
DESIGN AND IMPLEMENTATION OF
INTRUSION DETECTION SYSTEM WITH FPGA

A DISSERTATION
Submitted in partial fulfillment of the

requirements for the award of the degree

of

MASTER OF TECHNOLOGY
in

COMPUTER SCIENCE AND ENGINEERING

By

ARUN KUMAR
(*$Ab $11

X
0

DEPARTMENT OF ELECTRONICS AND COMPUTER ENGINEERING
INDIAN INSTITUTE OF TECHNOLOGY ROORKEE

ROORKEE-247 667 (INDIA)

JUNE, 2008

CANDIDATE'S DECLARATION

I hereby declare that the work, which is being presented in the dissertation entitled

"DESIGN AND IMPLEMENTATION OF INTRUSION DETECTION SYSTEM

WITH FPGA" towards the partial fulfillment of the requirement for the award of the

degree of Master of Technology in Computer Science and Engineering submitted in

the Department of Electronics and Computer Engineering, Indian Institute of Technology

Roorkee, Roorkee (India) is an authentic record of my own work carried out during the

period from June 2007 to June 2008, under the guidance of Dr. R. C. Joshi, Professor,

Department of Electronics and Computer Engineering, IIT Roorkee.

I have not submitted the matter embodied in this dissertation for the award of any other

degree or diploma.

Date: 2 5 J O&

Place: Roorkee 	 (ARUN KUMAR)

CERTIFICATE

This is to certify that the above statement made by the candidate is correct to the best of

my knowledge and belief.

Date:

Place: Roorkee

Professor

Department of Electronics and Computer Engineering

IIT Roorkee-247 667

1

ACKNOWLEDGEMENTS

I would like to take this opportunity to extend my heartfelt gratitude to my guide and

mentor Dr. R. C. Joshi, Professor, Department of Electronics and Computer

Engineering, Indian Institute of Technology Roorkee, for his trust in my work, his able

guidance, regular source of encouragement and assistance throughout this dissertation

work. I would state that the dissertation work would not have been in the present shape

without his inspirational support and I consider myself fortunate to have done my

dissertation under him.

I also extend my sincere thanks to Mr Rajeev Goswami for helping me and extending

his full support while working in Information Security Lab.

ARUN KUMAR

ii

ABSTRACT

In this work design and implementation of Intrusion Detection System (IDS) with

Field Programmable Gate Array (FPGA) is presented. Today's network security systems

require high-performance as well as good functionality with the growing speed of the

internet. But most'of the software-based Network Intrusion Detection Systems (e.g. Snort)

show inefficiency and even fail to perform for the faster internet. We have presented a fully

hardware based system to overcome these shortcomings of software-based solutions. By

implementing complete intrusion detection system on FPGA with embedded processor, we

can solve the problem of performance and it has capability of intrusion detection in

multigigabit network environment.

iii

CONTENTS

Candidate's Declaration and Certificate

Acknowledgements

Abstract

Table of Contents

CHAPTER 1 	 Introduction and Statement of the Problem

1.1. Introduction

1.2 Motivation

1.3 Statement of the Problem

1.4 Organization of the Report

CHAPTER 2 Background and Literature Review

2.1 Introduction

2.2 Snort

2.3 FPGAs and Reconfigurable Computing

.2.4 Networking Protocols

2.5 Firewalls

2.6 Policy Engines

2.7 Research Gaps

CHAPTER 3
	

Designing of IDS
	

17

3.1 Proposed Architecture 	 17

3.2 FPGA Kit used
	

21

I

w

1

1

4

4

4

5

5

5

8

12

15

15

15

IV

CHAPTER 4 	 Implementation of IDS 	 23

4.1 ISE 8.2i 	 23

4.2 EDK and XPS 	 27

4.3 ModelSim 	 37

CHAPTER 5 	 Results 	 38

5.1 Lab Setup 	 38

5.2 Resource Utilization 	 40

5.3 Traffic Analysis 	 40

CHAPTER 6 	 Conclusions and Suggestions for Future Work 	42

REFERENCES 	 43

PUBLICATIONS 	 45

APPENDIX 	 Configured Xilinx IP Cores Source Code 	 I

v

Introduction and Statement of the Problem 	 CHAPTER 1

1..1. Introduction
•hitrusion.detection systems (IDS) are software or hardware systems that automate the

process of monitoring the events occurring in a computer system or network, analyzing them

for signs of security problems. They, in the general sense, identify anomalous, inappropriate,

or incorrect access to a system. As network attacks have increased in number and severity

over the past few years, intrusion detection systems have become a necessary addition to the

security infrastructure of most organizations [1, 2].

Types of Intrusions
Intrusions can take several forms. They can occur as abnormal, unauthorized, or unwanted

system usage. Examples related to networking follow.

• Unauthorized Access. Unauthorized access occurs when an individual gains

access to a system they have no right to use. For example, a user may view web

pages containing proprietary information that they have not been authorized to

view.

• Authorized Access. An intrusion can occur even if the credentials of the

individual - accessing the system are correct. For example, an intruder can

fraudulently obtain account information such as login names and passwords.

The system believes the intruder is authorized. This is the most difficult type of

intrusion to detect since the detector must consider what is being accessed and

what operations are being performed.

• Spam. Spam is an unwanted electronic message from individuals or companies

who send the message to people that may not desire to receive the message.

These messages generally try to sell items, such as medication, loan

applications, or pornography. Phishing is a heinous form of spam where a

message supposedly from an authoritative institution, such as a bank, e-

commerce site, or government agency, directs the recipient to reply to the

message or go to a web page and enter sensitive information. These messages

can be quite persuasive, claiming accounts will be deactivated unless

information'is verified.

• Virus. A virus is a piece of malware hidden in files or emails. Once activated by

the host, the virus replicates itself and spreads to additional hosts. Viruses

1

generally spread via email, requesting that the recipient view an attachment. A

clever virus writer writes code to search an infected host's address book to find

additional recipients. The virus assumes the host identity when sending new

email messages, increasing the likelihood that the target becomes infected.

• Worm. A worm exploits vulnerability in a system to execute code without the

user actively starting it. The , most common form of worm exploits buffer

overflows, whereby the processor stack is subverted. Malicious code extends

beyond the allocated buffer and is executed. Worms take advantage of software

flaws that may be difficult to find but are quick to exploit.

• Denial of. Service. Denial of Service (DoS) prevents legitimate users from

accessing a system. DoS is accomplished by flooding a system with data that

takes time to process. This inundation of events grinds services provided by the

system to a standstill as each request is processed sequentially. Web servers and

email servers are frequent targets of such attacks, and the effects of a DoS attack

can be very detrimental to those providing the service. Ecommerce is especially

sensitive to such attacks, since any loss of service can mean the loss of a

customer's business.

Methods of the Detection

There are three basic ways to detect an intrusion: anomaly detection, signature detection, and

learning. The detector should signal an alarm when a breach of security is attempted.

• Anomaly Detection. In anomaly detection, the detector recognizes deviations

from standard behaviour. Abnormal behaviour is considered suspect. For

example, a flood of traffic to a particular TCP port could signal the beginning

of a worm/virus outbreak or a DoS attack. However, anomaly detection can

result in false alarms. The event in question may be a previously unseen event

that is perfectly legitimate, such as the distribution of a software update. The use

of thresholds and statistical analysis is used heavily to prevent false alarms [27,

28].

• Signature Detection. The second method of detection is to search packets or

flows for known signatures. This requires that the detector know what to search

for in advance. This could involve searching packet headers for suspect port

2

numbers or IP addresses, or it could trigger searching payload for worm or virus
signatures.

• Learning. Finally, an effective detector should be able to learn about and react

to new intrusion attempts. Learning requires training time for the system to

determine what constitutes normal behaviour and who are legitimate users.

Once trained, the system reacts to abnormal behaviour and makes decisions on

what actions to take. One technique to learn about new signatures is to use

thresholds to determine if a signature appears to be occurring too frequently.

Responses
Once an intrusion is detected, a response should be taken. The response could be to write to a

log file or to email an administrator. The type of response depends on the way the system is

configured. An intrusion detection system (IDS) can be configured as either passive or active.

If the system is configured to be passive, as intrusion detection systems are, countermeasures

cannot be performed to stop the intrusion because the system is only being monitored.

Passive systems just inform an authority of security breaches. It is left to that authority to

determine what to do about the problem. Intrusion prevention systems can take

countermeasures. In-line, active systems stop the flood of worms, which otherwise infect all

vulnerable hosts in a matter of minutes. Countermeasures may include dropping an offending

packet, terminating a user's connection, or blacklisting an IP or email address.

Effects of False Alarms

False alarms in intrusion detection systems are a serious problem. A false alarm occurs when

an event or sequence of events causes an alarm to trigger even though the event was

legitimate. For example, a false alarm may be raised at a web server if a certain web page

becomes popular. A flash crowd, for example, occurs when there is a sudden surge of interest

in a particular page. A term called "slashdotted" has been coined to describe the effect of

large scale access to a web page when the URL is posted in an article on the

www.slashdot.org website. An intrusion detection system (IDS) may determine this is a

distributed DoS attack when, in fact, the web server cannot meet the demand of all the

legitimate users who want to access the content. When an alarm is raised, the reason for the

alarm should be genuine. A system that generates many false alarms results in real alarms

being overlooked. Additionally, when events occur too often, the logging and alarming

mechanisms become overloaded.

3

1.2. Motivation

Intrusions are unlikely to stop anytime soon. As more people, institutions,

governments, and companies are networked, together, the threat of intrusions increases. It is

exceedingly difficult to build and maintain systems that are totally foolproof and have no

security holes. Due to time-to-market constraints and because it takes too long to test all

possible permutations of events that can produce an intrusion, it is unlikely that systems will

ever be built that are totally secure. Network systems that can detect intrusions and prevent

future intrusions are critical for security.

The main motivating factor for undertaking dissertation work was that current

Intrusion Detection Systems are almost entirely implemented using software that runs on

processors that cannot scale to process data on fast links. Hardware implementations allow

for higher throughput, increase rule capacity, and take advantage of the parallelism that is

inherent in rule processing.

1.3. Statement of the problem
To design and implement Intrusion Detection System with FPGA. This will involve:

• designing Gigabit Ethernet interface,

• an IP packet extractor,

• ruleset matching and updating framework and

• logging system for defaulting packets.

1.4. Organisation of the Report

This report describes a solution to the problem presented in Section 1.2.

Chapter 2 provides a background on Snort the de facto standard for Intrusion Detection

Systems, FPGAs and Reconfigurable Computing available on present day FPGA kits and

Networking protocols. Existing work in the same field is reviewed.

In Chapter 3, design of Intrusion Detection System is presented. Proposed architecture is

discussed and details components required for implementation are given.

Chapter 4 discusses the implementation details and details of the software tools used -

Integrated Software Environment (ISE) 8.2i and Embedded Development Kit(EDK) 8.2i for

the implementation of the system are given.

Chapter 5 presents the simulation results, discusses the Snort rules, measures the memory

requirement, and analyzes the performance of the IDS.

Chapter 6 summarizes the findings and give suggestions for future work.

r

Background and Literature Review 	 CHAPTER 2

2.1. Introduction

High performance intrusion detection and prevention systems are needed by network

administrators in order to protect Internet systems from attack [3]. Researchers have been

working to implement components of intrusion detection and prevention systems for the

highly popular Snort system in reconfigurable hardware. Several attempts have been made to

improve the system performance by migrating functionality from software to hardware.

Though software is relatively slow, it is well suited to perform lightweight processing on low

volumes of network data. On the other hand, fast hardware is best suited for computationally

intensive processing on network traffic and can sustain much higher network throughput [4].

Since Snort has become the de facto standard for NIDS, a number of groups have worked to

measure the performance of the system. As the number of header rules and signatures to

match increases, the number of packets dropped by the sensor also increases. It is

unacceptable for an IDS to not examine some packets. Schaelicke et al found that Snort

inadequately acts as a sensor on higher speed links [5]. Their study showed that Snort alone is

not to blame, but the platform running the software is partially responsible. Architectural

decisions and the memory subsystem are critical factors in the performance of the NIDS.

They found that even on a dual Pentium-4 Xeon running at 2.4 GHz with Hyper threading

technology; the system could only support 543 rules in the best case such that no packets

were ever dropped. Furthermore, the authors found that only two of their test systems could

support saturated 100 Mbps links. This is troublesome because Gigabit links are common

today.

2.2. Snort
In Snort (a popular open source NIDS) -more than 2,600 rules are there and more than

80% of the rules contain signatures [3]. More than 80% of the CPU time for Snort is

consumed by the string matching task alone. The pattern matching functions of the NIDS can

be significantly accelerated using semi-custom hardware and, in particular, content

addressable memory (CAM.) The CAM is used in a variety of applications and is arguably

best known as the decision engine for the IP router. The CAM can provide an extremely fast

pattern matching function on the order of 12 ns or less depending upon the size of the CAM

[17].

5

In "Exploiting Reconfigurable Hardware for Network Security" [6] by`Shaomeng Li, Jim

Torresen, Oddvar Soraasen of Department of Informatics, University of Oslo, Norway- they

have demonstrated that the Snort IDS performance can be improved using CAM for

implementing the detection engine of Snort. Firstly, they have not done any optimisation in

storing or comparing snort ruleset while using FPGA for the same. Secondly, only the

computationally intensive portion of the system is offloaded on the FPGA whereas complete

IDS can be designed as a separate hardware device.

2.2.1. Snort Rule Features

Table 2.1 is divided into header and payload options that are available to the intrusion rule

writer. The header options are split into ,sections that represent where they are found in a

packet, starting with the IP header, then the TCP header, and finally the ICMP header.

Table 2.1: The header and payload options that are available to Snort rule writers.

Header Options Payload options

Protocol Content
IP Addresses Perl compatible Regular expressions

Same IP Case Sensitivity
TTL Offset
ToS Depth

Identification Within
IP Options Raw Bytes

Fragment Bits Byte Jump
Fragment Offset Byte Tests

Data Size
Ports
Flags

Sequence Number
Acknowledgement

Flags
ICMP Type
ICMP Code

ICMP Identification
ICMP Sequence Number

2.2.1.1. Header Options

The header options shown in Table 2.1 correspond to distinct fields in packet headers. The IP

addresses and ports are unique in that they allow ranges and masks. The other fields are exact

match.

2.2.1.2. Payload Options

Payload options are concerned with the presence and location of strings to find expressed as

either static signatures or regular expressions. The depth construct allows the search of a

specified string up to a certain location in the payload. The offset construct specifies where to

begin looking for a given string. As with the header options, payload options can be mixed

together, and multiple signatures can be specified in a rule.

2.2.2. Portability Difficulties

A brute-force translation of Snort from a software implementation to a hardware

implementation is inefficient. The software implementation is inherently sequential, while

hardware is efficient at implementing parallelism. The features available are difficult to port

to hardware. For example, performing string matching within certain bounds of the payload is

a complicated task for hardware to perform due to the very specific requirements that can be

placed on different strings.

There are three challenges to performing rule processing in hardware:

• Scalability to process and store increasingly complex rules

• Correlation between header classification and payload content

• Adaptability to changing environment

One of the most challenging tasks in a rule processor is correlation of criteria. Every packet

can contain matches for multiple header classifications and payload signatures. The system

must correlate these matches to determine rule matches. While a single rule is trivial to

process, consider that there are 2,464 rules found in Snort. In software, the correlation is

performed using linked lists in memory. Implementing the same lists in hardware is

detrimental to performance due to the numerous memory look-ups required.

In order to protect against evolving threats, the system must be adaptable. Rules

change over time as new threats emerge. The system must adapt to scan for new forms of

malware [7]. Reconfigurable hardware enables the system to adapt to new threats quickly and

at low expense.

7

2.3. FPGAs and Reconfigurable Computing

2.3.1. Introduction to FPGA's

A field programmable gate array (FPGA) is a general-purpose integrated circuit that is

programmed by the designer rather than the device manufacturer. Unlike an application-

specific integrated circuit (ASIC), which can perform a similar function in an electronic

system, an FPGA can be reprogrammed by downloading a configuration program called a

bitstream, even after it has been deployed into a system. Much like the object code for a

microprocessor, a bitstream is the product of compilation tools that translate the high level

abstractions produced by a designer into something equivalent but low level and executable.

Over the last three decades, FPGA's have grown from simple logic components, through

moderate prototyping platforms and more recently, as complete System on a chip (SoC)

components. One of the greatest advantages with FPGA's is that they can be used as custom

hardware avoiding the initial costs, fabrication costs and fabrication time.

RAMIE 	EORGY
ti

MUXFitci
J

I
SRL1~'

N LUA 1 	OY 	Register]
G 	 Latch

R?iMI

'YUFT ti

M UXFS

H
	Retart

Latch

Arithmetic Logic

Fig 2.1. Virtex Family FPGA Logic slice

A simple FPGA fabric consists of an array of configurable logic blocks (CLBs)

attached by a programmable interconnect. Digital circuits are mapped to the CLBs which

consist of logic slices which consists of look-up tables (LUTs) and flip-flops (FFs). Each

logic slice as shown in Fig 2.1 contains two 4-input lookup tables (LUTs), two configurable

D-flip flops, multiplexers, dedicated carry logic, and gates used for creating slice based

multipliers. Each LUT can implement an arbitrary 4-input Boolean function. Four inputs is a

good size for a look-up table as suggested by various studies, trading utility (complexity of a

block) against utilization (what fraction ends up in use) [8, 9]. Coupled with dedicated logic

for implementing fast carry circuits, the LUTs can also be used to build fast adder/subtracters

and multipliers of essentially any word size. In addition to implementing Boolean functions,

each LUT can also be configured as a 16x1 bit RAM or as a shift register. In addition to logic

slices, current generation FPGAs include additional diffused hardware resources beneficial

for embedded systems. For example the Xilinx XC4FX 140 which is a product of the latest 90

nm CMOS technology features various dedicated digital signal processing 18-bits multipliers

and accumulators which are called as DSP slices, dual port BLOCK RAM's which can be

used for storing few kilobytes of data, Digital Clock Managers, 2 Power-PC RISC

Processors, 10/100/1000 Ethernet MAC Blocks, and Rocket IO Serial Transceivers which

can be used to provide high-speed connections for communication between FPGA's and

inter-module communications. Moreover with the advance of Moore's Law, FPGA's are also

increasing in total capacity and speed which gives the users more number of computational

units.

2.3.2. Programming an FPGA

In current practice, hardware descriptive languages (HDL) and schematics are widely used to

implement applications on the FPGAs. Fig 2.2 is a pictorial representation of the design flow

that usually occurs with FPGA's.

Fig 2.2. FPGA Design Flow

0

Several HDL languages like VHDL (Very High Speed Integrated Circuit Hardware

Description Language), Verilog, JHDL, SystemC, Streams - C, HandelC etc exist where in

the application can be specified and this stage is usually called the Design Entry stage. After

this stage, the design is verified for it's functionality through a Simulation process. After the

Simulation process the design is converted to a form of representation called the netlist which

is the complete representation of the logic in terms of basic gates (AND,OR,XOR,NOT).

After this process the design is mapped which is mapping the above obtained netlist to the

actual Configurable Logic Blocks (CLB) and Input/Output Blocks (IOB) available in the

device that has been targeted. After the design has been mapped the next stage in the process

is called Place and Route where in the design that has been mapped is physically mapped to

the device's logic cells based on the timing and layout requirements. After these steps, a

timing simulation is performed and the design is modified so that the best possible timing is

obtained. After the re-design, the design is again sent through the process of converting the

design into a netlist, MAP and then Place and Route. After the final Place and Route the

design is converted to a configuration file called a BIT file which defines the behaviour of the

FPGA that has been targeted. The BIT file obtained can be downloaded into the FPGA and

verified for functionality.

2.3.3. Hybrid CPU/FPGA Architecture's
Hybrid CPU/FPGA architecture's are the first of its kind from Xilinx, Inc which are also

called as Platform FPGA's which are the latest FPGA's with processors embedded (Hard

Cores) in the FPGA fabric apart from the vast number of freely available logic gates. The

processors inside the Platform FPGA's are IBM PowerPC 405's which implement the

standard RISC style architecture and are based on the Core-Connect Architecture [10] from

IBM and are implemented as Hard Cores inside the FPGA. This level of integration allows

various Intellectual Property (IP) cores to be attached to the processor and the cores are also

easily accessible through the Core Connect Architecture that is provided as a Intellectual

property core (Soft Core). The Core Connect provides three bus standards as a means of

communication between the PowerPC and other cores. The three bus standards are Processor

Local Bus (PLB) , On-Chip Peripheral Bus (OPB) and the Device Control Register (DCR)

bus. The processor local bus (PLB) is used to connect processor cores to the system main

memory and other high speed devices. The OPB bus is dedicated for connecting slower on-

chip peripheral devices indirectly to the CPU. The OPB bus supports variable size data

transfers and as well as flexible arbitration protocols. Both the PLB and OPB buses have their

own bus arbiters, and the two buses are interconnected by at least one bridge (PLB2OPB

Bridge or OPB2PLB Bridge). Various intellectual Property (IP) Cores (Soft Cores) are also

available in order to interact with various standard peripherals in the FPGA such as the DDR

SDRAM (Double Data Rate - Synchronous Dynamic Random Access Memory) , EEPROM

Electrically Erasable Programmable Read-Only Memory), PCI (Peripheral Component

Interconnect), RS232 UART (Universal Asynchronous Receiver/ Transmitter). In addition to

the peripheral and utility Intellectual Property cores, an interface called the Intellectual

Property Interface (IPIF) is available in the form of a soft core which allows any Intellectual

Property (IP) Core to connect to either of the buses. The IPIF is decomposed into two layers

to allow easy migration of peripherals or IP cores to each of the different system buses in the

Core Connect Architecture. The first layer provides an interface facility to be used between

the IP core and the IPIF. The second layer is a bus specific portion, and interfaces the IPIF to

one of the buses. These interface modules allow to greatly accelerate the process of

connecting pre-existent IP, or creating a new IP in a system. The IPIF provides two different

types of attachment to an IP core: a slave and a master attachment. With the master

attachment, user cores have the ability to initiate bus transactions. Moreover, bus arbitration

logic is also included within the master attachment. However it is the user core's

responsibility to re-arbitrate or abort the bus and switch the data bus between the slave and

master modes.

2.3.4. Reconfigurable Computing

Reconfigurable Computing (RC) [11] started of during the late 1960's but was still a research

field until the late 1980's because of lack of availability of suitable hardware. But with the

advent of Field Programmable Gate Array Technology (FPGA), the field of reconfigurable

computing got a boost since FPGA's provided a reconfigurable platform and gave a broader

meaning to the field. The mair, feature of Reconfigurable Computing is the ability of the

hardware to reconfigure based on various functions. Although FPGA's provided a full

reconfiguration of the chip since its ingression until recently, due to increase in technology

various FPGA's now even support partial reconfiguration which means that a portion of the

device can be altered even though when the FPGA is actually running. When Reconfigurable

Computing was in its initial development stages, the cost of FPGA hardware and

Reconfigurable cards were very costly, but as years passed by and with the advancement of

Moore's Law which gave more transistors per die, FPGA's and Reconfigurable Computing

boards have become a lot cheaper. Moreover the introduction of FPGA's with processors

embedded in it became a stepping stone to the field of Reconfigurable Computing. For

11

example, today a Reconfigurable Computing Mother board with a Xilinx Virtex II Pro FPGA

which houses around 100,000 free logic gates, two PowerPC processors and the ability to

house a DDR SDRAM, a Compact Flash Card and various other peripherals costs around

$250 as compared to $6000 in the year 1998 which housed a Xilinx XC4085 FPGA with only

10,000 logic gates and with minimal peripheral support.

Dynamic Reconfiguration of Functional Blocks (DRP)

In the Virtex family of FPGAs, the Configuration Memory is used primarily to implement

user logic, connectivity and I/Os, but it is also used for other purposes. For example, it is used

to specify a variety of static conditions in functional blocks, such as Digital Clock Managers

(DCMs) and Multi-Gigabit Transceivers (MGTs). Sometimes an application requires a

change in these conditions in the functional blocks while the block is operational. This can be

accomplished through the global Internal Configuration Access Port (ICAP), or through

partial dynamic reconfiguration using JTAG or SelectMAP in the Persist mode. However, the

reconfiguration port that is an integral part of each functional block simplifies this process

greatly [17].
This addressable, parallel write/read configuration memory that is implemented in

each functional block that might require reconfiguration and it has the following attributes:

• It is directly accessible from the FPGA fabric. Configuration bits can be written to

and/or read from depending on their function.

• Each bit of memory is initialized with the value of the corresponding configuration

memory bit in the bitstream. Memory bits can also be changed later through the ICAP.

• The output of each memory bit drives the functional block logic, so the content of this

memory determines the configuration of the functional block.

2.4. Networking Protocols

The Internet can be described using a seven-layer model [12]. Starting at the lowest level, the

layers are physical, data link, network, transport, session, presentation, and application. The

physical layer is concerned with how bits of information are transferred from one location to

another. The data link layer defines frame formats to specify where information begins and

ends. The network layer defines how data is forwarded between hosts. The transport layer

defines how data is transferred reliably. The session layer determines how communication

sessions are created and authenticated. The presentation layer defines how data is internally

12

represented for transmission. Finally, the application layer generates and/or interprets the data

that has been transferred [12,13]. Rule processing resides in layers three and above.

2.4.1. Internet Protocol
The Internet Protocol (IP) is used extensively today in the global network, providing a best-

effort delivery of IP packets [12]. A typical IP packet header consists of 20 bytes, as shown in

Fig 2.2. The main fields of the header are:

• ToS - type of service, used for applications requiring certain quality of service (QoS)

guarantees
_x 	 2 	 1

1f }S76c4 2Ifl S76543zlts' 76c4 	Iii

!HL ToS Total i 	nsgth

:d£"i~tificatic,: Fla s ra melt Off . t

TTL rk tocol Heuder Checksum

Source Addis
Destination Addi ss

Payload Data

Fig 2.2: Atypical IP packet consists of 20 bytes of header and up to 1480 bytes of payload

data on an Ethernet network.

• Total length - the length, in bytes, of the entire IP packet

• TTL - time to live, the maximum number of hops the IP packet can make in the

network before being discarded

• Protocol - the encapsulated protocol used in the IP packet

• Source Address - the source network and local address of the sender

• Destination Address - the destination network and local address of the receiver

IP packets are the fundamental unit of processing for the rule processing architectures.

Higher level protocols, such as the User Datagram Protocol and the Transmission Control

Protocol are encapsulated within the IP payload data.

2.4.2. User Datagram Protocol

The User Datagram Protocol (UDP) is a best-effort delivery protocol [12]. UDP is most

commonly used for multimedia applications such as streaming video and audio. The main

addition of UDP over IP is port numbers, which allows the operating system to deliver data to

the appropriate application.

13

2.4.3. Transmission Control Protocol

The Transmission Control Protocol (TCP) is the predominate protocol used today [12]. The

authors of [102] showed 85% of network traffic is TCP. TCP provides
3 	 2

1 0 9 87654321 0987654 3.2.1 098 7654 3 2 1..:0

iP Packet Header

Source Port Destination Port

Sequence Number

Acknowledgement Number

Or et Reserved Flags W ndow

Checksum. Ur ent Pointer

P ;yIr atr.] Data

Fig 2.3: A TCP packet consists of 40 bytes of header information (20 from the IP packet

header and 20 from the TCP header) and up to 1460 bytes of payload data on an Ethernet.

a reliable, in-order transmission of data. While protocols such as IP and UDP are stateless,

TCP is a state-based protocol, requiring a connection to be established. By maintaining state,

large transfers of data are possible. The principle application of TCP is reliable data transfer,

such as for web page viewing, email, and file transfer [14].

A TCP packet, as shown in Fig 2.3, appends 20 additional bytes of header onto the IP packet

header. Fields of note are:

• Source Port & Destination Port - numbers to aid the operating system in determining

where to send the payload

• Sequence Number - the number given to the first byte of data found in the payload to

properly order data for delivery to the application

• Acknowledgement Number - the number given to the next byte expected at the

receiver, which informs the sender as to what bytes have been received

• Window - the number of bytes that can be in-flight between the sender and receiver

TCP data is transferred in flows. A flow is characterized by four fields: the source IP

address, the destination IP address, the source port and the destination port. These four fields

uniquely identify a TCP communication channel between the sender and receiver. Since the

14

maximum transfer unit of most networks is 1500 bytes (Ethernet frames) and most files are

larger than 1460 bytes, a flow needs to be established in order to reliably transfer all data

bytes in the file.

2.5. Firewalls

A firewall is a device that inspects packets before they arrive at their destination. If the

packets are found to contain questionable data, they are flagged. Firewalls can be used to

drop traffic entering a network, or they can be used to prevent traffic from leaving a network.

The term "firewall" is used to suggest the prevention of spreading harmful materials from one

area to another.

The earliest firewalls were based solely on examining the header of IP packets [15].

These implementations relied on allowing known port numbers and IP addresses to pass

through. For example, TCP traffic destined to port 25 or port 80 is generally safe since these

are the ports for email and web traffic. However, an attacker can easily hide intrusions in

these well-known port numbers. Header-based software solutions are still common, and can

be effective at removing a significant portion of unwanted traffic. Zone Alarm is a common

example of a firewall solution.

2.6. Policy Engines
A policy engine examines more areas of a packet than just the header before deciding

whether a packet is safe or not. The problem with current policy engines is their complexity.

As a result, they passively monitor the network. Policy engines perform signature detection,

correlate events, and compute complex logical operations.

Paxson et. al developed an IDS called Bro [16]. Using a proprietary security language,

this software-based system used libpcap to read network packets on a PC. Event engines used

libpcap to validate packets, correlate the received packet with similar packets from the same

flow, and process payload data. If alerts were generated, a policy script was run to determine

what action to take.

Snort is another type of policy engine that uses rules to determine whether intrusions

have occurred [3]. Snort has been adopted as the tool for intrusion detection.

2.7. Research Gaps

The literature review shows that complete Intrusion Detection Systems does not have a

Gigabit Ethernet interface on a Hardware Kit with known implementation details. Also there

is a need to develop a Web based GUI to manage it, and a facility for user/administrator to

update the ruleset over the network while the IDS is running.

Ir

We have tried to develop an Intrusion Detection System as a separate device with a

Gigabit Ethernet interface on a Hardware Kit, and with a facility for user/administrator to

update the ruleset while the IDS is running.

16

Designing of IDS 	 CHAPTER 3

3.1. Proposed Architecture
The overall design principle for this architecture is the use of dedicated IP cores. by

Fig 3.1. Architecture of IDS

Xilinx [17] and Treck Embedded TCP/IP Stack [18] with parallel ruleset matching header

processor module. Block diagram of the architecture is as given in Fig 3.1. Internally with

protocol wrapper and Treck Embedded TCP/IP Stack the packet header is extracted and

matched with the ruleset using Content Addressable Memories. The header part to match is

placed in a CAM entry and is compared in parallel with all rulesets currently in the database.

The packet is either logged or left depending on the matching result.

The designed Intrusion Detection System is intended to be placed at the entry level

switch of the LAN where in it will receive the complete incoming and outgoing network

traffic from the port of the switch configured for promiscuous mode as shown in Fig 3.2.

17

, ucp,uyment in the network

Hardware Infrastructure

Layered Protocol Wrappers

The layered protocol wrappers provide an interface that identifies the fields within an IP

packet [191, This eases the design of an IP-based networking application by allowing it to

operate at OSI layer three. We have used this module to extract the IP packet header and have
used TCP packets only.

The input for this module is 32-bits on every clock input and on every clock the state

machine changes its state according to the state diagram. The 32-hits are used for this design

as the header protocols are 32-bit spanned and the design Utilizes this concept efficiently, The
state diagram is as follows (Fig 3.2):

1. Check for IP version 4. If the version is incorrect discard the 32-bits and startover, If the

version is correct, Extract the IP header length and total packet length, go to next state (i.e.
State 2).

2.
Extract the ID (Used to identify the fragments of one datagram from those of another). Go

to next state (i.e. State 3).

3.
Check for TCP protocol. If not found then skip the 32-bits and go to next state which is

State 1 else go to next state (i.e. State 4).

18

Packet'
Stream

32
Chock
forii'
'4

Eirst state (ipstart)

Extract
till.
&1L

TCP not round
discarding 32

Second state 	-bits
(ip irst

[:cinch
Ip

It v4- -
found. discard
32 -bits

C"h-cck, for
TCP Protocol
(i.e. 0611)

Seventh state
(teplirst) /'''

Skip padding
bits once It'
header

Store the
Destination IP 	Skip the

Add 	 next
32 bits

Extract the
TCP Source

and
Destination

Port

Skip the
next

32 bits

Skip the
next

3'2 bits

Extract the Data
offset and

calculate the
Payload length

Payload stream and
valid bit

(r processing

Skip next 32 bit for
padding in "fCP

header

. Fig. 3.2. TCP/IP Header extraction State diagram

4. Skip 32-bits. Go to next state (i.e. State 5).

5. Store the Destination IP Address. Go to next state (i.e. State 6).

6. Skip the padding bits (Used as a filter to guarantee that the data starts on a 32 bit

boundary.) for the IP header. Go to next state (i.e. State 7).

7. Extract and store the TCP source and Destination Port numbers. Go to next state (i.e.
State 8).

8. Skip 32-bits. Go to next state (i.e. State 9).

19

9. Skip 32-bits. Go to next state (i.e. State 10).

10. Extract the Data offset parameter. Calculate the Payload length which is nothing but

the Total length —IP header length — TCP header length. Go to next state (i.e. State 11).

11. Skip the next 32-bits for the TCP header padding and go to next state (i.e. State 12).

12. Send a 32- bit stream and the valid bit (indicating valid payload on line). Go to next

State (i.e. State 1).

Memory Controllers

The SRAM controller provides two arbitrated interfaces for access to a 2 MB SRAM. A

request and grant protocol is used to access SRAM [20].

The SDRAM controller provides three arbitrated interfaces to SDRAM. One is for reading

only, one is for writing only, and one is for reading and writing. The read/write interface is

used to access a bank of 64 MB SDRAM. The SDRAM controller also provides a simple

request/grant interface with burst transfers.

Buffers
Buffers are used throughout the system to store IP packets before processing.

Tri-Mode Ethernet MAC (TEMAC) UltraController-II

As shown in the above block diagram the Tri-Mode Ethernet . MAC (TEMAC)

U1traController-II module is the Xilinx core [17]. This module is a minimal footprint,

embedded network processing engine based on the PowerPCTM 405 (PPC405) processor core

and the TEMAC core embedded within a VirtexTM4 FX Platform FPGA. The TEMAC

UltraController-II module connects to an external PHY through Gigabit Media Independent

Interface (GMII) and Management Data Input/Output (MDIO) interfaces and supports tri-

mode (10/100/1000 Mb/s) Ethernet. Software running from the processor cache reads and

writes through an On-Chip Memory (OCM) interface to •two FIFOs that act as buffers

between the different clock domains of the PPC405 OCM and the TEMAC. The TEMAC

UltraController-II module uses minimal resources: one PPC405, one TEMAC, two Virtex-4

FIFOs, 20 slice flip-flops, and 18 look-up tables (LUTs). Because of the minimal footprint

design, a greater number of FPGA logic resources remain available to the user.

Header Check

Most of the 168 Snort header only rules look for specific TCP/UDP port numbers [3]. Each

of the 168 header-only rules are checked in parallel using TCAM, and a rule match is

declared if any of the headers match.

20

TCAM

Ternary Content Addressable Memory (TCAM) is a type of memory that can perform

parallel search at high speeds. A TCAM consists of a set of entries. The top entry of the

TCAM has the smallest index and the bottom entry has the largest. Each entry is a bit vector

of cells, where every cell can store one bit. Therefore, a TCAM entry can be used to store a

string. A TCAM works as follows: given an input string, it compares this string against all

entries in its memory in parallel, and reports one entry that matches the input [21].

Ethernet Statistics core

The IP Ethernet Statistics core provides a user-configurable collection of statistical counters

that are used to gather network traffic statistics for Xilinx Ethernet Media Access Controller

(MAC) [22].

3.2. FPGA Kit used

The FPGA Kit used is a Xilinx Vertex-4 ML403 Evaluation Platform [23], as shown in Fig

3.3. Some of the salient features of the board are:

Fig 3.3. Xilinx Vertex-4 ML403(Evaluation Platform

21

• 64 MB DDR SDRAM, 32 bit interface running up to 266-MHz data rate.

• General purpose LEDs and push buttons.

• RS-232 serial port.

• 10/100/I000 Ethernet Port (RJ-45 Connector)

• One 4Kb IIC EEPROM.

• PS/2 mouse and keyboard connectors.

• JTAG configuration port for use with Parallel Cable III and Parallel Cable IV cable.

• System ACE and Compact Flash Connector.

The Virtex-4 family includes three platforms; Virtex-4 LX for logic, Virtex-4 SX for

very high performance signal processing, and Virtex-4 FX for embedded processing and

high-speed serial connectivity. Each version has a different mix of the special features and

comes in a range of density to cover a variety of application sizes (as shown in Fig 3.4)

Features 	 lPxes Ptatform ill Ftttd P "

Fig 3.4. Virtex-4 family

The ML403 Evaluation platform has Xilinx Devices: XC4VFX12-FF668-IOC

(FPGA+PowerPC).

22

Implementation of IDS 	 CHAPTER 4

We have developed our prototype based on the architecture given in Fig 3.1. The

prototype we have developed is programmed in VHDL. FPGA Logic is implemented on a

Xilinx Vertex-4 ML403 Evaluation Platform [23], as shown in Fig 3.2.

We have used Integrated Software Environment (ISE) 8.2i and Embedded

Development Kit(EDK) 8.2i for designing and implementation of the overall system on the

kit. The simulations of all functions were conducted by the ModelSim. For performance

evaluation of our prototype system, we applied Snort header ruleset and used Traffic

Generator for generating network traffic for experiments.

Through JTAG cable the header ruleset stored in SDRAM can be updated without

affecting the rest of the design. The overall design occupies only part of the FPGA resources

available on the Xilinx ML403 Evaluation Platform.

4.1. Integrated Software Environment (ISE) 8.2i

The Integrated Software Environment (ISETM) is a Xilinx development system product that is

required for implementing designs onto Xilinx programmable logic devices. It allows takes

the design from design entry level to programming the Xilinx device. Various steps in the

ISE design flow are:

Design Entry

Design entry is the first step in the ISE- design flow. During design entry, source files are

created based on the design objectives. The top-level design file is created using a Hardware

Description Language (HDL), such as VHDL, Verilog, or ABEL, or using a schematic.

Multiple formats can be used for the lower-level source files in the design. Project Navigator

is used to create new project as shown in Fig 4.1 to 4.3.

23

Fig 4.1 Creating New project in ISE Project Navigator

c elect the ̀Device and Desi h Ffcw for the.Projeit-

Property Name 	 Value

Product; Category 	 h All
Family Virtex4
Device 	 w . XC4VFX1 2

Package FF688

Speed ` 	
r. 	j •10

;Tap Level Source Type HDL
i Synthesis Tool" 	 ~.

Simuiafor 	

•

XST (VHDLNerilogJ

g ModelsimXE VHDL ~`;

Enable Enhanced DesignnSSummary 0
+.._ .. 	_ ._. 	_

Fig 4.2 Selecting Device Properties

24

efoliowiecificatic

Project:
Project Name: IDS
Project Path: C:\IDS\IDS
Top Level Source Type: HDL

Device:
Device Family: Virtex4
Device: 	xc4vfxl2
Package: 	sf363
Speed: 	-10

Synthesis Tool: XST (VHDL/Verilog)
Simulator: Modelsim-XE VHDL

Enhanced Design Summary: enabled
Message Filtering: enabled

< Back j 	 Finish 	Cancel ...

Fig 4.3 Project Summary

Synthesis

After design entry and optional simulation, the synthesis is rik Dii

Verilog, or mixed language designs become netlist files that are a

implementation step.

this~ste `

:d ail put to the

Implementation
After synthesis, the design implementation is run, which converts the logical design into a

physical file format that can be downloaded to the selected target device. From Project

Navigator, we can run the implementation process in one step, or we can run each of the

implementation processes separately. Implementation processes vary depending on whether

we are targeting a Field Programmable Gate Array (FPGA) or a Complex Programmable

Logic Device (CPLD).

Verification

The functionality of the design can be verified at several points in the design flow. Simulator

software is used to verify the functionality and timing of the design or a portion of it. The

simulator interprets VHDL or Verilog code into circuit functionality and displays logical

results of the described HDL to determine correct circuit operation.

25

Device Configuration

After generating a programming file, next step is configuring the device. During

configuration, the configuration files are generated and the programming files are

downloaded from a host computer to a Xilinx device.

IMPACT
IMPACT (IMPACT) is a tool featuring batch and GUI operations as shown in Fig 4.4 and

4.5; it allows performing two basic functions: Device Configuration and File Generation.

Configuration is the process of loading design-specific information into one or more FPGA,

PROM, or CPLD devices to define the functional operations of the logical blocks, their

interconnections, and the chip I/O.

want to

Fig 4.4 Loading your project in IMPACT

26

Platform Cable USB
Platform Cable USB is a high-performance download cable that attaches to your hardware for

the purpose of programming or configuring any of the following Xilinx® devices:

. • ISP Configuration PROMs

• CPLDs

• FPGAs

Platform Cable USB attaches to a desktop or laptop PC with an off-the-shelf High-Speed

USB A-B cable and derives all operating power from the hub port controller. No external

power supply is required.

4.2. Embedded Development Kit(EDK and Xilinx Platform Studio (XPS)

EDK [171 is an integrated software solution for designing embedded processing systems and

implementing on a Xilinx FPGA device. The components of the Xilinx EDK are:

• Hardware (Intellectual Property) for the Xilinx Embedded Processors and their

peripherals.

• Drivers, Libraries and a Micro Kernel for Embedded Software Development.

• Software Development Kit (SDK), Eclipse based IDE.

• GNU compiler and debugger for C development for MicroBlaze and PowerPC.

27

Xilinx Platform Studio

Xilinx Platform Studio (XPS) is the design development software provided in the Xilinx

Embedded Development Kit (EDK). XPS consists of an interface and all the underlying tools

needed to develop the hardware and software components of an embedded processor system.

We can also perform system verification within the XPS environment.

Base System Builder

The Base System Builder (BSB) automates basic hardware and software platform

configuration tasks common to most processor designs. The BSB lets us pick from the

peripherals available on that board, automatically match the FPGA pinout to the board, and

create a completed platform and test application ready to download and run on the board.

This gives a hardware platform to use as a starting point from which we can add more

processors and peripherals if needed, including custom peripherals, using the tools provided

in Xilinx Platform Studio (XPS).

In all cases, BSB lets us select the following system attributes:

• Processor type (MicroBlaze or PowerPC, depending on the selected target FPGA
device)

• Processor and bus clock frequency (BSB automatically infers and configures a Digital
Clock Manager (DCM) primitive when needed)

• Standard processor buses (all peripherals are automatically connected via appropriate
buses)

• Debug interface

• Cache configuration

• Memory size and type (both on-chip block RAM (BRAM) and controllers for off-chip
memory devices)

• Common peripherals (such as general purpose I/O, Universal Asynchronous
Receiver-Transmitter (UART), and timer)

• 	Interrupt sources (from among the applicable selected peripherals)

When targeting one of the supported embedded processor development boards, BSB narrows

the choices of peripherals that control off-chip devices to those features provided on the

board. Any deselected peripherals are omitted from the processor system design to minimize

FPGA use. The BSB further provides the following board-specific services:

• Automatic selection of the on-board FPGA

• Selection of clock rates supported by the on-board oscillators

• Automatic setting of reset polarity

• Automatic generation of FPGA pinout to match the board connections, for the
selected set of peripherals

For each option, functional default values are pre-selected in XPS. Upon exit of the BSB, a

Microprocessor Hardware Specification (MHS) file is created and loaded into the XPS

project. We can further enhance the design in XPS or continue to implement the design using
the Xilinx implementation tools.

Optionally, the BSB can also create one or more software projects. Each project contains a

sample application and linker script that can be compiled and run on the hardware on the

target development board. Applications are designed to illustrate system aliveness and

perform simple and basic testing of some hardware components. XPS supports multiple

software projects for every hardware system, each of which contains its own source files and
linker script.

The major steps carried out for the implementation of design on ML403 Evaluation

Platform in XPS are given in Fig 4.6 to 4.17:

iklderizatd (recommended).

ct

Fig 4.6 Selecting BSS

29

Fig 4.7 Creating new project- IDS

Fig 4.8 Selecting the design option

kill

Fig 4.9 Selecting the target development board

31

Fig 4.10 Selecting the embedded processor

Fig 4.11 Selecting clock frequency

32

Fig 4.12 Software setup

Fig 4.13 Configuring memory test applications

33

Fig 4.14 Configuring peripheral test applications

Fig 4.15 Finished message

Fig 4.16 Details of System created

35

. It

P'

M

s -5oftvware Device conFlguratlon • Qa1wg Slp; Iatiort Wndow tielp
..

,';:d4•., C rro 	..L~la .~ :`' 	rn:r
Fi ers 	 ...,,. 	;- 	:..

t,) Bus Interface 	Ports C,~" _Addresses ~c. Connection Filers

N 	 8u G 	tion IPT a 	IP version r ame 	_< ,,. 	•w". <m as 	s onnec 	YP
L 	c4053 pp 4tJ5_vir) u4).U•)
Gr- 	idcm • isocm_v10 	2.00.a

'docm dsocm v10 	2.00a

..<OopJr 	
__ ..

Opb_v 	1.10.c

It r% 	olb0p p(L~opb_bti i e 	i.1):.

C 	pagppc0 jtagppc cntlr 	2.00a
(x r.?iocm cnUr isbram if cnllr 	3.O0.a
G,« 	,3doaa_cnt6 ,.dsbram_'rf_cntI; 	3.00.a
(ARC 32 .hrt oh_ uI0 	1 00 h

k;..10
1*3 47rt.E0c Pnstlicns oph..g✓~.o 	1.t7` b

o +: 	p.,i 	B tfons_Pc iti n , cpb_gpw:c 	3.00 b
G 	OrDF_SDRdu.t_G,1Mz> c'p'o_ddr 	m00*3
!x * 	;Ethem 	ht+".r, 	.. uGk. r;tl- mr„ 	t(31 th
[.a'PSRAM_256r 32 cGb...o'r:^ 	2.DO.a

tj 4")upb_tun r 1 Jtb_rllr 	'.1)0.b

Cffi• 	nph_mtT,_0 	;. ,pk_n00 	10.

1*3 	 reet_block pros sys_reset 	1.00.a

w.iscic!n_lxam bra?i_btock - 	1:OD
I. 	Klkdsccrn Marc • branb 	ck 	t.OU.a

l 	1)IbbuILCI1tILj1Jfll trra 	honk 	1.0o,a

tf. 	SRAM 256Kx32_idii_bos_splac_O utt_bus_split 	1.00.a

lii 	 sc 	 ;- ;< 	utt„vector_bgic 1.00 a

mbtyviewl

Fig 4.17 System Assembly View

Output

36

4.3. ModelSim

ModelSim is a simulation and debugging tool for VHDL, Verilog, and mixed-language

designs. The following diagram shows the basic steps for simulating a design within a

ModelSim project.

Fig 4J 8 Steps for simulating a design with ModelSim

ModelSim offers numerous tools for debugging and analyzing the design. Several of these

tools are:

• Setting breakpoints and stepping through the source code

• Viewing waveforms and measuring time

• Viewing and initializing memories

37

Results 	 CHAPTER 5

5.1. Lab Setup

The setup to evaluate performance of the designed and implemented IDS is as shown in Fig

5.1.

CCOSS 	IDS onM1403
cab le 	Kit

urn

cable 	PC logging the

reported

packets

PC with Packet

Generator

Fig 5.1. Lab setup for evaluating the IDS.

An IP packet generator is used to generate the network packets with desired source

and destination IP address and port numbers. Only TCP protocol is used for checking the

results.

After analysing Snort ruleset we have noted that majority of rulesets have width of 32

bytes, as shown in Fig 5.2. Table 5.1 shows example header ruleset. For this we have

designed the TCAM for 32 bytes of data entry width. Similarly other rulesets can be catered

for by TCAMs working in parallel with adequate data width.

Table 5.1: Example Header Rule Set

ID 1 Source IP Destination IP 1 Protocol I Source Port } Destination Port
1. any 192.1680L0/16 tcp > 1024
2 any 192158.00/16 tep 101.01 any
3 any 192J68.50.2 tcp any 443
4 192J6800/16 any udp 49230 60000

tcp 1
6 any any tep 146 1000:1300

The TCAM output is used to enable the transmission of buffered packet's IP address

for logging through serial interface to the PC maintaining performance log of this IDS.

The system compares and logs all packets while working on Gigabit Ethernet. The

incoming packet rate is limited due to the physical Ethernet interface chosen as 1 Gbps

Ethernet interface. But to compare with other works in the field the calculated throughput of

TCAM (based on SRL16 with 32 byte width) is given in Table 5.2. In a real world system not

all of the traffic entering the system will need to be searched.

Fig 5.2. Signature width for all rules in Snort database.

In addition to the gigabit speed performance, the area left on the FPGA is sufficient to cater

for content matching rulesets to be incorporated on the same kit.

39

5.2. Resource Utilization

Xilinx tools gives summary of each IP core generated or used, as given in Fig 5.3 for

the Gigabit Ethernet MAC, which utilized maximum resources.

is Name: 	 Gigabit Ethernet MAC

it 	r 	 xc4vfxl21Off668

tuber of Slice Flrp Mops 3 	 1349 12%
.~..mrvr 	n.rv.w.,.rnan«.~eroev., rnn+.a «>

tuber of 4 input LU fs 	 1466 J3%

imber of occupied Slices: 	 1251 22%

tuber of Slices containing' only related logic: 1251 100%

amber of Slices containing unrelated logic: 	0 -0%

tal Number 4 input LUTs:r 	 1566 14%

4RNING Resource utilization figures reported here are estimates generated by MAP when this core is
demented iti isclatrbn Actual resource usage, may increase, or decrease when this core is merged with your
sign. = 	.t..

Fig 5.3.Resource utilization of Gigabit Ethernet MAC.

Finally when the complete design is ready and compiled using ISE Project Navigator, total

resource utilization is given as part of summary report. The over all resource utilization for

our design is only 34% (Though only header matching is taken into account, the area left is

sufficient to add payload matching modules.)

5.3. Traffic Analysis

Input

TCAM

Fig 5.4. TCAM

As shown in Fig 5.4 the TCAM gives the index and match flag to the first match in the

memory. TCAMs have Fully associative memory and compares input string with all the

entries in parallel. If multiple matches, report index of the first match. Each cell takes one of

three logic states : `0', `1', and `x'(don't care). Current TCAM technology gives us fast time

match up to 4ns. For 32 byte wide TCAM with depth of 1024 minimum cycle time is 16ns

[17].

Table 5.2. Calculated Throughput of the Individual FPGA Modules.

Module Throughput(maximum in Gbps))

Ruleset matching niodule(TCAM) 16

Gigabit Ethernet MAC 1

Gokhale et.al [24] used CAM to implement snort rules on a Virtex XCV1000E

FPGA. Their hardware delivered a throughput of 2.2Gbps. Cho et. al [25] generated

structural VHDL for deep packet filtering on an FPGA. Their design runs at 90MHz on an

Altera EP20K device and achieves a throughput of 2.88Gbps. Attig et. al..[26] have

implemented a Bloom filter circuit on a Virtex E2000 FPGA. Their circuit operates at

62.8MHz and provides a throughput of 502Mbps.

Affect of Packet size

Since there is a large overhead for processing each packet's header, the biggest influence on

receive performance is the packet size, which determines the number of packet arrivals per

second. As the packet size reduces the performance of the system reduces. Appreciable

affects are below 512 byte size packets, worst being at 64 byte size packets.

41

Conclusions and Suggestions for Future Work 	 CHAPTER 6

We have presented a design and implementation of complete Intrusion Detection

System (IDS) on a FPGA. It is noted that with improved TCAMs with current technology

there is a fast time match up to 4ns. The designed IDS on Virtex4 kit successfully works on

Gigabit Ethernet.

The Protocol Wrapper including the packet extractor which extracts TCP/IP header

bytes and forwards them for further processing by header ruleset matching module works for

packets of varying length.

The ruleset in the TCAM on the kit can be updated through configuration memory

while the system. is running and this configuration memory is programmed through JTAG

cable thus providing partial reconfigurable feature to the IDS on the FPGA kit. We have

included only header ruleset for intrusion detection; similarly TCAM can be used for content

matching rulesets.

The system presently logs only IP addresses of the defaulting packets through serial

interface on a separate computer, it can be extended to store complete defaulting packet for

further analysis.

If a kit with at least two Ethernet ports is used then additional feature of real time

intrusion prevention can also be designed with this IDS. We have implemented the IDS using

the FX-12 kit which provides 12,312 logic cells within 5,472 slices. The Virtex-4 FX-20 is

the FPGA next in size providing 82% more LUTs than the one we used. With this FPGA it

will be possible to implement the complete Intrusion Detection and Prevention system on one

kit.

REFERENCES

[1] A. K. Tummala and P. Patel, "Distributed IDS using Reconfigurable Hardware", In
Proceedings of 21st International Parallel and Distributed Processing Symposium, (IPDPS-
2007), pages 1-6, 26-30 March 2007.
[2] Paul E. Proctor. "The Practical Intrusion Detection Handbook". Prentice Hall, 2000.
[3] Snort Homepage. Available at http://www.snort.org, last accessed on June, 2008.
[4] R. Franklin, D. Carver and B. L. Hutchings, "Assisting Network Intrusion Detection with
Reconfigurable Hardware", In Proceedings of the 10th Annual IEEE Symposium on Field-
Programmable Custom Computing Machines, page 111, 22 — 24 September 2002.
[5] L. Schaelicke, T. Slabach, B. Moore, and C. Freeland, "Characterizing the Performance of
Network Intrusion Detection Sensors", In Proceedings of the Sixth International Symposium on
Recent Advances in Intrusion Detection (RAID-2003), pages 1-19, September 2003.
[6] S. Li, J. Torresen and 0. Soraasen, "Exploiting Reconfigurable Hardware for Network
Security", In Proceedings of the 11th Annual IEEE Symposium on Field-Programmable Custom
Computing Machines, page 292, 09 — 11 April 2003.
[7] D. Moore, C. Shannon, G. M. Voelker and S. Savage, "Internet Quarantine: Requirements for
Containing Self-Propagating Code", In Proceedings of 22nd Annual Joint Conference of IEEE
Computer and Communication societies (INFOCOM 2003), volume 3, pages 1901- 1910 , 30
March - 3 April 2003.
[8] E. Ahmed, and J. Rose, "The Effect of LUT and Cluster Size on Deep-Submicron FPGA
Performance and Density", In Proceedings of the ACM/SIGDA Eighth international Symposium
on Field Programmable Gate Arrays, pages 3-12, 10 — 11 February 2000.
[9] J. Cong and Y. Ding, "Combinational logic synthesis for LUT based field programmable gate
arrays", ACM Trans. Des. Autom. Electron. Syst, volume 1, issue 2, pages 145— 204, 1996.
[10] IBM 	coreconnect 	architecture, 	available 	at
http://www.ibm.com/chi.ps/products/corecoii:nect last accessed on June, 2008
[I1] K. Compton and S. Hauck, "An Introduction to Reconfigurable Computing", In IEEE
Computer, April 2000.
[12] A. S. Tanenbaum, "Computer Networks", 4`h edition, Prentice-Hall, Inc, 2002.
[13] J. F. Kurose and K. Ross, "Computer Networking: A Top-Down Approach Featuring the
Internet", 2"d edition Addison-Wesley Longman Publishing Co., Inc, 2003.
[14] D. Comer, "Internetworking with TCP/IP: Principles, Protocols, and Architecture",
Prentice-Hall, Inc, 1998.
[15]L. Qiu, G. Varghese, and S. Suri, "Fast Firewall Implementations for Software-Based and
Hardware-Based Routers", In SIGMETRICS '01: Proceedings of the 2001 ACM SIGMETRICS

43

International Conference on Measurement and Modeling of Computer Systems, pages 344-345,
2001.

[16] V. Paxson, "Bro: A System for Detecting Network Intruders in Real-Time", Computer
Networks, Amsterdam, Netherlands, pages 2435 - 2463, 1999.
[17] The Xilinx Corporation, Web reference www.xilinx.com, last accessed on June, 2008.
[18] Treck Inc, Web reference, http://www.treck.com, last accessed on June, 2008.
[19] F. Braun, J. Lockwood, and M. Waldvogel, "Protocol Wrappers for Layered Network
Packet Processing in Reconfigurable Hardware," IEEE Micro, volume 22, issue 1, pages 66-74,
Jan.-Feb. 2002.
[20] Embedded System Tools Reference Manual, available at
littp://www.xilinx.com/ise/embedded/est rm.pdf Last accessed on June, 2008
[21] F. Yu and R. Katz. "Efficient Multi-Match Packet Classification and Lookup with
TCAM", In 12th Annual Proceedings of IEEE Hot Interconnects, Stanford, CA, pages 50-59,
August 2004.
[22] Ethernet 	statics 	IP 	core, 	available 	at
http://www.xi.linx.com/ML403/etb.ernet statistics ds323.pdf. last accessed on June, 2008
[23] ML40x EDK Processor Reference Design, available at
htt~. - /,/ww ~_xiliilx.com/bvdocs/userg_ui.des/ugO82.pdf last accessed on June, 2008.
[24] M. Gokhale, D. Dubois, A. Dubois, M. Boorman, S. Poole, and V. Hogsett, "Granidt:
Towards Gigabit Rate Network Intrusion Detection Technology", In Proceedings of
International Conference on Field Programmable Logic and Applications, pages 404-413, 2002.
[25] Y. H. Cho, and W. M. Smith, "Specialized Hardware for Deep Packet Filtering", In
Proceedings of the 12th International Conference on Field Programmable Logic and
Applications, pages 452-461, September 2002.
[26] M. Attig, S. Dharmapurikar and J. Lockwood, "Implementation Results of Bloom Filters
for String Matching", In proceedings of the 12th Annual IEEE Symposium on Field-
Programmable Custom Computing Machines (FCCM'04), pages 322-323, 2004.
[27] C. Kruegel and G. Vigna, "Anomaly Detection of Web-Based Attacks" In CCS '03:
Proceedings of the 10th ACM Conference on Computer and Communications Security, pages
251-261, 2003.

[28] B. Madhusudan and J. Lockwood "Design of a System for Real-Time Worm Detection", In
12th Annual Proceedings of IEEE Hot Interconnects, pages 77-83, August 2004.

44

PUBLICATIONS

Submitted paper titled "Design and Implementation of Intrusion Detection System

(IDS) with Field Programmable Gate Array (FPGA)" in the IEEE Colloquium and the third

IEEE International Conference on Industrial and Information Systems (ICIIS 2008) to be held

at Indian Institute of Technology, Kharagpur, India during 08 — 10 December 2008. The

paper submission no is 293.

LR

Configured Xilinx IP Cores Source Code
	 APPENDIX

//Vendor: .Xilinx

//Version: 9.2i
//Filename: tcam.v
Timestamp : 04/21/2008 10:00:27

//
//Design Name: team
//Device: xc4vfx 12-10ff668
I-
II Module team
// Generated by Xilinx Architecture Wizard
//

LIBRARY ieee;
USE ieee. std_logic_ 1164.ALL;
-- synthesis translate off
Library XilinxCoreLib;
-- synthesis translate_on
ENTITY team IS

port (
clk: IN std logic;
data_mask: IN std._ logic_VECTOR(31 downto 0);
din: IN std_logic_VECTOR(31 downto 0);
we: IN std_logic;
wraddr: IN std_logic_VECTOR(7 downto 0);
busy: OUT std_logic;
match: OUT std_logic;
match_addr: OUT std_logic_VECTOR(255 downto 0);
single_match: OUT std_logic);

END team;

ARCHITECTURE tcam_a OF team IS
-- synthesis translate_off
component wrapped_tcam

port (
clk: IN std_logic;
data_mask: IN std_logic_VECTOR(31 downto 0);
din: IN std_logic_VECTOR(31 downto 0);
we: IN std_logic;
wr_addr: IN std_logic_VECTOR(7 downto 0);
busy: OUT std_logic;
match: OUT std logic;
match_addr: OUT std_logic_VECTOR(255 downto 0);
single_match: OUT std_logic);

end component;

-- Configuration specification
for all: wrapped_tcam use entity XilinxCoreLib.cam_v5_I (behavioral)

generic map(
c_has_en => 0,
c_wr_addr_width => 8,
c_din_width => 32,
c_has_wr_addr => 1,
c_data_mask_width => 32,
c_cmp_din_width => 32,

c_has_read_warning => 0,
c_width => 32,
c mem_init => 0,
c__has_cmp_data_mask => 0,
c_has_we => 1,
c_enable_rlocs => 0,
c_addr_type => 1,
c_ternary_mode => 1,
c match_resolution_type => 0,
c__has_single_match => 1,
cTdepth => 256,
c_has_multiple_match => 0,
c_read_cycles => 1,
c_mem_type => 0,
c_has_data_mask => 1,
c_reg_outputs => 0,
c_has_cmp_din => 0,
c_mein_init_file => "o.mif',
c_emp_data_mask_width => 32,
c match addr width => 256);

-- synthesis translate_on
BEGIN
-- synthesis translate_off
UO : wrapped_team

port map
elk => elk,
data mask => data mask,
din => din,
we=>we,
wr_addr => wr_addr,
busy => busy,
match => match,
match_addr => match_addr,
single_match => single_match);

-- synthesis translate_on

END team a;

//Vendor: Xilinx
1/Version: 9.2i
//Filename: eth.v
Timestamp : 04/28/2008 10:50:07

//
//Design Name: eth
//Device: xc4vfxl2-10ff668
//
// Module eth
// Generated by Xilinx Architecture Wizard

module eth_clk(CLKIN_IN,
RST_IN,
CLK1N_IBUFG_OUT,
CLKO_OUT,
LOCKED_OUT);

input CLKIN_IN;
input RST_IN;
output CLKIN_IBUFG_OUT;
output CLKO_OUT;
output LOCKED_OUT;

wire CLKFB_IN;
wire CLKIN_IBUFG;
wire CLKO_BUF;
wire [6:0] GND1;
wire [15:0] GND2;
wire GND3;

assign GND1 = 7'b0000000;
assign GND2 = 16'b0000000000000000;
assign GND3 = 0;
assign CLKIN_IBUFG_OUT = CLKIN_IBUFG;
assign CLKO_OUT = CLKFB_IN;
IBUFG CLKIN_IBUFG_INST (.I(CLKIN_m),

.O(CLKIN IBUFG));
BUFG CLKO_BUFG_INST (.I(CLKO_BUF),

.O(CLKFB_IN));
DCM_ADV DCM_ADV_INST (.CLKFB(CLKFB_IN),

.CLKIN(CLKIN_IBUFG),

.DADDR(GND 1 [6:0]),

.DCLK(GND3),

.DEN(GND3),

.DI(GND2[15:0]),

.DWE(GND3),

.PSCLK(GND3),

.PSEN(GND3),

.PSINCDEC(GND3),

.RST(RST_1N),

.CLKDVQ,

.CLKFXO,

.CLKFX1800,

.CLKO(CLKO_BUF),
CLK2X0,

.CLK2X180(),

.CLK900,

.CLK180O,

.CLK2700,

.DO(),

.DRDYO,

.LOCKED(LOCKED_OUT),

.PSDONEQ);
defparam DCM_ADV_INST.CLK_FEEDBACK=
defparam DCM_ADV_INST.CLKDV_DIVIDE = 2.0;
defparam DCM_ADV_INST.CLKFX_DIVIDE = 1;
defparam DCM_AD V_INST. CLKFX_MULTIPLY = 4;
defparam DCM ADV_INST.CLKIN_DIVIDE_BY 2 = "FALSE";
defparam DCM__ADV_INST.CLKIN_PERIOD = 6.66667;
defparam DCM_ADV_INST. CLKOUT_PHASE_SHIFT = "NONE";
defparam DCM_ADV_INST.DCM_AUTOCALIBRATION = "TRUE";
defparam DCM_ADV_INST.DCM_PERFORMANCE_MODE = "MAX_SPEED";
defparam DCM_ADV_INST.DESKEW_ADJUST = "SYSTEM_SYNCHRONOUS";
defparam DCM_ADV_INST.DFS_ FREQUENCY _MODE _ "LOW";
defparam DCM_ADV_INST.DLL_FREQUENCY_MODE = "LOW";
defparam DCM_ADV_INST.DUTY_ CYCLE _CORRECTION = "TRUE";
defparam DCM_ADV INST.FACTORY_JF = 16'hFOFO;

defparam DCM_ADV_INST.PHASE_SHIFT = 0;
defparam DCM_ADV_INST.STARTUP_WAIT = "FALSE";

endmodule

module eth_stat (
host_stats_lsw_rdy, host —mum sel, rx_small, host_reset, refreset, rx_frag, host_req, rx_byte,

host—stats_msw_rdy, tx_byte, rx_clk, rx_reset,
tx_reset, ref clk, tx_clk, host clk, host addr, host rd data, increment vector

output host_stats_lsw_rdy;
input host_miim_sel;
input rx_small;
input host_reset;
input ref reset;
input rx_frag;
input host_req;
input rx_byte;
output host_stats_msw_rdy;
input tx_byte;
input rx_clk;
input rx_reset;
input tx_reset;
input ref elk;
input tx_clk;
input host_elk;
input [9: 0] host_addr;
output [31 : 0] host_rd_data;
input [4 : 19] increment vector;

/! The synopsys directives "translate_off/translate_on" specified
If below are supported by XST, FPGA Compiler II, Mentor Graphics and Synplicity
If synthesis tools. Ensure they are correct for your synthesis tool(s)

// synopsys translate_off

wire NlwRenamedSig_OI_host_stats_isw_rdy;
wire \BU2/N3 ;
wire \BU2/N2 ;
wire \BU2/U0/ethernet_statistics_32bit/N7 ;
wire \BU2/U0/N987 ;
wire \BU2/U01N986 ;
wire \BU2/UO/N978 ;
wire \BU2/UO/N975 ;
wire \BU21U0/N974 ;
wire \BU2/U0/ethernet_ statistics _ 32bit/_mux0058_map135 ;
wire \BU2/U0/N973 ;
wire \BU2/UO/N972 ;
wire \BU2/U0/N971 ;
wire \BU2IUO/N970 ;
wire \BU2fUO/ethernet statistics_32bit/_mux0059_map240 ;
wire \BU2/UO/N969 ; -
wire \BU2/UOIN968 ;
wire \BU2/U0/N967 ;
wire \BU2/U01N966 ;
wire \BU2/UO/ethernet_ statistics _ 32bit/count_read_0_1_2 ;
wire \BU2/U0/N965 ;
wire \BU2/UO/ethernet_ statistics_ 32bit/_or0003_map313
wire \BU21U0/N991 ;
wire \BU2/UO/N964 ;

IV

wire \BU2/U0/N963 ;
wire \BU2/U0/N962 ;
wire \BU2/U0/ethernet_statistics_32bit/_mux0059 ;
wire \BU2/U0/N96 1;
wire \BU2/U0/N960 ;
wire \BU2/U0/ethernet_statistics_32bit/_mux0055 ;
wire \BU2/U0/N959 ;
wire \BU2/UO/ethernet_statistics_32bit/_mux0058 ;
wire \BU2/UO/N958 ;
wire \BU2/UO/ethernet statistics_32bit/_mux0056 ;
wire \BU2/U0/N957 ;
wire \BU2/U0/N956 ;
wire \BU2/U0/N955 ;
wire \BU2/U0/N954 ;
wire \BU2/U0/N953 ;
wire \BU2/U0/N952 ;
wire \BU2/UO/N951 ;
wire \BU2/U0/N950 ;
wire \BU2/U0/ethernet_ statistics_32bit/_mux0060
wire \BU2/U0/N949 ;
wire \BU2/U0/ ethernet _ statistics_ 32bit/count_read_01 ;
wire \BU2/UO/N947 ;
wire \BU2/U0/N946 ;
wire \BU2/UO/ethernet_statistics_32bit/_mux0058_map155
wire \BU2/U0/N941 ;
wire \BU2/U0/ethernet_statistics_ 32bit/_mux0055_map199 ;
wire \BU2/U0/ethernet statistics_32bit/_mux0059 map227 ;
wire \BU2/UO/ethernet__statistics_32bit/_mux0059__map225 ;
wire \BU2/UO/N936 ;
wire \BU2/U0/ethernet_statistics_32bit/_mux0061<0>_map114 ;
wire \BU2/UO/ethernet_statistics 32bit/_mux0061<1>_map101 ;
wire \BU2/UO/ethernet_statistics__32bit1_mux0061<2>_map88
wire \BU2/UO/ethernet_statistics_32bit/_mux0061<3>_map75 ;
wire \BU2/U0/ethernet_statistics_32bit/_mux0061<5>_map62 ;
wire \BU2/U0/ethernet_statistics_ 32bit/_mux0061<4>_map49 ;
wire \BU2/U0/ethernet_statistics 32bit/_mux0061<6>_map36 ;
wire \BU2/UO/ethernet_ statistics _32bit/_or0007_ map 179 ;
wire \BU2/UO/ethernet_ statistics_ 32bit/_or0007_map178
wire \BU2/U0/ethernet_statistics_32bit/_or0007_map172
wire \BU2/U0/ethernet_statistics_32bit/_or0007_map171 ;
wire \BU2/U0/ethernet_statistics_32bit/_mux0055 map215
wire \BU2/U0/ethernet_statistics_32bit/_mux0062
wire \BU2/U0/N929 ;
wire \BU2/U0/N927 ;
wire \BU2/UO/ethernet_statistics_32bit/_or0007_map181 ;
wire \BU2/UO/N926 ;
wire \BU2/UO/N925 ;
wire \BU2/UO/ethernet_statistics_32bit/_mux0061<6>_map41 ;
wire \BU2/U0/ethernet_ statistics _ 32bitl_mux0061<5>_map67
wire \BU2/UO/ethernet_ statistics _ 32bit!_mux0061<4>_map54 ;
wire \BU2/U0/ethernet statistics 32bit/_mux0061<3>_map80
wire \BU2/U0/ethernet_statistics__32bit/_mux0061<2>_map93
wire \BU2/U0/ethernet_ statistics _ 32bit/_mux0061<1>_map106 ;
wire \BU2/U0/ethernet_ statistics _ 32bit/_mux0061<0>_map119 ;
wire \BU2/U0/ethernet_statistics_32bit/_or0003 ;
wire \BU2/U0/ethernet_statistics_32bit/_or0003_map309 ;
wire \BU2/UO/N992 ;
wire \BU2/UO/ethernet_statistics_32bit/_mux0056_map292 ;
wire \BU2/UO/ethernet_ statistics _ 32bit/_mux0055_map196 ;
wire \BU2/U0/ethemet statistics_ 32bitJ_or0007_map 166 ;

V

wire \BU2/UO/ethernet_ statistics _32bit/_or0007_ map 162
wire \BU2/UO/ethernet_statistics 32bit/_or0007_map159 ;
wire \BU2/U0/ethernet_statistics-32bit1_mux0058_map 141
wire \BU2/U0/ethernet_ statistics —_32bit/ mux0058_map124
wire \BU2/UO/ethernet statistics_32bit/—xor0029 ;
wire \BU2/U0/N990
wire \BU2/U0/ethernet_ statistics 32bit/_mux0061<0>_map108 ;
wire \BU2/U0/ethernet_statistics__32bit/ mux0061<1>_map95 ;
wire \BU2/UO/ethernet_statistics_32bit1_mux0061<2>_map82 ;
wire \BU2/UO/ethernet statistics_32bit/ muxO061<3>_map69 ;
wire \BU2/U0/ethernet__statistics 32bit/mux0061<5>_map56 ;
wire \BU2/U0/ethemet_statistics-32bit/ mux0061 <4>_map43 ;
wire \BU2/U0/ethernet_statistics__32bit/__mux0061 <6>_map30 ;
wire \BU2/U0/ethernet statistics_32bit/round_robin_sequence_3_1_3
wire \BU2/UO/ethernet__statistics_32bit/_mux0057_map15 ;
wire \BU2/U0/ethernet statistics32bit/N26 ;
wire \BU2/U0/ethernet__statistics_32bit/_or0013 ;
wire \BU2/UO/ethernetstatistics_32bit/_mux0057_map10 ;
wire \BU2/UO/N989 ;
wire \BU2/[JO/ethernet_statistics _32biti or0012 ;
wire \BU2/U0/ethernet_statistics_32bit/__mux0057_map8 ;
wire \BU2/UO/N988 ;
wire \BU2/U0/ethernet_statistics_32bit/round_robin_sequence_3_2
wire \BU2/U0/ethernet_ statistics _ 32bit/count_read_0_3_5
wire \BU2/UO/N91 ;
wire \BU2/U0/N89 ;
wire \BU2/UO/N87;
wire \BU2/U0/N85 ;

assign
host_stats_lsw_rdy = NlwRenamedSig_OI_ host _stats_lsw_rdy,
host_addr_142[9] = host_addr[9],
host_addr_142[8] = host_addr[8],
host_addr_142[7] = host_addr[7],
host addr 142[6] = host_addr[6],
host__addr_̂142[5] = host addr[5],
host addr_142[4] = host_̂addr[4],
host__addr_142[3] = host_addr[3],
host_addr_1 42 [2] = host_addr[2],
host_addr-142[l] = host addr[1],
host addr_142[0] = host_addr[0],
hosttrd_data[31] = host_ rd_ data 143[31],
host_rd_data[30] = host_ rd data 143[30],
hostrddata[29] = host rd data 143[29],
host_rd_data[28] = host rd data 143 [28],
host_rd_data[27] = host_rd_ data _143[27],
hostrddata[26] = host rd data 143[26],
host_rd_data[25] = host_ rd data 143[25],
host_rddata[24] = host_rd data 143[24],
host_rd_data[23J = host rd data 143[23],
host_rd_data[22] = host_rd_data_ 143 [22],
host_rd data[21] = host_ rd_ data 143 [211,
hostrddata[20] = host rd data 143 [20],
host_rd_data[19] = host_rd_data_l43[19],
host_rd_data[18J = host_rd_ data _143[18],
hostrddata[17] = host rd_ data 143 [17],
host_rd_data[16] = host rd data 143 [16],
host_rd_data[15] = host_rd_data_143[15],
host rd_ data[14] = host_rd_data_143 [14],
host rd data[13] = host rd data 143[13],

VI

host_rd_data[12] = host_rd data_ 143 [12],
host_rd_data[11] = host_rd=_data_ 143 [11],
host_rd_data[10] = host_ rd data 143[10],
host_rd_data[9] = host_rd_data_143 [9],
host_rd_data[8] = host_rd_data_143[8],
host rd_data[7] = host_rd_data_143 [7],
host_rd_data[6] = host_rd_data_143[6],
host_rd_data[5] = host_rd_data_143[5],
host_rd_data[4] = host_rd_data_143 [4],
host_rd_data[3] = host_rd_data_ 143 [3],
host_rd_data[2] = host_rd_data_143[2],
host_rddata[1] = host_ rd_ data_ 143 [1],
host rddata[0] = host_rd_data_143 [0],
increment_vector_ 144 [4] = increment_vector[4],
increment_vector_144[5] = increment_vector[5],
increment _vector 144[6] = increment_vector[6],
increment_vector__144 [7] = increment_vector[7],
increment_vector_144[8] = increment_vector[8],
increment_vector 144[9] = increment_vector[9],
increment_vector__144[10] = increment_vector[10],
increment_vector_ 144 [11] = increment_ vector[ii],
increment_vector_144[12] = increment_ vector[12],
increment vector 144[13] = increment_ vector[13],
increment vector_ 144 [14] = increment_ vector[14],
increment_vector144[15] increment_vector[15],
increment vector__ 144 [16] = increment_ vector[16],
increment_ vector 144[17] = increment_ vector[17],
increment_ vector__144[18] = increment_vector[18],
increment_vector_144[19] = increment_vector[19];

VCC VCC_0
.P(NLW_VCC_P_UNCONNECTED)

);
GND GND_ 1

.G(NLW_GND_G_UNCONNECTED)
);
VCC \BU2/XST_VCC

.P(\BU2/N3)
);
GND \BU2/XST_GND

.G(\BU2/N2)

FDR \BU2/UO/ethernet_statistics_32bit/host_rd_data_6
.D(\BU2/U0/ethernet_ statistics_32bit/_mux0054 [6]),
.R(\BU2/U0/ethernet_statistics_32bit/_or0005),
.C(host_clk),
.Q(host_rd_ data _143 [6])

);
FDR \BU2/U0/ethernet statistics_32bit/host_rd_data_5
.D(\BU2/UO/ethernet_statistics_32bitl mux0054 [5]),
.R(\BU2/U0/ethernet_statistics_32bit/_̂or0005),
.C(host_clk),
.Q(host_rd_data 143[5])

);
FDR \BU2/U0/ethernet_ statistics_ 32bit/host_rd_data_4
.D(\BU2/UO/ethernet_statistics_32bit/_mux0054 [4]),
.R(\BU2/UO/ethernet_ statistics 32bit/_or0005),
.C(host_clk),
.Q(host_rd_data 143[4])

VII

FDR \BU2/U0/ethernet_statistics_32bit/host_rd_data_3
.D(\BU2/U0/ethernet_statistics_32bit/_mux0054 [3]),
.R(\BU2/UO/ethernet statistics_32bit/_or0005),
.C(host_clk),
.Q(host_rd_data_143 [3])

);
FDR \BU2/UO/ethernet_statistics_32bit/host_rd_data_2
.D(\BU2/U0/ethernet_statistics_32bit/_mux0054 [2]),
.R(\BU2/UO/ethernet_statist4cs_32bit/_or0005),
.C(host_clk),
.Q(host_rd_data 143[2])

FDR \BU2/UO/ethemet_statistics_32bit/host_rd_data_1
.D(\BU2/UO/ethernet_ statistics_32bit/_mux0054 [1]),
.R(\BU2/UO/ethernet_statistics_32bit!_or0005),
.C(host_clk),
.Q(host_rd_data_143 [1])

);
FDR \BU2/UO/ethernet_statistics_32bit/host_rd_data_0

.D(\BU2/UO/ethernet_statistics_32bit/_mux0054 [0]),

.R(\BU2/UO/ethernet_statistics_32bit/_or0005),

.C(host_clk),

. Q(host_rd_data_ 143 [0])
);
FDR \BU2/U0/ethernet_ statistics_32bit/enb

.D(\BU2/UO/ethernet_statistics_32bit/_or0004),

.R(ref reset),

.C(ref clk),

.Q(\BU2/U0/ethernet statistics _32bit/enb_141)
);
VCC \BU2/UO/XST_VCC
.P(\BU2/UO/N1)

);
GND \BU2/U0/XST_GND,

.G(\BU2/UO/NO)

// synopsys translate_on

endmodule

// synopsys translate off

'timescale 1 ps / 1 ps

module glbl Q;

parameter ROC_WIDTH = 100000;
parameter TOC WIDTH = 0;

wire GSR;
wire GTS;
wire PRLD;

reg GSR_int;
reg GTS_int;
reg PRLD_int;

//-------- JTAG Globals --------------
wire JTAG TDO GLBL;

wire JTAG_TCK_GLBL;
wire JTAG_TDI_GLBL;
wire JTAG_TMS_GLBL;
wire JTAG TRST GLBL;

reg JTAG_CAPTURE_GLBL;
reg JTAG_RESET_GLBL;
reg JTAG_SHIFT_GLBL;
reg JTAG_UPDATE_GLBL;

reg JTAG_SEL1 GLBL = 0;
reg JTAG_SEL2~_GLBL =0;
reg JTAG_SEL3_GLBL = 0;
reg JTAG_SEL4_GLBL = 0;

reg JTAG_USER_TDO1_GLBL = 1'bz;
reg JTAG USER TDO2_G'LBL = l'bz;
reg JTAG_USER TD03—OLBL = 1'bz;
reg JTAG_USER TDO4_GLBL = l'bz;

assign (weak1, weakO) GSR = GSR int;
assign (weak1, weakO) GTS = GTS_int;
assign (weak1, weakO) PRLD = PRLD_int;

initial begin
GSR_int = 1'bI;
PRLD_int = 1'b 1;
#(ROC_WIDTH)
GSR_int = 1'b0;
PRLD_int = 1'bO;

end

initial begin
GTS_int=1'b1;
#(TOC_WIDTH)
GTS int = 1'b0;

end

endmodule

// synopsys translate_on

KI

	Title
	Abstract
	Chapter 1
	Chapter 2
	Chapter 3
	Chapter 4
	Chapter 5'
	Chapter 6
	References
	Appendix

