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Abstract 

Orthogonal Frequency Division Multiplexing (OFDM) is an effective way to increase 

data rate and simplify equalization problem in wireless communications. OFDM systems 

require an efficient channel estimation procedure to demodulate the received data coherently. 

Pilot based techniques have normally been employed for channel estimation in 

OFDM systems. The obvious drawback associated with pilot based techniques for channel 

estimation is bandwidth overhead. Blind channel estimation techniques act as alternative to 

pilot based techniques to increase the spectral efficiency. Second order statistics (SOS) based 

blind channel estimation methods overcome the slow and local convergence which persist in 

HOS methods. Among SOS based blind channel estimation methods, noise subspace method 

has proved to be effective in terms of convergence speed and estimation accuracy. In this 

dissertation work, we compare SOS based TXK (Tong ,Xu and Kailath) algorithm and noise 

subspace algorithm for blind channel identification of FIR channels using Single Input and 

Multiple Output (SIMO) model. 

Conventional OFDM systems are based on sufficient cyclic prefix (CP) to facilitate 

simple receiver implementation, however, at the cost of significant channel utilization loss 

that may be the over riding constraint for future high speed services. Thus, there exists 

increasing interest in OFDM systems with less CP or no CP, for which conventional 

algorithms assuming sufficient CP may not be appropriate. This dissertation work is focused 

on study of blind channel estimation techniques for OFDM systems with insufficient CP or 

no CP. The redundancy introduced by oversampling or by virtual carriers (VCs) is exploited 

in above blind channel estimation techniques that give the OFDM systems the potential to 

achieve higher channel utilization. 

MIMO-OFDM systems can achieve higher data rates over broadband wireless 

channels. For the purpose of subspace based blind channel estimation for MIMO OFDM, 

either cyclic prefix (CP) or zero padding (ZP) has been exploited. In this dissertation work, 

evaluation of both CP and ZP based techniques for channel estimation in MIMO OFDM is 

performed. 
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Chapter 1 

Introduction 

Since the introduction of the first mobile phone systems (e.g. NTT system in 

Japan) in the late 1970's, wireless communication has evolved from analogue system to 

digital system and from providing single voice service to provision for multiple data 

services. Currently, the widely deployed second generation wireless systems (for 

instance, GSM or CDMA systems) are able to provide connections at the data rate up to 

28.8kbps to accommodate both voice services and rudimentary data service. Driven by 

the expectation that demands for data services will outgrow basic voice communications, 

third generation wireless system standards have been developed to achieve improved data 

rate — ranging from 9.6Kbps to 2Mbps. However, the increasing popularity of mobile 

computing and communication devices such as laptops, tablet/pocket PCs and PDAs for 

an increasingly mobile population accompanied by penetration of internet has created 

demand for multi-media rich services such as internet browsing and audio/video 

streaming. Unfortunately, cellular 3G networks have failed to satisfy the rate and quality 

of service (QoS) requirement of these new types of data services. Therefore, great effort 

has been invested in research and development of next generation (4G) wireless local, and 

personal area networks (WLANs/WPANs) that are capable of supporting such high data 

rate services while providing QoS guarantees. The ultimate goal for broad wireless 

communication is to provide: "anytime, anywhere and any media, any device," broadband 

services. 

4G systems should have the following requirements: 

• Generic Architecture: enabling the integration of existing technologies. 

• Higher Spectral Efficiency: offering higher data rates in a given spectrum. 

• High Scalability: designing different cell configuration (hot spot, ad hoc) for 

better coverage. 

• High Adaptability and Reconfigurability: supporting different standards and 

technologies. 

• Low Cost: it has been proposed that 4G should have a low cost per bit (1/10 of 

3G) 

• Future proof: opening the door for new technologies. 
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In order to provide these services, a high data rate and high quality digital. 

communication system is required in a restricted bandwidth. The high data rate 

requirement motivate research efforts to develop efficient coding and modulation 

schemes along with sophisticated signal and information processing algorithm to improve 

the quality and spectral efficiency of wireless communication links. However, these 

developments must cope with several performance limiting challenges that include 

channel fading, multiuser interference, limitation of size/power especially at mobile units. 

A primary challenge to high data rate in wireless communications is the presence 

of multi path fading channel. Multipath fading results from the fact that radio signal 

propagates through many paths with different delays from the transmitter to the receiver. 

For typical narrow band modulation, this gives rise to variations in received signal 

amplitude (fading); if the delay spread of the various components is a significant fraction 

of the symbol duration as in frequency selective fading, it also leads to inter symbol 

interference (ISI). 

To combat the adverse effect of ISI, channel equalization is typically employed 

[1]. In conventional single carrier communication systems, increasing the data rate 

(equivalently decreasing the symbol duration) for a given multi path channel incurs more 

severe ISI, implying the need for more complex channel equalization. Thus in single 

carrier narrow-band modulation, transceiver designs are limited by cost/complexity 

considerations of feasible equalizer implementations. 

1.1 Orthogonal Frequency Division Multiplexing (OFDM): 

Multi-carrier modulation (MCM) [2] is an alternative approach to alleviating the 

impact of frequency selective fading channels. In MCM, high rate data stream is divided 

into several independent low-rate sub streams that modulate a set of sub carriers and are 

transmitted parallel over the channel. The increased symbol duration on each sub stream 

reduces the impact of ISI, thereby increasing the system's immunity to frequency 

selective fading channels. 

Orthogonal Frequency Division Multiplexing (OFDM) ([3]) is the most popular 

MCM scheme. The set of sub carriers in the OFDM are chosen such that they have 

minimum spacing while preserving mutual orthogonality of the transmitted time domain 

signals. A main attraction of OFDM is based on its implementation using cost efficient 

Fast Fourier Transform (FFT) to implement multiple carrier modulation or demodulation 
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operations. Thus, the robustness to frequency selective fading channels accompanied by 

the high spectral efficiency and the feasibility of low cost transceiver implementations 

have led OFDM to being considered as a promising candidate for high rate wireless 

communications. OFDM has been opted in the following applications [3]: 

• European standards: Digital Audio Broadcasting (DAB) with target rates 1.7 

Mbps and terrestrial Digital Video Broadcasting (DVB)/T with target rates 20 

Mbps. 

• Fixed wire applications: Asymmetric Digital Subscriber Lines. 

• Broadband Fixed Wireless Access (IEEE 802.16). 

• High-speed wireless LANs: IEEE 802.11a with target rates of 6-54 Mbps. 

One of the most interesting trends in wireless communication is the proposed use 

of multiple input multiple output (MIMO) systems. A MIMO system uses multiple 

transmitter antennas and multiple receiver antennas to break a multipath channel in to 

several individual spatial channels. The basic idea is to usefully exploit the multipath 

rather than mitigate it, considering the multipath itself as a source of diversity that allows 

the parallel transmission of N independent sub streams from the same user. The 

exploitation of diversity and parallel transmission of several data streams on different 

propagation paths at the same time and frequency allows for extremely large capacities 

compared to conventional wireless systems [4]. The prospect of many orders of 

magnitude improvement in wireless communication performance at no cost of extra 

spectrum (only hardware and complexity are added) is largely responsible for the success 

of MIMO as a topic for new research. The combination of the two powerful techniques, 

MIMO and OFDM, is very attractive, and has become a most promising broadband 

wireless access scheme. 

1.2 Channel estimation techniques for OFDM systems: 

For OFDM systems, an efficient and accurate channel estimation procedure is 

necessary to coherently demodulate received data. Although differential detection could 

be used to detect the transmitted signal in the absence of channel information, it would 

result in about 3dB loss in SNR compared to coherent detection. Also, reliable channel 
estimation is ne_r4,..1 	,,eins,14c Tab 	1,,,)(1;r1r. [5] formaximizing the (into  throughput of CIA../capLi v 	vat, load 

system. 
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Channel estimation can be done by either training or pilot based approach 

(supervised approach) or blind approach (non-supervised approach). 

1.2.1 Training or Pilot based channel estimation methods for OFDM systems: 

Classical methods for channel estimation are based on the use of training 

sequence. A known sequence is transmitted for a limited period of time, during which a 

channel estimate is obtained. Pilot symbols (on pilot subcarriers) are embedded in 

between the data symbols (on data subcarriers), which provides the channel information 

at the receiver. These estimated values are interpolated over the data subcarriers and the 

data symbols are decoded. The pilot spacing in both time and frequency domain plays a 

significant role as channel characteristics should not change between pilot subcarriers. In 

order to cope with the Doppler effect due to mobility of wireless systems, reference 

sequence must be repeated periodically and may result in a significant loss in the useful 

bit rate. The obvious drawback associated with pilot based techniques for channel 

estimation is bandwidth overhead. 

In, [6], minimum mean square error (MMSE) and least squares (LS) channel 

estimator are proposed. The MMSE estimator has good performance but high complexity. 

On the other hand, the LS estimator has low complexity, but its performance is not as 

good as that of MMSE estimator. In [7], comb type pilot signals, uniformly spaced across.  

subcarriers within each frame, have been used with interpolation for the remaining 

subcarriers. 

1.2.2 Blind channel estimation methods for OFDM systems: 

Blind channel estimation is a novel strategy to eliminate the pilot overhead in a 

communication system. Blind channel identification methods are bandwidth efficient as 

compared to pilot based methods. But blind channel identification algorithms are highly 

complex. 

Ideally, a blind scheme does not employ any pilot symbols and instead relies only 

on the information symbol outputs to estimate the channel. It is to be noted, that though 

the information symbols are individually unknown, one can have statistical knowledge 

about an ensemble of such symbols. This statistical information provides a viable means 

to estimate the channel. Theoretically, if such a blind scheme were possible it would 

eliminate completely the need to transmit pilot symbols and thus would be totally 

bandwidth efficient. 
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Various blind channel identification algorithms, based on Higher Order Statistics 

(HOS) of the received signal, proposed in literature [8,9,10,11] have major drawbacks of 

slow convergence and local convergence. To overcome these drawbacks, a significant 

amount of research has been done on Second Order Statistics (SOS) based blind 

estimation [12]. However problem with SOS based methods is that, under baud rate 

sampling, SOS loses the phase information of the channel. Tong, Xu, Kailath algorithm 

[13] was the first one to use SOS of fractionally sampled channel outputs for the blind 

detection of FIR channel. Moulines et al [14] present an algorithm that explicitly exploits 

the signal and noise subspace separation as well as the special structure of channel matrix. 

This method works on the principle of orthogonality between signal and noise subspace 

which leads to the identification of channel. The advantage of subspace methods is that 
convergence is faster. 

In an OFDM system using training, the received signal samples corresponding to 

the cyclic prefix (CP) are discarded. However, those samples contain useful information 
that can be exploited for the purpose of channel estimation or channel tracking. Blind 

channel estimators present in [15] and [16] assume the inherent CP-induced 

cyclostationarity at the transmitter explicitly or implicitly, while the estimators [17] and 

[18] belong to the class of deterministic subspace approach. Cai and Akanshu [17] 

developed a noise subspace algorithm by utilizing the structure of filtering matrix 
introduced by the CP insertion. 

Other than the CP, there exists another resource — Virtual Carriers (VC). These 
VCs are exploited for the purpose of subspace based blind channel estimation in OFDM 

systems with/without CP [19]. Methods for blind channel identification of OFDM 

systems without CP are spectral efficient due to the removal of CP. Instead of using VCs, 

receiver oversampling is used for subspace based blind channel identification of OFDM 
system without CP [20]. 

Precoding in OFDM system act as alternative to the CP/VC's for the purpose of 

subspace based blind channel identification of OFDM systems. The methods in [21, 22] 

uses a non-redundant linear precoders at the transmitter, and the channel state information 

(CSI) is contained in each entry of the signal covariance matrix. These methods extract 

CSI from single column of received covariance matrix. Nallanathan [23] proposed a blind 

channel estimation method that can overcome the aforementioned shortcomings and 

extract the CSI from all the columns of received covariance matrix. 
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Various precoding based blind channel estimation algorithms for MIMO OFDM 

systems have been proposed in [24, 25, 26]. Zeng and Ng [27] exploits zero padding in 

OFDM systems for the purpose of subspace based blind identification of MIMO-OFDM 

channels. Gao and Nallanathan [28] developed a novel subspace algorithm that is suitable 

for CP based MIMO-OFDM systems. Chenyang Shin et al. [29] proposed a method that 
unifies and generalize the subspace algorithm for SISO-OFDM [19] system to MIMO-

OFDM systems with any number of transmit and receive antennas. 

1.3 Problem Statement: 
This dissertation presents the following work: 

1. Study of SOS based blind channel estimation methods for FIR channels using 

single input multiple output (SIMO) model. 

2. Application of Subspace based blind channel identification algorithms to OFDM 

systems with or without CP. 

3. Extension of subspace based blind channel estimation methods for OFDM 

systems to blind identification of channel in MIMO-OFDM systems. 

1.5 Organization of the report: 
This report is organized in five chapters: 

In Chapter 1, we summarize problem statement of the dissertation work and also 

give an overview of channel estimation problem in OFDM systems. 

In Chapter 2, we discuss SOS based TXK algorithm and subspace algorithm for 

blind channel identification of FIR channels using SIMO model, and present simulation 
results. 

In Chapter 3, we study the exploitation of VCs for the subspace based blind 

channel identification methods for OFDM systems with and without CP. Receiver 

oversampling method for blind channel identification of OFDM systems without CP is 

presented next. We then discuss semi- blind implementation of subspace methods. We 

also present simulation results of these algorithms. 
In Chapter 4, we describe the subspace based blind channel estimation for cyclic 

prefixed MIMO-OFDM systems. We then discuss subspace based blind channel 

estimation for zero padded MIMO-OFDM systems. Simulation results of these algorithms 
are also given. 

Chapter 5 concludes the report. 
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Chapter 2 

SOS Based Blind Channel Identification 

In this chapter, we first give a brief review of HOS based blind identification 

methods. We then discuss different SOS based blind identification methods. We then 

introduce single input multiple discrete channel models (SIMO) for SOS based identification 

techniques. TXK algorithm for blind identification is described next. We also describe 

Subspace based method for blind identification of SIMO systems. We finally present 

simulation results. 

2.1 Blind channel equalization and identification: 

The innovative idea of self recovering (blind) adaptive equalization was first 

proposed by Sato [8] and later developed by Godard [9]. These algorithms are the 

generalized versions of Bussgang's blind equalizers [10]. The Bussgang algorithm performs 

blind equalization of a linear communication channel by subjecting the received signal to an 

iterative deconvolution process. Due to the minimization of a nonconvex cost function, there 

is a likelihood of being trapped in local minima. Also these algorithms have relatively slow 

rate of convergence. 

A family of constant modulus blind equalization algorithms (CMA) proposed by 

Godard has following important features 

o It is more robust than other Bussgang's algorithms with respect to the carrier 

phase offset due to the fact that the cost function used for its derivation is based 

solely on the amplitude of the received signal. 

o Under steady-state conditions, the Godard algorithm attains a mean-square error 

that is. lower than that of other Bussgang algorithms. 

Another blind identification approach was proposed by Hatzinakos and Nikias [11]. 

In this method they modeled the baud rate sampled received signal as moving- average 

process. The multipath channel is then identified from the trispectrum of the received signal. 

The advantage of this method over the adaptive blind equalization methods is that the 

algorithm will provide exact information of a possibly nonminimum phase channel, 

whenever the higher order cumulants and the trispectrum of the observation can be estimated 
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accurately. The above algorithm is sensitive to uncertainties associated with timing recovery, 

unknown phase jitter and frequency offset. Due to the usage of HOS, algorithm has slow 

convergence than SOS. Finally, the effect of non-Gaussian noise may effect the convergence 

and the performance of Nikias algorithm. 

The major drawbacks of the HOS method are: 

• Local Convergence 

• Slow Convergence 

Local convergence is a possibility for many blind algorithms based on HOS, which 

typically results from the use of multimodal equations. Slow convergence is due to the fact 

that HOS needs long streams of output data in order to obtain accurate time averages. This 

requirement of large data samples can pose a potentially serious obstacle to the application of 

blind equalization in fast time varying environment. To overcome the above drawbacks, a lot 

of research has been done on SOS based blind estimation algorithms. However problem with 

SOS based methods is that, under baud rate sampling, SOS loses the phase information of the 

channel. 
When the input process is nonstationary, the second order statistics of the channel 

output contains some phase information of the channel so that we can identify channel with 

both magnitude and phase. For applications in communications, many types of signals 

exhibit a particular type of nonstationarity called cyclostationarity. The exploitation of 

cyclostationarity has shown promising results in various applications such as detection and 

filtering of communication signals, parameter estimation, direction finding etc. Tong, Xu, 

Kailath algorithm (TXK) [13] exploits the cyclostationarity or the equivalent multichannel 

nature of fractionally sampled channel outputs for blind detection of FIR channel. 

Requirement for TXK algorithm is that channel input be uncorrelated, or that its correlation 

function be known. TXK algorithm does not exploit block Toeplitz structure of the 

multichannel model of a SIMO system. TXK algorithms success also depends on the receiver 

ability to estimate the channel noise variance 6-2  . 

Moulines et al [14] present an algorithm that explicitly exploits the signal and noise 

subspace separation as well as the special structure of channel matrix. By exploiting the 

special block structure of unknown channel matrix, the subspace method does not require the 
8 



Labannei input to he uncyrreiate,ww- 
__AL In tact so long as the input covariance matrix is of full 

■;uiumn rank, the subspace method can identify the channel impulse response, when channel 

matrix is of full column rank. Subspace based blind channel estimation works on the 

principle of orthogonality between signal and noise subspace which leads to the identification 

of channel. The advantage of subspace methods is that convergence is faster. 

Subspace methods are divided into deterministic subspace methods and statistical 

subspace methods. Deterministic methods do not assume that the input source has a specific 

statistical structure. Some of the deterministic methods are Cross relation approach, Noise 

subspace method, Least squares smoothing techniques etc. 

Cross Relation(CR) approach proposed by Hua [32] is very effective for small data samples 

and applications at high SNR. Hua showed that CR method combined with the ML approach 

offers performance close to the Cramer Rao bound. Problem with the CR method is that 

channel order cannot be over estimated. 

Least Sqaures Smoothing(LSS) proposed by Tong et al [33] approach is adaptive in 

implementation. The key idea of LSS rests on the isometric relation between the input and 

observation spaces. This approach has two attractive features. First, it converts a channel 

estimation problem to a linear LSS for which there are efficient adaptive implementations 

using lattice filters. Second, a joint order detection and channel algorithm can be derived that 

determines the best channel order and channel coefficients to minimize smoothing error. 

In statistical subspace approaches, it is assumed that the source is a random sequence 

with known SOS. The advantage of statistical methods is that they require only upper bound 

on channel order. Some of the statistical methods are TXK algorithm, Identification via 

cyclic spectra, Identification via Linear prediction etc. 

Identification via Linear Prediction [34] algorithm uses the concept of autoregressive 

modeling of received signal. Algorithm consists of two steps: 1. Identification of ha 2. 

Identification of hk  based on h0, where h0  and hk  are the first and kth  tap of an FIR channel. It 

does not require the exact channel order, thus it is robust against over determination of the 

channel order. Derived from the noiseless model, the linear prediction idea is no longer valid 

in the presence of noise. The main disadvantage of this algorithm is that it is a two-step 

approach whose performance depends on identification of ho. 
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2.2 Single input multiple output (SIMO) channel models for SOS based identification: 

Edn  o(t-nT) 

   

Source 
Transmit 

Filter 
Channel 

   

AWGN 

Fig 2.1: Basic elements of a communication system 

As shown in Fig 2.1, dn  denote the symbol emitted by the digital source at time nT, 

where T is the symbol duration. This signal is modulated, filtered, sent through the 

communication channel, filtered, and demodulated. The resulting baseband signal is given by 

x(t) = 	clmh(t —mT)+v(t) 	 (2.1) 

Where v(t) is noise which is band limited complex stationary process, h(t) is the 
encompass of the transmitter filter, channel and receive filter. 

We make the following assumptions 

➢ Channel h(t) has finite support L. 

➢ At time n, the receiver processes the channel output due to a transmitted signal 

vector that consists of (L + N) symbols. 

Let the oversampling factor be A. Then a set of P = T/ A sequences can be constructed 

according to x(n1)  = x(to  + i0 + nT) for 0 i P —1. Each sequence has period T. The 

resulting over sampled signal using (2.1) can be written as 

m=o 
cin_m  h (to  + 	rnT)+ 	 (2.2) 

where vn(i)  = v(to  + iA+ mT) are the samples of v(t). 
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(0) 
	► Xn  

vn(0) 

do  1) 

H(M-1) 

Vn
(M-1) 

X (M-1) 
n  

Fig 2.2: Representation of an oversampled channel as a SIMO model 

A single input multiple output (SIMO) model which consists of M virtual channels is shown 

in Fig 2.2.Each sequence x,;')  depends on discrete—time impulse response H(1)  characterizing 

the i th channel, where 

Hu) t[h,(,i) ,10 	 h ,rf 

def 
=[h(t 0  i A),h(t 0  + iO +T), 	 h(to  +iA+ LT)]'.  0 	P —1 	 (2.3) 

Taking N successive symbols of the received signal sequence as 

X (1)  = [x;i1), 	,x(nr)N+If 
	

(2.4) 

Then using (2.2) we obtain 

X,;' )  = 4)D„ +17n(1) 
	

(2.5) 
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Where V,,(1)  = 	 (dim N x 1) and D„ = [d„,• • • ,d,,_ N _ L+,]T  (dim (N + L) x 1) and 

the matrix giV is N x (N+L) filtering matrix given by 

h0' ) 	 0 0 

0 h(01) 	h(L' )  0 	0 
(2.6) 

h" )  L _ Nx(N+L) 

By taking such Moversampled signals from (2.5) and grouping them together, we will get 

1 (0)  0) A rir(0) r N  
• 

I  V (°)  

D,,+ (2.7) 
X (114 —1)  x(M-1)  V(M  n N 	/ n 

(2.7) can be written as 

X n  = 	 (2.8) 

( Ho) \ 
N 

where X,, = 

0 

91-N  
X (Al —1)  n 	xl)  

•(M-1) 
N 	(APV x L -FN) 

V (0) (0) \ 
v  n 

d„ 

V = 

 

Dr, 

   

V(M-1)  n 	(.4Nxi)  
_dn-N-L+1 _ 

In alternate Sylvester matrix representation, the M virtual channel coefficients having 

the same delay index are all grouped together. Specifically, we write M virtual coefficients as 

h; = [10,1 e, • • , 	k = 0,1,• • • ,L 	 (2.9) 

and correspondingly, we define M x 1 received signal vector and noise vector as, 

= [x(°), 4°) , • • • ,e-11 and v:, = [le), 
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Then using (2.2), NL received samples can be grouped together as 

  

r 
X n  

X n_1  
X' = n  

 

   

X I  _ n—N +1 _ 

gcD„ + 	 (2.10) 

where V: = 

V '  V n  

V n_i  
, Dn  is given by (2.5) and 

   

• 

V t  _ n—N+1 _ 

ho li; 	ti'm  0 
0 	11'0 	• • • 	111,,,,_1 	ht, 	• . . 	0 
: 	.. 

• • 

o 	0 	• • • Wo 	h; 	• • • him  

(2.11) 

(MNx(L+N))  

The block Toeplitz matrix .7-tx  is called a Sylvester matrix representation. 

The matrices YIN  and .71A,' defined in (2.8) and (2.11) respectively, differ primarily in the way 

in which their individual rows are arranged. But they contain same information about the 

channel. More importantly the spaces spanned by the columns of If, and yr„, are canonically 

equivalent. The multichannel filtering matrix Yr, and MN  play a central role in the blind 

identification problem. 

Using (2.8), correlation functions of received signal is given by 

Rx  (k) = E (X nX n_k ) = xN RJ (k).741  + (k) 

where R d  (k) = E (D „D, I, I_ ) and Ry (k). E(V„V„Ifk ) 	 (2.12) 

Here R„ (k) is noise covariance matrix of dimension (MN x MN) and Rd  (k) is 

source covariance matrix of dimension (N+L) x (N+L). 
Our aim is to identify M (L +1) x 1 vector Hof channel coefficients 
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def 
H =[H(CI)T 9 3 • • • H (A4-1)T   (M(L+1)xl) 

using the second order statistics of the received signal. 

2.3 TXK Time domain blind identification algorithm: 

One of the best known works on blind channel identification based on second order 

statistics (SOS) was presented by Tong, Xu and Kailath [13]. They exploit the 

cyclostationarity present in oversampled received signal for the detection of SIMO channels. 
With out loss of generality the following assumption can be made: 

Assumption: Dn  is zero mean stationary process with unit variance. As a result, input signal 

vector Du  has following autocorrelation function 

Rd  (k) = E(D„Di,?_k ) 

= J R  , k 

= (J H  )1kI  , k 0 where J = 

(o 
1 
0 

0 

0 
0 
1 

0 

0 
0 

• - - 	0 

• 1 

0 
0 

0idxd 

and d = L + N . (2.13) 

Following theorems discuss necessary and sufficient condition for identification of channel: 

Theorem2. 1 [131: Suppose .7f A, is a full column rank and D„ satisfies (2.13) then 

uniquely determined up to a phase constant by 12„(0)and Rx  (1) 

The following theorem states the conditions for .7f, to full column rank. 

Theorem 2.2[141: Matrix MN  is full column rank i.e., rank(.71-  N ) = L + N, if 
def 	, 

= 1) the polynomials H( i )(Z) = E hk 	have no common zero 
j 0 J 

YIN is 

2) N is greater than the maximum degree L of the polynomial H (' )(Z) 

i.e., N > L, 

3) at least one polynomial H(' )(Z) has degree L. 
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2.3.1 TXK algorithm for noise less situation: 

First consider noiseless scenario where Ry (k) = 0 and using (2.12) and (2.13), we get 

Rx (0)=yrN4 Rx (1)= f N JM11,11 	 (2.14) 

Define singular value decomposition (SVD) of Rx  (0) as 

U H Rx  (0)U = diag (0.12 ,...,cr 2 	0) 	 (2.15) 

Let u1  denote the ith column of U , and let 

Us  =[u l ,••-,ud ], 	 (2.16) 

E = diag(cr,,- • • , od ) 	 (2.17) 

F = 	Us' 	 (2.18) 

From (2.14) and (2.15), we have 

= Us  EV where V = [vp . • • ,vd lis an orthogonal matrix. 	 (2.19) 

Thus F MN = E-1  UsHUs  EV = V 

Using Rx (1)=5-(N JMNH  , we define 

R=FRx (1)F H = F 	 F H  = VJV H 	 (2.20) 

From (2.20), we get Jordan chain of equations, 

Rvk =Vk+1, k =1,•••,d — 1, 	 (2.21) 

Rvd =0 	 (2.22) 

Eq (2.22) shows that vd  is a singular vector of R. 

Computing RH  R, we have 

RH R = V diag(1,• • • ,1,0)V H 	 (2.23) 

It is clear from (2.23) that 
1. The matrix R has one and only one singular value equal to 0 

2. vd  is a right singular vector of R associated with zero singular vector 

Now if R has an SVD i.e., if 
iH r  

[Y1P"' ,Yd 	Rizi,•••,zd]= diag (712  • • , y d2 ) (2.24) 
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then there exits a 0 such that 

Vd = Zd ej°  (2.25) 

Now the problem is to find v 	k =1,- • • ,d —1, using (2.21). 

From (2.21), 
d-i 

V = 	) 
	
Vd (2.26) 

SO V = [Vp  • • • , V d ] =[(1011-]  V d  ,(Rt  )(I-2  V d  ,• • • , V d i (2.27) 

Using (2.25) in (2.27), 

V 
= [( ier  )d-I zd  , ( Rt  )d-2 zd 	zd i ejo  

(2.28) 

Substitute (2.28) in (2.19), we will get the final estimate of the channel filtering matrix 

if, = U E Q ei#  (2.29) 

Where Q 
=[(izt )(d -1) zd  ,(1zr )( d -2) zd 	z d i 

2.3.2 TXK algorithm for noisy situation: 

Section 2.3.1 provides the essential parts of the proposed blind channel identification 
algorithm. In this section we consider the noisy case. Under the assumption of white noise 

with variance 62  , the noise correlation matrix is given by 

RV (k)= E(V y 

which can be written as 
2 rkm cr 

Although neither the noise covariance, nor the signal space dimension d is known a priori, 

they can be obtained from the hx  (0) . 

SVD of hx  (0) has the following form, 

U H R„ (0)U = diag (Ai 0.±  2 	+0.2 ,0.2,...,0.2\ ) where A, 	 0 
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Therefore, both cr2  and d can in theory be obtained by determining the most significant 

singular values of Rx  (0) . In practice, a threshold test can be employed to determine d and 

then to estimate cr2  from the singular values of the estimated covariance matrix. 

Once the noise covariance cr2  is determined, obtain noiseless received correlation matrices 

by subtracting noise correlation matrices from the observation correlation matrices. We can 
then use the algorithm described in section 2.3.1 

Steps involved in implementing TXK Algorithm are as follows: 

Step 1: Estimate ic (0) , Rx  (1) through time averaging 

1 N I' Nb  
x  (0) = 	 nX nH  "ix  (1) = 	 nX 

	

N b n=1 	 N b n=1 

Step2: From hx  (0), estimate noise covariance (3-  and the signal dimension d . 

Step3: Compute the SVD of R0  = Rx  (0)- 627 and form U., which consists of the singular 

vectors associated with the d largest singular values, and E which consists of 

positive square root of d largest singular value. 

Step4: Compute the SVD of 

	

R = F 	(1) - Rn  (1)) F H  where F =E-1  U , Rn  (1) = 6-2  J m  

Get the left and right singular vectors yd  and zd  corresponding to smallest 

singular value. 

Step5: Form an estimate of H from 

H =U5 Y Q where Q =[yd  , Ryd  - ,R(d-1)  yd l 

2.4 Subspace based blind channel estimation: 

Received correlation matrix given in (2.12) with k = 0 can be written as 

Rx  (0) = r N  (0).7f: + R,, (0) 	 (2.30) 

where Rd  (0) = E(D„D,,H  ) and R,,(k)= E (V.Vni  ) 

Noise is assumed to be white with variance .2  and is independent of transmitted sequence. 
(2.30) is rewritten as 
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Rx (0)= N Rd  (0) .741  +6 21 	 (2.31) 

By eigenvalue decomposition of (2.31) we will get the MN eigenvalues. Let 

A0,21 , A2 ,•  • • Amv_i denote the eigenvalues of (2.31). Let the eigenvalues arranged in 

descending order are .1.0 	 A2,•  • • /3.,  jw . 

Signal part of the covariance matrix (2.31) has rank L+N, hence 

cr2 	for i = 0,. . . , L+N-1 

A.7 = cr2 
	

for i = L+N. . . ,MN —1 

Let [s0 ,• • • ,sL+Ar_J denote the unit norm eigenvectors corresponding to signal 

subspace associated with eigenvalues Ao  , • • • , AL+N_i  and Go  ,• • GA,liv_L-N+1 the unit norm 

eigenvectors corresponding to noise subspace associated with eigenvalues 27.+N 9 	"l'INA' -1 

Let us define two matrices, 

MN x (L+N) 	 (2.32) 

G =[G0 ,--- ,Gitoi_L_N+1 ] 	MN x (MN—L-9 

Using (2.31) and (2.32), eigenvalue decomposition of R, is 

R x  (0) = Sdiag(20 ,--• 	+a2GG H 
	

(2.33) 

Here S spans the signal subspace and G spans the orthogonal complement, the noise 

subspace. Columns of the channel matrix 9{N  also lie in signal subspace. Since noise and 

signal subspace are orthogonal, hence columns of filtering matrix are orthogonal to vectors in 

column subspace. 
From above, 

G7 M N  =0 	 (2.34) 

Under appropriate condition stated in theorem2.3, the noise subspace can uniquely 
determines the channel H up to a multiplicative constant. 

Theorem 2.3 [14]: Assume that 0 N 	L and ii) matrix Y{ N _l is full column rank (i.e 

rank( .7-1- ) = L + N -1). Let .7tA, be a nonzero filtering matrix with the same dimensions as 
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G;(!()) 	G" )  iN1 	• • • 	 0 	0 

0 	G(1)  

	

1,0 	••• 	 01)  1,N-1 0 	0 

0 	• • • 	0 

(1)— g, 

Go) 1,0 G(1)  IN-1 

H= 

 

(L+1)x(L+N) 

xN . The range of .7f A, is included in the range of .91.N ¶ the corresponding vectors H and 

H' are proportional 

In practice, ensemble averages are approximated by time averages. So only estimate 

of noise eigenvectors a, is available and conditions in (2.34) can be satisfied in the least 

squares sense. This leads to the minimization of the following quadratic form 

def MN-L-N-1 
q(H) = 	16,11  2-1-N 1 2  

i=o 

By exploiting the block Toeplitz structure of If.A, , we can put (2.35) in terms of H. 

It can be shown that 

(2.35) 

G,H  N  = H H  g, 	 (2.36) 

(0) 
gi 	 ( 31-(0) 
gi(1)  

and .7f, = 
jr(m-i) 

N 	)(/vINx(L+N)) 

where gi = 

_(M-1) th  
-M(L-1-1)x(L+N) 

Proof  

Partition G, as G, = 

 

where GP )  = 

 

(2.37) 

   

 

G(M—I)  —MNx1 

 

Nxl 

 

   

Using (2.8) in (2.36) 
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g
(4 -1) 

B, 

= HR  gi 

Gl/i yr,/  = E 	x (1) 

1=0 

Substitute (2.37) in (G(')  )H  Yir as 

(2.38) 

(G1 ) 	I - [G i1 1 0 ) 

=[Gi(!0 ) 

G, 1̀ )  

G(` )  0 G;;;1_,]*[le 

• • • 

0 

• 

him 

h(1) 

0 

• - • 

• • • 	... 	0 	0 

•-• 0 

(2.39) 

le 	h(Li)  

h,1)1 (Convolution) 

= [1` 	 lm 	WI *[Gm Gm --- Gm ]4Il 	L 	i3O 	1,1  1,N-1 

Rearranging (2.39) we get 

) G(1  • 

	

	 ... 0 0 ,N 
0 	G(1) G1N(1)-1  0 • • • 0 •  

(G(') )H 	=[k, 	• hi] 

0 	G11) 

	

1,0 	 G(1) I,N -1 

L+1x(L+N) 

= 	[ill) LL 

Using (2.40) in (2.38), we get 

(2.40) 

m-I 
.71-N  = E (Gi(i)1

H 
Y{(1) = E [ H(/) -1H (1) 

1  N 	 j  gi 
1=0 	 1=0 

= [H(0" Ho'H -• • H04-0 H1 

 

  

0 
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Substituting (2.36) in (2.35), we get 

 

2 	" 
=G,HYG.V-I N116,= H H  11,:e H 

 

l
ot fl if N  (2.41) 

  

Using (2.41), (2.35) can be written as 
MN-L-N-1 

q(H) = H H QH 	where Q= E gtg H 
	

(2.42) 
i=0 

Estimates of H can be obtained by minimizing q(H) subject to properly chosen constraint 

avoiding the trivial solution H = 0 . Here we chose Quadratic constraint subject to IHI = 1. 

The solution is well known that channel estimate is the unit-norm eigenvector associated 
with the smallest eigenvalue of matrix Q. 

Proof  

Condition IHI = 1 is equivalent to 1111  H =1. 

Let J = q(H) + 2(1- H H  H) 

= H HQH + H H  H) 

Differentiating (2.43) with respect to HI' and equating it to zero, we will get 
aJ 

= aHH QH - = 0 

QH = 2H (eigenvalue form) 

Substitute (2.44) in (2.42) 

q(H) = H HQH 

= H H  211 

= AH H  H 

=2(1) = (Since H H H =1) 

From above, His the eigenvector corresponding to smallest eigenvalue of Q. 

(2.43) 

(2.44) 

(2.43) 
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2.5 Simulation results for SIMO blind channel identification: 

2.5.1 Results for TXK method: 
For channel to be identified, we use two ray multipath environment given by 

h(t)=(0.2c(t,0.11)+0.4c(t-2.5,0.11))W6T (t)  

Where c (t, a) is a raised cosine filter with a as roll-off factor and W6T  (t) is a rectangular 

window of duration 6 symbol intervals. Discrete channel coefficients are obtained by 

sampling the above continuous channel. 

For simulation of TXK algorithm in MATLAB environment, we use the following 

parameters 

➢ No of virtual channels: M = 4 

➢ Observation interval: N = 5 symbol intervals 

➢ Channel length: L = 5 

➢ No of Monte Carlo simulation runs: N„, =100 

➢ Modulation scheme for source symbols: 16QAM 
➢ Data window length: Nb=1000 blocks 

Fig 2.3 shows the flow chart for simulation of TXK algorithm. 

Start 

Assign all parameters required for 

TXK algorithm 

 

Generate channel coefficients 

 

Generate source data and use (2.8) to 

get the received signal block 
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Find the estimation of channel using 
Est UsZQ. Q is obtained using (2.29) 

Get the Nb received blocks and 
determine Rx(0) and R,(1) using time 

averages 

Find right and left singular vectors by 
SVD of R using (2.20) 

Get the signal subspace U. and from 
SVD of noiseless received correlation 

matrix R,(0)-a2I 

Find mean square error between actual 
channel and estimated channel 

Estimate noise variance o2  and signal 
dimension d from SVD of Rx(0) 

End 

Fig 2.3: Flow chart for simulation of TXK algorithm 
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All steps from A to B shown' in flow chart are repeated for each independent Monte Carlo 

run. To obtain the performance measure of the channel estimate, we use Normalized Root 

Mean Square Error (NRMSE) criterion given by 

1 \I 1 ZLIn  II 	2 
NRMSE = — — 	— II 

111111 N  m 
(2.45) 

where H (i) is estimate of the channel for the ith simulation run. 

As described in theorems 2.3, there is a complex scalar ambiguity constant associated 

with the SOS based blind channel estimator. During simulations, amplitude ambiguity is 

removed by assuming the true channel vector H to have unit norm thus normalizing the 

estimates. The phase ambiguity is determined from phase of(4°)  / hr) ), where hr)  is the 

first component of the true channel value and ir is the first component of TXK blind 

estimate of channel value. 

Fig 2.4 shows the estimate of the channel coefficients with different realizations at a 

SNR=25dB. Fig 2.5 plots the average value of estimated channel coefficients, which are 

obtained by averaging over 100 independent realizations. For comparison, we have also 

plotted original channel coefficients. It may be noted that there is a close similarity between 

the true channel coefficients and averaged channel coefficients identified using TXK method. 

Fig 2.6 plots Normalized Root Mean Square Error (NRMSE) at different values of input 

SNR. As SNR is varied from 0 to 40dB, NRMSE value decreases from 1.13 to 0.2. We may 

observe that NRMSE value is large. If we increase the SNR beyond 35dB, NRMSE value 

doesn't show any significant reduction. 

We next consider the effect of varying data window length Nb on the performance of SOS 

estimation using TXK algorithm as shown in Fig 2.7. We have kept SNR = 30dB, it may be 

noticed that as we increase the data window length Nb from 100 to 3000, NRMSE value 

decreases from 0.67 to 0.3. We may observe that, beyond window size of 1000 blocks, there 

is no effect on the performance of the TXK algorithm. 
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True Channel 
Average Estimated channel 0.5 

0.6 

a) 
-g 0.4 

E co 
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a) 

_c co 0.1 
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10 	15 
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-0.1 
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Fig 2.5: Comparison between actual and TXK blind estimate of channel averaged over 100 

independent runs at SNR=25dB. 
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Fig 2.6: Variation of Normalized Root Mean Square Error (NRMSE) with SNR for 

TXK blind identification method. 
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Fig 2.7: Variation of Normalized Root Mean Square Error (NRMSE) for TXK blind 

identification method with data window length (Nb) for SNR = 30dB 
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2.5.2 Results for Subspace based method: 

For channel to be identified, we use the following complex channel coefficients given in [14] 

H(°)T  = [(-0.049,0.359),(0.482,-0.569),(-0.556,0.587),(1,1)(-0.171,0.061)] 

HW T  = [(0.443, —0.0364) , (1.0, 0.0), (0.921, —0.194), (0.189, —0.208) (-0.087, —0.054)] 

1/(2)T  = [(-0.211, —0.322), (-0.199, 0.918), (1.0, 0.0), (-0.284, —0.524)(0.136, —0.19)] 

I-1(3)T  = [(0.417, 0.030), (1.0, 0.0), (0.873, 0.145) (0.285, 0.309)( —0.049, 0.161)] 

For simulation of Subspace algorithm in MATLAB environment, we use following 

parameters: 

➢ No of virtual channels: M = 4 

➢ Observation interval: N =10 symbol intervals 

➢ Channel length: L = 4 

➢ No of Monte Carlo simulations: N.=100 

)> Modulation scheme for source symbols: 16QAM 

➢ Data window size: Nb=1000 blocks 

Fig 2.8 shows the flow chart for simulation of subspace based blind channel identification 
algorithm. 

Start 

Assign all parameters required for 
Subspace algorithm. 

 

Generate channel coefficients 

 

Generate source data and use (2.8) to 
get the received signal block 
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Arrange each column of noise 
subspace in the form of gi using 

(2.36) 

Get the Nb received blocks and 
determine Rx(0) using time average 

over Nb blocks. 

Get the signal and noise subspace by 
SVD of Rx(0) using (2.33) 

4. 

Find the matrix Q using (2.42) 

Estimation of channel is obtained by 
finding eigen vector corresponding 

to smallest eigenvalue of Q 

Find mean square error between 
actual channel and estimated channel 

T 

Fig 2.8: Flow chart for simulation of Subspace based blind channel identification algorithm 
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All steps from A to B shown in flow chart are repeated for each independent Monte Carlo 

Run. Normalized Root Mean Square Error (NRMSE) is computed as in (2.45). We also 

simulate TXK algorithm for blind identification of channel specified in this section. 

Fig 2.9 shows the Normalized Root Mean Square Error (NRMSE) at different SNR values 

for both the subspace method and TXK method. As SNR is varied from 5 to 35dB, NRMSE 

value for subspace method decreases from 0.5 to 0.008, while for TXK algorithm it decreases 

from 1.1 to 0.2. We may also observe that NRMSE for subspace method is much less than 

that obtained using the TXK method. Under similar environment, subspace method performs 

much better than the TXK method. 

As shown in Fig 2.10, we compare the variation of NRMSE at different data window lengths 

(Nb) for subspace method and TXK method. As Nb is varied from 50 to 3000 blocks, 

NRMSE value for subspace method decreases from 0.1 to 0.008 while for TXK algorithm 

decreases from 0.7 to 0.35. For a given NRMSE value of 0.3, subspace methods requires less 

than 50 blocks of received signal, while TXK algorithm requires more than 500 blocks. We 

may conclude that the convergence of subspace method is faster than that for TXK method. 

-.We. may also observe that, beyond a window size of 1000 blocks, there is no effect on the 

performance of the both the algorithms. 

Next we consider the effect of reducing the number of noise vectors used in estimation of 

channel using subspace method. Using (2.36), condition in (2.34) can be written as 

H I 1  g,=0 01*' MN —L— N 	 (2.46) 

For single noise vector, (2.46) yield a set of L + N linear equations in the M (L +1) unknown 

channel coefficients of H. If (L + N) < M (L +1), then the system is underdetermined, hence 

it does not admit a unique solution. Choosing p number of noise vectors so 

that p (L + N) > M (L +1) , the linear system is over determined, and a unique solution will be 

determined for unknown channel coefficients. Minimum no of noise vectors required for 

TXK algorithm for subspace based blind channel identification is given 

[M(L+1)1  
by Pm. =. L+N 

31 



Fig 2.10 and 2.11 plots the variation of NRMSE with respect to SNR and data window length 

(Nb) for three different scenarios: 

I. Full noise subspace (26 noise vectors) 

II. Partial noise subspace with 10 noise vectors 
III. Partial noise subspace with 4 noise vectorws 

We may observe that the use of fewer noise vectors still leads to consistent estimates of the 
channel coefficients. But there is a performance tradeoff with the usage of less no. of noise 

vectors. As we decrease the amount of usage of number of noise vectors, NRMSE error 

increases for both the cases (variation NRMSE with SNR and data window size (Nb)). This is 

due to the fact that number of constraints for identification of channel decreases. The 

advantage of using less number of noise vectors is that no of computations required for 
estimating the channel coefficients decreases. 
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estimation and SOS based channel estimation using TXK algorithm (SNR=30db). 
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Chapter 3 

Blind Channel Estimation for OFDM systems 

In this chapter, we first give a brief review of blind channel estimation techniques for 

OFDM systems. Then system model for OFDM with virtual carriers (VC) and cyclic prefix 

(CP) is described. Subspace based blind channel estimation method based on exploitation of 

VCs for OFDM system is described next. We also present subspace method for non-CP 

OFDM systems using oversampling at the receiver. Semi-blind channel estimation for 

removing phase ambiguity which is inherent in blind channel estimation techniques is 

described next. We finally present simulation results. 

3.1 Blind channel estimation techniques for OFDM systems: 

The presence of the CP has been exploited in the literature for blind and semi blind 

channel estimation of OFDM system based on second order statistics (SOS) .These methods 

use channel output sequence prior to the CP removal and subsequent FFT operation. 

Amongst these, statistically inspired blind estimators in [15] and [16] assume the inherent 

CP-induced cyclostationarity at the transmitter explicitly or implicitly, while the estimators 

[17] and [18] belong to the class of deterministic subspace approach. Specifically, Heath and 

Giannakis et al., [15] propose a blind method based on the cyclostationarity property of the 

time-varying correlation of the received data samples due to the CP insertion at the 

transmitter. Advantage of this method is that it can identify channels with equispaced unit 

circle zeros. However this approach suffers from slow convergence of the estimator. Cai and 

Akanshu [17] developed a noise subspace algorithm by utilizing the structure of filtering 

matrix introduced by the CP insertion. It achieves faster convergence for small data records. 

B.Muquet et al, [18] proposed an algorithm that makes use of redundancy introduced by the 

cyclic prefix to identify a channel based on a subspace approach. This method has following 

advantages 

o It does not require any modification of the classical OFDM transmitter. Thus, it is 

compatible with existing standard. 

o It can be applied to any arbitrary signal constellation. 
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o It is robust to channel order over determination. Furthermore, it guarantees 

channel identifiability, regardless of the channel zeros location when the entire 

noise subspace is considered. 

To avoid phase ambiguity which is inherent in blind identification methods, this 

method uses pilot carriers. Also to increase convergence of the blind methods, this method 

uses an initial channel estimate which is obtained by using known block of symbols in initial 

frame. All the methods discussed above are based on CP. The disadvantage of CP based 
methods is that throughput of the channel decreases. 

Roy and Li [20] proposed a subspace based channel estimation for OFDM systems 
without cyclic prefix (CP). The algorithm is attractive for its potential to increase the systems 

channel utilization due to the elimination of the CP. This method requires oversampling or 

receiver diversity, thereby increasing receiver cost/complexity. It performs similar to [17] 
with regards to estimation accuracy and convergence speed. The disadvantage of this method 
is that it requires exact channel order estimation. 

Other than the CP, there exists another resource that has not been exploited for 

purposes of channel estimation—the presence of virtual carriers (VC). The sub-carriers in 
OFDM that are set to zero without any information are referred to as virtual carriers [31]. 
IEEE 802.11a standard specifies 12 (out of a total of 64 subcarriers) VCs. While they are 

intended to aid in shaping of the transmit spectrum, the VCs can be exploited for the 
purposes of channel equalization, channel estimation and frequency offset estimation. Roy 

and Li [19] propose a subspace based channel estimator for OFDM systems that exploits 
virtual carriers. It is applicable to OFDM systems with and without CP. For the former case 

(conventional CP systems), the exploitation of VC brings additional performance gain to the 
already proposed channel estimators such as in [17]. This method is robust for channel order 

overestimation. 

Other than the CP and VC, precoding technique is used for subspace based blind channel 

estimation for OFDM. A.P.Petropulu et al, [21] proposed a blind method based on precoding. 
In this method, a nonredundant linear precoder is applied at the transmitter, and the channel 

state information (CSI) is contained in each entry of the signal covariance matrix. However 

authors focus on a special design of linear precoders and extract the CSI from only one 
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column of the covariance matrix, which greatly limits the performance accuracy of the 

algorithm. Similar approach has been proposed in [22], where channel is again, estimated 

from the single column of the cross correlation matrix of the two consecutive received 

blocks. This method reduces the effective number of OFDM blocks by half and is, thus less 

suitable for the case where only a few OFDM blocks are available. Gao and Nallanathan [23] 

proposed a blind channel estimation method that can overcome the aforementioned 

shortcomings. This method utilizes a generalized linear nonredundant block precoder and 

jointly obtains the channel estimation from all the entries of the signal covariance matrix. 

This joint estimation method performs better than the methods in [21],[22]. 

3.2 OFDM channel model: 

Consider an OFDM system as shown in Fig 3.1 with N subcarriers, of which only D 

are modulated by the user's data symbols; i.e., the remaining N-D unmodulated carriers 

constitute VCs. Assume that the subcarriers numbered po  to pc, + D —1 are used for data, 

where p 0  is the index of the first data carrier. Further assume that the length of CP is P . Let 

the kth block of the "frequency domain" information symbols be 

d(k) =[d 0(k), di (k), • • • , c D_, (k)f 	 (3.1) 

The time domain signal vector is given by 

[so (k), si (k),• • • , s N_,(k)r = W d(k) 	 (3.2) 

where W = 

W(0) 
W(1) 

and W(i) = 1 [ ,A,ipo ,A,i(A)+1) • . .„4,i(po+D-01 
"N "N 	1"N 

   

W (N —1) 

By inserting CP i.e, the last P ( P > 0 ) elements of the (3.2) results in Q x 1 (Q = N + P) 

OFDM symbol vector 

s(k) = [s Ar_ p(k),• • • , s N _1 (k), so  (k), si (k),- • • , s N _1 (k)f 

=
[W. (N P +1: N ,:)1

d(k) =W d(k) 
	

(3.3) 

where W (N — P +1: N is sub matrix formed by taking rows from N — P +Ito N. 
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s(t) 
c(t) s(k)►  g fr(t) 

x(t) 

/ x(k) 

1/T sampling 

r(k) 

sN-p(k) 

sN.J(k) 

	• 
so(k) #p0-1 	• 

do(k) 
#P0 

d(k) 
--p S/P 

P/S 
snr-p(k) 

IFFT 

dr,_/ (k) 
#po+D-1 

0 _op #N-1 

AWGN v(t) 

0 

0 

g 

To generate the continuous time signal, each element in (3.3) is pulse shaped by g  „(t) and is 

given by 
Q--1 

S(1) E s p(k)g  „(t (p + kQ)T) where T is period of each element 	(3.4) 
k=-00 p=0 

s(t) = E sqg,(t — qT) q  = p + kQ 	 (3.5) 
q---00 

Fig 3.1: Generalized baseband OFDM system model (with both VC and CP) 

Defining the composite channel filter from Fig.3.1 h[t] = g  „[t]* c[t] * g rx [t] and the filtered 

noise v(t) = n[t] * g  ,[1] where * denotes linear convolution, the received signal is therefore 

x(t) E s qh(t — qT) + v(t) 
	

(3.6) 

Assume the composite channel to have finite support [0, LT] where L < Q (i.e., it is assumed 

that the channel delay spread does not exceed the OFDM symbol duration); this implies that 

any inter symbol interference (ISI) is only restricted to the past neighboring symbol as is 

generally true for OFDM. 
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3.3 Subspace based blind channel estimation for OFDM system using VC: 

In this section we describe the VC's based blind channel estimation for OFDM 

systems. The advantage of this method is that there is no need of oversampling and we group 
M OFDM blocks at the receiver. 

1 Sampled received signal x(t) with rate 
T 
— is given by 

L 
x(i) = x(to  + iT) =I s1_,h(to  + 1T) + v(i) 

1=0 

Let h(i) = h(to  + in and h=[h(L),h(L-1),---,h(0)1T . 

Define (MQ – L) x MQ Toeplitz matrix Yfm  as 

h(L) ••• 	h(0) 
h( L) --- 	h(0) 

h( L ) - - • h(0) j(mQ_L).mc, 

Consider an observation interval over M (considered as smoothing factor) OFDM symbols 

from (to  +((k –M +1)Q + L)T) to (to  +((k +1)Q-1)T) 

x,,,f(k)=[x((k–M+1)Q+L),•••,x((k +1)Q-1)] 

91' , 

s(k–M +1) 

s(k –1) 
s( k ) 

+ 
v((k–M +l)Q+L) 

v((k+1)Q-1) 
v(k ) 

- 	_ 
d( k – M +1) 

= Yfm  (I M  ®W). 
w 

d(k –1) 
d( k ) 

+v(k) 

   

..----„,---..; 
D( k) 

=irm  VVD(k)+v(k) 	 (3.10) -----v--- Am  

(3.7) 

(3.8) 

(3.9) 
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where Am  = AI* ((MQ — L)x MD) 

In order to identify the channel from (3.10) a necessary condition for the subspace method is 

that Am  is of full column rank i.e. M(N + P — D) L . The presence of virtual carriers 

implies that N > D and the necessary condition can always be satisfied by choosing 

appropriate M, which is true even for non-CP OFDM systems. 

The following theorem discusses necessary and sufficient condition for channel 

identifiability. 

Theorem3.1: [19] For N+P—LD, Am  has full column rank (i.e rank( Am) = MD) if and 

only if the channel frequency response has no nulls at any of the data subcarrier frequencies. 

Let, the user's transmitted information symbols d, (k) 's are i.i.d. sequences with zero mean 

and known variance 6d2  (o =1 without loss of generality). Assume each element of v(k) in 

(3.10) is additive white Gaussian noise (AWGN) with zero mean and variance cr2 . 

Using (3.10), correlation function of received signal is given by 

R. = E(xm  (k)xm  (OH  ) 

= AM RDD AM H  + 

= AM RDD -AM H  an2I 	 (3.11) 

By using singular value decomposition (SVD) on the received correlation matrix R. , we get 

R. = UsEsUsH  +6n2U,p1.1,7 	 (3.12) 

Where U, contains MD columns which span the signal space while Un  contains 

M(N + P — D) — L columns which span the noise subspace. Es  = diag(21 , 	, Amp ) is a 

diagonal matrix which contains singular values corresponding to the signal subspace. 

By orthogonality relationship between signal and noise subspace, we get 

(011  Am  = 0 	i =1,• ,M(N + P — D)— L 	 (3.13) 

where Un  (i) is the ith column of Un  . 

By using above set of constraints (3.13), we can identify channel vector h . 

The following theorem gives sufficient conditions for uniqueness of the channel estimate fi : 
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Theorem 3.2: [19] (sufficient condition for identifiablity): Let h' and h be distinct L + 1 

dimension vectors and Arm  bea matrix constructed using h' as with Am in (3.10), i.e., 

Aim  .2.6:4*. For: 1) M 2 ; 2) N +P — DL and 3) h has no null on any of the data 

carrier frequencies, it follows that hr=ah where a is a complex scalar if range(A4 ) = 

range ( A„,f ). 

Let 

Un  (i).---[u, (0), u,(1),- -,u,(MQ — L —1)]T  where Un  (i) is ith column of U„ . 

Since only estimate of fin  is available, we get the channel estimate as 

M(N+P-D)--Q 	 2 
il=arg min 	I 	Am 11 

Ilhll=1 	1=1 
(3.14) 

Exploiting the structure of yfm , we get equation similar to (2.36) as 

Un  (i)H  .7-fm  = hH  g, 	 (3.15) 

where g is given in (2.36). 

Substituting (3.14) in (3.15) we get 

1lUn (i)H 	
2 

Am  = Un  (i)"  .7{,w WWH (i) 

= hH  g, AVVVH  gr H  h 
G, 

So, (3.14) can be written as 

= arg min  hH 	h 	 (3.16) 
11h11=1  

where g = [G1,.- -,G M(N+P-D)--L 

Is well known that h is the eigen vector corresponding to smallest eigen value of the matrix 

GcH  

Remarks:  

1. The presence of the VCs and/or CPs is necessary for the subspace method to work 

(Theorem 2.1 and 3.1). 
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2. The condition N+P — LD (theorem3.1) requires that the number of VC and/or CP 

be greater than the channel memory. It is much stronger than M (N + P — D) L (this 

is necessary for employment of the subspace method) to assure channel 

identifiability. This condition can be satisfied in a typical OFDM application 

scenarios for both CP-OFDM and non-CP OFDM 

3. As stated in Theorem 3.2, an amplitude/phase ambiguity exists in the channel 

estimate — that is inherent to all blind estimation approaches using SOS and cannot 

resolved without side information. Practical OFDM systems provide pilot tones for 

tracking the carrier frequency offset which can be exploited to resolve this ambiguity. 

Special case: Cai and Akanshu proposed a method for blind channel identification of OFDM 

systems with CP. It is the special case of VC based blind channel identification algorithm for 

OFDM systems with D = N (i.e no VC's case). Using (3.1) to (3.16) with the 

condition D = N , we can get the estimate of h for Cai and Akanshu method. 

3.4 Subspace based blind channel estimation for OFDM system without CP: 

In this section, instead of exploiting VC's, receiver oversampling is used employing 

subspace method for blind channel estimation of OFDM system without CP. For the case of 

OFDM system without CP, we assign P = 0 , D = N and p0  = 0 in the system as shown in 

Fig 3.1. Thus for OFDM without CP, we have W = W . 

A synchronized rate MA, sampler (i.e., oversampling factor of M compared with 

information symbol sampling rate V) after x (t) yields 

(m) 	) = x(to +ii +— 
M 

L ) ( =Es,_,h to  +lT + mT  +v, in) 
 

1=0 

( 	mT where 141")  = v to  +iT + Al , m=0,.-- ,M —1, to  is initial timing offset. 

(3.17) 

Define h(m) (1). h(to  + lT + 17-111 ) and WI")  = [h( m )  (0), h(m)  (1),• • •,h(m)(,)iT 	(3.18) 
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V(m)  kQ+L 

Sk2+Q-1V (m)  kQ+ Q-1 
	— s(k) 	v(m)(k ) 

As mentioned in section 3.3, the finite support dispersive channel causes s(k -1) 

corresponding to the (k -1)th OFDM symbol to partially overlap with the output for the kth 

symbol s(k) . The ISI affects the beginning ML samples among the MQ samples in the 

duration from (to  + kQT) to to  + (k +1)QT - 	associated with the symbol s(k). For 

L << Q (which is plausible in several OFDM applications), the energy of the ISI samples is 

negligible compared to that of the non-ISI affected samples. Hence we may process only ISI 

free samples for channel estimation i.e., the M(Q - L) samples over the interval 

(to  +(kQ+L)T) to (to  +(k +1)QT - —T ); Thus, the received signal for the mth sampling 

phase corresponding to transmitting symbol s(k) is given by 

X (k) = [XV±L,- *r X (Z )+Q-11T  

h(m)  (L) • • • 	h(m)  (0) 

h(m)  (L) " • 	h(1")  (0) 

• 

h(m)  (L) 	h(m)  (0) 

= H(m)s(k)+ v(m) (k) 

= H(m)Wd (k) + v(m)  (k) 

Stacking all M x(m)  (k) (m = 0,• • •,M- 1) vectors together yields, 

x(k) = [ x(°)T (k),x( 1 )T (k),---,x(m-1)T  (01 
H(°) 

w (k) + v (k) 
H(114-1)  

gf 
A 

= .14 021(k) ± V (k) 

(3.19) 

(3.20) 
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where v(k) = [v(°)T  (k), v(1)T  (k),..., v(A7I-1)T  (01 

The multichannel model (3.20) for OFDM without CP yields an equivalent filtering matrix 

A of dimension M(Q — L) x Q . (3.20) is equivalent to (2.8). Thus we can apply directly the 

technique method presented in chapter2. 

A sufficient condition for channel identifiability follows a corollary of Theoreml and 2 in 

[14] as 

Theorem 3.3[14]: Matrix Yf is full column rank i.e., rank(.7f ) =Q, if 
aej 	L  

1) the polynomials 1-1(1)(Z) ,I h(1)z-1  have no common zero 
)=0 

2) Q L, 

3) at least one polynomial H(' )(Z) has degree L. 

Since W is unitary, this directly leads to rank( A ) = rank( N.  W) = rank( ). Therefore, the 

above conditions for .71-  to be full column rank also guarantee that A is full column rank. 

The following theorem gives conditions for uniqueness of the channel estimate H : 

Theorem 3.4: Let H = [h(°)T,h(1)T ,- , h(A4-1)T  ]T formedusing (3.18), and H' be a M (L +1)x 1 

vector distinct from H; filtering matrix 7{ and Yr are constructed using H and H' , 

respectively. When Q L , if range (.7f') = range Of ), then H' = aH where a is a scalar. 

Using (3.11) to (3.16), we can get the estimate of H . 

3.5 Subspace based Semi-blind channel identification for OFDM system: 

3.5.1 A mechanism to remove scalar indetermination: 

Blind methods always identify the channel up to one scalar indetermination, which 

has to be removed to allow the received symbols to be equalized. Standards often specify 

some pilot subcarriers carrying known symbols for phase tracking and channel estimation 

refinements purposes. Here we discuss a method which exploits pilot subcarriers to remove 

the blind scalar indetermination. 

Let 1.1,„b  be the channel estimation provided by the subspace based blind channel estimation 

algorithm. 
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From theorem 3.2, we have 

fisub  = ah 
	

(3.21) 

The problem is to find the scalar coefficient a such that h = fi su a is close in the quadratic 

sense to the true channel vector h . Let F be the number of pilot subcarriers on which some 

known symbols are transmitted. Let dn , (1),- 	(F) be the known symbols transmitted on 

the pilot subcarriers and rpd  (1),...,rpd  (F) be the corresponding FFT-processed received 

symbols. An estimate of the channel attenuations at the corresponding frequencies is 

provided by 

	

[  r„„ (1) 	rpi, (F)
iT 

	

dp„ (1) 	d (F) 
(3.22) 

Let Wpd  be the F x L matrix obtained from the L first columns of matrix VTVW by selecting 

the rows corresponding to the pilot carriers and by removing the other ones. Another 

estimation of these coefficients can be inferred for the subspace identification up to a is 

given by 

h sub , pil W pill; sub = CXW 	ah pi. 	pil (3.23) 

From (3.22) and (3.23), a can be determined by solving the linear system of equations, 
-2 	z 
h sub , pil = ahhpa in the least square sense. However, if the channel estimation hsub  = ah 

obtained using the subspace algorithm is far from the true CIR h , the final channel 

estimation remains inaccurate, even if a is estimated such that 
ll
h— fisdall is minimal. 

Somehow, no benefit is taken from the knowledge of the channel attenuations on the pilot 

carriers for the subspace algorithm. This can be overcome by considering the following 

system of equations: 

Un  (i)11  Am  =U (OH 	= hH  g1  W = hHG, = 0 (Using (3.13) and (3.15)) 

or equivalently 

G,Hh= 0, i=1,.• •,M(N+P—D)—L 	 (3.24) 

• Wpah = 	 (3.25) 
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Since this system of equations holds only approximately, it has to solved in the least squares 

sense, which amounts to minimizing the quadratic criterion, which is defined as 

M( N+P-D)-L 

q' (h)= 	E 	11GiHh112  fillwpah — h 11 2  1,1 

=hll Qh+ fl(Wpah — 	)H  (Wpah — a  ) 	 (3.26) 

M( N+P-D)-L 
where # is weighting factor used to change confidence degree and Q = 	G, 

In order to estimate channel it, we have to minimize (3.26).Differentiate with respect to 
h and equating to 0, we get 

Q h 	(W pdh pd) = 0 

[Q+ IOW pdHW prI lh = JON cd H il pd  

h --=[Q+ 	wp, r 	 (3.27) 

This above semi-blind subspace algorithm can be seen as a channel-dependent interpolator 

between the pilot subcarriers. 

3.5.2 Training symbol based initialization of the blind algorithm: 

An inherent problem in blind channel estimation methods is their slow convergence 
rate, which often prevents their use in real applications where techniques based on training 

sequences are preferred. Thus, standards usually specify that, initially a frame of known 
blocks of symbols transmitted for synchronization and initial channel estimation at the 

receiver. These pilot symbols can be used to initialize the estimation of the autocorrelation 

matrix. This enables us to avoid the long convergence period of the blind algorithm and to 

obtain the same accuracy as the pilot-based estimation. In the following we illustrate this 
algorithm 

1) Obtain an initial channel estimation: h(°)  through pilot symbols 

2) Using li(°) , generate an estimation of matrix R„.(°)  = AM  (fi(0) )RDD AM (11" ) 

3) Refine iteratively the autocorrelation matrix estimation each time a new block 

symbol xA,f  (k) is received using forgetting factor E [0,1] 

H 
i 	• 
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R(:0  .1,12(:-1)  + (1— 2)xm  (N)xm (N)H 

4) Perform the subspace algorithm based on 11(:). 

3.6 Simulation results for blind channel estimation of OFDM systems: 

3.6.1 Results for Oversampling based blind channel estimation of OFDM systems 

without CP: 

For channel to be identified, we have used following channel coefficients given in [20], 

11(1)  = [(-0.1892, 0.4273),(-0.2839, 0.6984),(0.1274, 0.4321),(-0.0451, 0.0912)1 

h(2)  = [(0.360,0.00 040.1041, 0.4126), (0.0914, 0.1885),(0.2052, —0.0739g 

For the simulation of above blind channel identification method in MATLAB environment, 

we use the following parameters: 

> Oversampling factor: M = 2 

> Modulation scheme: BPSK 

> SNR = 10rog(6s2  a2 ) 

> Channel length: L = 3 . 

> No of Monte Carlo simulations: N m  =100 . 

> No of carriers N =15 

> Data window length: Nb=300 

Steps carried out for simulation of oversampling based blind channel identification of OFDM 

system without CP are: 

1. Obtain randomly generated source data and get the oversampled received signal 

vector using (3.20) and channel coefficients given above 

2. Get Nb blocks of received vector and determine R. using time average over Nb 

blocks. 

3. Get the noise subspace representation from SVD of R. . 

4. Using noise subspace, determine g using (3.15) and (3.16). 

49 



5. Estimate of channel is obtained by finding eigen vector corresponding to smallest 

eigenvalue ofccH  . 

All steps from 1 to 5 are repeated for each independent Monte Carlo run. To obtain the 

performance measure of the channel estimate, we use Normalized Root Mean Square Error 

(NRMSE) defined as 

1 	
N„, 

NRMSE = 
II II N mAd 

1  
(L +1) 	PI P  

(3.28) 

where the subscript p refers pth simulation run, H is true channel given in theorem 3.4 and 

1:1, is estimated channel using oversampling method forpth simulation run. 

For comparison purposes, we also simulate Cai and Akanshu method for blind channel 

identification of OFDM system with the following parameters: sampling rate = VT , cyclic 

prefix length P =
N

4 
+1 

= 4 and no of data carriers D=15 . 

Fig 3.2 shows the variation NRMSE as a function of SNR for both Cai and Akanshu 

method, and oversampling method for blind channel identification of OFDM systems. As 

SNR is varied from 0 to 40dB, NRMSE value decreases from 0.2 to 0.0015. We may also 

observe that both Cai and Akanshu method and oversampling method perform similarly with 

respect to SNR variation. The inherent advantage of oversampling method for blind 

identification of OFDM channels is that it avoids the CP and therefore leads to higher data 

throughput. 

As shown in Fig 3.3, we compare the variation of NRMSE at different data window 

lengths (Nb) at SNR=15dB, for both oversampling method and, Cai and Akanshu method for 

blind channel identification of OFDM system. As Nb is varied from 100 to 2000 blocks, 

NRMSE decreases from 0.075 to 0.008. We may observe that both the methods (Cai and 

Akanshu, and Oversamplig method) performs similarly with 
	

• on of data window 
length. 
	 DEZZIActc,.  

) co. 07.  22Z0 
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Variation of NRMSE with OFDM symbol duration (Q): 

From (3.13) the number of noise eigen vectors in noise subspace for oversampling 

method is (M —1)Q — ML . Larger Q means larger is the dimension of the noise subspace for 

oversampling method, yielding more constraints on channel vector and, thus it leads to 

improvement in channel estimate. The effect of varying Q (meaning longer OFDM symbol 

duration) on the estimation error for oversampling based blind channel identification of 

OFDM system without CP is investigated in Fig 3.5 with SNR=40dB, Nb=2000 and Q 
varying from 15 to 47. We may observe that as Q increases, NRMSE for oversampling 

method decreases. 
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Fig 3.2: Variation of NRMSE with respect to SNR for oversampling based blind channel 

identification method for OFDM system without CP and, Cai and Akanshu method for 

OFDM system with CP. 
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Fig 3.3: Variation of NRMSE with respect to data window size (Nb) for oversampling based 

blind channel identification method for OFDM system without CP and, Cai and Akanshu 

method for OFDM with CP. (SNR=15dB). 
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Fig 3.4: Variation of NRMSE with OFDM symbol duration for oversampling based blind 
channel identification method for OFDM system without CP at SNR=40dB and Nb=2000 

OFDM blocks. 
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3.6.2 Results for VC based blind channel estimation of OFDM systems: 

For the simulation of above method in MATLAB environment, we use the following 

parameters: 

> Smoothing factor: M =2 

> Modulation scheme : BPSK 

> SNR = 10 Cog( Es En )' Es = per s2  ' 	= 	2  D is no of data carriers, Q is sum of data 

carriers and CP. 

> No of subcarriers: N =15 

> No of Monte Carlo runs: N. =100 

> Multipath fading channel with order L=3 is generated by assuming exponential 

(  power delay profile ev 	r , r stands for path delay and rnns  = 0.6T is rrns delay 
r  rms 

value. (T is symbol period). 

> Data window length: Nb=300 OFDM symbol blocks 

VC method for blind channel identification of OFDM systems presented in section 

3.3 is applicable to systems with or without CP. For simulation for VC method for OFDM 

system, we tested on different system settings: 

1) a system with no CP: D=11,VC = 4 and P= 

2) system with insufficient CP: P = 2 (less than channel order L=3 ), VC =2 and 

D=13 

3) system with sufficient CP: P = 4 (greater than channel order L=3), D =11 and 

VC = 4 

For comparison, we also simulate Cai and Akanshu method [17] with the following 

+ parameters: VC =0 , P = N4 1  =4 and  D =15  . 

Steps carried out for simulation of VC based blind channel identification of OFDM system 

are: 

1. Generate multipath fading channel coefficients of order L=3 . 
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2. Obtain randomly generated source data and get the received signal vector using 

(3.10). 

3. Get Nb received OFDM blocks and determine R. using time average over Nb blocks. 

4. Get the noise subspace from SVD of R. as in 3.12.- 

5. Using noise subspace, determine G using (3.15) and (3.16). 

6. Estimate of channel is obtained by finding eigen vector corresponding to smallest 

eigenvalue of cc' . 

All steps from 1 to 6 are repeated for each independent Monte Carlo run. To obtain the 

performance measure of the channel estimate, we use Normalized Root Mean Square Error 
(NRMSE) criterion given by 

NRMSE = 
1 	N. 	— h p  112  

	

N.(L+E 
	2 

0,--1  
(3.29) 

hp  is estimated channel by VC method for the pth simulation run and h is true channel 

generated for pth simulation run. 

Fig 3.5 shows the variation of NRMSE as a function of SNR for both Cai and 
Akanshu method, and VC method with different setting as described above. We can observe 

that the NRMSE for both the methods decreases with increasing SNR. The advantage of VC 

based blind channel identification method for OFDM system is that it can be applied to 

OFDM systems without CP. 

Fig 3.6 shows the variation of NRMSE at different data window lengths (Nb) for both 

Cai and Akanshu method, and VC method with different setting as described above. We can 

observe that the NRMSE for both the methods decreases with increasing data window 

lengths (Nb). We may observe that, beyond window size of 1000 blocks, there is no effect on 

the performance of both the algorithms. We may also observe that the performance of VC 

method for OFDM systems is same as Cai and Akanshu method for CP based OFDM 
systems. 

Additionally, for a fixed degree of freedom through the combination of VCs and/or 

CPs, there is a performance gap between the non-CP system (D =11, P = 0 ), the sufficient 
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CP system (D =11, P = 4) and insufficient CP (D =13 , P = 2 ). We may observe that VC 

based methods for OFDM system with sufficient CP has less NRMSE than the VC method 

for OFDM systems without or insufficient CP. This suggests that CP is more advantageous 

for the noise subspace based estimation than VCs. However, the utilization of VCs provides 

the receiver an extra source redundancy other than CP and makes VC method feasible for a 

system with insufficient CP (P = 2) without increasing smoothing factor M. Note that M 

must be increased in Cai and Akanshu method, (due to the requirement to satisfy the 

condition MP L), which means a larger observation duration and significant increase of 

computational complexity. 

Fig 3.7 plots the variation of NRMSE at different SNR values for VCs based blind 

channel identification of OFDM systems with different estimates of channel order. Here we 

assume OFDM system without CP (P=0) scenario. We may observe that NRMSE 

decreases with increase of SNR for all the cases. We may observe that there is no significant 

difference in the performance of VC method for blind identification of OFDM channel with 

exact channel order estimation and order overestimation by 2 or 3. Hence, VCs based blind 

channel identification of OFDM system is insensitive to order overestimation. Robustness to 

channel order overestimation is a desirable property, since in practice the accurate 

information about the channel order is not available and an overestimation is more likely to 

occur. 
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Fig 3.5: Variation of NRMSE with respect to SNR for VC based blind channel identification 

method for OFDM system with three different scenarios (No CP, Insufficient CP, Sufficient 

CP) and, Cai and Akanshu method for OFDM with CP. 
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3.6.3 Results for Subspace based semi blind channel estimation for OFDM systems: 

For the simulation of subspace based semi blind channel estimation for OFDM system in 

MATLAB environment, we use the following parameters: 

> No of carriers: N = 64 

> Virtual carriers: VC=12 

> Data carriers: D= 52 

> Out of 52 data carriers, no of pilot carriers = 4. Pilot position and VCs position is 

given in the following 

0-0X—XPX—XP2  X—X0X—XP,X—XPA X---X0-0 
6 	5 	 13 	 6 	 6 	 13 	 5 	5  

> Channel: Multipath fading coefficients for channel order L =16 are generated by 
( 

assuming exponential power delay profile exp — , (r stands for path delay) with 
rms 

rms delay value rr„,, = 0.6T (T is symbol period). 

> Forgetting factor: 2 = 0.9 . 

> Weighting factor: )6 = 0.9 

Steps for subspace based semi blind channel estimation for OFDM systems: 

1. For initial channel estimation for semi blind method, we assume that first two blocks 

of a frame, d (1) and d (2) are known at the receiver. There are no VCs during initial 

phase. r(1) and r(2) are the corresponding FFT processed received data. The receiver 

forms a initial channel estimate in frequency domain as 

[ ..:. 	 (r1(1
1
) 	for l _i.N. 

h' ( ‘1'
) 

 -.= 2 a , (o
)+

d ) 	,() 

2. After getting initial channel estimate, use step 2 of section 3.5.2 to get initial estimate 

of correlation matrix of received signal vector. 
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3. Update received correlation matrix after getting each received vector using step 3 of 

section 3.5.2. 

4. After channel initialization, we only know pilot symbols d,(k) for i =12,26,40,54 . 

One can track the channel transfer function using a running average (over 

B = 20 blocks) on these pilot carriers as follows: 

ra(k +1)=
1 	r„,,l (k —1) 
	 for pile {12,26,40,54} 

B d pit (k —1) 

5. Determine Q using (3.26). 

6. Determine the estimate of channel by substituting Q and hall  in (3.27). 

Steps from 1 to 6 are repeated for each Monte Carlo run. Normalized Root Mean Square 

Error (NRMSE) is computed as in (3.28). We also simulate VC based blind channel 
identification method for OFDM system under same simulation parameters. 

Fig 3.8 shows the variation of NRIvIE with data window length (Nb) for semi blind channel 

estimation method and blind channel method for OFDM systems based on VCs. We have 
assumed SNR=25dB. As Nb is varied from 100 to 450 OFDM blocks, NRMSE value for 
semi blind channel estimation method decreases from 0.04 to 0.003, while for blind channel 
estimation method it decreases from 0.21 to 0.02. For a given NRMSE value of 0.02, semi 
blind method requires 150 OFDM blocks, while blind VC method requires 450 OFDM 

blocks. We may conclude that the convergence of semi blind channel estimation method is 
faster than the blind channel estimation method for OFDM systems. 
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Fig 3.8: Variation of NRMSE with respect to data window size (Nb) for subspace based semi 
blind and blind channel estimation methods using VC's for OFDM systems. (SNR=25dB) 

63 



Chapter 4 

Blind Channel Estimation For MIMO-OFDM systems 

In this chapter, we first give a brief review of different blind channel estimation 

methods for MIMO-OFDM. Then system model for MIMO-OFDM is described. We then 

describe the subspace based blind channel estimation for cyclic prefixed MIMO-OFDM 

systems. Zero padding (ZP) based blind channel identification method for MIMO-OFDM 

system is described next. We finally present simulation results. 

4.1 Review of blind channel estimation techniques for MIMO-OFDM systems: 

Blind channel estimation for MIMO-OFDM systems has been an active area of 

research in recent years. Zhou et al. [24] proposed a subspace based blind channel estimation 

method for space time coded MIMO-OFDM systems using properly designed redundant 

linear precoding. Gao and Nallanathan [25] proposed a blind algorithm for MIMO-OFDM 

systems by utilizing non-redundant linear block precoding. With the assumption that the 

symbols sent from different transmitters are i.i.d, this method gives the acceptable 

performance at low SNR region and is applicable to multiple-input single-output (MISO) 

system. However the method gives an error floor at high SNR. 

Bolcskei et al. [26] proposed an algorithm for blind channel estimation and 

equalization for MIMO-OFDM systems using second order cyclostationary statistics induced 

by employing a periodic nonconstant modulus antenna precoding. The basic idea of this 

method is to provide each transmit antenna with a different signature in the cyclostationary 

domain to null out the influence of all but one transmit antenna at a time. This makes a scalar 

subchannel by subchannel identification of the matrix channel possible. The advantage of 

this method is that it requires only upper bound on the channel length, it does not impose 

restrictions on channel zeros and it exhibits low sensitivity to stationary noise. The 

disadvantage of this method is that algorithm is computationally complex. 

Zeng and Ng [27] proposed a subspace technique based on the noise subspace method 

for estimating the MIMO channels in the uplink of multiuser multiantenna zero padded 

OFDM system. By making use of property of zero padding, this method no longer needs 

precise order of the channel and it can accurately estimate the channels subject to scalar 
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ambiguity. Also, a technique is presented to resolve the scalar ambiguity matrix by using one 

pilot OFDM block. Disadvantage of this method is that it cannot be applied to conventional 

OFDM systems because they are CP based. Gao et al., [28] develop a novel subspace 

algorithm that is suitable for CP based MIMO-OFDM systems by applying an appropriate re-

modulation on the received signal blocks. It is applicable to the situation when no of 

transmitting antennas is equal to no of receiving antennas, where the conventional subspace 
methods cannot be applied. 

Chenyang Shin et al. [29] proposed a method that unifies and generalize the SISO-
OFDM subspace methods [19] to the case of spatial multiplexing MIMO-OFDM systems 

with any number of transmit and receive antennas. This method exploits the virtual carriers 
(VC) and cyclic prefix present in OFDM systems. Considering the presence of VCs in 

OFDM, this method can be applied to MIMO-OFDM systems without CPs, where blind 
estimation techniques based on CPs cannot be employed, thereby providing the systems to 
achieve higher channel utilization. Also this method outperforms other techniques when both 
CP and VC are simultaneously present. 

4.2 Subspace based blind channel estimation for cyclic prefixed (CP) MIMO OFDM 
systems: 

4.2.1 CP based MIMO-OFDM system model: 
A CP based MIMO-OFDM system with K transmitters and J receivers is shown in 

Fig 4.1. The information symbols are first divided into K streams and each stream will be 
grouped into blocks of length N, followed by the normalized inverse discrete Fourier 
transformation (IDFT). Let the i th information block at the kth transmitter can be written as 

d(k)  = [c/,(k)  (0), d k)  (1) ,- ,e) 	, k =1,2,- • -,K, i 	, 	 (4.1) 

The normalized IDFT of d,(k)  is given by 

S(k) = [s(k)  (o),s(k) (1),...,s(k)  (N —1)1 

	

= F,Hd(,k) 	 (4.2) 

	

1 	 j 2 n-m/ 
where (FN )(„,,n) = 	e 

NI A 
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Fig 4.1: CP based MIMO-OFDM System model with K transmitting and J receiving 
antennas. 

After the CP insertion, the overall time domain block from the kth transmitter is 

(k) _ [S,(k)1 t — (k ) s, 

where s1k) is the CP that contains last L entries of s k)  . 

Let 

(4.3) 

h(-")  = [h(-1' k)  (0), h(hk)  (1),• • , h(l' k)  (L0,0 )1 be the channel impulse response (CIR) 

between transmitter k and receiver j, where Lo k)  is the corresponding channel order and is 

over bounded by L. For convenience, we pad L— Li), zeros at the end of h(i'k)  such that all the 

channels have a length of L. In other words channel order over estimation is taken into 
account in the model. 

(Co 
IDFT 

CP 
Insertion 
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Assuming perfect synchronization at the receiver, the received ith block (of length N + L) on 
the jth receiver is then represented by 

ri"  =EY (W M) ) 
k=1 	 Si  

(k) 
	 (4.4) 

h(i' k) (L) • • • h" (0) • • • 0 
where If (h(  'lc ) ) = 	 . 	 (4.5) 

0 	 h(l'k)(L) 	h(j'k) (0)_ 
N+2L 	 (N+2L)x(N+L) 

and 	[v,! 	(1),- 	(N + L — 0 y is the ith noise block on the jth receiver whose 

elements-  are zero mean complex Gaussian random variables with the variance cr„2 and are 

both spatially and temporally independent from each other. 

Divide r," into two parts as 

1;0)  =[(x?1,) f  (x J)  )T 
 T 	

(4.6) 

where 30 = [k2 (0), k2 (1),- 	(L —1)1
T 

= rP) (1: L) and 

, 
X(j)  =[x(j)  (0) JC i)  (1) , 	(N 1) = r,") (L +1: N + L) 	 (4.7) 

respectively. 
Transmitted signals on the same slot from all antennas given by 

s, (n) =[,s 1)  (n) , s 2)  (n) 	, s (n)T n = 0 , • • ,N — 1 	 (4.8) 

Grouping all s, (n) together, we get 

s, = 	(0),sT(1),...,sT(N-0T 
	

(4.9) 

s,,L =[sT, (N—L),sT, 	 (4.10) 

t, (4.11) 
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Similarly received signal on the same slot from all antennas given by 

(l) = 	 (/)T / = 	—1 	 (4.12) 

x, (n) = Lx (1)  (n) , 42)  (n) , • • • , x ( j )  (n)T n = 0 , • • • , N 1 	 (4.13) 

Grouping all x, (n) and 	(Z) together, we getL 

x, =[x,T. (0),x7. (1),•••,x,T (N-1)Y 	 (4.14) 

x,,L  =[x,T,L 	 (L —1)1 	 (4.15) 

Noise at the receiver is also arranged similarly and is given by 

v , (p) =[1,1)  (P) ,(2)  (p) ,• ,v,j)  (p)T p = 0,—, N + L —1 	 (4.16) 

v, [vT,' (0), vT 	(N + L —1)T 	 (4.18) 

Form lth lag component of all channels from K transmitters to J receivers as 

H (l)= 

h ( 1,1) (1) 	11(1,2) (1) 	h(1 ,K) (1) —  

h(2'1) (1) 	h(2'2)  (1) 	h(2 ,K) (1) 

11(")  (1) h(j  (1) • • • h(j  (0 

1 = 0,- - - ,L 	 (4.19) 

   

Taking all lags together, we get 

H = [HT  (0), HT  , • • • , HT (L)1T 	 (4.20) 

The signal blocks from all the J receivers, after proper permutation, can be expressed as 

x. 
it; =[ 	' i= 

x, 
(H)[ ' +v;  

= (11)7eP [Si-1'L i+ V 
 S 

[H(L) 
where If (H) = i 

••• H(0) •-• 	0 
N + L 

0 - - - H(L) - - - 	H(0) 

(4.21) 

(4.22) 

NI-2L 	 J( N+L)xK(N+2L) 
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and Tcp  = 
la 

IC  KLxKN 

0 KNxia  

° KL<KN 

I  KL 

I  KN 

  

 

-K(P1+2nxIC(N-I-L) 

Theorem 4.1:128] The identifiability of MIMO channel (4.20) could be guaranteed if 

1. The J (N + L)x K (N + L) matrix gf (II) Ter  is tall i.e number rows greater than 

number of columns. 

2. Matrix .11 (H)Tcp  is full rank. 

The first condition is satisfied only if J > K . Clearly, the direct modeling of the received 

signals is not applicable to the scenarios with J = K , which includes SISO OFDM in IEEE 

802.11a and 2 x 2 MIMO-OFDM in 802.11n. 

4.2.2 System remodulation: 

By properly remodulating the received signal block, the system model (4.21) could be 

converted to the one similar to ZPSOS model proposed in [27]. This ensures that the robust 

property of ZPSOS e.g. applicability to equal transceiver antenna scenario, robustness to 

channel order overestimation and guarantee of the channel identifiability, could possibly be 

inherited after the remodulation. 

Divide noise vector v into two components as 

v,1  = v, (1: JL)and v,2  = v, (JL +1: J(N+L)). 

T Construct a new vector 	[x 	which could be expressed as 

Vo_1)2  
= .7( (H) 

v ii  

 

(4.23) 

The system remodulation vector is defined as 

z = r, 

•, v 1)2 1 
= (H)

([8it i'L -[Si,L - 1) (ViVil1) 
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= 	(H) 

= Gm, ± 77, 

where 

m, = t, (1: 

0 j" 
m1  

("-)../Lx1 

+ tl;  

= 

(4.24) 

(4.25) 

H (0) 	• • - 	0 

9 = H(L) 	• 	H(0) (4.26) 

0 	• • • 	H(L) 

i■ 

(.1(N +L))xNK 

V (1-1)2 (4.27) 
Vil  

The new noise vector 	given in (4.27) is colored and has the covariance matrix 

12, = 	=o-„2111„, (4.28) 

2IJL x JL 	0 	 Ax JL 

where R it, = 0 	21AN-L),./(N-L) (4.29) 

_-I 	0 	2IAxiL  

After remodulating, the channel matrix 9 is same as the channel filtering matrix in ZP based 

blind channel estimation for MIMO OFDM systems [27]. 

The following theorem states the sufficient condition for 9 to be full rank. 

Theorem 4.21271 For 	K ,if there exits a 1 E [0, L] such that H(Ois of full column rank, 

then G is offull column rank. 

The full column rank property of H(l) is almost surely guaranteed because signal 

propagation from each of the K transmitters is most likely independent. In the following we 
assume that this condition is satisfied. 
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The standard subspace methods require the noise to be white i.e. covariance of the 

noise vector to be a scaled identity matrix. But after remodulation, noise become colored 

whose covariance matrix is given in (4.28). In order to apply subspace method to 

remodulation case, we need to whiten the noise. 

Multiplying (4.24) with RH,-V2  , we obtain 

Y, = 12„,-112  Gm, + 
A 

	

= Am, 	, 	 (4.30) 

where ir", = R:112 74 is the J(N+ L) x 1 white noise vector whose entries have variance cr2  . In 

addition, since R„, is a non-singular matrix, the new channel matrix A is of full column rank 

if J ?_ K . 
Obtain covariance matrix of y as 

Ryy  = EfYIY,H  

	

Rm 	+ anzi  j(N+L) 	 (4.31) 

where R. = E tm,m,11  is the source covariance matrix, which should be full rank if no two 

elements in in, are fully correlated. This requirement is normally satisfied, since the two 

consecutive blocks s, and s,__1  in general are not fully correlated. 

The covariance matrix Ryy  can be eigen value decomposed as 

Ryy  = UsEsUsH  + cr2U„UnH 	 (4.32) 

where J(N + L) x KN matrix Us  spans the signal-subspace of 11,7  , and 

J (N + L)x(J (N + L) — icy) matrix Un  spans the noise-subspace of Ryy, and Es  is the 

KN x KN diagonal matrix whose diagonal elements have eigenvalues greater than cr„2  

In the standard subspace method, the matrix Uri  is orthogonal to every column ofA . 

This can be equivalently expressed as 

Unli  A =U „H R„-112  G =o 	 (4.33) 
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Alternatively we can write (4.20) as 

gH  R„,-HI 2U = 0 

Let A is the ith column of 1211-Hi2U„ , where i =1,..., (J(N+L)—KN). 

Condition (4.34) is rewritten as 

gH =0 i =1,-••,(J(N+L)—KN) 

By exploiting the structure of g, (4.35) can be expressed in terms of H. 

By dividing the vector g into blocks of J x 1 vectors as 

I =(A,T  (N + —1), AT  (N + —2),• • , AT  (o))T  

where 16, (m) (m=0,1,-- ,N + L-1) are Jx 1 vectors. 

Using (4.26) in (4.35), we can get 

±HH 	(n + L — l)= 0, n = 0,1,•••,N-1 
1=0 

or equivalently 

±,07 (n + L AH(1)= 
1=0 

Define matrix G, as 

AH  (L) (L —1) • /3,11  (0) 

G i  = 
AH (L +1) AH  (L) •• • AN  (1) 

16:11  (N+ L —1) ,G,H  (N + L — 2) • AH  (N-1) 

Then, using (4.39) and (4.20), (4.38) can be written as 

G,H = 0, i =1,..., (.1 (N + L) — KN) 

The channel matrix H can be estimated from 

Gil = 0 

Go  

where G 

G (.7(N±L)-100_ 
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The estimate of H, denoted as H , is a basis matrix of the orthogonal complement space of G. 

Therefore, CI can be obtained from right singular vectors of G and is away from the true H 

by an unknown matrix B, namely 

= HB 	 (4.42) 

The following theorem states that H is uniquely determined by span( G ) subjected to K x K 

matrix ambiguity. 

Theorem 4.3127] Let the matrix be constructed from H as in (4.26 ).Let H (0) and 

110) be of full column rank. If span() = span(c), then there exists K x K invertible 

matrix B such that 

11(1) = H(l)B, I= 	 (4.43) 

From theorem4.3, we see that an order overestimation on each Li ,k  does not effect the 

channel identifiability of H because the estimate 140 = H(/)B = 0 for 1= Li ,k  +1,-- ,L . 

4.2.3 Pilot based method to determine the ambiguity matrix (B): 

Using (4.43), the relation between estimated channel matrix 6 and actual channel matrix c 
is given by 

G=6(I °B-1) 
where ® represents Kronecker product 

Substitute (4.44) in (4.24), we get 

z, 	®B ')m; +77, 

Since 6 is of full column rank, we can define its pseudo inverse, denoted by 6t . 

Define = 6t z, and Fit  = 6t 77, . Then 

= (IN  0 	+ 

By dividing the vectors 	and 1-7, into blocks of length K, we get 

= (0),z? 	 (N -1)]T 

m =[m7 	m7  (N-0]T  

(4.44) 

(4.45) 

(4.46) 

(4.47) 

(4.48) 
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(4.49) 

The relationship (4.46) is now written as 

(n) =13-1m ,(n)+ 	, n = 0 ,• • • , N –1 	 (4.50) 

Let 	= Li, (0),i, (1),—,i, (N–l)] 	 (4.51) 

M = [m, (0),m, (1),---,m, (N-1)1 	 (4.52) 

V-7,(0),7),(1),—,7), (N-1)1 	 (4.53) 

Then 

	

= 13-1 '1■4 	 (4.54) 

If a pilot OFDM block is sent and N K , M can be assumed to be full row rank. Then, we 

can obtain 	by 

(miciff)-1  (4.55) 

Substituting phase ambiguity matrix B-' in (4.43), we get the final estimate of the channel 
given by 

H final = 1111-1 
	

(4.56) 

4.3 Subspace based blind channel estimation for zero padded (ZP) MIMO OFDM 
systems: 

A ZP based MIMO-OFDM system with K transmitters and J receivers is shown in Fig 4.2. 
Output of IDFT is zero padded with L zeros and then transmitted. Then the received ith block 
at antenna j is 

	

(n)=± 	(1),s k) 	(n), 	 (4.57) 
k 1.0 

By defining 

r 	=(r(1)  (0 ,11(2)  (n),* 	(n))T 
	

(4.58) 

11( k)  (1) = (h(")  (1) 11(2  ' k)  (1) " • h(")  (1))T 
	

(4.59) 

v ,(n)=- (17 1)  (n),v(2)  (n),...,v1(j) (n))
T 

	 (4.60) 
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Fig 4.2: ZP based MIMO-OFDM System model with K transmitting and J receiving 

antennas. 

We can express (4.57) into vector form as 
K L 

r,(n) = EIh(k) (1) s ,(k) (n — 1) v (n) n = 0 ,1,• • • , L + N —1 
k=1 1=0 

By changing the order of the summation in (4.61) and defining 

H(l) =(0) (0,h(2) (0,...,h(K) (0) 

(4.61) 

(4.62) 

si (n-1)= 

s,(1) (n-1) 

42) (n —1) 

Si(K) (n — 1) 

(4.63) 

we can express (4.61) into 

(n) = EH(l)s, (n 	+ N ,(n) n= 0 ,1,• • L + N —1 (4.64) 

(2) 

dr) 
IDFT Zero 

padding 
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Now let 

Si  = 

H (0) • • • 0 

9= H(L) • H(0) 

0 • • • H(L)_ 

ri  (0) 
r (1) 

r, (N + L 

where G 

V 

is 

= 

a 

v , (0) 
v (1) 

(N + L —1) 

J (N + L) x KN 

and 

block lower triangular 

r, = 

(N 

ON L))xNK 

Toeplitz matrix and it is same as (4.26) for CP based MIMO OFDM system. 

Then, (4.64) is turned into 

r, =gs, A-v„ i=0,1,2,... 	 (4.65) 

We can observe that (4.65) is similar to (4.24). All conditions for channel identifiability i.e., 

theorem 4.1 and 4.2 of blind channel identification method for CP MIMO OFDM system, 

can be directly applied to blind channel identification method for ZP MIMO OFDM system. 

Using (4.34) to (4.36), we can get the final estimate of H . 

4.4 Simulation results for blind channel identification of MIMO-OFDM systems: 

For the simulation of blind channel identification of CP based MIMO-OFDM systems in 

MATLAB environment, we use the following parameters: 

> No of transmitters: K = 2 

> No of receivers: J = 2 

> Modulation scheme : QPSK 

> No of subcatriers: N = 32 

> No of Monte Carlo simulation runs: N,,, =100 

> 	Channel: Multipath fading coefficients of channel order L = 8 are generated by 

( assuming exponential power delay profile e.p 	 r  , r stands for path delay and ys   

1 - ,.„,, = 0.6T is rms delay. (T is symbol period). 
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➢ Data window length: Nb=300 blocks. 

Steps carried out in simulation of VC based blind channel identification of OFDM system: 

1. Generate channel coefficients of order L = 8 for all channels between transmitter side 

and receiver side. 

2. Obtain randomly generated source data for each transmitter and get the received 
signal vector using (4.21). 

3. Rearrange the received vector using (4.23) and determine remodulation vector at the 
receiver using (4.24). 

4. After getting Nb remodulated received blocks and determine RYy  using time average 

over Nb blocks. 

5. Get the noise subspace from SVD of 1213, as in (4.32). 

6. Using noise subspace, determine G using (4.41). 

7. Estimate of channel H is obtained by finding right singular vector of G . 

8. Determine phase ambiguity matrix WI  using (4.45). 

9. Compensate the phase ambiguity present in channel estimate, by post multiplying H 

with B. 

All steps from 1 to 9 are repeated for each independent Monte Carlo run. To obtain the 

performance measure of the channel estimate, we use Normalized Root Mean Square Error 
(NRMSE) defined as 

NRMSE = 
1  EE  N K  1 11(m)(:,k)-11(m)("'ic)11 2  

ni KJ(L +1) m=1 k=1 	1111( m  

(4.66) 

where Lem)  (:, k)and H(m)  (:, k) is k th column of true channel and estimated channel at the m 

th simulation run. For comparison purposes, we also simulate Zero Padding (ZP) based blind 
channel identification method for MIMO-OFDM systems. Here we assume zero padding is 

of length L =8 . All remaining parameters are same as in CP method. 
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Fig 4.3 plots the average value of estimated channel coefficients for channel between 

1st  transmitter and two receivers (K =1, J = 2) which are obtained by averaging over 100 

independent realizations. We have assumed data window size of length Nb=300 blocks and 

SNR=5dB. For comparison, we have also plotted original channel coefficients. It may be 

noted that there is a close similarity between the true channel coefficients and averaged 

channel coefficients identified using CP based blind channel estimation method. 

Fig 4.4 shows the NRMSE at different SNR values for both CP based and ZP based 

blind channel estimation for MIMO OFDM systems. As SNR is varied from 0 to 35dB, 

NRMSE value decreases from 0.9 to 0.0015. We may also observe that both CP based 

method and ZP based method perform similarly with respect to SNR variation. The 

advantage of CP based blind channel estimation method is that it has compatibility with 

standard OFDM systems such as European digital audio/video broadcasting (DAB,DVB), 

HIPERLAN, IEEE 802.11a WLAN. On the other hand ZP based OFDM systems has very 
limited applications. 

As shown in Fig 4.5, we compare the variation of NRMSE at different data window 

lengths (Nb) at SNR=15dB, for both CP based and ZP based blind channel estimation for 
MIMO OFDM systems. As Nb is varied from 100 to 1000 blocks, NRMSE decreases from 

0.04 to 0.005. We may observe that both CP based method and ZP based method perform 

similarly with respect to data window length (Nb) variation. We may also observe that 

beyond a window size of 600 blocks, there is no effect on the performance of both the 
algorithms. 

Fig 4.6 plots the variation of NRMSE at different SNR values for CP based blind 

channel identification of MIMO OFDM systems with different estimates of channel order. 

We may observe that NRMSE decreases with increase of SNR for all the cases. We may also 

observe that there is no significant difference in the performance of CP based blind 

identification of MIMO OFDM channel with exact channel order estimation and order 

overestimation by 1 or 2. Hence, CP based method is insensitive to order overestimation. 
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Fig 4.3: Comparison between actual and CP based blind estimate of channels between one 

transmitter and two receivers, averaged over 100 independent runs at SNR=5dB. 
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Fig 4.5: Variation of NRMSE with respect to data window length (Nb) for CP based 
and ZP based blind channel identification of MIMO OFDM systems. (SNR=15dB) 
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Fig 4.6: NRMSE versus SNR for different estimates of channel order (L) for CP based blind 

channel identification of MIMO OFDM systems. 
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Chapter 5 

Conclusions 

Blind identification techniques are the promising candidates for spectral efficient 

channel estimation as compared to pilot based channel estimation. Among various blind 

channel estimation techniques (such as methods based on higher order statistics [10j and 

second order statistics [12],) noise subspace methods are of significant interest since it 

involves only second order statistics and uses either Eigenvalue decomposition or Singular 

value decomposition. This dissertation work is aimed at the performance study of blind 

channel estimation techniques for FIR channels using Single Input Multiple Output model, 

OFDM systems and MIMO-OFDM systems. 

The simulation performance in terms of NRMSE is calculated at different values of SNR, 

and data window lengths for the above blind channel estimation methods. The conclusions 

drawn based on simulation results are as follows: 

Blind identification of FIR channels using Single Input Multiple Output model: 

TXK algorithm: 

By exploiting the non-stationarity of received signal, the TXK algorithm for blind 

identification of FIR channels using SIMO model is able to identify the channel with only 

second order statistics that leads to accurate channel estimation with a smaller sample size 

than the methods using higher order statistics. As simulation results show,. the TXK 

algorithm performs well at high SNR. For the TXK algorithm to be effective at low SNR, a 

larger number of received blocks are necessary, which limits its effectiveness for rapidly time 

varying channels. 

Subspace based algorithm: 

Subspace based algorithm uses orthogonality between signal and noise subspaces to 

build a quadratic form whose minimization gives the desired channel estimate. Simulation 

results show that the NRMSE value for subspace method is much smaller than that for TXK 

method at a given SNR and data window length (Nb). Also subspace methods yield 

reasonable estimates of the channel coefficients even for shorter data window length which 

results in the faster convergence of subspace method than TXK method. Hence, subspace 
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based blind channel estimation method is a good candidate for practical digital 

communication situations. Finally, subspace methods are computationally more efficient as 

they are able to get consistent estimate of the channel coefficients even if we use less number 

of noise vectors. 

Blind channel estimation for OFDM systems: 

Oversampling method for blind channel identification of OFDM systems without CP: 

In the absence of CP, blind channel estimators for OFDM based on CP 

([15],[16],[17]) will no longer work. However, a source of redundancy introduced by 

oversampling at the receiver makes it possible for blind channel identification of OFDM 
systems without CP. Oversampling based blind chnnel estimator achieves similar 

performance comparable to the Cai and Akanshu method for CP based OFDM systems [17]. 

This algorithm is attractive for its potential to increase the system's channel utilization due to 
the elimination of CP. 

Virtual carrier(VC) based blind channel estimation for OFDM systems: 

Virtual carriers, which are intended to aid in shaping the transmit spectrum, offer an 

extra source of redundant information other than the CP which can be used to assist in blind 

channel estimation for OFDM systems. This method distinguish itself from other blind 
channel estimators [17,20] by making use of the redundant information embedded in both 

VCs and CP(if any). The advantage of this method is that it is applicable to the conventional 
OFDM systems with insufficient CP as well as OFDM systems without CP. For the 

conventional CP based OFDM systems, the exploitation of VC's bring additional 

performance gain as evidenced by the simulation results. The reduction/elimination of the CP 

thereby provides the OFDM systems the potential to achieve higher channel utilization. Also 
the simulation results show that the VC based method is insensitive to channel order 

overestimation. 

Subspace based semi blind channel estimation for OFDM system: 

All blind channel estimation methods estimate the channel up to a scalar phase 

ambiguity. To avoid phase ambiguity pilot carriers are used in semi blind channel estimation. 

Also to increase convergence of blind channel estimation methods, an initial training 
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sequence is used to estimate the received correlation matrix. Simulation results show that 

semi blind channel estimation for OFDM systems has faster convergence than the blind 

channel estimation for OFDM systems. 

Blind channel estimation for MIMO OFDM systems: 

MIMO-OFDM systems can achieve high data rates over broadband wireless 

channels. For the purpose of subspace based blind channel estimation for MIMO OFDM, 

either cyclic prefix (CP) or zero padding (ZP) was exploited. The main constraint in blind 

channel estimation for MIMO ODFM systems is that algorithm is applicable to scenario 

where number transmitting antennas is less than or equal to number of receiving antennas. 
Numerical simulations show that both CP and ZP padded based methods performs similarly 

with respect to varying SNR and data window lengths. Also they are robust to channel order 
overestimation. CP based blind channel estimation techniques for MIMO OFDM systems are 

preferable to ZP based techniques, as they are compatible with many existing standards and 
the upcoming 4G wireless communication standards. 

Future work: 

Subspace based methods provide an effective technique for blind estimation of 

channel. However to remove phase ambiguity and to increase convergence speed we need 
pilot information which is a part of all standards. A natural idea is to use pilot information in 

blind techniques to construct a semi blind channel estimator to achieve faster convergence. 
Some preliminary work on subspace based semi blind channel estimation have been reported 

in the literature [16,18]. However the above subspace based semi blind channel is not 
effective in the context of time varying channels as they requires periodic transmission of 

pilot symbols. Expectation and Maximization (EM) based semi blind channel estimation is 
very effective for time varying channels as they use channel estimate for previous frame as 

the initial estimate for the next frame and avoids the need of periodic retransmission. 

Comparison of EM based techniques and subspace based techniques for channel estimation is 

a topic of significant interest. 

Blind channel estimation for MIMO OFDM systems for a general situation i.e. no 

restriction on number of transmitting and receiving antennas, through the use of receiver 

oversampling or VCs is another topic for investigation. 
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