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Pseudo-Noise (PN) sequences with low out-of-phase autocorrelation and low cross- 

correlation values have many applications as synchronization codes, masking or 

scrambling codes, and for white noise signals in communication systems, signal sets in 

Code Division Multiple Access (CDMA) communications, key stream generators in 

stream cipher cryptosystems, random number generators, and as testing vectors in 

hardware design. Besides, sequences with large linear span increase the linear 

complexity of the sequence, thus makes difficult to generate a replica of the sequences 

for eavesdropping and jamming purposes. This dissertation work focuses on study of 

various nonlinear sequences and their correlation properties. 

Bounds on correlation functions of signals play a major part in evaluating the 

theoretical performance of the spreading sequences and in sequence set selection for 

reliable, efficient and secure communication. Welch and Sidelnikov bounds have long 

been used as a benchmark for testing the merit of signal sets in the design of good 

CDMA sequence families. Besides, partial correlations are equally important in practice. 

This dissertation work is focused on determination of the peak partial correlation bounds 

of binary signals over fading channels. 

Binary signals with 2-level autocorrelation values such as maximal length 

sequences, GMW sequences, Cascaded GMW sequences, quadratic residue sequences, 

Hall sextic sequences, have importance in synchronization, radar, cryptography etc. In 

this dissertation, determination of upper bound on peak partial autocorrelation of 

cascaded GMW sequences using underlying interleaving structure of m-sequence is 

considered. 

Synchronous CDMA systems require large set of families with low cross- 

correlation values as signature sequences. Bent and Semi-bent signal sets have the best 

nonlinearity possible which makes them more secure to use. This dissertation focuses on 

obtaining lower bound on maximum correlation of binary signals over fading channels. 
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Chapter 1 

INTRODUCTION 

The world is demanding more from wireless communication technologies than ever 

before as more people around the world are subscribing to wireless. Add in exciting 

Third-Generation (3G) wireless data services and applications - such as wireless email, 

web, digital picture taking/sending, assisted-GPS position location applications, video 

and audio streaming and TV broadcasting - and wireless networks are doing much more 

than just a few years ago. Thus, the continuous growth in traffic volume and emergence 

of new services has begun to change the structure of wireless networks. Future mobile 

communications systems will be characterized by high throughput, integration of 

services, and flexibility. The high capacity required to support these characteristics can be 

obtained by using the spectrum as efficiently as possible and by flexibility in radio 

resource management. 

Spread spectrum code-division multiple access (CDMA) approaches have been 

proposed for a variety of digital cellular mobile and wireless personal communications 

systems. The CDMA air interface is used in both 2G and 3G networks. 2G CDMA 

standards are branded cdmaOne and include IS-95A and IS-95B. CDMA is the 

foundation for 3G services: the two dominant IMT-2000 standards, CDMA2000 and 

WCDMA. Three of the five approved radio interface modes for IMT-2000 standards 

(CDMA2000, TD-SCDMA, WCDMA) are based on CDMA. Thus, CDMA is the fastest 

growing wireless technology and it will continue to grow at a faster pace than any other 

technology. 

In a world beset by too little RF spectrum to satisfy the ever-growing demands of 

military, commercial, and private users, although the bandwidth occupancy of a single 

transmitted signal in spread spectrum communication is much higher than in systems 

using conventional modulation methods, spread spectrum has almost as many reasons for 

being the choice of technology. Some of the advantages of spread spectrum are [1]: 
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➢ As. the signal is spread over a large frequency band, the power spectral. density 

becomes very small. 

> CDMA can provide for Multiple Access or Random Access. A large number of 

codes can be generated, so a large number of users can be permitted to transmit. 

This kind of multiple access can operate without centralized control. 

> Without knowing the spreading code, it is difficult to recover the transmitted 

data. Moreover, as the spectral density is small, the signal may remain 

undetected. 

> Spreading and despreading makes the signal robust against interference.. This 

also holds for multipath self interference. 

> As• the bandwidth can be made much larger than the coherence bandwidth of the 

channel, the system is less susceptible to deep fades at particular frequencies. 

> In conjunction with a RAKE receiver, spread spectrum can provide coherent 

combining of different multipath components. 

> The wide bandwidth of spread spectrum signals is useful for location and timing 

acquisition 

Thus, CDMA consistently provides better capacity for voice and data communications 

compared to other commercial mobile technologies, allowing more subscribers to 

connect at any given time. All the above advantages have contributed to growing interest 

in this technology for proposed second- and especially third-generation cellular mobile 

systems, second-generation wireless LANs and for future wireless communications. 

Various advantages of spread-spectrum communication systems that are rooted on 

spectrum-spreading are attributed to the randomness criterion of spreading sequence 

(alternatively spreading code, Pseudo-Noise (PN) sequence). Thus, the design of 

spreading sequences for spread spectrum communications has been a topic of interest 

over the last 50 years, starting in the arena of military communications - where the terms 

spread spectrum originated since the emphasis then was on spreading the spectrum to 

`hide' the transmissions from conventional narrow band receivers or wideband receivers 

not having access to the correct spreading sequence. Spreading sequences have been 
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widely used as synchronization codes, masking or scrambling codes, and for white noise 

signals in communication systems, signal sets in CDMA (code division multiple access) 

communications, key stream generators in stream cipher cryptosystems, random number 

generators in many cryptographic primitive algorithms for secure authentication, and as 

testing vectors in hardware design. 

A very popular method of band-spreading in spread spectrum systems is to 

multiply the user data signal by a PN sequence, the bit rate of which is much higher than 

the data bit rate. The resulting waveform is wideband, noise-like, balanced in phase and 

has flexible timing structure. When the spread signal is received, the spreading is 

removed from the desired signal by multiplying with the same PN sequence that is 

exactly synchronized to the received PN sequence. When despreading is applied to the 

interference generated by the other user's signals, there is no despreading. Thus, the link 

performance in spread spectrum systems is affected by 

• Multi-User interference 

• the asynchronous multipath interference, arising from the delayed signals from 

o the other users as well as 

o user himself 

The level of these interferences depends upon the correlation properties of the spreading 

sequences. Good autocorrelation properties are also crucial for timing recovery and 

coherent detection. Therefore, the goal of spread spectrum designers for multiple access 

system is to find a large set of spreading codes such that as many users as possible can 

use a band of frequencies with as little amount of self and mutual interference as possible. 

1.1 Literature Survey 

In this section, we provide with a selective survey on various linear and nonlinear 

sequences and bounds on the maximum correlation. 

1.1.1 Sequences 

Binary maximal length linear shift register sequences (m-sequences) have been 

extensively studied in the past [2]. As the name suggests, they are precisely the sequences 

of maximum possible period (which is N = 2" —1) from an n-stage linear feedback shift 
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register. These sequences have successfully been applied in different fields such as 

spread spectrum communication, error control coding, cryptography and signal 

acquisition and synchronization. Many of these applications- are concerned with the 

correlation properties (both autocorrelation _ and cross-correlation) and the "noise-like" 

aspect of m-sequences. 

In spread spectrum communication systems, the m-sequences are used for 

generating direct spread sequences or frequency hopping sequences. In frequency 

hopping systems the hopping frequencies are assigned to the elements or groups of 

elements of m-sequences [3]. In both direct spread and frequency hopping systems, the 

spreading sequences increase the security of the system. 

Code division multiple access (CDMA) communication systems not only require 

a set of sequences which have good synchronization properties but also sequences that 

are easily distinguished form each other [4]. Preferred pairs of m-sequences [5] are 

defined as m-sequences which have small three or four-level cross-correlation values. 

However, for the vast majority of applications more than several sequences are needed. 

For instance large sets of sequences are needed for typical CDMA communication 

system, it is not uncommon for thirty or more to be required and for certain random 

access and hybrid systems the number of sequences required. could easily exceed a few 

hundred. A set of binary Gold sequences (Gold code) [6,7] of period N = 2" —1 consists 

of N+2 sequences which can be obtained from a preferred pair of m-sequences. All pairs 

of sequences of the Gold set have the same three-level cross-correlation values as the 

preferred pair which is 1+ 2("+2)12  for n = 2 modulo 4. A small binary Kasami set of 

sequences of period N = 2" —1 can be obtained from one even degree n = 2m primitive 

polynomial and one degree m primitive polynomial which produces a set of 2"' 

sequences with maximal cross-correlation value of 1+2'". 

With the increasing number of applications that involve wireless communication 

among mobile devices, the demand for implementing security in such systems becomes 

inevitable. However, the above sequences might not be suitable for applications in 

secure communications, because they are linearly generated which makes it relatively 

simple to generate a replica of the sequences for eavesdropping, jamming, or `spoofing' 



purposes. So, many researchers have contributed to the construction of nonlinear 

sequences which increases the linear complexity of the sequence and consequently 

reduce the impact of interception and jamming by a hostile user. Gordon, Mills, and 

Welch have designed a set of GMW sequences which have the property of almost even 

distribution of each element and a large equivalent linear span ,(the length of a linear shift 

register that will generate, the sequence) [8]. Klapper et.al, designed cascaded GMW 

sequences [9] which share most important properties of GMW sequences and m-

sequences besides having large linear span than GMW sequences in most cases. Binary 

bent function sequences developed by Olsen, Scholtz, and Welch [10] have the desirable 

features of a secure communication system and achieve a large equivalent linear span. 

Kumar and Scholtz [11] have extended the bent function sequences over prime fields and 

have established an upper bound on the equivalent linear span. Semi bent sequences [12], 

obtained through a linear combination of gold functions, have three level correlation 

properties like Gold sequences besides possessing large linear span. In the literature, 

semi-bent functions are also called 3-valued almost optimal Boolean functions [13], 

plateaued functions [14] and preferred functions [15]. No and Kumar [16] developed a 

new set of No sequences which contain a GMW sequence and includes the small set of 

Kasami sequences as a special case. The linear span of No sequences is greater than or 

equal to the linear span of GMW sequences. 	 _ 

Kumar and Moreno [17] developed polyphase sequences over nonbinary prime 

fields GF(p) which are asymptotically optimum with respect to its correlation properties. 

Compared to the same length Gold set over GF(p), the maximum correlation values of 

the polyphase sequences can be reduced by approximately 	. The set of polyphase 

sequences has a total of 2p+2 correlation levels. Also, compared to the binary case a 

nonbinary set yields a larger number of sequences for the same period. 

There has recently been much investigation of quasi-synchronous CDMA (QS-

CDMA) systems which make use of zero correlation zone (ZCZ) sequence, or low 

correlation zone (LCZ) sequences, or generalized orthogonal sequences [18]. In QS-

CDMA systems, also called `approximately synchronous CDMA' (AS-CDMA) systems, 

the correlation functions of the spreading sequences employed take zero or very low 
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values for a continuous correlation shift zone around the in-phase shift. The significance 

of ZCZ/LCZ sequences to QS-CDMA systems is that, even if there are relative delays 

between the received spreading signals due to the inaccurate access synchronization and 

the multipath propagation, the orthogonality between the signals is still maintained, as 

long as the relative delay does not exceed certain limits. 

1.1.2 Correlation Bounds 

In order to evaluate the theoretical performance of the spreading sequences, it is 

important to find the tight theoretical limits that set bounds among the sequence length, 

sequence family size, maximum aperiodic (periodic) autocorrelation sidelobe and 

maximum aperiodic (periodic) cross-correlation value. In fact, the tight constraint relation 

among these parameters has been a key and active issue in information theory and 

communication engineering. 

In 1971, Sidelnikov obtained a lower bound for the periodic correlation of 

sequences over complex roots of unity [19]. In 1974, Welch [20] derived a lower bound 

for the periodic and aperiodic correlation of complex sequences using the property of 

inner product which can be considered as a special case of Sarwate bound [21] that yields 

trade-off between autocorrelation and cross-correlation functions. In 1990, Kumar and 

Liu provided an improved bound to Welch and Sidelnikov bounds for sequences over 

complex roots of unity [19]. Later, Levenshtein [22] derived several bounds by 
introducing `weights' for shifts of sequences for binary sequence sets, which are tighter 

than Welch bounds. Peng and Fan [23] obtained a few aperiodic bounds based on 

Levenshtein's technique, but which are stronger than the Welch bounds, the Sarwate 

bounds and the Levenshtein bounds. 

For the LCZ/ZCZ spreading sequences, Tang and Fan [24,25] established bounds 

on the periodic and aperiodic correlations based on Welch's technique, which included 

Welch bounds as special cases. For periodic correlations of LCZ/ZCZ sequences, 

generalised Sarwate bounds were obtained [26], which included all the previous periodic 

sequence bounds as special cases, such as Welch bounds, Sarwate bounds and Tang—Fan 

LCZ bounds. In 2001, Peng et al. [27, 28] obtained new lower bounds on aperiodic 

correlation of the LCZ sequences, which are stronger than Tang Fan aperiodic bounds. 



Peng and Fan [28] obtained even tighter aperiodic bounds for LCZ sequences over 

complex roots of unity sequences. The above content is heavily taken from [28]. 

In CDMA systems where many data bits are spread by each copy of a user's 
spreading sequences, it was shown in [29] how the multiple-access capability of CDMA 

systems, in which the period of the signature sequences was much larger than the number 

of chips per data and multiple data bits are spread by each sequence, can be related to the 

mean square value of partial correlation for sequence sets. Moreover, an average value 

and bound on the variance of the partial correlation values for a sequence set can be 

converted into an upper bound on the probability that a given correlation threshold is 

exceeded [30]. Information on higher moments can also be used to improve this bound 

and aid in sequence selection. In [31], a long sequence is used for synchronization, but 

the correlations are computed over only a short subsequence of that sequence. It was 

shown that the performance parameter such as mean acquisition time can be improved. 
In such situations, sequence sets having low absolute values of partial correlation are 

important. 

The moment approach has been pursued for m-sequences in [32] and [33] (in fact, 

because of the shift and add property of m-sequences, the partial period correlation 

distribution for an m-sequence can be derived from the distribution of weights of its 

subsequences). The correlation moments for m-sequences and Gold codes have been. 

related to the distribution of codeword weights in shortened Hamming and dual-BCH 

codes using the MacWilliams and Pless identities, [34, 35]. The higher moments of the 

partial correlation distribution of an arbitrary binary sequence are described in [36], 

partial correlation moments for a class of GMW sequences are studied in [37], and 

bounds on the variance of the partial period autocorrelations of geometric sequences were 

calculated in [30]. 

It is obviously desirable to obtain further information about partial correlations, 

but finding the spectrum of values taken on by the partial period correlation functions for 
a sequence set seems to be very difficult. By analogy with the periodic case, a natural 

parameter to study is the peak partial correlation of sequence sets. 
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Some information on the weight distributions of short subsequences of m-

sequences can be found in [38]; this is easily translated into results on partial correlations. 

Computational results for single-sequences can be found in [35]. Upper bounds on the 

peak partial autocorrelation for m-sequences can be derived from the results of on the 

distributions of elements in partial periods of linear recurring sequences. These results 

can also be applied to yield bounds on peak partial correlations for sequence families in 

which each sequence has low linear complexity, for example, Gold codes and Kasami 

sets. The resulting bounds are rather weak. An approach based on the discrete Fourier 

transform and bounds for character sums has been used to upper-bound the aperiodic 
correlations of -sequences [39], and the aperiodic and odd correlations of the small 

Kasami sets [40]. The above content is heavily taken from [41]. 

In 1998, K.G. Paterson and P.J.G. Lothian [41] derived a lower partial periodic 

bound based on Welch's technique. But Paterson-Lothian bounds does not apply to low 

correlation zone (LCZ) sequences or generalized orthogonal (GO) sequences [42], which 

can be employed in quasi-synchronous CDMA (QS-CDMA) to eliminate the multiple 

access interference and multipath interference. Feng and Fan [43] established generalized 

lower bounds on partial aperiodic correlation of complex roots of unity sequence sets 

with respect to family size, sequence length, subsequence length, maximum partial 

aperiodic autocorrelation sidelobe, maximum partial aperiodic crosscorrelation value and 

the zero or low correlation zone which included all the previous aperiodic sequence 

bounds such as Sarwate bounds,' Welch bounds, Levenshtein bounds, Tang-Fan bounds 

and Peng-Fan bounds as special cases. 

Paterson and Lothian also established a general upper bound on the peak partial 

autocorrelation and cross-correlations for the class of sequences obtained by interleaving 

m-sequences and thus were able to obtain the bounds on the sequences sets that are 

expressible in interleaving form such as GMW sequences, No families and Klapper's TN 

sequences and d-form sequences [44]. 

1.2 Problem Statement 

Since, nonlinear sequences improve the linear complexity of the sequences, this 

dissertation is aimed at examining the correlation bounds on some nonlinear sequences. 



The objectives of this dissertation are as follows: 

> Study of various periodic and partial period correlation bounds and investigate 

into generalization and improvement of these bounds. 

> Study of various nonlinear sequences and their statistical properties. 

> Examining for new correlation bounds on some nonlinear sequences over non-

fading and fading channels. 

> Comparison of obtained bounds through simulation, as it gives further view. 

1.3 Organization of the Report 

This rest of the dissertation report is organized as follows: 

Various properties of PN sequences that are essential for reliable, efficient and 

secure communication are the discussion of chapter 2. chapter 3 reviews some existing 

lower bounds on maximum correlation and peak partial - correlation of signals over non-

fading and fading channels, upper bound on the peak partial correlation of interleaving 

sequences and subsequently provides a lower bound on the peak partial correlation of 

binary signals over fading channels. 

Review of statistical properties of GMW and cascaded GMW sequences and 

upper bounds on the peak partial autocorrelation of GMW and cascaded GMW sequences 

using their interleaving structure is presented by chapter 4. 

Chapter 5 reviews the construction and mechanization of modified bent function 

sequences and their statistical, properties, the characterization of semi-bent functions as a 

linear combination of Gold functions and subsequently an improvement in the lower 

bound on the maximum correlation of semi-bent sequences over fading channels is 

presented. 

Chapter 6 provides with simulation results in MATLAB for the correlation 

bounds of GMW, cascaded GMW and semi-bent sequences, 'and hardware realization of 

bent function sequences and semi-bent sequences on FPGA. Chapter 7 concludes the 

report. Implementation of Bent and Semi-bent sequence generators on FPGA are 

introduced in Appendix. 
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Chapter 2 

- PROPERTIES OF PSEUDO-NOISE (PN) SEQUENCES 

In the early years of spread-spectrum transmission, the spread traffic was sent by the 

simultaneous transmission of a modulated and an unmodulated random wideband signal 

through different channels. The receiver would use the unmodulated carrier as the 

reference signal for despreading (correlating) the data-modulated carrier. This is known 

as the transmitted reference (TR) method [45]. The basic advantage of the TR approach 

was the absence of a significant synchronization problem to resolve at the receiver, since 

the despreading sequence was transmitted simultaneously with the useful information. 

The main disadvantages of the TR technique were: 

➢ the potential adversary could listen to the despreading sequence being 

transmitted 

➢ a jammer could easily spoof the system by sending a pair of waveforms 

acceptable to the receiver 

> performance would be sharply degraded at low SNR environments when noise 

was present in both signals (information and reference) 

➢ twice the bandwidth and twice the power were needed for the transmission of 

the information, as the reference signal had to be transmitted as well 

Modern spread-spectrum systems employ a technique called stored reference 

(SR) method [45], where the spreading sequence is independently generated both at the 

transmitter and receiver. The advantage of the SR technique is that a well-designed 

spreading sequence cannot be predicted simply by monitoring the transmission. The 

downside is that the deterministic nature of the sequence generation (mandatory for both 

transmitter and receiver since each must be able to generate the sequences almost 

simultaneously and independently of each other) implies the sequence is not random, yet 

possesses some properties that one would expect to fmd in randomly generated 

sequences. Such sequences in conjunction with a couple of other criteria to be discussed 

later are called pseudo-noise (PN) or pseudo-random signals. 

0 
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2.1 Golomb's randomness postulates 

Rapidly generated pseudorandom sequences with "good" statistical (randomness) 

properties are essential components in a wide variety of modem applications including 

signal synchronization, navigation, radar ranging, random number generation, spread 

spectrum communications, multipath resolution, error correction, cryptographic systems, 

Monte Carlo simulations and signal identification in multiple access communication 

systems. Acceptable sequences should exhibit no statistical bias in the occurrence of 

individual symbols or small blocks of symbols. With these goals in mind, in his classic 

book, Golomb [2] defined a pseudonoise sequence to be a periodic binary sequence that 

passes these statistical tests for randomness: 

> R-1: Balance property, 

> R-2: Run property, 

➢ R-3: Ideal two-level autocorrelation 

R-1: Balance property 

The seqeunces should have "balance" in every period, i.e., the number of +1's is 

nearly equal to the number of-i's. (More precisely the disparity should not exceed_ 1). 

This requirement ensures that spreading sequences have no DC component which 

effectively avoids a spectral spike at DC or avoids biasing the noise in despreading. 

R-2: Run property 

In every period, half the runs have length one, one-fourth have length two, one- 

eighth have length three, and so forth, so that a fraction 1 / 2' of all runs are of length r for 

r finite. The distribution on run length is called run-length property of a sequence. 

Runs are undesirable since if there is a run of k consecutive l's or 0's, the data 

signal over the period of run is just multiplied by constant, which reduces the bandwidth 

spreading (and its advantages) by roughly a factor of k. 
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R-3: A utocorrelation Property 

Let S be a set of M complex-valued sequences of period N. The periodic and 

aperiodic cross-correlation function of sequences a = (a0 ,a,,...,aN-1), b = (b0 ,b1,...,bN-i 

for a,b E S are defined by 

N-1 
Periodic CCF: 	R$b (z) = 	a j [b j+z ] , r E Z 

	
(2.1) 

J=o 

where Z denotes the set of all integers. 

N-1-a 
a,[b,+rj* 0<_z<N-1 

i=o 
N-1+r 

Aperiodic CCF: Cab (z) _ 	a;-abi* 	1— N <_ r <0 
	

(2.2) 
=o 

0 

When u.= the above correlations become autocorrelation functions (ACF). 

From Golomb's postulates [2], the ideal autocorrelation function R(r) is two-

valued. Explicitly, 

	

N-1 	_ N 	if r = 0 
NRaa (r) = > j ar ai+a 

	

=a 	 K 	if 0<z<N 
(2.3) 

At the receiver, despreading of the received spread spectrum signal is 

accomplished by a correlator which computes the correlation between the received spread 

spectrum signal and the local reference sequence. The detection by the receiver of the 

high in-phase correlation value Raa (0) and low out-of-phase autocorrelation values 

determines the synchronization between transmitter and receiver necessary for the 

removal of the encoding sequence and the recovery . of the baseband information. Thus, 

sequences with low out-of-phase autocorrelation sidelobes i.e., IRaa (r)I is small for 

z ~ 0, finds many applications in communications such as radar distance ranging, sonar 

distance ranging, coding theory, cryptography and signal synchronization. 

However, the following properties also play a vital role in the design of spreading 

sequences for secure and reliable communication. 
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2.2 Cross correlation 

In multiple access applications, many systems will be operating in the same 

neighborhood and each communication link will employ a different maximal length 

sequence. In general, the cross-correlation function between different maximal sequences 

may be relatively large. Thus, different systems operating in the same environment can 

interfere with the .successful attainment and maintenance of proper synchronization by 

having the receiver of one communication link lock onto the cross-correlation peaks 

obtained by correlating with the encoding sequence of a different communication link.' 

Thus the successful use of spread spectrum communication systems in multiplexing 

applications depends upon the construction of large families of encoding sequences with 

uniform low cross-correlation values. 

The classical goal in sequence design for CDMA systems has been the 

minimization of the parameter 

R. = max { (r)I either a # b or r # 0 

Although, in practice, because of data modulation, the correlation that one runs 

into are typically of an aperiodic rather than a periodic nature, the problem of designing 

for low aperiodic correlation, however, is a more difficult one. A typical approach, 

therefore, has been to design based on periodic correlation and then analyze the resulting 

design for its aperiodic correlation properties. 

2.3 Partial-period Correlation 

The partial-period cross-correlation between binary sequences a = {al  = (-1)S' } 

and b = {b1 = (-1)t' } over the subsequence of length l beginning at position j and with 

relative shift k, denoted PECC(a,)(j, k, 1) is defined by 

N-1 
PECC(a,b)(j,k,1 ) = F P(j,1). (-1)S'+t;+k 	 (2.4) 

1=0 

where 

0 <_ j, k< N and l S 1< N, and 
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p (j' 
 l) _ 1 
	ifj+kN_<i<j+kN+1, forsomekeZ 

(2.5) 

	

` 0 	 otherwise 
 

When a = b, the above correlations become partial autocorrelation functions 

PEAC(a,b)(j, k, l) . 

In direct-sequence CDMA systems, the pseudorandom sequences used by various 

users are often very long for reasons of data security. In such situations, full period 

correlation R(  r) loses some of its value as a design parameter. In order to minimize 

hardware complexity, correlation over a partial period of the spreading sequences is often 

used to demodulate data, as well as to achieve synchronization. For this reason, the 

partial period correlation properties of a sequence are of interest. 

2.4 Linear span 

The linear span of a sequence is defined as the minimum number of stages of a 

linear feedback shift register (LFSR) required to generate the given sequence. Thus, the 

linear span is a measure of the complexity of the sequence structure. Massey [46] has 

proposed an algorithm to determine the LFSR configuration that can produce a given 

sequence. This algorithm requires as many chips of a given sequence as twice the linear 

span of the given sequence. If the sequence's linear span is large, the interceptor needs 

substantial amount of time to determine the feedback connections of a shift register 

generator, which can generate the transmitted sequence. In addition to this, the 

interceptor needs complex hardware to generate the transmitted sequence. Thus, a large 

complexity or linear span is desired for security of the sequence in anti jam applications. 

2.5 Nonlinearity 

Shift register generators are commonly used to produce binary sequences as they 

are small, light, inexpensive, and offer a rich variety of sequences. For example, an r-

stage register has (227 )2 possible combinations of feedback/feed-forward connections 

which can be represented as Boolean functions. If the feedback function is linear, then 

the output sequence is called a' LFSR sequence. Otherwise, it is called a nonlinear 

feedback shift register (NLFSR) sequence. Among these, only 2T linear feedback 
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r 

connections are possible and only rp(2 —1) (gyp(.) is Euler's Totient function) [2] of 
r 

which have the maximum period of 2r —1. But the most serious shortcoming of linear 

feedback is that no more than 2r successive outputs are needed to determine the feedback 

connections and initial state of an r-stage register. The inherent predictability of linear 

feedback generators have motivated designers to use nonlinear operations on generator 

outputs to increase greatly the equivalent length which eventually increase the Equivalent 

Linear Span (ELS) of the sequence, while maintaining a relatively short actual length. 

High nonlinearity is a crucial criterion for a good sequence design since it assures 

resistance against linear cryptanalysis. 

Let a, denote an element of vector space V. and 4,, _ Pb, (Pl , ...., c'Z i_11 denote 

the set of all affine functions so that the first half consists of linear functions far ordered 

according to the relation gyp = f~ for all i = 0,1,.....2" —1 and the second half consists of 

the (respective) complements of the functions in the first half. Thus, rp; =fay for 

alli = 2,2n +1,....,2 1 -1. 

The nonlinearity of a Boolean function f is defined as 

N —' min d (f,0l ) f =o,1,. ..2n+1-1 
	 (2.6) 

where d(f, ci) is the Hamming distance between function f and affine function rp; and is 

given by 

d(f,g)=2"_~(4,f,Cg l 
	

(2.7) 

where 	= (-1)f and ~g = (-1)g are sequences of Boolean functionsf and g respectively 

In other words, the nonlinearity of a function is the distance between the function 

and the set 4, . Nonlinearity measures the quality of a function via its distance to affine 

functions. 
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2.6 Merit Factor 

The Merit Factor FN  (a) of a binary sequence a of length N is defined as 

N2  FN (a)=  N _I 	 (2.8) 
2 	Caa (z)2  

r=1 

Since Cell  (r) = C8. (—z) for 1_< lrl <_ N —1 and CH. (0) = N, Merit Factor may be 

regarded as the ratio of the square of the in-phase autocorrelation to the sum of the 

squares of the out-of-phase aperiodic autocorrelation values. Thus, the merit factor is one 

measure of the aperiodic autocorrelation properties of a binary sequence. It is also 

closely connected with the signal to self-generated noise ratio of a communication system 

in which coded pulses are transmitted and received. Also, it is a measure of the spectral 

uniformity of the sequence, which is of interest in digital communications. 

Let F(a)'= lim FN  () be the asymptotic merit factor of a binary sequence u as its 
N-* 

length goes to infinity. Then, a major design issue on the merit factor is to fmd binary 

sequences of length N with high asymptotic merit factors. The best known and 

theoretically proven asymptotic merit factor of binary sequences generated by 

constructive ways is 6. 

0 
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Chapter 3 

BOUNDS ON CORRELATION OF SEQUENCES 

The correlation properties of PN codes play a major part in the sequence design, since 

they determine not only the level of multiple access interference i.e., the interference 

arising from other users of the channel and self-interference due to multipath 

propagation, but also the code acquisition properties. The first one is affected by the 

cross-correlation property between different sequences of the family whereas the last two 

are affected by the auto-correlation property i.e., the correlation between time-shifted 

versions of the same sequence. 

In this chapter, we begin with a review of Sarwate bound [20] which quantifies 

the trade-off between the maximum magnitudes of the autocorrelation and cross-

correlation functions. Welch bound can be easily deduced from Sarwate bound, although 

Welch derived it using inner products [19]. Then, a lower bound on maximum 

correlation of binary signals over fading channels is introduced. We then review the 

lower bound on peak partial correlation of signals over nonfading channels. We then 

provide a lower bound on peak partial correlation of binary signals over fading channels. 

Then, we finally conclude with a review of the upper bound for the peak partial 

correlation of interleaving sequences over non-fading channels. 

3.1 Bounds on Maximum Periodic Correlation 

3.1.1 Complex sequences over non fading channels 

Let S be a set of M complex-valued sequences of period N, i.e., for every 

sequence a E S, a;  = a;+N  for all i E Z. The periodic cross-correlation function Reb  (r) 

for sequences a,b E S reproduced here from (2.1) is 

N-1 
Rab (r) = L, ai [bi+z ]*, E Z 

f=0 

where a` denotes the complex conjugate of a: Assume, R(0) = N for all a E S. 
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Obviously, 1~., (r)I S N for all a,b E S. 

For the set S, the maximum periodic cross-correlation magnitude RR and the maximum 

out-of-phase periodic autocorrelation magnitude RQ are defined by 

Rc =max{Rab(r)I: a,bES,a#b,0<_z—<N-1} 

R,, =max{IRaa (z)I: a ES,0<z<_N-1} 

Theorem 3.1 [20]: For any set S of M sequences of period N satisfying R(0) = N for 

all aeS, 

R, + N-1 RQ 1 
N N(M —1) N 	 (3.1) 

Proof: Applying the following identity [ref 5], 

J IRab (Z)IZ = Z Raa (Z) {11bb (Z)} 	 (3.2) 
z=O  ==o 

to all members a,b E S, gives 

Rab(Z)l2 +EE1Raa(r)I 2 = 	ZEIRab(Z)j
2 

aES bES T=.O aES T=O aES bES r=O 
a#b 

— 
aES beS r=O  

N-1 	 2 
= M 2 N2 + E Raa ) 

T=I aES 

Now, 

aES bES r=O 
a~b 

N-1 	2 

+ 
aES T=O 

—< M(M —1)NRR + MN 2 + M(N --1)Ra 

N-Il 	2 

and 	 M 2N2 +E Raa (z) >_ M2N2 
r=I aES 

M(M — 1)NR +MN 2 + M(N —1)Ro >— M 2N 2 
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Rc + N-1 R2 
Hence, 	 N N(M —1) N 

Thus, (3.1) provides a lower bound on either RQ or R. when the value of the other is 

known. 

Define R = max Rab (r)I : a,b E S, a ~ b, 0 <- r _< N -1 or a=b, 0 <r < N -1} 

i.e., CR.= c = Rm. . 

Substituting this in (3.1), 

Rmax = max 2 R° >_ N(M -1) 	 (3.3)2 
N 	

N , 
N NM-1 

This is known as Welch's bound [19]. 

RZ 	RZ Eq (3.1), represents a straight line with N plotted on x-axis and N plotted on 

R2 R2 y-axis. For any set S of M sequences, the point j ----)  cannot lie outside the square 

of side N. According to (3.3), the point cannot lie inside the shaded square region, while 

according to (3.1), the point cannot lie below the straight line x + y(N -1)! (NM - N) =1 
as shown in Fig. 2.1. Here, the x-intercept is always 1, and that the y-intercept is 
approximately M for large N and M. 

Rz 0 
N 

N(M-l) 
NM -1 

RZ 
N 

 

N(M-1) 1 
NM-1 

Fig. 2.1. Straight-line lower bound on periodic correlation functions 
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For M N, the line passes through (0, N). The straight-line bound of (3.1) is 
2 

nearly vertical and its steepness implies that if it is desired to reduce the value of N to 

R2  below 1, then a substantial increase in the value of 	must be tolerated. N 

When M < N, Theorem 3.1 provides the best bound, but for larger values of M, 
better bound can be obtained from 

 s 2 s 1 
N(M-1)(:L2 + (N —1) a  > NS 	NM  _ 1 	

(3.4) N 	 N 	N +s-1 
S 

This is the modified version of Welch's result [19]. For s=2 and M > 1(N +1),  (3.4) 

zz 
implies that the point N , N , as depicted in Fig. 2.2, cannot lie inside the ellipse 

(M-1)(N+1)  x2+ 
N(2M —1— N) 

N 2  —1 y2 =1 
N 2  (2M —1— N) 

(3.5) 

RZ  
N 

N 

M=N 

-------• M=N-i-1 

—•--•-M= N(N + 1) 

_.._..  2  M=N 2  

RZ  
N 

 

1 

Fig. 2.2. Straight-line and elliptic lower bounds on periodic correlation 
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This elliptic bound can be used to improve upon (3.1) if M> N but it is not uniformly 

better than (3.1) unless M > N2 as shown in Fig. 2.2. 

The Sidelnikov bound states that for any set with M >_ N 

	

R.. >/2N-2 	 (3.6) 

Sidelnikov bound is typically tighter than Welch bound by a factor of 	for a large set 

size. The main impact of these bounds is that they dictate the limits within which all code 

designs must lie. Thus, it is not possible to independently design the correlation value 

and the set size, but it is necessary to allow the increase of the maximum absolute 

correlation value in order to increase the set size for give code length. 

3.1.2 Binary signals over fading channels 

Let {x(), x(2),. . . , x0') } be the baseband signals that P different users transmit in 

one symbol duration. Let the user j be assigned the sequence c~ ={c,4 ,c,...,c(j) 

Assuming the fading channel is frequency-nonselective and the receiver has perfect 

channel estimation, the ith chip of the input signal at k ' receiver is defined by 

y(k) - ~: ~
j)x(j)c(j) + n(k) 	

(3.7) 

j=0 

After despreading and low-pass filtering for desired user k, the detected signal x(k) is 

(k) 	(k) N -1 ~k) 	P-1 (j) N-1 
4j)X(j)C(k-)    N-1 (k~ (k) X x 	h~ + 	x 	c1 	 (3.8) 

-  

i=o 	j=o,j#k 	i=o 	 i=o 

where N is the number of chips in a symbol duration. h1 , usually modeled as a random 

variable, is the wireless channel attenuation experienced by user j, and n~k) is real 

additive white Gaussian noise (AWGN) [47]. In Rayleigh fading channels, the fading 
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amplitudes h,W =
~[U~+ IVP)  T 	>— 0, where u and v are two independent zero- 

mean Gaussian random variables with variance a2 [48]. 

The periodic correlation of a, corrupted by a multiplicative fading f = { f = h,,' ) } , and 

b is defined by 

N-1 
Rf.a,b(Z) _ I f (-1)Si` ti+r 

	
(3.9) 

i=0 

where a; = (-1)S' and b; = (-1)t are the binary sequences in a signal set S with a size M, 

f.a is the sequence whose elements are given by f (-1)s' and N is the period of each 

sequence a; and b1 . It is assumed that every user suffers from the same fading amplitude 

f,. during the same period of time, and the receiver is able to know the accurate value of 

f,. with the perfect channel estimation. 

Let Rl = max 	max iRf.a,~ (Z)I and R2 =max max IRf.a,a (z)Ibe the cross- 
a,bES,a#b 0_<z<N - 	 aES 0<z<N -- 

correlation and out-of-phase autocorrelation of signals in S respectively over fading 

channel. Then, the maximum correlation of signal set S is defined by, 

Rmax =max (Rl, R2 ) 
	

(3.10) 

Theorem 3.2 [49]: Let S be a signal set of size M. Each sequence in S is a binary 
periodic sequence with a period N. Then, maximum correlation defined by (3.10) is 
lower bounded by 

Fn__W 

N-1 2 
2- If 

_  i=O 
Rmax - -1 (3.11) 

Proof: Expand the signal set S to a signal set T with a size MN including every shift of 
each sequence in S. Then, 

22 



B= 	I 2 <A/1N.(MN-1).Rmax+MN .Rf.a,b(0)2 
a,beT 

Also, we have 

N-1 
B= 

!,!2T k. i=0 
2 

_~ f f j I(-1)s; 
	N-1+  s; > 	( )2 

i, j 	aET 	 f=0 

(3.12) 

(3.13) 

This inequality is from the fact that f and f~ are positive. From (3.12) and (3.13), 

N-1 2 N-1 
MN(MN —1) R, + MN 1 f,• >_ f 2 (MN)2 

and 'the theorem follows. 

Corollary 3.1: Let f, 0 <_ i <_ N-1, be a fading amplitude with a mean p and a 

variance ,.2• If f,. is statistically independent and identically distributed (i.i.d) for 

sufficiently large L, then R. is lower bounded by 

J MN 2 ( P2 +a2 )_N 2 p2 

Rm ` >— 	MN —1 	
(3.14) 

Proof: In the lower bound in Theorem 3.2, if f,.'s are i.i.d for sufficiently large N, 

N-1 	N-1 
f =N•p, I f 2 =N•(,u2 +a2 ) 	 (3.15) 

i~0  i=0 

from the weak law of large numbers. Hence, the corollary is immediate from this 
representation. 

Remark 3.1: In Corollary 3.1, if no fading environment is assumed, p =1, a- =0.  Then, 

R„ normalized by a period is given by 
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R(norm) = Rm 	M-1 
max 	N — MN-1 

This is exactly the same result as Welch's lower bound [19]. 

Remark 3.2: In (3.12), the equality is satisfied if Rf ab (0)I is identical over all 

sequences a,b E T. It implies that as the correlation function Rr.a,b (r) of any pair of 

sequences in S over fading channel is flatter, the actual maximum correlation approaches 

to the lower bound. 

3.2 Bounds on Peak Partial Correlation 

3.2.1 Complex sequences over non fading channels 

For sequences a,b in a sequence set S each of period N, let the peak cross-

correlation between a and b over subsequences of length 1 is defined by 

PECCnax (a,b)(l)=max({IPECC(a,b)(j,k,l)i:0<_ j,k<NJ), 

where PECC (a,b) (j, k, l) is given by (2.4) 

the peak autocorrelation of a over subsequences of length l by 

PEAC,, (a)(l)=max({IPEAC(a)(j,k,l)j:0_< j <N,1<_k<NJ) 

and the peak partial correlation for the set S over subsequences of length l by 

PECmax (S)(1) =max{PECCmax (a,b)(1),PEACmax (a)(1): a,b ESI 

Theorem 3.3 [41]: Let S be a set of M•sequences of period N and k a positive integer. 

Then, for every l with 1 <_ l _< N 

12k 
PECmax (S)(l)}2k ~ NM-1 l+k-1 	—1 	 (3.16) 

k J J 

Proof: Construct a signal set T with a size MN including every subsequence of length l 
of signal set S beginning at position j for 0 <— j <N. 
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Obviously, 

NM. (NM -1){PECmax (S)(l)}21'+NM•121c I IPECC(a,b)(l)I 2k (3.17) 
a,bET 

Consider, 

2k 	k 1-1 * k 
Bk = 	IPECC(a,b)(l)I = 	 bi 	Iajb j 

a,bET 	 a,bET i=0 j j=0 

For k >_ 1, one can expand and interchange the order of summations to obtain 

l-1  l-1 l-1  1-1  k  
2 

1 11 au, av, 	 (3.18) 
u1=0 uk=01=0 vk=0 aET i=1 

Different choices of the variables u1 , u2 ,. . ., uk ; v1, v2,. . ., vk give rise to the .same product 

of the a and a' ; the number of choices can be expressed as multinomial coefficients. 

Then (3.18) may alternatively be expressed as 

1-1  2 

k~ai~x'aiyl
xo,...xl-(

k)

x y aET i=0 
(3.19) 

where 
1-1 	1-1 	(k) 	ki 	k 	k! 

x,,Yl ? 0, > x1 =E y, =k , and x= [J(
x+') 	y fJ(y, !) =0  =o 

Since the summands are nonnegative, the terms with (x0,. . . xl_i) ~ (ye,.. • Yt-1) may be 

dropped to yield 

2 
1--1 

Bk'- I 	x E 11 I (al )I2x' 
aET i=0 

An application of Cauchy-Schwartz inequality yields 
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2 

I k Z fjIlai)I2x! 
x aeT i=0 Bk >_ 

xo,...xl-1 

where all sums have as their range {(x0 ,. . . 	: x,. >: 0, x, = k} . Interchanging orders 

of summation and applying the multinomial expansion theorem gives 

1 	
k 2 

I(ai)I2 
aeT i=0 

Bk ~(1+k—f '  
k 

Hence, 

Bk (NM)2 12k 

l+k--1 
k 

Substituting (3.20) in (3.17), we get 

 

(3.20) 

NM.(NM-1){PECmax (S)(l)}2k + NM 

and the theorem follows. 

121 
> (NM)212k 

(1+ k-1 
k 

 

3.2.2 Binary signals over fading channel 

The partial correlation between a, corrupted by a multiplicative fading 

f = { f = h(j ) I , and b over subsequence of length l beginning at position j and with 

relative shift k, denoted PECC (f.a,b) (j, k, 1) , is defined by 

N-1 
PECC(f.a,b)(j, k,l) = 	p(j,l)i f (—i)s;+t►+k 	 (3.21) 

i=0 
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where ai = (—l)s' and b; = (-1)t' are the binary sequences in a signal set S with a size Al, 

fa is the sequence whose elements are given by f (-1)S' and N.is the period of each 

sequence a, and b1 , 0 <_ j, k <N and 15 l <— N, and 

1 ifj+kN<i<j+kN+l, forsomekEZ 
p (

j
' Z~ 

_ 
' ̂ f0 	 otherwise 

Let the peak partial cross-correlation in fading channel between a and bover 

subsequences of length 1 be defined by 

PECC (f.a,b)(1)=max({IPECC(f.a,b)( j,k,l)l:0<_ j,k<N}), 

and the peak autocorrelation in fading channel of a over subsequences of length 1 by 

PEAC,, (f.a)(l)=max({,PEAC(f.a)(i,k,l)I:0<— j <N,1<—k<N}) 

and the peak partial correlation in fading channelfor the set S over subsequences of length 

1 by 

PECK,. (f •S)(1)=max{PECCm. (f.a,b)(l),PEACm. (f.a)(l): a,b ES} 

Theorem 3.4: Let S be a signal set of size M. Each sequence in S is a binary periodic 

sequence with a period N. Then, maximum correlation denoted by PECm. (f • S) (1) is 

lower bounded by 

Fn__

l2 

PECm (f • S) (l) >_ 	i=0 	 (3.22) N-1 

Proof: The theorem follows by applying the argument of the inner product theorem [19] 

as in Theorem 3.2 to the set of length! subsequences of sequences from S. 
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3.3 Bounds on the Peak Partial Correlation of Interleaved Sequences 

3.3.1 Interleaved Sequences 

We describe a method for producing binary sequences of period 2" —1 by 

interleaving m-sequence of period 2'" —1 [50]. 

Suppose that m I n, a is a primitive element in GF (2") and that 

gcd (r, 2M —1) =1. Let 

T = 2n-1  
21-1 

Then a'T  is an element of GF (2m ) . Then the binary sequence t with 

t; =trim arTi  

is an m-sequence of period 2"' -1. Here, tr (•) denotes trace function. The definition and 

properties of trace function are given in appendix A. 

For any i >_ 0 , we can uniquely write i = i1T + i2  where it  >_ 0 and O<—i2   <T. 

Now, let f be any function from the nonnegative integers to GF (2m ) that satisfies 

f(i)=arTi1  f(i2), i=iT +i2 	 (3.23) 

and consider a binary sequence s = so , s1,... with 

Si  = trl [f(i)1, i>- 0 	 (3.24) 

Suppose i>_0  and i = i1T + i2  . For j >— 0, we have 

f (jT+i)= f ((-1 +ii)T +i2)=arT(j+T' )f (i2 ) 

=arTjfW 	
(3.25) 

In particular, taking j = —1 (so that jT = 2" —1), we see that f (2n  —1 + i) = f (i) . 

Thus s satisfies s2n 	= sl  . i.e., s has period 2" —1. 
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Now let i >_ 0 be fixed and consider the sequence co' with terms s;, sT+i, s2T+i,' ' ' 

From (3.25), we have 

S jT+1 - flm [arTff(j)1 

Thus, if f (i) =0,  the terms of ci are all zero, whereas if f (i) ~ 0, then w' is a shift of 

the m-sequence t, of period 2" —1 associated with primitive element arT by some k. 

The value of the shift k is determined by writing f (r) = arTk 

The sequences w' with 0 <_ i <T account for all the terms of s . So s is formed 

by interleaving T sequences of period 2' —1 which are either shifts of an m-sequence or 

the zero sequence. The shifts used in this interleaving are determined by the values f (i) 

and we call f the interleaving function for s. 

The terms of any sequence obtained by interleaving an m-sequence and the all-

zero sequence can be represented as in (3.24) for an appropriate choice of f satisfying 

(3.23). Many well-known families of sequences such as GMW sequences, Cascaded 

GMW sequences, No sequences etc., can be expressed in such an interleaved form. 

3.3.2 Partial Correlation of Interleaved Sequences 

For 0 <— i <2" —1, let 	denote the iT-tuple (s1 , sl+1, • • •, sI+IT_1) of consecutive 

terms from s. We can decompose sl into T l-tuples of the form 

St, j- ( Si+ j I Si+ j+T I ... I Si+ j+(l-1)T) I 	0 < j< T 

and from previous discussion, each s;, j is either an l-tuple of consecutive terms of t or 

consists of l zeros, depending on whether f (j) is nonzero or zero. 

Let 

Z(f)=({j: 0<—j<T andf(j)= 0}I 

and suppose that we have a bound on the weight of subsequences of length l of sequence 

t, say 
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I wt(tl)_ 
 <B, _05i<2"-1 

l 	2 
(3.26) 

where t;  = (ti, t;+1,  . - -, t1+t-1) . Then, the weight of s, can be shown to be bounded below 

by (T - Z (f )) 1- B l and above by (T - Z (f )) + B l . 

The following lemma is now an easy consequence of the above argument. 

Lemma 1 [41]: Let s, t, and the vectors si  and I,, be defined as above.. Suppose B is a 

bound on the weights of the t,, as in (3.26). Then 

	

iT 2 2T 
	 a <_i<2n-1 

	 (3.27) 

Theorem 3.5 [411: Suppose f,  and f2  are functions satisfying (3.23) (for the same value 

of r). For i = 1, 2 , let sequence s' be obtained by interleaving period 2 -1 m-sequence 

t according to interleaving function f,  as in (3.24). Suppose 

	

PEACmax (t)(Z)<-C 	 (3.28) 

and write 

Z(.f1,f2)= max I 	0<_j<T} 05k<2"-1 
Then 

1  PECCmax (s l ,s2 )(1T)<-C+ Z(f1 f2)  (1-C) 	 (3.29) ZT 	 T 

Proof: For 0 5 k <2 -1, let s denote the sequence s 1  + Ek  s 2  formed by adding term 

by term s1  and the left shift by k places of s 2 .  Then, we have 

sl  = trl [ f (i) + f2  (i + k)] 

Now using (3.23), it is easy to show that if i = i1T + i2 , then , 

.f2 (i +k) arTt,f2 ( 12 + k) 
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and so 

Si=tr1 [a
.rT4 (fl (i2) + f2 (i2 + k))] I 	i=i1T+t2 

Thus the sequence s has interleaved form with interleaving function f,, where 

f (i) = f (i)+ f2 (i+k) ., 

From (3.28) and the shift and add property of the m-sequence t, B = C / 2 is a 

bound on the weights of the length l subsequences of t, as in (3.26). From Lemma 1, we 

have that the weight of any subsequence sl of length IT of s is bounded as 

wt(s)-1 <B
+Z(f)(1-2B) 

IT 2 2T 

Using the relationship between correlation and weight and the fact that Z (f) <— Z (1112)' 

it now follows that for 0<— j <2"-1 

I 	 lT)<_2 B+(1-2B)
lT l 	 I 	2T 

=C+ Z(j1,f2)(1—C) 
T 

The result (3.29) follows. 

Theorem 3.5 can also be easily adapted to bound the out-of-phase partial autocorrelation 

of an interleaved sequence s. Let s have interleaving function f and define ZA (f) to 

be 

ZA (f)=1~max 11{j : f(j)+f(j+k)=0, 0<—j<T}I. 	 (3.30) 

Using an argument almost identical to that above, we obtain 

1 I(1—C) 	 (3.31) 
lT T 
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PECCmax (s1 s2)(1T)+u, 
PECCm  (s1,s2 )(  

l')<min 
PECCmaX  (!' s 2 )((1+1)T)—u 

A similar result holds for peak partial autocorrelations. 

The significance of bounds (3.29) and (3.31) ZA  (f)) is as follows: Suppose we 

can fmd an m-sequence t -whose length I subsequences have partial autocorrelation 

bounded in absolute value by C. Then if we can find a family of interleaving functions F 

such that max Z (fl , f2 ) and max ZA  (f) are sufficiently small, we can construct a 
f ,f, E✓T  

family of sequences whose peak partial correlation is, roughly speaking, as 

proportionately small as it is for t. 

To apply these bounds in practice, we need two ingredients. First, we require 

bounds on the peak partial autocorrelations for m-sequences. Secondly, we need families 

of. interleaving functions F as described. above. In fact, the values of the functions 

Z (f , f2 ) and ZA ( f) are already known for several - families of functions such as 

Kasami sequences, Trace Normal (TN) sequences, No sequences etc. They have been 

used to calculate the full-period correlation properties of the corresponding families of 

interleaved sequences. 
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Chapter 4 

GMW CONSTRUCTIONS 

Binary sequences of period N with 2-level autocorrelation have many important 

applications in communications and cryptology. In this chapter, we give constructions 

associated with intermediate subfields for binay 2-level autocorrelation sequences. They 

include GMW sequences and cascaded GMW sequences. First, we review statistical 

properties of GMW sequences along with an example and a lower bound on the partial 

autocorrelation of GMW sequences. Next, we review statistical properties of cascaded 

GMW sequences. Then, we conclude the chapter by providing a lower bound on partial 

autocorrelation of cascaded GMW sequences. 

4.1 GMW sequences 

Let m I n, and consider a sequence s = {s, } of the form 

r 
{Si } = tr1M [tr (al )] (4.1) 

where a is a primitive. element of GF(2n ) , and r is any integer relatively prime to 

2'" —1 and in the range 1 < r < 2m —1. These sequences are known as "GMW sequences" 

[8]. The interior trace function tr,n (a') may be viewed as an m-sequence, with period 

2n —1 having elements in GF(2m ) . 

n 
Let T= 2 -~ 1 

2m —1 
Consider, 

r 
f(i)=[trn(a')] 	i>_0 	 (4.2) 

then, 

n 	 r f(i)=[tr,(ai1T+i z)] for i=i1T+i2 
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Since, a'1T  is an element of GF(2m), we can write 

1(1) = aT f(i2) 

So, sequence s1  = tri [f (i)], has interleaved form as described in section 3.3.1 with 

interleaving function f (i) = [ trn (a`) j . 

Lemma 4.1 [8]: Let an m-sequence over GF(2m ), be defined by 

s1=t(a`) 

where a is a primitive element of GF(2") , then every segment of T consecutive 

symbols from {s: } contains exactly  2n -1  zeros. 
2

m 
 -1 

Proof: The field element a' has order 2" -1 and, hence, belongs to the ground field 

GF(2m ) . Therefore, by the linearity property (b) of the trace function, it follows that for 

any integer j, 

trm (a`) = a-iT  trm (aT ) 	 (4.3) 

Since a-jT  is not zero, it follows that when one trace in (4.3) is zero, so is the other; 

thus, the zero locations in {s; } are subject to a T periodicity. Consequently, every 

segment of T symbols from is' } contains the same number of zeros, that number being 

easily evaluated from the fact that 2" -1 zeroes occur in one period, i.e., 2" -1 

symbols, of s;  . 

4.1.1 Statistical Properties of GMW sequences 

a) Autocorrelation 

Theorem 4.1 [8]: Let {a1 } be a GMW sequence whose elements are given by 
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{a1 } = (-1)~1 {[ "'(a1)]r} 

where a is a primitive element of GF(2") , and r, 0 <r < 2' —1, is relatively prime to 

2" —1. Then the periodic autocorrelation function R(  r) of {a,} is given by 

2n —2 

R(  r)  
i=0 

2n —1, 

L-1, 

r=0 mod 2n -1 

z=0 mod 2n -1 

(4.4) 

Proof: It follows immediately from trace function linearity that 

2n -2 Raa (r)=  
i=00 	L 	J L 	J J 

Express the index i in (4.5) as 

1=11 +127' i1 0, 0<i2 <2m -1 

Using the linearity of the inner traces in (4.5) gives 

T-1 2m_2 

R 	
rTi2 	

1~ aa ~z) _ Z Z (-1)tr
i(a S( r,i ) 

i1=0 i2=0 

r 
where S(z,i1 )=[trn (au'+T )] +[trm (a'' )] 

Since r is relatively prime to 2' —1, a'T is a primitive element of GF(2m) , and a "", 

takes on the values of all non-zero elements of that field as i2 varies over its range. 

Hence, including the zero element of GF(2m) in the sum of (4.7) gives 

	

T-1 	
~ 

	

Raa (z ) = -T + I 	(11trm I3s(zil)} 

il=0QEGF(2m ) 1 
(4.9) 

By the linear property of trace function, when 8(x,11 ) is not zero, the inner sum vanishes 

(4.5) 

(4.7) 

(4.8) 
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because half the exponents are zero and half are one. Let No  (z) denote the number of 

values i, in the range 0 <- i, <T for which 8(,i1 )  is zero. Then (4.9) reduces to 

R.. (r)=—T +2m No  (r) 
	

(4.10) 

Since r is relatively prime to 2" --1 and therefore has an inverse modulo 2" -1, it 

follows that 

8(r,i1 )= 0 	trn(aii +- z)=tr, laid 	
(4.11) 

When (ar  -1) is zero, the right-hand equation in (4.11) is satisfied for all i,. If (aT  -I) 

is not zero, then Lemma 4.1 can be applied with (4.11) to determine No  (r) . Thus, 

.T 	z = O mod 2n  - l 
N0 ()= 2n-m _  1  z # 0 mod 2n  -1 

	 (4.12) 

2m  -1 

and (4.4) follows by substitution of (4.12) into (4.10). The results of the theorem is 

independent of the choice of r and hence that all GMW sequences have the ideal 

correlation properties of m-sequences. 

Theorem 4.2 (Power of a trace: Binary case) [51, 52]: For 1< r <2m  -1, we write 

r = 2'1  +... + 2'k , a binary number. Then 

(i)  

trm (xy 
__(x+xq++xq11)r 

 (here q = 2m ,1= n/ m) _ E XZ-40 
	 (4.13) 

tEZ, 

where t = ( tl ,t2 ,...,tk ), 0 < tJ  < l , or equivalently, tZ = {( tl ,t2 ,...,tk ) I tk  e Zi } and 

2r  ( t ) = 24+mtl+...+lk+mtk 	 (4.14) 

(ii) r,,(t)<2n -1, for,all tEZ'j. 
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(iii) z, (t) is a one-to-one mapping from 7Ll to 7G 2m-1 . In other words, we have 

zr (t)#zr (t' )E7j 

(iv) Dr (t) = r(mod 2" i) 

(v) w(trn (x)r ) =1k where w(•) represents hamming weight. 

Proof: 

(i) Expanding trm (x)r, then 
~ r 

tl"m (x)r = (x + xq +... E xg ) 

	

q 	9r-i` 
=[J(x

2 
+x

2~ j 
+...+x

2 	

J j=1 

Since q = 2", we have 

k 	ij 	ij+m 	' ( ) 
trm (x)r = ~ x2 +x

2 
+.. +x2 + I-1 m 

j=1 
(4.15) 

The exponent of x in the expansion of (4.15) is a sum of k elements where each is taken 

from a different row of the following matrix: 

1 	2m 	22m 	... 	2(1-1)m 

2 	21+m 	21+2m 	. .. 	21+(I -1)m 
A=  

2m-1+m 2m-1+2m ... 2m-1+(l-1)m 
mxl 

In other words, any exponent of x in the expansion of (4.15) can be represented as 

	

2i1+m11 	+ 	2i2+mt2 	+ ... + 	2it+mtk 

1, 

taken from row it 	from row i2 	• • • 	taken from row ik 

where t E 7L11 = {(t1,t2,...,tk) I tk E z1} . Thus assertion 1 is established. 
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(ii) Note that the numbers in matrix A are the base of binary numbers in Z 2n_1 . Since 

1 <r < 2m —1, then k <m.  Thus the binary number rr (t) has the Hamming weight 

k<m<n. So 

zr (t)<2"-1, forall tEZ . 

(iii) Since any integer in Z en has a unique binary representation, together with assertion 2, 

it follows that 

zr (t) rr (t'), for all t: t' E Z . 

(iv) Note that 2im =1 (mod 2m — 1) . From (4.14), we have 

zr (t)-2 1̀ +...+2'k -r(mod2m -1),forall teZ 

(v) This is immediate from assertion (iii) because there are lk elements in Z. 

b) Linear Span 

Theorem 4.3 [8] : Let {s; } be a GMW sequence whose elements are given by 

~[trn(  
{ sl } = trl 	 m ai )]r 

Where a is a primitive element of GF(2") and r, 0 <r < 2' —1, is relatively prime to 

2' —1. The, the linear span L of {s~ } is given by 

L = m (n / m)w(r) , 	 (4.16) 

where w(r) is the number of ones in the base-2 representation of r. 

Proof: Key [53] has derived the upper bound on linear span of nonlinear sequences by 

counting the number of nonzero coefficients in the expansion of the sequence in terms of 

powers of primitive element, a of GF(2n ) . This same technique is applied to determine 

the linear span of GMW sequences. 

Let x = a' and expanding the outer trace function, we have 



Si = t(x)+t(x)2 +...+t(x)2m-1 , t(x) = tr, (x)r 

where t(x) ~ t(x)2r (mod x2" —x) . Thus, t(x) is a power of a trace function. According 

to Theorem 4.2, the number of non-zero coefficients in t(x) is given by (n / 

w(t (x)) _ (n/ m)w(r) . For any 0 <_ j < m, w(t(x)2' ) _ (n / m)w(r) 

Thus we get w(s1 ) = m (n / m)w(r) and thus the theorem follows. 

c) Balance Property 

Let c denote a k-tuple over GF(2), and let N denote the number of occurrences of c in 

one period (2" —1 initial positions) of a sequence {s, } , i.e., Nc is the number of values of 

j in the range N~ , for which 

(Sj ,sj+1,...,Sj+k-1) =C 	 (4.17) 

Then {s, } is called k-tuple balanced if N. is 2n-k for all but one choice of c 

A uniform distribution on k-tuple occurrences is achieved in GMW sequences for 

a restricted range of k, as stated in the following theorem. 

Theorem 4.4 [8] : Let {s1 } be the GMW sequence defined by (4.1). Then, the number 

NN of positions within one period of {&} at which the k-tuple c occurs, is given by 

2n-k  n for c 0, 1 <_ k <_  
N = 	 m 	 (4.18) 

2n-k_1, 	for c ~ 0, 1:5 k < 
m 

4.1.2 An Example [8] 

A GMW sequence of period 63 is defined by 

r 
Si tr13 [tr 

(
3 1 an )J

3 

 
(4.19) 
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where z6  + z5  + zz  + z + 1 is the minimum polynomial of a over GF(2). One simple 

plan for mechanizing -a generator for {s; } is to construct a generator for the m-sequence 

tr3 (a") and use a ROM to complete the mapping to GF (2). The elements of GF (8) 

are 0 and a91, i = 0,1,. . . , 6, and the minimum polynomial of a over GF (8) is easily 

determined (see appendix) to be z2  + a54 z + a9 . A block diagram of the generator 

employing GF(8) arithmetic is shown in Figure 4.1. 

Figure 4.1 A GMW sequence generator in the Galois configuration with elements in GF(8). 

The actual mechanization takes advantage of the fact that GF(8) is a three-

dimensional vector space over GF(2) with basis 1,a9,a18 . That is, an element from 

GF(8) can be written as 

Y =Yo .1 + y1a9   +Yzais 	 (4.20) 

with vo,71,12  in GF(2). Table 4.1 lists this representation along with the ROM 

mapping, tij3 
(3). 

 

The multiplications required in the generator of Figure 4.1 are easily mechanized in this 

representation. 



a54  y = a54Yo +71 + a9Yz 

=(a' +1)+y +a9Yz 	 (4.21) 

=(Yo +Yi)1+v2a9  +yoa'8  

Similarly, 

ay —y2  .1+(Y + Y2 ) a
9 + yla's 	 (4.22) 

Table 4.1: Representation for GF(8) elements, and the ROM mapping for r=3 

Y To 71 Ys  

0 0 0 0 0 

1 1 0 0 1 

a9  0 1 0 1 

a18  0 0 1 1 

a27  1 1 0 0 

a36  0 1 1 1 

a45  1 1 1 0 

a54  1 0 1 0 

This results in the mechanization of Figure 4.2(a). One period of each of the sequences 

produced in this generator is shown in Figure 4.2(b). Notice the periodically recurring - 

zeros in the GF(8) sequences (T is 9 in this example), an example of the structure 

exploited in the proof of Theorem 4.1. 

Since r is 3, the base-2 expansion of r has weight 2, and Theorem 4.2 states that 

the linear span in this case is 12. When the final trace operation to GF(2) is carried out, 

the remaining cyclic shifts of the binary coefficients listed in Table 4.1 are added to give 
twelve distinct coefficients in all. 
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(a)  

To: 0111000110011101100000111 100100101O10011O100001000101101 1111101 

Ti: 000011110010010101001101000010001011011111101011100011001110110 

72: 001110110000011110010010101001101000010001011011111101011100011 

yo: 10011l011000001111001001010100110100001000101101111110101110001 

y;: 001001010100110100001000101101111110101110001100111011000001111 

72: 0000011110010010101001 101000010001011011 11110101110001100111011 

s;: 010011101011101001011100011001111110010010111001110100000001010 

(b)  

Figure 4.2 (a) A GF(2) mechanization of the GMW sequence generator in Example. (b) 

Sequences produced in this generator. 

The k-tuple statistics of the output sequence in this sequence are shown in Table 

4.2. As indicated by this data, the k-tuple statistics of a GMW sequence are not 

uniformly distributed for all k less than the number of memory elements used. 
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Table 4.2 K- tuple statistics for the GMW sequence of length 63 

k (k-tuple: Occurrences per period) 

1 (0:31),(1:32) 

2 (00 : 15),(01 : 16),(10: 16),(11 :16) 

3 (000:6),(100:9),(010:9),(001 : 9) 

(110: 7) , (101: 7) , (011: 7) , (111: 9) 

4 (0000 : 4) , (1000 : 2) , (0100: 5) , (0010 : 5) 

(0001 :2),(1100:4),(0110 :  1),(0011 :4) 

(1001 :7),(1010:4),(0101 :4),(1110:6) 

(0111 :6),  (1011 :3),(1101 :3),(1111 : 3) 

4.1.3 Partial A utocorrelation of GMW sequences 

Theorem 4.5 [41]: Let s = {si } be a GMW sequence whose elements are given by 

r 
{ si) = 1~

[trn(ai )] 

where a is a primitive element of GF(2n ) and r, 0 <r < 2m —1, is relatively prime to 

2m —1. Suppose 

1PEACmax (t)(1 ) S C 

where t is an m-sequence of period 2' —1. Then, 

nm_ 
lT I PEACm (s) (ZT)I <— C + 22n —11(1— C) (4.23) 

Proof: From previous discussion, a GMW sequence s of period 2n —1 has interleaving 

function f with 

f(i) [tr.n 
( 
a')]

r 
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where gcd (r, 2m  —1) = 1. Following in the lines of Theorem 3.5, consider the sequence 

s ' with 

sZ =tri (g(i)) 

where g (j) = f (j) + f (j + k) for 1<—k<2-1.  Now g(j)=0  if and only if 

[411  (all r = Ltm  ( aj+k  )J r  

Since gcd (r, 2"' —1) =1, the above equation is equivalent to writing 

trm(ai )=trn(aJ+k ) 

(4.24) 

 

Since trm [a-' (1 + a")] is an m-sequence over GF (2m ) , from Lemma 4.1 the number of 

n m 
zeros j of this last function with 0 <— j <T is  2 	—1 

2'n  —1 

(3.30) satisfies 
n m _ 

Z,q(f) = 2m-11  

Let the m-sequence t with t;  =trm (a/T') satisfies 

jPEAC17, ( t)(l)5C ax 

. Thus, ZA  (f) as defined in 

(4.25) 

Then, applying the autocorrelation version of Theorem 3.5, we deduce that the GMW 

sequence s satisfies 

1  JPEACmax (s)(1T)J<C + Z(f)(1—C) 
ZT 	 T 

n m 
C+ 2 —1(1—C) 

2 —1 
n m 

Since n >— 2m, the factor  2 	—1  
2 	

is approximately equal to 2-"' . So the peak partial 
n  —1 

autocorrelation of the GMW sequence is atmost roughly ClT for window length lT . 
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Taking r =1, we obtain the same bound on the peak partial autocorrelation for m-

sequences of period 2" —1. 

4.2 Cascaded GMW sequences 

Cascaded GMW sequences [9] share many of the most desirable properties of both the 

geometric sequences and the GMW sequences. They have the same periodic 

autocorrelation properties and balanced property as m-sequences of the same period, but 

in many cases have greater linear complexity than GMW sequences. 

Let nl ,n2 ,...,nm and r1 ,r2 ,...,riii_l be positive integers satisfying n1 I n,+l , r; <2ni 

and gcd (r , 2n' —1) =1 for i = 1,2,... m —1. Let a be a primitive element of GF (2"m) . 

Then, the sequence s = {si } of the form 

)rI 1rm1 .. 
. {Si}=Zrinl ti-nj •..tynm-1(atI (4.26) 

is called a cascaded GMW sequence from GF(2"m) to GF(2) . 

Let T= 2"m-1 
2'' —1 

Consider, 
rl 

f ( i) = lrn 2 ... n 1 (
a

T.-I  ... 	 i' 0 	
(4.27) 

then, 
r1 

f (i) = trn 2 ...t~.n m (au1T+12)'1 ... 	for 	i = i1T +i2 
1  m 1 

which implies 

f(i)=arT11 f(i2) where r=rl•r2•...•rm-1. 

So, the sequence s; = tic' [1(i)],  has interleaved form as described in section 3.3.1 with 

interleaving function f (i) as defined in (4.27). 
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4.2.1 Statistical Properties of Cascaded GMW sequences 

a) Autocorrelation 

Theorem 4.6 [8]: Let {a, } be a cascaded GMW sequence whose elements are given by 

{aj}=(—i)[ 
m rm-1 ~ 

where a is a primitive element of GF(2"m), and r1 ,r2 ,...,rm_I , r; <2' with 

gcd (r~, 2'~l —1) =1. Then'the periodic autocorrelation function R.. (r) of {a,} is given by 

2"m-2 
R(  v) = 	ai+zai 

i=0 

2m -19 

—1, 

z=0 mod 2m-1 

z=0 mod 2nm-1 

(4.28) 

b) Linear span 

Theorem 4.7 [51, 52]: Let {s1 } be a cascaded GMW sequence whose elements are given 

by 

rm-1 
{Sl}=tY11 trnZ ...t1-nm (ai) 	.. 

jri ]  

1  m 1 

Where a is a primitive element of GF(2"m)and and r1 ,r2 ,...,rm_I , r <2" with 

gcd (r , 2ni —1) =1. Then, the linear span L of fs; } is given by 

L =n1 (n2 /n1)w(ri) (n3 /n2)w('.2) ...(nm /nm-1)w(rm-1), 	 (4.29) 

where w (r) is the number of ones in the base -2 representation of r;, i =1,2,. . . m —1. 

Proof : This result can be established by repeatedly applying Theorem 4.2 to 

g; (h~ +1 (x)) where g. (x) is a cascaded GMW sequence from GF(2nl) to GF(2) . 



4.2.2 Partial Autocorrelation of Cascaded GMW sequences 

Theorem 4.8: Let {s; } be a cascaded GMW sequence whose elements are given by 

r1 
{sj 	 . Y1 1 tr 	... •n m 	 l ) rm1  

jj 
nl 	, 1 

Where a is a primitive element of GF(2"m) and r1 ,r2 ,...,rm_1 , _ <2"i with 

gcd(r;,2n" —1)=1. Suppose 

j
PEACmax (t)(l)<C 

where t is an m-sequence of period 2"' —1. Then, 

1~ 
IT

'PEACmax (s)(lT)l <—C+ 2'7 	—1 
 (1—C) _1  (4.30) 

Proof From previous discussion, a cascaded GMW sequence s of period 2m —1 has 

interleaving function f with 

rl 
j (i) = t7'n2 ... fi.n„+ (a7 )r'"-i .. . 

nl 	nm-1 

Consider the sequence s' with 

si =try' (g(r)) 
	

(4.31) 

where g(j)= f(j)+f(j+k) for 1<—k<2'1m —1. 

The sequence s' also has interleaved form with interleaving function g. So s' is formed 

by interleaving sequences of period 2"' —1 which are either shifts of an m-sequence or the 
zero sequence. 

From out-of-phase auto-correlation property of cascaded GMW sequences, 
2m_2 

I (-.l) =-1 	W(s;)=2r,,,,-1 
1=0 
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Since, all the ones correspond to m-sequences, there are 2"m-nl m-sequences and thus 

2nm-nl ( 2"m-1 -1) zeros in s; correspond to m-sequences. From the discussion of section 

3.3.1, it is evident that all the remaining zeros occur when g (j) = 0. Since, g (j) is 

periodic with period 2",  -1, the number of zeros j of this last function with 0 <- j <T is 

2"m-nl -1 zeros. 
2"1 -1 

Thus, Z4  (f) as defined in (3.30) satisfies 

ZA  (f) = 2  2n1  n1 -1 	 (4.32) 
-1 

Let the m-sequence t with t1  = trl l (,rTi ) where r = rl  • r2  • ... • rm_1  satisfies 

PEACmax (t)(l)<-C 

Then, applying the autocorrelation version of Theorem 3.5, we deduce that the cascaded 

GMW sequence s satisfies 

ZT I PEACm  (s) (1T )I <_ C +, ZA f)  (1- C) 
T 

<C+2nm-n 

l

l  -1`1-C) 
2nm -1 

Since n,,, >- 2' 
 the factor 22  n  nl  -1  is approximately equal to 2'. So the peak partial 

2m -1 
autocorrelation of the GMW sequence is at most roughly CiT for window length lT . 

Our bound also applies to peak partial autocorrelation of m-sequences of period 2"m-1. 

Thus, our bound is independent of the values of r;  <2',  i = 1,2,...m-l. 
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Chapter 5 

BENT AND SEMIBENT SEQUENCES 

CDMA communication systems require binary sequence sets with large size and with low 

correlation values to employ more users with minimum level of interference. In this 

chapter, we introduce constructions for Bent and Semi-bent signal sets. First, we review 

bent and modified bent functions, statistical properties of bent function sequence set and 

mechanization of sequence. Next, we describe the problem of determining when a linear 

combination of the Gold functions is'semi-bent. This leads to several characterizations of 

semi-bent functions. We finally conclude this chapter by providing statistical properties 

of semi-bent sequences and an improved upper bound over fading channels for semi-bent 

sequence set. 

5.1 Bent Function Sequences 

5.1.1 Bent Function 

Definition [54]: A boolean function F(A) mapping V" into V, is bent if its Fourier 

transform coefficients F(n) are all +1 or -1 where 

F(A) ° 2-"1 z 	(-l)F(X)  (-1)XT A  for all A E V" 	 (5.1) 
XEvn  

Where F(X) + X T  A is called linear translate of F(X) . 

a) Properties 

1) Let F be a bent function and G, defined by (-1)G:1)  = F(n) is also a bent function. 

Then, G is bent and hence F and G are duals. 

2) If F(x) is a bent function on V, then n is even, n=2k; the degree of F(x) is almost k, 

except for,the case k=1. 

3) Let f be a function in .F,. Then f is bent if and only if d (f , A) = Nm  where 

n 
Nmax  = 2"-' - 22-1  is the largest value of non-linearity. 
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C2JL1 Oc 

b) Construction of Bent Functions 

Theorem 5.1 (Rothaus class I) [54, 36]: LetX,Y E Vk , let CE V2k  and let G(X) be an 

arbitrary function mapping Vk  to V1 . Then F(Z) defined by, 

F(Z) = X TY + G(X) + CT Z, 	Z ° 
L i' ] 
	 (5.2) 

is a bent function on 

Theorem 5.2 (Rothaus Class II). [54] : Let A(X), B(X), C(X) be bent functions on V2k 

such that A(X) + B(X) + C(X) is also bent. Let y, z e V1 . Then the function 

Q(x, y, z) = A(x)B(x) + B(x)C(x) + C(x)A(x)+[A(x) + B(x)]y + 	(5.3) 
[A(x) + C(x)]z + yz 

is a bent function on V2k+2 

Theorem 5.3 (Maiorana McFarland Class) [55] : Let k be an arbitrary positive integer and 

n = 2k. Then the function f mapping V, to V, given by 

.f (x) = 
	 (5.4) 

where x,, x2  E Vk  are defined by x = [xi , x2 ]; ;r is an arbitrary permutation of Vk  and g 

is an arbitrary function mapping Vk  to V, , is bent. 

5.1.2 Modified Bent functions 

Modified Bent functions [55] are defined on the Galois field GF(2") , and their 

transform properties are relative to trace transform (refer to Appendix B for trace 

transform and its properties). But, the above class bent functions are defined on the space 

of k-tuples Vk  and their transform properties are relative to Fourier transform. The 

second difference is easily resolved, as GF(2") is a linear vector space of dimension n. 

By selecting a trace-orthogonal of self-complementary basis {/31,/32 ,...,,(3„ the trace 

inner product 
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tr(Ax) = E AX,(/f; ) 

becomes 2,X1 and the trace transform on GF(2") can be identified with the Fourier 
i 

transform on V" . 

The extension of bent functions to GF(2") is accomplished by introducing a 

linear mapping L from GF (2") onto Vk and, for a function F on 7k' defining a function f 

on GF(2") by f(x) = F(L(x)) . 

Theorem 5.4 [9.6] : Let L be an onto linear mapping from GF(2") to Vk and let F be a real 

valued function on Vk . Define f on GF(2") by f (x) = F(L(x)) . Then 

. (A) = 	
Q 

2("-k~i2 F(Z) 
for A v- range(L* ) 
for A E range(L' ), L' = A 

(5.5) 

Where L' is the adjoint of L is, f is the trace transform and F is the Fourier transform 

Proof.• The adjoint is defined as follows: for every linear function, 1(x) mapping 

GF(2") into GF(2) , there is a unique element A of GF(2") such that 1(x) = tr(x2) . For 

every Z in J', L(x)T Z defines a unique linear function of GF(2") . Thus for every Z in 

Vk there is a unique A inGF(2") such that tr(x2) ='L(x)T Z. The correspondence 

Z — A defines the mapping L'. Since L is onto, Z #Y= f (Z) ~ L (Y) . 

Now, 

f (2) 
= 2-n/2 I f (x) (-1)(2) 

xEGF(2" ) 

= 2-n/2 E F(L(x)) (-1)b(2) 
xeGF(2" ) 

j(2) = 2-n/2 E 2-k12 E F(Z) ( -1)L(x)T Z (-1)tr(,~.x) 

	

xEGF(2") 	ZEVk 

= 2-(n+k)/'2 E F(Z) 
	

(-1)tr(x(2+L'(Z)) 

	

ZeVk 	xEGF(2") 
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The innermost sum is zero from trace property (d) unless A = L' (Z) . Thus the entire sum 

is zero unless A is in the range space of L. When A = L' (Z) the inner sum is 2" and 

hence, 

f (2)  = 2-(n+k)/2 2'.F(Z) when A = L' (Z) 
	

(5.6) 

10 
Olsen, Scholtz. and Welch (OS W) [1] defined a collection of sequences S ={ sZ  : Z E J'} 

by 

SZ = 	
(5.7) 

where F(Z) be a bent function on J'; L be a onto linear mapping from GF(2") to Vk  

such that range(L) = {5x0  :8 E GF (2 Z  )} ; n =0 mod 4, k = n 12 ; a be a primitive 

element on GF(2") ; o be a nonzero element in GF(2 2 ) and xo  is a root of the equation 

Z 2  + z + w = 0 that generates GF(2") on GF(2" /2  ) 
n12-1 

where I w2j  =1 w E GF(2n'2 ) 
>=o 

GF(2") = {8x0 +y  :8,y  € GF(2"l2 )} 	 (5.8) 

5.1.3 Statistical properties of Bent function sequences 

a) Correlation Properties 

Theorem 5.5 [10]: The magnitude of cross correlation values and out-of-phase 

autocorrelation values of members of S are bounded by 2 2  + 1. 

Proof: The cross correlation between a = {sz } and b = {sY} is given by 

2"-2 
Rb (z) _ I szs +z 	 (5.9) 

=o 

Consider functions on GF(2") 

rZ (x)  _ (_i )F(L(x))+L(x)T  Z+tr(6x) and rp  (x) _ (-1)F(L(x))+L(X)T  Y+tr(6x) 
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Then, from trace transform property (c) 

Rab (r) _ —rz (0 )rY (0 ) + 	rz (aix)rx (x) 
XEGF(2" ) 

—rz (0 )rr (0 ) + I Pz (a2)P, (A) 
2EGF(2") 

whence, 

IReb (z)I 1 + I I1z (a-z2)I I rY (2)I 	 (5.10) 
2EGF(2' ) 

Define 

5 = {8xo +a : 5 e GF(2"'2 )} 	 (5.11) 

and define multiplicative shifts of 6 as 

yS={i%y:2E3}={A:P (Y-'2)# 0 } 	 (5.12) 

then 

2 (n-k)/2 
(i) from theorem 5.4 Irz (A), = 	for A. E 5, 	 (5.13) 

0 	for A08 

(ii) from theorem 4 in [1] 	max I  	 (5.14) 
0<z<2 1 

By Parsvel's Theroem, 2" _ 	IrZ (x)I2 =  Ir'Z (2)12 
xeGF(2°) 	 .ie5 

Hence, we can bound the trace transform as 

Br max IYZ (2)12 >
j- 

since,  16I = 2"r2, 

B >2"h2 	 (5.15) 

Using (5.11) and (5.12), the cross-correlation bound (5.10) can be simplified to 

Rab(z)I~1+ Brz hry I6naz~ 	 (5.16) 

From (5.14) and (5.15), (5.16) becomes 

IRab (z) I <_ 1+2 	 (5.17) 
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and hence the theorem. 

For r = 0, the cross correlation is 

2" —2 
Rab (0) = , S SY 

1=0 

2"-2 (-1)L(cr')T .(Z+Y) - z  
=o 

Using adjoint of L this can be written as 

R(0) — 	(-1) 
i=0 

=-1+ i (-1)tr(xY))) 

xEGF(2") 

For Z ~ Y, L* (Z+Y) # 0. Therefore, from trace property (d) 

Y (-1)ftx(L'tZ+Y))) =0 

xEGF(2") 

Hence, 

(5.18) 

Equations (5.17) and (5.18) indicate that the sequence set S correspond to a set of ±1 

sequences for which all non-trivial normalized correlations arebounded in magnitude by 

(2" 12 + 1) / (2" — 1) . This bound rapidly approaches 2-"/Z as n increases and hence the set 

of sequences designed has nearly optimal correlation properties and asymptotically 

achieves the Welch bound. 

b) Linear span 

Theorem 13 [1]: The ELS l of every family of bent-function sequences of length 2' —1 

obtained from the set of all linear translates of a bent function over Vk of degree d 

satisfies the upper bound 

d_1('\ k  
2 =1 i 	d 	;_, i 

(5.19) 
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Setting d=k if n>4 and d=2 if n=4 in (5.19) results in an upper bound to the maximum 

achievable ELS of a family of bent-function sequences of length 2 —1. 

Theorem 14 [j: The minimum achievable ELS 1 of every family of bent-function 

sequences of length 2" —1 obtained from the set of all linear translates of a bent function 

Vk  of degree d satisfies the lower bound 

d 	2 ;=2  r 

Z>2 d).2 
d  + n, 

k 
=2 

2) 
 +n, 	n>_8,d=2 

Z>_ 	.2d  +n, 

=8, 	n=4,d=2 

n>8,  2<d<-2 	(5.20) 

(5.21) 

(5.22) 

5.1.4 Mechanization of Bent Sequences 

To read out the function rZ  (x) , x E GF(2), in the order specified by at , t = 0,1,2,.. 

at  must be represented in terms of the trace-orthogonal basis /3. If the minimum 

polynomial of the primitive element a of GF(2") is z" + a,z' + 1, over GF(2) , then 
7=L 

the coefficients A(t) of at  with respect to the basis aT  =(1,a,a2 ,...a"-')can be 

generated by a feedback shift register as shown in fig(5). 
Hence, 

at  =AT  (t)a 	 (5.23) 

Let the matrix Q over GF(2) denote the transformation of the basis /3  into basis a, i.e., 

a = QQ 	 (5.24) 

Then at  = AT  (t)Q/3 = XT  A(t) 	 (5.25) 

where 

X(t) = QT  A(t) 	 (5.26) 
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r,(a`) 

I0 

Sequem 

is the transformation which expresses at  in the /3 basis. The remaining processing 

required to generate rZ  (a`) is also shown in Fig. 5.1. The advantage of bent sequences is 

that they can be readily initialized into any assigned code sequence and can be rapidly 

hopped from code sequence to code sequence. From observation of Fig. 5.1, the code 

sequence selection is simply made by specifying Z 

Fig.5.1. Generation of a bent sequence [55] 
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5.2 Semi-bent Sequences 

Definition 5.2 [12]: Let n be odd. The function f : GF (2") => GF(2) is semi-bent if 

Hadamard transform I 	E {0,2("+1)/21  for all 2 e GF(2n ) . 

The semi-bent functions are widely studied in cryptography and have been 
investigated under various names, including 3-valued almost optimal Boolean functions, 
plateaued functions and preferred functions. 

5.2.1 Linear Combination of Gold Functions 

Assume that n is odd. Consider linear combination of the Gold functions of the form 

(n-1)/2 

f (x) _ 	c1tr (x2`+1 ) 
i=1 

(5.27) 

where c, a {0,1} for 1 <— i < (n — 1)/2, is semi-bent. Let Q2  (n) denote. the set of all 

functions described by (5.27). This section shows how to determine whether the function 

f (x) EQ2  (n) is semi-bent using elementary algebraic techniques. 

Lemma 5.1 [ 12, 56] : Let n be odd and let c, a {0,1} for 1—< i < (n —1) / 2. Suppose the 

function f is defined as 

(n-1)/2 
x 	cltri x2 +1 

i=1 

for all x E GF (2") . Then! is semi-bent if and only if the cyclic matrix 

CO  C1  C2  C3  ... 	
Cn-1 

Cn-1  CO  C1  C2  ... 	Cn-2  

L = c„-2 cn-1 CO Cl ... 	cn-3 (5.28) 

Cl C2 C3 C4 ••. 	CO - 

has rank n -1 over GF (2) , where we define co  =0 and cn-, = c1  for i =1,2,..., (n —1) / 2. 

Proof: Using the Welch squaring method: 
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= Z (_l)tr(1)+f (x) 
 (—i)tr(2y)+f (y) 

x,y 
_ (_l)tr(ax)+f(x)tr(2(x+w))+f(x+w) 	(where y = x + w) 

x,w 
I(_1yr(%w)+f(w) E(_1)O(x,w) 

w 	 x 

where q$(x,w) = f (w)+ f (x)+ f (x+w). We simplify 0 as follows: 

(n-1)/2 
cl  tr(X 2'+1 )+(W 2'+1 )+fr (x+w)2'+1 

)j i=1 	 J — OA2 
c;tr(x21w+w21  x )  f=1 

Since tr(a2 )=tr(a), we get 

(n-1)/2 	_ 

	

2n r 	2i 
c,tr X(w +w 

i=1 
=tr(xL(w)) 

where 
(n-1)/2  

+w 
2i ) 

L(w)= E c w 	lI 
i=1 

(5.29) 

n11 
Here, L is a linear function, and under a normal basis a, a2 , a4 ,..., a2  } of GF (2n) , 

the matrix representation of L is given by the matix (5.28). 

Also, we have that 

E( _i)tr(XL(w)) _ 2n  if L(w) =0 

x 	 x 	 0 otherwise 

Therefore, 

f (a )2 = 2' E (_l)tr(2w)+f(w) 

weker(L) 
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Let dim(ker(L)) = k. Hence, tr (2w) + f (w) is a linear function on ker(L) from the 

definition of q$.  Therefore, 

E (-
1)tr(Lw)+f (w) E { 2k ' 0 } 

wEker(L)  

depending on whether the exponent is zero function or a non-zero linear function, 
respectively. Hence, 

1(2) E  {02(n+k)/2} 

for all A if and only if dim(ker(L)) = k. In particular, f is semi-bent if and only if 

dim (ker (L)) =1, i.e., when 

rank(L)=n-1. 	 (5.30) 

Theorem 5.1 [12]: Let n be odd and let c1  E{0,1} for 1<i<(n-1)/2. Suppose the 

function f is defined as 

(n-1)/2 
f (x) = E Citrin x2 +1 

i=1 	l  

for all x E GF (2n ) . Then f is semi-bent if and only if gcd (c (x), xn  + 1) = x + 1, where 

(n-1)/2 

C  `x)  _ 
	 (5.31) 

Proof: Note that the rows of matrix (5.28) span a cyclic code C generated by the vector 

(c0 ,c1 ,...,cn_1 ) . The vectors of C can be represented by polynomials in the quotient ring 

GF(2)[x] / (x" +1), where 

 C = span{c(x),xc(x),. ..,x"-Ic(x)} 

and 
(n-1)/2 

C(x)_ 	Ci(x1+xn—f) 
i=1 	 ea 
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Some of the well known useful facts about cyclic codes are [58]: 

1. There exists a unique monic polynomial g(x) , called the generator polynomial, 

such that _g(x) Iv(x) for all v(x)EC.. 

2. rank (L) = dim (C) = n — deg (g (x)) . 

3. g (x) = gCd (C (x), x" +i). 

From (5.30) and fact 2 above, it is evident that deg (g(x))=1. Thus, to ensure that f is 

semi-bent, it is enough to show that gcd (c(x),xn  +i)= x+1. 

Lemma 5.2 [12]: Let n be odd and let g(x) be the generator polynomial of the cyclic 

(n-1)/2 
code C generated by c(x)= I c; ( Xi + Xn-i ), where c;  E{0,1} for 1<_i<(n-1)/2. 

Then g(x)=(x+1)h(x), where deg(h(x)) is even. 

5.2.2 Some characterizations of Semi-bent Quadratic Functions 

5.2.2.1 Semi-bent Functions for All Choices of Coefficients 

By analyzing the GCD condition in theorem 5.1, several nice characterizations of 

families of semi-bent quadratic functions on GF(2") are obtained in [12]. In this 

section, the question of determining odd integers n for which all non-zero functions 

f (x) E 0, (n) are semi-bent is addressed. 

Lemma 5.3 [12]: Let n be odd. If all non-zero functions f (x) E Q (n) are semi-bent, 

then n is prime. 

Henceforth, the function f (x) E Q2  (n) where n is an odd prime are only considered. 

Lemma 5.4 [12]: Let p be an odd prime. The factorization of xP +1 over Z 2  [x] into 

irreducible factors is of the form 

xP +1=(x+l)l1(x)hz  (x)...h, (x) 
	

(5.32) 



where each h, (x) is a polynomial of degree ord p  (2) and t = (p —1) / ord p  (2) . 

Suppose that p is an odd prime and ord p  (2) = p-1. Then x° + 1 has two irreducible 

factors by Lemma 5.4. 

Theorem 5.2 [12]:  Suppose p is an odd prime such that ord p  ( 2) = p-1. Then every non-

zero functions in Q2  (p) is semi-bent. 

Proof: By Lemma 5.4 and from Theorem 5.1, the theorem follows. 

The first ten such primes are 3, 5, 11, 13, 19, 29, 37, 53, 59 and 61. A conjecture 

of Artin states that there 'exists an infinite number of such primes. 

Consider the next case, when p = 2s + 1 is a prime, s is odd and ord p  (2) = s. In 

this situation, xp +1 will have three irreducible factors of odd degree that is evident from 
Lemma 5.4. 

Theorem 5.3 [12].: Suppose p = 2s + 1 is a prime such that s is odd and ord p  ( 2) = s . 

Then every non-zero functions in Q2 (p) is semi-bent. 

Proof: By Lemma 5.4, Lemma 5.2 and from Theorem 5.1, the theorem follows. 

The first ten such primes are as follows: 
7, 23 ,47, 71, 79, 103, 167, 191, 199, 239. 

In next corollary, Sophie Germain primes, which are the primes p of the form p = 2q + 1, 

where q is prime, are considered. 

Corollary 5.1 [12]: Suppose that p = 2q + 1 where p and q prime, then every non-zero 

function in Q2  (p) is semi-bent. 

The first ten Sophie-Germain primes are as follows 

5, 7, 11, 23, 47, 59, 83, 107, 167, 179. 

The Sophie Germain primes are well studied in number theory and it is conjectured that 
there are infinite number of such primes. 
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Theorem 5.4 [12]: The only integers n such that all non-zero functions in Q (n)are 

semi-bent are the primes mentioned in Theorems 5.2 and 5.3. 

5.2.2.2 Semi-bent Quadratic Functions from Arithmetic Progressions 

In this, semi-bent functions formed by a sum of gold functions corresponding to an 

arithmetic progression are characterized. These contain semi-bent functions which are a 

sum of two Gold functions as a special case. 

Theorem 5.5 [12]: Let n be odd. Consider the function f (x) E 0, (n) defined as 

n 2a+1 	a+d+1 	n 2a+(r-1)d+1 n +rd 
f (x ) =tr1 (x 	+trln (x2 	+...+trI x 	)+fri (X2'+1) 

	
(5.33) 

Then! is semi-bent if gcd (2a + rd, n) = l = gcd ((r + 1) d, n) . Further, if gcd (d,n) =1, 

then gcd (2a + rd, n) ~ 1 or gcd ((r + 1) d, n) ~ 1 implies f is not semi-bent. 

Proof: The polynomial c(x) corresponding to 1(x) is 

C(x)= xa +••.+Xa+rd +xn-a-rd +_._+xn-a 

= (I+xn-(2a+rd) )(xa +...+xa+rd ) 

J 	(r+l)d J 
= (l + xn-(2a+rd)) xa 11± 

l+xd 

The 	gcd 	of 	the 	numerator and 	x' + 1 is 	equal 	to 	x +1 if 

gcd (2a + rd, n) =1= gcd ((r + 1)d, n) . In this case, f(x) is bent by Theorem 5.1. Now 

suppose that gcd(l+xd ,xn +1)=x+1 (i.e., gcd(d,n)=i). Then, 

gcd(c(x),xn +1)=x+1 

if and only if 

gcd(2a+rd,n)=1=gcd((r+1)d,n). 
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Corollary 5.2 [12]: Let n be odd. Consider the function f (x) E Q2 (n)  defined as 

f(x)=tr1 (x2'+1 )+tr1 (x2~+1). Then f (x) is semi-bent if and only if 

gcd (i+ j,n)=l=gcd(i— j,n). 

Remark 5.1: when n = p is prime in Theorem 5.5, all functions corresponding to 

arithmetic progressions are semi-bent. 

Lemma 5.5 [56]: Let n be odd and n = 2s + 1. Then, 2n -1 and 2'+1 are relatively 
prime for 1<iSs. 

Semi-bent Signal Set: Let n be odd prime as in theorems 5.2 and 5.3. For 0 <_ j <2 —1, 

let s _ {$1)} be a binary sequence whose elements are given by 

(n-1)/2 
s~i) =trin (a +̀')+ 	cktr(adk'), 	i=0,1,...,2-2 	 (5.34) 

k=1 

where ck E {0,1} for 1 <— k <_ (n —1) / 2 , a 	is primitive element in GF(2'~) and 

dk = 2k +1. 	Then si is called a semi-bent sequence. Let 	121 = (tr (a' )} and 

(n-1)/2 
S2,1 _ 	cktr(adk`) . The set given by 

k=1 

s={, 10`J 2̀n} 

is said to be semi-bent signal set. 

(5.35) 

Note that s is a sum of s21 at shift j and s2„ for 0 5 j < 2" —1. Thus S has 

2" + 1 shift-distinct sequences. 
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5.2.3 Statistical Properties of Semi-bent sequences 

In this section, we derive correlation and linear span properties of semi-bent sequences. 

Semi-bent sequences share same correlation properties as Gold sequences besides having 

large linear span than that of Gold sequences. 

a) Cross-Correlation 

Theorem 5.6: Let n be odd prime as in theorem 5.2 or 5.3 and dk =2k +1 with 2" —1 

and 2k +1 relatively prime. Then, the correlation of the semi-bent signal set (5.35) is 
given by 

2n —1 	z=0,a=b 
R$b (r) _ —1,-1±2(n+1)/2 alb or r#O,a=b 

	 (5.36) 

(i) 	(1) 
where a=(-1)S'  and b=(-1)S' 

Proof: 

Case 1: When r =0, and a=b, it is evident that 

Rab (z)=2n -1 

Case2: When a # b or r ~ 0, a=b , then 

2 '-2  
) R(  z) _ 	(-1)si+ +S 

1=0 

2"-2 tr(af+j+z)+(n-z/2 —1 cktr rat+z)dk ~ ( ai+l)+{n-/2ck ( ai)dk 
I \ 1 l k=1 k=1 ~\ 	` 	kG=1 	/ 
f=0 

— 2n-2 	rai f al+j+r ))+(n 2Ck r aidk (1+aTdk )~ l-1 
J
tr 
l l 	k=1 

i=0 

Let x = a` , ), = aj+1+T and /k =I+ azdk . Then, 



	

2n-2 	(n-1)/2 

b (Z) — I (-1)tr(.ix)+ E cktr(Qkxdk  ) 

i=0 

(n-1)/2 

	

 
=—i+ 	(-1)tr(Ax)+.  E cktr(Qkxdk ) 

k=1 
xEGF(2n) 

By using Welch's squaring method as in Lemma 5.1, we get 

Rsb  (r) +1=  j  0,  n+1)/2 

Hence, the theorem. 

b) Linear Span 

The linear complexity of the semi-bent sequences is computed as follows: 

If f (x) given by (5.27) has 1, nonzero c, 's for 1 <— i < ( n —1) /2,  or equivalently 1c  

nonzero trace terms from GF(2) to GF(2), then the linear complexity L. of the semi 

bent sequences in (5.34) is given by 

L=n•1c +n 	 (5.37) 

where the maximum linear complexity is obtained by 

Lmax  =(n2 +n)/. 2 

at 1, =(n-1)/2. 

5.2.4 Maximum Periodic correlation of Semi Bent sequences over fading 
channels 
In the above section, we derived correlation and linear span of semi-bent sequences over 
non-fading channels. Now, we derive an improvement in the lower bound in Theorem 3.2 
for a semi-bent signal set. 
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Theorem 5.7: In a semi-bent signal set defined by (5.35) which has size M = 2' +1 and 

period of each sequence as N = 2n —1 for n odd prime as in theorems 5.2 and 5.3, the 

maximum correlation of sequences over fading channel satisfies 

2 2"-2 	2n-2 
I 22 f12-  

=0 	i=0 
Rmax,semi-bent 	 22n —1 

Proof In (3.13), we can write 

(n-1)/2   

2n-2 	 ~ Ck
(1,~(,(i+t)dk )+e(,(j+t)dk 

  

(-1)s;+sj = 
 2 -2 	n i+r+t 

aET,i~j 	 t=0 	~` (_l)l (a 	)+t>Y (a j+r+t 
) +1 

rL=O 

+ 
	n(ai+tl+fin(aj+t) 

1=0 

From, the shift-and-add property, and the balance property of m-sequence, 

2n-2  
I(-

1 
)

n(ai+r+t )+t .n( a j+r+t ) =
I
n 

(-
1
)

frn( a f+t )+ n(aj+t ) = —1 

r=0 	 t=0 

for i ~ j. Thus, 	(-1)S'+S1 = —1, and (3.13) becomes 
aET,i~ j 

2 	 2 

B= I f 2 1(-1)s
;+si + 	f fj 	(_1)i 

i 	aET 	 i,j,f~j 	aET 

=Ef2.(pN)2 	f 2 
l  I  i 

(5.38) 

(5.39) 

From (3.12) and (5.39), the lower bound in Theorem 3.2 is slightly changed for a semi-

bent signal set, and the result follows. 



For an independently and identically distributed f for a sufficiently large n, we 

have asymptotic bound, or 

(7p) 	22n(2n-1)(,u2+Q2)_(2n-1)2 p2 
Rmax,semi-bent — 	 22n _ t 	 (5.40) 

j
22 (p2 +a2

) 

from (3.15). It is noted that the asymptotic lower bound in a semi-bent signal set is 

determined by the length of the sequence and the first and second order statistics of the 

distribution of fading. 

If we assume a slow fading environment, the contribution of Rm to B will be 

approximately a half. It is because when each fading amplitude is constant over a period, 

then 1.~f.a,b (Z 2 in (3.12) is approximately two-valued with equal distribution similar to 

the one of a semi-bent signal set without fading [49], and one of them is negligible 

compared to the other. Hence, (3.12) can be changed into 

B & (-1) Rm +ML I f 2 2 	2~ 
►=o 

(5.41) 

From (5.41) and (5.39), approximated maximum correlation of sequences in a Semi-bent 

signal set is 

2"-2 2°-2 2 

j22,,'2_I

i:i]  

(slow) 	 1=0 	i=0 	 (5.42) Rmax,semi-bent 	 22n —1 

which is a 	times of lower bound in a Semi-bent signal set. From this approximation, 

we note that as fading gets slower, the actual maximum correlation approaches to 
,(slow) 

1'nax,semi-bent 
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Chapter 6 

SIMULATION RESULTS AND DISCUSSIONS 

6.1 Correlation Bound on GMW sequences 

We compute the peak partial autocorrelations of the set of period N = 212  —1 GMW 

sequences having m=6, n=12, a a root of the primitive polynomial z12  + z6  +z4  +z+1,  

and re {1, 5,11,13,23} 

i.e., 	{si  } = tr16  tr62  (a' )
r 
 

212 _I  In this sequence, the zeros repeat with period of T = 
6 	

=65.  Fig. 6.1 plots 
2 —1 

peak partial autocorrelations of the GMW sequences against 1, the subsequence length 

and the lower bound from Theorem 3.3. We may observe the symmetry of the graph 

about the line 1=2047 because the full period autocorrelation can be expressed as the 

sum of two partial autocorrelations of length l and N —1. It is apparent that the peak 

partial autocorrelations are larger when r> 1 than they are when r =1. 

We also compute the upper bounds obtained using Theorem 4.5 together with the 

peak partial autocorrelations of underlying 26_i  m-sequences. Fig. 6.2 plots these 

bounds and the computed peak correlations for the period 212_i  GMW sequences with 

r =1 and r = 5.. Clearly, this upper bound is not particularly good. Note that the 

interleaving bound in Theorem 4.5 for GMW sequence with r =5 is usually lower than 

that for the GMW sequence with r =1(a 212  —1 period m-sequence). This is because the 

period 63 m-sequence corresponding to primitive element a5T  has generally lower peak 

partial autocorrelations than that corresponding to primitive aT  . 



800 
	---- 	 _- 	- 	- 	-- 	 -~ 

interleaving bound r=5 

700 	 interleaving bound r=1 

500 , 

8 
m 400 

S. 
300 

200 	CAM sequence r=5 

100 

0. GWV sequence r=1 
0 500 1000 1500 2000 2500 3000 3500 4000 

subsequence length 

Fig. 6.2. Bounds on the peak partial autocorrelations of period N = 212 —1 GMW sequences 
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6.2 Correlation Bound on Cascaded GMW sequences 

We perform the similar analysis as above' for cascaded GMW sequences. We have 

computed the peak partial autocorrelations of the set of period N = 212  —1 cascaded 

GMW sequences having n1 = 3, n2  = 6, n3  = 12 , a a root of the primitive polynomial 

z12 +z6 +z4 +z+1, and rl  =5, r2{1,11,13,31}. 

{si} = t1n1 to t r (,,)r2.)r'  J] 

In this sequence, the zeros repeat with period of T = 2-1  = 585. 
23  —1 

In Fig. 6.3, we compare the peak partial autocorrelations of cascaded GMW 
sequences with the lower bound obtained from Theorem 3.3 combined with the 
knowledge of the peak partial autocorrelations of underlying m-sequence of period 

23  —1. Note that the lower bound is not tighter in these cases. 

Fig. 6.4 depicts the comparison of peak partial autocorrelations of cascaded 

GMW sequences and underlying m-sequences of period 23  —1 with upper bound in 
Theorem 4.8. Again, it is clear that our upper bound leaves an improvement. in these 
cases. we have plotted the bounds (and the computed peak correlation) for the period 

212 _i cascaded GMW sequences with rl  = 5, r2  =11, r1  = 5, r2  =13, rl  =1, r2  =1. 

Fig. 6.5 plots the comparison of the bounds from Theorem 4.5 and Theorem 4.8 
for peak partial autocorrelations of GMW sequences. It is apparent that the upper bound 
from Theorem 4.5 is tighter than that from Theorem 4.8 for GMW sequences. 
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Fig. 6.3. Peak partial autocorrelations of period N = 212 —1 cascaded GMW sequences 
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Fig. 6.4. Bounds on the peak partial autocorrelations of period N = 212  —1 cascaded GMW 
sequences. 
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6.3 Correlation Bound on semi-bent signal set over fading channel 

To analyze the statistical behavior of correlation of signals over Rayleigh fading, 

channels with independent and uncorrelated fading amplitudes are simulated respectively. 

Independent channels have i.i.d. fading for each chip in the signal. On the other hand, the 

rapidity of fading amplitudes is characterized by fDTC  where fDTC  represents maximum 

Doppler shift and I is the sampling rate. 

Assuming every user suffers from the same fading amplitude during the same 

period of time, and the receiver is able to know the accurate value of fading amplitudes 

with the perfect channel estimation, simulation is run ten times for a signal set in a 

Rayleigh channel environment but with different random amplitudes. In each trial, kk  , 

the worst cross correlation of the signal set, is computed for semi-bent signal set with 

n={5,7}.  k is defined as 

kk =ma}Rmax  

where R. is as defined in (3.10), k=0,1,...M-1 and i= k+1,...,M-1. 

We define kl("°rn'1  = kc  / N. Table 6.1 shows the average 	over all the trials for 

semi-signal set in Rayleigh fading with independent and uncorrelated fading amplitudes. 

It is apparent that k("°̀ " )  decreases when the sequence period increases or fading EM 
becomes slower. 

From Table 6.2, it is apparent that the worst case cross correlation of the semi-

bent signal set satisfy the derived lower bounds in all trials. As we can observe from 

Table 6.2, the lower bounds approach the asymptotic bounds in independent fading for 

semi-bent signal set. From Table 6.3, it is evident that the lower bounds become tighter 

and mss) bent is more accurate when fading gets slower. 
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Table 6.1. Average k 	) of Semi-bent signal sets 

Fading Type k,t 	, n=5 k 	,n=7 

Independent 0.7272 0.3757 

fDTc 	0.001 0.2818 0.2549 

fDTC  = 0.0001 0.2291 0.1293 

Table 6.2. kk  and asymptotic bound of Semi-bent signal sets 

n k.  Lower bound Asymptotic bound 

5 22.545 7.4571 7.6601 

7 47.715 14. 7414 14.8456 

Table 6.3. kk  and 	°`") ;_mot  of Semi-bent signal sets in uncorrelated fading 

n  f fTT  kk  Lower bound > 
semi-bent 

5  

0.001 8.7358 4.4042 6.2253 

0.0001 7.1021 3.8022 5.3771 

7  

0.001 36.184 12.4680 17.6324 

0.0001 16.425 5.3803 7.6089 
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Chapter 7 

CONCLUSION 

Pseudo-random sequences with good correlation properties, large linear complexity and 

balance statistics are widely used in modern communications and cryptology. This 
dissertation work has focused on study of correlation bounds on some nonlinear sequence 

sets since the correlation properties and their bounds are important in the selection and 

design of good sequence sets in CDMA systems and other applications. 

This dissertation work can be summarized as follows: 

✓ A lower bound on the peak partial correlation of binary signals over fading 

channels, using argument of Welch's inner product theorem, is established. 

✓ An upper bound on the peak partial autocorrelation of cascaded GMW sequences, 

exploiting the underlying interleaved structure, is established. In order to obtain 
our bound, we require bounds on the peak partial autocorrelation of m-sequences. 
In [41], such 'bounds were developed using character sum approach while 

computational bounds can be conveniently developed for periods up to about 

220  —1. As simulation results depicts, our bound is rather weak and leaves room 

for an improvement. It is also apparent that the bound in theorem 4.3 is tighter 

than that in theorem 4.8 for GMW sequences. However, our results do appear to 

be the first known guaranteed upper bound on peak partial autocorrelation of 
cascaded GMW sequences 

✓ An improvement on the lower bound on the maximum correlation over fading 
channels is established for semi-bent sequences. Asymptotic bound and slow 

fading approximation of the maximum correlation are obtained for independent 

and correlative channels respectively. As simulation results show, the lower 

bound is tighter in slow fading channel than in independent channel for a 

frequency-nonselective Rayleigh fading channel. 
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7.1 Future Work 

Here, we come up with some proposals to continue the investigation performed in this 

dissertation study. 

> Since our correlation bound on cascaded GMW sequences is rather weak, an 

investigation into a refined one can be undertaken. A more fruitful approach may 

be to find new sequences designed specifically with peak partial correlations in 

mind. 

> The periodic and partial period correlation bounds of signals over fading channels 

examined in this dissertation are constrained to have uniform signal energy. 

These can be generalized to allow for arbitrary signal energy for each member of 

the signal set, with a view to consider the application of QAM signals to CDMA. 
Further, these bounds can be extended to investigate an improvement for complex 

roots of unity sequences. 

Other correlations which have not been dealt with in this work include: 

• odd correlations — these are as important in practice as the partial correlations. 

• Hamming correlations — used as an important measure in evaluating goodness of 
Frequency Hopping sequence design. 

• additive correlations — used as an important measure in the analysis of correlation 
attacks on cryptographic systems. 

In these areas, many problems remain unsolved, or had been only partially solved. 
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Appendix A 
REAL-TIME IMPLEMENTATION 

A.1 Bent Sequence Generator 

Consider a primitive polynomial of degree 8, z$  +z4  +z3  +z2  +1 with root a in 

GF(2$), as a characteristic polynomial of a Galois linear feedback shift register (LFSR). 

This register's state sequence has period 255, and contents of the shift register represent 

the field element X in the basis la
i : i = 0,1,..., 7] . 

The set [a"` : i = 0,1,2,- 3] is composed of elements having order dividing 15, 

al' being primitive in GF(16) , and hence these elements form a basis for the subfield 

GF(16) . 

One possible choice for the element x0 , which must be outside of GF(16) is a, 

With the above stated choices, the 4 X 8 basis reduction matrix M has (ij) th entry 

256 (
Ce17(i-1)+(j-1)+1 m = trz   

0 0 0 0 1 0 0 0 
1 0 1 1 1 0 0 0 

M=LQT = 
0 1 0 0 1 1 0 1 
0 1 0 1 0 1 1 0]  

A suitable choice for the vector 6 = QT  C, which must be outside the row space of M is 

aT =(0 0 0 0 0 0 0 1) 

Employing a bent function of the form given in Fig. 5.1, operating on LQT  A(t) , 

with the arbitrary function G(.) being a two input AND gate, the resulting bent sequence 

generator is simulated using XILINX ISE simulator and implemented on SPARTAN-3 

FPGA. The ISE simulator output for the bent function sequence is as shown in Fig. 6.6. 



The maximum magnitudes of the cross-/out of phase auto-correlation values of the above 

designed sequences are from the set {1,15,17} . The equivalent linear span calculated 

using Berlekamp-Massey algorithm of these sequences is 24 when the arbitrary function 
is an AND gate. For Ex-OR gate this value is 32. 

Fig. 6.6 Example Simulation output of a sequence in ISE simulator 

A.2 Semi-bent Sequence Generator 

In this section, we consider the implementation of semi-bent sequence generator of 

period 127. Taking n=7, the semi-bent signal set in (5.34) can be reduced to 

3  =tY1 (a-')+ 	a 	I=0,1,...2"-2, 0<7<2"-1 
k=0 

The above trace representation of semi-bent sequences can be realized using LFSR for 

each of the trace term. Each trace term represents an m-sequence of period 127. 

E 



Consider primitive polynomials of degree 7, z7  + z3  + 1, - z7  + z3  + z2  + z + 1, , 

z7 +z4 +z3 +z2 +1 and z7 +z5 +z4 +z3 +z2 +z+1 with roots a, a3 , a5  , a9  in 

GF(27 ) respectively, as characteristic polynomials of LFSR's. 

The shift registers for generating the four m-sequences and the corresponding ' 

semi-bent sequences are shown in Fig. 6.7. In this case, there are 27  +1=129 different 

sequences, corresponding to the 129 relative phases of the four m-sequences. Of these, 

127 sequences are non-maximal-length sequences. 

Z7  + Z3  + 1, 

z7  +Z3  +Z2  +Z+1 	
SEMI-BENT 
SEQUENCE 

Z7 +Z4 +Z3 +Z2 +I 

z7 +Z5 +Z4 +Z3 +Z2 +Z+1 

Fig. 6.7. Generation of Semi-bent sequences of period 127. 

This resulting, semi-bent sequence generator is is simulated using XILINX ISE 

simulator and implemented on SPARTAN-3 FPGA. The ISE simulator output is shown 

in Fig. 6.8. The out-of-phase autocorrelation and crosscorrelation functions of the above 



semi-bent signal set is a three valued i.e., {-1,15,-17}. The linear span of the resulting 

sequences is 56. 

Fig. 6.8 Example Simulation output of a sequence in ISE simulator 

:/ 



APPENDIX B 

B.! Trace Function 

The trace function [8] trj (a), with n divisible by m, maps elements a in GF(2")into 

elements of a subfield GF(2m) , according to the relation 
(n/m)-1 
'ci trm (a) _ 	a2" 	 (1) 
=o 

The trace function has the following properties: 

a) tr, (a) trm (a2 ) 	`d a E GF(2"), for all i 

b) trn (aa + b/6) = atr„ (a) + btr„ (,l3) for all a, b E GF(2') and a, /1 E GF(2n) 

c) The equation trn (a) = b for b any fixed element in GF(2m) has exactly 

solutions a in GF(2). 

d) Identifying the additive and multiplicative identities in GF(2) with their 

counterparts in the real numbers, the following computational result in the real 

numbers is valid: Y (-1)~rl ~Sa) =0 for all choices of S, 8 ~ 0, in GF(2"). 
aEGF(2") 

e) trIn (a) = trm (tr,► (a)) `d a E GF(2n) . 

The trace function can be used to explicitly define an m-sequence. An m-

sequence {b; } of elements from GF(2) is defined as the nonzero solution, unique to 

within shift, of a linear recursion 

n 

br =  mjb1-j 	 (2) 
j=1 

with coefficients mj E GF(2) , where the corresponding polynomial 

ma(Z) = ZM 
j=1 
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is called the characteristic polynomial of the sequence, is the minimum polynomial over 

GF(2) of a primitive element a in GF(2). 

The sequence {b1} with 

b; ° trin (a' ) 
	

(3) 

is the nonzero solution to (2) since, using the linearity of the trace function (property 2), 

	

n 	 n 

bi —I 	—1ijn(an)-(- mtYin(a' ) 

	

j=1 	 j=1 

=tiln (ma(a)a'-n )=0 

The real valued sequence { an } , with 

(4) 

where { b; } is the m-sequence over GF(2) , will be referred as the real m--sequence. 

B.2 Trace transform 

The trace transform r(2) of r(x) is defined as 

2~/2 	n r(x) (_ 
1)tr(xl) 	

(5) 
xeGF(2 ) 

for all A E GF(2n) 

This is a real valued function which preserves inner product between two sequence 

functions on GF(2) 

Properties: 

a) Inversion: 

r(x) = n/z 	i(A) (-1)rr( 
2 .teGF(2) 

b) Multiplicative Shifting Theorem: 

Fory ~ 0, s(x) = r(yx) for all x 	=r(y'),), for all A- 
89 



c) Parsvel's Relation: 

I r(x)s(x)  
xEGF(2') 	 • AEGF(2") 

d) Additive Shifting Theorems: 

s(x) = r(x+ y), for all x 	= rot) (-1)12)  for all A 

(2) _ ^(A+ y), for all A. 	s(x) = r(x) (-1)`"(  ') for all x 
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