
PERFORMANCE IMPROVEMENT OF VIDEO
SURVEILLANCE. ALGORITHM USING CELL

BROADBAND ENGINE

A DISSERTATION
Submitted In pw" fuwmm.nt of the

requirements for the — of the degree
of

MASTER OF TECHNOLOGY
In

COMPUTER SCIENCE AND ENGINEERING

LZ
F. Viral KUMAB

ARTMEtT OF ELECTRONICS ND COMPUTER ENGINEERING
INDIAN INSTITUTE OF TECHNOLOGY ROORKEE

ROORKEE - 247 607 (INDIA)
JUNE, 2008

Candidate's Declaration

I hereby declare that the work being presented in the dissertation report titled
"Performance improvement of Video Surveillance Algorithm using Cell Broadband
Engine" in partial fulfillment of the requirement for the award of the degree of Master
of Technology in Computer Science and Engineering, submitted in the Department of
Electronics and Computer Engineering, Indian Institute of Technology.Roorkee, is an
authenticate record of my own work carried out under the guidance of Dr. Ankush
Mittal, Associate Professor, Department of Electronics and Computer Engineering,

Indian Institute of Technology Roorkee.

I have not submitted the matter embodied in this dissertation report for the award of

any other degree.

Dated: 61"Ja, '0%
	

(P. Vinay Komar)

Place: IIT Roorkee.

Certificate
is is to certify that above statements made by the candidate are correct to the best of
I4nowledge and belief.

abed: 	7.I.i tog 	 Dlr. Aes~sl~ IYlittal,
Place: IIT Roorkee. 	 Associate Professor,

Department of Electronics and
Computer Engineering, IIT Roorkee,
Roorkee -247667 (India).

1

ACKNOWLEDGEMENTS

I am thankful to Indian Institute of Technology Roorkee for giving me this

opportunity. It is my privilege to express thanks and my profound gratitude to my

supervisor Dr. Ankush Mittal, Associate Professor for his invaluable guidance and

constant encouragement throughout the dissertation. I was able to complete this

dissertation in this time due to constant motivation and support obtained from Dr.

Ankush Mittal.

I am also grateful to the staff of Sponsored Research Laboratory and UGPC

Laboratory for their kind cooperation extended by them in the execution of this

dissertation. I am also thankful to all my friends who helped me directly and

indirectly in completing this dissertation.

I am thankful to Mr. Praveen Kumar, Research scholar in my department for his constant
encouragement in my work. I am grateful to Mr. Avinash Sharma, Mr. Parikshit Sondhi,
Mr. Rajarshi Chowdhury and Mr. C. Sekhar, my colleagues for being excellent peers and
creating a congenial environment for work.

Most importantly, I would like to extend my deepest appreciation to my family for

their love, encouragement and moral support. Finally I thank God for being kind to

me and driving me through this journey.

(P. VINAY KUMAR)

Abstract

With the growing trend of technology in network and computers science arena, many

of the high end applications like multimedia related applications are becoming

algorithmically complex and data intensive. Video Surveillance is one such growing

business application due to its concern in various areas like commercial security, and

military applications. With increasing deployment in large scale distributed

environment, the challenge is to process huge multimedia stream data with several

computation intensive algorithms. Hardware researchers are trying out to find a cost

effective solution for the application. A dedicated hardware solution for the

application proves cost expensive and decreases scalability. Alternatively, we have

HPC solutions such as cluster, grid and multicore processor for the problem. Research

community either had addressed solution for Video Surveillance or for a generalized

HPC solution for high end applications but none had addressed solution concerning

with video surveillance specific requirements.

In this dissertation work, we present a method to parallelize and implement video

surveillance algorithm on the STI Cell Broadband Engine. The methodology provides

a conceptual architecture for parallelizing applications with requirements similar to

video surveillance. We then briefly present our previous work on computer cluster,

discuss various issues and challenges related to porting the code, followed by results

demonstrating the speed up and comparison of the results of both approaches.

The implementation of programs is done using C, simulation in Cell SDK 2.0, images

used were stored on PC, of Windows bitmap format.

n

List of Figures

Fig 2.1 	The Hardware architecture of Cell Broadband Engine which is

based on heterogeneous multiprocessor architecture 	 6

Fig 2.2 PPE and SPE placing on the Cell Processor 	 ...8

Fig 2.3 Memory Flow Control System 	 .11

Fig 3.1 	General framework of automated visual surveillance system 	..17

Fig 3.2 	Program structure for the Video surveillance Model 	 ..20

Fig 3.3(a) Visible Image showing various objects detected in the scene 	..20

Fig 3.3(a) Infra Red Image showing various objects detected in the scene 	..20

Fig 4.1 	Proposed Cluster Set up 	 ..24

Fig 4.2 	Implementation of Video Surveillance on cluster 	 ..25

Fig 5.1 	A sample image which is processed, each SPU processes its portion

of image and achieving data parallelism 	 ..33

Fig 5.2 Parallelization technique used to implement Video Surveillance

on CBE 	 ...34

Fig 6.1 Execution time of Video Surveillance on CBE Simulator 	 ...36

Fig 6.2 Sample images used for implementation 	 ...39

Fig 6.3(a) Objects detected in video frames of data set 1 	 ..40

Fig 6.3(b) Objects detected in video frames of data set 2
	

Al

Fig 6.3(c) Objects detected in video frames of data set 3 	 ..42

Fig 6.3(d) Objects detected in video frames of data set 4 	 ..43

iv

List of Tables

Table 6.1 	Speed up on Cell in comparison with Pentium platforms 	...36

Table 6.2 	Execution times and speed up of Video Surveillance Algorithm

on CBE varying number of SPEs used 	 ...37

Table 6.3 	Speed up on Cell in comparison with cluster implementation

of the algorithm 	 ...39

Table of Contents

Candidate's Declaration & Certificate i

Acknowledgements ii

Abstract iii

List of Figures iv

List of Tables v

Table of Contents vi

Chapter 1 Introduction and Statement of the Problem 1

1.1 Introduction 	1

1.2 Motivation 	•..2

1.3 Problem Statement 	3

1.4 Contributions 	 • • • • • • •3

1.5 Organization of the Report 	3

Chapter 2 STI Cell Architecture 	5

2.1 Background and Motivation 	5

2.2 Hardware Architecture 	 • • .6

Chapter 3 Video Surveillance System 	15

3.1 Evolution of the Surveillance Systems 	15

3.2 Basic Model 	16

3.3 Module Description 	 • . • • • 17

3.4 Algorithm 	18

3.5 Computational Issues and Challenges 	21

Chapter 4 Implementation of Video Surveillance on Cluster 22

4.1 Introduction 	 • • • • • • • •22

4.2 Review of related work 	 • • • •22

4.3 Our implementation 	 • .. • ••22

4.3.1 Cluster Setup 	22

4.3.2 Implementation of Video Surveillance Algorithm

for parallelization 	24

vi

4.3.3 Problems associated with Cluster
Implementation 	28

Chapter 5 Video Surveillance Application on CBE 	29

5.1 Introduction 	29
5.2 Review of Video Processing Applications on CBE 29
5.3 Study of Algorithm for parallelization on CBE 31
5.4 Algorithm 	34

Chapter 6 Results and Discussions 	36
6.1 Experimental results on CBE 	36
6.2 Comparison of results with implementation on computer

cluster 	38
6.3 Test Data Used 	39

Chapter 7 Conclusion and Scope for Future Work 	44

References 	46

Publications 	49

Glossary 	50

vu

CHAPTER 1
INTRODUCTION

1.1 Introduction
High end applications are classified as those which require high computing power,

high bandwidth, and lots of storage. Multimedia stream processing applications are

good examples of high end applications which are highly computational and data

intensive and have been posing great challenges to the computing arena. Video

rendering, gaming, video surveillance, shape analysis and many graphical applications

are becoming more and more algorithmically complex and are demanding more

computational power. In order to meet the intensive computation and the real-time

processing, many research efforts have been done in the past, at various institutions.

For instance, Intel has developed various libraries for multimedia related applications.

They provide detailed case study of Intel platforms for video surveillance applications

[1]. [2] provides description of dedicated computational platform support developed

by Sun Microsystems, which includes high-resolution digital video and integrated

surveillance data management infrastructure system for video surveillance. [3]

provides description of hardware (SpursEngine) platform for video processing

applications, developed by Toshiba Corporation, which uses STI Cell Broadband

Engine technology, with inbuilt dedicated hardware for decoding and encoding of

MPEG-2 and H.264 video, XDR memory interface as well as PCI Express interface.

On the other hand researchers at various academic institutions have been striving hard

to provide cost effective and efficient real time solution for the problem. An

implementation of distributed architecture for video processing and communication

techniques is provided in [4]. The possible HPC solutions for the problem could be

1) cluster 2) deployment of grid 3) multicore processor platforms for the applications.

One of the important video processing applications is automatic video surveillance

which is very rapidly growing sector in the commercial market due to its wide range

of applications, such as a homeland security, a security guard for communities and

important buildings, traffic surveillance in cities and detection of military targets, etc

[5, 6]. Cluster and Grid solutions suffer from high communicational delays and

moreover increase the cost of deployment. Emerging on-chip multiprocessor

architecture provides the capability to the programmer to optimize the execution of

instructions and data handling for specific applications. A recent breakthrough with

introduction of the STI Cell Processor has provided a new alternative for the

researchers to investigate the platform. Hardware giants such as IBM [7], Mercury [8]

are bringing up effective solutions to Video Processing applications using this

processor. [7] provides a review of implementations of various media and real time

applications on the Cell processor, [8] provides implementation of H.264 video

compression technique on the Cell processor.

1.2 Motivation
Video surveillance is one of very rapidly growing sector in the commercial market

due to its wide range of applications. The aim of automatic video surveillance is to

automatically detect the interesting objects in the monitored area, track their motion

and automatically take appropriate action like alerting a human supervisor. With the

recent advancements in video and network technology, there is a proliferation of

inexpensive network based cameras and sensors for widespread deployment at any

location, as well as with the development of new video-processing and computer-

vision algorithms allowing more complex scenes to be considered. All this progress

has made it possible and necessary to consider a new perspective in this field and an

opportunity to exploit them. A good review of intelligent and distributed surveillance

systems is provided in [9].

As there is deployment of progressively larger systems, often consisting of hundreds

or even thousands of cameras distributed over a wide area, there is enormous amount

of media stream data that need to be communicated over a network to a central station

and processed on high powered dedicated processors. Since computation on the huge

data of video streams is large which need to be done in online fashion, one of the

major challenges is to achieve real time computation on the incoming video frames

[10, 11]. Alongside with these advances surveillance application is also becoming

algorithmically complex and data intensive. Therefore there is a serious requirement

of a high performance solution to cater the needs of the problem. We provide a

parallelization strategy to implement the application on computer cluster and STI Cell

2

Broadband Engine in our work. Also, we compare performance of the application on

both platforms.

1.3 Contributions
In our implementation on cluster we face the major problems of communicational

delays and busy waiting. We had tried to optimize the waiting time by distributing the

worldoads in heterogeneous sizes and buffering them, but the delays form the major

challenge where nodes had to communicate results on LAN, in which we had faced

problems of network congestion, bandwidth. To provide efficacious solution to the

problem, we investigate the performance of application on STI Cell Broadband

Engine. Inherently, we faced challenges of limited buffer and synchronization on this

platform. We had solved these by selecting a desired programming paradigm that well

suits the application specific requirement.

1.4 Problem Statement
In this dissertation work we propose and implement a model to improve a high end

application such as video surveillance system using parallel processing techniques and

architecture such as Cell broadband engine. The model has an objective to achieve

significant performance speedup over the non distributed version, thus enabling a real

time implementation.

1.5 Organization of the Report
The organization of the dissertation is as follows:

Chapter 2 discusses the hardware architecture of the STI Cell Broadband Engine,

describing about various modules of the platform.

Chapter 3 gives the background of Video Surveillance model, a typical algorithm for

implementation discussing various computational issues and challenges in its

implementation.

3

Chapter 4 describes review of related work on cluster and our previous work in

implementing the application on the same. We then discuss various issues like

extracting parallelism in the algorithms, communicational delays, initialization and

other overheads, synchronization etc.

Chapter 5 describes work done in implementations of Video processing applications

on Cell and other platforms, discussing extraction of parallelism, issues and

challenges in their approaches. We then explain our proposed model of Video

Surveillance Algorithm on the STI Cell Broadband Engine with detailed description

of various issues in regard to porting the code and hurdles faced in parallelizing

application in regard to implementation on the platform.

Chapter 6 discusses the performance of the application on STI Cell Broadband

Engine, statistics describing speed up over non distributed version and on the cluster

implementation of the Video Surveillance Application, speed up by varying number

of cores used for the application, snapshots of various screens and graphs depicting

the performance.

Chapter 7 concludes the dissertation work and gives suggestions for future work.

4

CHAPTER 2
STI CELL ARCHITECTURE

2.1 Background and Motivation
Cell Broadband Engine (CBE) is an outgrowth of a strategic alliance between Sony

Computer Entertainment Inc., Toshiba Corporation and IBM Corporation formed in

2001. The collaboration, known as STI, opened their Austin-based design centre in

March, 2001 . In spring, 2004 the first ever operational cell-processor was released. In

2005 Mercury announced Cell Blade servers. In 2006 IBM and Sony Corp. offered

Cell Blade server and PlayStation 3 gaming console respectively. Also Cell Processor

has been incorporated in IBM's supercomputer named Blue Gene.

The CBE processor is the first implementation of a new family of multiprocessors

conforming to the Cell Broadband Engine Architecture which extends 64 bit Power

PC Architecture. Although the CBE processor is initially intended for application in

media-rich consumer-electronics devices such as game consoles and high-definition

televisions, the architecture has been designed to enable fundamental advances in

processor. performance. These advances are expected to support a broad range of

applications in both commercial and scientific fields.

The most distinguishing feature of CBE processor is that, although all processor

elements share memory, their function is specialized into two types: the Power

Processor Element (PPE) and the Synergistic Processor Element (SPE). The CBE

processor has one PPE and eight SPE's.

2.2 Hardware Architecture

The hardware environment of Cell Broadband Engine is described in Figure 2.1

which broadly consists of five parts as described as follows:

SPE

EIB (up to

PPE 	 I 16Blcycle 	I I 	I 16BIcycle (2x)

BBC

PPV3

L4YJycle, 	
Dual 	FlexIO
XDR

Figure 2.1: The Hardware architecture of Cell Broadband Engine which is based on

heterogeneous multiprocessor architecture [12].

(i) 	PowerPC Processor Element (PPE) :
The PPE contains a 64-bit PowerPC Processor Unit (PPU) with associated caches that

conform to PowerPC Architecture reduced instruction set computer (RISC) core with

a traditional virtual memory subsystem. It runs an operating system, manages system

resources, and is intended primarily for control processing, including the allocation

and management of SPE threads. It can run legacy PowerPC Architecture software

and performs well executing system-control code. It also includes a vector multimedia

extension unit, called Single Instruction, Multiple Data (SIMD), so that it can do

multiple operations simultaneously with a single instruction.

J

The PPE consists of two main units Power Processor Unit (PPU) and PowerPC

Processor Storage Subsystem (PPSS). The PPU performs instruction execution, and it

has level 1 (L1) instruction cache, data cache of 32KB each, and six execution units.

The PPSS handles memory requests from PPU and external requests to the PPE from

SPEs or 1/0 devices. It has a unified level 2 (L2) instruction and data cache of 512KB.

The PPU supports two simultaneous threads of execution and can be viewed as a 2-

way multiprocessor with shared dataflow. This appears to software as two

independent processing units. The state for each thread is duplicated, including all

architected and special-purpose registers except those that deal with system-level

resources, such as logical partitions, memory, and thread-control. Most non

architected resources,_ such as caches and queues, are shared by both threads, except in

cases where the resource is small or offers a critical performance improvement to

multithreaded applications.

The PPSS handles memory requests from the PPE and external requests to the PPE

from other processors or 1/0 devices. It includes a unified 512-KB level 2 (L2)

instruction and data cache, various queues, and a bus interface unit that handles bus

arbitration and pacing on the EIB. Memory is seen as a linear array of bytes indexed

from 0 to 264 - 1. Each byte is identified by its index, called an address, and each byte

contains a value. One storage access occurs at a time, and all accesses. appear to occur

in program order. The L2 cache and the address-translation caches use replacement-

management tables that allow software to control use of the caches. This software

control over cache resources is especially useful for real-time programming.

The PPEs are general-purpose processing units, and can access system management

resources. These resources can be for example the memory-protection tables.

Hardware resources are mapped explicitly to the real address space as seen by the

PPEs. PPE can address any of these resources directly by using an appropriate

effective address value.

The primary function of the PPEs is the management and allocation of tasks for the

SPEs in a system. In figure 2.2, we can see the placement of the PPE in the actual Cell

chip. When data enters the PPE, this element then distributes it among SPEs,

7

schedules them to be processed on one or more of the SPEs, controls and

synchronizes them.

Figure 2.2: PPE and SPE placing on the Cell Processor [12].

(ii) 	Synergistic Processor Elements (SPEs) :

Each of the eight Synergistic Processor Elements (SPEs) is a 128-bit RISC processor

specialized for data-rich, compute-intensive SIMD applications. It consists of two

main units, the Synergistic Processor Unit (SPU) and the Memory Flow Controller

(MFC). In figure 2.2, we can see the placement of the SPE in the actual Cell chip.

The SPU deals with instruction control and execution. It includes a single register file

with 128 registers (each one 128 bits wide), a unified (instructions and data) 256-KB

local store (LS), an instruction-control unit, a load and store unit, two fixed-point

units, a floating-point unit, and a channel-and-DMA interface. The SPU implements a

new SIMD instruction set, the SPU Instruction Set Architecture, which is specific to

the Broadband Processor Architecture.

Each SPU is an independent processor with its own program counter and is optimized

to run SPE threads spawned by the PPE. The SPU fetches instructions from its own

LS, and it loads and stores data from and to its own LS. With respect to accesses by

its SPU, the LS is unprotected and un-translated storage.

8

The MFC contains a DMA controller that supports DMA transfers. Programs running

on the SPU, the PPE, or another SPU, use the MFC's DMA transfers to move

instructions and data between the SPU's LS and main storage. (Main storage is the

effective-address space that includes main memory, other SPEs' LS, and memory-

mapped registers such as memory-mapped I/O [MMIO] registers.) The MFC

interfaces the SPU to the EIB, implements bus bandwidth-reservation features, and

synchronizes operations between the SPU and all other processors in the system.

To support DMA transfers, the MFC maintains and processes queues of DMA

commands. After a DMA command has been queued to the MFC, the SPU can

continue to execute instructions while the MFC processes the DMA command

autonomously and asynchronously. The MFC also can autonomously execute a

sequence of DMA transfers, such as scatter-gather lists, in response to a DMA-list

command. This autonomous execution of MFC DMA commands and SPU

instructions allows DMA transfers to be conveniently scheduled to hide memory

latency.

Each DMA transfer can be up to 16 KB in size. However, only the MFC's associated

SPU can issue DMA-list commands. These can represent up to 2,048 DMA transfers,

each one up to 16 KB in size. DMA transfers are coherent with respect to main

storage. Virtual-memory address translation information is provided to each MFC by

the operating system running on the PPE. Attributes of system storage (address

translation and protection) are governed by the page and segment tables of the

PowerPC Architecture. Although privileged software on the PPE can map LS

addresses and certain MFC resources to the main-storage address space, enabling the

PPE or other SPUs in the system to access these resources, this aliased memory is not

coherent in the system.

The SPEs provide a deterministic operating environment. They do not have caches, so

cache misses are not a factor in their performance. Pipeline-scheduling rules are

simple, so it is easy to statically determine the performance of code. Although the LS

is shared between DMA read and write operations, load and store operations, and

instruction prefetch, DMA operations are accumulated and can only access the LS for

at most one of every eight cycles. Instruction pre fetch delivers at least 17 instructions

E

sequentially from the branch target. Thus, the impact of DMA operations on loads and

stores and program-execution times is, by design, limited.

Memory-mapped mailboxes or atomic MFC synchronization commands can be used

for synchronization and mutual exclusion. A detailed explanation of architectural

details regarding SPE is given in [13].

(lii) Memory Flow Control
Cell processor contains a dual channel next-generation Rambus XIO macro which

interfaces to Rambus XDR memory. The memory interface controller (MIC) is

separate from the XIO macro and is designed by IBM. The XIO-XDR link runs at

3.2 Gbit/s per pin. Two 32 bit channels can provide a theoretical maximum of

25.6 GB/s.

The system interface used in Cell, also a Rambus design, is known as F1exIO. The

Flex1O interface is organized into 12 lanes, each lane being a unidirectional 8-bit wide

point-to-point path. Five 8-bit wide point-to-point paths are inbound lanes to Cell,

while the remaining seven are outbound. This provides a theoretical peak bandwidth

of 62.4 GB/s (36.4 GB/s outbound, 26 GB/s inbound) at 2.6 Gl-Iz. The FlexlO

interface can be clocked independently, typ. at 3.2 GHz. 4 inbound + 4 outbound

lanes are supporting memory coherency. Figure 6 explains the memory flow control

system in the CBE. Memory Flow Control System consists of the following:

•DMA Unit

•LS <-> LS, LS<-> Sys Memory, LS<-> 1/0 Transfers

•8 PPE-side Command Queue entries

•16 SPU-side Command Queue entries

•MMU similar to PowerPC MMU

•8 SLBs, 256 TLBs

•4K, 64K, 1 M, 16M page sizes

•Software/HW page table walk

•PT/SLB misses interrupt PPE

•Atomic Cache Facility

•4 cache lines for atomic updates

10

•2 cache lines for cast out/MMU reload

•Up to 16 outstanding DMA requests in BIU

•Resource / Bandwidth Management Tables

•Token Based Bus Access Management and TLB Locking.

Figure 2.3: Memory Flow Control System [13].

(iv) Element Interconnect Bus (EIB):

The EIB is a communication bus internal to the Cell processor which connects the

various on-chip system elements: the PPE processor, the memory controller (MIC),

the eight SPE coprocessors, and two off-chip UO interfaces, for a total of 12

participants. The EIB also includes an arbitration unit which functions as a set of

traffic lights.

The EIB is presently implemented as a circular ring comprised of four 16B-wide

unidirectional channels which counter-rotate in pairs. When traffic patterns permit,

each channel can convey up to three transactions concurrently. As the EIB runs at half

the system clock rate the effective channel rate is 16 bytes every two system clocks.

At maximum concurrency, with three active transactions on each of the four rings, the

peak instantaneous EIB bandwidth is 96B per clock (12 concurrent transactions * 16

bytes wide / 2 system clocks per transfer). While this figure is often quoted in IBM

11

literature it is unrealistic to simply scale this number by processor clock speed. The

arbitration unit imposes additional constraints.

Each participant on the EIB has one 16B read port and one 16B write port. The limit

for a single participant is to read and write at a rate of 16B per EIB clock (for

simplicity often regarded 8B per system clock). Note that each SPU processor

contains a dedicated DMA management queue capable of scheduling long sequences

of transactions to various endpoints without interfering with the SPU's ongoing

computations; these DMA queues can be managed locally or remotely as well,

providing additional flexibility in the control model.

Data flows on an EIB channel stepwise around the ring. Since there are twelve

participants, the total number of steps around the channel back to the point of origin is

twelve. Six steps is the longest distance between any pair of participants. An EIB

channel is not permitted to convey data requiring more than six steps; such data must

take the shorter route around the circle in the other direction. The number of steps

involved in sending the packet has very little impact on transfer latency: the clock

speed driving the steps is very fast relative to other considerations. However, longer

communication distances are detrimental to the overall performance of the EIB as

they reduce available concurrency.

Despite IBM's original desire to implement the EIB as a more powerful cross-bar, the

circular configuration they adopted to spare resources rarely represents a limiting

factor on the performance of the Cell chip as a whole. In the worst case, the

programmer must take extra care to schedule communication patterns where the EIB

is able to function at high concurrency levels.

Element Interconnect Bus or EIB uses data ring for internal communication. The

features of EIB are:

• Four 16 byte data rings, supporting multiple transfers

• 96B/cycle peak bandwidth

• Over 100 outstanding requests

• Each EIB Bus data port supports 25.6GBytes/sec* in each direction

12

• The EIB Command Bus streams commands fast enough to support 102.4

GB/sec for coherent commands, and 204.8 GB/sec for non-coherent

commands.

• The EIB data rings can sustain 204.8GB/sec for certain workloads, with

transient rates as high as 307.2GB/sec between bus units.

• Physically overlaps all processor elements

• Central arbiter supports up to three concurrent transfers per data ring

• Two stage, dual round robin arbiter

• Each element port simultaneously supports 16B in and 16B out data path

• Ring topology is transparent to element data interface

(v) Memory Interface Controller (MIC)

The MIC provides the interface between the EIB and main storage. It supports two

Rambus Extreme Data Rate (XDR) I/O (XIO) memory channels and memory

accesses on each channel of 1-8, 16, 32, 64, or 128 bytes.

(vi) Cell Broadband Engine Interface (BIC)

The BEI manages data transfers between the EIB and I/O devices. It provides address

translation, command processing, an internal. interrupt controller, and bus interfacing.

It supports two Rambus F1exIO external I/O channels. One channel supports only non

coherent I/O devices. The other channel can be configured to support either non

coherent transfers or coherent transfers that extend the logical. EIB to another

compatible external device, such as another Cell Broadband Engine.

A good review explaining the potential of the STI Cell Broadband Engine, and its

programming models helping the applications to accelerate faster could be viewed in

[].4, 15].

3.3 Software Development Kit:

An SDK is available for the Cell Broadband Engine. The SDK contains the essential

tools required for developing programs for the Cell Broadband Engine. The SDK

consists of numerous components including the following [16]:

• The IBM Full System Simulator for the Cell Broadband Engine, systemsim.

13

• system root image containing Linux execution environment for use within

systemsim.

• GNU tools including C and C++ compilers, linkers, assemblers and binary

utilities for both PPU and SPU.

• IBM XLC (C and C++) compiler for both PPU and SPU.

• newlib for the SPU. newlib is a C standard library designed for use on

embedded systems.

• gdb debuggers for both PPU and SPU with support for remote gdbserver

debugging. The PPU debugger also provides combined, PPU and SPU,

debugging.

• PPC64 Linux with CBE enhancements.

• SPE Runtime management library supporting SPE thread services - libspe. A

next generation prototype SPE Runtime management, libspe2, is also

provided.

• Static timing analysis timing tool, spu_timing, that instruments assembly

source (either compiler or programmer generated) with expected instruction

timing details.

• System wide profiler for Linux call oprofile.

•An Eclipse based Integrated Development Environment (IDE) to improve

programmer productivity and integration of development tools.

• Standardized SIMD math libraries for the PPU's Vector/SIMD Multimedia

Extension and the SPU.

• Example source code containing samples, libraries, workloads, and prototype

tools. See the following section for more details.

14

CHAPTER 3

VIDEO SURVEILLANCE SYSTEM

3.1 Evolution of Surveillance Systems
"First generation" video-based surveillance systems started with analog CCTV

systems, which consisted of a number of cameras connected to a set of monitors

through automated switches. But the human supervision being expensive and

ineffective due to widespread deployment of such systems, they are more or less used

as a forensic tool to do investigation after the event has taken place. By combining

computer vision technology with CCTV systems for automatic processing of images

and signals, it becomes possible to proactively detect alarming events rather than

passive recording. This led to the development of semi-automatic systems called

"second generation" surveillance systems, which require a robust detection and

tracking algorithm for behavioral analysis. Second-generation surveillance systems

constitute the current state of the art from a commercial viewpoint.

The main technical innovation in second-generation surveillance systems is the

introduction of digital video representation. Second-generation surveillance systems

had explored the advantages of digital approaches to acquisition, transmission,

processing, storage, and visualization. Third generation surveillance system is aimed

towards the design of large distributed and heterogeneous surveillance systems for

wide area surveillance like monitoring movement of military vehicles on borders,

surveillance of public transport etc. Many projects have been undertaken for

development of third generation surveillance systems with network of cameras and

distribution of processing capacity. For example the Defense Advanced Research

Projection Agency (DARPA) supported the Visual Surveillance and Monitoring

(VSAM) project [17] in 1997, whose purpose was to develop automatic video

understanding technologies that enable a single human operator to monitor behaviors

over complex areas such as battlefields and civilian scenes. The usual design

approach of these vision systems is to build a wide network of cooperative multiple

cameras and sensors to enlarge the field of view. From an image processing point of

view, they are based on the distribution of processing over the network and the use of

15

embedded signal processing devices to give the advantages of scalability and

robustness potential of distributed systems.

3.2 Basic Model
The general framework of an automatic video surveillance system is shown in Figure

3.1. Video cameras are connected to a video processing unit to extract high-level

information identified with alert situation from the incoming video frames. This

processing unit could be connected throughout a network to a control and

visualization center that manages, for example, alerts. The main video processing

stages include background modeling, motion segmentation, object identification and

object tracking.

The model aims to segment out regions corresponding to moving objects such as

vehicles and humans from the rest of an image and track their motions over time for

behavior analysis. Background modeling assumes that the video scene is composed of

a relatively static model of the background, which becomes partially occluded by

objects that enter the scene. These objects are assumed to differ significantly from

those of the background model. Since the background is dynamic due to lighting

changes and movement of static objects, continuous updating of the model is required.

Here we implement a mean and variance background model [18], where we compute

the mean and variance over the last N frames which serve the model for the next N

frames.

We call N the refresh rate. Then in motion segmentation, we subtract the current

frame from the background frame and threshold to get the regions of interest (ROI).

Subsequently, these regions are further processed to remove noise and matched with

previously tracked regions to identify the objects (old and new ones). Finally the

objects are tracked and the current information is passed on for identifying the objects

in the next frame.

16

Camera

Network

Background Modeling 	Video
Processing

Motion Segmentation 	Unit

I Object Identification 	~

Current objects
Object Tracking 	information for

next frame

Control and
Visualization

unit

Figure 3.1: General framework of automated visual surveillance system [19].

3.3 Module Description

(i) Background Modeling:

In Background Modeling, we get a background for frames to be processed (although

the term `background' is not defined scientifically defined and their meaning may

vary across various applications). For example, a moving car should usually be

considered as a foreground object but when it parks and remains still for a long period

of time, it is expected to become background.

(ii) Motion Segmentation:

In computer vision, segmentation refers to the process of partitioning a digital image

into multiple regions or set of contours. Each of the pixels in a region.is similar with

respect to some characteristic or computed property, such as color, intensity, or

texture. The goal of segmentation is to simplify and/or change the representation of an

17

image into something that is more meaningful and easier to analyze. Image

segmentation is typically used to locate objects and boundaries in images. After the

background calculations we identify a local region of interest by segmenting

subsequent images, each containing the moving objects. The foreground and

background gradient information within each region are then combined into a contour

saliency map (highlighting the object's boundary). The gradients are thinned into

contour fragments which correspond to the region of interests of image which are

processed further to binary large objects (i.e., blobs).

(iii) Object Identification:
Object identification aims at segmenting regions corresponding to moving objects

such as vehicles and humans from the rest of an image. Identifying moving regions

provides a focus of attention for later processes. The regions processed in previous

stage are further processed, their gradients are further thinned using morphological

operations to segment out as blobs. An object is made up of one or more blobs.

(iv) Object Tracking:

Tracking concerns a process starting with determining the current and past locations

of the objects position and trajectory. Object tracking aims at finding the locations of

objects in the scene, labeling and tracking the objects in the scene. The positions of

the regions or blobs processed by previous routines are calculated, labeled, and

various other parameters like frame number, area occupied by the object in the scene

are stored if object was seen at first instance else its parameters are updated

accordingly as found in the new scene. Our implementation of the Video Surveillance

model is based on [19].

3.4 Algorithm

The algorithm consists of various components like Background updation,

Segmentation routine (call to routines roi, blobs), Matching routines and Track

routine (call to routine match). Figure 2 shows the program structure of algorithm.

Update Background is used to update background for every N frames (where N=10 in

our implementation). ROI routine is used to select region of interest in the image

which is currently under processing. Blobs routine is used to make a boundary or

18

bounding box over the region of interests like humans, moving objects in the image.

Track routines like match is used to match the current observed object with previous

objects collected so far, if it is new one it is collected here. The algorithm is shown

below. Figure 2 shows the program structure for the implementation of the Algorithm,

and Figure 3 shows the objects detected in the scene by Video Surveillance
Algorithm.

ALGORITHM 1

Algorithm Video Surveillance

Step1: for I=1 to M

{

Step2: Read the current video frame/image (I)

Step3: If (I % N=0) Background =Update Background (past N frames)

Step4: ROI=Segmentation routine (current frame, Background);

Step 5: Objects=Object Identification (ROI, Objects Info)

Step 6: Objects Info=Track routine (Objects)

Video Surveillance Algorithm.

19

Camera Images

Update background

Calculation of region of
interest

I Calculation of blobs

Matching the objects
detected

Next iteration

Figure 3.2: Program structure for the Video surveillance Model.

Figure 3.3(a): Visible Image showing various objects detected in the scene.

3.3(b): Infra Red Image showing various objects detected in the scene.

20

3.5 Computational Issues and Challenges
For computation purpose, each frame is a matrix of size p x q (say 240 x 320). The

first sub procedure Update Background is concerned with fmding mean and variance

over N frames. For this we need to read N frames, sort each pixel of frame with

respect to other frame and apply an exponential series procedure to find mean and

variance. Also the second sub procedure involves many matrix operations like

convolution, multiplication etc. Apart from these there are many image processing

procedures involved to reduce noise, fill gaps etc. Now the video has data rate ranging

from 20-30 frames/second. Update Background forms the most expensive operation

than other components of the algorithm. In its implementation we operate on many

matrices of order nearly (240 x. 320), and update some three dimensional data

structures and using many loops. Loop unrolling [20] benefits in increasing

performance of this routine, but the operation on matrices and three dimensional data

structures make it computationally intensive. The other computational components in

descending order are track routine, identification routine, segmentation routine. So, to

process the incoming video frames in real time makes the application very

computation intensive. Seeing the above perspective of video surveillance algorithm it

suggests that it is a computationally intensive application and needs to be parallelized

to increase its performance.

11

21

CHAPTER 4

IMPLEMENTATION OF VIDEO SURVEILLANCE ON

CLUSTER

4.1 Introduction
In our previous work, we had proposed and implemented a model of video

surveillance on computer cluster. Cluster, being a coordinated resource sharing

concept, it would aptly suit for such implementation where we could exploit idle

desktops present in the campus.

4.2 Review of related work
Czarnul et al. [21] explains implementation of parallel image processing scheme for

GIMP plug in which enables to invoke a series of filter operations in a pipeline in

parallel on a set of images loaded by the plug in. DAMPVM environment was used

for scheduling workloads on to cluster, where the cluster was based on Linux based

Intel platforms. A methodology for scheduling tasks is presented, where the strategy

is based on selecting idle nodes, queuing tasks and monitoring the load. A speed up of

14x is achieved, in which the speed up raises linearly on increasing the number of

processors used. 	 C

Buyya et al. [22] presents taxonomy of various scheduling approaches for building

and executing workloads on grids, providing details of their characterization. Also, a

review of Grid workflow systems developed is provided. Taxonomies where

workflow design was based on workflow structure, specification, composition and

quality constraints are presented.

4.3 Our implementation

4.3.1 Cluster Setup
In our previous work we had proposed a parallel architecture for mapping the

application on a cluster as shown in figure 4.1. We assert that this architecture

comfortably adapts to Video Surveillance and applications similar, where jobs

arriving at a cluster are sets of tasks which have some dependency between them. The

22

main advantage we achieve in this architecture is less waiting time for a node, when it

is waiting for a result of a task executing on other node and which is needed for

execution of current task on the former node. In this architecture, we propose a

method in which we arrange set of different clusters in a hierarchy which form a giant

cluster architecture. We elect a node as a leader of each cluster and in turn a leader

elected from those elected leaders of cluster. Each leader is responsible to schedule

tasks onto its local nodes, collect the results from them and then return the result to

leader above its level. The root node is responsible to schedule jobs to nodes (leader)

under it. The advantage of having root node and leader nodes is to have some

hierarchical control over the clusters. Apart from this, we also achieve giant cluster

architecture by connecting just the leader nodes of clusters through the root node.

After the tasks are distributed to leaf nodes, they start executing. The nodes at higher

level also execute some portion of the job scheduled to them by the nodes above it.

The advantage we achieve is every node executes the portion of task it can without

waiting for result from any node and buffering the results achieved. It continues to

execute independent portions of tasks and buffering the results, thus by this strategy

each machine is utilized and the waiting time for each node is minimized. When a

node finishes execution of a task, it does two things before executing new set of tasks

scheduled on to it. First, it passes the result to the next node waiting for it, second, it

deallocates the memory it used for buffering. This process of passing results goes on

until the last node waiting, receives results and then passes the final result to the

leader node of the cluster. When the results are passed to leader node, it completes all

tasks it had buffered and passes them on to the higher level. The root node in turn

completes all tasks which are buffered and again schedules some jobs to each leader

under it. This root node schedules jobs to nodes under it either after processing tasks

buffered or before processing them.

23

I -Root Node

Leader Node 1 I 	I Leader Node 2

Figure 4.1: Proposed Cluster Set up.

4.3.2 Implementation of Video Surveillance Algorithm for parallelization

In the algorithm implemented on cluster, every iteration consists of executing

Segmentation routine (call to routine roi), Identification routines (call to routine

blobs), and Track routine (call to routine match). In the algorithm we observe that

result of each particular routine is used as parameter in the next routine. The

algorithm looks serial where in output of each particular routine is input for next

routine, but some things could be exploited for parallelizing the algorithm.

Background routine runs for every N iterations and computes a background which is

used for next N-1 iterations, and Segmentation (roi), Identification (blobs) routine

could be run independently for each iteration as whose return value is used for that

current iteration and not for next iterations, where as the data structures for Object and

Object info are updated every iteration. When all the no. of iterations are completed in

the Video Surveillance algorithm it returns Object, Object info as results. Therefore

background, segmentation, identification form the portion of iteration which could be

run independently at each node and buffer ROI values, wait for (objects) value from

previous node. In this model the observation could be made that the ratio of

parallelizable portion of iteration versus non-parallelizable portion is considerably

good (as Background, blobs, roi forms parallelizable portion where Background forms

most computational intensive task and track routine (match) forms non-parallelizable

portion).

24

The program structure (shown in figure 4.2) of algorithm implemented 'consists of

execution of program at leader node (who is responsible to schedule jobs onto other

nodes), and at nodes. Leader node is any one selected amongst the cluster of nodes.

Algorithms for implementation of application on cluster are shown below.

sfit1393t

Job

P.OI and 	I ROI and 	ROI and
Blots 	I Blobs 	 Blobs

ROI 	
routines 	routines 	 routines

 acrd
Blots
routines

Wait zid let I i 	?ODE? 	(ODE 3 	I 	\ODE 4
m1 	 I 	 f

IDEXi ODE
	 Schediilei

(NOIDE 1)

Figure 4.2: Implementation of Video Surveillance on cluster.

25

ALGORITHM 2

Algorithm Parallel Code
{

Step 1: contact the scheduler and check its status;
Step 2: while(i<=M)

Step 3: If(i % N==O) B=Update Background(past N frames)
Step 4: If(job is complete) {

temp=i;
create a j ob with tasks of xi iterations for ith node,pass
parameters (i,B,M) to nodes, submit job to scheduler.
i=i+x+i%10;

Step 5: R=roi(B,current frame);
Step 6: B1=Blobs(R);
Step 7: If(i>temp) Buffer the results of routine Blobs in array B12;
Step 8: If(job is complete) {

Inspect job for errors and if display them;
• Execute match routine M=match (blv2[]) for iterations
whose
blobs output was buffered at this node.

Algorithm for Implementation of Single Camera Model for Video Surveillance on

Leader Node.

26

ALGORITHM 3
Algorithm Node n(i, B, M)
{

Step 1:xn=no of iterations node n has to execute.
Step2:while(a<=xn)

{
Step3: If(i % N==O) B= Update Background(past N frames)
Step4: R=roi(current frame,B);
Steps: B1=Blobs(R);
Step6: If(node==2) M=match(Bl);

else Buffer the results of routine Blobs in array B12;
Step7: If(node—=2) {

Wait until node receives results of previous iterations (M)
Execute match routine M=match (blv2[]) for iterations

whose
blobs output was buffered at this node.

}
}
Step8: If(node<=4) Pass results (M) to next node (node+l)

}

Algorithm for Implementation of Single Camera Model for Video Surveillance on

Other Node.

27

4.3.3 Problems associated with Cluster Implementation

In our implementation, we had faced problems of communicational delays which

were fatal for performance. In the parallel version of the algorithm, there were several

factors increasing communication delays. For instance, we could observe that the

leader node had to check at every instance after a frame it had processed, whether job

submitted to its respective leaf nodes has been completed or not, along with running

its part of workload, thus increasing communication between nodes. Moreover, the

other factors hindering the performance were that the images had to be transmitted, to

the nodes for processing, adjacent nodes had communicate the results of processed

frame and thus summing these factors had increased the communicational delays to a

major extent. Other factors like memory needed to store images, process them were

also effective but due to increased improvements in hardware technology this factor

could be hid considerably.

Observing the factors there was possibly a need for an investigation of Video

Surveillance algorithm on an on chip multicore processor like CBE, who had bus and

nine cores itself on a chip offering a EIB bus speeds at higher speeds.

28

CHAPTER 5

VIDEO SURVEILLANCE APPLICATION ON CBE

5.1 Introduction
CBE offers a platform with heterogeneous processing capabilities, which forms a

suitable architecture for various multimedia and scientific applications. It provides

eight cores of SPEs which form accelerators, and provide a platform for applying

various parallelization schemes for performance improvement. We provide some

review of research done in video processing on CBE in the next section.

5.2 Review of Video Processing Applications on CBE
In [23], Liu et al. explains an implementation of Background subtraction system

(BGS) system on STI Cell Broadband Engine (CBE). BGS finds objects by looking

for moving regions against a stationary background. The BGS system is divided into

four separate stages Image Pre-processing, Salience Detection, Mask Generation and

Model Maintenance. In order to make most efficient use of CBE's resources and be

able to handle multiple video streams with any given number of SPEs, each SPE is

assigned to complete a unit of work and then ready to be reassigned. As in most of the

image processing library, the video analysis functions in BGS need at least one or two

video frames as input and generate another as output, which is impossible to keep in

SPE's local store all at once. We thus use a DMA load operation to bring in a small

block of data to SPE local store at a time, let the SPE process the data in local store,

write processed data back to PU memory with a DMA store operation. The overhead

of the DMA operations can generally be hid using double buffering scheme. He could

achieve nearly 6-9x improvement of speed up over the non parallel version of the

application.

Yu et al. [24] presents a scheme for parallelizing video processing and retrieving

model on CBE. A multilevel parallel partition schema of video processing is

suggested in his work. In his approach workloads were partitioned namely Service,

Streaming models which form the Video Processing and Retrieval (VPR) framework,

and are mapped on nine cores of CBE is presented. In this schema of parallel

29.

partition, intensive computation workloads are partitioned and distributed by PPE to

the SPE cores, which perform their part of the workloads and send the computation

results to PPE. In the implementation of Service Model, PPE assigns different

services to different SPEs, and the PPE's main process calls upon the appropriate

SPEs when a particular service is needed. Streaming model is implemented to

organize the PPE and SPE processors to act as stream-data processors in a serial

pipeline to accelerate the data processing. These computations were done in parallel

among PPE and SPE processors viewing them as a group of "threads". Through data

allocation PPE tells each SPE processor to execute specific regions in parallel. PPE

executes the region as the master thread of the team. At the end of a parallel region,

PPE waits for all other SPE to finish and collect the required data from each SPE.

In [25], Azevodo et al explains an implementation of Video filtering approach on

CBE. In their work, they have implemented Deblocking Filter (DF) using scalar and

vector (SIMD) approaches on the platform. PPE was used only for reading the

parameters from the input files and to store them in main memory. After storing the

parameters, the SPE threads were spawned. Thereafter, the PPE thread sends a signal

to all SPEs to start the computation. Each SPE thread processes one frame, and the

processing starts by reading the input pointers for the samples and parameters from

the main memory. Each frame was divided, to use the SPEs ability of performing

computation and data communication in parallel. This partition is based on several

factors such as the latency, maximum DMA transmission package size, number of

DMA transfers, and organization of the data in the memory. The processing of the

frame at each SPE was performed as a software pipeline and used a double buffering

strategy. First, a part of data was requested, followed by the request of the data for the

second portion. After the data of the first portion was available in the LS it is filtered.

This way the processing of first portion is performed in parallel with the data

transmission of second portion. In this way they have exploited the double buffering

scheme of CBE.

In [26], Park et al. proposed an approach for parallelizing X264 encoding algorithm of

H.264 encoding scheme. They have proposed and implemented a pipelining model for

parallelizing application. The algorithm was partitioned into three sections two for

frame data processing and one for macro-block processing. In their implementation, a

30

frame is broken into blocks in which the encoding for each block was done in

pipelined fashion along with maintaining data dependency between processing of

blocks. PPE was responsible all data transfers and synchronization in processing of

frame among SPEs.

In [27], Marcenaro et al. proposes a distributed architecture for multimedia

surveillance. In their work, they have decomposed surveillance functionalities like

segmentation and tracking into a set of modules among set of physical processing

units structured into a distributed (using Java threads), heterogeneous, intelligent

hierarchical surveillance network.

5.3 Study of Algorithm for parallelization on CBE
The CBE consists of eight cores of SPE and one core of PPE, which forms altogether

a heterogeneous platform and applications ported on it, must be parallelized in

accordingly keeping in view of this aspect. In general, implementation of a system on

CBE consists of three phases. First the uniprocessor code needs to be partitioned into

code to be run on the PPE and SPEs. Second, the SPE code should be vectorized to

exploit the strength of vector engines in the SPEs. Finally tasks should be scheduled

optimally to bring the best speedup with the least idle time in the SPEs. Programming

models for Cell architecture differ as to how code is partitioned and how SPEs are

used. SPE form the accelerator cores of CBE which could be exploited for

computational intensive operations. Our goal is to select the programming paradigm

that offers the simplest possible expression of an algorithm while being capable of

fully utilizing the hardware resources of the Cell processor.

The Video surveillance system consists of Background Modeling, Motion

Segmentation, Object Identification, and Object Tracking of which most of 1/0

operations are performed in Background modeling, and other routines perform the

computational operations on the image read. As PPE has more access to I/O over

SPEs and moreover to exploit the accelerators of CBE (SPE),, we schedule

Background modeling routine on PPE and others on the SPE's. In this scheduling we

optimize by pre calculating background before its use for further iterations which run

on SPE, and hence hiding the I/O overhead with execution of video frames. For

simplicity purpose we had carried out our operations on images by converting them

31

onto grayscale and black and white for processing. We can convert an RGB image

into grayscale by, analyzing its intensities, or modifying the color map according to

intensity.

We can use the standard NTSC conversion formula that is used for calculating the

effective luminance of a pixel:

Intensity = 0.2989*red + 0.5870*green + 0.1140*blue.

The crucial aspect for the implementation was limited storage capacity of SPE (256

KB). So, it cannot accommodate an image totally to operate (a matrix read from an

image size of 240*320 is nearly about 307 KB), and it needs to perform DMA

operation (amount maximum 16 KB) repeatedly to fetch image into its local memory.

To cater this issue we need to distribute an image carefully on all SPE's so that they

could operate synchronously and hence all those DMA operations are done in parallel

by SPEs following with computational operations which are performed later. Thus, by

this approach we could bring out data parallel programming amongst the SPE's. In

this approach we load a portion of image into Iocal store of SPU by performing DMA.

Figure 5.1 highlights the scheme which shows the break up of image into eight parts,

and each SPU processing its portion of image. Even though, in this approach we have

reduced the amount of DMA operations, they bring high communicational delays in

the implementation of the algorithm, which brings down the computation to

communication ratio or CCR [28] ratio of algorithm. To address this we use double

buffering scheme by which DMA latency can be hidden upto some extent.

32

Figure 5.1: A sample image which is processed, each SPU processes its portion of

image and achieving data parallelism.

Apart from above issues, we face other challenges of synchronization. Since all SPE's

process in parallel an image they need to .get synchronized while identifying and

tracking an object. For instance, in implementation of Object identification we find

connected components in an image to get a region of interest, in which all the SPU's

need to get synchronized so that objects are identified correctly. To handle this issue

we perform DMA operation by which we store the processed matrices of SPU's at

contiguous locations in DRAM and process them sequentially at PPE. The

synchronization of SPU's could be done by using mailboxes where each SPU signals

PPU whether it has finished its DMA, so as PPU could start processing to get

connected components in the image. Once we get connected components of an image,

SPU executes its residual processing on the image. Figure 5.2 illustrates our approach

for parallelization.

33

camera

Back ground Motion
modIing Se mentation

Synchronization
using Mail Box

Read Image Object
Identification

Synchronization
using Mail Box

Object Tracking
Connected 	I i

Figure 5.2: Parallelization approach used to implement Video Surveillance on CBE.

5.4 Algorithm
In this section we present the parallel algorithm used for implementation on CBE. The

algorithm described below shows various routines mapped on to different cores of

CBE. In the PPU side, we execute Background routine for every N frames, wait until

SPUs finishes processing a frame and calculate connected components from an image

and iterate upon until it finishes processing required number of frames. On the SPU

side, we execute Segmentation routine (roi) and notify PPU through mail box for

reading next frame so as SPU could later perform DMA operation to get next frame

into its local store, we then run object identification routines (blobs), notify PPU

through mailbox for calculation of connected components and finally track the objects

found and iterate upon until it finishes processing required number of frames.

In overall implementation of our algorithm on the CBE, we had tried to minimize the

idle time of the PPE by buffering the image, calculating background in advance of,

completion of refresh rate of Video surveillance algorithm. The utilization of SPE was

maximized by reducing DMA operations, unless waiting for synchronization with

other SPE's in this approach.

In the overall approach used, on comparison with the cluster implementation, the

communicational delays between different cores was less as CBE offers a high speed

34

EIB (as discussed in the above chapter). Moreover as each SPE unit works on portion

of an image sonie challenges which we face during cluster implementation were met

here, as in case of CBE we could perform as many DMA operations to get image

from DRAM and handle this issue.The algorithm can be summarized in following

steps:

Algorithm 4

1. Read image into a matrix and evaluate Background.

2. Perform Background modeling for next

N frames until SPU finishes reading image matrix.

3. Perform Background Modeling until SPUs call PPU for either reading image

finding connected components.

4. Find connected components in an image.

5. Goto Step2 until all images are processed.

6. End.

Algorithm for Implementation of for Video Surveillance on PPE.

Algorithm 5

1. Read image matrix.

2. Perform Motion Segmentation.

3. Send signal to PPU through mailboxes, to start reading next image.

3. Perform Object Identification.

4. Send signal to PPU through mailboxes, for evaluating connected components in an.

image at PPU side.

5. Perform Object Tracking

6. Goto Step2 until all images are processed.

7. End.

Algorithm for Implementation of for Video Surveillance on SPE.

35

CHAPTER 6
RESULTS AND DISCUSSIONS

6.1 Experimental results on CBE
The above algorithm has been simulated using Ce11SDK 2.0 simulator running on

VMware Player (running on Windows based platform). The parameter that was

measured was the total execution time of the algorithm with respect to the total

number of iterations (frames) processed. The speed up is 43.1 times faster compared

to implementation of Video Surveillance on a Windows based Pentium workstation.

Table 6 shows comparison between both approaches. Figure 6.1 demonstrates the

execution time of Video Surveillance Algorithm based on number of iterations run.

Table 6.1: Speed up on Cell in comparison with Pentium platforms.

00

00

a.

 000 	 —~-

OQ

`

0 0

00 	50 	100 	150 	200 	250 	300 	350 	400 	450 	600
No . of'tteratiana

Figure 6.1: Execution time of Video Surveillance on CBE Simulator (in terms of

number of iterations).

6

50

400

30

2000

1 00

36

The above graph demonstrates execution times of application run for 500 iterations

(processing nearly 800 images) in milliseconds. The execution times for alliterations

are nearly same as the calculation of background (which is the most I/O intensive

routine is hid with the execution of computational routines on SPEs. Thus with these

optimizations, we could observe that with the exception of first iteration, execution

times of all other iterations are nearly a same value. Hence, from the above results we

could observe a linear increase in execution time and constant speed up with increase

in amount of workloads.

Comparison of Results varying number of SPEs

Table 6.2: Execution times and speed up of Video Surveillance Algorithm on CBE on

varying number of SPEs used.

The above table describes the execution time of Video Surveillance Algorithm on Cell

SDK by varying the number of SPEs used. The table shows algorithm run on (2,

4,5,6,8) number of SPEs using an image (of dimension 240*320), The experiment

could not be done using 3,7 SPEs using the above parallelization strategy as image

could not be fragmented by 3, 7 respectively with maintaining homogenous tasks for

all SPEs and moreover maintaining data alignment for DMA operations. Also, in case

of using single SPE the total of image, matrices, data structures for objects used, and

program at SPE exceeds local store capacity of 256KB, and needs excessive DMA

operations where I/O factor dominates over computational exploitation, and hence

degrading performance.

37

We could observe that total execution time increases with decreasing number of

SPEs, not only due to increase in computational workload on each SPE but also due

the increment in number of DMA operations. Each DMA operation could fetch at

maximum of 16 KB of data into or out of a local store, and the amount of DMA

operations double from fetching 32 rows to 122 rows of image when SPEs used get

halved from 8 (using all cores of CBE) to 2. Moreover, while using less number of

SPEs for implementation, the number of computations increases as each SPE gets

more data to process.

Other factor which could be noticed is that speed up drastically increases when we

increase the usage of SPEs from 4 to 5 and 5 to 6, as in first case the amount of DMA

calls reduce which amounts to the speed up, and in second case the amount of data

transferred and decrease in computational workload per SPE accounts to speed up.

Thus, from above results we could observe a steep increase in speed up, nevertheless

utilizing the all the accelerator cores of CBE the desired speed up could be achieved.

6.2 Comparison of results with implementation on computer cluster
The Video Surveillance algorithm described in Section 2 was implemented on

MATLAB R2006a version using the distributed computing toolbox as a part of our

previous work. A local cluster was setup using the processors that formed part of the

campus LAN in IIT Roorkee and were connected through coaxial cables MATLAB

Distributed Computing Environment (MDCE) was used for configuring the cluster

environment. Table 8 shows the speed up comparison between CBE and computer

cluster approaches. The speed up 19.386 is times faster compared to implementation

of Video Surveillance on a cluster.

38

Video frame number 834

Table 6.3: Speed up on Cell in comparison with cluster implementation of the

algorithm.
The factors such as high speed EIB bus, on chip multicore processing ability of CBE
have helped the application achieve marked performance over the cluster

implementation. Moreover, the transmission of images which were a substantial part
of delay in our previous work, here they have been simply altered as all cores reside

on same chip and address a same DRAM.

6.3 Test Data Used
The test data used were sample video frames, where Video Surveillance found

interesting objects, and tracks them throughout the video frames. Figure 6.2 shows
some of the sample video frames used.

Figure 6.2: Sample images used for implementation.

39

The above data set was used and converted to grayscale and then processing was done

on black and white images. Figure 6.3 shows image used, background image, region

of interest calculated and objects detected by the implementation of Video

Surveillance. From the below figure, we could also infer the accuracy of
implementation.

Video frame no 1198 	 Gray scale image of video frame

Background image 	 Region of interest and objects in scene

Figure 6.3 (a): Objects detected in video frames of data set 1.

(data set 1: Visible camera bitmap images)

40

Background image 	 Region of interest and objects in scene

Figure 6.3(b): Objects detected in video frames of data set 2.

(data set 2: Infrared camera bitmap images)

41

Video frame no 2100
	

Gray scale image of video frame

Figure 6.3(c): Objects detected in video frames of data set 3.

(data set 3: Visible camera bitmap images)

42

•

Video frame no 264 	 Gray scale image of video frame

Background image 	 Region of interest and objects in scene

Figure 6.3(d): Objects detected in video frames of data set 4.

(data set 4: Visible camera bitmap images)

43

CHAPTER 7

CONCLUSIONS AND SCOPE FOR FUTURE WORK

In this work, we have proposed a parallelization model for implementation of Video

Surveillance application on the STI Cell platform. This model could be efficaciously

used for applications similar to Video Surveillance whose tasks entail high intensive

data and computational requirements with application specific modifications.

The implementation of a video surveillance algorithm on Cell was carried out and its

performance was shown to display a considerable improvement. The various issues

related to implementation of the algorithm are general, yet specific algorithms will

have to be developed for different surveillance algorithms. We had achieved a marked

improvement of 43x over the non distributed version and 19x over the cluster

implementation. Also, the result images illustrate the accuracy of the implementation

on the STI Cell platform.

Issues such as limited storage of SPE and optimizing the DMA operations were

solved. A data parallel programming paradigm was used to exploit the accelerator

cores of CBE, so as the storage problem of SPE could be solved inherently using this

approach. The SPU intrinsic libraries available on the platform could have been

exploited, so as the vectorization of the code could be done both at application and

hardware level. Moreover, the scalability issues such as exploiting the dual thread

support of PPE for better management of I/O and SPE threads and image processing

part to work on various formats of images could have been implemented in our work.

Future works in this course would be to experiment with an actual Cell

implementation and explore the performance of the platform in audio and multi-

camera surveillance scenario. The surveillance cameras could be connected via the

internet to distant processors. A model for implementation for multi-camera fusion

based surveillance system is provided in [29].

44

Another suggestion for future works could be to experiment the multi-camera

surveillance scenario on real grid system, where a grid and the sensors deployed at

various sites would communicate via the internet. A model for. implementation of a

media tracking system of vehicle plates using grid as computational platform could be

viewed in [30].

The other way we could extend our work is by introducing some fast techniques of

morphological operations in Video Surveillance algorithm to increase its performance

at image processing level. Methods for Fast Morphological Image Transforms are

provided in [31]. Another important issue to address in this case would be scalability

and security aspects.

45

REFERENCES

[1]T. P. Chen, H. Houssecker, A. Bovyrin, R. Belenov, K. Rodyushkin,A. Kuranov,
V. Eruhimov ," Computer Vision Workload Analysis: Case Study of Video
Surveillance Systems" ,Intel Technology Journal ,Vol 9, Issue 2, pages: 109-118,
May 2005.

[2]"Sun Reference Architecture for Video Surveillance ", White Paper, Sun
Microsystems, Inc. 2007. http://www.sun.com/videosurveillance (last accessed on 2
June 2008).

[3]"Toshiba to demonstrate prototype of new "SpursEngine TM" processor at
CEATEC JAPAN 2007", http://www.toshiba.co.jp/aboutipress/200709/pr2001.htm
(last accessed on 22 May 2008).

[4]G Kola, T Kosar, M Livny. "A fully automated fault-tolerant system for distributed
video processing and off-site replication", Proceedings of the 14th international
workshop on Network and operating systems support for digital audio and video
Cork, pages: 122 —126, June 2004.

[5] R. Collins, A. Lipton, T. Kanade, H. Fujiyoshi, D. Duggins, Y. Tsin, D. Tolliver,
N Enomoto, O. Hasegawa, P. Burt, and L. Wixson, "A system for video surveillance
and monitoring", Technical report, CMU-RI-TR-00-12, Robotics Institute, Carnegie
Mellon University, 2000.

[6] I. Pavlidis, V.Morellas, P. Tsiamyrtzis, and S. Harp. "Urban surveillance systems:
from the laboratory to the commercial world". Proceedings of IEEE, 89, (10),
pages:.1478-1489, 2001.

[7] A. K. Nanda, J. R. Moulic, R. E. Hanson, G. Goldrian, M. N. Day, B. D. 'Amora,
S. Kesavarapu., "Cell/B.E. blades: Building blocks for scalable, real-time, interactive,
and digital media servers", IBM Journal of Research and Development, vol. 51, no. 5,
pages:573-582, September 2007.

[8] T. King, I. Shearer, "The Cell BE Processor: A Broadband Engine for Broadcast
Applications", 	White 	paper, 	Mercury 	Systems 	Inc. 	2007.
http://www.me.com/uploadedFiles/Mercury-IPV-whitepaper.pdf (last accessed on 18
May 2008).

[9] M. Valera,_S.A. Velastin, "Intelligent distributed surveillance systems: a review".
In Image and Signal Processing, IEEE Proceedings, vol. 152, pages: 192 — 204, April
2005.

[10] A. Mahalanobis, J. Cannon, R. Stanfill,,R. Muise, and M.Shah, "Network Video
Image Processing for Security, Surveillance, and Situational Awareness". Keynote at
SPIE conference of Digital Wireless Communication VI, Orlando, 2004, April 12-13.

46

[l l] 7 	Ls S.P. Kumar, B.A. Hamilton, "Sensor networks: evolution,
Challenges".Proeteedings of the IEEE, vol. 91, pages: 1247- 1256,

2OULr

[12] CBEA Programming Tutorial, IBM Systems & Technology Group, Version. 2,
December 2006

[13]Synergistic Processing In Cell's Multicore Architecture - Michael Gschwind, H.
Peter Hofstee, Brian Flachs; Martin Hopkins, IBM, Yukio Watanabe, Toshiba,
Takeshi Yamazald, Sony Computer Entertainment IEEE Computer Society, pages:l0-
24, 2006

[14] S. Williams, J. Shall', L. Oliker, P. Husbands, S. Kamil, K. Yelick, "The Potential
of the Cell Processor for Scientific Computing", Technical report, LBNL-59071,
Lawrence Berkeley National Laboratory, University of California, 2005.

[15] M. Gschwind, "The Cell Broadband Engine: Exploiting Multiple Levels of
Parallelism in a Chip Multiprocessor", International Journal of Parallel Programming,
vol. 35, no. 3, pages 233-262, June 2007.

[16] M. Gschwind, D.Erb, S. Manning, M. Nutter,"An Open-source Environment for
Cell Broadband Engine System Software", IEEE Computer Society, vol.40, no. 6,
pages 37-47, June

[17] T. Kanade, R Collins, A. Lipton, P. Anandan, and P. Burt. Cooperative
multisensor video surveillance. In Proceedings of the 1997 DARPA Image
Understanding Workshop, vol. 1, pages 3-10, May 1997.

[18] J.W. Davis , V.Sharma. "Fusion-Based Background- Subtraction using Contour
Saliency", Computer Vision and Pattern recognition, pages: 20-26 June, 2005.

[19]P. Kumar, A, Mittal, P. Kumar. "Study of Robust and Intelligent Surveillance in
Visible and Multimodal Framework", Informatics, vol. 31, part 4, pages 447-462,
2007.

[20] S. Hiroyuki, Y. Teruhilo. "Characteristics of Loop Unrolling Effect : Software
Pipelining and Memory Latency Hiding", Inn pages:ovative Architecture for Future
Generation High-Performance Processors and Systems, IEEE, pages:63-72, January
2001.

[21]P. Czarnul A. Ciereszko, M. Fraczak "Towards Efficient Parallel Image
Processing on Cluster. Grids Using G11VIP", LNCS, Springer Verlag Publication, vol.
3037, pages: 451-458, 2004.

[22]R. Buyya, J .Yu. "A Taxonomy of Workflow Management Systems for Grid
Computing", Journal of Grid Computing, vol.3, nos 3-4, pages:171-200, 2005.

47

[23] L. Liu S. Kesavarapu, J. Connell„ A. Jagmohan, A. Leem, L. Paulovicks, B.
Sheinin, V. L. Tang H. Yeo , "Video Analysis and Compression on the STI Cell
Broadband Engine Processor", IEEE International Conference on Multimedia and
Expo, pages: 29-32, July 2006.

[24] J. Yu , H. Wei. "Video Processing and Retrieval on Cell Processor Architecture",
Entertainment Computing — ICEC 2007, LNCS, Springer Verlag Publication, volume
4740, pages :1-12, 2007.

[25] A. Azevedo, C. Meenderinck, B. Juurlink." Analysis of Video Filtering on the
Cell Processor", Proceedings of International Symposium on. Circuits and Systems
(ISCAS, pages: 488-491,.May 2008.

[26] J. Park, S. Ha. "Performance Analysis of Parallel Execution of H.264 Encoder on
the Cell Processor", In the Proceedings of IEEE/ACM/IFIP Workshop on Embedded
Systems for Real-Time Multimedia, pages: 27-32, 2007.

[27] L. Marcenaro, F. Oberti, G. L. Foresti, C.S. Regazzoni , " Distributed
Architectures and Logical-Task Decomposition in Multimedia Surveillance
Systems",IEEE Proceedings, vol. 89,no. 10, pages: 1419 — 1440, October 2001.

[28]Y.Yu,B.Krishnamachari,V.K.Prasanna. "Issues in Designing Middleware for
Wireless Sensor Networks".IEEE Network, pages: 15-21, January/February 2004.

[29] P. Kumar, A. Mittal and P. Kumar. "A Multimodal Audio, Visible and Infrared
Surveillance System (MAVISS)". In Proceedings of the 3rd IEEE International
Conference on Intelligent Sensing and Information Processing (ICISIP), pages: 151-
157, 2005.

[30] Z. B. Musa, J. Watada, " A Grid—Computing based Multi—Camera Tracking
System for Vehicle Plate Recognition", Kybernetika--The Journal of the Czech
Society for Cybernetics and Information Sciences, vol. 42,no. 4 , pages: 495-514,
August 2006.

[31] R. D. Boomgaard, R. Balen. "Methods for Fast Morphological Image Transforms
Using Bitmapped Binary Images", CVGIP: Graphical Models and Image Processing
vol. 54, no. 3, pages: 252-258, May 1992.

48

PUBLICATIONS

P.V.Kumar, P.Kumar, A.Mittal, R.Dubey. "A Scheduling Architecture for Distributed
Video Surveillance System", International Conference on Systemics, Cybernetics,
Informatics, Hyderabad, January 2008. pages 104-112.

P.V.Kumar, P.Kumar, A.Mittal. "A Basic Video Surveillance Architecture on the STI
Cell Broadband Engine Processor", National Conference on Research and
Development in Hardware and Systems (CSI-RDHS 2008), Kolkata, June 2008.

P.V.Kumar, P.Kumar, A.Mittal. "An Implementation of a Basic Video Surveillance
Algorithm on the STI Cell Broadband Engine", International Conference on
Information Processing, Bangalore, August 2008.

49

GLOSSARY

ster is a group of coupled computers that work together closely so that

is they can be viewed as though they are a single computer. The

of a cluster are commonly, but not always, connected to each other

fast local area networks. Clusters are usually deployed to improve

riance and/or availability over that provided by a single computer, while

.:ally being much more cost-effective than single computers of comparable speed

availability.

rid

A computational grid is a hardware and software infrastructure that provides

dependable, consistent, pervasive, and inexpensive access to high-end computational

capabilities. Grid computing is distinguished from typical cluster computing systems

that grids tend to be more loosely coupled, heterogeneous, and geographically

dispersed. Also, while a computing grid may be dedicated to a specialized application,

it is often constructed with the aid of general purpose grid software libraries and

middleware.

50

	Title
	Abstract
	Chapter 1
	Chapter 2
	Chapter 3
	Chapter 4
	Chapter 5
	Chapter 6
	Chapter 7
	References

