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ABSTRACT 

In this work design and implementation of Intrusion Detection System (IDS) with 

Field Programmable Gate Array (FPGA) is presented. Today's network security systems 

require high-performance as well as good functionality with the growing speed of the 

internet. But most'of the software-based Network Intrusion Detection Systems (e.g. Snort) 

show inefficiency and even fail to perform for the faster internet. We have presented a fully 

hardware based system to overcome these shortcomings of software-based solutions. By 

implementing complete intrusion detection system on FPGA with embedded processor, we 

can solve the problem of performance and it has capability of intrusion detection in 

multigigabit network environment. 

iii 



CONTENTS 

Candidate's Declaration and Certificate 

Acknowledgements 

Abstract 

Table of Contents 

CHAPTER 1 	 Introduction and Statement of the Problem 

1.1. Introduction 

1.2 Motivation 

1.3 Statement of the Problem 

1.4 Organization of the Report 

CHAPTER 2 Background and Literature Review 

2.1 Introduction 

2.2 Snort 

2.3 FPGAs and Reconfigurable Computing 

.2.4 Networking Protocols 

2.5 Firewalls 

2.6 Policy Engines 

2.7 Research Gaps 

CHAPTER 3 
	

Designing of IDS 
	

17 

3.1 Proposed Architecture 	 17 

3.2 FPGA Kit used 
	

21 

I 

w 

1 

1 

4 

4 

4 

5 

5 

5 

8 

12 

15 

15 

15 

IV 



CHAPTER 4 	 Implementation of IDS 	 23 

4.1 ISE 8.2i 	 23 

4.2 EDK and XPS 	 27 

4.3 ModelSim 	 37 

CHAPTER 5 	 Results 	 38 

5.1 Lab Setup 	 38 

5.2 Resource Utilization 	 40 

5.3 Traffic Analysis 	 40 

CHAPTER 6 	 Conclusions and Suggestions for Future Work 	42 

REFERENCES 	 43 

PUBLICATIONS 	 45 

APPENDIX 	 Configured Xilinx IP Cores Source Code 	 I 

v 



Introduction and Statement of the Problem 	 CHAPTER 1 

1..1. Introduction 
•hitrusion.detection systems (IDS) are software or hardware systems that automate the 

process of monitoring the events occurring in a computer system or network, analyzing them 

for signs of security problems. They, in the general sense, identify anomalous, inappropriate, 

or incorrect access to a system. As network attacks have increased in number and severity 

over the past few years, intrusion detection systems have become a necessary addition to the 

security infrastructure of most organizations [1, 2]. 

Types of Intrusions 
Intrusions can take several forms. They can occur as abnormal, unauthorized, or unwanted 

system usage. Examples related to networking follow. 

• Unauthorized Access. Unauthorized access occurs when an individual gains 

access to a system they have no right to use. For example, a user may view web 

pages containing proprietary information that they have not been authorized to 

view. 

• Authorized Access. An intrusion can occur even if the credentials of the 

individual - accessing the system are correct. For example, an intruder can 

fraudulently obtain account information such as login names and passwords. 

The system believes the intruder is authorized. This is the most difficult type of 

intrusion to detect since the detector must consider what is being accessed and 

what operations are being performed. 

• Spam. Spam is an unwanted electronic message from individuals or companies 

who send the message to people that may not desire to receive the message. 

These messages generally try to sell items, such as medication, loan 

applications, or pornography. Phishing is a heinous form of spam where a 

message supposedly from an authoritative institution, such as a bank, e-

commerce site, or government agency, directs the recipient to reply to the 

message or go to a web page and enter sensitive information. These messages 

can be quite persuasive, claiming accounts will be deactivated unless 

information'is verified. 

• Virus. A virus is a piece of malware hidden in files or emails. Once activated by 

the host, the virus replicates itself and spreads to additional hosts. Viruses 

1 



generally spread via email, requesting that the recipient view an attachment. A 

clever virus writer writes code to search an infected host's address book to find 

additional recipients. The virus assumes the host identity when sending new 

email messages, increasing the likelihood that the target becomes infected. 

• Worm. A worm exploits vulnerability in a system to execute code without the 

user actively starting it. The , most common form of worm exploits buffer 

overflows, whereby the processor stack is subverted. Malicious code extends 

beyond the allocated buffer and is executed. Worms take advantage of software 

flaws that may be difficult to find but are quick to exploit. 

• Denial of. Service. Denial of Service (DoS) prevents legitimate users from 

accessing a system. DoS is accomplished by flooding a system with data that 

takes time to process. This inundation of events grinds services provided by the 

system to a standstill as each request is processed sequentially. Web servers and 

email servers are frequent targets of such attacks, and the effects of a DoS attack 

can be very detrimental to those providing the service. Ecommerce is especially 

sensitive to such attacks, since any loss of service can mean the loss of a 

customer's business. 

Methods of the Detection 

There are three basic ways to detect an intrusion: anomaly detection, signature detection, and 

learning. The detector should signal an alarm when a breach of security is attempted. 

• Anomaly Detection. In anomaly detection, the detector recognizes deviations 

from standard behaviour. Abnormal behaviour is considered suspect. For 

example, a flood of traffic to a particular TCP port could signal the beginning 

of a worm/virus outbreak or a DoS attack. However, anomaly detection can 

result in false alarms. The event in question may be a previously unseen event 

that is perfectly legitimate, such as the distribution of a software update. The use 

of thresholds and statistical analysis is used heavily to prevent false alarms [27, 

28]. 

• Signature Detection. The second method of detection is to search packets or 

flows for known signatures. This requires that the detector know what to search 

for in advance. This could involve searching packet headers for suspect port 
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numbers or IP addresses, or it could trigger searching payload for worm or virus 
signatures. 

• Learning. Finally, an effective detector should be able to learn about and react 

to new intrusion attempts. Learning requires training time for the system to 

determine what constitutes normal behaviour and who are legitimate users. 

Once trained, the system reacts to abnormal behaviour and makes decisions on 

what actions to take. One technique to learn about new signatures is to use 

thresholds to determine if a signature appears to be occurring too frequently. 

Responses 
Once an intrusion is detected, a response should be taken. The response could be to write to a 

log file or to email an administrator. The type of response depends on the way the system is 

configured. An intrusion detection system (IDS) can be configured as either passive or active. 

If the system is configured to be passive, as intrusion detection systems are, countermeasures 

cannot be performed to stop the intrusion because the system is only being monitored. 

Passive systems just inform an authority of security breaches. It is left to that authority to 

determine what to do about the problem. Intrusion prevention systems can take 

countermeasures. In-line, active systems stop the flood of worms, which otherwise infect all 

vulnerable hosts in a matter of minutes. Countermeasures may include dropping an offending 

packet, terminating a user's connection, or blacklisting an IP or email address. 

Effects of False Alarms 

False alarms in intrusion detection systems are a serious problem. A false alarm occurs when 

an event or sequence of events causes an alarm to trigger even though the event was 

legitimate. For example, a false alarm may be raised at a web server if a certain web page 

becomes popular. A flash crowd, for example, occurs when there is a sudden surge of interest 

in a particular page. A term called "slashdotted" has been coined to describe the effect of 

large scale access to a web page when the URL is posted in an article on the 

www.slashdot.org website. An intrusion detection system (IDS) may determine this is a 

distributed DoS attack when, in fact, the web server cannot meet the demand of all the 

legitimate users who want to access the content. When an alarm is raised, the reason for the 

alarm should be genuine. A system that generates many false alarms results in real alarms 

being overlooked. Additionally, when events occur too often, the logging and alarming 

mechanisms become overloaded. 
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1.2. Motivation 

Intrusions are unlikely to stop anytime soon. As more people, institutions, 

governments, and companies are networked, together, the threat of intrusions increases. It is 

exceedingly difficult to build and maintain systems that are totally foolproof and have no 

security holes. Due to time-to-market constraints and because it takes too long to test all 

possible permutations of events that can produce an intrusion, it is unlikely that systems will 

ever be built that are totally secure. Network systems that can detect intrusions and prevent 

future intrusions are critical for security. 

The main motivating factor for undertaking dissertation work was that current 

Intrusion Detection Systems are almost entirely implemented using software that runs on 

processors that cannot scale to process data on fast links. Hardware implementations allow 

for higher throughput, increase rule capacity, and take advantage of the parallelism that is 

inherent in rule processing. 

1.3. Statement of the problem 
To design and implement Intrusion Detection System with FPGA. This will involve: 

• designing Gigabit Ethernet interface, 

• an IP packet extractor, 

• ruleset matching and updating framework and 

• logging system for defaulting packets. 

1.4. Organisation of the Report 

This report describes a solution to the problem presented in Section 1.2. 

Chapter 2 provides a background on Snort the de facto standard for Intrusion Detection 

Systems, FPGAs and Reconfigurable Computing available on present day FPGA kits and 

Networking protocols. Existing work in the same field is reviewed. 

In Chapter 3, design of Intrusion Detection System is presented. Proposed architecture is 

discussed and details components required for implementation are given. 

Chapter 4 discusses the implementation details and details of the software tools used - 

Integrated Software Environment (ISE) 8.2i and Embedded Development Kit(EDK) 8.2i for 

the implementation of the system are given. 

Chapter 5 presents the simulation results, discusses the Snort rules, measures the memory 

requirement, and analyzes the performance of the IDS. 

Chapter 6 summarizes the findings and give suggestions for future work. 
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Background and Literature Review 	 CHAPTER 2 

2.1. Introduction 

High performance intrusion detection and prevention systems are needed by network 

administrators in order to protect Internet systems from attack [3]. Researchers have been 

working to implement components of intrusion detection and prevention systems for the 

highly popular Snort system in reconfigurable hardware. Several attempts have been made to 

improve the system performance by migrating functionality from software to hardware. 

Though software is relatively slow, it is well suited to perform lightweight processing on low 

volumes of network data. On the other hand, fast hardware is best suited for computationally 

intensive processing on network traffic and can sustain much higher network throughput [4]. 

Since Snort has become the de facto standard for NIDS, a number of groups have worked to 

measure the performance of the system. As the number of header rules and signatures to 

match increases, the number of packets dropped by the sensor also increases. It is 

unacceptable for an IDS to not examine some packets. Schaelicke et al found that Snort 

inadequately acts as a sensor on higher speed links [5]. Their study showed that Snort alone is 

not to blame, but the platform running the software is partially responsible. Architectural 

decisions and the memory subsystem are critical factors in the performance of the NIDS. 

They found that even on a dual Pentium-4 Xeon running at 2.4 GHz with Hyper threading 

technology; the system could only support 543 rules in the best case such that no packets 

were ever dropped. Furthermore, the authors found that only two of their test systems could 

support saturated 100 Mbps links. This is troublesome because Gigabit links are common 

today. 

2.2. Snort 
In Snort (a popular open source NIDS) -more than 2,600 rules are there and more than 

80% of the rules contain signatures [3]. More than 80% of the CPU time for Snort is 

consumed by the string matching task alone. The pattern matching functions of the NIDS can 

be significantly accelerated using semi-custom hardware and, in particular, content 

addressable memory (CAM.) The CAM is used in a variety of applications and is arguably 

best known as the decision engine for the IP router. The CAM can provide an extremely fast 

pattern matching function on the order of 12 ns or less depending upon the size of the CAM 

[17]. 
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In "Exploiting Reconfigurable Hardware for Network Security" [6] by`Shaomeng Li, Jim 

Torresen, Oddvar Soraasen of Department of Informatics, University of Oslo, Norway- they 

have demonstrated that the Snort IDS performance can be improved using CAM for 

implementing the detection engine of Snort. Firstly, they have not done any optimisation in 

storing or comparing snort ruleset while using FPGA for the same. Secondly, only the 

computationally intensive portion of the system is offloaded on the FPGA whereas complete 

IDS can be designed as a separate hardware device. 

2.2.1. Snort Rule Features 

Table 2.1 is divided into header and payload options that are available to the intrusion rule 

writer. The header options are split into ,sections that represent where they are found in a 

packet, starting with the IP header, then the TCP header, and finally the ICMP header. 

Table 2.1: The header and payload options that are available to Snort rule writers. 

Header Options Payload options 

Protocol Content 
IP Addresses Perl compatible Regular expressions 

Same IP Case Sensitivity 
TTL Offset 
ToS Depth 

Identification Within 
IP Options Raw Bytes 

Fragment Bits Byte Jump 
Fragment Offset Byte Tests 

Data Size 
Ports 
Flags 

Sequence Number 
Acknowledgement 

Flags 
ICMP Type 
ICMP Code 

ICMP Identification 
ICMP Sequence Number 



2.2.1.1. Header Options 

The header options shown in Table 2.1 correspond to distinct fields in packet headers. The IP 

addresses and ports are unique in that they allow ranges and masks. The other fields are exact 

match. 

2.2.1.2. Payload Options 

Payload options are concerned with the presence and location of strings to find expressed as 

either static signatures or regular expressions. The depth construct allows the search of a 

specified string up to a certain location in the payload. The offset construct specifies where to 

begin looking for a given string. As with the header options, payload options can be mixed 

together, and multiple signatures can be specified in a rule. 

2.2.2. Portability Difficulties 

A brute-force translation of Snort from a software implementation to a hardware 

implementation is inefficient. The software implementation is inherently sequential, while 

hardware is efficient at implementing parallelism. The features available are difficult to port 

to hardware. For example, performing string matching within certain bounds of the payload is 

a complicated task for hardware to perform due to the very specific requirements that can be 

placed on different strings. 

There are three challenges to performing rule processing in hardware: 

• Scalability to process and store increasingly complex rules 

• Correlation between header classification and payload content 

• Adaptability to changing environment 

One of the most challenging tasks in a rule processor is correlation of criteria. Every packet 

can contain matches for multiple header classifications and payload signatures. The system 

must correlate these matches to determine rule matches. While a single rule is trivial to 

process, consider that there are 2,464 rules found in Snort. In software, the correlation is 

performed using linked lists in memory. Implementing the same lists in hardware is 

detrimental to performance due to the numerous memory look-ups required. 

In order to protect against evolving threats, the system must be adaptable. Rules 

change over time as new threats emerge. The system must adapt to scan for new forms of 

malware [7]. Reconfigurable hardware enables the system to adapt to new threats quickly and 

at low expense. 
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2.3. FPGAs and Reconfigurable Computing 

2.3.1. Introduction to FPGA's 

A field programmable gate array (FPGA) is a general-purpose integrated circuit that is 

programmed by the designer rather than the device manufacturer. Unlike an application-

specific integrated circuit (ASIC), which can perform a similar function in an electronic 

system, an FPGA can be reprogrammed by downloading a configuration program called a 

bitstream, even after it has been deployed into a system. Much like the object code for a 

microprocessor, a bitstream is the product of compilation tools that translate the high level 

abstractions produced by a designer into something equivalent but low level and executable. 

Over the last three decades, FPGA's have grown from simple logic components, through 

moderate prototyping platforms and more recently, as complete System on a chip (SoC) 

components. One of the greatest advantages with FPGA's is that they can be used as custom 

hardware avoiding the initial costs, fabrication costs and fabrication time. 
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Fig 2.1. Virtex Family FPGA Logic slice 

A simple FPGA fabric consists of an array of configurable logic blocks (CLBs) 

attached by a programmable interconnect. Digital circuits are mapped to the CLBs which 

consist of logic slices which consists of look-up tables (LUTs) and flip-flops (FFs). Each 

logic slice as shown in Fig 2.1 contains two 4-input lookup tables (LUTs), two configurable 

D-flip flops, multiplexers, dedicated carry logic, and gates used for creating slice based 

multipliers. Each LUT can implement an arbitrary 4-input Boolean function. Four inputs is a 



good size for a look-up table as suggested by various studies, trading utility (complexity of a 

block) against utilization (what fraction ends up in use) [8, 9]. Coupled with dedicated logic 

for implementing fast carry circuits, the LUTs can also be used to build fast adder/subtracters 

and multipliers of essentially any word size. In addition to implementing Boolean functions, 

each LUT can also be configured as a 16x1 bit RAM or as a shift register. In addition to logic 

slices, current generation FPGAs include additional diffused hardware resources beneficial 

for embedded systems. For example the Xilinx XC4FX 140 which is a product of the latest 90 

nm CMOS technology features various dedicated digital signal processing 18-bits multipliers 

and accumulators which are called as DSP slices, dual port BLOCK RAM's which can be 

used for storing few kilobytes of data, Digital Clock Managers, 2 Power-PC RISC 

Processors, 10/100/1000 Ethernet MAC Blocks, and Rocket IO Serial Transceivers which 

can be used to provide high-speed connections for communication between FPGA's and 

inter-module communications. Moreover with the advance of Moore's Law, FPGA's are also 

increasing in total capacity and speed which gives the users more number of computational 

units. 

2.3.2. Programming an FPGA 

In current practice, hardware descriptive languages (HDL) and schematics are widely used to 

implement applications on the FPGAs. Fig 2.2 is a pictorial representation of the design flow 

that usually occurs with FPGA's. 

Fig 2.2. FPGA Design Flow 

0 



Several HDL languages like VHDL (Very High Speed Integrated Circuit Hardware 

Description Language), Verilog, JHDL, SystemC, Streams - C, HandelC etc exist where in 

the application can be specified and this stage is usually called the Design Entry stage. After 

this stage, the design is verified for it's functionality through a Simulation process. After the 

Simulation process the design is converted to a form of representation called the netlist which 

is the complete representation of the logic in terms of basic gates (AND,OR,XOR,NOT). 

After this process the design is mapped which is mapping the above obtained netlist to the 

actual Configurable Logic Blocks (CLB) and Input/Output Blocks (IOB) available in the 

device that has been targeted. After the design has been mapped the next stage in the process 

is called Place and Route where in the design that has been mapped is physically mapped to 

the device's logic cells based on the timing and layout requirements. After these steps, a 

timing simulation is performed and the design is modified so that the best possible timing is 

obtained. After the re-design, the design is again sent through the process of converting the 

design into a netlist, MAP and then Place and Route. After the final Place and Route the 

design is converted to a configuration file called a BIT file which defines the behaviour of the 

FPGA that has been targeted. The BIT file obtained can be downloaded into the FPGA and 

verified for functionality. 

2.3.3. Hybrid CPU/FPGA Architecture's 
Hybrid CPU/FPGA architecture's are the first of its kind from Xilinx, Inc which are also 

called as Platform FPGA's which are the latest FPGA's with processors embedded (Hard 

Cores) in the FPGA fabric apart from the vast number of freely available logic gates. The 

processors inside the Platform FPGA's are IBM PowerPC 405's which implement the 

standard RISC style architecture and are based on the Core-Connect Architecture [ 10] from 

IBM and are implemented as Hard Cores inside the FPGA. This level of integration allows 

various Intellectual Property (IP) cores to be attached to the processor and the cores are also 

easily accessible through the Core Connect Architecture that is provided as a Intellectual 

property core (Soft Core). The Core Connect provides three bus standards as a means of 

communication between the PowerPC and other cores. The three bus standards are Processor 

Local Bus (PLB) , On-Chip Peripheral Bus (OPB) and the Device Control Register (DCR) 

bus. The processor local bus (PLB) is used to connect processor cores to the system main 

memory and other high speed devices. The OPB bus is dedicated for connecting slower on-

chip peripheral devices indirectly to the CPU. The OPB bus supports variable size data 

transfers and as well as flexible arbitration protocols. Both the PLB and OPB buses have their 



own bus arbiters, and the two buses are interconnected by at least one bridge (PLB2OPB 

Bridge or OPB2PLB Bridge). Various intellectual Property (IP) Cores (Soft Cores) are also 

available in order to interact with various standard peripherals in the FPGA such as the DDR 

SDRAM (Double Data Rate - Synchronous Dynamic Random Access Memory) , EEPROM 

Electrically Erasable Programmable Read-Only Memory), PCI (Peripheral Component 

Interconnect), RS232 UART (Universal Asynchronous Receiver/ Transmitter). In addition to 

the peripheral and utility Intellectual Property cores, an interface called the Intellectual 

Property Interface (IPIF) is available in the form of a soft core which allows any Intellectual 

Property (IP) Core to connect to either of the buses. The IPIF is decomposed into two layers 

to allow easy migration of peripherals or IP cores to each of the different system buses in the 

Core Connect Architecture. The first layer provides an interface facility to be used between 

the IP core and the IPIF. The second layer is a bus specific portion, and interfaces the IPIF to 

one of the buses. These interface modules allow to greatly accelerate the process of 

connecting pre-existent IP, or creating a new IP in a system. The IPIF provides two different 

types of attachment to an IP core: a slave and a master attachment. With the master 

attachment, user cores have the ability to initiate bus transactions. Moreover, bus arbitration 

logic is also included within the master attachment. However it is the user core's 

responsibility to re-arbitrate or abort the bus and switch the data bus between the slave and 

master modes. 

2.3.4. Reconfigurable Computing 

Reconfigurable Computing (RC) [11] started of during the late 1960's but was still a research 

field until the late 1980's because of lack of availability of suitable hardware. But with the 

advent of Field Programmable Gate Array Technology (FPGA), the field of reconfigurable 

computing got a boost since FPGA's provided a reconfigurable platform and gave a broader 

meaning to the field. The mair, feature of Reconfigurable Computing is the ability of the 

hardware to reconfigure based on various functions. Although FPGA's provided a full 

reconfiguration of the chip since its ingression until recently, due to increase in technology 

various FPGA's now even support partial reconfiguration which means that a portion of the 

device can be altered even though when the FPGA is actually running. When Reconfigurable 

Computing was in its initial development stages, the cost of FPGA hardware and 

Reconfigurable cards were very costly, but as years passed by and with the advancement of 

Moore's Law which gave more transistors per die, FPGA's and Reconfigurable Computing 

boards have become a lot cheaper. Moreover the introduction of FPGA's with processors 

embedded in it became a stepping stone to the field of Reconfigurable Computing. For 
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example, today a Reconfigurable Computing Mother board with a Xilinx Virtex II Pro FPGA 

which houses around 100,000 free logic gates, two PowerPC processors and the ability to 

house a DDR SDRAM, a Compact Flash Card and various other peripherals costs around 

$250 as compared to $6000 in the year 1998 which housed a Xilinx XC4085 FPGA with only 

10,000 logic gates and with minimal peripheral support. 

Dynamic Reconfiguration of Functional Blocks (DRP) 

In the Virtex family of FPGAs, the Configuration Memory is used primarily to implement 

user logic, connectivity and I/Os, but it is also used for other purposes. For example, it is used 

to specify a variety of static conditions in functional blocks, such as Digital Clock Managers 

(DCMs) and Multi-Gigabit Transceivers (MGTs). Sometimes an application requires a 

change in these conditions in the functional blocks while the block is operational. This can be 

accomplished through the global Internal Configuration Access Port (ICAP), or through 

partial dynamic reconfiguration using JTAG or SelectMAP in the Persist mode. However, the 

reconfiguration port that is an integral part of each functional block simplifies this process 

greatly [ 17]. 
This addressable, parallel write/read configuration memory that is implemented in 

each functional block that might require reconfiguration and it has the following attributes: 

• It is directly accessible from the FPGA fabric. Configuration bits can be written to 

and/or read from depending on their function. 

• Each bit of memory is initialized with the value of the corresponding configuration 

memory bit in the bitstream. Memory bits can also be changed later through the ICAP. 

• The output of each memory bit drives the functional block logic, so the content of this 

memory determines the configuration of the functional block. 

2.4. Networking Protocols 

The Internet can be described using a seven-layer model [12]. Starting at the lowest level, the 

layers are physical, data link, network, transport, session, presentation, and application. The 

physical layer is concerned with how bits of information are transferred from one location to 

another. The data link layer defines frame formats to specify where information begins and 

ends. The network layer defines how data is forwarded between hosts. The transport layer 

defines how data is transferred reliably. The session layer determines how communication 

sessions are created and authenticated. The presentation layer defines how data is internally 
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represented for transmission. Finally, the application layer generates and/or interprets the data 

that has been transferred [12,13]. Rule processing resides in layers three and above. 

2.4.1. Internet Protocol 
The Internet Protocol (IP) is used extensively today in the global network, providing a best- 

effort delivery of IP packets [12]. A typical IP packet header consists of 20 bytes, as shown in 

Fig 2.2. The main fields of the header are: 

• ToS - type of service, used for applications requiring certain quality of service (QoS) 

guarantees 
_x 	 2 	 1 

1f }S76c4 2Ifl S76543zlts' 76c4 	Iii 

!HL ToS Total i 	nsgth 

:d£"i~tificatic,: Fla s ra melt Off . t 

TTL rk tocol Heuder Checksum 

Source Addis 
Destination Addi ss 

Payload Data 

Fig 2.2: Atypical IP packet consists of 20 bytes of header and up to 1480 bytes of payload 

data on an Ethernet network. 

• Total length - the length, in bytes, of the entire IP packet 

• TTL - time to live, the maximum number of hops the IP packet can make in the 

network before being discarded 

• Protocol - the encapsulated protocol used in the IP packet 

• Source Address - the source network and local address of the sender 

• Destination Address - the destination network and local address of the receiver 

IP packets are the fundamental unit of processing for the rule processing architectures. 

Higher level protocols, such as the User Datagram Protocol and the Transmission Control 

Protocol are encapsulated within the IP payload data. 

2.4.2. User Datagram Protocol 

The User Datagram Protocol (UDP) is a best-effort delivery protocol [ 12]. UDP is most 

commonly used for multimedia applications such as streaming video and audio. The main 

addition of UDP over IP is port numbers, which allows the operating system to deliver data to 

the appropriate application. 
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2.4.3. Transmission Control Protocol 

The Transmission Control Protocol (TCP) is the predominate protocol used today [12]. The 

authors of [102] showed 85% of network traffic is TCP. TCP provides 
3 	 2  

1 0 9 87654321 0987654 3.2.1 098 7654 3 2 1..:0 

iP Packet Header 

Source Port Destination Port 

Sequence Number 

Acknowledgement Number 

Or et Reserved Flags W ndow 

Checksum. Ur ent Pointer 

P ;yIr atr.] Data 

Fig 2.3: A TCP packet consists of 40 bytes of header information (20 from the IP packet 

header and 20 from the TCP header) and up to 1460 bytes of payload data on an Ethernet. 

a reliable, in-order transmission of data. While protocols such as IP and UDP are stateless, 

TCP is a state-based protocol, requiring a connection to be established. By maintaining state, 

large transfers of data are possible. The principle application of TCP is reliable data transfer, 

such as for web page viewing, email, and file transfer [14]. 

A TCP packet, as shown in Fig 2.3, appends 20 additional bytes of header onto the IP packet 

header. Fields of note are: 

• Source Port & Destination Port - numbers to aid the operating system in determining 

where to send the payload 

• Sequence Number - the number given to the first byte of data found in the payload to 

properly order data for delivery to the application 

• Acknowledgement Number - the number given to the next byte expected at the 

receiver, which informs the sender as to what bytes have been received 

• Window - the number of bytes that can be in-flight between the sender and receiver 

TCP data is transferred in flows. A flow is characterized by four fields: the source IP 

address, the destination IP address, the source port and the destination port. These four fields 

uniquely identify a TCP communication channel between the sender and receiver. Since the 
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maximum transfer unit of most networks is 1500 bytes (Ethernet frames) and most files are 

larger than 1460 bytes, a flow needs to be established in order to reliably transfer all data 

bytes in the file. 

2.5. Firewalls 

A firewall is a device that inspects packets before they arrive at their destination. If the 

packets are found to contain questionable data, they are flagged. Firewalls can be used to 

drop traffic entering a network, or they can be used to prevent traffic from leaving a network. 

The term "firewall" is used to suggest the prevention of spreading harmful materials from one 

area to another. 

The earliest firewalls were based solely on examining the header of IP packets [15]. 

These implementations relied on allowing known port numbers and IP addresses to pass 

through. For example, TCP traffic destined to port 25 or port 80 is generally safe since these 

are the ports for email and web traffic. However, an attacker can easily hide intrusions in 

these well-known port numbers. Header-based software solutions are still common, and can 

be effective at removing a significant portion of unwanted traffic. Zone Alarm is a common 

example of a firewall solution. 

2.6. Policy Engines 
A policy engine examines more areas of a packet than just the header before deciding 

whether a packet is safe or not. The problem with current policy engines is their complexity. 

As a result, they passively monitor the network. Policy engines perform signature detection, 

correlate events, and compute complex logical operations. 

Paxson et. al developed an IDS called Bro [16]. Using a proprietary security language, 

this software-based system used libpcap to read network packets on a PC. Event engines used 

libpcap to validate packets, correlate the received packet with similar packets from the same 

flow, and process payload data. If alerts were generated, a policy script was run to determine 

what action to take. 

Snort is another type of policy engine that uses rules to determine whether intrusions 

have occurred [3]. Snort has been adopted as the tool for intrusion detection. 

2.7. Research Gaps 

The literature review shows that complete Intrusion Detection Systems does not have a 

Gigabit Ethernet interface on a Hardware Kit with known implementation details. Also there 

is a need to develop a Web based GUI to manage it, and a facility for user/administrator to 

update the ruleset over the network while the IDS is running. 
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We have tried to develop an Intrusion Detection System as a separate device with a 

Gigabit Ethernet interface on a Hardware Kit, and with a facility for user/administrator to 

update the ruleset while the IDS is running. 
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Designing of IDS 	 CHAPTER 3 

3.1. Proposed Architecture 
The overall design principle for this architecture is the use of dedicated IP cores. by 

Fig 3.1. Architecture of IDS 

Xilinx [17] and Treck Embedded TCP/IP Stack [18] with parallel ruleset matching header 

processor module. Block diagram of the architecture is as given in Fig 3.1. Internally with 

protocol wrapper and Treck Embedded TCP/IP Stack the packet header is extracted and 

matched with the ruleset using Content Addressable Memories. The header part to match is 

placed in a CAM entry and is compared in parallel with all rulesets currently in the database. 

The packet is either logged or left depending on the matching result. 

The designed Intrusion Detection System is intended to be placed at the entry level 

switch of the LAN where in it will receive the complete incoming and outgoing network 

traffic from the port of the switch configured for promiscuous mode as shown in Fig 3.2. 
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, ucp,uyment in the network 

Hardware Infrastructure 

Layered Protocol Wrappers 

The layered protocol wrappers provide an interface that identifies the fields within an IP 

packet [191, This eases the design of an IP-based networking application by allowing it to 

operate at OSI layer three. We have used this module to extract the IP packet header and have 
used TCP packets only. 

The input for this module is 32-bits on every clock input and on every clock the state 

machine changes its state according to the state diagram. The 32-hits are used for this design 

as the header protocols are 32-bit spanned and the design Utilizes this concept efficiently, The 
state diagram is as follows (Fig 3.2): 

1. Check for IP version 4. If the version is incorrect discard the 32-bits and startover, If the 

version is correct, Extract the IP header length and total packet length, go to next state (i.e. 
State 2). 

2. 
Extract the ID (Used to identify the fragments of one datagram from those of another). Go 

to next state (i.e. State 3). 

3. 
Check for TCP protocol. If not found then skip the 32-bits and go to next state which is 

State 1 else go to next state (i.e. State 4). 
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. Fig. 3.2. TCP/IP Header extraction State diagram 

4. Skip 32-bits. Go to next state (i.e. State 5). 

5. Store the Destination IP Address. Go to next state (i.e. State 6). 

6. Skip the padding bits (Used as a filter to guarantee that the data starts on a 32 bit 

boundary.) for the IP header. Go to next state (i.e. State 7). 

7. Extract and store the TCP source and Destination Port numbers. Go to next state (i.e. 
State 8). 

8. Skip 32-bits. Go to next state (i.e. State 9). 
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9. Skip 32-bits. Go to next state (i.e. State 10). 

10. Extract the Data offset parameter. Calculate the Payload length which is nothing but 

the Total length —IP header length — TCP header length. Go to next state (i.e. State 11). 

11. Skip the next 32-bits for the TCP header padding and go to next state (i.e. State 12). 

12. Send a 32- bit stream and the valid bit (indicating valid payload on line). Go to next 

State (i.e. State 1). 

Memory Controllers 

The SRAM controller provides two arbitrated interfaces for access to a 2 MB SRAM. A 

request and grant protocol is used to access SRAM [20]. 

The SDRAM controller provides three arbitrated interfaces to SDRAM. One is for reading 

only, one is for writing only, and one is for reading and writing. The read/write interface is 

used to access a bank of 64 MB SDRAM. The SDRAM controller also provides a simple 

request/grant interface with burst transfers. 

Buffers 
Buffers are used throughout the system to store IP packets before processing. 

Tri-Mode Ethernet MAC (TEMAC) UltraController-II 

As shown in the above block diagram the Tri-Mode Ethernet . MAC (TEMAC) 

U1traController-II module is the Xilinx core [ 17]. This module is a minimal footprint, 

embedded network processing engine based on the PowerPCTM 405 (PPC405) processor core 

and the TEMAC core embedded within a VirtexTM4 FX Platform FPGA. The TEMAC 

UltraController-II module connects to an external PHY through Gigabit Media Independent 

Interface (GMII) and Management Data Input/Output (MDIO) interfaces and supports tri-

mode (10/100/1000 Mb/s) Ethernet. Software running from the processor cache reads and 

writes through an On-Chip Memory (OCM) interface to •two FIFOs that act as buffers 

between the different clock domains of the PPC405 OCM and the TEMAC. The TEMAC 

UltraController-II module uses minimal resources: one PPC405, one TEMAC, two Virtex-4 

FIFOs, 20 slice flip-flops, and 18 look-up tables (LUTs). Because of the minimal footprint 

design, a greater number of FPGA logic resources remain available to the user. 

Header Check 

Most of the 168 Snort header only rules look for specific TCP/UDP port numbers [3]. Each 

of the 168 header-only rules are checked in parallel using TCAM, and a rule match is 

declared if any of the headers match. 
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TCAM 

Ternary Content Addressable Memory (TCAM) is a type of memory that can perform 

parallel search at high speeds. A TCAM consists of a set of entries. The top entry of the 

TCAM has the smallest index and the bottom entry has the largest. Each entry is a bit vector 

of cells, where every cell can store one bit. Therefore, a TCAM entry can be used to store a 

string. A TCAM works as follows: given an input string, it compares this string against all 

entries in its memory in parallel, and reports one entry that matches the input [21]. 

Ethernet Statistics core 

The IP Ethernet Statistics core provides a user-configurable collection of statistical counters 

that are used to gather network traffic statistics for Xilinx Ethernet Media Access Controller 

(MAC) [22]. 

3.2. FPGA Kit used 

The FPGA Kit used is a Xilinx Vertex-4 ML403 Evaluation Platform [23], as shown in Fig 

3.3. Some of the salient features of the board are: 

Fig 3.3. Xilinx Vertex-4 ML403( Evaluation Platform 
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• 64 MB DDR SDRAM, 32 bit interface running up to 266-MHz data rate. 

• General purpose LEDs and push buttons. 

• RS-232 serial port. 

• 10/100/I000 Ethernet Port (RJ-45 Connector) 

• One 4Kb IIC EEPROM. 

• PS/2 mouse and keyboard connectors. 

• JTAG configuration port for use with Parallel Cable III and Parallel Cable IV cable. 

• System ACE and Compact Flash Connector. 

The Virtex-4 family includes three platforms; Virtex-4 LX for logic, Virtex-4 SX for 

very high performance signal processing, and Virtex-4 FX for embedded processing and 

high-speed serial connectivity. Each version has a different mix of the special features and 

comes in a range of density to cover a variety of application sizes (as shown in Fig 3.4) 

Features 	 lPxes Ptatform ill Ftttd P " 

Fig 3.4. Virtex-4 family 

The ML403 Evaluation platform has Xilinx Devices: XC4VFX12-FF668-IOC 

(FPGA+PowerPC). 
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Implementation of IDS 	 CHAPTER 4 

We have developed our prototype based on the architecture given in Fig 3.1. The 

prototype we have developed is programmed in VHDL. FPGA Logic is implemented on a 

Xilinx Vertex-4 ML403 Evaluation Platform [23], as shown in Fig 3.2. 

We have used Integrated Software Environment (ISE) 8.2i and Embedded 

Development Kit(EDK) 8.2i for designing and implementation of the overall system on the 

kit. The simulations of all functions were conducted by the ModelSim. For performance 

evaluation of our prototype system, we applied Snort header ruleset and used Traffic 

Generator for generating network traffic for experiments. 

Through JTAG cable the header ruleset stored in SDRAM can be updated without 

affecting the rest of the design. The overall design occupies only part of the FPGA resources 

available on the Xilinx ML403 Evaluation Platform. 

4.1. Integrated Software Environment (ISE) 8.2i 

The Integrated Software Environment (ISETM) is a Xilinx development system product that is 

required for implementing designs onto Xilinx programmable logic devices. It allows takes 

the design from design entry level to programming the Xilinx device. Various steps in the 

ISE design flow are: 

Design Entry 

Design entry is the first step in the ISE- design flow. During design entry, source files are 

created based on the design objectives. The top-level design file is created using a Hardware 

Description Language (HDL), such as VHDL, Verilog, or ABEL, or using a schematic. 

Multiple formats can be used for the lower-level source files in the design. Project Navigator 

is used to create new project as shown in Fig 4.1 to 4.3. 
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Fig 4.1 Creating New project in ISE Project Navigator 

c elect the ̀Device and Desi h Ffcw for the.Projeit- ... .. 

Property Name 	 Value 

Product; Category 	 h All 
Family Virtex4 
Device 	 w . XC4VFX1 2 

 

Package FF688 

Speed ` 	
r. 	j •10 

;Tap Level Source Type HDL 
i Synthesis Tool" 	 ~. 

Simuiafor 	

• 

XST (VHDLNerilogJ 

g ModelsimXE VHDL ~`; 

Enable Enhanced DesignnSSummary 0 
+.. ........... 	......... 	.. 	....._ .. 	_ ._. 	_ 

Fig 4.2 Selecting Device Properties 
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efoliowiecificatic 

Project: 
Project Name: IDS 
Project Path: C:\IDS\IDS 
Top Level Source Type: HDL 

Device: 
Device Family: Virtex4 
Device: 	xc4vfxl2 
Package: 	sf363 
Speed: 	-10 

Synthesis Tool: XST (VHDL/Verilog) 
Simulator: Modelsim-XE VHDL 

Enhanced Design Summary: enabled 
Message Filtering: enabled 

< Back j 	 Finish 	Cancel ...  

Fig 4.3 Project Summary 

Synthesis 

After design entry and optional simulation, the synthesis is rik Dii 

Verilog, or mixed language designs become netlist files that are a 

implementation step. 

this~ste ` 

:d ail  put to the 

Implementation 
After synthesis, the design implementation is run, which converts the logical design into a 

physical file format that can be downloaded to the selected target device. From Project 

Navigator, we can run the implementation process in one step, or we can run each of the 

implementation processes separately. Implementation processes vary depending on whether 

we are targeting a Field Programmable Gate Array (FPGA) or a Complex Programmable 

Logic Device (CPLD). 

Verification 

The functionality of the design can be verified at several points in the design flow. Simulator 

software is used to verify the functionality and timing of the design or a portion of it. The 

simulator interprets VHDL or Verilog code into circuit functionality and displays logical 

results of the described HDL to determine correct circuit operation. 
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Device Configuration 

After generating a programming file, next step is configuring the device. During 

configuration, the configuration files are generated and the programming files are 

downloaded from a host computer to a Xilinx device. 

IMPACT 
IMPACT (IMPACT) is a tool featuring batch and GUI operations as shown in Fig 4.4 and 

4.5; it allows performing two basic functions: Device Configuration and File Generation. 

Configuration is the process of loading design-specific information into one or more FPGA, 

PROM, or CPLD devices to define the functional operations of the logical blocks, their 

interconnections, and the chip I/O. 

want to 

Fig 4.4 Loading your project in IMPACT 
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Platform Cable USB 
Platform Cable USB is a high-performance download cable that attaches to your hardware for 

the purpose of programming or configuring any of the following Xilinx® devices: 

. • ISP Configuration PROMs 

• CPLDs 

• FPGAs 

Platform Cable USB attaches to a desktop or laptop PC with an off-the-shelf High-Speed 

USB A-B cable and derives all operating power from the hub port controller. No external 

power supply is required. 

4.2. Embedded Development Kit(EDK and Xilinx Platform Studio (XPS) 

EDK [171 is an integrated software solution for designing embedded processing systems and 

implementing on a Xilinx FPGA device. The components of the Xilinx EDK are: 

• Hardware (Intellectual Property) for the Xilinx Embedded Processors and their 

peripherals. 

• Drivers, Libraries and a Micro Kernel for Embedded Software Development. 

• Software Development Kit (SDK), Eclipse based IDE. 

• GNU compiler and debugger for C development for MicroBlaze and PowerPC. 
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Xilinx Platform Studio 

Xilinx Platform Studio (XPS) is the design development software provided in the Xilinx 

Embedded Development Kit (EDK). XPS consists of an interface and all the underlying tools 

needed to develop the hardware and software components of an embedded processor system. 

We can also perform system verification within the XPS environment. 

Base System Builder 

The Base System Builder (BSB) automates basic hardware and software platform 

configuration tasks common to most processor designs. The BSB lets us pick from the 

peripherals available on that board, automatically match the FPGA pinout to the board, and 

create a completed platform and test application ready to download and run on the board. 

This gives a hardware platform to use as a starting point from which we can add more 

processors and peripherals if needed, including custom peripherals, using the tools provided 

in Xilinx Platform Studio (XPS). 

In all cases, BSB lets us select the following system attributes: 

• Processor type (MicroBlaze or PowerPC, depending on the selected target FPGA 
device) 

• Processor and bus clock frequency (BSB automatically infers and configures a Digital 
Clock Manager (DCM) primitive when needed) 

• Standard processor buses (all peripherals are automatically connected via appropriate 
buses) 

• Debug interface 

• Cache configuration 

• Memory size and type (both on-chip block RAM (BRAM) and controllers for off-chip 
memory devices) 

• Common peripherals (such as general purpose I/O, Universal Asynchronous 
Receiver-Transmitter (UART), and timer) 

• 	Interrupt sources (from among the applicable selected peripherals) 

When targeting one of the supported embedded processor development boards, BSB narrows 

the choices of peripherals that control off-chip devices to those features provided on the 

board. Any deselected peripherals are omitted from the processor system design to minimize 

FPGA use. The BSB further provides the following board-specific services: 

• Automatic selection of the on-board FPGA 



• Selection of clock rates supported by the on-board oscillators 

• Automatic setting of reset polarity 

• Automatic generation of FPGA pinout to match the board connections, for the 
selected set of peripherals 

For each option, functional default values are pre-selected in XPS. Upon exit of the BSB, a 

Microprocessor Hardware Specification (MHS) file is created and loaded into the XPS 

project. We can further enhance the design in XPS or continue to implement the design using 
the Xilinx implementation tools. 

Optionally, the BSB can also create one or more software projects. Each project contains a 

sample application and linker script that can be compiled and run on the hardware on the 

target development board. Applications are designed to illustrate system aliveness and 

perform simple and basic testing of some hardware components. XPS supports multiple 

software projects for every hardware system, each of which contains its own source files and 
linker script. 

The major steps carried out for the implementation of design on ML403 Evaluation 

Platform in XPS are given in Fig 4.6 to 4.17: 

iklderizatd (recommended). 

ct 

Fig 4.6 Selecting BSS 
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Fig 4.7 Creating new project- IDS 

Fig 4.8 Selecting the design option 

kill 



Fig 4.9 Selecting the target development board 
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Fig 4.10 Selecting the embedded processor 

Fig 4.11 Selecting clock frequency 
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Fig 4.12 Software setup 

Fig 4.13 Configuring memory test applications 
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Fig 4.14 Configuring peripheral test applications 

Fig 4.15 Finished message 



Fig 4.16 Details of System created 
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4.3. ModelSim 

ModelSim is a simulation and debugging tool for VHDL, Verilog, and mixed-language 

designs. The following diagram shows the basic steps for simulating a design within a 

ModelSim project. 

Fig 4J 8 Steps for simulating a design with ModelSim 

ModelSim offers numerous tools for debugging and analyzing the design. Several of these 

tools are: 

• Setting breakpoints and stepping through the source code 

• Viewing waveforms and measuring time 

• Viewing and initializing memories 
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Results 	 CHAPTER 5 

5.1. Lab Setup 

The setup to evaluate performance of the designed and implemented IDS is as shown in Fig 

5.1. 

  

CCOSS 	IDS onM1403 
cab le 	Kit 

urn  

cable 	PC logging the 

reported 

packets 

PC with Packet 

Generator 

Fig 5.1. Lab setup for evaluating the IDS. 

An IP packet generator is used to generate the network packets with desired source 

and destination IP address and port numbers. Only TCP protocol is used for checking the 

results. 

After analysing Snort ruleset we have noted that majority of rulesets have width of 32 

bytes, as shown in Fig 5.2. Table 5.1 shows example header ruleset. For this we have 

designed the TCAM for 32 bytes of data entry width. Similarly other rulesets can be catered 

for by TCAMs working in parallel with adequate data width. 

Table 5.1: Example Header Rule Set 

ID 1 Source IP Destination  IP 1 Protocol I Source Port } Destination Port 
1. any 192.1680L0/16 tcp > 1024 
2 any 192158.00/16 tep 101.01 any 
3 any 192J68.50.2 tcp any 443 
4 192J6800/16 any udp 49230 60000 

tcp 1 
6 any any tep 146 1000:1300 



The TCAM output is used to enable the transmission of buffered packet's IP address 

for logging through serial interface to the PC maintaining performance log of this IDS. 

The system compares and logs all packets while working on Gigabit Ethernet. The 

incoming packet rate is limited due to the physical Ethernet interface chosen as 1 Gbps 

Ethernet interface. But to compare with other works in the field the calculated throughput of 

TCAM (based on SRL16 with 32 byte width) is given in Table 5.2. In a real world system not 

all of the traffic entering the system will need to be searched. 

Fig 5.2. Signature width for all rules in Snort database. 

In addition to the gigabit speed performance, the area left on the FPGA is sufficient to cater 

for content matching rulesets to be incorporated on the same kit. 
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5.2. Resource Utilization 

Xilinx tools gives summary of each IP core generated or used, as given in Fig 5.3 for 

the Gigabit Ethernet MAC, which utilized maximum resources. 

is Name: 	 Gigabit Ethernet MAC 

it 	r 	 xc4vfxl21Off668 

tuber of Slice Flrp Mops 3 	 1349 12% 
.~..mrvr 	n.rv.w.,.rnan«.~eroev., rnn+.a «> 

tuber of 4 input LU fs 	 1466 J3% 

imber of occupied Slices: 	 1251 22%  

tuber of Slices containing' only related logic: 1251 100% 

amber of Slices containing unrelated logic: 	0  -0% 

tal Number 4 input LUTs:r 	 1566 14% 

4RNING Resource utilization figures reported here are estimates generated by MAP when this core is 
demented iti isclatrbn Actual resource usage, may increase, or decrease when this core is merged with your 
sign. = 	.t.. 

Fig 5.3.Resource utilization of Gigabit Ethernet MAC. 

Finally when the complete design is ready and compiled using ISE Project Navigator, total 

resource utilization is given as part of summary report. The over all resource utilization for 

our design is only 34% (Though only header matching is taken into account, the area left is 

sufficient to add payload matching modules.) 

5.3. Traffic Analysis 

Input 

TCAM 

Fig 5.4. TCAM 



As shown in Fig 5.4 the TCAM gives the index and match flag to the first match in the 

memory. TCAMs have Fully associative memory and compares input string with all the 

entries in parallel. If multiple matches, report index of the first match. Each cell takes one of 

three logic states : `0', `1', and `x'(don't care). Current TCAM technology gives us fast time 

match up to 4ns. For 32 byte wide TCAM with depth of 1024 minimum cycle time is 16ns 

[17]. 

Table 5.2. Calculated Throughput of the Individual FPGA Modules. 

Module Throughput(maximum in Gbps)) 

Ruleset matching niodule(TCAM) 16 

Gigabit Ethernet MAC 1 

Gokhale et.al [24] used CAM to implement snort rules on a Virtex XCV1000E 

FPGA. Their hardware delivered a throughput of 2.2Gbps. Cho et. al [25] generated 

structural VHDL for deep packet filtering on an FPGA. Their design runs at 90MHz on an 

Altera EP20K device and achieves a throughput of 2.88Gbps. Attig et. al..[26] have 

implemented a Bloom filter circuit on a Virtex E2000 FPGA. Their circuit operates at 

62.8MHz and provides a throughput of 502Mbps. 

Affect of Packet size 

Since there is a large overhead for processing each packet's header, the biggest influence on 

receive performance is the packet size, which determines the number of packet arrivals per 

second. As the packet size reduces the performance of the system reduces. Appreciable 

affects are below 512 byte size packets, worst being at 64 byte size packets. 
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Conclusions and Suggestions for Future Work 	 CHAPTER 6 

We have presented a design and implementation of complete Intrusion Detection 

System (IDS) on a FPGA. It is noted that with improved TCAMs with current technology 

there is a fast time match up to 4ns. The designed IDS on Virtex4 kit successfully works on 

Gigabit Ethernet. 

The Protocol Wrapper including the packet extractor which extracts TCP/IP header 

bytes and forwards them for further processing by header ruleset matching module works for 

packets of varying length. 

The ruleset in the TCAM on the kit can be updated through configuration memory 

while the system. is running and this configuration memory is programmed through JTAG 

cable thus providing partial reconfigurable feature to the IDS on the FPGA kit. We have 

included only header ruleset for intrusion detection; similarly TCAM can be used for content 

matching rulesets. 

The system presently logs only IP addresses of the defaulting packets through serial 

interface on a separate computer, it can be extended to store complete defaulting packet for 

further analysis. 

If a kit with at least two Ethernet ports is used then additional feature of real time 

intrusion prevention can also be designed with this IDS. We have implemented the IDS using 

the FX-12 kit which provides 12,312 logic cells within 5,472 slices. The Virtex-4 FX-20 is 

the FPGA next in size providing 82% more LUTs than the one we used. With this FPGA it 

will be possible to implement the complete Intrusion Detection and Prevention system on one 

kit. 
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Configured Xilinx IP Cores Source Code 
	 APPENDIX 

//Vendor: .Xilinx 

//Version: 9.2i 
//Filename: tcam.v 
Timestamp : 04/21/2008 10:00:27 

// 
//Design Name: team 
//Device: xc4vfx 12-10ff668 
I- 
II Module team 
// Generated by Xilinx Architecture Wizard 
// 

LIBRARY ieee; 
USE ieee. std_logic_ 1164.ALL; 
-- synthesis translate off 
Library XilinxCoreLib; 
-- synthesis translate_on 
ENTITY team IS 

port ( 
clk: IN std logic; 
data_mask: IN std._ logic_VECTOR(31 downto 0); 
din: IN std_logic_VECTOR(31 downto 0); 
we: IN std_logic; 
wraddr: IN std_logic_VECTOR(7 downto 0); 
busy: OUT std_logic; 
match: OUT std_logic; 
match_addr: OUT std_logic_VECTOR(255 downto 0); 
single_match: OUT std_logic); 

END team; 

ARCHITECTURE tcam_a OF team IS 
-- synthesis translate_off 
component wrapped_tcam 

port ( 
clk: IN std_logic; 
data_mask: IN std_logic_VECTOR(31 downto 0); 
din: IN std_logic_VECTOR(31 downto 0); 
we: IN std_logic; 
wr_addr: IN std_logic_VECTOR(7 downto 0); 
busy: OUT std_logic; 
match: OUT std logic; 
match_addr: OUT std_logic_VECTOR(255 downto 0); 
single_match: OUT std_logic); 

end component; 

-- Configuration specification 
for all: wrapped_tcam use entity XilinxCoreLib.cam_v5_I (behavioral) 

generic map( 
c_has_en => 0, 
c_wr_addr_width => 8, 
c_din_width => 32, 
c_has_wr_addr => 1, 
c_data_mask_width => 32, 
c_cmp_din_width => 32, 



c_has_read_warning => 0, 
c_width => 32, 
c mem_init => 0, 
c__has_cmp_data_mask => 0, 
c_has_we => 1, 
c_enable_rlocs => 0, 
c_addr_type => 1, 
c_ternary_mode => 1, 
c match_resolution_type => 0, 
c__has_single_match => 1, 
cTdepth => 256, 
c_has_multiple_match => 0, 
c_read_cycles => 1, 
c_mem_type => 0, 
c_has_data_mask => 1, 
c_reg_outputs => 0, 
c_has_cmp_din => 0, 
c_mein_init_file => "o.mif', 
c_emp_data_mask_width => 32, 
c match addr width => 256); 

-- synthesis translate_on 
BEGIN 
-- synthesis translate_off 
UO : wrapped_team 

port map 
elk => elk, 
data mask => data mask, 
din => din, 
we=>we, 
wr_addr => wr_addr, 
busy => busy, 
match => match, 
match_addr => match_addr, 
single_match => single_match); 

-- synthesis translate_on 

END team a; 

//Vendor: Xilinx 
1/Version: 9.2i 
//Filename: eth.v 
Timestamp : 04/28/2008 10:50:07 

// 
//Design Name: eth 
//Device: xc4vfxl2-10ff668 
// 
// Module eth 
// Generated by Xilinx Architecture Wizard 

module eth_clk(CLKIN_IN, 
RST_IN, 
CLK1N_IBUFG_OUT, 
CLKO_OUT, 
LOCKED_OUT); 



input CLKIN_IN; 
input RST_IN; 
output CLKIN_IBUFG_OUT; 
output CLKO_OUT; 
output LOCKED_OUT; 

wire CLKFB_IN; 
wire CLKIN_IBUFG; 
wire CLKO_BUF; 
wire [6:0] GND1; 
wire [ 15:0] GND2; 
wire GND3; 

assign GND1 = 7'b0000000; 
assign GND2 = 16'b0000000000000000; 
assign GND3 = 0; 
assign CLKIN_IBUFG_OUT = CLKIN_IBUFG; 
assign CLKO_OUT = CLKFB_IN; 
IBUFG CLKIN_IBUFG_INST (.I(CLKIN_m), 

.O(CLKIN IBUFG)); 
BUFG CLKO_BUFG_INST (.I(CLKO_BUF), 

.O(CLKFB_IN)); 
DCM_ADV DCM_ADV_INST (.CLKFB(CLKFB_IN), 

.CLKIN(CLKIN_IBUFG), 

.DADDR(GND 1 [6:0]), 

.DCLK(GND3), 

.DEN(GND3), 

.DI(GND2[ 15:0]), 

.DWE(GND3), 

.PSCLK(GND3), 

.PSEN(GND3), 

.PSINCDEC(GND3), 

.RST(RST_1N), 

.CLKDVQ, 

.CLKFXO, 

.CLKFX1800, 

.CLKO(CLKO_BUF), 
CLK2X0, 

.CLK2X180(), 

.CLK900, 

.CLK180O, 

.CLK2700, 

.DO(), 

.DRDYO, 

.LOCKED(LOCKED_OUT), 

.PSDONEQ); 
defparam DCM_ADV_INST.CLK_FEEDBACK= 
defparam DCM_ADV_INST.CLKDV_DIVIDE = 2.0; 
defparam DCM_ADV_INST.CLKFX_DIVIDE = 1; 
defparam DCM_AD V_INST. CLKFX_MULTIPLY = 4; 
defparam DCM ADV_INST.CLKIN_DIVIDE_BY 2 = "FALSE"; 
defparam DCM__ADV_INST.CLKIN_PERIOD = 6.66667; 
defparam DCM_ADV_INST. CLKOUT_PHASE_SHIFT = "NONE"; 
defparam DCM_ADV_INST.DCM_AUTOCALIBRATION = "TRUE"; 
defparam DCM_ADV_INST.DCM_PERFORMANCE_MODE = "MAX_SPEED"; 
defparam DCM_ADV_INST.DESKEW_ADJUST = "SYSTEM_SYNCHRONOUS"; 
defparam DCM_ADV_INST.DFS_  FREQUENCY _MODE _ "LOW"; 
defparam DCM_ADV_INST.DLL_FREQUENCY_MODE = "LOW"; 
defparam DCM_ADV_INST.DUTY_ CYCLE _CORRECTION = "TRUE"; 
defparam DCM_ADV INST.FACTORY_JF = 16'hFOFO; 



defparam DCM_ADV_INST.PHASE_SHIFT = 0; 
defparam DCM_ADV_INST.STARTUP_WAIT = "FALSE"; 

endmodule 

module eth_stat ( 
host_stats_lsw_rdy, host —mum sel, rx_small, host_reset, refreset, rx_frag, host_req, rx_byte, 

host—stats_msw_rdy, tx_byte, rx_clk, rx_reset, 
tx_reset, ref clk, tx_clk, host clk, host addr, host rd data, increment vector 

output host_stats_lsw_rdy; 
input host_miim_sel; 
input rx_small; 
input host_reset; 
input ref reset; 
input rx_frag; 
input host_req; 
input rx_byte; 
output host_stats_msw_rdy; 
input tx_byte; 
input rx_clk; 
input rx_reset; 
input tx_reset; 
input ref elk; 
input tx_clk; 
input host_elk; 
input [9: 0] host_addr; 
output [31 : 0] host_rd_data; 
input [4 : 19] increment vector; 

/! The synopsys directives "translate_off/translate_on" specified 
If below are supported by XST, FPGA Compiler II, Mentor Graphics and Synplicity 
If synthesis tools. Ensure they are correct for your synthesis tool(s) 

// synopsys translate_off 

wire NlwRenamedSig_OI_host_stats_isw_rdy; 
wire \BU2/N3 ; 
wire \BU2/N2 ; 
wire \BU2/U0/ethernet_statistics_32bit/N7 ; 
wire \BU2/U0/N987 ; 
wire \BU2/U01N986 ; 
wire \BU2/UO/N978 ; 
wire \BU2/UO/N975 ; 
wire \BU21U0/N974 ; 
wire \BU2/U0/ethernet_ statistics _ 32bit/_mux0058_map135 ; 
wire \BU2/U0/N973 ; 
wire \BU2/UO/N972 ; 
wire \BU2/U0/N971 ; 
wire \BU2IUO/N970 ; 
wire \BU2fUO/ethernet statistics_32bit/_mux0059_map240 ; 
wire \BU2/UO/N969 ; - 
wire \BU2/UOIN968 ; 
wire \BU2/U0/N967 ; 
wire \BU2/U01N966 ; 
wire \BU2/UO/ethernet_ statistics _ 32bit/count_read_0_1_2 ; 
wire \BU2/U0/N965 ; 
wire \BU2/UO/ethernet_ statistics_ 32bit/_or0003_map313 
wire \BU21U0/N991 ; 
wire \BU2/UO/N964 ; 

IV 



wire \BU2/U0/N963 ; 
wire \BU2/U0/N962 ; 
wire \BU2/U0/ethernet_statistics_32bit/_mux0059 ; 
wire \BU2/U0/N96 1; 
wire \BU2/U0/N960 ; 
wire \BU2/U0/ethernet_statistics_32bit/_mux0055 ; 
wire \BU2/U0/N959 ; 
wire \BU2/UO/ethernet_statistics_32bit/_mux0058 ; 
wire \BU2/UO/N958 ; 
wire \BU2/UO/ethernet statistics_32bit/_mux0056 ; 
wire \BU2/U0/N957 ; 
wire \BU2/U0/N956 ; 
wire \BU2/U0/N955 ; 
wire \BU2/U0/N954 ; 
wire \BU2/U0/N953 ; 
wire \BU2/U0/N952 ; 
wire \BU2/UO/N951 ; 
wire \BU2/U0/N950 ; 
wire \BU2/U0/ethernet_ statistics_32bit/_mux0060 
wire \BU2/U0/N949 ; 
wire \BU2/U0/ ethernet _ statistics_ 32bit/count_read_01 ; 
wire \BU2/UO/N947 ; 
wire \BU2/U0/N946 ; 
wire \BU2/UO/ethernet_statistics_32bit/_mux0058_map155 
wire \BU2/U0/N941 ; 
wire \BU2/U0/ethernet_statistics_ 32bit/_mux0055_map199 ; 
wire \BU2/U0/ethernet statistics_32bit/_mux0059 map227 ; 
wire \BU2/UO/ethernet__statistics_32bit/_mux0059__map225 ; 
wire \BU2/UO/N936 ; 
wire \BU2/U0/ethernet_statistics_32bit/_mux0061<0>_map114 ; 
wire \BU2/UO/ethernet_statistics 32bit/_mux0061<1>_map101 ; 
wire \BU2/UO/ethernet_statistics__32bit1_mux0061<2>_map88 
wire \BU2/UO/ethernet_statistics_32bit/_mux0061<3>_map75 ; 
wire \BU2/U0/ethernet_statistics_32bit/_mux0061<5>_map62 ; 
wire \BU2/U0/ethernet_statistics_ 32bit/_mux0061<4>_map49 ; 
wire \BU2/U0/ethernet_statistics 32bit/_mux0061<6>_map36 ; 
wire \BU2/UO/ethernet_ statistics _32bit/_or0007_  map 179 ; 
wire \BU2/UO/ethernet_ statistics_ 32bit/_or0007_map178 
wire \BU2/U0/ethernet_statistics_32bit/_or0007_map172 
wire \BU2/U0/ethernet_statistics_32bit/_or0007_map171 ; 
wire \BU2/U0/ethernet_statistics_32bit/_mux0055 map215 
wire \BU2/U0/ethernet_statistics_32bit/_mux0062 
wire \BU2/U0/N929 ; 
wire \BU2/U0/N927 ; 
wire \BU2/UO/ethernet_statistics_32bit/_or0007_map181 ; 
wire \BU2/UO/N926 ; 
wire \BU2/UO/N925 ; 
wire \BU2/UO/ethernet_statistics_32bit/_mux0061<6>_map41 ; 
wire \BU2/U0/ethernet_ statistics _ 32bitl_mux0061<5>_map67 
wire \BU2/UO/ethernet_ statistics _ 32bit!_mux0061<4>_map54 ; 
wire \BU2/U0/ethernet statistics 32bit/_mux0061<3>_map80 
wire \BU2/U0/ethernet_statistics__32bit/_mux0061<2>_map93 
wire \BU2/U0/ethernet_ statistics _ 32bit/_mux0061<1>_map106 ; 
wire \BU2/U0/ethernet_ statistics _ 32bit/_mux0061<0>_map119 ; 
wire \BU2/U0/ethernet_statistics_32bit/_or0003 ; 
wire \BU2/U0/ethernet_statistics_32bit/_or0003_map309 ; 
wire \BU2/UO/N992 ; 
wire \BU2/UO/ethernet_statistics_32bit/_mux0056_map292 ; 
wire \BU2/UO/ethernet_ statistics _ 32bit/_mux0055_map196 ; 
wire \BU2/U0/ethemet statistics_ 32bitJ_or0007_map 166 ; 

V 



wire \BU2/UO/ethernet_ statistics _32bit/_or0007_  map 162 
wire \BU2/UO/ethernet_statistics 32bit/_or0007_map159 ; 
wire \BU2/U0/ethernet_statistics-32bit1_mux0058_map 141 
wire \BU2/U0/ethernet_ statistics —_32bit/ mux0058_map124 
wire \BU2/UO/ethernet statistics_32bit/—xor0029 ; 
wire \BU2/U0/N990 
wire \BU2/U0/ethernet_ statistics 32bit/_mux0061<0>_map108 ; 
wire \BU2/U0/ethernet_statistics__32bit/ mux0061<1>_map95 ; 
wire \BU2/UO/ethernet_statistics_32bit1_mux0061<2>_map82 ; 
wire \BU2/UO/ethernet statistics_32bit/ muxO061<3>_map69 ; 
wire \BU2/U0/ethernet__statistics 32bit/mux0061<5>_map56 ; 
wire \BU2/U0/ethemet_statistics-32bit/ mux0061 <4>_map43 ; 
wire \BU2/U0/ethernet_statistics__32bit/__mux0061 <6>_map30 ; 
wire \BU2/U0/ethernet statistics_32bit/round_robin_sequence_3_1_3 
wire \BU2/UO/ethernet__statistics_32bit/_mux0057_map15 ; 
wire \BU2/U0/ethernet statistics32bit/N26 ; 
wire \BU2/U0/ethernet__statistics_32bit/_or0013 ; 
wire \BU2/UO/ethernetstatistics_32bit/_mux0057_map10 ; 
wire \BU2/UO/N989 ; 
wire \BU2/[JO/ethernet_statistics _32biti or0012 ; 
wire \BU2/U0/ethernet_statistics_32bit/__mux0057_map8 ; 
wire \BU2/UO/N988 ; 
wire \BU2/U0/ethernet_statistics_32bit/round_robin_sequence_3_2 
wire \BU2/U0/ethernet_ statistics _ 32bit/count_read_0_3_5 
wire \BU2/UO/N91 ; 
wire \BU2/U0/N89 ; 
wire \BU2/UO/N87; 
wire \BU2/U0/N85 ; 

assign 
host_stats_lsw_rdy = NlwRenamedSig_OI_ host _stats_lsw_rdy, 
host_addr_142[9] = host_addr[9], 
host_addr_142[8] = host_addr[8], 
host_addr_142[7] = host_addr[7], 
host addr 142[6] = host_addr[6], 
host__addr_̂142[5] = host addr[5], 
host addr_142[4] = host_̂addr[4], 
host__addr_142[3] = host_addr[3], 
host_addr_1 42 [2] = host_addr[2], 
host_addr-142[l] = host addr[ 1], 
host addr_142[0] = host_addr[0], 
hosttrd_data[31] = host_ rd_ data 143[31], 
host_rd_data[30] = host_ rd data 143[30], 
hostrddata[29] = host rd data 143[29], 
host_rd_data[28] = host rd data 143 [28], 
host_rd_data[27] = host_rd_ data _143[27], 
hostrddata[26] = host rd data 143[26], 
host_rd_data[25] = host_ rd data 143[25], 
host_rddata[24] = host_rd data 143[24], 
host_rd_data[23J = host rd data 143[23], 
host_rd_data[22] = host_rd_data_ 143 [22], 
host_rd data[21 ] = host_ rd_ data 143 [211, 
hostrddata[20] = host rd data 143 [20], 
host_rd_data[19] = host_rd_data_l43[19], 
host_rd_data[18J = host_rd_ data _143[18], 
hostrddata[17] = host rd_ data 143 [17], 
host_rd_data[ 16] = host rd data 143 [ 16], 
host_rd_data[15] = host_rd_data_143[ 15], 
host rd_ data[ 14] = host_rd_data_143 [ 14], 
host rd data[13] = host rd data 143[13], 

VI 



host_rd_data[ 12] = host_rd data_ 143 [ 12], 
host_rd_data[ 11 ] = host_rd=_data_ 143 [11],  
host_rd_data[10] = host_ rd data 143[10], 
host_rd_data[9] = host_rd_data_143 [9], 
host_rd_data[8] = host_rd_data_143[8], 
host rd_data[7] = host_rd_data_143 [7], 
host_rd_data[6] = host_rd_data_143[6], 
host_rd_data[5] = host_rd_data_143[5], 
host_rd_data[4] = host_rd_data_143 [4], 
host_rd_data[3 ] = host_rd_data_ 143 [3], 
host_rd_data[2] = host_rd_data_143[2], 
host_rddata[ 1 ] = host_ rd_ data_ 143 [ 1 ], 
host rddata[0] = host_rd_data_143 [0], 
increment_vector_ 144 [4] = increment_vector[4], 
increment_vector_144[5] = increment_vector[5], 
increment _vector 144[6] = increment_vector[6], 
increment_vector__144 [7] = increment_vector[7], 
increment_vector_144[8] = increment_vector[8], 
increment_vector 144[9] = increment_vector[9], 
increment_vector__144[ 10] = increment_vector[ 10], 
increment_vector_ 144 [11 ] = increment_ vector[ ii], 
increment_vector_144[ 12] = increment_ vector[ 12], 
increment vector 144[ 13] = increment_ vector[ 13], 
increment vector_ 144 [ 14] = increment_ vector[ 14], 
increment_vector144[15] increment_vector[15], 
increment vector__ 144 [ 16] = increment_ vector[ 16], 
increment_ vector 144[17] = increment_ vector[ 17], 
increment_ vector__144[18] = increment_vector[18], 
increment_vector_144[19] = increment_vector[19]; 

VCC VCC_0 
.P(NLW_VCC_P_UNCONNECTED) 

); 
GND GND_ 1 

.G(NLW_GND_G_UNCONNECTED) 
); 
VCC \BU2/XST_VCC 

.P(\BU2/N3 ) 
); 
GND \BU2/XST_GND 

.G(\BU2/N2 ) 

FDR \BU2/UO/ethernet_statistics_32bit/host_rd_data_6 
.D(\BU2/U0/ethernet_ statistics_32bit/_mux0054 [6]), 
.R(\BU2/U0/ethernet_statistics_32bit/_or0005 ), 
.C(host_clk), 
.Q(host_rd_ data _143 [6]) 

); 
FDR \BU2/U0/ethernet statistics_32bit/host_rd_data_5 
.D(\BU2/UO/ethernet_statistics_32bitl mux0054 [5]), 
.R(\BU2/U0/ethernet_statistics_32bit/_̂or0005 ), 
.C(host_clk), 
.Q(host_rd_data 143[5]) 

); 
FDR \BU2/U0/ethernet_ statistics_ 32bit/host_rd_data_4 
.D(\BU2/UO/ethernet_statistics_32bit/_mux0054 [4]), 
.R(\BU2/UO/ethernet_ statistics 32bit/_or0005 ), 
.C(host_clk), 
.Q(host_rd_data 143[4]) 

VII 



FDR \BU2/U0/ethernet_statistics_32bit/host_rd_data_3 
.D(\BU2/U0/ethernet_statistics_32bit/_mux0054 [3]), 
.R(\BU2/UO/ethernet statistics_32bit/_or0005 ), 
.C(host_clk), 
.Q(host_rd_data_143 [3]) 

); 
FDR \BU2/UO/ethernet_statistics_32bit/host_rd_data_2 
.D(\BU2/U0/ethernet_statistics_32bit/_mux0054 [2]), 
.R(\BU2/UO/ethernet_statist4cs_32bit/_or0005 ), 
.C(host_clk), 
.Q(host_rd_data 143[2]) 

FDR \BU2/UO/ethemet_statistics_32bit/host_rd_data_1 
.D(\BU2/UO/ethernet_ statistics_32bit/_mux0054 [1]),  
.R(\BU2/UO/ethernet_statistics_32bit!_or0005 ), 
.C(host_clk), 
.Q(host_rd_data_143 [ 1 ]) 

); 
FDR \BU2/UO/ethernet_statistics_32bit/host_rd_data_0  

.D(\BU2/UO/ethernet_statistics_32bit/_mux0054 [0]), 

.R(\BU2/UO/ethernet_statistics_32bit/_or0005 ), 

.C(host_clk), 

. Q(host_rd_data_ 143 [0]) 
); 
FDR \BU2/U0/ethernet_ statistics_32bit/enb 

.D(\BU2/UO/ethernet_statistics_32bit/_or0004 ), 

.R(ref reset), 

.C(ref clk), 

.Q(\BU2/U0/ethernet statistics _32bit/enb_141 ) 
); 
VCC \BU2/UO/XST_VCC 
.P(\BU2/UO/N1 ) 

); 
GND \BU2/U0/XST_GND, 

.G(\BU2/UO/NO ) 

// synopsys translate_on 

endmodule 

// synopsys translate off 

'timescale 1 ps / 1 ps 

module glbl Q; 

parameter ROC_WIDTH = 100000; 
parameter TOC WIDTH = 0; 

wire GSR; 
wire GTS; 
wire PRLD; 

reg GSR_int; 
reg GTS_int; 
reg PRLD_int; 

//-------- JTAG Globals --------------
wire JTAG TDO GLBL; 



wire JTAG_TCK_GLBL; 
wire JTAG_TDI_GLBL; 
wire JTAG_TMS_GLBL; 
wire JTAG TRST GLBL; 

reg JTAG_CAPTURE_GLBL; 
reg JTAG_RESET_GLBL; 
reg JTAG_SHIFT_GLBL; 
reg JTAG_UPDATE_GLBL; 

reg JTAG_SEL1 GLBL = 0; 
reg JTAG_SEL2~_GLBL =0;  
reg JTAG_SEL3_GLBL = 0; 
reg JTAG_SEL4_GLBL = 0; 

reg JTAG_USER_TDO1_GLBL = 1'bz; 
reg JTAG USER TDO2_G'LBL = l'bz; 
reg JTAG_USER TD03—OLBL = 1'bz; 
reg JTAG_USER TDO4_GLBL = l'bz; 

assign (weak1, weakO) GSR = GSR int; 
assign (weak1, weakO) GTS = GTS_int; 
assign (weak1, weakO) PRLD = PRLD_int; 

initial begin 
GSR_int = 1'bI; 
PRLD_int = 1'b 1; 
#(ROC_WIDTH) 
GSR_int = 1'b0; 
PRLD_int = 1'bO; 

end 

initial begin 
GTS_int=1'b1; 
#(TOC_WIDTH) 
GTS int = 1'b0; 

end 

endmodule 

// synopsys translate_on 

KI 
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