
CONTROLLED GIRTH, STRUCTURED LDPC CODES

A DISSERTATION
Submitted in partial fulfillment of the

requirements for the award of the degree

of

MASTER OF TECHNOLOGY

in

ELECTRONICS AND COMMUNICATION ENGINEERING

(With Specialization in Communication Systems)

By

VINAY BHARDWAJ
G 14285 L-

DEPARTMENT OF ELECTRONICS AND COMPUTER ENGINEERING

INDIAN INSTITUTE OF TECHNOLOGY ROORKEE

ROORKEE - 247 667 (INDIA)

JUNE, 2008

CANDIDATE'S DECLARATION

I hereby declare that the work, which is presented in this dissertation report entitled,

" CONTROLLED GIRTH, STRUCTURED LDPC CODE " towards the partial

fulfillment of the requirements for the award of the degree of Master of Technology

with specialization in Communication Systems, submitted in the Department of

Electronics and Computer Engineering, Indian Institute of Technology Roorkee, Roorkee

(India) is an authentic' record of my own work carried out during the period from June

2007 to June 2008, under the guidance of Dr. Arun Kumar, Professor and

Dr Nagendra P Pathak, Assistant Professor, Department of Electronics and

Computer Engineering, Indian Institute of Technology Roorkee.

I have not submitted the matter embodied in this dissertation for the award of any other

Degree or Diploma.

Date: i1 '14O b

Place: Roorkee

VINAY BHARDWAJ

CERTIFICATE

This is to certify that the above statement made by the candidate is correct to the best of

my knowledge and belief.

Date: t `i N ~6
"
b6

(Dr ge1<Tzi nHra P Pathak)
Asst Professor

Department of E & CE
Indian Institute of Technology
Roorkee-247667

Place: Roorkee (Dr Arun Kumar)
Asst Professor
Department of E & CE
Indian Institute of Technology
Roorkee-247667

ACKNOWLEDGEMENTS

This dissertation would not have existed without the help, support and love of

many people. The foremost one is from my guide , Dr Arun Kumar. His endless

support encouraged me throughout the course of post graduate studies. I would like to

express my deepest appreciation and gratitude to him for his guidance and support during

my studies.

I wish to thank my co-guide, Dr Nagendra P Pathak. His constant support,

encouragement and comments helped me so much in order to complete this thesis. The

fruitful discussions with him gave me the insightful understanding of fundamental

problems of communication engineering.

I would like to also thank to Dr D.K. Mehra, Professor and HOD, Department of

E & CE, IIT Roorkee, for his blessings and guidance.

My sincere thanks are due to Dr Jin Lu, Sun Microsystems , Louisville, USA and

Dr Jose M.F. Moura Professor, Department of Electrical and computer engineering,

Carnegie Mellon university, USA for their timely replies to my queries.

Last but not the least, my deepest love and gratitude is devoted to my family,

especially my wife Dr Chetna Bhardwaj and my little daughter Trijya. This is all for

them.

VINAY BHARDWAJ

9

ABSTRACT

Low Density Parity Check (LDPC) codes have stimulated a. lot of interest in

recent years due to their capacity approaching performance and availability of fast

decoding algorithms. LDPC codes can be represented by bipartite graphs known as

Tanner graphs. The girth of the graph is the length of the shortest cycle of the graph. It is

well known that iterative decoding on LDPC codes performs well when the underlying

Tanner graph has high girth. Therefore the design of LDPC codes having high girth is

desirable. An elementary Turbo Structured Tanner graph construction for a family of

regular LDPC codes attaining desired high girth is designed and obtained in this

dissertation. The design studied in the dissertation provides flexibility in choice of

parameters like column weight (j ~ 2), row weight k and arbitrary girth g.

Turbo Structured low density parity check (TS-LDPC) codes are regular codes

whose Tanner graph is composed of two trees connected by an interleaver. TS-LDPC

codes with good girth properties are easy to construct. Careful design of the interleaver

component prevents short cycles of any desired length in its Tanner graph. Simulation

results demonstrates that the bit error rate (BER) performance at low signal to noise

ratio (SNR) is competitive with error performance of Random LDPC codes of same size,

with better error performance at high SNR.

- 	The issue of complexity of construction of codes is also addressed in the

dissertation. Here a linear encoding algorithm- for a type of Turbo structured LDPC

codes. This encoding can be developed with few restrictions and alterations in Tanner

graph of TS LDPC codes.

CONTENTS

Candidate's Declaration and Certificate 	- i

Acknowledgements ii

Abstract iii

Table of Contents iv

CHAPTER 1 Introduction And Outline Of Dissertation 1

1.1 Digital Communication Systems 1

1.2 Dissertation Motivation 2

1.3 Statement of the Problem 5

1.4 Dissertation Outline 5

CHAPTER 2 Theory Of LDPC Codes 7

2.1 Background 7

2.2 Definition 7

2.3 Tanner Graph 8

2.4 Regular and irregular LDPC codes 9

2.5 Decoding of LDPC Codes 	 9

2.5.1 Sum product algorithm 	 10

2.6 Cycles, Girth and Performance 	 15

iv 	 -

CHAPTER 3 Turbo Structured LDPC Codes 17

3.1 Introduction 17

3.2 Turbo Design of LDPC codes 18

3.3 LDPC codes using turbo designs 19

3.4 Interleaver Design 21

3.4.1 (p–q)-Alternate-Decimal Format 22

3.4.2 Avoiding Short Type I Cycles—Digit-Wise Reversal 23

3.4.3 Avoiding Type II Cycles—Grouping and Shifting 25

3.4.3 a Connection rule to avoid type II cycles 26

3.4.5 Minimum Number of Groups in Each Tree 29

3.5 Construction of TS LDPC codes 31

3.5.1 Upper tree (To) 32

3.5.2 Lower tree (Ti) 32

3.5.3 Interleaver 33

3.5.4 Shift Matrix S 33

3.5.5 Algorithm for Shift Matrix S 33

3.5.6 Parity check matrix H 36

3.6 Simulation and Discussion 	 37

3.6.1 TS-LDPC codes with column weight 3, rate 2/3 and 	38
girth g=8

3.6.2 (6084,3,12) TS-LDPC codes girth g=8 	 40

3.6.3 (6666,3,6) TS-LDPC codes girth g=10 	 41

3.6.4 (6220,3,4) TS-LDPC codes girth g=12 	 42

3.6.5 (1446,4,6) TS-LDPC codes girth g=8 	 43

3.7 Efficient Memory Utilisation 	 44

V

3.8 Conclusions 44

CHAPTER 4 Efficient Encoding For TS-LDPC Codes 45

4.1 Introduction 45

4.2 Encoding friendly TS-LDPC (EFTS-LDPC) Codes 45

4.3 Linear-Complexity Encoding of TS-LDPC codes 46

4.4 Encoding algorithm for EFTS-LDPC Codes 49

4.4.1 EFTS-LDPC Codes Encoding: Example 50

4.5 . Computational complexity 52

4.6 Simulation and discussion 52

4.6.1 (8051,3,6) EFTS-LDPC codes girth g=l0 53

4.6.2 (1993, 3, 8) TS-LDPC codes girth g= 8 54

4.7 Conclusions 55

CHAPTER 5 Conclusion And Future Work 56

GLOSSARY 57

REFERENCES 60

APPENDIX Matlab Source code I

vi

INTRODUCTION AND OUTLINE OF DISSERTATION CHAPTER 1

1.1 Digital Communication Systems

The fundamental problem of communications is to reproduce at one point a digital
message selected at another point as exactly as possible [1]. To solve this fundamental
problem, communication engineers have designed sophisticated systems to transmit

messages over hostile noisy channels. The general block diagram of a digital

communication system is illustrated in Figure 1.1.

Data
Source

Physical
Channel Encoder Modulator

Transmitter

Demodulator Decoder

Receiver

Data sink

Fig 1.1 Block diagram of a digital communication system

At the transmitter, digital messages are processed before they are sent to the
physical channel. The objective of this process is twofold: (i) to choose proper signal

waveforms to avoid bad effects of the physical channel and (ii) to be able to detect these
waveforms easily at the receiver end. At the receiver, a computational algorithm is

needed to detect the transmitted waveforms as precisely as possible with a practical

complexity.

In digital communication systems, the modulator is the block that maps the
information to the physical channel. Due to the continuous nature of most physical

channels, the modulator needs to transform discrete waveforms to continuous waveforms
that adapt to the channel.

The demodulator processes the received continuous waveforms that are corrupted

by random factors of the physical channel. Usually, the demodulator tries to replace the

received continuous waveforms by finite-dimensional vectors to enable the calculation of
the decision variable based on the joint density functions of random variables. In practice,

1

matched filters are often used in digital communication systems to transform continuous

waveforms to sufficient statistics.

The coding process in digital communications approaches the problem

digitally or in the discrete time domain. The encoder can be divided into two blocks,

namely the source encoder and the channel encoder. In this dissertation, we are only

concerned with the channel encoder and shall refer to it simply as the encoder. The

encoder also tries to create waveforms to transmit effectively the information message

against random factors of the channel as in the modulator block, but this is done in the

discrete domain. The encoder implements this task by inserting redundant information in

the message in a controlled manner. At the receiver, the decoder recovers the original

information from the discrete outputs of the demodulator with the help of this redundant

information.

1.2 Dissertation Motivation

In his seminal paper "A Mathematical Theory of Communication", Shannon [1]

defined the capacity of a communication channel which predicted the rates at which

transmission systems can transmit and receive information reliably over a noisy channel.

Shannon suggested that the capacity is achievable with good channel codes. A channel

code is good in a sense that the decoders of the code at rate slightly smaller than the

channel capacity is error-free asymptotically. In his proof, Shannon used random coding

to achieve the capacity. However, from an engineering perspective, random coding is too

complex to implement because random codes lack structures. For fifty years, researchers

have been searching for practical capacity-achieving error-correcting codes. Recently,

with a reasonable complexity, LDPC, Turbo and related codes have been shown to

perform only several tenths of a dB away from the capacity.

The main idea of error-correcting codes is to add redundancy that is correlated to

the information to be transmitted so that the receiver can exploit the correlation between

the information bits and the redundancy bits and then correct or detect errors caused by

channels.

There are two major classes of codes, namely, block codes and convolutional

codes. Examples of block codes are Hamming codes, Bose- Chaudhuri -Hocquenghem

(BCH) codes, Reed-Solomon (RS) codes [2] and newly rediscovered LDPC codes. Block

ON

codes like Hamming, BCH and RS codes have nice mathematical structures. However,

there is a limitation when it comes to code lengths. A bounded-distance decoding

algorithm is usually employed in decoding block codes and, except LDPC codes[3,4], it

is generally hard to use soft decision decoding for block codes.

Convolutional codes are represented with finite state machines, in which going

from a start state to a next state is called a state transition. A sequence of state transitions

is called trellis path and a sequence of allowed state transitions constitutes a valid trellis

path. The decoder can output the most probable valid trellis in the maximum likelihood

(ML) or maximum a posteriori (MAP) sense based on received signal. The decoding

algorithms can be based on hard-decision data or soft-decision data and produce soft

output. Soft-output decoding algorithms are especially useful in iterative decoding, in

which a concatenated coding system is used and the soft output of the decoder of a

component code can be further processed by the decoder of the other component code

without loss of information due to quantization.

Both codes provide good coding gain but there is still a gap from capacity.

Recently, there has been a great improvement in coding techniques towards achieving

this limit. The new approach uses pseudo-random codes and suboptimum decoders,

called iterative decoders, instead of the optimum one. Due to this iterative decoding

technique, the performance of coded systems is significantly improved due to the ability

to increase the code length and, simultaneously, still keep a reasonable computational

complexity for the receivers. In 1993, Turbo code was invented by Berrou, Glavieux and

Thitimajshima [5] . This awkward code is constructed by parallel concatenation of two

convolutional codes through a random interleaver. Iterative decoding is applied in the

decoder where the soft output is exchanged between the two component decoders. The

performance-of original Turbo code approaches the Shannon limit within 0.5 dB with this

iterative decoding technique. In wake of Turbo codes, Gallager's low density parity

check (LDPC) codes were rediscovered and it was shown that with long block-length

codes they also achieve near Shannon limit performance [6]. Low density parity check

codes are linear block codes with sparse parity check matrices generated randomly and

these codes can also be decoded iteratively.

3

The performance of Turbo codes and LDPC codes with a very long block length

depends on the convergence of the iterative decoding algorithms. So far, the best known

error control code over additive white Gaussian noise (AWGN) channels is an irregular

LDPC code in whose empirical performance achieves the bit error rate (BER) of 10-6

within 0.04 dB of Shannon limit with a block length of 107 [7]. For LDPC codes with

short and medium block lengths, the error performance of a LDPC coded system depends

on both the convergence property and the Hamming distance spectrum of the code.. The

convergence property determines how the performance of the iterative decoder can

approach that of the maximum likelihood decoder. On the other hand, the Hamming

distance spectrum of the codes determines the performance of the ML receiver.

Compared to Turbo codes, LDPC codes are more flexible in construction in terms

of the code rate and other parameters. Moreover, there is an error floor on the error

performance of Turbo codes due to the poor Hamming distance spectra of these codes.

On the other hand, the error performance of LDPC codes does not clearly show an error

floor because of the good Hamming distance property of the codes. This fact makes

finite-length LDPC codes a good candidate for applications that require very low bit error

rate (BER), and simultaneously, low delay. Another advantage of LDPC codes is the

ability to implement fully parallel decoders thanks to the mechanism of their decoding

algorithm. The parallel iterative decoding algorithms of LDPC codes are easily

implemented in VLSI [8]. Due to these advantages, LDPC codes are proposed for most

future data applications such as wireless, wire line communications and storage systems.

Low-density parity-check (LDPC) codes, [3,4], are being considered in numerous

applications including digital communication systems and magnetic recording channels.

Their bit-error rate (BER) performance using iterative decoding is close to the Shannon

limit, [1].

There are several ways to specify LDPC codes. In this dissertation, the code

parity-check matrix H and its associated parameters are specified by bipartite Tanner

graph, [9]. Kou, Lin, and Fossorier [10], [11] developed LDPC codes based on finite

geometries and incidence structures. Finite- geometry LDPC codes can be designed over

a wide variety of block lengths and code rates and achieves good minimum distances.

Finite=geometry.LDPC codes have girth 6. Another method to construct structured

4

4-cycle-free regular LDPC codes is based on balanced incomplete block designs (BIBD)

[12]—[13]. A BIBD is defined as a collection of equal size blocks, comprising elements

drawn from a set V, such that each pair of distinct elements (x, y) of V occurs in exactly

?<, blocks of B . BIBD-based codes are well structured, free of 4-cycles, i.e., with girth g=6

, but exhibit a large number of 6-cycles in their Tanner graphs. Finite-geometry codes and

BIBD codes are examples of cyclic and quasi-cyclic [14] codes. For these codes with

column weight j >_3 the girth is less than or equal to 12 [15]. Hu, Eleftheriou, and Arnold

propose in [16] a non algebraic method named progressive edge-growth (PEG). They

present examples of codes of girth g=8 by progressively establishing edges between bit

and check nodes in an edge-by-edge manner. PEG optimizes the placement of a new edge

on the Tanner graph with the goal of maximizing the local girth. Reference [16]

constructed LDPC codes from circulant permutation matrices. It presents conditions for

such codes to achieve girth up to g— 12.

Motivated by the successes and potential of LDPC codes and the technique of

iterative decoding, this dissertation studies LDPC codes whose tanner graph [8] of the

associated parity check matrix H exhibit a specific architecture that is stimulated by

Turbo codes. This turbo structured LDPC code can have desired girth and designed easily

with parameters like number of ones in a row and column..

1.3 	Statement of the problem
To design structured LDPC codes for controlled and large girth with desired

column and row weights (or code rate).

To develop a linear complexity encoding method for turbo structured LDPC

codes.

1.4 Dissertation Outline

This dissertation implements turbo structured LDPC codes, further extends the

encoding design and algorithm presented in [22] and simulation results are also obtained.

A more extensive study of turbo structured LDPC codes is presented in[19,22,25].

This dissertation includes five chapters. The first chapter gives an introduction to

the digital communication systems, the motivation and the outline of the thesis.

5

In Chapter 2, the background of error control coding and LDPC codes are

presented. The relevant concepts introduced in this chapter are helpful for the exposition

of subsequent chapters.

In chapter 3, design and concept of Turbo structured LDPC is discussed.

In chapter 4, a linear complexity encoding algorithm for a type of TS-LDPC

codes—encoding friendly TS-LDPC (EFTS-LDPC) codes is explained. Building of EF

TS LDPC code for a particular TS LDPC code is also explained.

In chapter 5, the conclusions are given. Possibility to extend present work and

future scope of the dissertation is also presented in this chapter.

THEORY OF LDPC CODES 	 CHAPTER 2

2.1 Background

Low-density parity-check (LDPC) codes are forward error-correction codes,

proposed in 1962 by Gallager [3,4]. Due to difficulties in the hardware implementation,

it was Iargely neglected for over 35 years. In the mean time the field of forward error

correction was dominated by highly structured algebraic block and convolutional codes.

Despite the enormous practical success of these codes, their performance fell well short

of the theoretically achievable limits set down by Shannon. Since the discovery of turbo

codes in 1993 by Berrou et al. [5] and the rediscovery of LDPC codes by Mackay and

Neal in 1995 [6], there has been renewed interest in turbo codes and LDPC codes because

their bit error rate performance approaches asymptotically the Shannon limit [1].

Commonly, a graph, the Tanner graph [9], is associated with the code and an important

parameter affecting the performance of the code is the girth of its Tanner graph.

2.2 Definition

We know that a linear block code C of length n is uniquely specified by a

generator matrix G or a parity check matrix H. If it is specified by a parity check matrix

H, code C is simply the null space of H. Ann- tuple v = (.v0 , vI 	 , v 1) over GF(2) is a

code word if and only if vHT =0. This simply says that the code bits of a codeword in C

must satisfy a set of parity check equations specified by the row of H. LDPC codes are

specified in terms of their parity check matrices [2].

An LDPC code is defined as the null space of a parity check matrix H that has the

following structural properties:

1. Each row consists ofj l's.

2. Each column consists of k l's.

3. The number of l's common between any two columns , is no greater than

1; that is .=0 or 1, and

4. Both j and k are small compared with the length of the code and the

numbers of rows in H.

7

Since, both j and k are small compared with the code length and number of rows

in the matrix, hence, H has a small density of l's. For this reason, H is said to be a low

density parity check matrix and the code specified by H is called LDPC code.

There are two different possibilities to represent LDPC codes: like all linear block

codes they can be described via matrices or they can be represented graphically.

Graphical representation for LDPC codes was introduced by Tanner which provides a

complete representation of the code and also helps to describe the decoding algorithm[9].

Graphical representation discussed below is used in the dissertation to design and

implement LDPC cod.

2.3 Tanner Graph

Let G= {(V E)} be a graph, where V is a set of vertices or nodes V and E is a set

of edges E connecting the vertices. The degree of a node V is the number of edges

incident on V. In an undirected graph, a series of successive edges forming a continuous

curve passing from one vertex to another is called a chain.

VI V2 V3 Vd V5 V5 V7 V5

1 	0 	1 	0 	1 	0 	1 	0 	C'

1 	0 	0 	1 	0 	1 	0 	1 	C2

H=

4 	1 	1 	0 	0 	1 	1 	. 0 	C3

o 	1 	0 	1 	1 	0 	o 	1 	C4

(a)

~ k

1 	Check Node

0 Bit Node

Vt V2 V3 V4 V5 V3 V7 V8

(b)

S

Pig 2.1: (a) Parity Check Matrix H of a LDPC code (b) Corresponding
Tanner Graph G
A chain of a node where the initial and the terminal nodes are the same and that

does not use the same edge more than once is called cycle or in other words it is possible

for a path to begin and end at the same vertex. Such a closed path is called Cycle. No

vertex on a cycle (except for the initial and the fmal vertex) appears more than once. The

length of a cycle is the number of its edges. The length of the shortest cycle in a graph is

called the girth of the graph [9].

The graph G is bipartite if the set of vertices V can be decomposed into two

disjoint sets Vi and V2 such that no two vertices within either Vi or V2 are connected by

an edge. It is well known from graph theory that a graph with at least two nodes is

bipartite if and only if all its cycles are of even length. Tanner graphs are bipartite where

the two disjoint sets Vi or V2 collect the bit nodes and the check nodes: each bit of a

codeword is assigned a bit node, and each parity-check equation is assigned a check

node. The figure 2.1 shows a 4 x 8 H matrix and its Tanner graph G, respectively. The m

rows ofH correspond to the check nodes and then columns to the bit nodes of the Tanner

graph G; they are represented by filled squares and filled circles in Figure 2.1,

respectively. A 1 in row Ci and column Vj in H is represented by an edge in the Tanner

graph connecting the associated check node C, and the bit node Vj ; for example, the I in

row 4 and column 8 in H in Figure 2.1 is illustrated by the dashed line between C4 and

V8 The bold solid lines (C1, V3), (V3, C3), (C3, V7), and (V7, C1) depict a cycle in the Tanner

graph; this turns out to be the shortest cycle in this -graph, so that its girth is g = 4.

2.4 	Regular and irregular LDPC codes

A LDPC code is called regular if j and k are constant for every column and

every row. It's also possible to see the regularity of code while looking at the graphical

representation [2]. There is the same number of incoming edges for every v-node and

also for all the c-nodes. If H is low density but the numbers of l's in each row or column

aren't constant the code is called a irregular LDPC code.

2.5 Decoding of LDPC Codes

9

An LDPC code can be decoded in various ways, namely majority logic (MLG)

decoding, bit flipping (BF) decoding, weighted BF decoding, a posteriori probability

(APP) decoding and iterative decoding based on belief propagation (IDBP)

(commonly known as sum product algorithm (SPA)) [2]. The first two types are hard

decision decoding, the last two are soft decision decoding, and the third one is in

between. MLG decoding is simplest one in decoding complexity. BF decoding requires a

little more decoding complexity but gives better error performance than MLG decoding.

APP decoding and the SPA decoding provide much better error performance but require

larger complexity than MLG and BF decoding. The weighted BF offers a good trade-off

between error performance and decoding complexity. SPA decoding gives the best error

performance among the five types of decoding of LDPC codes and yet is practically

implementable.

In some algorithms, such as bit-flipping decoding, the messages are binary and in

others, such as belief propagation decoding, the messages are probabilities which

represent a level of belief about the value of the codeword bits. It is often convenient to

represent probability values as log likelihood ratios, and when this is done belief

propagation decoding is often called sum-product decoding since the use of log

likelihood ratios allows the calculations at the bit and check nodes to be computed using

sum and product operations

2.5.1 Sum product algorithm
The sum-product algorithm is a soft decision message-passing algorithm. The

input bit probabilities are called the a priori probabilities for the received bits because

they were known in advance before running the LDPC decoder. The bit probabilities

returned by the decoder are called the a posteriori probabilities. In the case of sum-

product decoding these probabilities are expressed as log-likelihood ratios.

For a binary variable x it is easy to find p(x = 1) given p(x = 0), since p(x = 1) = 1-

p (x = 0) and so we only need to store one probability value for x. Log likelihood ratios

are used to represent the metrics for a binary variable by a single value:

L(x) = log(p(x = 0))
p(x =1) 	 (2.1)

10

Where we use log to mean loge. If p(x = 0) > p(x = 1) then L(x) is positive and

the greater the difference between p(x = 0) and p(x = 1), i.e. the more sure we are that

p(x) = 0, the larger the positive value for L(x). Conversely, if p(x = 1) > p(x = 0) then

L(x) is negative and the greater the difference between p(x = 0) and p(x = 1) the larger the

negative value for L(x). Thus the sign of L(x) provides the hard decision on x and the

magnitude IL(x); is the reliability of this decision. To translate from log likelihood ratios

back to probabilities we note that

p(x=1)=
p(x=1)/p(x=0) 	e L(x) __

l+ p(x =1)/ p(x =0) l+e L(X) 	(2.2)

and

p(x =0)! p(x =1) _ eL(x)

	

p(x 0) 1
+ p(x = 0)/ p(x =1) 1+e`~x~ 	

(2.3)

The benefit of the logarithmic representation of probabilities is that when

probabilities need to be multiplied log-likelihood ratios need only be added, reducing

implementation complexity.

The aim of sum-product decoding is to compute the maximum a posteriori

probability (MAP) for each codeword bit, P; = P {c; = 1 IN}, which is the probability that

the i-th codeword bit is a 1 conditional on the event N that all parity-check constraints are

satisfied. The extra information about bit i received from the parity-checks is called

extrinsic information for bit i.

The sum-product algorithm iteratively computes an approximation of the MAP

value for each code bit. However, the a posteriori probabilities returned by the sum-

product decoder are only exact MAP probabilities if the Tanner graph is cycle free.

Briefly, the extrinsic information obtained from a parity check constraint in the first

iteration is independent of the a priori probability information for that bit (it does of

course depend on the a priori probabilities of the other codeword bits). The extrinsic

information provided to bit i in subsequent iterations remains independent of the original

a priori probability for bit i until the original a priori probability is returned back to bit i

via a cycle in the Tanner graph. The correlation of the extrinsic information with the

11

original a priori bit probability is what prevents the resulting posteriori probabilities from

being exact.

In sum-product decoding the extrinsic message from check node j to bit node i,

is the LLR of the probability that bit i causes parity-check j to be satisfied. The

probability that the parity-check equation is satisfied if bit i is a 1 is

Pe ` 1 1 	(1— 2P'~` = —) 	 (2.4)
2 2 EB x

Where P~,,` is the current estimate, available to check j, of the probability that bit i' is a

one. The probability that the parity-check equation is satisfied if bit I is a zero is thus 1-

P~,,` . Expressed as a log-likelihood ratio,

1—Pat`
E j m = LLR(P!~') = log(P~~') 	(2.5)

And substituting (2.4) gives

— +-- fl (1 — 2 P`)
E B J 'C' r

• E i,t

	

= log (1 	1 	 „) (2.6)
[J (1-2P~r ir)

	

2 	2 t E B J .i'xt

Using the relationship

tanh(I1og(1 p))=1-2p
p

Gives

1 + 	tanh(M1 ;, / 2)
i E B . t' i E1 = log()

1— H tanh(M1 ;, / 2)
t EBj f's!

Where

(2.7)

(2.8)

12

1— PI
M11 = LLR(P) = log(''') 	 (2.9)

Alternatively, using the relationship

2t' an (p)=log(l+p) 	 (2.10)
p

(2.8) can be written as:

E 1 = 2 tan-' (11 tanh(M11 , / 2))

Each bit has access to. the input a priori LLR, r;, and the LLRs from every connected

check node. The total LLR of the i-th bit is the sum of these LLRs:

L; =LLR(_")=r+IE. 	 (2.11)
ja A;

However, the messages sent from the bit nodes to the check nodes, M~,;, are not
the full LLR value for each bit. To avoid sending back to each check node information

which it already has, the message from the i-th bit node to the jth check node is the sum

in without the component Ej,i which was just received from the j-th check node:

(2.12)

The sum-product algorithm is shown in Algorithm . Input is the log likelihood

ratios for the a priori message probabilities

r =1og(p(c = 0))
p(c, = 1)

the parity-check matrix H and the maximum number of allowed iterations, Imax.
The algorithm outputs the estimated a posteriori bit probabilities of the received bits as
log likelihood ratios.

(2.13)

13

Algorithm: Sum-Product Decoding

1: procedure DECODE(y)

2:

3: I = 0 Initialization

4: fori=1:ndo

5: forj=1:mdo

6: My; = r;

7: end for

8: end for

9:

10: repeat

11: forj = 1: m do Step 1: Check messages

12: for i n B~ do

1 + fJ tanh(M1;, / 2)
E . ` =1og(1— 13:

{'EBB iYi

fJ tanh(M11, /2))
V6Bl.iw

14: end for

15: end for

16:

17: for i = 1 : n do . Test

18: L,=Y,E r +r
je4

19: z0, 	Lso

20: end for
21: if I = Im- or Hz"T 	0 then

14

22: Finished

23: else
24: for i = I: n do 	 Step 2: Bit messages

25: for j e A; do

26: M ;= I E1, j +r
J E4,J'j

27: end for

28: end for

29: I=I+1

30: end if
31: until Finished

32: end procedure

The computational complexity and decoding delay (or decoding time) of the

SPA increase as the number of decoding iterations increases. Long decoding delays are

not desirable in high speed communication and data storage systems. If an LDPC code

has a large MLG error correcting capability, such as a long finite geometry LDPC code,

it is possible to device a hybrid SPA decoding scheme with MLG decoding to shorten the

decoding iteration process and hence the decoding delay with only a small degradation in

error performance. Based on many experimental results it is observed that SPA decoding

of long finite geometry LDPC codes converges very fast.

2.6. Cycles, Girth and Performance

It is well known that with a cycle-free Tanner graph, the sum-product algorithm

terminates naturally in a finite number of steps and yields optimal decoding in the sense

that the symbol error probability is minimized [17]. However, cycle-free Tanner graphs

have poor BER performance: their minimum distance is two at code rates r > 12, and

their error floors occur at unacceptable values of SNR [18]. When Tanner graphs have

cycles, the resulting sum-product algorithm is suboptimal [17]. Cycles, especially short

cycles in the Tanner graph, lead to inefficient decoding and prevent the sum-product

algorithm from converging to the optimal decoding result [18], taxing the performance of

15

the LDPC decoders. Intuitively, the girth determines the smallest number of iterations for

a message sent by a node (in the shortest cycle of the graph) to propagate back to the

node itself. This causes loss of independence in the extrinsic information merged on a

node in the iterative decoding through the successive iterations; Gallager [3] showed that

the number of independent iterations M is proportional to the girth g of the Tanner graph,

in particular, M < g/4 < M + 1. A second reason relates to the minimum distance of the

code. Tanner [9] derives a lower bound on the minimum distance d,,,10, this lower bound

increases with the girth g of the code. Therefore, LDPC codes with large girth are to be

preferred.

To increase the girth g and avoid short cycles, the parity-check matrix H should

be sufficiently sparse. In turn, this means that the block length must be large enough. In

fact, Gallager [3] provides a loose lower bound on the block length n given the girth g of

a regular LDPC code. For a parity-check matrix H with column weightj and row weight

k, the bound on the block length n is
m+~

1)forg= 4m+2, n? 	S,, where S1=l, and for i?2,S; =j(j-1)l'-'1(k-1)(' -̀)
=,

2) for g=4m, n? L; ,where L; =k(j -1)~'-°(k-1),'di

For example, to construct an (n, j = 3, k = 12) LDPC code with girth g = 12, its block

length n should satisfy a? 6, 084. Of course, this lower bound is just that; even if n

exceeds the bound for a given g there might not exist a regular LDPC code with this

block length n and the desired girth g.

16

TURBO STRUCTURED LDPC CODES 	CHAPTER 3

3.1 Introduction

The turbo-structured Low Density Parity Check (TS-LDPC) codes can be
designed with arbitrary large girth by appropriately choosing the code block length n. TS-

LDPC codes are hardware friendly: they are regular and structured, and their parity check

matrix H, which can be very large, is determined from a much smaller object, the shift
matrix S, so that their memory requirements can be negligible [19].

Turbo structures have been used in [20],[21] to construct LDPC codes. These
codes combine two LDPC codes as component codes on the encoder side. The structure
of the turbo encoder; replaces the recursive convolutional codes commonly used in turbo
codes with a tree code—a specific LDPC code whose associated graph for the code-
generating matrix , not for the parity-check matrix H , is a tree. In [21], the encoder is a

parallel concatenation of two LDPC codes without an interleaver, as shown on the left of
Fig. 3.1

Parity bits for the first
component LDPC codes

Information
Bits

Fig 3.1 Left: The encoder structure for the concatenated LDPC codes in [20].

Right: The parity-check matrix H for the concatenated LDPC codes in [20],

[21].

17

3.2 Turbo Design of LDPC codes
This design is similar to the turbo structure: two tree structures are interconnected

to create LDPC codes with large girth[22]. The factor graph of such a code contains two

height-balanced sub-trees, denoted as an upper-tree Tu, for which the leaf nodes are

variable (bit) nodes, and a lower-tree TL for which the leaf nodes are check nodes. Thee

height of Tu and TL, say, its number of tiers, is represented by h. The first tier of Tu

contains only one check node-the root, as shown in figure 3.2.

Tu ~

b~li ri'i eii al 	

} T
Yl~u I ra 'i

Fig. 3.2. Upper tree Tu of a turbo-like LDPC code with column weight 3, row

weight 4 and height 4 [19]

\ /V TL

Fig.3.3 Lower tree TL of a turbo-like LDPC code with column weight 3,

row weight 4, and height 4 [19]

On the other hand, the root of TL (shown in figure 3.3) is a variable (bit) node.

The two trees are "combined" in a turbo-like manner such that the leaf-nodes of TL are

connected to the leaf-nodes of Tu as shown in Fig 3.4. The structure formed by

connecting edges between the leaf-nodes of Tu and TL is called "interleaver." All the

variable nodes have uniform degree j and all the check nodes have the same degree k,

except for the roots of Tu and TL, whose degrees are set to be k - 1 andj - 1 respectively.

18

lY` / l! ~, 4 w 	Tu

interleaves

TL

Fig. 3.4 	TS LDPC code with column weight 3, row weight 4 and height 4[19]

For example, a turbo-like LDPC code with h = 4, j = 3 and k = 4 is shown in

figure 3.4. To make the code exactly regular, the root (a check node) of TU and the root (a
variable node) of TL are connected directly by an edge, hence forming a regular LDPC
code. For a given code rate r, just choose the two parameters • j and k to satisfy the

equation r = 1j/k, for example, for r = 8/9 and column weight 3, simply let j = 3 and k

= 27 in each of the component trees.

The significance of the above structures is that in isolation, no cycle exists in

either of the sub-trees. The cycles in turbo-like LDPC codes are introduced by the

interleaver. In subsequent paragraphs we will discuss methods to devise interleavers that
guarantee that the resulting turbo-like LDPC codes have girth greater than or equal to 8.

3.3 LDPC codes using turbo designs

The goal of this section is to build turbo-like LDPC codes with large girth. By

construction, each leaf-node in the upper tree Tu is connected to q = j — 1 leaf-nodes in
TL. This means this TS-LDPC interleaver is a 1-to-q mapping while, usually, interleavers

are a one to one mapping between elements of two sets with the same size. For
convenience, "auxiliary nodes" (represented by solid triangles) as shown in figure 3.5 are

introduced. For each leaf node in the upper tree Tu, since it connects toj - 1 check nodes
in the lower tree TL, add j - I auxiliary node to it and let these auxiliary nodes its

descendants. Similarly, auxiliary nodes to the lower tree TL are introduced, such that each
leaf node of TL has k - 1 auxiliary node as its descendants. There is a one to one

19

correspondence between auxiliary nodes of Tu and auxiliary nodes of TL. Figure 3.6

shows a path connecting Tu's leaf node A to TL's leaf node B through Tu's auxiliary

node C and TL 's auxiliary node D. That means, in the original factor graph, nodes A and

B are directly connected by an edge.

v nodes
Fig. 3.5. Auxiliary nodes of Tu [191

Fig. 3.6. Auxiliary nodes of Tu and TL

Therefore, it can be equivalently expressed as finding an appropriate one-to-one mapping

between auxiliary nodes of Tu and auxiliary nodes of TL that guarantees large girth. As

mentioned, no cycles exist in any of the sub-trees in isolation, so cycles present in the

codes must contain "auxiliary nodes," which is at least four (two auxiliary nodes of Tu

and two auxiliary nodes of TI). Cycles can be divided into two disjoint categories: type-I

and type-II cycles.

Type of cycle depends upon how many auxiliary nodes a cycle contains. Type-I

cycles contain four and only four auxiliary nodes and are denoted by C-I; type-II cycles

contain more than four auxiliary nodes and are denoted by C-II. Same can be clearly seen

in following figure 3.7.

20

/
} Interleaver

k,)'

II Interleaver

Fig. 3.7 Left: A type I cycle. Right: A type H cycle. 1221

3.4 	Interleaver Design

It is clear that in Turbo structured LDPC design, cycles are present only in

interleaver, hence it is designed to prevent cycles of length smaller than the • desired

girth g. The interleaver is designed by specifying the rules of how to connect the leaf bit

nodes in the upper tree TU to the leaf check nodes in the lower tree TL Interleaver designs

for turbo codes have been extensively studied in [23,24]. The functions of the interleavers

for turbo codes are to avoid low-weight codewords and to decrease the correlation

between the extrinsic information and the input data sequence. They are not designed to

construct Tanner graphs with large girth. Hence, we can not directly borrow the existing

interleaver designs for turbo codes, say, the S -random interleaver, for designing TS-

LDPC codes. Here it is required to develop new interleavers that suit the structure of TS-

LDPC codes and lead to TS-LDPC codes with large girth.

In subsequent paragraphs p — q alternate-decimal indexing is used, as discussed in

[22]. Nodes in the tanner graph are labeled using p-q alternate decimal indexing which

helps in establishing connection between leaf nodes of TU and TL. This p-q indexing is

described in detail in [22]. In this indexing technique rules to prevent cycles of length

smaller than the desired girth g are designed This is achieved by categorizing the cycles

in two types: type I and type II cycles. Section 3.4.2 specifies the connecting rules to

avoid type I cycles. Type II cycles are considered in Section 3.4.3, they are prevented by

"grouping and shifting:" The leaf nodes are grouped and connected with leaf nodes in

distinct trees whose labels are appropriately shifted. Section 3.4.4 discusses the number

21

of groups needed. Based on the discussions in Sections 3.4.1-3.4.4 the detailed algorithm

to construct shift matrix for TS-LDPC codes is presented in 3.5.5.

3.4.1. (p-q)-Alternate-Decimal Format
Let the sub trees Tu and TL. have height h, the bit nodes degree j, and the check

nodes degree k. Let p =k- 1 and q = j - 1. For Tu with h tiers, there are

[(7c- 1)(j - 1)]h 2 auxiliary nodes of Tu . The interleaver design problem is addressed

algebraically by indexing all the auxiliary nodes of TU and TL . Auxiliary nodes of Tu

are indexed from 0 to [(k - 1)(j - 1)]" 2 -1 in the following format - the p-q alternate

decimal format, where p= k-1 and q = j-1. There will be h digits in the p-q alternate

decimal indexing to label all the auxiliary nodes in Tu. These h digits are numbered from

1 to h, starting from rightmost. The odd coordinates take values from 0 to q - 1, and the

even coordinates take values from 0 top - 1. The position of each digit is referred as its

coordiihate . Similarly, all the auxiliary nodes of TL are indexed from 0 to

[(k - 1)(j - 	2 -1 and represent also all these indices in (q - p) alternate-

decimal[25].

To be concrete lets see an example where the upper tree has height h = 4, the

index Xp-q of an auxiliary node in the upper tree TU is

.fig®q X4 X X2 X'1 	 3.1
p 3 P q

In (3.1), x; , i = 1,2,....4, represents the it" digit. The coordinate of xi is i and the

corresponding value of XP, in decimals is

Xp-q (x4*pi g2 +x3*pi gI+x2* q j +xi)io 	3.2

where (•)Io represents the decimal value of Xp-q. From hereon, the "indices" of nodes

are referred as p-q alternate-decimal or q-p alternate-decimal representations.

3.4.1a Lemma 1:
(a) Let the distance between two auxiliary nodes A and B within Tu be du(A,B). XA and

XB are indices for A and B, respectively. If i is the leftmost coordinate where the digits

of XA and XB differ from each other, then du (A,B) = 2i.

22

(b) Denote the distance between two auxiliary nodes a and B within TL as dL(A,B). XA

and XB are indices for A and B . If i is the leftmost coordinate where the digits of XA

and XB differ from each other, then dL (A,B) = 2i.

Proof: Detailed proof is given in [22]. As discussed in [22] part (a) of the lemma is

proved first. From the definition of the p-q alternate-decimal indexing, the first common

ancestor R of the auxiliary nodes A and B is in the (h+l-i) tier of Tu. Where i is the

leftmost coordinate where the digits of XA and XB differ from each other and h denotes

the number of tiers in Tu. For example, let XA = 0000 and XB =1000 be the indices of

two auxiliary nodes A and B of T. . Since the leftmost coordinate where the digits of XA

and XB differ from each other is the fourth, then the first common ancestor R of the

auxiliary nodes A and B is the root of Tu , located in the first tier of T. .

To find the shortest path in that connects A and B , one has to go up i tiers from A

to reach its first common ancestor R and then go downwards i tiers from R to B .

Therefore, the distance through the tree Tu between A and B is then du (A,B) = 2i. Part

(b) is also similar to part (a).

3.4.2 Avoiding Short Type I Cycles—Digit-Wise Reversal

Interleaver design can be done with a simple concept —digit-wise reversal, [8].

For an index in Xp–q in p-q alternate-decimal form with h digits, its digit-wise reversal

interchanges the it digit and the (h+l-i)th digit for i=1,2........h12. the digit-wise reversal

operator is represented by nd(.). For the index Xp–q in (3.1), its digit-wise reversal is

'rd (XP -9) = xlx2x3x4

= (xl x qp2 +x2 x qp+x3 x qp+x4)10 	 (3.3)

Digit-wise reversal interleaver advantage can be understood in the following theorem

[22].

3.4.2a Theorem 1: Connecting the auxiliary nodes indexed by Xp_q in Tu to the auxiliary

nodes indexed by ltd (Xp_q) in TL guarantees that any resulting type I cycle is at least of

length 2h , where h denotes the number of tiers in Tu.

23

Proof As discussed in [22] from its definition, a type I cycle contains four auxiliary

nodes A, ,A2 ,A3, and A4 as shown on the left in Fig. 3.8 Their associated indices are

X1, X2 , X3 , and X4, respectively.

d(A4,A,)

TL 	 A.,
d~ lllt A4) 	 Ir 	 t~

Fig.3.8 . Left: Type I cycle with four auxiliary nodes Al ,A2 ,A3 , and A4.

Right: A path of length 3 that contains two auxiliary nodes is actually a path

of length 1.[22]

The distance between A, and A2 within the tree Tu is denoted as du (A1 AZ), and the

distance of A3 and A4 within TL as dL(A3,A4) . According to the left plot in Fig. 3.8 the

length of a type I cycle is:

L'=dU (A,,A)+dL(A3 ,A4)+2 	 (3.4)

However, as auxiliary nodes Al ,A2 ,A3 , and Aa are imaginary nodes, the type I cycle

does not contain them as vertices. For example, the path of length 3 with two auxiliary

nodes Ai and A3 shown on the right in Fig. 3.8 is actually a path of length in the Tanner

graph. Therefore, the actual cycle length is , i.e.,

L=L'-4=du(A„4)+dL(A3 ,A4)-2 	 (3.5)

The distance du (A, A2) is related to the value of their indices. By Lemma 1, dU (A, A2)

= 2i , where i is the leftmost coordinate where the digits of X1 and X2 differ from each

other. Let h represent the height of Tu After digit-wise reversal, the digits of X1 and X2

at the coordinate i become the digits of it (X1) and ad (X2) at the coordinate h+l-i ,

respectively. So, the digits of nd (Xi) and ltj (X2) at the coordinate h+1-i are

different. According to the connecting rule stated in the theorem, X3 = irtd (XI) and

24

X4 =, icd (X2) so the digits of X3 and X4 at the coordinate h+l-i are different.

Therefore, by Lemma 1

di(A3 ,A4)L2(h+l–i) 	 (3.6)

By (3.5), the length of such a type I cycle is then

L= du(A„A2)+dL(A3 ,A4)?2h 	(3.7)

From the above analysis, all type I cycles that result from following the connection rule

in Theorem 1 are at least of length 2h. hence it is clear from above theorem that to

increase the length of type I cycles one need simply to increase the number of tiers in the

upper and lower trees.

3.4.3 Avoiding Type H Cycles—Grouping and Shifting

The connection rule in Theorem 1 prevents short type I cycles. The connection

rule to avoid short type II cycles as discussed below. To exclude short type II cycles, a

different concept grouping and shifting is introduced.

Shifting 	Shift S is defined as to be a constant in q –p alternate-decimal format that

is added to the original index ltd (X.1) to form a new index. This can be illustrated with

an example. Let Rd (Xp_q) =x1x2x3x4 the shift S =s,s2s3s4 , and + represents the digit-

wise addition (with no carry). Then

= y1y2y3y4 	 (3.8)

In (3.8), y; = xi + s; = mod (xi + s; , div;) , where div; = p if i is even and div; =q if i

is odd. In a similar fashion, the digit-wise subtraction is represented by – .
Grouping 	The auxiliary nodes of Tu are divided into groups of the same size

according to their indices. Those auxiliary nodes whose indices have the same t leftmost

digits are placed in the same group. The auxiliary nodes TL of can, likewise, be classified

into groups based also on whether their indices have the same leftmost t digits.

After clustering the auxiliary nodes into groups, the shift S is considered to be the

same when the auxiliary nodes of Tu in the same group are connected to the auxiliary

nodes of TL in the same group. The shift introduced is denoted by Sa,p when the auxiliary

25

nodes of Tu in the ath group are connected to the auxiliary nodes of TL in the (3th group.

For different a and 13 , the shifts Sa,p may be the same or different from each other. The

mapping rule for the interleaver is discussed below.

3.4.3 a. Connection rule to avoid type II cycles

Connect the auxiliary node indexed by Xp_q in the a h̀ group in Tu to the

auxiliary node indexed by ltd (Xp_q) in the (3th group in TL to auxiliary node indexed by

7rd (X 5 +Sap in the (3'h group of TL.

This rule prevents short type II cycles. But, first, it needs to be ensured that using this rule

does not introduce short type I cycles. This is settled in the next theorem that shows that

type I cycles do not depend on the shifts S.

Theorem 2: Connecting the auxiliary node indexed by Xp.q in the ath group in Tu to

the auxiliary node indexed by ltd (Xp_q) + Sn,p in the O'h group in TL guarantees that any

type I cycle formed is at least of length 2h, where h denotes the number of tiers in TL.

From Theorem 2, any shift Sa,p in the rule Xp, —* ltd (Xp_q) + Sn,p can be

selected, because the length of any type I cycle is guaranteed to be greater than or equal

to 2h . The freedom to choose the values of Sn,p is exploited to avoid short type II

cycles.

It is observed that each type II cycle with 2k edges in interleaver is associated

with 2k shifts

S.,.a Sa,.eS~,A.azk 	 (3.9)

Type II cycle is characterized by the shift sequence A= {Sai,p1, Sa2,p2, Sa3,p3..........
Sa2x,p2k}.The index labels of shift sequence characterizing a type II cycle satisfy the

following two conditions:

(i) a2t4 ~ alt ,t=1,2.....k and 1321.1132t, t=12....k.

(ii) alt =alt+i,t=1,2....k-1 and a2k= al and 1321 ~ 1321+1 t=1,2...k-land 132k A (31 .

Given a shift sequence A= {Sa1,11, Saz,pz, Sa3,p3 	Sn2 2k} that satisfies conditions (i)

and (ii) above, its accumulated alternate sum AA to be
2k AA= ~(_1)'S~la/ 	 (3.10)

26

=Sal,p1 - Sa2,p2+ Sa3,p3 -....+ Sa2i-1,p2i-I- Sa221+...... +Sa2k-I,p2k-I - Sa2kp2k. 	(3.11)

Following theorem helps to eliminate type II cycles with 2k edges in the interleaver.

Theorem 3: Let A= {Sa1,p1, Saz,p2, Sa3,p3.......... Sa ,p2k} be a shift sequence that contains

2k shifts.
2k

DA= 	(_1).+ S~+a 	 (3.12)

is the accumulated alternate sum of A and has h digits in its q-p alternate-decimal

expansion. If AA contains at most d = h-2 consecutive "0" in its q-p alternate-decimal

expansion, then any type II cycles characterized by A has length no less than 2 (f +k).

Proof • In order to prove theorem 3, as discussed in [22] an equivalent proposition will be

proved: If there exists a type II cycle with 2k edges in the interleaver and its length is less
2k

than 2(f+k), then the associated AA - 	(-1)' 'S~ F must contain more than d = h-

.e consecutive digits "0". Fig. 3.9 shows a type II cycle with edges in the interleaver. Let

this type II cycle contain Nu edges in Tu and NL edges in TL. By assumption, the length

of this type II cycle is less than 2(f+k). Since the length of the type II cycle is Nu +

NL+2k, then

Nu+NL<2t 	 (3.13)

Fl

Fig.3.9 . Type H cycle with 2k edges in the interleaver.
Since there are 2k edges in the interleaver, the cycle contains 4k auxiliary nodes, 2k

auxiliary nodes A1", AzAZk in T0, and 2k auxiliary nodes in A", 4.........Aik in TL.

With reference to the plot in Fig. 3.9, and assuming that the index for the auxiliary node

27

Al' is XA , according to the connecting rule presented in Theorem 2, the index for the

auxiliary node is XA, _ Rd (XA.) + S~1,pi . Let 5, denote the difference between X A _

andXA, 	, i.e., 8' = XA2 -. X , . The index for the auxiliary node X A„ is

XA = Rd (XA, -S.2,p2)• Again, let S2` = X, —XA3 . The index for the auxiliary node A3

isXA1 =d(X)+S,9/!3

Continuing to trace the cycle and finding the relationships between the indices of

the auxiliary nodes, at auxiliary node XA„ , X A„ = 7cd (XA,) — S~2k flk The relationship

between X „ and XA , is XAi = X „ + 81° . Iterating in the definition of X. ,we have
Ai 	, 	AZ 	 A,

k 	 k 	k

(1)+rs
;,; +)cd (~S,°)+~Sr =0 	 (3.14)

Since the cycle has NL edges in TL, then the distance between auxiliary nodes A, and

Alf t=1,2,....k, through TL is less than or equal to NL . By Lemma 1, it is known that

only the rightmost Nd2 digits of S',r , t=1,2......k , can be nonzero, the other digits of

Sr have to be zero. Note that, for the digit-wise add +, there is no carry. Therefore, only

k

the rightmost NL/2 digits of 8, can be nonzero. Similarly, it can be derived that only

k

the rightmost Nu/2 digits of 8° can be nonzero. From the definition of the digit-wise

k

reversal lid (.) only the leftmost Nu/2 	digits of ad (Y S°) can be nonzero.

According to (3.14), it can be derived that. only the leftmost Nu/2 	digits and the

rightmost NL/2 digits of AA can be nonzero. That means that the intermediate h - Ni/2 -

Nu/2 digits of AA are zero. Since by (3.13) , Nu + NL < 2f then AA contains more than

h - N112 - Nu/2 consecutive zeros. Thus, if a cycle has 2k edges in the interleaver and

its length is less than 2(Q+k) , then its associated AA contains more than h-f consecutive

zeros in its p-q alternate-decimal representation.

28

3.4.5 Minimum Number of Groups in Each Tree

There is a tradeoff when deciding the number of groups to choose in each tree. On

the one hand, to get compact TS-LDPC codes, small number of groups in Tu and TL are

preferred. To reduce the number of groups, the number t of the common leftmost digits of

the indices of the auxiliary nodes in the same group should be as small as possible. On

the other hand, a smaller number of groups decreases the number of free parameters in

the code design.

Lemma 3: 	To achieve a girth g , the minimum number groups Gu and GL are

GU ? ((k-1)(J-1))[s ~j (k-1)I~g1 1mo
az 	

(3.15)

GL >. ((k-1)(J-1))`~J(J-1)L
4ZJnoa2 	

(3.16)

XC XD—XE--XF 	 ca as p a, 	C,'—p a a

h 0

Fig. 3.10. 	Left: A length 8 cycle that can NOT be excluded by any choice of the
shifts Sal,b and Saz,b .
Right: A length 12 cycle that can NOT be excluded by
any choice of the shifts Sal,b and Saz,b [22]

29

Group a, 	 Group ai,

Gruu b, 	Group b,

Fig.3.11 Check nodes A and B divided into subgroups to avoid a length 8 cycle. 1221

Proof• As given in [22] an example is discussed first. The length 8 cycles shown on the

left in Fig. 3.10 cannot be avoided when the two check nodes A and B are in the same

group. To avoid this length 8 cycle, A and B must be in two different groups, as shown in

Fig. 3.11. Since A connects to the auxiliary node c and B connects to the auxiliary node d

in Fig. 3.11, c and d must connect to check nodes in two different groups. Further, since c

and d can be any two auxiliary nodes whose indices are different only in the two

rightmost digits, we conclude any two auxiliary nodes whose two rightmost digits are

different should be connected to different groups. Since there are (j-1)(k-1) categories of

such auxiliary nodes, at least (j-1)(k-1) groups in TL are needed . Similarly, to avoid the

length 12 cycle shown on the right in Fig. 3.10, at least (j-1)2(k-1) groups in TL are

required.

More generally, to avoid the cycle with length L=4d+4, when d is odd, at least
(d+l.) 	(d+1)

GL = (j — l) 2 (k —1) 2 	groups in TL are 	needed; when d is even, at
d+l 	d

least GL = (j — 1) 2 (k-1)2 groups in TL are necessary.

The above relationship can be compactly written as

GU >_((k-1)(j -1))
I« 2,<

J(k-1)[L-
4imod2

30

Now number of groups needed for Tu are discussed . To avoid cycle shown on
the left in Fig. 13.12 , the two bit nodes E and F are divided into different subgroups, as
shown on the right in Fig. 3.12. Symmetrically, it can be derived

GL ((k -1) —1))Lw<J (J —1)L(g42)1mod2 (J

where g is the girth.to be achieved and Gu is the minimum number of groups
needed for T. .

t 	_ 	~. ,• 	m.. --ate l 	
fd..

I

Fig. 3.12. Left: A type of cycle that can NOT be excluded by choices of shifts
Sml,,,l and Sml,,,z Right: Divide bit nodes E and F into subgroups to avoid
cycles.[22]

On the other hand, if the indices of the auxiliary nodes in the same group must have t left

most digits in common, Gu and GL are given by

Gu = ((k -1)(j —1))Ui (k-1)emod2 	 (3.17)

Gc=((k-1)(J-1))121(f_1)r,noa2 	- 	 (3.18)

So to achieve girth g the parameter t that determines the number of groups has to satisfy

tzL(g42)] 	 (3.19)

Equation 3.19 determines the minimum value of the parameter t to achieve a girth g.

3.5 Construction of TS LDPC codes

Design of TS LDPC code with column weight j, row weight k and minimum

girth g is discussed in subsequent paragraphs. For given values of j and k (or column

31

weight j and code rater) and desired girth g following steps are followed for construction

of TS-LDPC code:

(a) Number of tiers in upper tree TU and lower tree TL h=g-2

(b) Design upper tree Tu and calculate total number of bit node and

check nodes in upper tree.

(c) Design lower tree Ti. and calculate total number of bit node and

check nodes in lower tree.

(d) Calculate number of bit nodes and check nodes in interleaver.

(e) Calculate minimum number of groups for bit nodes and check

nodes of interleaver. This will give size of shift matrix. Detailed

algorithm for design of shift matrix is explained in subsequent

paragraphs.

(f) Obtain interleaver matrix by shift matrix and no of elements in

each group of shift matrix.

(g) Based on values of Tu, TL and interleaver calculate block length of

coded word (n) , this gives the desired parity check matrix H.

parity check matrix is constructed with TU , TL and interleaver.

3.5.1 Upper tree (Tu)

Upper tree Tu is upper part in Tanner graph of LDPC codes. It starts with a check

node and has bit nodes as its leaf nodes. Each check node is connected with (k-1) number

of bit nodes and each bit node is connected with (j-1) number of check nodes. If the

number of tiers in upper tree is h, than total number of bit nodes and check nodes in

upper tree can be calculated with following expression.

2

Bit nodes = Y,(k-1)(j-1) -̀1 	 (3.20)

h_

2

Check nodes= ~(k-1)`(j-1)' 	 (3.21)

3.5.2 Lower tree (TL)

Lower tree TL is lower part in Tanner graph of LDPC codes. It starts with a bit

nodes and has check nodes as leaf nodes Each check node is connected with (k-1)

32

number of bit nodes and each bit node is connected with (j-1) number of check nodes. If

the number of tiers in upper tree is h, than total number of bit nodes and check nodes in

upper tree can be calculated with following expression.
h

Check nodes = ~ (j -1)' (k -1)'-' 	 (3.22)
r=i

h ~

Bit nodes 	= Y(j-1)`(k-1) 	 (3.23)
r-o

3.5.3 Interleaver

Total number of bit nodes and check nodes in interleaver are given by following

expression

Bit nodes 	= (k-1)~2 (j-1)"2-' 	 (3.24)

Check nodes 	= (j-1)&2 (k-l)«2 '1 	 (3.25)

3.5.4 Shift Matrix S

Minimum Number of groups Gu and GL in bit nodes and check nodes, to

achieve the girth g can be calculated with following expression.

Gu > ((k -1)(j -1))<
< s-; ,<i (k-1)L(g42) laoa2 	

(3.26)

G ~ ((k - l)(j -1))L
s -; ,<I

L 	 (j -1)`(g4' J~od2
	

(3.27)

3.5.5 Algorithm for Shift Matrix S

Theorem 3 can be used to reduce the construction of TS-LDPC codes with desired
girth g. Designing a matrix S that collects appropriate shifts Sp . By choosing suitably

these shifts Sa,p , according to Theorem 3, all short type I and type II cycles up to the

desired length g-2 can be avoided . An algorithm that finds S = [Sp,p1 for TS-LDPC

codes with girth g is discussed in subsequent paragraphs. The matrix S is GU x GL, which

is much smaller than the TS-LDPC code parity-check matrix H . The algorithm

33

determines shifts Sa,p , one at a time, its value being strongly dependent on the

previously determined shifts. Different initial settings of Sa,p will lead to different

matrices . If the algorithm fails to generate a matrix , it is restarted with different initial

settings. To construct a TS-LDPC code with column weight j , row weight k, and tier h

(number of tiers contained in the upper tree Tu), the number of candidate matrices S is

00n [(j — 1)(K —1)]2 	which is exponential in the number of groups GU and GL. Large

girth g may require increasing the number of tiers in the upper and lower trees.

Algorithm 1 TS-LDPC codes with girth g (design shift matrix)

Initialization 	Set matrix S=<b, the empty matrix

Determine the elements of the matrix S row by row.

S1 ,1 <— rand(.) . Set a =1 and (l = 2

Step a.: Sa,p <— rand(.) set its flag to 0.

for t=2 to (g-2)/2 do

for 	all closed path of length 2t in the current entries of the shift

matrix S that pass the entry Sa,p

do
zr

check if 	(-1)"'Sa, contains ore than h+t —(g/2) consecutive zeros

{ SXI ,p I S.2,p2,......,Sa2t,pzt are the 2t consecutive

comers of the closed path considered}
zr

if j (—l)"'SS., Q; contains more than h+t-(g/2)Consecutive zeros then

set the flag to be 1 and stop the for loop;

else

keep the flag to 0.

end if

end for

end for

if 	the value of the flag is 1 then

34

discard the current candidate for Sa,p , go back to set a to select

another possible vale for S,,p.

else
fill the entry(a, (i) of S with the current value S,,p. Set the value of a

and R to the next element of S that is to be determined.

if all the elements of S have already been properly

chosen then

go to step b

else

go back to step a

end if,

end if

step b: end, output the shift matrix S

35

The above mentioned algorithm can be presented in flow chart form, as shown below.

Initialization
S= 0

S(1,1)=rand(),a=1,3=2

S R =rand()
Flag=O 	 If yes

Flag=1
t=2 to (girth-2)12

eck for all 	 Check If

s of length 2t 	es 	(-1) f+,5 a p contains more
(i=1 to 2t)

than h+t-g12 consecutive zeros
No

If no
to next elemen 	 Flan=n

No 	If all elements 	yes 	End
have been filled properly

Fig 3.13: 	flow chart to design shift matrix

3.5.6 Parity check matrix H

Finally parity check matrix can be build by combining, Tu, TL and interleaver.

Size of the parity check matrix will be given by following expression.

Numbers of rows (n-m) = check nodes of Tu + check nodes of TL 	(3.28)

Numbers of columns (n) = bit nodes of Tu + bit nodes of TL 	 (3.29)

Hence with a given column weight (j), row weight (k) and desired girth g, parity

check matrix for Turbo Structured LDPC code can be constructed. As an illustration,

above mentioned method can be applied to construct a (6666,3,6) regular LDPC code,

36

with rate r = 0.5 and girth g=10. Its structured is given by 3333 x 6666 parity check

matrix H and shown in figure 3.14.

Interlea% TL

Fig 3.14 Parity-check matrix H for (n, j, k) TS-LDPC code with rater and
girth g (6666,3,6), r = 1/2, g =10.

Tu , TL and the interleaver component from the constructed matrix can be clearly

identified, as labeled in Fig. 3.14. In this matrix, along the solid lines, there is a single I

in each row, while along the dashed thicker diagonals there are five I's in each row, so

that per row there are six l's.

3.6 Simulation and Discussion

This section presents simulation results for BER of the regular TS-LDPC codes,

which are constructed with arbitrary column weight (j >2) and row weight k and

arbitrary girth g. These simulation results are compared with, the BER of randomly

constructed regular LDPC of the same size, that is free of 4-cycles [6]. The performance

for both the codes is evaluated in additive white Gauss noise (AWGN) channels. The

codes are decoded with the sum—product algorithm [6]. The rate normalized SNR is

adopted as:

SNR = 10 loglo[Eb / (2r 02)] 	 (3.30)

where r denotes the code rate. Maximum number of iterations for sum product algorithm

(SPA) are kept at 30.

37

3.6.1 TS-LDPC codes with column weight 3, rate 2/3 and girth g=8
First TS LDPC code for column weight 3 and rate 2/3 is designed. Row weight

for rate 2/3 and column weight 3 is 9. Number of tiers in upper and lower tee for girth 8

will be 8-2=6. Calculation for Upper tree, lower tree, interleaver and shift matrix is as

follows:

Upper Tree Tu (from equation 3.20 and 3.21)
3

Bit nodes = 	8'2' =2184

2
Check nodes = Y 8' 2 =273

Interleaver Design (from equation 3.24 and 3.25)

Bit nodes = 83 * 22 = 2048

Check nodes = 23 * 82 =512

Shift Matrix S (from equation 3.26 and 3.27)

Min Gu =8 Min GL =2

S-matrix size: 2 X 8
Lower Tree TL (from equation 3.22 and 3.23)

3
Check nodes = Y 28'' = 546

Bit nodes = Y 2'8'' = 273
=o

Final H-matrix
For construction of final parity check matrix H first the elements (a,(3) of shift

matrix S are calculated (source code for said program is attached as appendix). Elements

of shift matrix will give the shift of the respective group. Based on the number of

elements in each group interleaver matrix is formed. Finally combination of upper tree Tu

lower tree TL and interleaver will give parity check matrix.

Rows= 	273+546 = 819

Columns = 2184+273 = 2457

as it is clear that number of columns in parity check matrix are 2457, hence block length

of code will be 2457.

38

Encoding of TS LDPC code with block length 2457

Turbo structured parity check matrix is encoded by constructing generator matrix

(G) with the help of parity check matrix. For construction of generator matrix Gauss

Jordan method was employed.

Modulation

After encoding the message bits , the encoded word was modulated with BPSK

method and same was passed through AWGN channel.

Decoding

At receiving end message is decoded by applying sum product algorithm (as

discussed in chapter 2). Maximum number of iteration was kept at 30. BER was

calculated for various values of SNR.

Random LDPC code

Random LDPC code of same block length as of TS LDPC code i.e. 2457 and rate

2/3 is constructed [6]. Same message was encoded with random LDPC code and

modulated and passed through AWGN channel. At receiver end message was decode

with Sum product algorithm, similar to decoding of TS LDPC codes.

10 ------- -------
-_-_ __- - __________ _____ -•+•-(2457,3,9) TSLDPCcodewith9=8

t 	 ,

W 3 `~

--- --- 	---- J_------ ~

	

10_4

	

..-

~ 	--- 	-- 	-----; -

2

Fig. 3.15 	BER performance comparison between a (2457,3,9)TS-LDPC code
with girth 8,rate 2/3 and Randomly constructed (2457,1638) LDPC

codes

2.5 	3 	3.5
SNR(dB)

4 	4.5 	5

39

It is clear from BER v/s SNR plot in Fig 3.15 that at lower SNR values performance of
TS LDPC code is comparable to Random LDPC codes. In the high SNR region TS-
LDPC code outperforms the random code, i.e. at BER 7 x 10-6 this gain is apprx 0.3 dB.

3.6.2 (6084,3,12) TS-LDPC codes girth g=8

Next, with keeping the column weight same (j=3) TS LDPC code with rate r=3/4

and girth 8 is constructed. Following calculation shows that similar size random code will

be of (6084, 4563) dimension.
Calculated code parameters
Tu =507X5577

TL = 1014 X 507
Interleaver = 968 X 5324

Min Gu =2 , Min GL= 11

Size of S matrix = 2 X 11

102 ---- 	- 	------ 	—A (6084,4563) Random LDPC code

[Q __________- ---- ----------------y=-=--F--=- _____--_
1 	h

10~
2 2.1 2.2 2.3 2.4 2.5 2.6 2.7 2.8 2.9 3

SNR(dB)

Fig. 3.16 	BER performance comparison between a (6084,3,12)TS-LDPC code
with girth 8,rate 3/4 and Randomly constructed (6084,4663) LDPC
codes

40

It is clear from the above mentioned calculations that if column weight (j) and girth is not

changed than to achieve higher. code rate, size of parity check matrix or the code block

length will be more. It is clear from BER v/s SNR plot in Fig 3.16 BER performance of

the TS-LDPC code outperforms that of the random LDPC code at BER < 10-' while at

low SNR, both codes have identical error correcting performance.

3.6.3 (6666,3,6) TS-LDPC codes girth g=10

Next, simulations are carried out for TS-LDPC codes while the column weight

j=3) is not changed, but desired girth g is kept at 10. TS LDPC code with rate r=1/2 and

girth 10 is constructed. Following calculation shows that similar size random code will be

of (6084, 4563) dimension. Calculated code parameters are:

Tu = 1111 X 5555

TL = 2222 X 1111

Interleaver = 2000 X 5000

MinGu =10,MinGi=10

Size of S matrix = 10 X 10

r 	,
102 —— -----' 	=

t ----- ----- ---- - 	--- 	- -_ -- 	 _i

	

i 	 7

1 	1.1 	1.2 	1.3 	1.4 	1.5 	1.6 	1.7 	1.8 	1.9
SNR(dB)

Fig. 3.17 	BER performance comparison between a (6666,3,6)TS-LDPC code

with girth 10,rate 1/2 and Randomly constructed (6666,3333) LDPC

codes

41

It is clear from BER v/s SNR plot in Fig 3.17 that at lower SNR values performance of
TS LDPC code is comparable to Random LDPC codes. In the high SNR region TS-

LDPC code outperforms the random code, i.e. at BER 10-6 this gain is apprx 0.1 dB. The

slope of the BER curve for random LDPC code decreases with the SNR in the high SNR

region.
3.6.4 (6220,3,4) TS-LDPC codes girth g=12

Next simulations are carried out for TS-LDPC codes while the column weight

j=3) is not changed, but desired girth g is kept at 12. TS LDPC code with rate >=1/4 and
girth 12 is constructed. Following calculation shows that similar size random code will be

of (6220,1555) dimension. Calculated code parameters are:

Tu = 1555 X 4665

TL = 3110 X 1555

Interleaver = 2592 X 3888

Min GU= 6, Min GL =6

Size of S matrix = 6 X 6

--A-- (6220,3,4) TS LDPC code with g=12

C

105 =_- ______°_ --- ___°°____ _____
__— _

10~
i.e 	i,y 	L L.I L.L L.J 	c. 	~..i

 2.b

SNR(dB)

Fig. 3.18 	BER performance comparison between a (62203,4)TS-LDPC code
with girth 12, rate 1/4 and Randomly constructed (6220, 1555) LDPC

codes

iY
W

a

t
W

m

42

It is clear from BER v/s SNR plot in Fig 3.18 that at lower SNR values performance of
TS LDPC code is comparable to Random LDPC codes. In the high SNR region TS-
LDPC code outperforms the random code. At BER 2x10-5 this gain is 0.2 dB.

3.6.5 (1446, 4, 6) TS-LDPC codes girth g=8

Now simulations are carried out for TS-LDPC codes while the column weight
(j=4) is changed and desired girth g is kept at 8. TS LDPC code with rate r=1/3 and girth

12 is constructed. Following calculation shows that similar size random code will be of
(1446,482) dimension. Calculated code parameters are:
Tu = 241 X 1205
TL=723X241
Interleaver = 675 X 1125
MinGu=3,MinGL=5

Size of S matrix = 3 X5

101
______________ _ ~9--(1446,4,6) TS LDPC code withg=8

------------ 	------
+(1446,482) RandomLDPCcode

------- ---------- ---~ - -'-- ------

- ---------- -

-- 	- ---- ------- — — 	 - —

10-4 L
2

Fig. 3.19 	BER performance comparison between a (1446,4,6)TS-LDPC code

with girth 8, rate 1/3 and Randomly constructed (1446,482) LDPC
codes

It is clear that with smaller block length and lower code rate, high value of SNR is

required to achieve better error performance. It is also clear from BER v/s SNR plot in

2.5 3 3.5 4 4.5 5 5.5

SNR(dB)

43

Fig 3.19 that at lower SNR values performance of TS LDPC code is comparable to

Random LDPC codes. In the high SNR region TS-LDPC code outperforms the random

code. At BER 1.5x10-3 this gain is 0.3 dB.

3.7 Efficient Memory Utilisation

In general, an (n j,k)-LDPC code is represented by an m x n parity-check matrix H.

Its efficient storage records only the nonzero column indices in each row, hence, at least

n x j indices needs to be stored. In contrast, for a TS-LDPC code we need only to store

its small shift generating matrix S. For example, for the 3333 x 6666 matrix with girth

g=10 shown in Fig 3.14, according to equation 3.15 and 3.16, GU=GL = 10, and so the

shift matrix S is 10 x 10 . Hence, instead of storing the 6666 x 3 = 19999 column indices

required for generic LDPC codes, TS-LDPC require only storing 10 x 10 = 100 shifts,

reducing the memory by a factor of 200. Hence TS-LDPC code not only ensures higher

and controlled girth property but results in reduced memory requirements.

3.8 Conclusions

In this chapter design of Turbo Structured LDPC codes are discussed. Turbo

Structured LDPC codes with large and controlled girth and flexible code rate guarantees

fast convergence of iterative decoding algorithms with reduced memory requirements.

44

EFFICIENT ENCODING FOR TS-LDPC CODES 	CHAPTER 4

4.1 Introduction
Encoding of LDPC codes can be done similarlily as of linear Block codes. A

generator matrix for a code can be found by performing Gauss-Jordan elimination on H

to obtain it in the form

H=[A,I„-k] 	 (4.1)

Where A is a (n-k) x k binary matrix and Ik is size n-k identity matrix. The

generator matrix is then

G=[Ik,AT] 	(4.2)

However, the drawback of this approach is that, unlike H, the matrix G will most likely

not be sparse and so the matrix multiplication

c=uG, 	 (4.3)

at the encoder will have complexity in the order of n2 operations. As n is large for LDPC

codes, from thousands to hundreds of thousands of bits, the encoder can become

prohibitively complex. Hence for LDPC code Encoder should be of liner complexity.

4.2 Encoding friendly TS-LDPC (EFTS-LDPC) Codes
The Tanner graph of an EFTS-LDPC code is derived from Tanner graph of Turbo

Structure LDPC. Similar to TS LDPC codes it contains an upper tree TU and a lower tree

TL that are interconnected by an interleaver L There are no restrictions on the upper tree

Tu of the EFTS-LDPC code, which can be exactly the same as the part of the standard

TS-LDPC codes. The TL of the EF-TSLDPC code is restricted so that the degree of its

bit nodes is two. In addition, the root of the TL is changed from a bit node to a check

node, as shown in Fig. 4.1. In addition to design restriction in [22], while constructing

lower-tree TL for EF TS LDPC code, the degree of the root of TL (check node) should be
h

(j-1)2 while other check nodes in TL have uniform degree (k-1) where j, k, h are

column weight, row weight, and height of TL, respectively. One can always build a

regular TS LDPC code first, then build a corresponding EF TS LDPC code from the TS

LDPC code [22].

45

The Tanner graph for an EFTS-LDPC code is shown in Fig. 4.1. EFTS-LDPC codes are

slightly irregular. These modifications enable EFTS-LDPC codes to be encoded with

linear complexity.

Fig. 4.1. 	EFTS-LDPC codes: A variant of TS-LDPC codes (EFTS-LDPC

codes). [22]

4.3 Linear-Complexity Encoding of TS-LDPC codes

Encoding of EFTS-LDPC codes can be explained using their Tanner graph

because LDPC codes are represented by Tanner graph. To achieve linear-complexity

encoding, the root (a check node) of the lower tree TL from the Tanner graph of the

EFTS-LDPC codes is removed first. This check node is removed because its degree is

(j-1)W2 while other check nodes in TL have uniform degree (k-I) and number of tiers in

TL will also be same as of Tu. It is shown in the following Lemma that removing the root

of TL will not alter the underlying tree structure.

Lemma 4.• The parity-check equation denoted by the root of TL is redundant and can be

removed from the parity-check matrix H without changing the underlying code structure.

Proof As given in [22] two different cases are discussed: the bit node degree of Tu is

even; the bit node degree of Tu is odd.

46

I) The Bit Node Degree j of Tu Is Even: Since all the bit nodes in TL have uniform

degree two by definition, then the degree of all the bit nodes is even, which means that

each column of H contains an even number of l's. Hence, the sum of all the
C l

Fig. 4.2. 	Tanner graph for an EFTS-LDPC code (The bit node degree of Tu is

even). [22]

}T,

j
i=deaver

TL

Fig. 4.3. 	Equivalent representation of the Tanner graph, shown in 	Fig. 4.2.

(The root of TL is removed.) [22]

rows of H in the binary field is a vector of 0's. Therefore, one row of H is linearly

dependent on the remaining rows and can be removed without affecting the code. Hence

one row can be removed without affecting the properties of H, for construction of

encoding friendly TS LDC code. Best choice is the row that corresponds to the root of

47

m

TL. For example, Fig. 4.2 shows an EFTS-LDPC code. The bit node degree of its Tu is

two, an even number. The root of its TL can be removed to generate an equivalent Tanner

graph, as shown in Fig. 4.3

2) The Bit Node Degree j of Tu is Odd: By construction, check nodes in Ti. connect to

either leaf nodes of Tu or bit nodes of TL. Since each leaf node of Tu is connected to (j-

I) check nodes in TL and is an odd number, then each leaf node of Tu is connected to an

even number of check nodes in TL . Further, every bit node in TL is connected to exactly

two check nodes in Ti. by construction. Hence, every bit node is connected to an even

number of check nodes in TL. If we sum up those parity-check equations denoted by the

check nodes in TL, the summation in the binary field is a vector of 0's. Therefore, one

of those parity-check equations in TL can be removed without changing the underlying

code structure. Again the parity-check equation denoted by the root of TL is chosen for

removal.

Fig. 4.4. 	Tanner graph for an EFTS-LDPC code. (The bit node degree of Tu is

odd.) [22]

48

For example, Fig. 4.4 shows an EFTS-LDPC code. The bit node degree of Tu is 3 , an

odd number. The root of TL can be removed from its Tanner graph without changing the

code, as shown in Fig. 4.5.

wkal~tr

Fig. 4.5. An equivalent representation of the Tanner graph shown in Fig.4.4.
(The root of TL is removed.) [22]

4.4 Encoding algorithm for EFTS-LDPC Codes

, Encoding for Encoding Friendly Turbo Structured (EF-TS) LDPC code is done

step by step, first upper tree Tu is encoded than lower tree Tu will be encoded based on
the information provided by interleaver.

After encoding Tu, it is noticed that all the bit nodes in represent parity bits (Fig

4.5). Let h represent the number of tiers in TL. Since the degree of every bit node x in Tu
is two, the value of x depends only on the values of the bit nodes in the lower tier.

Particularly, the values of the bit nodes in tier h-1 of TL are based only on the values of

the Ieaf nodes of Tu . Hence, the values of the bits in TL can be computed tier by tier,
starting from the bottom tier. Each time the values all the bits in a given tier, say, the
(2i)'s tier are computed, the values of all the bits in the (2i-1) h̀ tier can be computed
This encoding process keeps going on until the values of all the bits the second tier are
known (the first tier has been removed by Lemma 4). In this way, all the bits in TL are
encoded. An algorithm for encoding EF-TS LDPC codes is presented below.

49

Algorithm 2 Encoding algorithm for Ef-TS-LDPC codes (Tu contains h tiers)

Initialization
Encode Tu , get the values of all the bit nodes in Tu, including the leaf nodes;

Compute values of the bit nodes in tier h of TL based on the values of the

leaf-nodes of Tu ;

for i=h-3 to step-2 do

Compute values of the bit nodes in tier i of Ti. based on the values of bit nodes in

tier i+2 of TL;

end for

Output the encoding result.

4.4.1 EFTS-LDPC Codes Encoding: Example

Encoding with the help of EF-LDPC codes can be understood with an example

EFTS-LDPC code for (37, 3, 4). Number of tiers in upper and lower tree are 4. It can be

calculated that dimension of upper tree, lower tree and interleaver will be 	7 x 21

16 x 16 and 12 x 18 respectively. Fig 4.6 shows the upper tree Tu.

Fig 4.6: 	Upper Tree Tu of the EFTS-LDPC code

Upper Tree Tu can be encoded as follows:-

1. First acquire the values of the information bits x2, x3, x5, x6, x8, x9, x11, x12, x14,

X15, x17, x18, x20 and. x21.

50

~` »o~ ~~,d/

~b!btf8lllH~r .

2. Then compute the parity bit xl from the parity check equation

C1: xl=x2 O x3.

3. Compute the parity bits x4, x7 ,x10, x13, x16 and x19 from parity check equations

as follows:

C2: x4 = x 1 O+ x5 O+ x6
C3:x7=x1 $ x8 O+ x9
C4:x10=x2 O+ xll $ x12
C5: x13= x2 O+ x14$ x15
C6: x16= x3 O+ x17 O+ x18

C7: x19= x3 O x20 O+ x21

Hence 	the 	finally 	encoded 	bits 	are

xl ,x2,x3,x4,x5,x6,x7,xS,x9,x10>x l l,x I2,xI3,x14,x 15,xI 6,x17,x18,x19,x20,x21.

4. The complexity of above encoding process is only 7*2-1=13 XOR operations.

For encoding of lower tree TL refer fig 4.7. Steps areas follows

01

E

Fig 4.7: 	Encoding of lower tree TL of the EFTS-LDPC code

1. Compute the parity bits x22 to x33 from the check equation C8 to C19 using

Parity check equations of interleaver and leaf node bits of upper tree.

51

2. Compute the parity bits x33, X34, X35 and X36, X37

C20: x34= x22 O x23 ® x24
C21: x35= x25 O x2 66 x27
C22:x36=x28 m x29 m x30
C23:x37=x31 m x32 O x33

Hence final encoded word will be combination of upper tree encoded bits x1 to x21 and

lower tree bits x22 to x37.

4.5 Computational complexity

Let us evaluate the computational complexity of algorithm. Let lee, P = 1, 2...m

denote the number of bits contained in the e' parity-check equation. Each of the m

parity-check equations is used to obtain the value of a parity bit. When employing the tIh

parity-check equation to determine the value of a parity bit, (k-2) XOR operations are

needed. So, j(k, -2)XOR operations are required to obtain all m parity bits.

Let k = 1 j ki denote the average number of bits in the m parity-check equations and
m !=1

then the encoding complexity can be expressed as O(m(k-2). For LDPC codes with

uniform row weight k, the encoding complexity is O(m(k— 2) , hence it is clear that the

encoding process of Encoding Friendly Turbo Structured (EF-TS) LDPC codes can be

accomplished in linear time.

4.6 Simulation and discussion 	 -

This section presents simulation results for BER of the Encoding Friendly TS-

LDPC codes , which are constructed with arbitrary column weight (j >2) and row

weight k and arbitrary girth g. The performance for the code is evaluated in additive

white Gauss noise (AWGN) channels. The codes are decoded with the sum—product

algorithm [6]. SNR is calculated as follows ;

SNR = 10 loglo[Eb / (2r a')] 	 (4.4)

52

where r denotes the code rate. Maximum number of iterations for sum product algorithm

(SPA) are kept at 30.

4.6.1 (8051,3,6) EF TS-LDPC codes girth g=10

One can always build a regular TS LDPC code first, and then build a

corresponding EF TS LDPC code from the TS LDPC code. For example, let us build EF

TS LDPC code from the TS LDPC code of (6666,3,6). As per the calculations given

chapter 3. number of check nodes in interleaver are 2000. Hence for tier h of TL, number

of check nodes = 2000, for tier h-2, check nodes = (2000/5) = 400, for tier h-4 check

nodes = 80, for tier h-6 check nodes = 16, for tier h-7, there are 16 bit nodes, for tier h-8,

there is only one check node that connects to all the (3— 1)2 =16 bit nodes in tier h-7. The

node in tier h-8 is the root. Hence, the degree of the root of TL is different from the

degree of the other check nodes in TL. This root is removed for construction of EF TS-

LDPC codes, as discussed previously. Now upper tree, lower tree and shift matrix are

obtained similar to TS LDPC codes. Combination of these three matrices will give parity

check matrix.

Calculated code parameters are

TO = 1111 X 5555

TL = 2496 X 2496

Interleaver = 2000 X 5000

Min Gu =10 , Min GL= 10

Size of S matrix = 10 X 10

It is clear from above parameters that block length of EF TS LDPC code will be 5555 +

2496 = 8051.

Message is encoded with upper tree first and than lower tree, as explained in
algorithm (source code is attached as appendix).

Encoded message is modulated (BPSK) and passed through AWGN channel.

At receiver end message is decoded with Sum Product algorithm. Maximum number of

iteration are kept at 30.

53

_ _ _ — -- ((8051,3,6) EF-TS LDPC code vdth g=10

K W m
I)

76

W

m

0.8 	0.9 	1 	1.1 	1.2 	1.3 	1.4 	1.5 	1.6
SNR(dB)

Fig. 4.8 	BER performance comparison between a (8051,3,6) EF-TS-LDPC

code with girth 10.

It is clear from the calculations that Encoding Friendly Turbo Structured (EF-TS) LDPC

code will have larger dimension than corresponding TS-LDPC code. Since this code has

larger block length (8051) and is irregular LDPC code, BER of 2 x 10-7 is achieved at 1.6

dB SNRonly(fig4.8).

4.6.2 (1993, 3, 8) TS-LDPC codes girth g= 8

Here EF-TS-LDPC code corresponding to (1688, 3, 8) TS-LDPC code with girth 8 is

constructed.

Tu =211X1477

TL = 456 X 456

Interleaver = 392 X 1372

Min GU= 2, Min GL=7

Size of S matrix = 2 X 7

54

no 	 Bit Error Rate

_ 	•-(1933,3,8) EF-TS LDPCCode with g=8 "r=

	

--____ _____---_ _— 	(1933,1266) RandomLDPCcode 	~-

------ ------ ------,- -- - ---~-:- --- --------------
r------ ------,---- - e - -

103

~n5 	 I 	I 	i

0 0.5 1 1.5 2 2.5 3 3.5 4
SNR(dB)

Fig.4.9 	BER performance comparison between a (1933,3,8) EF-TS-LDPC

code with girth 8 and Randomly constructed (1993,1266) LDPC codes
In Figure 4.9 we compare the performance of (19333,8) EF-TS-LDPC codes with girth

g=8 and the random LDPC code (1993,1266) free of length 4 cycles. Simulation results

demonstrate that simulation time taken for encoding the EF-TS LDPC code is much -
much lower than the Random LDPC code. Random LDPC codes are encoded with the

help of creation of Generation matrix (G) with Gauss-Jordan elimination on H. It is also
clear that EF-TS LDPC code outperforms random LDPC code at higher SNR value. For
Low SNR both these codes have similar error correcting performance.

4.7. Conclusions
In this chapter design and construction of EFTS-LDPC codes with linear

complexity encoding are discussed. A regular TS-LDPC code is developed first, and than

its corresponding EFTS-LDPC code is constructed. Decoding is done using sum product

algorithm.

uJ
w
m

55

CONCLUSION AND FUTURE WORK CHAPTER 5

LDPC codes have received much attention in recent years. The advantages of

the codes include capacity-approaching performance, and highly-efficient parallel

decoding algorithms. LDPC codes are enabling technology for many new

applications.

In this dissertation a class of well structured regular LDPC codes is discussed. In

the first part of dissertation turbo design for LDPC codes is considered. It is shown

through a series of theorems that Turbo Structured (TS) LDPC code can be designed with

arbitrary desired column and row weights j and k, hence with any practical rate r and

arbitrary girth g. TS-LDPC codes can be designed by specifying a shift matrix S, a much

smaller object than the parity check matrix H,. This results in requirement of much less

memory to store them. TS-LDPC codes with girth g >_ 8 have good BER performance

than equivalent size and rate random LDPC codes.

In the second part of dissertation a variant of Turbo Structured (TS) LDPC codes-

Encoding Friendly (EF) TS-LDPC code is designed. It is shown that with few

restrictions and modifications in lower tree TL of TS-LDPC code, EFTS-LDPC codes

can be constructed. One can always build a regular TS LDPC code first, and then build a

corresponding EF TS LDPC code from the TS LDPC code. EFTS-LDPC codes encode

efficiently in liner complexity.

These characteristics of flexible code rates, arbitrary large girth, good error floor

performance, efficient storage, and efficient encoding make TS-LDPC codes attractive

for applications such as digital communication systems and data storage systems.

This dissertation decodes Turbo Structured LDPC codes with Sum Product

Algorithm (SPA). This work can be further extended by developing a turbo like decoding

algorithm which converges faster than sum product algorithm. This decoding method can

utilize turbo structure of parity check matrix.

56

GLOSSARY

Tanner Graph

The Tanner graph is a special type of graph, a bipartite graph, where the nodes divide into

two disjoint classes with edges only between nodes in the two different classes.

Ct 	02 	Cig 	24

o Check ode

Bit Node

1 V2 V3 V4 V5 V6 V7 V8

Fig A. 1: Tanner graph

Girth

Let G = {(V, E)} be a graph, where V is a set of vertices or nodes V and E is a set of

edges'E connecting the vertices. The degree of a node V is the number of edges incident

on V. In an undirected graph, a series of successive edges forming a continuous curve

passing from one vertex to another is called a chain. A chain of a node where the initial

and the terminal nodes are the same and that does not use the

same edge more than once is a cycle. The length of a cycle is the number of its edges; and

the girth g of G is the length of the shortest cycle.

Signal to Noise Ratio

Signal-to-noise ratio (SNR or S/N) is defined as the ratio of a signal power to the noise

power corrupting the signal.

57

Bit Error Rate (BER)

Bit Error Rate is defined as the probability of error per bit in a digital communications

system.

Parity Bits
A bit in asynchronous communications used to indicate the type of error checking used in

a transmission. A bit appended to the bit pattern for a character so that the number of bits

in the pattern and parity bit combined is either even or odd, said to be even or odd parity

respectively.

Code Rate
In error correction, the ratio of information divided by information plus redundancy.

Codes with a high code rate are desirable because they efficiently use the available

channel for information transmission.

Row Weight
Row weight is the number of ones in one row of the parity check matrix of LDPC codes.

Column Weight
Column weight is the number of ones in one column of the parity check matrix of LDPC

codes.

Bit Node and Check nodes

Associated with a parity check matrix H is a graph called the Tanner graph containing

two sets of nodes. The first set consists of N nodes which represent the N bits of a

codeword; nodes in this set are called "bit" nodes. The second set consists of M nodes,

called "check" nodes, representing the parity constraints. The graph has an edge between

58

0

CI

C2

C3
C4

CS

C{

C7

Cg

C9

CID

bit
nodes

check
nodes

Z1

Z2

Z3

Z4

Z5

the nth bit node and the ms' check node if and only if nth bit is

Fig A.2: Bit Nodes and Check Nodes

Auxiliary Nodes

By construction, each leaf-node in Tu is connected to q j — I leaf-nodes in T. This is a

one-to-q mapping, while the standard interleaver is a one-to-one mapping between
elements of two sets with the same size. To get a standard interleaver, we introduce

"auxiliary nodes" (solid triangles) as shown in Figure to facilitate the code design. For

each leaf-node in Tu, we add j-1 auxiliary nodes as its children. Similarly, each leaf-

node in TL has k — 1 auxiliary nodes as its descendants.

Fig A.3: Auxiliary nodes in upper tree

59

References

1 C. E. Shannon, "A mathematical theory of communication," Bell System 	Tech.

J.,vol. 27, pp. 623-656, July 1948.
2. S. Lin and D. J. Costello Jr., Error Control Coding, 2nd ed. New Jersey: Prentice

Hall, 2004.

3. R.G. Gallager, Low-Density Parity Check Codes. Cambridge, MA: MIT Press, 1963.
4. Gallager, R. G., "Low-density parity-check codes," IRE Trans. Inf. Theory, vol. IT-8,

no. 1, pp. 21-28, January 1962.
5. Berrou, C., Glavieux, A. and Thitimajshima, P., "Near Shannon limit error-correcting

coding and decoding: turbo codes," Proc. 1993 IEEE International Conference on

Communications, Geneva, Switzerland, vol. 2, pp. 1064-1070, May 1993.
6. MacKay, D. J. C. and Neal, R. M., "Near Shannon limit performance of low density

parity check codes," Electron. Lett., vol. 33, no. 6, March 13, 1997.

7. S. Y. Chung, G. D. Forney, T. J. Richardson, and R. L. Urbanke, "On the design of
low-density parity-check codes within 0.0045 dB of the Shannon limit," IEEE

Commun. Letters, vol. 5, pp. 58-60, Feb. 2001.

8. A. J. Blanksby and C. J. Howland, "A 690-mW 1-Gb/s 1024-b, rate-1/2 low-density

parity-check code decoder," IEEE Journal of Solid-State Circuits, vol. 37, pp. 404-
412, Mar. 2002.

9. R. M. Tanner, "A recursive approach to low complexity codes," IEEE Trans. Inf.

Theory, vol. IT-27, no. 5, pp. 533-547, Sep. 1981.

10. Y. Kou, S. Lin, and M. P. C. Fossorier, "Low-density parity-check codes based on
finite geometries: A rediscovery and new results," IEEE Trans. Inf. Theory, vol. 47,
no. 7, pp. 2711-2736, Nov. 2001.

11. —, "Low density parity check codes: Construction based on finite geometries," in
Proc. IEEE Globecom 2000, San Francisco, CA, Nov. 2000, vol. 2, pp. 825-829.

60

12. J. H. Dinitz and D. R. Stinson, "A brief introduction to design theory," in
Contemporary Design Theory: A Collection of Surveys, J. H. Dinitz and D. R.
Stinson, Eds. New York: Wiley, 1992, oh. 1, pp. 1-12.

13. D. J. C. MacKay and M. C. Davey, "Evaluation of Gallager codes for short block
length and high rate applications, in codes," in Systems and Graphical Models; IMA

Volumes in Mathematics and its Applications, B. Marcus and J. Rosenthal, Eds. New

York: Springer-Verlag, 2000, vol. 123, pp. 113-130.

14. R. L. Townsend and E. J.Weldon, "Self-orthogonal quasi-cyclic code," IEEE Trans.

Inf. Theory, vol. IT-13, no. 2, pp. 183-195, Apr. 1967.

15. M. P. C. Fossorier, "Quasi-cyclic low-density parity-check codes from circulant
permutation matrices," IEEE Trans. Inf. Theory, vol. 50, no. 8, pp. 1788-1793, Aug.
2004.

16. X. Y. Hu, E. Eleftheriou, and D. M. Arnold, "Progressive edge-growth tanner

graphs," in Proc. IEEE Globecom 2001, San Antonio, TX, Nov.2001, pp. 995-1001.

17. F.R. Kschischang, B.J. Frey, and H.A. Loeliger, "Factor graphs and the sum-product

algorithm," IEEE Trans. Inform. Theory, vol. 47, no. 2, pp. 498-519, Feb. 2001.

18. T. Etzion, A. Trachtenberg, and A. Vardy, "Which codes have cycle-free Tanner

graphs?," IEEE Trans. Inform. Theory, vol. 45, no. 6, pp. 2173-2181, Sept. 1999.

19. J Lu and J. M. F. Moura, "Turbo design for LDPC codes with large girth," in IEEE

Int. Workshop on Signal Processing Advances in Wireless Communications

(SPAWC), Rome, Italy, Jun. 2003, pp. 90-94.
20. L. Ping and K. Y. Wu, "Concatenated tree codes: A low-complexity, high-

performance approach," IEEE Trans. Inf. Theory, vol. 47, no. 2,pp. 791-799, Feb.

2001.

21. H. Behairy and S.-C. Chang, "Parallel concatenated Gallager codes for CDMA
applications," in Proc. IEEE Globecom 2001, San Antonio, TX, Nov. 2006, vol. 2,
pp. 1002-1006.

61

22. Jin Lu and M. F. Moura, , "TS-LDPC codes:Turbo Structured Codes With Large
Girth," IEEE Transaction on Information Theory, vo153,No3, Mar2007 pp 1080-

1094.
23. S. Dolinar and D. Divsalar, Weight Distribution for Turbo Codes Using Random and

Nonrandom Permutations, JPL, Pasadena, CA, Progr. Rep. 42-122, Aug. 1995, pp.
56-65.

24. P. Popovski, L. Kocarev, and A. Risteski, "Design of flexible-length s-random

interleaver for turbo codes," IEEE Conxmun.'Lett., vol. 8, no. 7, pp. 461-463, Jul.

2004.
25. Jin Lu, Jose M.F. Moura and Urs Niesen, "A Class of structured LDPC codes with

Large Girth", IEEE Communication Sociaty2004, pp-425-429

62

Matlab Source code 	 Appendix

% Generation of upper tree

function [H]=vingenerate_tu_new(k,j,check,bit)°
a=zeros(check,bit);
%t=0;
for m=l:check

if m-=1
p=1+floor((m-2)/(j-1))
a(m,p)=1;
end;

for n=l:bit
if (((k-1)*(m-1)< n)&& (n<=(k-1)*m))

a(m,n)=1;
end;

% if (t>O)
a(m,t)=1;

o end;

end;

end;
H=a;

% Generation of lower tree

function [H)=vingenerate_tl_new(k,j,check,bit,inter)
a=zeros (check, bit);
t1;
for m=l:check

p=floor((m+(j-2))/(j-1))
a(m,p)=1;

end;

for t=inter+l:check

for n=l:bit

if (((k-1)*(t-(inteY+1))< n)&& (n<=(k-1)*(t-inter)))
a(t,n)=1;

end;
end;

end;
H=a;

% Generation of Shift matrix

function [S]= generate_S_matrix_new(m,n,k,j,__group,girth-:

h_tier=girth-2;
a=zeros(m,n);
flag =zeros(m,n);
iterations=O;

%NEXT2:
jump1=1;
while jumpl==1

jumpl=0;
iterations=iterations+l;
for i=l:m
for jj=l:n

a(i,jj)=-1;
flag (i, ii) =1;

end
end

checkl=zeros(1,p :group);
for i=l:p_group

checkl(i)=i-1;
end

ranl=randperm(n);
ran2=randperm(m);
for i=1:k-1

a(1,ranl(i))=gen_randoml(p_group);
end

for i=1:j-1
a(ran2(i),1)=gen_randoml(p_group);

end
%%a(1,:)=randsrc(l,n,checki);
%a(:,l)=randsrc(l,m,check"'-);

randd=zeros(1,p group); g=l; 	p_ group);

 i=2:m

for jj=2:n

jump2=1;
checkrow=0;

checkcol=O;
for u=1:n

if a(i,u)>=O
checkrow=checkrow+l;

end
end

for u=1:m
if a(u,jj)>=0

checkcol=checkcol+l;
end

end

if checkrow>=(k-1)
jump2=0;

end

if -(checkcol>=(j-1))

oNEXT1:

while jump2==l

jump2=0;

a(i,jj)=genrandcond(p_group,randd,g);
flag(i,jj)=0;
for t=2:(girth-2)/2

if
check loop matrix(a,m,n,n,k,j,p group,2*t,h tier,girth)

flag(i,jj)=l;%discard the current candidate of a(i,j)

randd(g+l)=a(i,jj);

g=g+1;
if g<p group
jump2=1;
end

end
end

if jump2-=1
if(g>=p_group)

%a[i] [jj]=-l;
%goto NEXT2;
jumpl=l;
end
g=1;

end
end
end

end
end

end
%rearrange
checkcol=O;

for u=1:m
if a(u,jj)>=O

checkcol=checkcol+l;
end

end
for i=1:n

checkcol=0;
for u=1:m

if a(u,i)>=0
checkcol=checkcol+l;

end
end

if checkcol<(j-1)&&a(m,i)<O
a(m,i)=gen_random(p_group);

end

end

S=a;

% various functions. utilized for shift matrix program

function num=gen random) range)
sum=randperm(range);
num=sum(1)-l;

function num= gen rand cond(p,a,n)

z=randperm(p);
jump=1;
nu=0;

if n>O
while jump==1
% NEXT:
jump=O;
for i=1:n

if (z(1)-l)==a[i]

z=randperm(p);
%goto (NEXT,'genrandcond.m');
jump=1;

end
if jump-=1

num=z(l)-l;
jump=O;
return;

end
end

end

else
num=z(1)-1;
return;

end

function bool =checkloopmatrix(a,m,n,p,krow,j_col,p_group,cycle_length,htier,girth)

%matrix d
d=zeros(m,n);

%matrix b i.e lists-of connection b/w nodes
b=zeros(m*p,m+n);

%calculate b's elements
kk=l;
for i=l:m

for j=l:n
if a(i,j)>=O
%v[kk]=kk;
d(i,j)=kk;
kk=kk+l;
else
d(i,j)=-l;
end

end
end

w=l;

for h=1:m
for r=1:n

if d(h,r)>O
s=1;
for j=l:n

if d(h,j)>=O&&j-=r
b(w,$)=d(h,j);
s=s+1;

end
end

for j=1:m
if d(j,r)>=0&&j-=h
b(w,$)=d(j,r);
s=s+l;
end

end
w=w+l;

end
end

end

x=m*p;

count=0;

for i=1:m
for j=l:n

if a(i,j)>=0
count=count+l;

end
end

end

comb=zeros(l,count);
for i=l:count

comb(i)=i;
end

%check cycle
for cycle=4 : cycle_length

allcomb=nchoosek(comb,cycle);
sizel=size(allcomb);
for per=l:sizel(l)

permu=perms(allcomb(per, :));
y=cycle;
size2=size(permu);
for z=l:size2(l)

v=permu(z,:);
if check_ loop(v,cycle,b,x,m+n)

jump=0 ;
for r=l:y-2

x1=0;x2=0;x3=0;y1=0;y2=0;y3=0;
for sl=l:m

for s2=1:n

d(sl,s2)==v(r+2)

if(xl==x2&&x2==x3)II(yl==y2&&y2==y3)

if d(sl,s2)==v(r)
xl=sl;
yl=s2;

else if d(sl,s2)==v(r+l)
x2=sl;
y2=s2;

else
if

x3=s1;
y3=s2;
end

end
end

end

%goto NEXT;
jump=l;
break;
end

end

r=y-1;

if r==y-l&&jump-=l
xl=0;x2=0;x3=0;yl=0;y2=0;y3=0;
for sl=l:m
for s2=1:n

if d(sl,s2)==v(r)
xl=s1;
yl=s2;

else if d(sl,s2)==v(r+l)
x2=sl;
y2=s2;
else

if d(sl,s2)==v(l)
x3=s1;
y3=s2;
end

end
end

end
if

(xl==x2&&x2==x3)II(yl==y2&&y2==y3)
%goto NEXT;
jump=l;
end

end

r=y;
if r==y&&jump-=l

xl=0;x2=0;x3=0;yl=0;y2=0;y3=0;
for sl=l:m
for s2=1:n

if d(sl,s2)==v(r)
x1=sl;
yl=s2;

else if d(sl,s2)==v(1)
x2=sl;y2=s2;

else
if d(sl,s2)==v(2)
x3=sl;y3=s2;
end

end
end

end

if(xl==x2&&x2==x3)II(yl==y2&&y2==y3)
% goto NEXT;
jump=l;
end

end
%printv)v,cycle);
if jump=1

path values=zeros (1, y);

path values=return_ path values(a,m,n,v,y) ;

sum=0;
for mm=1:y

1,2)

path values (mm) ;

sum=mod(sum,p group);

sum=sum+path values)mm)

sum=mod(sum,p group);

=p q alternate)h tier, sum, jcol,k row);

check _zeros (p_q,htier,h_tier+y-girth/2)

end
end

end

end
end

end
end

end

boo 1=0;

function bool= check loop)v,n,b,p,q)

for i=1:n-1
if -check(b,p,q,v(i),v(i+l))
boo 1=0;
return;
end

end

if =check(b,p,q,v(1),v(n))
bool=0;

if mod(mm-

sum=sum-

else

end
end

p q=zeros(l,h tier);

pq

if

bool =1;

return
end

return;
end

boot=1;

function [W]= return path values(a,m,n,v,$)

d=zeros(m,n);

kk=1;
for i=l:m
for j=l:n

if a(i,j)>=O
d(i,j)=kk;
kk=kk+l;
else
d(i,j)=-l;
end

end
end

w1=s;
w=zeros(l,wl);

for k=l:wl
for i=l:m
for j=l:n

if d(i,j)==v(k)
w(k)=a(i,j);
end

end
end
end

function [A] =pq_alternate(h,x, j, k)
a=zeros(l,h);

p=k-l;
q=j -1 ;

i=l;
while x>1

a(i)=mod(x,q);
x=x/q;
i=i+l;

a(i)=mod(x,p);
x=x/p;
i=i+l;

end
A=a;

function boot= check zeros(a,h,zeros)

count=O;

for i=l:h
if a(i)==0

count=count+l;
if count==zeros

boot-1;
return
end

else
count=0;

end
end

if count>=zeros
bool=l;

return
end
bool=0;

% GENERATION interleaver MATRIX FROM GIVEN SHIFT MATRIX...

function [h]= shmatrix(w,p)
%w=generateS matrix(4,6,3,2,3,4,6)
y=size(w);
rs=y(l);
cs=y(2);
h=zeros(rs*p,cs*p);

s=w;

for i=l:rs
for j=l:cs

if (s(i,j)==-l)
for z=i*p+l-p:i*p
for x=j*p+l-p:j*p
h(z,x)=0;

end
end

else
q=s(i,j);
for x=j*p+l-p:j*p
for z=i*p+l-p:i*p

h(z,x)=0;
if (x+q+p*(i-l)>i*p)

v=(x+q+p*(i-1));
while v >i*p
v= v-p;
end;
if z==v
h(z,x)=l;

end;
end
if x+q+p*(i-1)==z
h(z,x)=1;
end

end
end

end
end

end
%lowertree(h,ch,rh);

end

% Generation of parity check matrix

function [H]=final_ h_ matrix (tu, ti, inter)
sizel=size(tu);
size2=size(tl);
siz.e3=size(inter);
row=sizel(1)+size2(1);
col=sizel(2)+size2(2);
h=zeros(row,col);
for i=l:sizel(1)

for j=1:sizel(2)
h(i,j)=tu(i,j);

end
end

for i=l:size2(1)
for j=l:size2(2)

h(i+sizel(1),j+sizel(2))=tl(i,j);
end

end

for i=l:size3(1)
for j=l:size3(2)

h(i+sizel(1),j+sizel(2)-size3(2))=inter(i,j);
end

end
H=h;

% Encoding of message with EF TS LDPC code

function [h, en) =encode _tu(k,j,m)
[a,b]=size(m);
col=b+b/(k-2);
row=b/(k-2);
tu=vingenerate_tu_new(k,j, row, col) ;
e=zeros(1,col); 	-
n=1;

for i=l:col
if(rem(i-l,k-2))

e(i)=m(n);
n=n+l;

end
end

count=l;
for i=l:row

xor=0;
for s=1:n

if(tu(i,$))
xor=mod(xor+e(s),2);

end
end

,e(count)=xor.;
count=count+k-2;

end

h=tu;
en=e;

% Example program for generation of Turbo structured parity
check matrix for (2457, 3, 9) code with girth 8.

function [berl]- = PLOT Ts LDPC 2457
n=2457;
k=9;
j=3;
g=8;
row=819; col=2457;
%upper tree 273 X 2184
tur=273;
tuc=2184;
%lower tree 546X273

t1r=546;
tic=273;
%interleaver 512 X 2048
ir=512;
ic=2048;

%grouping of 10
group=256;
%girth=8
g=8;
%shift matrix
sr=2;
sc=8;
%generate shift matrix 2X5
s=generate S matrix(so,so,k,j,group,g);
hs=s hmatrix(s,group);
tu=vingenerate_tu new(k,j,tur,tuc);
tl=vingenerate tlnew(k,j,tlr,tic,ir);
H=final h matrix (tu, ti, ha) ;

H(l,row)=1;
%generate messase bits

m=zeros(l,col-row);
for i=l:col-row

if mod(i,2)
m(i)=l;
else

m(i)=0;
end

end

[G,hh]=gen_generator matrix2(H);%generate generater matrix
%h=G;
H=hh;
generator=G;
parity_check=H;
save ber_tsldpc_2457 generator parity check;
no=NO;
amp=AMP;
scale=zeros(l,col);
for i=l:col
scale(i)=1;
end
c=mul GF2(m,G); %tx=c;
berll=zeros(1,5);
for u=1:5
modusbpskl(c,amp);
rx=awgn(modu,no);
c =decode ldpc(rx,no,amp,H,scale);
count=0; 	% rx=c_;
for i=l:col

if c(i)-=c(i)
count=count+l;

end
end

berll(u)=count/col;
error _rate=count/col
end
berl=berll;

semilogy(dB,BER11,'b-o')
title('Bit Error Rate')
ylabel('BER')
xlabel('Eb/No (dB)')
grid
figure

% BPSK modulation

function [waveform]=bpskl(bitseq,amplitude)

for i=l:length(bitseq)
if bitseq(i)==1

waveform) i) =amplitude;
else

waveform) i) =-amplitude;
end

end

% passing through AWGN channel

function [x]=awgn(waveform,No);
%x=awgn(waveform,No);
%For examples and more details, please refer to the LDPC toolkit
tutorial at
%http://arun-10.tripod.com/ldpc/idpc.htm
NoiseStdDev=sqrt(No/2);
x=waveform + NoiseStdDev*randn(l,length(waveform));

% Example program for generation of (1933, 3,8) with girth 8 TS LDPC code and

Encoding of message with linear complexity

function [berl] = vin-EFTS LDPC 37

n=1933;
k=8;
j=3;
g=8;
row=667;col=1933;
%upper tree 211x1477
%lower tree 456 x 456
%interleaver 392x1372
%grouping of 196-
%girth=8
%generate shift matrix 2 x 7

%generate message

mn=1477/ (k-1);
mn=mn*(k-2);
m=zeros(l,mn);
for i=1:mn

if mQd(i,2)
m(i)=1;
else

end
end
s=generate S matrix_new(2,7,8,3,196,8);
hs=shmatrix(s,196(
[tu,el]=encodetu(k,j,m)
tl=vingenerate tl_new(k,2,456,456,392)
H=final h matrix(tu,tl,hs)
%H(l,col)=1;
e2=zeros(1,456)
e=zeros(1,1933);
for i=1:1477

e(i)=el(i);
end

p=1477;
for i=212:667

xor=O;
for s=1:1933

if H(i,$)
xor=mod(e(s)+xor,2);

end
end
e(p)=xor;
p=p+l;

end

v=e;

	Title
	Abstract
	Chapter 1
	Chapter 2
	Chapter 3
	Chapter 4
	Chapter 5
	References
	Appendix

