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ABSTRACT 

An improved architecture for two-dimensional discrete wavelet transform (2D-DWT) 

to implement bi-orthogonal Cohen-Daubechies-Feuvear (CDF) (2,2) wavelet with line-based 

method is proposed for FPGA implementation using lifting scheme. The FPGA based 

hardware implementation profits especially from the high parallelism in the architecture and 

the moderate number precision required to preserve the qualitative effects of the 

mathematical models. The proposed architecture is designed to generate 4 sub bands 

coefficients concurrently per clock cycle that can perform a 1-level decomposition of a 

N x N image in exactly N2  / 4 working clock cycles, without any line buffers at the column 

processor, thus reducing the time for line buffering but with an extra row processor and with 
100% hardware utilization. 

Proposed architecture is first tested using MATLAB software, then VHDL code is 

written in Xilinx ISE 9.1 and simulated results are verified using Modelsim software. After 

fmal implementation .bit file is generated, which is burned on FPGA successfully. 
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CHAPTER 1 

INTRODUCTION 

1.1 Introduction 
Among the various types of data commonly transferred over networks, image and 

video data comprises the bulk of the bit traffic and it is growing day by day. For example, a 

single small 4" x 4" size color picture, scanned at 300 dots per inch (dpi) with 24 bits/pixel of 

true color, will produce a file containing more than 4 megabytes of data. This picture requires 

more than one minute for transmission by a typical transmission line (64k bit/second ISDN). 

That is why large image files remain a major bottleneck in a distributed environment. 

Although increasing the bandwidth is a possible solution, the relatively high cost makes this 

less attractive. Therefore, compression is a necessary and essential method for creating image 

files with manageable and transmittable sizes. 

JPEG (Joint Photographic Experts Group) [1] and MPEG (Moving Pictures Experts 

Group) are standards for representing images and video. Data compression algorithms are 

used in those standards to reduce the number of bits required to represent an image or a video 

sequence. Compression is the process of representing information in a compact form. Data 

compression treats information in digital form that is, as binary numbers represented by bytes 

of data with very large data sets. In order to be useful, a compression algorithm has a 

corresponding decompression algorithm that, given the compressed file, reproduces the 

original file. Compression algorithms fall into two broad types, lossless algorithms and lossy 

algorithms. A lossless algorithm reproduces the original exactly. A lossy algorithm, as its 

name implies, loses some data but has high compression ratio. Data loss may be unacceptable 

in many applications. For example, text compression must be lossless because a very small 

difference can result in statements with totally different meanings. There are also many 

situations where loss may be either unnoticeable or acceptable. In image compression, for 

example, the exact reconstructed value of each sample of the image is not necessary. 

Depending on the quality required of the reconstructed image, varying amounts of loss of 

information can be accepted. 

The newer standard JPEG2000 is based on the Wavelet Transform (WT). Wavelets 

are the mathematical functions that satisfy a certain requirement (for instance a zero mean), 

and are used to represent data or other functions. In wavelet transform, dilations and 
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translations of a mother wavelet are used to perform a spatial/frequency analysis on the input 

data. For spatial analysis, contracted versions of the mother wavelets are used. These 

contracted versions can be compared with high frequency basis functions in the fourier based 

transforms. The relatively small support of the contracted wavelets makes them ideal for 

extracting local information like positioning discontinuities, edges and spikes in the data 

sequence, which makes them suitable for spatial analysis. Dilated versions of the mother 

wavelet, on the other hand, have relatively large support (the length of the dilated mother 

wavelet). The larger support extracts information about the frequency behavior of the data. 

Varying the dilation and translation of the mother wavelet, therefore, produces a 

customizable time/frequency analysis of the input signal. 

Recent research on DWT has focused on a form of lifting which shows excellent 

performance compared to the conventional convolution method for implementation. 

Factoring discrete wavelet transform into lifting steps can reduce the computational 

complexity by 50% [2] and has advantages, including integer to integer transform [3], 

symmetric forward and inverse transforms [4]. Line-based architecture for the direct two-
dimensional discrete wavelet transform (2D-DWT) is an efficient alternative tradeoff 
between speed and area [5], [6]. For image compression using line based architecture, first 

all the rows are processed, intermediate results are stored in buffer and then all the columns 

of intermediate results are processed. The disadvantage of the above method is it requires 

intermediate buffer size equal to size of image, high computation time besides 

underutilization of hardware. To overcome these disadvantages, parallel architectures are 

developed in a way to reduce the intermediate buffer size, computation time almost by half 
and with 100% hardware utilization. 

Field Programmable Gate Array (FPGA)'s are most suitable for hardware 

implementation because they support high parallelism in the architecture, since each 

individual block in the architecture can work independently with separate clock. So, FPGA's 

are mostly widely used the Digital Signal Processing (DSP) especially when high parallelism 

is offered by the architecture. In addition reconfigurability [7] of FPGAs allows the 

implementation of more than one custom application on a single FPGA. Hardware 
Descriptive Languages (HDL) Verilog, VHDL are used to program FPGA. 
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1.2 Problem Statement 
In modern hardware design, it's a fact that storage resource is more expensive than 

computation resource. So the key problem in hardware implementation is to achieve high 

performance while maintaining low memory requirement. To exploit parallelisms fully is a 

short cut to achieve high performance, and to reuse data is the way to reduce memory 

requirement. 

The objectives of this dissertation work are: 

> Study of parallel architectures for image compression using various wavelets on 

FPGA implementation. 

➢ To investigate for an improved architecture of lifting based CDF (2, 2) for FPGA 

implementation. 

> Testing the improved architecture using MATLAB software. 

> Finally, FPGA implementation of tested improved architecture. 

1.3 Organization of Report 
Chapter 1 gives overview of evolution of lifting based DWT and its advantages over 

other conventional methods. It summarizes the problem statement of this thesis work. 

Chapter 2 reviews the complete discrete wavelet transform in detail and why wavelet 

transform are used in image compression with its features. Also salient features of multi-

resolution analysis of DWT are discussed. 

Chapter 3 presents direct form structure, polyphase structure and lifting structure for 

implementing DWT. 

Chapter 4 briefly describes FPGA architecture, design flow followed in FPGA 

implementation and basic introduction to different programming style's in VHDL. 

Chapter 5 presents overview of previous architectures for decomposing the image into 

different level and also proposed parallel architecture for implementing lifting based CDF 

(2,2) wavelet. 

Chapter 6 explains the algorithm for implementing CDF (2, 2) wavelet. Software and 

hardware implementation methods of proposed architecture with results are described. 

Finally, chapter 7 concludes this thesis with scope for future work mentioned. 
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CHAPTER 2 

DISCRETE WAVELET TRANSFORM BASED IMAGE 

COMPRESSION 

Many evolving multimedia applications require transmission of high quality images 

over the network. One obvious way to accommodate this demand is to increase the 

bandwidth available to all users. Of course, this "solution" is not without technological and 

economical difficulties. Another way is to reduce the volume of the data that must be 

transmitted. There has been a tremendous amount of progress in the field of image 

compression especially during the past two decades. In order to make further progress in 

image coding, many research groups have begun to use wavelet transforms. 

In this chapter, we will briefly discuss why wavelet transforms are used for image 

compression, differences between wave and wavelet, continuous and discrete wavelet 

transform, multi-resolution analysis of wavelet transform, wavelet based compression and its 
features. 

2.1 Why Wavelet Transforms? 
In most Digital Signal Processing (D SP) applications, the frequency content of the 

signal is very important. The fourier transform is probably the most popular transform used to 

obtain the frequency spectrum of a signal. But the fourier transform is only suitable for 

stationary signals, i.e., signals whose frequency content does not change with time. The 

fourier transform, while it tells how much of each frequency exists in the signal, it does not 
tell at which time these frequency components occur. 

Signals such as• image and speech have different characteristics at different time or 

space, i.e., they are non-stationary. Most of the biological signals too, such as, 

Electrocardiogram, Electromyography, etc., are non-stationary. To analyze these signals, both 

frequency and time information are needed simultaneously, i.e., a time-frequency 
representation of the signal is needed. 

To solve this problem, the Short-Time Fourier Transform (STFT) was introduced. 

The major drawback of the STFT is that it uses a fixed window width. The wavelet transform 

[8], which was developed in the last two decades, provides a better time-frequency 
representation of the signal than any other existing transforms. 



Short Time Fourier Transform Vs Wavelet Transform 
The STFT is a modified version of the fourier transform. The fourier transform 

separates the waveform into a sum of sinusoids of different frequencies and identifies their 

respective amplitudes. Thus it gives us a frequency-amplitude representation of the signal. In 

STFT, the non-stationary signal is divided into small portions, which are assumed to be 

stationary. This is done using a window function of a chosen width, which is shifted and 

multiplied with the signal to obtain the small stationary signals. The fourier transform is then 

applied to each of these portions to obtain the short time fourier transform of the signal. 

The problem with STFT goes back to the Heisenberg uncertainty principle which 

states that, it is impossible for one to obtain which frequencies exist at particular time of 

instance, but, one can obtain the frequency bands existing in a time interval. This gives rise to 

the resolution issue where there is a trade-off between the time resolution and frequency 

resolution. To assume stationarity, the window is supposed to be narrow, which results in a 

poor frequency resolution, i.e., it is difficult to know the exact frequency components that 

exist in the signal; only the band of frequencies that exist is obtained. If the width of the 

window is increased, frequency resolution improves but time resolution becomes poor, i.e., it 

is difficult to know what frequencies occur at which time intervals. Also, choosing a wide 

window may violate the condition of stationarity. Consequently, depending on the 

application, a compromise on the window size has to be made. Once the window function is 

decided, the frequency and time resolutions are fixed for all frequencies and all times. 

The wavelet transform solves the above problem to a certain extent. In contrast to 

STFT, which uses a single analysis window, the Wavelet Transform uses short windows at 

high frequencies and long windows at low frequencies. This results in multi-resolution 

analysis by which the signal is analyzed with different resolutions at different frequencies, 

i.e., both frequency resolution and time resolution vary in the time-frequency plane without 
violating the Heisenberg inequality. 

In wavelet transform, as frequency increases, the time resolution increases; likewise, 

as frequency decreases, the frequency resolution increases. Thus, a certain high frequency 

component can be located more accurately in time than a low frequency component and a 

low frequency component can be located more accurately in frequency compared to a high 
frequency component. 
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Fig.2.1 Tiling in time-frequency plane by: (a) Wavelets and (b) STFT [9] 

Fig.2.1(a) shows tiling in time-frequency of wavelets and Fig.2. 1(b) shows tiling in 

short-time fourier transform, It is seen that STFT gives a fixed resolution at all times, 

whereas wavelet transform gives a variable resolution. 

The wavelet transform was developed independently in applied mathematics and 

signal processing. It is gradually substituting other transforms in some signal processing 

applications. For example, previously, the STFT was extensively used in speech signal 

processing, and Discrete Cosine Transform (DCT) was used for image compression. But 

now, the wavelet transform is substituting these, due to its better resolution properties and 

high compression capabilities. 

2.2 Wave and Wavelet 
A wave as shown in Fig.2.2 (a) is an oscillating function of time or space and is 

periodic. In contrast, wavelets as shown in Fig.2.2 (b) are localized waves. They have their 

energy concentrated in time or space and are suited to analysis of transient signals. While 

fourier transform and STFT use waves to analyze signals, the wavelet transform uses 

wavelets of finite energy. 

The wavelet analysis is done similar to the STFT analysis. The signal to be analyzed 

is multiplied with a wavelet function just as it is multiplied with a window function in STFT, 

and then the transform is computed for each segment generated. However, unlike STFT, in 

wavelet transform, the width of the wavelet function changes with each spectral component. 
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The wavelet transform, at high frequencies, gives good time resolution and poor frequency 

resolution, while at low frequencies; the Wavelet Transform gives good frequency resolution 

and poor.time resolution. 

(a)  

(b)  
Fig.2.2 Demonstration of (a) Wave and (b) Wavelet 

2.3 The Continuous Wavelet Transform 
The Continuous Wavelet Transform (CWT) is provided by Eq.2. 1, where x(t) is the 

signal to be analyzed. V(t) is mother wavelet or the basis function. All the wavelet functions 

used in the transformation are derived from the mother wavelet through translation (shifting) 

and scaling (dilation or compression). 

XwT (ti, s) = 
	rx (t) N  J 	dt 
sI J 	s 

(2.1) 

The mother wavelet used to generate all the basis functions is designed based on some 

desired characteristics associated with that function. The translation parameter i relates to the 

location of the wavelet function as it is shifted through the signal. Thus, it corresponds to the 

time information in the wavelet transform. The scale parameter s is defined as 11/frequency 

and corresponds to frequency information. Scaling either dilates (expands) or compresses a 
7 



signal. Large scales (low frequencies) dilate the signal and provide detailed information 

hidden in the signal, while small scales (high frequencies) compress the signal and provide 

global information about the signal. Notice that the wavelet transform merely performs the 

convolution operation of the signal and the basis function. The above analysis becomes very 

useful as in most practical applications, high frequencies (low scales) do not last for a long 

duration, but instead, appear as short bursts, while low frequencies (high scales) usually last 

for entire duration of the signal. 

The wavelet series is obtained by discretizing CWT. This aids in computation of 

CWT using computers and is obtained by sampling the time-scale plane. The sampling rate 

can be changed accordingly with scale change without violating the nyquist criterion. Nyquist 

criterion states that, the minimum sampling rate that allows reconstruction of the original 

signal is 2w radians, where w is the highest frequency in the signal. Therefore, as the scale 

goes higher (lower frequencies), the sampling rate can be decreased thus reducing the number 

of computations. 

2.4 The Discrete Wavelet Transform 
The wavelet series is just a sampled version of CWT and its computation may 

consume significant amount of time and resources, depending on the resolution required. The 

Discrete Wavelet Transform (DWT) [8], which is based on sub-band coding is found to yield 

a fast computation of wavelet transform. It is easy to implement and reduces the computation 

time and resources required. 

The foundations of DWT go back to 1976 when techniques to decompose discrete 

time signals were devised. Similar work was done in speech signal coding which was named 

as sub-band coding. In 1983, a technique similar to sub-band coding was developed which 

was named pyramidal coding. Later many improvements were made to these coding schemes 

which resulted in efficient multi-resolution analysis schemes. 

In CWT, the signals are analyzed using a set of basis functions which relate to each 

other by simple scaling and translation. In the case of DWT, a time-scale representation of 

the digital signal is obtained• using digital filtering techniques. The signal to be analyzed is 

passed through filters with different cutoff frequencies at different scales, which is known as 

Multi Resolution Analysis (MRA). 
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2.4.1 Multi-Resolution Analysis Using Filter Banks 
Filters are one of the most widely used signal processing functions. Wavelets can be 

realized by iteration of filters with rescaling. The resolution of the signal, which is a measure 

of the amount of detail information in the signal, is determined by the filtering operations, 

and the scale is determined by upsampling and downsampling (subsampling) operations [9]- 

[11] 
The DWT is computed by successive lowpass and highpass filtering of the discrete 

time-domain signal as shown in Fig.2.3. This is called the Mallat algorithm or Mallat-tree 

decomposition. Its significance is in the manner it connects ' the continuous-time 

mutiresolution to discrete-time filters. In the figure, the signal is denoted by the 

sequence x[n] , where n is an integer. The low pass filter is denoted by Go  while the high pass 

filter is denoted by Ho  . At each level, the high pass filter produces detail information, d[n] , 

while the low pass filter associated with scaling function produces coarse approximations, 

a[n] . 

Fig.2.3 Three-level wavelet decomposition tree 

At each decomposition level, the .half band filters produce signals spanning only half 

the frequency band. This doubles the frequency resolution as the uncertainty in frequency is 

reduced by half. In accordance with Nyquist's rule if the original signal has a highest 

frequency of co, which requires a sampling frequency of 2 cw radians, then it now has a 

highest frequency of o /2 radians. It can now be sampled at a frequency of w radians thus 

discarding half the samples with no loss of information. This decimation by 2 halves the time 

resolution as the entire signal is now represented by only half the number of samples. Thus, 

while the half band low pass filtering removes half of the frequencies and thus halves the 
resolution, the decimation by 2 doubles the scale. 
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With this approach, the time resolution becomes arbitrarily good at high frequencies, 

while the frequency resolution becomes arbitrarily good at low frequencies. The time-

frequency plane is thus resolved as shown in Fig.2.1 (b). The filtering and decimation process 

is continued until the desired level is reached. The maximum number of levels depends on the 

length of the signal. The DWT of the original signal is then obtained by concatenating all the 

coefficients, a[n] and d[n] , starting from the last level of decomposition. 

Fig.2.4 Three-level wavelet reconstruction tree 

Fig.2.4 shows the reconstruction of the original signal from the wavelet coefficients. 

Basically, the reconstruction is the reverse process of decomposition. The approximation and 

detail coefficients at every level are upsampled by two, passed through the low pass and high 

pass synthesis filters and then added. This process is continued through the same number of 

levels as in the decomposition process to obtain the original signal. The Mallat algorithm 

works equally well if the analysis filters, Go  and H0 , are exchanged with the synthesis 

filters, G, , H1 . 

2.4.2 Conditions for Perfect Reconstruction 
In most wavelet transform applications, it is required that the original signal be 

synthesized from the wavelet coefficients. To get perfect reconstruction consider two-channel 

filter bank as shown in Fig.2.5, where Go  (z) is the low pass analysis filter and Ho  (z) is the 

high pass analysis filter. As the output signal 00  (n) and 0, (n) have half the bandwidth of the 

original input signal, we can use decimation by two and still lose no information. The 

synthesis filter bank is also shown in Fig.2.5 and consists of two up-samplers and the low-

pass synthesis filter G, (z) and the high pass synthesis filter H, (z) . 

From Fig.2.4 we know 

00  (z) = HO  (z) . X(z) 
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Analysis 	 I 	 Synthesis 

yo (n) H 	eo(n) 	2 	Rion] 	T 2 	fo(n 	G. 
0 	 o 

x[n] 	 I 	 xR[n  

1 	 I 	 1 

Fig.2.5 Two channel filter—bank structure showing analysis and synthesis stages [9] 

Yo (z) = Go (z) • Fo (z) 

V0  (z) =1  [00  (ZY) + eo  (—Z'2 )] 	 (2.2) 

F0  (z) = V0 (z2) 

Substituting for Fo  (z) and Vo  (z) , we obtain 

Yo (z) = 2 Go(z)[H0(z).X(z)+Ho(—z).X(—z)]  (2.3) 

and 

Y(  z) = 2  G1 (z)[H1  (z).X(z) + HI  (—z) . X(—z)]  (2.4) 

Finally, we obtain for the output X(z) , 

XR  (z) = 	X(z)[Ho  (z)•G0  (z) ± Hl (z)•G, (z) 
(2.5) 

+ 2 X(—X(  (—z).Go  (z) +HI  (—z) . G1(z)] 

Eq.2.5 can be simplified to 

XR  (z) = T(z).X(z) + S(z).X(—z) (2.6) 

where we have defined 

T(z) = 	[H0(z)•Go(z)+H1(z)•G1(z)] 2 

S(z) = 2 [Ho (—z).G0  (z) + H, (—z) . G, (z)] (2.7) 

In order to have perfect reconstruction (PR) at the synthesis, we must impose that 

XR  (Z) = CX(Z)z no (2.8) 

where c is a constant and no  is a fixed delay. 
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Thus, the conditions for PR are 

Ho  (—z).G0  (z) + H, (—z) . G, (z) =0 

Ho  (z).G0  (z) +H, (z).G1  (z) = cz °° 

The first condition implies that the reconstruction is aliasing-free and the second 

condition implies that the amplitude distortion has amplitude of one. It can be observed that 

the perfect reconstruction condition does not change if we switch the analysis and synthesis 

filters. There are a number of filters which satisfy these conditions. But not all of them give 

accurate wavelet transforms, especially when the filter coefficients are quantized. The 

accuracy of the wavelet transform can be determined after reconstruction by calculating the 

Signal to Noise Ratio (SNR) of the signal. Some applications like pattern recognition do not 

need reconstruction, and in such applications, the above conditions need not apply. 

2.5 Classification of Wavelets 
We can classify wavelets into two classes: (a) Orthogonal [12] and (b) Biorthogonal 

[13]. Based on the application, either of them can be used. 

2.5.1 Features of Orthogonal Wavelet Filter Banks 
The coefficients of orthogonal filters are real numbers. The filters are of the same 

length and are not symmetric. The low pass filter, Go  and the high pass filter, Ho  are related to 

each other by 

Ho (Z) = z NGo (—z 1) 	 (2.9) 

The two filters are alternated flip of each other. Also, for perfect reconstruction, the 

synthesis filters are identical to the analysis filters except for a time reversal. Orthogonal 

filters offer a high number of vanishing moments. This property is useful in many signal and 

image processing applications. They have regular structure which leads to easy 

implementation and scalable architecture. 

2.5.2 Features of Biorthogonal Wavelet Filter Banks 

In the case of the biorthogonal wavelet filters, the low pass and the high pass filters do 

not have the same length. The low pass filter is always symmetric, while the high pass filter 

could be either symmetric or anti-symmetric. The coefficients of the filters are either real 
numbers or integers. 

For perfect reconstruction, biorthogonal filter bank has all odd length or all even 

length filters. The two analysis filters can be symmetric with odd length or one symmetric 
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and the other anti-symmetric with even length. Also, the two sets of analysis and synthesis 

filters must be dual. The linear phase biorthogonal filters are the most popular filters for data 

compression applications. 

2.6 Wavelet Families 

There are a number of basis functions that can be used as the mother wavelet for 

wavelet transformation. Since the mother wavelet produces all wavelet functions used in the 

transformation through translation and scaling, it determines the characteristics of the 

resulting wavelet transform. Therefore, the details of the particular application should be 

taken into account and the appropriate mother wavelet should be chosen in order to use the 

wavelet transform effectively. 
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Fig.2.6 Wavelet families (a) Haar (b) Daubechies4 (c) Meyer (d) Morlet (e) Mexican Hat (f) CDF (2, 2) 

Fig.2.6 illustrates some of the commonly used wavelet functions. Haar wavelet is one 

of the oldest and simplest wavelet. Therefore, any discussion of wavelets starts with the Haar 

wavelet. Daubechies wavelets are the most popular wavelets. They represent the foundations 

of wavelet signal processing and are used in numerous applications. Haar and Daubechies4 

wavelets along with Meyer wavelets are capable of perfect reconstruction. The Meyer, Morlet 
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and Mexican Hat wavelets are symmetric in shape. The wavelets are chosen based on their 

shape and their ability to analyze the signal in a particular application. CDF (2, 2) wavelet is 

also known as the biorthogonal (5, 3) wavelet because of the filter length of 5 and 3 for the 

low and high pass filters, respectively. 

2.7 Wavelet Based Image Compression 
In DWT, the most prominent information in the signal appears in high amplitudes and 

the less prominent information appears in very low amplitudes. Data compression can be 

achieved by discarding these low amplitudes. The wavelet transforms enables high 

compression ratios with good quality of reconstruction. At present, the application of 

wavelets for image compression is one the hottest areas of research. Recently, the wavelet 

transforms have been chosen for the JPEG 2000 compression standard. 

Source Image 
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Transform 	 Quantization 
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Data Inverse Transform l4 	Dequantization  

Entropy Encodm I 	►I  Compressed 
g 

Store or Transmit 

Entropy Decodingl4 	I  Compressed 
Image Data 

(b) 
Fig.2.7 Block diagrams of the JPEG2000 (a) Encoder and (b) ,Decoder 

Block diagram of JPEG2000 encoder as shown in Fig.2.7 (a) has mainly three 

components, the source encoder, the quantizer and the entropy. encoder. The input signal 

(image) has a lot of redundancies that needs to be removed to achieve compression. These 

redundancies are not obvious in the time domain. Therefore, wavelet transform is applied to 

the input signal to bring the signal to the spectral domain. The spectral domain output from 

the transformer is quantized using some quantizing scheme. The signal then undergoes 

entropy encoding to generate the compressed signal. 

Forward Transform 
Forward Transform is the first major.  component of image compression system. A 

variety of linear transforms are available such as Discrete Fourier Transform (DFT), DCT 
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and DWT. DWT because of its advantages over other transform it is added in newer standard 

JPEG2000[14], which in focus of our work. 

Quantizer 

A quantizer reduces the precision of the values generated from the encoder and 

therefore reduces the number of bits required to save the transform co-coefficients. This 

process is lossy and quantization can be performed on each individual coefficient. This is 

known as Scalar Quantization (SQ). If it is performed on a group of coefficients together then 

it is called Vector Quantization (VQ). 

Entropy Encoder 

An entropy encoder does further compression on the quantized values. This is done to 

achieve even better overall compression. The various commonly used entropy encoders are 

•the Huffman encoder, arithmetic encoder, and simple run-length encoder. For improved 

performance with the compression technique, it's important to have the best of all the three 
components. 

2.7.1 Wavelet Transform as the Source Encoder 
The discrete wavelet transform constitutes the function of the source encoder. Digital 

image is represented as a two-dimensional array of coefficients, each coefficient representing 

the brightness level in that point. We can differentiate between coefficients as more important 

ones, and lesser important ones. Most natural images have smooth color variations, with the 

fine details being represented as sharp edges in between the smooth variations. Technically, 

the smooth variations in color can be termed as low frequency variations, and the sharp 

variations as high frequency variations. 

The low frequency components (smooth variations) constitute the base of an image, 

and the high frequency components (the edges which give the details) add upon them to 

refine the image, thereby giving a detailed image. Hence, the smooth variations are more 

important than the details. 

Separating the smooth variations and details of the image can be performed in many 

ways. One way is the decomposition of the image using the discrete wavelet transform. 

Digital image compression is based on the ideas of sub-band decomposition or discrete 

wavelet transforms. Wavelets which refer to a set of basis functions are defined recursively 

from a set of scaling coefficients and scaling functions. The DWT is defined using these 

scaling functions and can be used to analyze digital images with superior performance than 

classical short-time fourier-based techniques, such as the DCT. The basic difference between 
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wavelet-based and fourier-based techniques is that short-time fourier-based techniques use a 

fixed analysis window, while wavelet-based techniques can be considered using a short 

window at high spatial frequency data and a long window at low spatial frequency data. This 

makes DWT more accurate in analyzing image signals at different spatial frequency, and thus 

can represent more precisely both smooth and dynamic regions in image. The compression 

system includes forward wavelet transform, a quantizer, and a lossless entropy encoder. The 

corresponding decompressed image is formed by the lossless entropy decoder, a de-quantizer, 

and an inverse wavelet transform. Wavelet-based image compression has good compression 

results in both rate and distortion sense. 

2.7.2 Image Compression Techniques 
Compression methods can be divided in two classes: lossless and lossy compression 

techniques: 

Lossless compression 
It guarantees that the original signal can be reconstructed without any errors. This is 

important for applications like the compression of text. For images, lossless compression is 

often used as the second step, after the lossy part. 

Lossy compression 
With lossy compression, we can obtain higher compression rates by not requiring the 

exact data to be reconstructed. Indeed, because the human visual system is not sensitive to 

some kinds of errors, the compression potential is much higher when we allow for small 

reconstruction errors. 

Although the integer wavelet transform can be used for lossless compression due to 

its 100% invertible nature (in contrast to floating point wavelet transform implementations), 

image compression will usually be lossy due to the high compression rates that are required, 

except in sensitive applications areas like medical imaging where any data loss is not 

acceptable. 

2.8 Features of Image Compression Using Wavelets 

The key features of wavelet-based compression schemes are: 

➢ Wavelets provide good compression ratios. Especially for high compression ratios, 

wavelets perform much better than competing technologies like JPEG [14], both in 

terms of signal-to-noise ratio and visual quality. Unlike JPEG, they show no blocking 

effect but allow for a graceful degradation of the whole image quality, while 
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preserving the important details of the image. The next version of the JPEG standard 

(JPEG 2000) will incorporate wavelet based compression techniques. 

> The wavelet transform is a fast operation (linear to the amount of data), especially 
when implemented using the lifting scheme. The wavelet transform is symmetric: 

both the forward and the inverse transform have the same complexity, allowing fast 
compression and decompression routines. 

➢ Multi-resolution allows for progressive transmission and zooming, without the need 

for extra storage. One can e.g. first transmit a thumbnail image, and gradually 

transmit and decompress more data to increase the resolution and overall image 
quality. 

> Wavelets can not only be used for image compression, but also for various image 
processing operations. The possibility to combine image processing and compression 

is a very appealing factor. However, image processing cannot be done on the fmal 

encoded data stream: it must be done before the wavelet coefficients are quantized or 
encoded. But even then we win because the wavelet transform is a common factor in 
both image processing and image con pression. 
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CHAPTER 3 

THE LIFTING SCHEME 

There are various architectures for implementing a two channel filter bank. A filter 

bank basically consists of a low pass filter, a high pass filter, decimators or expanders and 
delay elements. 

In this chapter we consider direct form structure, polyphase structure briefly before we go 

into depth analysis of lifting structure. 

3.1 Direct Form Structure 
The direct form analysis filter consists of a set of low pass and high pass filters 

followed by decimators. The synthesis filter consists of upsamplers followed by the low pass 

and high pass filters as shown in Fig.3.1: 

(a) 
	

(b) 
Fig.3.1 Direct form structure of (a) Analysis filter bank and (b) Synthesis filter 

In the analysis filter bank, x[n] is the discrete input signal, Go  is the low pass filter 

and Ho  is the high pass filter. ' 2 represents decimation by 2 and T 2 represents upsampling 

by 2. In the analysis bank, the input signal is first filtered and then decimated by 2 to get the 
outputs Yo  and Y1 . These operations can be represented by Eq.3.1 and Eq.3.2. 

Y[k] = IX[n].G0[2k—n] 	 (3.1) 
n 

Y[  k] = JX[n] -H0 [2k — n] 	 (3.2) 
n 

The output of the analysis filter is usually processed (compressed, coded or analyzed) 

based on the application. This output can be recovered again using the synthesis filter bank. In the 
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synthesis filter bank, Yo  and YI  are first upsampled by 2 and then filtered to give the original 

input. For perfect output the filter banks must obey the conditions for perfect reconstruction. 

3.2 Polyphase Structure 
In the direct form analysis filter bank, it is seen that if the filter output consists of, say, 

N samples, due to decimation by 2 we are using only N /2 samples. Therefore, the 

computation of the remaining unused N /2 samples becomes redundant. It can be observed 

that the samples remaining after downsampling the low pass filter output are the even phase 

samples of the input vector Xe en  convoluted with the even phase coefficients of the low pass 

filter Goy  and the odd phase samples of the input vector Xodd  convoluted with the odd 

phase coefficients of the low pass filter Goodd • The polyphase form takes advantage of this 

fact and the input signal is split into odd and even samples (which automatically decimates 

the input by 2), similarly, the filter coefficients are also split into even and odd components 

so that Xe  convolves with Goeven  of the filter and Xodd  convolves with Goodd  of the filter. 

The two phases are added together in the end to produce the low pass output. Similar method 

is applied to the high pass filter where the high pass filter is split into even and odd phases 
H andH 

Oeven 	Oodd 

The polyphase analysis operation can be represented by the matrix Eq.3.3: 

 [] 
Goeven GOodd 	Xeven  ]=Hp[ Xeven = '

HOeven 	
(3.3)  1 HOodd Z I •Xodd 	Z 	 odd 

The 	

YI 

The filters with Goon  and Goodd are half as long as G0 , since they are obtained by 

splitting G0 . Since, the even and odd terms are filtered separately, by the even and odd 

coefficients of the filters, the filters can operate in parallel improving the efficiency. The 

Fig.3.2 illustrates polyphase analysis and synthesis filter banks. 

In the direct form synthesis filter bank, the input is first upsampled by adding zeros 

and then filtered. In the polyphase synthesis bank, the filters come first followed by 

upsamplers which again, reduces the number of computations in the filtering operations by 

half. Since, the number of computations reduced by half in both the analysis and synthesis 

filter banks, overall efficiency is increased by 50%. Thus, the polyphase form allows efficient 
hardware realizations. 
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Y0[n] 

Y,[n] 

(a) 

(b) 	 (c) 

Fig.3.2 Polyphase structure of (a) Analysis filter bank (b) Equivalent representation of analysis filter bank and 
(c) Synthesis filter bank 

3.3 Lifting Scheme 
In 1994, Sweldens proposed a more efficient way of constructing the biorthogonal 

wavelet bases, which he called the lifting scheme [15]. The basic structure of the lifting 

scheme is shown in Fig.3.3. The input signal sJ k  is first split into an update function to even 

and odd samples. The detail (i.e., high-frequency) coefficients dJ_l k  of the signal are then 

generated by subtracting the output of a prediction function P of the odd samples from the 

even samples. The smooth coefficients (the low frequency components) are produced by 

adding the odd samples to the output of an update function U of the details. The 

computation of either the detail or smoc,th coefficients is called a lifting step. 
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Fig.3.3 Lifting scheme 

3.3.1 Factoring Wavelet Filters Into Lifting Scheme 

Daubenchies and Sweldens [2] showed that every FIR wavelet or filter bank can be 

factored into a cascade of lifting steps that is, as a finite product of upper and lower triangular 

matrices and a diagonal normalization matrix. The high pass filter g(z) and low pass filter 

h(z) can thus be rewritten as 
✓-~ 

g(z)=Ig;z ' 	 (3.4) 
=o 

✓-1 
h(z)=Yh;z-' 	 (3.5) 

i=o 

where J is the filter length. We can split the high pass and low pass filters into even and odd 

parts: 

g(z) =ge(z2 )+z 1 g0(z2 ) 	 (3.6) 

h(z) = he(Z2)+Z' ho(z2 ) 	 (3.7) 

The filters can also be expressed as a polyphase matrix as follows: 

P(z) = he (z) ge (z) 
ho(z) go(z)  

(3.8) 

Using the Eculidean algorithm which recursively finds the greatest common divisors 

of the even and odd parts of the original filters, the forward transform polyphase matrix P(z) 

can be factored into lifting steps as follows: 

~(z) — n° 	1 	0 1 —t; (z ') 	1 0 
X K 	l m<K 	 (3.9) 

1 J[OK] 
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where s; (z) and t, (z) are Laurent polynomial corresponding to the update and predict steps, 

respectively, and K is a non zero constant. The inverse DWT is described by the following 

equation: 

K 0 
P(z)=fl[ 

 1 Si (z) 	
?][ 

1 	1 	 (3.10) 
  0 K 

3.3.2 Chohen-Daubechies-Feauveau (CDF) (2,2) Wavelet Using Lifting Scheme 
The analyzing filter pair for the CDF [13] with 2 vanishing moments for both 

primal lifting and dual wavelet function is (up to a normalization factor of ) 

~(Z)=_ Z-2 + 1 z-' + 3+ 1 z— I Z2 	 (3.11) 
8 4 44 8 

g(z)=4z-2_1z-'+4 	 (3.12) 

Following the above procedure from section 3.2 we can factor the analysis polyphase 

matrix of a CDF(2,2) wavelet 

1 0 1 1 +i 	1  0 
P(z)= 0 — 1 	4 4 	_1 Z, _1 1 

2 0 1 	2 	2 
(3.13) 

The lifting structure for the CDF (2,2) is shown in Fig.3.4. 

[j-1,k 

Sj_l,k 

Predict 	 Update 

Fig.3.4 Lifting structure for CDF (2,2) wavelet 
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3.3.3 Integer-To-Integer Transform 
Integer arithmetic is generally much faster than floating-point arithmetic. 

Furthermore, integer numbers are more efficient to encode and take less space to store. As a 

consequence, we prefer to deal with integer numbers and integer arithmetic rather than 

floating-point. In many applications, especially in image processing, the input data consists of 

integer samples. Wavelet coefficients, on the contrary, are floating point values. Thus since 

the filter coefficients are floating-point numbers, even if the input data is integer applying the 

lifting and update steps on the data will result in floating-point numbers. 

Fortunately the lifting scheme can be easily modified to map integers to integers, 

which are in addition fully reversible [3], [16J and thus allows a perfect reconstruction of the 

original image. 

3.4 Advantages of Lifting scheme 
Lifting scheme has the following advantages, when compared to other classical filter 

bank algorithm: 

➢ Lifting leads to a speedup when compared to the classic implementation. Classical 

wavelet transform has a complexity of order n, where n is the number of samples. For 
long filters, Lifting Scheme speeds up the transform with another factor of two. Hence 

it is also referred to as Fast Lifting Wavelet Transform (FLWT). 

➢ All operations within lifting scheme can be done entirely parallel while the only 

sequential part is the order of lifting operations. 
➢ Lifting can be done in-place. An auxiliary memory is not needed since it does not 

need other samples than the output of the previous lifting step. At every summation 

point the old stream is replaced by the new one at every summation point. 

> Lifting Scheme allows integer-to-integer transform while keeping a perfect 

reconstruction of the original data set. This is important for hardware implementation 

and lossless image coding. 

➢ Lifting allows adaptive wavelet transforms. This means that the analysis of a function 

can start from the coarsest level, followed by finer levels by refining in the areas of 

interest. 
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CHAPTER 4 

INTRODUCTION TO FPGA IMPLEMENATION 

For hardware implementation Spartan 3E FPGA kit is used. Spartan 3E FPGA kit is 

most widely used FPGA kit because of its advantages like low power, low cost etc. In this 

thesis, code is written in VHDL and implemented on Spartan 3E FPGA kit using Xilinx ISE 

simulator. 

Before going in detail (covered in next chapter), in this chapter we look at the 

overview of Spartan 3E architecture, FPGA design flow and hardware descriptive language 
VHDL. 

4.1 Architectural Overview 
The Spartan-3E family architecture [17] consists of five fundamental programmable 

functional elements: 

➢ Configurable Logic Blocks (CLBs) contain flexible Look-Up Tables (LUTs) that 
implement logic plus storage elements used as flip-flops or latches. CLBs perform a 

wide variety of logical functions as well as store data. 

➢ Input/Output Blocks (IOBs) control the flow of data between the I/O pins and the 

internal logic of the device. Each JOB supports bidirectional data flow plus 3-state 

operation. Support a variety of signal standards, including four high-performance 

differential standards. Double Data-Rate (DDR) registers are included. 
➢ Block RAM provides data storage in the form of 18-Kbit dual-port blocks. 

➢ Multiplier Blocks accept two 18-bit binary numbers as inputs and calculate the 

product. 

➢ Digital Clock Manager (DCM) Blocks provide self-calibrating, fully digital 

solutions for distributing, delaying, multiplying, dividing, and phase-shifting clock 

signals. 

These elements of Spartan 3E family architecture are shown in Fig.4.1. A ring of 

IOBs surrounds a regular array of CLBs. Each device has two columns of block RAM except 

for the XA3 S l 00E, which has one column. Each RAM column consists of several 18-Kbit 

RAM blocks. Each block RAM is associated with a dedicated multiplier. The DCMs are 

positioned in the center with two at the top and two at the bottom of the device. 
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Fig.4.1 Spartan 3E family architecture 

The XA Spartan-3E family features a rich network of traces that interconnect all five 

functional elements, transmitting signals among them. Each functional element has an 

associated switch matrix that permits multiple connections to the routing. 

4.2 FPGA Design Flow 
The FPGA design flow [18] comprises the following steps: design entry, design 

synthesis, design implementation, verification and programming device. Design verification, 

which includes both functional verification and timing verification, takes places at different 

points during the design flow as shown in Fig.4.2. 

Design Entry 
Design entry is the first step in the design flow. During design entry, we create our 

source files based on your design objectives. You can create your top-level design file using a 

Hardware Description Language (HDL), such as VHDL, Verilog or using a schematic. We 

can use multiple formats for the lower-level source files in your design. 
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Fig.4.2 FPGA design flow for implementation 

Design Synthesis 

After design entry and optional simulation, you run synthesis. During this step, 

VHDL, Verilog, or mixed language designs become netlist files that are accepted as input to 
the implementation step. 

Implementation 

After synthesis, we run design implementation, which converts the logical design into 

a physical file format that can be downloaded to the selected target device. From Project 

Navigator, we can run the implementation process in one step, or we can run each of the 
implementation processes separately. 

Verification 

We can also verify the functionality of our design at several points in the design flow. 

We can use simulator software to verify the functionality and timing of our design or a 
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-portion of our design. The simulator interprets VHDL or Verilog code into circuit 

functionality and displays logical results of the described HDL to determine correct circuit 

operation. Simulation allows you to create and verify complex functions in a relatively small 

amount of time. We can also run in-circuit verification after programming your device. 

Device Configuration 

After generating a programming file, we configure your device. During configuration, 

we generate configuration files and download the programming files from a host computer to 

a FPGA kit. 

4.3 VHDL 
VHDL stands for VHSIC (Very High Speed Integrated Circuits) Hardware 

Description Language. The other widely used hardware description language is Verilog [19]. 

Both are powerful languages that allow you to describe and simulate complex digital systems. 

Although these languages look similar as conventional programming languages, there 

are some important differences. A hardware description language is inherently parallel, i.e. 

commands, which correspond to logic gates, are executed (computed) parallel, as soon as a 

new input arrives. These languages can be made to behave as sequential for design of 

sequential systems. A HDL program mimics the behavior of a physical, usually digital 

system. It also allows incorporation of timing specifications (gate delays) as well as to 

describe a system as an interconnection of different components. 

Code in VHDL [20], [21] can be written in behavioral style, data flow or structural 
style. 

Behavioral Modeling 

In this modeling style, the behavior of the entity is expressed using sequentially 

executed, procedural code, which is very similar in syntax and semantics to that of a high-

level programming language like C. A process statement is the primary mechanism used to 
model the behavior of an entity. 

Data Modeling 

A dataflow model specifies the functionality of the entity without explicitly 

specifying its structure. This functionality shows the flow of information through the entity, 

which is expressed primarily using concurrent signal assignment statements and block 

statements. 
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Structural Modeling 
In this style of modeling an entity is modeled as a set of components connected by 

signals, that is, as a netlist. The behavior of the entity is not explicitly apparent from its 

model. The component instantiation statement is the primary mechanism used for describing 

such a model of an entity. 
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CHAPTER 5 

LIFTING BASED DWT ARCHITECTURES 

With the inclusion of lifting based DWT in newer standard JPEG 2000, lifting based 

DWT architectures has been hot field and several efficient architectures [22-25] have been 

proposed since then. Mainly work has been done in reducing the memory, parallel 

implementation and 100% utilization of hardware. 

In this chapter we study lifting based DWT, parallel architecture for lifting based 

DWT and proposed parallel architecture for lifting based CDF (2, 2) wavelet. Proposed 

parallel architecture is removes the line buffers at the column processor and produces output 

in exactly N2  / 4 cycles with 100% hardware utilization but with an extra row processor. 

• 5.1 Lifting Based DWT Architecture 
In lifting based DWT architecture two processors are used one for row processing and 

other for column processing. Lifting based DWT architecture is shown in Fig.5.1, row 

processor takes the image data line by line, process the data and store the processed data. 

When required number of line buffers are filled column processor takes the data from line 

buffer memory and produces LL, LH or HL, HH data correspondingly. After all the rows and 

columns are processed we get the level 1 decomposed image. To increase the level of 

decomposition we have iterate the processed data as shown in Fig.5.2. In Fig.5.2 transform 

module is complete lifting based DWT architecture and it requires another external memory 

for 2 x N which decreases iteratively by the same factor. The architecture of row processors 

can be designed by directly mapping the lifting factorization of CDF (2, 2) wavelet, which can 
also be extended to that of column processor. 

The main disadvantages of lifting based DWT architecture are number of clock cycles 

it takes to process data is almost N2  / 2 and internal line buffer memory. 
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5.2 Parallel Architecture for Lifting Based DWT 
The line-based parallel architecture [25] for 1-level lifting based DWT is shown in 

Fig.5.3, which is composed of an input buffer unit (IBU) and a wavelet transform module 

(WTM). The wavelet transform module (WTM) is a four-input four-output architecture that 

includes two row-wise lD DWT modules (R WTI and R WT2) for performing horizontal 

filtering, two column-wise 1D DWT modules (C WT1 and C_WT2) for performing vertical 

filtering, and a scale normalization unit (SNU, which work in parallel and pipelined. SNU 

integrates the scale normalization operations required respectively in row transform and 

column transform to reduce efficiently the number of multipliers required in the architecture 

of 2-D DWT because the scale normalization factor for low-pass filtering is reciprocal to that 
of high-pass. 

Four input samples are required simultaneously to input to WTM in each internal 

working clock cycle with four sub bands coefficients generated synchronously. Two input 
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Fig.5.3 Parallel architecture for lifting based DWT [25] 

samples are from the even-numbered row, and the other two are from the odd-numbered row. 

Two lines of signals are required to input simultaneously to the WTM. Since the data samples 

are assumed to input in a line-by-line way, an input buffer unit (IBU) is required. The IBU 

can be implemented by four first-in-first-out (FIFO) (named FIFO 1, FIFO 2, FIFO 3, FIFO 4 

with sizes of respectively about N / 2, N / 2, N / 2, N / 2, where N represents the width of 

image), which are used to store the samples separately being from even-row-even-column, 

even-row-odd-column, odd-row-even-column and odd-row-odd-column. In order to provide 

4 samples at an internal working clock cycle, 4 times faster clock rate, i.e. f = 4f,,, ( f, 

denotes input data sampling frequency, and f denotes internal working frequency, 

respectively), is required to acquire input data samples. Let xee  (m, n) [xOe  (m, n)] represent the 

samples of even-numbered row and even-numbered column [odd-numbered row and even- 

numbered column], and xeo  (m, n).[xoo  (m, n)] represent the samples of even-numbered row and 

odd-numbered column [odd-numbered row and odd-numbered column], respectively. And let 

Le  (m, n) and [Lo  (m, n) and Ho  (m, n)] to denote the low-frequency coefficients and high- 

frequency coefficients of the even-numbered rows [odd-numbered rows], respectively. In 

each internal clock cycle, four inputs, xee  (m, n) and xOe.(m, n) , as well as xeo  (m, n) 

and x00  (m, n) , are respectively inputted to R_WT1  and R_WT2 in parallel. R_WT1  generates 

one low-frequency coefficient Le  (m, n) and one high-frequency coefficient He  (m, n) in each 

clock cycle, while R WT2 produces one low-frequency coefficient Lo  (m, n) and one high-

frequency coefficient Ho  (m, n) in each clock cycle. The outputs of R_WT1 and R_WT2 are 
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then pipelined to C WT1 and C_WT2, i.e., Le  (m, n) and Lo  (m, n) are inputted to C WTI, 

and decomposed into sub bands low-low frequency (LL) and low-high frequency (LH) 

components by scale normalization operations, meanwhile He  (m, n) and Ho  (m, n) are 

inputted in parallel to C_WT2, and decomposed into sub bands high-low frequency (HL) and 

high-high frequency (HH) components by scale normalization operations as well. The 
architecture of row-wise wavelet transform module can be designed by directly mapping the 

lifting factorization of chosen wavelet filter, which can also be extended to that of column-

wise wavelet transform module. 

5.3 Proposed Parallel Architecture For Lifting Based CDF (2,2) Wavelet 
The proposed architecture as shown in Fig.5.4 is composed of three row wisel-D 

DWT modules (R WT1, R WT2 and R WT3) and two column wise 1-D DWT modules 

(C_WT1 and C_WT2). In normal CDF (2,2) implementation, first all the rows are processed 

then all the columns are processed.. So, for parallel processing column processor not only 

requires present two processed row elements but also next processed row; in order to supply 

future row processed elements for column processor, extra row processor is used which not 

only avoids extra line buffering at column processor but also decomposes the image in 

exactly NZ  / 4 cycles. Therefore, nine input samples are required simultaneously in each 

internal working clock cycle with four sub bands coefficients generated synchronously. 

R WTI module requires even-row-even-column, even-row-odd column, even-row-next even 

column and R_WT2 module requires odd-row-even-column, odd-row-odd column, odd-row-

next even column and R WT3 requires next even-row-even-column, next even-row-odd 

column, next even-row-next even column. R WT1, R_WT2 and R_WT3 row processors 

operates in parallel and produces low frequency and high frequency components 

simultaneously, then column processors C WT1 and C_WT2 takes low frequency 

components and high frequency components from row processors respectively and generates 

LL,LH,HL and HH components in the same clock cycle. The architecture of row processors 

can be designed by directly mapping the lifting factorization of CDF (2,2) wavelet, which can 
also be extended to that of column processor. 

To increase the level of decomposition of the image the architecture can be modified 

to Fig. 5.2. In Fig.5.2 transform module is replaced with proposed architecture and remaining 

modules are exactly same as before. As the level of decomposition increases the compression 
ratio increases. 
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Fig.5.4 Proposed parallel architecture for lifting based CDF (2,2) wavelet 
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CHAPTER 6 

IMPLEMENTATION 

An improved parallel architecture for implementing 2D-DWT of CDF (2, 2) is 

proposed in this thesis. First the proposed architecture is tested using MATLAB software, 

then the hardware implementation of tested architecture is implemented on FPGA using 

VHDL language. 

In this chapter, algorithm for CDF (2, 2) wavelet is briefly explained, then its software 

implementation and results. Finally its hardware implementation on FPGA and simulation 

results obtained using Modelsim are explained. 

6.1 Cohen-Daubechies-Feauveau (CDF) (2,2) Wavelet 
The Cohen-Daubechies-Feauveau (CDF) (2, 2) wavelet [13] is widely used for image 

compression because of its good compression characteristics. The original filters have 5 + 3 = 

8 filter coefficients as shown in Eq.3.11 and Eq.3.12, whereas an implementation with the 

lifting scheme has only 2 + 2 =4 filter coefficients. The forward and reverse filters are shown 

in Table 6.1(a) and 6.1(b). Fractional numbers are converted to integers at each stage. Though 

such an operation adds non-linearity to the transform, the transform is fully invertible as long 

as the rounding is deterministic. In Table 6.1 x represents the image pixel 
Table 6.1 CDF (2, 2) wavelet with lifting scheme (a) Forward transform (b) Inverse transform 

(a)  

Splitting 
S 	X 1  

d;  E— x2;+1 

Dual Lifting d;  - d;  - 1(s;  +2  

Primal Lifting s;  <- s;  + 4 (d;_I  + d1 ) 

(b)  

Inverse Primal Lifting s;  F- Si  - 4 (d, + d,) 

Inverse Dual Lifting d, F- d;  + 4 (s;  + s;+1 ) 

Merging x2i 
x2;+1 <- d; 

WE 



values and s stands for the summing or the low pass coefficients and d stands for the 

difference or the high pass coefficients. In image compression, one row or column of an 

image is regarded as a signal. Fig.6.1 shows the row and column formation at level 1, level 2 
and level 3 for a 512 X 512 pixel image. 

Fig.6.1 Rows and columns of level 1, 2 and 3 decomposition of an image 

Every row or column is arranged and assigned in the following manner: 

So  DoSI  DISZD3S3  D4S4  ....... 

In this algorithm, in case of rows it is for row processor whereas in case of column it 

is for column processor in the parallel architecture of lifting based CDF (2,2) wavelet. The 

odd pixels should be processed first, then the even pixel due to the data dependency. There are a 
total of three levels based on the 3-level decomposition wavelet transform algorithm discussed 
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above. In each level, the rows are processed first then the columns. Each level's signal length 
(amount of each row/column pixels) is half of the previous level. 

Algorithm 
For every row or column:  

Repeat until end of row or column: 
If begin or end of row or column 

begin 

Do =Do +Do —So —So  

So =So +(2*Do  /8) 

End 
Else 

begin 

End 
End 

D,=D,+D— S,—S1,1  

Si  =S,+((Di_1 +D7 )/8) 

6.2 Software Implementation and Results 
MATLAB is powerful mathematical modeling software which is used for the 

software implementation. MATLAB is also used for the development of software modules to 

convert image files to memory files, and vice versa. The MATLAB programming 

environment provided all the necessary functions and tools needed to achieve this. 

So I have used MATLAB software for first testing my proposed parallel architecture 

of DWT for image compression before its actual hardware implementation. Code for row 

processor and column processor functions are written using the above algorithm. Main 

program reads the image and sends the corresponding values to the row processors and 

column processors, then the computed results generated by row and column processors are 

stored in the same place, after complete level decomposition the results are aligned according 
to LL, LH, HL and HL components. 

The test image used is the 512 X 512 pixel image `Lena.jpg' as shown in Fig.6.2. 

Level 1, level 2 and level 3 decomposed images are shown in Fig.6.3, 6.4 and 6.5 
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lardware Implementation and Results 
Before an  y hardware implementation and testing is performe 

rrect functionality using the Modelsim functional simulation tomy 

ed the necessary environment for complete functional simuIatiar 
ire, i.e., Xiliiix Spartan 3E FPGA. The Modelsim tool features high 

tre platform adaptability. It also allows for modification and verifie 
code simultaneously. 

Simulation result of top module in Modelsim is shown in Fig.6 
the simulation result we can see that incoming image row data are St 

FIFO's. And also we can note that row processors work areosit 
negative edge 	

' column processors are ne ali 	tri 	 p ~ 	ggered. Results obtained fr 
used by column processor during in the same clock cycle. Rol' 
processor works in parallel and produces LL, LH, HL, NH compoi 
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clock cycle. Thus complete image can be decomposed in exactly N2  14 cycles without any 
need of line buffers at the column processors. 

After the correct functional verification by Modelsim, the VHDL description is 

synthesized using XST tool. A number of iterations are made to match the VHDL description 

to the timing and synthesis constraints. Subsequently, the implementation tool of the Xilinx 

ISE 8.1 is used to implement the design. After implementation information regarding device 

utilization summary and timing report is generated as shown in Table 6.1 and Table 6.2 

respectively, before burning on FPGA Table 6.1 gives an overview of FPGA after 

implementation. Table 6.2 gives information regarding maximum frequency of operation, 
setup time and hold time. 

Fig.6.6 Simulation result of top module 

Table 6.2 Device utilization summary 

Number Of Slices 

Number Of Slice Flip Flops 

Number Of 4 input LUTs 

Number of bonded IOBs 

Number of GCLKs 

351 out of 4656 7% 
103 out of 9312 1% 
632 out of 9312 6% 
128 out of 232 55% 

I out of 24 4% 
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Table 6.3 Timing report 

Minimum period 6.846ns 

Maximum Frequency 146.071 MHz 

Minimum input arrival time before clock 

(Setup Time) 

5.423ns 

Maximum output required time after clock 

(Hold Time) 

46.517ns 

After implementation Bit file is generated then the hardware implementation is 

carried out by programming the FPGA through the Universal Serial Bus (USB) port of a 

computer. Once the Bit file is burned on FPGA, program succeeded notification will be 

displayed as shown in Fig.6.`I, which indicates our code is successfully translated on to 

FPGA. 

u ZBox,daysun 
=S4vSaid 
=SsIc944P 
.! DeddopCwftsetion 

Dist SPI Caftsebon 
QSY*WA E 
Q PROM Fir Famm tw 

TDI ~ 	 Eaar 

xc3*S00s 	xc1041 	xe2c84s 
Ilfobt 	—lb?— 	—IS.?-- 

TOO 

~Souc„ ;!. ~ySrw sfwt C)Lbraiin ICudj.tionMode 

ar 

Device ID 
Device Sip i t.1J cods 
dcldccds 

d Stale Rspaw 

' Process" CoeftHOon Ops'el cns 

F
iv,t P[ogramaed successfully. 
PROGRSaa_END - Lad Operation. 
Elapsed time -1 Dec. 

FSo.vld 	E Design S(acn 	9 Boudsy Scan 

Fig.6.7 Programmed succeeded screen shot 
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CHAPTER 7 

CONCLUSION AND SCOPE FOR FUTURE WORK 

7.1 Conclusion 
In this thesis, an improved parallel architecture for implementation of lifting based 

CDF(2,2) wavelet is proposed. Proposed architecture is first tested using MATLAB software, 

then VHDL code is written in Xilinx ISE 8.1 and simulated results are verified using. 

Modelsim software. Subsequently, the implementation tool of the Xilinx ISE is used to 

implement the design followed by the generation of the bit file. The hardware implementation is 
carried out by programming the FPGA through the USB port of a computer. 

The following conclusions can be made from the results obtained using the proposed 

parallel architecture for CDF (2,2) wavelet: 

✓ Compared to previous parallel architecture [25], proposed architecture can 

perform level 1 decomposition of an N x N image in exactly N 2  / 4 working 
clock cycles. 

✓ It does not require any line buffers at the column processor as in case of previous 
parallel architectures. 

✓ Works with 100% hardware utilization. 

7.2 Scope for Future Work 
Obviously there is a scope for future work for my proposed architecture. The possible 

improvements in the future are listed as below: 

➢ Similarly, an inverse transform can be implemented for extracting the original 

image from compressed image. 

> Work can be extended to color image implementation either by multiplexing the 

bits or by multiplying the hardware three times, one for each color. 

> Architecture for other wavelets can be developed similarly with reduced clock 

cycles and line buffers. 
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