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Abstract 

With the growing trend of technology in network and computers science arena, many 

of the high end applications like multimedia related applications are becoming 

algorithmically complex and data intensive. Video Surveillance is one such growing 

business application due to its concern in various areas like commercial security, and 

military applications. With increasing deployment in large scale distributed 

environment, the challenge is to process huge multimedia stream data with several 

computation intensive algorithms. Hardware researchers are trying out to find a cost 

effective solution for the application. A dedicated hardware solution for the 

application proves cost expensive and decreases scalability. Alternatively, we have 

HPC solutions such as cluster, grid and multicore processor for the problem. Research 

community either had addressed solution for Video Surveillance or for a generalized 

HPC solution for high end applications but none had addressed solution concerning 

with video surveillance specific requirements. 

In this dissertation work, we present a method to parallelize and implement video 

surveillance algorithm on the STI Cell Broadband Engine. The methodology provides 

a conceptual architecture for parallelizing applications with requirements similar to 

video surveillance. We then briefly present our previous work on computer cluster, 

discuss various issues and challenges related to porting the code, followed by results 

demonstrating the speed up and comparison of the results of both approaches. 

The implementation of programs is done using C, simulation in Cell SDK 2.0, images 

used were stored on PC, of Windows bitmap format. 
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CHAPTER 1 
INTRODUCTION 

1.1 Introduction 
High end applications are classified as those which require high computing power, 

high bandwidth, and lots of storage. Multimedia stream processing applications are 

good examples of high end applications which are highly computational and data 

intensive and have been posing great challenges to the computing arena. Video 

rendering, gaming, video surveillance, shape analysis and many graphical applications 

are becoming more and more algorithmically complex and are demanding more 

computational power. In order to meet the intensive computation and the real-time 

processing, many research efforts have been done in the past, at various institutions. 

For instance, Intel has developed various libraries for multimedia related applications. 

They provide detailed case study of Intel platforms for video surveillance applications 

[1]. [2] provides description of dedicated computational platform support developed 

by Sun Microsystems, which includes high-resolution digital video and integrated 

surveillance data management infrastructure system for video surveillance. [3] 

provides description of hardware (SpursEngine) platform for video processing 

applications, developed by Toshiba Corporation, which uses STI Cell Broadband 

Engine technology, with inbuilt dedicated hardware for decoding and encoding of 

MPEG-2 and H.264 video, XDR memory interface as well as PCI Express interface. 

On the other hand researchers at various academic institutions have been striving hard 

to provide cost effective and efficient real time solution for the problem. An 

implementation of distributed architecture for video processing and communication 

techniques is provided in [4]. The possible HPC solutions for the problem could be 

1) cluster 2) deployment of grid 3) multicore processor platforms for the applications. 

One of the important video processing applications is automatic video surveillance 

which is very rapidly growing sector in the commercial market due to its wide range 

of applications, such as a homeland security, a security guard for communities and 

important buildings, traffic surveillance in cities and detection of military targets, etc 

[5, 6]. Cluster and Grid solutions suffer from high communicational delays and 

moreover increase the cost of deployment. Emerging on-chip multiprocessor 



architecture provides the capability to the programmer to optimize the execution of 

instructions and data handling for specific applications. A recent breakthrough with 

introduction of the STI Cell Processor has provided a new alternative for the 

researchers to investigate the platform. Hardware giants such as IBM [7], Mercury [8] 

are bringing up effective solutions to Video Processing applications using this 

processor. [7] provides a review of implementations of various media and real time 

applications on the Cell processor, [8] provides implementation of H.264 video 

compression technique on the Cell processor. 

1.2 Motivation 
Video surveillance is one of very rapidly growing sector in the commercial market 

due to its wide range of applications. The aim of automatic video surveillance is to 

automatically detect the interesting objects in the monitored area, track their motion 

and automatically take appropriate action like alerting a human supervisor. With the 

recent advancements in video and network technology, there is a proliferation of 

inexpensive network based cameras and sensors for widespread deployment at any 

location, as well as with the development of new video-processing and computer-

vision algorithms allowing more complex scenes to be considered. All this progress 

has made it possible and necessary to consider a new perspective in this field and an 

opportunity to exploit them. A good review of intelligent and distributed surveillance 

systems is provided in [9]. 

As there is deployment of progressively larger systems, often consisting of hundreds 

or even thousands of cameras distributed over a wide area, there is enormous amount 

of media stream data that need to be communicated over a network to a central station 

and processed on high powered dedicated processors. Since computation on the huge 

data of video streams is large which need to be done in online fashion, one of the 

major challenges is to achieve real time computation on the incoming video frames 

[10, 11]. Alongside with these advances surveillance application is also becoming 

algorithmically complex and data intensive. Therefore there is a serious requirement 

of a high performance solution to cater the needs of the problem. We provide a 

parallelization strategy to implement the application on computer cluster and STI Cell 
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Broadband Engine in our work. Also, we compare performance of the application on 

both platforms. 

1.3 Contributions 
In our implementation on cluster we face the major problems of communicational 

delays and busy waiting. We had tried to optimize the waiting time by distributing the 

worldoads in heterogeneous sizes and buffering them, but the delays form the major 

challenge where nodes had to communicate results on LAN, in which we had faced 

problems of network congestion, bandwidth. To provide efficacious solution to the 

problem, we investigate the performance of application on STI Cell Broadband 

Engine. Inherently, we faced challenges of limited buffer and synchronization on this 

platform. We had solved these by selecting a desired programming paradigm that well 

suits the application specific requirement. 

1.4 Problem Statement 
In this dissertation work we propose and implement a model to improve a high end 

application such as video surveillance system using parallel processing techniques and 

architecture such as Cell broadband engine. The model has an objective to achieve 

significant performance speedup over the non distributed version, thus enabling a real 

time implementation. 

1.5 Organization of the Report 
The organization of the dissertation is as follows: 

Chapter 2 discusses the hardware architecture of the STI Cell Broadband Engine, 

describing about various modules of the platform. 

Chapter 3 gives the background of Video Surveillance model, a typical algorithm for 

implementation discussing various computational issues and challenges in its 

implementation. 
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Chapter 4 describes review of related work on cluster and our previous work in 

implementing the application on the same. We then discuss various issues like 

extracting parallelism in the algorithms, communicational delays, initialization and 

other overheads, synchronization etc. 

Chapter 5 describes work done in implementations of Video processing applications 

on Cell and other platforms, discussing extraction of parallelism, issues and 

challenges in their approaches. We then explain our proposed model of Video 

Surveillance Algorithm on the STI Cell Broadband Engine with detailed description 

of various issues in regard to porting the code and hurdles faced in parallelizing 

application in regard to implementation on the platform. 

Chapter 6 discusses the performance of the application on STI Cell Broadband 

Engine, statistics describing speed up over non distributed version and on the cluster 

implementation of the Video Surveillance Application, speed up by varying number 

of cores used for the application, snapshots of various screens and graphs depicting 

the performance. 

Chapter 7 concludes the dissertation work and gives suggestions for future work. 

4 



CHAPTER 2 
STI CELL ARCHITECTURE 

2.1 Background and Motivation 
Cell Broadband Engine (CBE) is an outgrowth of a strategic alliance between Sony 

Computer Entertainment Inc., Toshiba Corporation and IBM Corporation formed in 

2001. The collaboration, known as STI, opened their Austin-based design centre in 

March, 2001 . In spring, 2004 the first ever operational cell-processor was released. In 

2005 Mercury announced Cell Blade servers. In 2006 IBM and Sony Corp. offered 

Cell Blade server and PlayStation 3 gaming console respectively. Also Cell Processor 

has been incorporated in IBM's supercomputer named Blue Gene. 

The CBE processor is the first implementation of a new family of multiprocessors 

conforming to the Cell Broadband Engine Architecture which extends 64 bit Power 

PC Architecture. Although the CBE processor is initially intended for application in 

media-rich consumer-electronics devices such as game consoles and high-definition 

televisions, the architecture has been designed to enable fundamental advances in 

processor. performance. These advances are expected to support a broad range of 

applications in both commercial and scientific fields. 

The most distinguishing feature of CBE processor is that, although all processor 

elements share memory, their function is specialized into two types: the Power 

Processor Element (PPE) and the Synergistic Processor Element (SPE). The CBE 

processor has one PPE and eight SPE's. 



2.2 Hardware Architecture 

The hardware environment of Cell Broadband Engine is described in Figure 2.1 

which broadly consists of five parts as described as follows: 

SPE 

EIB (up to 

PPE 	 I 16Blcycle 	I I 	I 16BIcycle (2x) 

BBC 

PPV3 

L4YJycle, 	
Dual 	FlexIO 
XDR 

Figure 2.1: The Hardware architecture of Cell Broadband Engine which is based on 

heterogeneous multiprocessor architecture [12]. 

(i) 	PowerPC Processor Element (PPE) : 
The PPE contains a 64-bit PowerPC Processor Unit (PPU) with associated caches that 

conform to PowerPC Architecture reduced instruction set computer (RISC) core with 

a traditional virtual memory subsystem. It runs an operating system, manages system 

resources, and is intended primarily for control processing, including the allocation 

and management of SPE threads. It can run legacy PowerPC Architecture software 

and performs well executing system-control code. It also includes a vector multimedia 

extension unit, called Single Instruction, Multiple Data (SIMD), so that it can do 

multiple operations simultaneously with a single instruction. 
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The PPE consists of two main units Power Processor Unit (PPU) and PowerPC 

Processor Storage Subsystem (PPSS). The PPU performs instruction execution, and it 

has level 1 (L1) instruction cache, data cache of 32KB each, and six execution units. 

The PPSS handles memory requests from PPU and external requests to the PPE from 

SPEs or 1/0 devices. It has a unified level 2 (L2) instruction and data cache of 512KB. 

The PPU supports two simultaneous threads of execution and can be viewed as a 2-

way multiprocessor with shared dataflow. This appears to software as two 

independent processing units. The state for each thread is duplicated, including all 

architected and special-purpose registers except those that deal with system-level 

resources, such as logical partitions, memory, and thread-control. Most non 

architected resources,_ such as caches and queues, are shared by both threads, except in 

cases where the resource is small or offers a critical performance improvement to 

multithreaded applications. 

The PPSS handles memory requests from the PPE and external requests to the PPE 

from other processors or 1/0 devices. It includes a unified 512-KB level 2 (L2) 

instruction and data cache, various queues, and a bus interface unit that handles bus 

arbitration and pacing on the EIB. Memory is seen as a linear array of bytes indexed 

from 0 to 264 - 1. Each byte is identified by its index, called an address, and each byte 

contains a value. One storage access occurs at a time, and all accesses. appear to occur 

in program order. The L2 cache and the address-translation caches use replacement-

management tables that allow software to control use of the caches. This software 

control over cache resources is especially useful for real-time programming. 

The PPEs are general-purpose processing units, and can access system management 

resources. These resources can be for example the memory-protection tables. 

Hardware resources are mapped explicitly to the real address space as seen by the 

PPEs. PPE can address any of these resources directly by using an appropriate 

effective address value. 

The primary function of the PPEs is the management and allocation of tasks for the 

SPEs in a system. In figure 2.2, we can see the placement of the PPE in the actual Cell 

chip. When data enters the PPE, this element then distributes it among SPEs, 
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schedules them to be processed on one or more of the SPEs, controls and 

synchronizes them. 

Figure 2.2: PPE and SPE placing on the Cell Processor [12]. 

(ii) 	Synergistic Processor Elements (SPEs) : 

Each of the eight Synergistic Processor Elements (SPEs) is a 128-bit RISC processor 

specialized for data-rich, compute-intensive SIMD applications. It consists of two 

main units, the Synergistic Processor Unit (SPU) and the Memory Flow Controller 

(MFC). In figure 2.2, we can see the placement of the SPE in the actual Cell chip. 

The SPU deals with instruction control and execution. It includes a single register file 

with 128 registers (each one 128 bits wide), a unified (instructions and data) 256-KB 

local store (LS), an instruction-control unit, a load and store unit, two fixed-point 

units, a floating-point unit, and a channel-and-DMA interface. The SPU implements a 

new SIMD instruction set, the SPU Instruction Set Architecture, which is specific to 

the Broadband Processor Architecture. 

Each SPU is an independent processor with its own program counter and is optimized 

to run SPE threads spawned by the PPE. The SPU fetches instructions from its own 

LS, and it loads and stores data from and to its own LS. With respect to accesses by 

its SPU, the LS is unprotected and un-translated storage. 
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The MFC contains a DMA controller that supports DMA transfers. Programs running 

on the SPU, the PPE, or another SPU, use the MFC's DMA transfers to move 

instructions and data between the SPU's LS and main storage. (Main storage is the 

effective-address space that includes main memory, other SPEs' LS, and memory-

mapped registers such as memory-mapped I/O [MMIO] registers.) The MFC 

interfaces the SPU to the EIB, implements bus bandwidth-reservation features, and 

synchronizes operations between the SPU and all other processors in the system. 

To support DMA transfers, the MFC maintains and processes queues of DMA 

commands. After a DMA command has been queued to the MFC, the SPU can 

continue to execute instructions while the MFC processes the DMA command 

autonomously and asynchronously. The MFC also can autonomously execute a 

sequence of DMA transfers, such as scatter-gather lists, in response to a DMA-list 

command. This autonomous execution of MFC DMA commands and SPU 

instructions allows DMA transfers to be conveniently scheduled to hide memory 

latency. 

Each DMA transfer can be up to 16 KB in size. However, only the MFC's associated 

SPU can issue DMA-list commands. These can represent up to 2,048 DMA transfers, 

each one up to 16 KB in size. DMA transfers are coherent with respect to main 

storage. Virtual-memory address translation information is provided to each MFC by 

the operating system running on the PPE. Attributes of system storage (address 

translation and protection) are governed by the page and segment tables of the 

PowerPC Architecture. Although privileged software on the PPE can map LS 

addresses and certain MFC resources to the main-storage address space, enabling the 

PPE or other SPUs in the system to access these resources, this aliased memory is not 

coherent in the system. 

The SPEs provide a deterministic operating environment. They do not have caches, so 

cache misses are not a factor in their performance. Pipeline-scheduling rules are 

simple, so it is easy to statically determine the performance of code. Although the LS 

is shared between DMA read and write operations, load and store operations, and 

instruction prefetch, DMA operations are accumulated and can only access the LS for 

at most one of every eight cycles. Instruction pre fetch delivers at least 17 instructions 

E 



sequentially from the branch target. Thus, the impact of DMA operations on loads and 

stores and program-execution times is, by design, limited. 

Memory-mapped mailboxes or atomic MFC synchronization commands can be used 

for synchronization and mutual exclusion. A detailed explanation of architectural 

details regarding SPE is given in [13]. 

(lii) Memory Flow Control 
Cell processor contains a dual channel next-generation Rambus XIO macro which 

interfaces to Rambus XDR memory. The memory interface controller (MIC) is 

separate from the XIO macro and is designed by IBM. The XIO-XDR link runs at 

3.2 Gbit/s per pin. Two 32 bit channels can provide a theoretical maximum of 

25.6 GB/s. 

The system interface used in Cell, also a Rambus design, is known as F1exIO. The 

Flex1O interface is organized into 12 lanes, each lane being a unidirectional 8-bit wide 

point-to-point path. Five 8-bit wide point-to-point paths are inbound lanes to Cell, 

while the remaining seven are outbound. This provides a theoretical peak bandwidth 

of 62.4 GB/s (36.4 GB/s outbound, 26 GB/s inbound) at 2.6 Gl-Iz. The FlexlO 

interface can be clocked independently, typ. at 3.2 GHz. 4 inbound + 4 outbound 

lanes are supporting memory coherency. Figure 6 explains the memory flow control 

system in the CBE. Memory Flow Control System consists of the following: 

•DMA Unit 

•LS <-> LS, LS<-> Sys Memory, LS<-> 1/0 Transfers 

•8 PPE-side Command Queue entries 

•16 SPU-side Command Queue entries 

•MMU similar to PowerPC MMU 

•8 SLBs, 256 TLBs 

•4K, 64K, 1 M, 16M page sizes 

•Software/HW page table walk 

•PT/SLB misses interrupt PPE 

•Atomic Cache Facility 

•4 cache lines for atomic updates 
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•2 cache lines for cast out/MMU reload 

•Up to 16 outstanding DMA requests in BIU 

•Resource / Bandwidth Management Tables 

•Token Based Bus Access Management and TLB Locking. 

Figure 2.3: Memory Flow Control System [13]. 

(iv) Element Interconnect Bus (EIB): 

The EIB is a communication bus internal to the Cell processor which connects the 

various on-chip system elements: the PPE processor, the memory controller (MIC), 

the eight SPE coprocessors, and two off-chip UO interfaces, for a total of 12 

participants. The EIB also includes an arbitration unit which functions as a set of 

traffic lights. 

The EIB is presently implemented as a circular ring comprised of four 16B-wide 

unidirectional channels which counter-rotate in pairs. When traffic patterns permit, 

each channel can convey up to three transactions concurrently. As the EIB runs at half 

the system clock rate the effective channel rate is 16 bytes every two system clocks. 

At maximum concurrency, with three active transactions on each of the four rings, the 

peak instantaneous EIB bandwidth is 96B per clock (12 concurrent transactions * 16 

bytes wide / 2 system clocks per transfer). While this figure is often quoted in IBM 
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literature it is unrealistic to simply scale this number by processor clock speed. The 

arbitration unit imposes additional constraints. 

Each participant on the EIB has one 16B read port and one 16B write port. The limit 

for a single participant is to read and write at a rate of 16B per EIB clock (for 

simplicity often regarded 8B per system clock). Note that each SPU processor 

contains a dedicated DMA management queue capable of scheduling long sequences 

of transactions to various endpoints without interfering with the SPU's ongoing 

computations; these DMA queues can be managed locally or remotely as well, 

providing additional flexibility in the control model. 

Data flows on an EIB channel stepwise around the ring. Since there are twelve 

participants, the total number of steps around the channel back to the point of origin is 

twelve. Six steps is the longest distance between any pair of participants. An EIB 

channel is not permitted to convey data requiring more than six steps; such data must 

take the shorter route around the circle in the other direction. The number of steps 

involved in sending the packet has very little impact on transfer latency: the clock 

speed driving the steps is very fast relative to other considerations. However, longer 

communication distances are detrimental to the overall performance of the EIB as 

they reduce available concurrency. 

Despite IBM's original desire to implement the EIB as a more powerful cross-bar, the 

circular configuration they adopted to spare resources rarely represents a limiting 

factor on the performance of the Cell chip as a whole. In the worst case, the 

programmer must take extra care to schedule communication patterns where the EIB 

is able to function at high concurrency levels. 

Element Interconnect Bus or EIB uses data ring for internal communication. The 

features of EIB are: 

• Four 16 byte data rings, supporting multiple transfers 

• 96B/cycle peak bandwidth 

• Over 100 outstanding requests 

• Each EIB Bus data port supports 25.6GBytes/sec* in each direction 
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• The EIB Command Bus streams commands fast enough to support 102.4 

GB/sec for coherent commands, and 204.8 GB/sec for non-coherent 

commands. 

• The EIB data rings can sustain 204.8GB/sec for certain workloads, with 

transient rates as high as 307.2GB/sec between bus units. 

• Physically overlaps all processor elements 

• Central arbiter supports up to three concurrent transfers per data ring 

• Two stage, dual round robin arbiter 

• Each element port simultaneously supports 16B in and 16B out data path 

• Ring topology is transparent to element data interface 

(v) Memory Interface Controller (MIC) 

The MIC provides the interface between the EIB and main storage. It supports two 

Rambus Extreme Data Rate (XDR) I/O (XIO) memory channels and memory 

accesses on each channel of 1-8, 16, 32, 64, or 128 bytes. 

(vi) Cell Broadband Engine Interface (BIC) 

The BEI manages data transfers between the EIB and I/O devices. It provides address 

translation, command processing, an internal. interrupt controller, and bus interfacing. 

It supports two Rambus F1exIO external I/O channels. One channel supports only non 

coherent I/O devices. The other channel can be configured to support either non 

coherent transfers or coherent transfers that extend the logical. EIB to another 

compatible external device, such as another Cell Broadband Engine. 

A good review explaining the potential of the STI Cell Broadband Engine, and its 

programming models helping the applications to accelerate faster could be viewed in 

[].4, 15]. 

3.3 Software Development Kit: 

An SDK is available for the Cell Broadband Engine. The SDK contains the essential 

tools required for developing programs for the Cell Broadband Engine. The SDK 

consists of numerous components including the following [16]: 

• The IBM Full System Simulator for the Cell Broadband Engine, systemsim. 
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• system root image containing Linux execution environment for use within 

systemsim. 

• GNU tools including C and C++ compilers, linkers, assemblers and binary 

utilities for both PPU and SPU. 

• IBM XLC (C and C++) compiler for both PPU and SPU. 

• newlib for the SPU. newlib is a C standard library designed for use on 

embedded systems. 

• gdb debuggers for both PPU and SPU with support for remote gdbserver 

debugging. The PPU debugger also provides combined, PPU and SPU, 

debugging. 

• PPC64 Linux with CBE enhancements. 

• SPE Runtime management library supporting SPE thread services - libspe. A 

next generation prototype SPE Runtime management, libspe2, is also 

provided. 

• Static timing analysis timing tool, spu_timing, that instruments assembly 

source (either compiler or programmer generated) with expected instruction 

timing details. 

• System wide profiler for Linux call oprofile. 

•An Eclipse based Integrated Development Environment (IDE) to improve 

programmer productivity and integration of development tools. 

• Standardized SIMD math libraries for the PPU's Vector/SIMD Multimedia 

Extension and the SPU. 

• Example source code containing samples, libraries, workloads, and prototype 

tools. See the following section for more details. 
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CHAPTER 3 

VIDEO SURVEILLANCE SYSTEM 

3.1 Evolution of Surveillance Systems 
"First generation" video-based surveillance systems started with analog CCTV 

systems, which consisted of a number of cameras connected to a set of monitors 

through automated switches. But the human supervision being expensive and 

ineffective due to widespread deployment of such systems, they are more or less used 

as a forensic tool to do investigation after the event has taken place. By combining 

computer vision technology with CCTV systems for automatic processing of images 

and signals, it becomes possible to proactively detect alarming events rather than 

passive recording. This led to the development of semi-automatic systems called 

"second generation" surveillance systems, which require a robust detection and 

tracking algorithm for behavioral analysis. Second-generation surveillance systems 

constitute the current state of the art from a commercial viewpoint. 

The main technical innovation in second-generation surveillance systems is the 

introduction of digital video representation. Second-generation surveillance systems 

had explored the advantages of digital approaches to acquisition, transmission, 

processing, storage, and visualization. Third generation surveillance system is aimed 

towards the design of large distributed and heterogeneous surveillance systems for 

wide area surveillance like monitoring movement of military vehicles on borders, 

surveillance of public transport etc. Many projects have been undertaken for 

development of third generation surveillance systems with network of cameras and 

distribution of processing capacity. For example the Defense Advanced Research 

Projection Agency (DARPA) supported the Visual Surveillance and Monitoring 

(VSAM) project [17] in 1997, whose purpose was to develop automatic video 

understanding technologies that enable a single human operator to monitor behaviors 

over complex areas such as battlefields and civilian scenes. The usual design 

approach of these vision systems is to build a wide network of cooperative multiple 

cameras and sensors to enlarge the field of view. From an image processing point of 

view, they are based on the distribution of processing over the network and the use of 
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embedded signal processing devices to give the advantages of scalability and 

robustness potential of distributed systems. 

3.2 Basic Model 
The general framework of an automatic video surveillance system is shown in Figure 

3.1. Video cameras are connected to a video processing unit to extract high-level 

information identified with alert situation from the incoming video frames. This 

processing unit could be connected throughout a network to a control and 

visualization center that manages, for example, alerts. The main video processing 

stages include background modeling, motion segmentation, object identification and 

object tracking. 

The model aims to segment out regions corresponding to moving objects such as 

vehicles and humans from the rest of an image and track their motions over time for 

behavior analysis. Background modeling assumes that the video scene is composed of 

a relatively static model of the background, which becomes partially occluded by 

objects that enter the scene. These objects are assumed to differ significantly from 

those of the background model. Since the background is dynamic due to lighting 

changes and movement of static objects, continuous updating of the model is required. 

Here we implement a mean and variance background model [18], where we compute 

the mean and variance over the last N frames which serve the model for the next N 

frames. 

We call N the refresh rate. Then in motion segmentation, we subtract the current 

frame from the background frame and threshold to get the regions of interest (ROI). 

Subsequently, these regions are further processed to remove noise and matched with 

previously tracked regions to identify the objects (old and new ones). Finally the 

objects are tracked and the current information is passed on for identifying the objects 

in the next frame. 
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Figure 3.1: General framework of automated visual surveillance system [19]. 

3.3 Module Description 

(i) Background Modeling: 

In Background Modeling, we get a background for frames to be processed (although 

the term `background' is not defined scientifically defined and their meaning may 

vary across various applications). For example, a moving car should usually be 

considered as a foreground object but when it parks and remains still for a long period 

of time, it is expected to become background. 

(ii) Motion Segmentation: 

In computer vision, segmentation refers to the process of partitioning a digital image 

into multiple regions or set of contours. Each of the pixels in a region.is similar with 

respect to some characteristic or computed property, such as color, intensity, or 

texture. The goal of segmentation is to simplify and/or change the representation of an 
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image into something that is more meaningful and easier to analyze. Image 

segmentation is typically used to locate objects and boundaries in images. After the 

background calculations we identify a local region of interest by segmenting 

subsequent images, each containing the moving objects. The foreground and 

background gradient information within each region are then combined into a contour 

saliency map (highlighting the object's boundary). The gradients are thinned into 

contour fragments which correspond to the region of interests of image which are 

processed further to binary large objects (i.e., blobs). 

(iii) Object Identification: 
Object identification aims at segmenting regions corresponding to moving objects 

such as vehicles and humans from the rest of an image. Identifying moving regions 

provides a focus of attention for later processes. The regions processed in previous 

stage are further processed, their gradients are further thinned using morphological 

operations to segment out as blobs. An object is made up of one or more blobs. 

(iv) Object Tracking: 

Tracking concerns a process starting with determining the current and past locations 

of the objects position and trajectory. Object tracking aims at finding the locations of 

objects in the scene, labeling and tracking the objects in the scene. The positions of 

the regions or blobs processed by previous routines are calculated, labeled, and 

various other parameters like frame number, area occupied by the object in the scene 

are stored if object was seen at first instance else its parameters are updated 

accordingly as found in the new scene. Our implementation of the Video Surveillance 

model is based on [19]. 

3.4 Algorithm 

The algorithm consists of various components like Background updation, 

Segmentation routine (call to routines roi, blobs), Matching routines and Track 

routine (call to routine match). Figure 2 shows the program structure of algorithm. 

Update Background is used to update background for every N frames (where N=10 in 

our implementation). ROI routine is used to select region of interest in the image 

which is currently under processing. Blobs routine is used to make a boundary or 
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bounding box over the region of interests like humans, moving objects in the image. 

Track routines like match is used to match the current observed object with previous 

objects collected so far, if it is new one it is collected here. The algorithm is shown 

below. Figure 2 shows the program structure for the implementation of the Algorithm, 

and Figure 3 shows the objects detected in the scene by Video Surveillance 
Algorithm. 

ALGORITHM 1 

Algorithm Video Surveillance 

Step1: for I=1 to M 

{ 

Step2: Read the current video frame/image (I) 

Step3: If (I % N=0) Background =Update Background (past N frames) 

Step4: ROI=Segmentation routine (current frame, Background); 

Step 5: Objects=Object Identification (ROI, Objects Info) 

Step 6: Objects Info=Track routine (Objects) 

Video Surveillance Algorithm. 
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Figure 3.2: Program structure for the Video surveillance Model. 

Figure 3.3(a): Visible Image showing various objects detected in the scene. 

3.3(b): Infra Red Image showing various objects detected in the scene. 
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3.5 Computational Issues and Challenges 
For computation purpose, each frame is a matrix of size p x q (say 240 x 320). The 

first sub procedure Update Background is concerned with fmding mean and variance 

over N frames. For this we need to read N frames, sort each pixel of frame with 

respect to other frame and apply an exponential series procedure to find mean and 

variance. Also the second sub procedure involves many matrix operations like 

convolution, multiplication etc. Apart from these there are many image processing 

procedures involved to reduce noise, fill gaps etc. Now the video has data rate ranging 

from 20-30 frames/second. Update Background forms the most expensive operation 

than other components of the algorithm. In its implementation we operate on many 

matrices of order nearly (240 x. 320), and update some three dimensional data 

structures and using many loops. Loop unrolling [20] benefits in increasing 

performance of this routine, but the operation on matrices and three dimensional data 

structures make it computationally intensive. The other computational components in 

descending order are track routine, identification routine, segmentation routine. So, to 

process the incoming video frames in real time makes the application very 

computation intensive. Seeing the above perspective of video surveillance algorithm it 

suggests that it is a computationally intensive application and needs to be parallelized 

to increase its performance. 

11 

21 



CHAPTER 4 

IMPLEMENTATION OF VIDEO SURVEILLANCE ON 

CLUSTER 

4.1 Introduction 
In our previous work, we had proposed and implemented a model of video 

surveillance on computer cluster. Cluster, being a coordinated resource sharing 

concept, it would aptly suit for such implementation where we could exploit idle 

desktops present in the campus. 

4.2 Review of related work 
Czarnul et al. [21] explains implementation of parallel image processing scheme for 

GIMP plug in which enables to invoke a series of filter operations in a pipeline in 

parallel on a set of images loaded by the plug in. DAMPVM environment was used 

for scheduling workloads on to cluster, where the cluster was based on Linux based 

Intel platforms. A methodology for scheduling tasks is presented, where the strategy 

is based on selecting idle nodes, queuing tasks and monitoring the load. A speed up of 

14x is achieved, in which the speed up raises linearly on increasing the number of 

processors used. 	 C 

Buyya et al. [22] presents taxonomy of various scheduling approaches for building 

and executing workloads on grids, providing details of their characterization. Also, a 

review of Grid workflow systems developed is provided. Taxonomies where 

workflow design was based on workflow structure, specification, composition and 

quality constraints are presented. 

4.3 Our implementation 

4.3.1 Cluster Setup 
In our previous work we had proposed a parallel architecture for mapping the 

application on a cluster as shown in figure 4.1. We assert that this architecture 

comfortably adapts to Video Surveillance and applications similar, where jobs 

arriving at a cluster are sets of tasks which have some dependency between them. The 
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main advantage we achieve in this architecture is less waiting time for a node, when it 

is waiting for a result of a task executing on other node and which is needed for 

execution of current task on the former node. In this architecture, we propose a 

method in which we arrange set of different clusters in a hierarchy which form a giant 

cluster architecture. We elect a node as a leader of each cluster and in turn a leader 

elected from those elected leaders of cluster. Each leader is responsible to schedule 

tasks onto its local nodes, collect the results from them and then return the result to 

leader above its level. The root node is responsible to schedule jobs to nodes (leader) 

under it. The advantage of having root node and leader nodes is to have some 

hierarchical control over the clusters. Apart from this, we also achieve giant cluster 

architecture by connecting just the leader nodes of clusters through the root node. 

After the tasks are distributed to leaf nodes, they start executing. The nodes at higher 

level also execute some portion of the job scheduled to them by the nodes above it. 

The advantage we achieve is every node executes the portion of task it can without 

waiting for result from any node and buffering the results achieved. It continues to 

execute independent portions of tasks and buffering the results, thus by this strategy 

each machine is utilized and the waiting time for each node is minimized. When a 

node finishes execution of a task, it does two things before executing new set of tasks 

scheduled on to it. First, it passes the result to the next node waiting for it, second, it 

deallocates the memory it used for buffering. This process of passing results goes on 

until the last node waiting, receives results and then passes the final result to the 

leader node of the cluster. When the results are passed to leader node, it completes all 

tasks it had buffered and passes them on to the higher level. The root node in turn 

completes all tasks which are buffered and again schedules some jobs to each leader 

under it. This root node schedules jobs to nodes under it either after processing tasks 

buffered or before processing them. 
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Figure 4.1: Proposed Cluster Set up. 

4.3.2 Implementation of Video Surveillance Algorithm for parallelization 

In the algorithm implemented on cluster, every iteration consists of executing 

Segmentation routine (call to routine roi), Identification routines (call to routine 

blobs), and Track routine (call to routine match). In the algorithm we observe that 

result of each particular routine is used as parameter in the next routine. The 

algorithm looks serial where in output of each particular routine is input for next 

routine, but some things could be exploited for parallelizing the algorithm. 

Background routine runs for every N iterations and computes a background which is 

used for next N-1 iterations, and Segmentation (roi), Identification (blobs) routine 

could be run independently for each iteration as whose return value is used for that 

current iteration and not for next iterations, where as the data structures for Object and 

Object info are updated every iteration. When all the no. of iterations are completed in 

the Video Surveillance algorithm it returns Object, Object info as results. Therefore 

background, segmentation, identification form the portion of iteration which could be 

run independently at each node and buffer ROI values, wait for (objects) value from 

previous node. In this model the observation could be made that the ratio of 

parallelizable portion of iteration versus non-parallelizable portion is considerably 

good (as Background, blobs, roi forms parallelizable portion where Background forms 

most computational intensive task and track routine (match) forms non-parallelizable 

portion). 
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The program structure (shown in figure 4.2) of algorithm implemented 'consists of 

execution of program at leader node (who is responsible to schedule jobs onto other 

nodes), and at nodes. Leader node is any one selected amongst the cluster of nodes. 

Algorithms for implementation of application on cluster are shown below. 
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Figure 4.2: Implementation of Video Surveillance on cluster. 
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ALGORITHM 2 

Algorithm Parallel Code 
{ 

Step 1: contact the scheduler and check its status; 
Step 2: while(i<=M) 

Step 3: If( i % N==O) B=Update Background(past N frames) 
Step 4: If(job is complete) { 

temp=i; 
create a j ob with tasks of xi iterations for ith node,pass 
parameters (i,B,M) to nodes, submit job to scheduler. 
i=i+x+i%10; 

Step 5: R=roi(B,current frame); 
Step 6: B1=Blobs(R); 
Step 7: If( i>temp) Buffer the results of routine Blobs in array B12; 
Step 8: If(job is complete) { 

Inspect job for errors and if display them; 
• Execute match routine M=match (blv2[]) for iterations 
whose 
blobs output was buffered at this node. 

Algorithm for Implementation of Single Camera Model for Video Surveillance on 

Leader Node. 
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ALGORITHM 3 
Algorithm Node n(i, B, M) 
{ 

Step 1:xn=no of iterations node n has to execute. 
Step2:while(a<=xn) 

{ 
Step3: If(i % N==O) B= Update Background(past N frames) 
Step4: R=roi(current frame,B); 
Steps: B1=Blobs(R); 
Step6: If(node==2) M=match(Bl); 

else Buffer the results of routine Blobs in array B12; 
Step7: If(node—=2) { 

Wait until node receives results of previous iterations (M) 
Execute match routine M=match (blv2[]) for iterations 

whose 
blobs output was buffered at this node. 

} 
} 
Step8: If(node<=4) Pass results (M) to next node (node+l) 

} 

Algorithm for Implementation of Single Camera Model for Video Surveillance on 

Other Node. 
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4.3.3 Problems associated with Cluster Implementation 

In our implementation, we had faced problems of communicational delays which 

were fatal for performance. In the parallel version of the algorithm, there were several 

factors increasing communication delays. For instance, we could observe that the 

leader node had to check at every instance after a frame it had processed, whether job 

submitted to its respective leaf nodes has been completed or not, along with running 

its part of workload, thus increasing communication between nodes. Moreover, the 

other factors hindering the performance were that the images had to be transmitted, to 

the nodes for processing, adjacent nodes had communicate the results of processed 

frame and thus summing these factors had increased the communicational delays to a 

major extent. Other factors like memory needed to store images, process them were 

also effective but due to increased improvements in hardware technology this factor 

could be hid considerably. 

Observing the factors there was possibly a need for an investigation of Video 

Surveillance algorithm on an on chip multicore processor like CBE, who had bus and 

nine cores itself on a chip offering a EIB bus speeds at higher speeds. 
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CHAPTER 5 

VIDEO SURVEILLANCE APPLICATION ON CBE 

5.1 Introduction 
CBE offers a platform with heterogeneous processing capabilities, which forms a 

suitable architecture for various multimedia and scientific applications. It provides 

eight cores of SPEs which form accelerators, and provide a platform for applying 

various parallelization schemes for performance improvement. We provide some 

review of research done in video processing on CBE in the next section. 

5.2 Review of Video Processing Applications on CBE 
In [23], Liu et al. explains an implementation of Background subtraction system 

(BGS) system on STI Cell Broadband Engine (CBE). BGS finds objects by looking 

for moving regions against a stationary background. The BGS system is divided into 

four separate stages Image Pre-processing, Salience Detection, Mask Generation and 

Model Maintenance. In order to make most efficient use of CBE's resources and be 

able to handle multiple video streams with any given number of SPEs, each SPE is 

assigned to complete a unit of work and then ready to be reassigned. As in most of the 

image processing library, the video analysis functions in BGS need at least one or two 

video frames as input and generate another as output, which is impossible to keep in 

SPE's local store all at once. We thus use a DMA load operation to bring in a small 

block of data to SPE local store at a time, let the SPE process the data in local store, 

write processed data back to PU memory with a DMA store operation. The overhead 

of the DMA operations can generally be hid using double buffering scheme. He could 

achieve nearly 6-9x improvement of speed up over the non parallel version of the 

application. 

Yu et al. [24] presents a scheme for parallelizing video processing and retrieving 

model on CBE. A multilevel parallel partition schema of video processing is 

suggested in his work. In his approach workloads were partitioned namely Service, 

Streaming models which form the Video Processing and Retrieval (VPR) framework, 

and are mapped on nine cores of CBE is presented. In this schema of parallel 
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partition, intensive computation workloads are partitioned and distributed by PPE to 

the SPE cores, which perform their part of the workloads and send the computation 

results to PPE. In the implementation of Service Model, PPE assigns different 

services to different SPEs, and the PPE's main process calls upon the appropriate 

SPEs when a particular service is needed. Streaming model is implemented to 

organize the PPE and SPE processors to act as stream-data processors in a serial 

pipeline to accelerate the data processing. These computations were done in parallel 

among PPE and SPE processors viewing them as a group of "threads". Through data 

allocation PPE tells each SPE processor to execute specific regions in parallel. PPE 

executes the region as the master thread of the team. At the end of a parallel region, 

PPE waits for all other SPE to finish and collect the required data from each SPE. 

In [25], Azevodo et al explains an implementation of Video filtering approach on 

CBE. In their work, they have implemented Deblocking Filter (DF) using scalar and 

vector (SIMD) approaches on the platform. PPE was used only for reading the 

parameters from the input files and to store them in main memory. After storing the 

parameters, the SPE threads were spawned. Thereafter, the PPE thread sends a signal 

to all SPEs to start the computation. Each SPE thread processes one frame, and the 

processing starts by reading the input pointers for the samples and parameters from 

the main memory. Each frame was divided, to use the SPEs ability of performing 

computation and data communication in parallel. This partition is based on several 

factors such as the latency, maximum DMA transmission package size, number of 

DMA transfers, and organization of the data in the memory. The processing of the 

frame at each SPE was performed as a software pipeline and used a double buffering 

strategy. First, a part of data was requested, followed by the request of the data for the 

second portion. After the data of the first portion was available in the LS it is filtered. 

This way the processing of first portion is performed in parallel with the data 

transmission of second portion. In this way they have exploited the double buffering 

scheme of CBE. 

In [26], Park et al. proposed an approach for parallelizing X264 encoding algorithm of 

H.264 encoding scheme. They have proposed and implemented a pipelining model for 

parallelizing application. The algorithm was partitioned into three sections two for 

frame data processing and one for macro-block processing. In their implementation, a 
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frame is broken into blocks in which the encoding for each block was done in 

pipelined fashion along with maintaining data dependency between processing of 

blocks. PPE was responsible all data transfers and synchronization in processing of 

frame among SPEs. 

In [27], Marcenaro et al. proposes a distributed architecture for multimedia 

surveillance. In their work, they have decomposed surveillance functionalities like 

segmentation and tracking into a set of modules among set of physical processing 

units structured into a distributed (using Java threads), heterogeneous, intelligent 

hierarchical surveillance network. 

5.3 Study of Algorithm for parallelization on CBE 
The CBE consists of eight cores of SPE and one core of PPE, which forms altogether 

a heterogeneous platform and applications ported on it, must be parallelized in 

accordingly keeping in view of this aspect. In general, implementation of a system on 

CBE consists of three phases. First the uniprocessor code needs to be partitioned into 

code to be run on the PPE and SPEs. Second, the SPE code should be vectorized to 

exploit the strength of vector engines in the SPEs. Finally tasks should be scheduled 

optimally to bring the best speedup with the least idle time in the SPEs. Programming 

models for Cell architecture differ as to how code is partitioned and how SPEs are 

used. SPE form the accelerator cores of CBE which could be exploited for 

computational intensive operations. Our goal is to select the programming paradigm 

that offers the simplest possible expression of an algorithm while being capable of 

fully utilizing the hardware resources of the Cell processor. 

The Video surveillance system consists of Background Modeling, Motion 

Segmentation, Object Identification, and Object Tracking of which most of 1/0 

operations are performed in Background modeling, and other routines perform the 

computational operations on the image read. As PPE has more access to I/O over 

SPEs and moreover to exploit the accelerators of CBE (SPE),, we schedule 

Background modeling routine on PPE and others on the SPE's. In this scheduling we 

optimize by pre calculating background before its use for further iterations which run 

on SPE, and hence hiding the I/O overhead with execution of video frames. For 

simplicity purpose we had carried out our operations on images by converting them 
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onto grayscale and black and white for processing. We can convert an RGB image 

into grayscale by, analyzing its intensities, or modifying the color map according to 

intensity. 

We can use the standard NTSC conversion formula that is used for calculating the 

effective luminance of a pixel: 

Intensity = 0.2989*red + 0.5870*green + 0.1140*blue. 

The crucial aspect for the implementation was limited storage capacity of SPE (256 

KB). So, it cannot accommodate an image totally to operate (a matrix read from an 

image size of 240*320 is nearly about 307 KB), and it needs to perform DMA 

operation (amount maximum 16 KB) repeatedly to fetch image into its local memory. 

To cater this issue we need to distribute an image carefully on all SPE's so that they 

could operate synchronously and hence all those DMA operations are done in parallel 

by SPEs following with computational operations which are performed later. Thus, by 

this approach we could bring out data parallel programming amongst the SPE's. In 

this approach we load a portion of image into Iocal store of SPU by performing DMA. 

Figure 5.1 highlights the scheme which shows the break up of image into eight parts, 

and each SPU processing its portion of image. Even though, in this approach we have 

reduced the amount of DMA operations, they bring high communicational delays in 

the implementation of the algorithm, which brings down the computation to 

communication ratio or CCR [28] ratio of algorithm. To address this we use double 

buffering scheme by which DMA latency can be hidden upto some extent. 
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Figure 5.1: A sample image which is processed, each SPU processes its portion of 

image and achieving data parallelism. 

Apart from above issues, we face other challenges of synchronization. Since all SPE's 

process in parallel an image they need to .get synchronized while identifying and 

tracking an object. For instance, in implementation of Object identification we find 

connected components in an image to get a region of interest, in which all the SPU's 

need to get synchronized so that objects are identified correctly. To handle this issue 

we perform DMA operation by which we store the processed matrices of SPU's at 

contiguous locations in DRAM and process them sequentially at PPE. The 

synchronization of SPU's could be done by using mailboxes where each SPU signals 

PPU whether it has finished its DMA, so as PPU could start processing to get 

connected components in the image. Once we get connected components of an image, 

SPU executes its residual processing on the image. Figure 5.2 illustrates our approach 

for parallelization. 
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Figure 5.2: Parallelization approach used to implement Video Surveillance on CBE. 

5.4 Algorithm 
In this section we present the parallel algorithm used for implementation on CBE. The 

algorithm described below shows various routines mapped on to different cores of 

CBE. In the PPU side, we execute Background routine for every N frames, wait until 

SPUs finishes processing a frame and calculate connected components from an image 

and iterate upon until it finishes processing required number of frames. On the SPU 

side, we execute Segmentation routine (roi) and notify PPU through mail box for 

reading next frame so as SPU could later perform DMA operation to get next frame 

into its local store, we then run object identification routines (blobs), notify PPU 

through mailbox for calculation of connected components and finally track the objects 

found and iterate upon until it finishes processing required number of frames. 

In overall implementation of our algorithm on the CBE, we had tried to minimize the 

idle time of the PPE by buffering the image, calculating background in advance of, 

completion of refresh rate of Video surveillance algorithm. The utilization of SPE was 

maximized by reducing DMA operations, unless waiting for synchronization with 

other SPE's in this approach. 

In the overall approach used, on comparison with the cluster implementation, the 

communicational delays between different cores was less as CBE offers a high speed 
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EIB (as discussed in the above chapter). Moreover as each SPE unit works on portion 

of an image sonie challenges which we face during cluster implementation were met 

here, as in case of CBE we could perform as many DMA operations to get image 

from DRAM and handle this issue.The algorithm can be summarized in following 

steps: 

Algorithm 4 

1. Read image into a matrix and evaluate Background. 

2. Perform Background modeling for next 

N frames until SPU finishes reading image matrix. 

3. Perform Background Modeling until SPUs call PPU for either reading image 

finding connected components. 

4. Find connected components in an image. 

5. Goto Step2 until all images are processed. 

6. End. 

Algorithm for Implementation of for Video Surveillance on PPE. 

Algorithm 5 

1. Read image matrix. 

2. Perform Motion Segmentation. 

3. Send signal to PPU through mailboxes, to start reading next image. 

3. Perform Object Identification. 

4. Send signal to PPU through mailboxes, for evaluating connected components in an. 

image at PPU side. 

5. Perform Object Tracking 

6. Goto Step2 until all images are processed. 

7. End. 

Algorithm for Implementation of for Video Surveillance on SPE. 
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CHAPTER 6 
RESULTS AND DISCUSSIONS 

6.1 Experimental results on CBE 
The above algorithm has been simulated using Ce11SDK 2.0 simulator running on 

VMware Player (running on Windows based platform). The parameter that was 

measured was the total execution time of the algorithm with respect to the total 

number of iterations (frames) processed. The speed up is 43.1 times faster compared 

to implementation of Video Surveillance on a Windows based Pentium workstation. 

Table 6 shows comparison between both approaches. Figure 6.1 demonstrates the 

execution time of Video Surveillance Algorithm based on number of iterations run. 

Table 6.1: Speed up on Cell in comparison with Pentium platforms. 
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Figure 6.1: Execution time of Video Surveillance on CBE Simulator (in terms of 

number of iterations). 
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The above graph demonstrates execution times of application run for 500 iterations 

(processing nearly 800 images) in milliseconds. The execution times for alliterations 

are nearly same as the calculation of background (which is the most I/O intensive 

routine is hid with the execution of computational routines on SPEs. Thus with these 

optimizations, we could observe that with the exception of first iteration, execution 

times of all other iterations are nearly a same value. Hence, from the above results we 

could observe a linear increase in execution time and constant speed up with increase 

in amount of workloads. 

Comparison of Results varying number of SPEs 

Table 6.2: Execution times and speed up of Video Surveillance Algorithm on CBE on 

varying number of SPEs used. 

The above table describes the execution time of Video Surveillance Algorithm on Cell 

SDK by varying the number of SPEs used. The table shows algorithm run on (2, 

4,5,6,8) number of SPEs using an image (of dimension 240*320), The experiment 

could not be done using 3,7 SPEs using the above parallelization strategy as image 

could not be fragmented by 3, 7 respectively with maintaining homogenous tasks for 

all SPEs and moreover maintaining data alignment for DMA operations. Also, in case 

of using single SPE the total of image, matrices, data structures for objects used, and 

program at SPE exceeds local store capacity of 256KB, and needs excessive DMA 

operations where I/O factor dominates over computational exploitation, and hence 

degrading performance. 
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We could observe that total execution time increases with decreasing number of 

SPEs, not only due to increase in computational workload on each SPE but also due 

the increment in number of DMA operations. Each DMA operation could fetch at 

maximum of 16 KB of data into or out of a local store, and the amount of DMA 

operations double from fetching 32 rows to 122 rows of image when SPEs used get 

halved from 8 (using all cores of CBE) to 2. Moreover, while using less number of 

SPEs for implementation, the number of computations increases as each SPE gets 

more data to process. 

Other factor which could be noticed is that speed up drastically increases when we 

increase the usage of SPEs from 4 to 5 and 5 to 6, as in first case the amount of DMA 

calls reduce which amounts to the speed up, and in second case the amount of data 

transferred and decrease in computational workload per SPE accounts to speed up. 

Thus, from above results we could observe a steep increase in speed up, nevertheless 

utilizing the all the accelerator cores of CBE the desired speed up could be achieved. 

6.2 Comparison of results with implementation on computer cluster 
The Video Surveillance algorithm described in Section 2 was implemented on 

MATLAB R2006a version using the distributed computing toolbox as a part of our 

previous work. A local cluster was setup using the processors that formed part of the 

campus LAN in IIT Roorkee and were connected through coaxial cables MATLAB 

Distributed Computing Environment (MDCE) was used for configuring the cluster 

environment. Table 8 shows the speed up comparison between CBE and computer 

cluster approaches. The speed up 19.386 is times faster compared to implementation 

of Video Surveillance on a cluster. 
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Video frame number 834 

Table 6.3: Speed up on Cell in comparison with cluster implementation of the 

algorithm. 
The factors such as high speed EIB bus, on chip multicore processing ability of CBE 
have helped the application achieve marked performance over the cluster 

implementation. Moreover, the transmission of images which were a substantial part 
of delay in our previous work, here they have been simply altered as all cores reside 

on same chip and address a same DRAM. 

6.3 Test Data Used 
The test data used were sample video frames, where Video Surveillance found 

interesting objects, and tracks them throughout the video frames. Figure 6.2 shows 
some of the sample video frames used. 

Figure 6.2: Sample images used for implementation. 
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The above data set was used and converted to grayscale and then processing was done 

on black and white images. Figure 6.3 shows image used, background image, region 

of interest calculated and objects detected by the implementation of Video 

Surveillance. From the below figure, we could also infer the accuracy of 
implementation. 

Video frame no 1198 	 Gray scale image of video frame 

Background image 	 Region of interest and objects in scene 

Figure 6.3 (a): Objects detected in video frames of data set 1. 

(data set 1: Visible camera bitmap images) 
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Background image 	 Region of interest and objects in scene 

Figure 6.3(b): Objects detected in video frames of data set 2. 

(data set 2: Infrared camera bitmap images) 
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Video frame no 2100 
	

Gray scale image of video frame 

Figure 6.3(c): Objects detected in video frames of data set 3. 

(data set 3: Visible camera bitmap images) 
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• 

Video frame no 264 	 Gray scale image of video frame 

Background image 	 Region of interest and objects in scene 

Figure 6.3(d): Objects detected in video frames of data set 4. 

(data set 4: Visible camera bitmap images) 

43 



CHAPTER 7 

CONCLUSIONS AND SCOPE FOR FUTURE WORK 

In this work, we have proposed a parallelization model for implementation of Video 

Surveillance application on the STI Cell platform. This model could be efficaciously 

used for applications similar to Video Surveillance whose tasks entail high intensive 

data and computational requirements with application specific modifications. 

The implementation of a video surveillance algorithm on Cell was carried out and its 

performance was shown to display a considerable improvement. The various issues 

related to implementation of the algorithm are general, yet specific algorithms will 

have to be developed for different surveillance algorithms. We had achieved a marked 

improvement of 43x over the non distributed version and 19x over the cluster 

implementation. Also, the result images illustrate the accuracy of the implementation 

on the STI Cell platform. 

Issues such as limited storage of SPE and optimizing the DMA operations were 

solved. A data parallel programming paradigm was used to exploit the accelerator 

cores of CBE, so as the storage problem of SPE could be solved inherently using this 

approach. The SPU intrinsic libraries available on the platform could have been 

exploited, so as the vectorization of the code could be done both at application and 

hardware level. Moreover, the scalability issues such as exploiting the dual thread 

support of PPE for better management of I/O and SPE threads and image processing 

part to work on various formats of images could have been implemented in our work. 

Future works in this course would be to experiment with an actual Cell 

implementation and explore the performance of the platform in audio and multi-

camera surveillance scenario. The surveillance cameras could be connected via the 

internet to distant processors. A model for implementation for multi-camera fusion 

based surveillance system is provided in [29]. 
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Another suggestion for future works could be to experiment the multi-camera 

surveillance scenario on real grid system, where a grid and the sensors deployed at 

various sites would communicate via the internet. A model for.  implementation of a 

media tracking system of vehicle plates using grid as computational platform could be 

viewed in [30]. 

The other way we could extend our work is by introducing some fast techniques of 

morphological operations in Video Surveillance algorithm to increase its performance 

at image processing level. Methods for Fast Morphological Image Transforms are 

provided in [31]. Another important issue to address in this case would be scalability 

and security aspects. 
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GLOSSARY 

ster is a group of coupled computers that work together closely so that 

is they can be viewed as though they are a single computer. The 

of a cluster are commonly, but not always, connected to each other 

fast local area networks. Clusters are usually deployed to improve 

riance and/or availability over that provided by a single computer, while 

.:ally being much more cost-effective than single computers of comparable speed 

availability. 

rid 

A computational grid is a hardware and software infrastructure that provides 

dependable, consistent, pervasive, and inexpensive access to high-end computational 

capabilities. Grid computing is distinguished from typical cluster computing systems 

that grids tend to be more loosely coupled, heterogeneous, and geographically 

dispersed. Also, while a computing grid may be dedicated to a specialized application, 

it is often constructed with the aid of general purpose grid software libraries and 

middleware. 
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