems, the winograd convolution

algorithm is summarized as follows:
4

Algorithm :

1. Choose the polynomial m(p)with degree higher than the degree of h(p)x(p)

and factor into k+1 relatively prime polynomials with real coefficients,

i.e., m (p) = m(°) (p) m~') (p).. . m~k) (p) .

2. Let M(') (p) = M (p)/m(') (p) and use Euclidean GCD algorithm to solve

for Nl'1 (p).

3. Compute hi'i(p)=h(p)modm (p) and xt' 1 (p)= x(p)mod m(p) for

i=0,1,...,k.

4. Compute s(i) (p)=h (') (p) x(') (p) mod m(') (p) for i = 0,1,..., k .

5. Compute s (p) ,using equation(B.5) ,given by

k

s(.p)=I s(p)N(p)Mi'i(p)mod m(p) 	 (B.5)

The number of multiplications is highly dependent on the degree of each m~') (p) .

Therefore, the degree of m(p) should be as small as possible. According to CRT, the

extreme case will be when deg m (p) = (deg s (p) + 1) . However , a more efficient form

of Winograd algorithm can be obtained by choosing m (p) with a degree equal to that

of s (p) and applying 	the CRT to s' (p) = s (p) — hL_,xL_,m (p) . Notice

thats(p)modm(p)=s'(p)modm(p).

The modified Winograd convolution algorithm is explained as follows

76

Modified Algorithm:

1. Choose a polynomial m(p)with degree equal to that of s(p) and factor into

k+1 relatively prime polynomials i.e., m (p) = m(°) (p) m~') (p)... m~k ~ (p) .

2. Let M(') (p) = M (p)/m('I (p) and use Euclidean GCD algorithm to solve

N~'1 (p)M (') (p)+nl'i(p)m (p)= gcd(M~'1 (p),ml'1 (p))=1 for NO (p).

3. Compute h(') (p) = h(p)mod m (p) and 	(p) = x(p)mod m~' (p) for

i=0,1,...,k.

4. Compute s(') (p)_= _ h'') (p) x(') (p) mod m(') (p) for i = 0,1, ..., k .

5. Compute s' (p) , using equation (B.6), given by

k

s'(p)=Zs(') (p)N('i(p)M(') (p) mod m(p) 	 (B.6)
=o

6. Compute s(p) = s'(p)+hL_,xl _,m(p) .

77

APPENDIX C: Efficient linear convolution examples
In this section, an efficient short length (i.e., 3x3 and 4x4 linear convolutions) are

addressed. These are derived from the modified Winograd algorithm.

C-1 Short length linear convolutions:

An efficient 3 x 3 linear convolution, by Winograd algorithm, can be obtained by

choosing the polynomial m (p) as p (p —1) (p — 2) (p + 1) . Now

Step 1:

m(°) (P) = P
m(°) (p)=(p-1)

m((p)=(p-2) _
m(°) (p)=(p+1)

and 	M~'~ (p) = M (p)/m(') (p) ,for 	i=0,1,2,3 	and 	using 	the 	relationship

Ni'1 (p) M' (p)+n(') (p)m(') (p) = gcd(Mi') (p), m' (p)) =1 , the following table is

constructed.

Step 2-: -

m(p) M(p) n(:) (P) NO (p)

0 P p3 -2p2 —p+2 1/2 —(p2 /2)+p+1/2

1 p-1 p3 —p2 —2p —1/2 (1/2)(p2 —2)

2 p-2 p3 —p 1/6 (-1/6)(p2 +2p+3)

3 p+1 p3 —3p2 +2p —1/6 (1/6)(p2 —4p+6)

Step 3:

78

h(°) (p)=(kp2 +h ,p+h°)mod p= h0

h(') (p)=(h2 p2 +h,p+ho)mod(p-1)=h° +4 +h2

h(2) (p)=(h2 p2 +h1 p+ h0)mod(p-2)=h° —h1 +h2

h(3) (p)=(h2 p2 +h,p+h0)mod(p+1)=h0 +2h1 +4h2

x(°)(P)= (x2PZ +x,p+xo)modp=xo

x(') (p) = (xz p2 +x,p+x°) mod(p-1) = x° +x, +x2

(2) (p)=(x2P2 x 	 +x1p+x0}mod(p-2)=x°—x,+x2

x(3) (p)=(x2 p Z +x,p+x°)mod(p+1)=x° +2x,+4x2

and

Step 4:

- 	- 	- s
0
 (p)=hox0 	- 	-

s((p)=(h0 +h,+h2)(x0 +x1 +x2)

s(2) (p)=(h0 —h,+hz)(x° —x, +x2)

s 3 (p)=(h0 +2h + 4h2) (x° + 2x, +4x2)

Step 5:

s' (p) _ [s(°) (p) N(°) (p) M(°) (p) + s(') (P) N(') (P) M(') (P)
+s(2) (p)N(2) (p) M(2) (p) +s(3) (p) N(3) (p)M 3) (p)]

mod (p4 — 2p3 —p2 +2p)

s'(p)= p3 [(-1/2)s(°1 (p)—(1/2)s(')(p)+(1/6)s(2) (p)—(1/6)s(3) (p)]

+ p2 [_s(°) (p)+(1/2)s(') (p)+(1/2)s(3) (p)]

+ p' [(1/2)s(°) (p) +s(') (p)—(1/6)s(2) (p)—(1/3)s(3} (p)]

+ p° [s(°) (p)]mod(p4 —2p3 — p2 + 2p)

s'(p) = p3 [(— 1/2) s(°) (p) — (1/2) s('1 (p) + (1/6) s(2) (p) — (1/6) s(3) (p)]

+p2 [—s(°) (p)+(1/2)s(') (p)+(1/2)s(3) (p)]

+ p' [(1/2)s(0) (p)+s(') (p) —(1/6)s(2) (p) — (1/3) s(3)
 (p)]

+ p° [s(°) (p)]

79

Step 6

s(p)= s'(p)+kx2 (p4 -2p3 -p2 +2p)

s(p) = p3 [(-1/2)s(°) (p)-(1/2)s(1) (p)+(1/6)sl2) (p)-(1/6)s(3i (p)]

+ p2 [-s(') (p)+(1/2)s('i (p)+(1/2)s(3i (p)]
+ p' [(1/2)sio) (p) + 	(p)-(1/6)s(2) (p)-(1/3)si3i (p)l

+ p° [s(°) (p)]+hZ x2 (p4 - 2p3 - p2 + 2p)

Therefore the final result in matrix form can be obtained as

S5 =Q3 .diag(H3)P3 X3

Where H3 =diag[1/2 1/2 1/6 1/6 1].P.[h0 h, k]
T

2 0 0 0 0 	1 0 0
-1 2 -1 -2 2 	1 1 1

Q3 = -2 1 0 3 -1 and P3 = 1 2 4
1 -1 1 -1 -2 	1 -1 1
0 0 0 0 1 	0 0 1

Similarily, an 4 x 4 convolution can be obtained by choosing the polynomial m(p)

as p2 (p -1) (p + 1) (p - 2) (p + 2) . The efficient 4 x 4 short convolution in matrix form is

given by

S7 = Q4 .diag (H4).Pa .X 4

where

4 0 0 0 0 0 0 0
1 	0
1 	1

0
0

0
0

-4 4-4 0 0 0 0 0
0 	1 0 0

-5 0 0 4 4 -2 -2 4
= 5 -5 5 4 -4 1 -1 0 P = 11 1 11 I =cL 	1/4 V4 V4 V6 	6 V48 	148 1].P.[k 11 	k 	h]`

1 0 0 -1 -1 2 2 5
1-24-8

-1 1 -1 -1 1 -1 1 0
1 	2 4 8

0 0 0 0 0 0 0 1
0 0 0 1

Therefore it requires 8 multiplications i.e., lesser than FFA implementation.

80

	Title
	Abstract
	Chapter 1
	Chapter 2
	Chapter 3
	Chapter 4
	Chapter 5
	Chapter 6
	Chapter 7
	Conclusion
	References
	Appendix

