
PRIVACY PRESERVING ASSOCIATION RULE MINING
ON VERTICALLY PARTITIONED DATABASE

A DISSERTATION

Submitted in partial fulfillment of the
requirements for the award of the degree

of
MASTER OF TECHNOLOGY

in
COMPUTER SCIENCE AND ENGINEERING

SUSHEELA

DEPARTMENT OF ELECTRONICS AND COMPUTER ENGINEERING
INDIAN INSTITUTE OF TECHNOLOGY ROORKEE

ROORKEE -247 667 (INDIA)
JUNE, 2008

CANDIDATE'S DECLARATION

I hereby declare that the work, which is being presented in the dissertation entitled

"PRIVACY PRESERVING ASSOCIATION RULE MINING ON
VERTICALLY PARTITIONED DATABASE" towards the partial fulfillment- of

the requirement for the award of the degree of Master of Technology in Computer
Science and Engineering submitted in the Department of Electronics and Computer

Engineering, Indian Institute of Technology Roorkee, Roorkee (India) is an authentic

record of my own work carried out during the period from July 2007 to June 2008;

under the guidance of Dr. Durga Toshniwal; Assistant Professor, Department of

Electronics and Computer Engineering, IIT Roorkee:

I have not submitted the matter embodied in this dissertation for the award of any

other degree or diploma..

Date: 24 I to6 1 o9

Place: Roorkee

(SUSHEELA)' S U 4
CERTIFICATE

This is to certify that the above statement made by the candidate is correct to the best

of my knowledge and belief.

Dr. Durga Toshniwal

Assistant Professor

E & CE DEPT.

IIT Roorkee-247 667

1

ACKNOWLEDGEMENTS

I would like to extend -my heartfelt gratitude to my guide Dr. Durga Toshniwal,

Assistant Professor, Department of Electronics and Computer Engineering, Indian
Institute of Technology Roorkee, for her able guidance, regular source of
encouragement and assistance throughout this dissertation work: It is her vision and
insight that inspired me to carry out my dissertation in the upcoming field of `Privacy

Preserving Data Mining'. I would state that the dissertation work would not have

been in the present shape without her umpteen guidance and I consider myself

fortunate to have done my dissertation under her.

I also extend my sincere thanks to Dr. D. K. Mehra, Professor and Head of the

Department of Electronics and Computer Engineering, Indian Institute of Technology
Roorkee for providing facilities for the work.

I also wish to thank all my friends for their valuable suggestions and timely help.

Finally, I would like to say that I am indebted to my husband for everything that he
has given to me. I thank him for the sacrifices he made so that I could grow up in, a
learning environment. He has always stood by me in everything I have done,

providing constant support, encouragement and love.

SUSHEELA

ii

ABSTRACT

Association rule mining is a data mining technique used to find interesting

associations among . a large set of data _items. For finding association rules from

market-basket databases customer-buying habits between the different items (that

customers place in their shopping basket) are analyzed. The discovery of such

associations can help retailers develop market strategies by gaining insight into which

items are frequently purchased together by customers. -Sometimes these association

rule mining results disclose some new implicit information about individuals which is

against privacy policies.

In . vertically distributed databases, the data is vertically partitioned among various

sites. These sites wish to work together- to find globally valid association rules

without revealing individual transaction data. So some privacy-preserving method

must be used, which protect the privacy of the distributed databases and at the same

time gives accurate association rules.

In this thesis, we propose an algorithm for finding association rules from vertically

distributed Boolean databases which maintains a balance between the accuracy of the

mining results and the privacy of the databases. For. preserving the privacy, database

• is distorted by XORing the boolean data with a. boolean random variable, and then

adding some fake transactions in the distorted database. All frequent itemsets are

generated for Master's partition. Then intersection of the TIDs of frequent itemsets of

Master and real TIDs of other partitions is done. If the intersection value is greater

than or equal to some minimum support value (provided by Master Partition) only

then the algorithm proceeds. Then the partitions are combined only for the TIDs of

Master's partition. Then association rule mining is done by on the combined database

and a set of the relative TIDs are made for each candidate itemset. Then again the

intersection is performed by third party for each set of TIDs of frequent itemsets to

check whether the. itemset is frequent in the real TIDs or not. If the third party sends

`OK' then association rules are generated from the frequent. itemsets.

CONTENTS

CANDIDATE'S DECLARATION ...I

ACKNOWLEDGEMENTS ... ii

ABSTRACT

TABLE OF CONTENTS ...iv

Chapter 1 	Introduction-. 	1

1.1 Introduction 	 1
1.2 Motivation for work 	 2
1.3 Problem Statement 	 3
1.4 Organization of the Dissertation 	 4

Chapter 2 	Literature Review 	5

2.1 Association Rule Mining 5
2.2 Data Modification Methods 8
2.3. Apriori Algorithm 9
2.4 Data Layout Alternatives 14

Chapter 3 	Proposed Algorithm for Privacy Preserving Association 18

Rule Mining on Vertically Partitioned Database.......

3.1 Assumptions for Proposed Algorithm 18
3.2 Distortion Procedure 20
3.3 Execution Procedure of Proposed Algorithm 20
3.4 Phases of the Proposed Algorithm 22

iv

Chapter 4 Implementation Details 28

4.1 	Database Used 28
4.2 	Distortion Module 28.
4.3 	Intersection Module 28
4.4 	Union Module 28
4.5 	Apriori 29

Chapter 5 Result and Discussion 36

5.1 	Results and Discussion 36
5.2 	Analysis 39

Chapter 6 Conclusions and Future Work 41

6.1 	Conclusions 41
6.2 	Suggestions for future work 41

REFERENCES .. 	42

LIST OF PUBLICATIONS .. 	45

APPENDIX A: SOURCE CODE LISTING...........................

v

CHAPTER 1

INTRODUCTION

1.1 	Introduction
Generally, data mining (sometimes called knowledge discovery in data) is the process

of analyzing data . from different perspectives . and summarizing it into useful

information - information that can be used to increase revenue, cuts costs, or both. It

allows users to analyze data from many different dimensions or angles, categorize it,

and, summarize the relationships identified. Technically, data mining is the process of

finding correlations or patterns. among dozens of fields in large relational databases.

Data mining consists of five major elements:

• . Extract, transform, and load transaction data onto the data warehouse system.

• Store and manage the data in a multidimensional database system.

• Provide data access to business analysts and IT professionals.

• Analyze the data by application software.

• Present the data ina useful format, such as a graph or table.

Selection 	Preprocessing 	Transformation

Data.
	 H::H

Database
	

Target Data 	Preprocessed Data 	'Transformed Data

Data
Mining

Interpretation/
Evaluation

Knowledge 	; Patterns.

' 	------------ -----=-------------

Fig 1.1 Data Mining is the core of Knowledge Discovery Process

1.2 Motivation

Security and privacy are .important issues for .any data collection because the data is

shared and is intended to be used for making some decisions. Also, when we need

data for customer profiling, user behavior understanding, etc., large amounts of

sensitive and private data about individuals has to be gathered and stored. This makes

it difficult to maintain the confidentiality of the data and prevent its illegal access.

Also, sometimes data mining results disclose some new implicit information about

individuals which is against privacy policies. As the information stored in databases

is usually quite valuable, databases with all sorts of contents are regularly sold.

Moreover, sometimes data can be withheld for the competitive advantage that can be

attained by discovering the implicit knowledge. If data mining results in discovering

the implicit knowledge then this information can be widely distributed and used

without control [1].

For these reasons, privacy preserving data mining is essentially an emerging area of

research in data mining, where data mining algorithms are developed for modifying

the original data in some way, so that private data and private knowledge remains

private even after the data mining process. The main consideration in privacy

preserving data mining is the preservation of sensitive raw data and sensitive

knowledge that can be mined from the database. For preserving the privacy, sensitive

raw data like identifiers, names, addresses etc. must be modified or removed from the

original database, so that the data recipient may not be able to get any personal details

of the data provider. Also the sensitive knowledge that can be mined from the

database must be omitted; as such information can equally compromise the data

privacy [2].

In data mining of vertically partitioned databases, a site want to perform association

rule mining from the data partitioned among various sites. But the sites may not want

to disclose to each other their individual database for the purpose of preserving the

confidentiality of their database. As each site holds some attributes of each

2

transaction, and the sites wish to work together to find globally valid association rules

without revealing individual transaction data. So some .privacy-preserving method

must be used, which protect the privacy of the partitioned databases and at the same

time gives accurate association rules.

A typical example in data mining of partitioned databases where privacy can " be of
great importance is in the field of medical research. Consider the case where a

number of different hospitals wish to jointly mine their patient data, for the purpose

of medical research.: Privacy policy and law do not allow these hospitals from even

pooling their data or revealing it to each other due to the confidentiality of patient

records. Although hospitals are allowed to release data as long as the identifiers, such

as name, address, and etc., are removed, it is not safe enough because the re-

identification attack can link different public databases to• relocate the original

subjects. In order to pursue mutual gains and relieve the public from the privacy•

concerns, we need privacy-preserving distributed data mining protocols, which allow

distributed data mining to take place while protecting privacy of underlying

distributed data.

Another example is multiple competing supermarkets, each having an extra large set

of data records of its customers' buying behaviors; want to conduct data mining on

their joint data set for mutual benefit. Since these companies are competitors in the

market, they do not want to disclose too much about their customers' information to

each other, but they know the results obtained from this collaboration could bring

them an advantage over other competitors.

1.3 Problem Statement

The aim of proposed research work is to design a technique for preserving the privacy
of vertically partitioned database which is used for association rule mining. The

following aspects are considered in the designing of the algorithm:

3

1. The proposed algorithm is designed for boolean data (specific example

taken is market-basket data).

2. The partitions are disjoint with respect to each other except TIDs which are

common to all.

1.4 Organization of the Thesis

The report is divided into seven chapters including this introductory chapter. The rest

of this thesis report is organized as follows:

Chapter 2 provides a brief description of literature review on association rules mining

from market basket data, on Apriori algorithm is used widely for discovering large

frequent itemset from market-basket data and then the various data modification

methods and finally various possible data layout alternatives of market basket data.

Chapter 3 provides a detailed description of proposed algorithms for finding frequent

itemsets and finding association rule between the frequent itemsets.

Chapter 4 provides a brief description of the data structure and the implementation

details of the proposed algorithm.

Chapter 5 describes the results and discussion on the results. It also provides an

analysis on the correctness of the proposed algorithm.

Chapter 6 concludes the dissertation and gives some suggestions for future work.

M

CHAPTER 2

Literature Review

In this chapter, we discuss about Association rule mining, literature review on privacy •

preserving association rule mining and various data layout alternatives for market-

basket databases.

2.1 Association Rule Mining

Association rule mining finds association or correlation relationships among a large

set of data items. With massive amount of data continuously being collected and

stored, many industries are becoming interested in mining association rules from their

databases. The discovery of interesting association relationship among huge amount

of business transaction records can help in many business decision making processes

such as catalog design, cross marketing, and loss leader analysis [4].

A typical example of association rule mining is market basket analysis. This process

analyzes customer-buying habits by finding association between the different items

that customers place in their shopping basket. The discovery of such associations can

help retailers develop market strategies by - gaining insight into which -items are

frequently purchased together by customers.

For instances, if customers are buying milk, how likely are they, to also buy bread

(what kind of bread) on the same trip to the supermarket? Such information can lead

to increase sales by helping retailers do selective marketing and plan their shelf space.

For example, placing milk and bread with close proximity may further encourage the

sales of items together within single visits to the store.

If we think of the universe as the set of items available at the store, then each item has

a boolean variable representing the presence or absence of that item. Each basket can

5

then be represented by a boolean vector of values assigned to these variables. The

Boolean vectors can then be analyzed by buying patterns that reflect items that are

frequently associated or purchased together. These patterns are represented in the

form of association rules. For example, the information that customers who purchase

computers also need to buy financial management software at the same time is•

represented in association rules as follows:

Computer = financial _ management _ software [support = 2% confidence = 60%]

Rule support and confidence are two measures of rule interestingness that were

described as follows:

Each discovered pattern should have a measure of certainty associated with it that

assesses the validity or `trustworthiness' of the pattern. A certainty measure for

association rules of the form `A = B', where A and B are sets of items, is

confidence. Given a set of task relevant data tuples (or transactions in a transaction

database) the confidence of ̀ A = B' is defined as follows:

Confidence(A B) = # _ tuples _ containing _ both A _ and _ B
_ tuples containing _ A

The potential usefulness of a pattern is a. factor defining its interestingness. It can be

estimated by a utility function, such as support. The support of an association pattern

refers to the percentage of task-relevant data tuples for which the pattern is true. For

association - rules of the form ̀ A = B', where A and B are sets of items, the support is

defined as follows:

Support(A =. B) — # _ tuples _ containing _both _ A _and = B
Total — number _ of _ tuples

A support of 2% for association rule means that 2% of all •the transactions under

analysis show that computer and financial, management software are purchased

together. A confidence of 60% means that 60% of the customers who purchased a

0

computer also bought the software. Typically association rules are considered
interesting if they satisfy both a minimum support threshold and a, -minimum
confidence threshold. Such thresholds can be set by users or domain experts.

Let r = { i1 , i2,....., m} be set of items. Let D be a set, of database transactions where

each transaction T is a set of items such that T c r. Each transaction is associated

with an identifier, called TID. Let A be a set of items. - A transaction T is said to

contain A if and only if A c T. An association rule is an implication of the form A

' B where A c r , B c r , and A n B = 0 . The rule A = B holds in the transaction

set D with support's, where s is the percentage of transactions of D that contains-

Au B (i.e. both A and B). This is taken- to be the probability (Au B). The rule A =
B has confidence c in the transaction set D, if c is the percentage of transactions in D

containing A that also contain B. This is taken to be conditional probability, P (B/A)

that is,

Support (A B) = P (AV B)
Confidence (A B) = P (B/A)

Rules that satisfy both a minimum support threshold (min sup) and a minimum

confidence threshold (min conf) are called strong. By convention, we write support

and confidence values so as to occur between 0% to 100%, rather than 0 to 1.0.

A set of items is referred to as an itemset. An itemset that contains k-items is a k-

itemset. The set { computer, financial_managementsoftware} is a 2-itemset. The

occurrence frequency of an itemset is the number of transactions that contains that

itemset. This is also known simply as the frequency, support count or count of the

itemset. An itemset satisfies minimum support if the occurrence of frequency of the

itemset is greater than or equal to the product of min_sup and the total number of

transactions in D. The number of .transactions required. for the itemset to satisfy

minimum support is therefore equal to the minimum support count. If an itemset

Vl

satisfies minimum support, then it is a frequent itemset. The set of frequent k-itemsets
is commonly denoted by LK.

Association rule mining is a two step process. The two steps are:

1. Find all frequent itemsets: In this step, all those itemsets which occur at least as
frequently as a pre-defined minimum support count (considered as frequent

itemsets) are calculated.

2. Generate strong association rules from the frequent itemsets: Those rules

which satisfy minimum support and ,minimum confidence (considered as strong

association rules) are generated.

The overall performance of mining association rules is determined by the first step.

2.2 Data Modification Methods:

To preserve the privacy of the data, the real data is modified by using different

methods of modification discussed as follows: 	I

(i) Perturbation or Distortion: In perturbation, privacy is preserved by replacing

the original value by a new value or altered by adding some noise in it.

(ii) Merging: In merging, privacy is preserved by combining several values into a

common category.

(iii) Swapping: In swapping, privacy is preserved by interchanging the values of

the records each other.

Another way of categorizing data modification techniques is based on heuristics,

cryptography and reconstruction.

A. Heuristic-Based Techniques: In heuristic-based techniques only some of the

selected values of the data are modified instead of all available values. For modifying

the selected values, we can use various methods of data modification like

perturbation, merging, swapping, etc.

ro

B. Cryptography-Based Techniques: In cryptography-based techniques, first the data
entered by the people is encrypted (changed) by using different cryptography

algorithms such that at the end of the computation, no one knows anything except his

own input and results. Depending on the type of application, many cryptography
algorithms like. RSA algorithm, ElGamal Encryption scheme, Triple DES, etc. are

used for encrypting the data. For preservation of privacy of the data in cryptography-

based techniques, the encrypted data is either kept by a server and the miner queries

the server for mining on the data or shared by several miners, who can only jointly.

mine it. The aim is to protect the private data of the people as much as possible.

C. Reconstruction-Based Techniques: In reconstruction-based techniques, the values

in individual records . are randomized and then the randomized values are

reconstructed and then the new reconstructed values are disclosed for data mining.

In the proposed algorithm, we used the distortion method for modifying the real

values of the vertically partitioned databases discussed by S.J. Rizvi and J.R. Haritsa

in [9].

2.3 Apriori Algorithm

The common algorithm used to compute large itemset is the Apriori algorithm. The

Apriori algorithm has become a data mining classic and most data mining algorithms

are based upon it. The first pass of the algorithm simply counts item occurrences to

determine the large- 1-items. A subsequent pass, say pass k, consists of two phases.

First, the large itemset Lk_1 found in the (k-1)th pass are used to generate the candidate

itemsets Ck, using the Apriorigen function. Then, the database is scanned and the

support of the candidates in Ck is counted. For fast counting, we need to efficiently

determine the candidates in Ck that are contained in a given transaction. The apriori -

algorithm works as follows [5]:

W

1. L1 = {large 1-itemsets};

2. for (k=2;Lk_l~ ❑;k++) dobegin
3. Ck = apriori-gen(Lk I) //New candidates
4. forall transactions t in database do begin
5. CI = subset(Ck, -t) //Candidates contained in t
6. forall candidates. c E Ct do begin

~ 7. 	 c.count++;
8: 	 End

9. Lk = {c E Ck J c.count > minsup}

10. End

11. Answer = UksLk

Apriori-gen function:

The most important step of apriori algorithm is step 3 in the prune step in apriori-gen

function, which makes sure that all subsets of a candidate itemset are frequent. The

basic idea is that any subset of a large iternset must be large. Therefore, the candidate

itemsets having k items can be generated by joining large itemsets having, k-1 items,

and deleting those that contain any subset that is not large. The apriori-gen function
takes as argument Lk I , the set - of all large (k-1)-itemsets. It returns a superset of the

- set of all large k-itemsets.'The function works as follows. First, the join step joins Lk_i
with Lk-1 [5]:

Join Step:

1. insert into Ck

2. select p. item,, p. item2, ... ,p. itemk_l, q. itemk_I

-3.- from Lk-Ip, Lk-Iq
4. where p. item, = q. item,, .. P. itemk Z = q. itemk-Z, P. item1c_I < q. item,c-l;

10

Prune Step: The prune step deletes all itemsets c E Ck such that some (k-1) -subset of
c is not in Lk_J:

1. forall itemsets. c E Ck do
2. forall (k - 1)-subsets s of c do
3. if (s 	L,_ j) then

- 4. 	 delete c from Ck

5. end

6. end

7. end

Subset function:
Candidate itemsets Ck are stored in a hash tree. A node of the hash tree either contains.

a list of itemsets (a leaf node) or a hash table (an interior node). In an interior node,

each bucket of the hash table points to. another node. The root of the hash tree is

defined to be at depth 1. An interior node at depth d points to nodes at depth d+l.

Itemsets are stored in the leaves. When we add an itemset c, we start from the root

and go down the tree until we reach a leaf. At an interior node at depth d, decide

which branch to follow by applying a hash function to the dt' item of the itemset. All

nodes are initially created as leaf nodes. When the number of itemsets in a leaf node

exceeds a specified threshold, the leaf node is converted to an interior node.

Starting from the root node, the subset function finds all the candidates contained in a

transaction t as follows: If we are at a leaf, find 'which of the itemsets in the leaf are

contained in t and add references to them to the answer set. If we are at an interior

node and we have reached it by hashing the item i, we hash on each item that comes

after i in t and recursively applies this procedure to the node in the corresponding

bucket. For the root node, we hash on every item in t.

To see- why the subset function returns the desired set of references, consider what

happens at the root node. For any itemset c contained in the transaction t, the first

item of c must be in t. At the root, by hashing on every item in t, we assume that we

only ignore itemsets that starts with an item not in t.; Similar arguments are applied at

lower depths. The only additional factor is that, since the items in any itemset are

ordered, if we reach the current node by hashing the item i, we only need to consider
the items in t that occur after i.

Agrawal and Srikant [6] have proposed the apriori algorithm for discovering all

significant association rules between items in a large (not distributed) database of

transactions. However, this work does not address privacy concerns.

Later in [7], the authors propose a procedure in which some or all the numerical

attributes are perturbed by a 'randomized value distortion so that both the original

values and their distributions are changed. The proposed procedure then performs a

reconstruction of the original distribution. This reconstruction does not reveal the•

original values of the data, and yet allows the learning of decision trees. Another

paper [8] shows a reconstruction method, which does not entail information loss with

respect to the original distribution.

Other randomization techniques were proposed in order to provide association rules

mining without revealing sensitive information about individuals [9, 2]. These

techniques are based on probabilistic distortion of user data in the way that can

provide a high degree of privacy and retain a high level of accuracy of the result. For

example, in [9], the value of the attribute is retained with probability p and flipped

with probability 1- p.. The presented experimental results showed that distortion

probability of p T 0.1 is ideally suited to provide both privacy and 'good mining

results. . But this work is also for central database of transactions.

In [10] the existing data mining algorithms (for a centralized database) are used for

mining association rules, from the database which is partitioned among several sites.

The algorithm is applied for each site independently and combines the results, but this

12

method will often fail to achieve a globally valid result. Because this can cause a

. disparity between local and global results ([1 1]) include:

• Values for a single entity may be split across sources. Data mining at
individual sites will be unable to detect cross-site correlations.

• The same item may be duplicated at different sites, and will be over-weighted
in the results.

• Data at a single site is likely to be from a homogeneous population, hiding

geographic or demographic distinctions between that population and others.

To overcome the above problems, algorithms were proposed for partitioning data

between sites. The algorithms that were proposed for horizontally partitioned data

(i.e., each site contains basically the same schema), include Cheung et al. [12],

Kantarcioglu and Clifton [13] and Kantarcioglu and Vaidya [14]. Some of them use

cryptographic techniquesto minimize the amount of disclosed information [13] or a

special architecture [14]. This architecture contains sites that sequentially add noise to

the original data, compute the answer with noise and remove the noise from the

answer. All these methods work with the assumption that no collusion occurs

between the sites and the sites follow the protocol precisely.

There has been much work addressing Secure Multiparty Computation. It was first

investigated by .Yao [15], and later, after Goldriech proved existence of a secure

computation for any feasible function [16], some algorithms based on his Circuit

Evaluation Protocol have been proposed. But the general method, which is based on

Boolean circuits, is inefficient for large inputs. Du and Atallah [17] proposed a more

efficient technique for some cases of the multi-party computation problem. One of

them is the Two-Party Scalar Product Protocol. In [18], an algorithm is presented for

association rule mining which requires the intensive use of secure_ computation in

order to preserve privacy.

The main work on mining association rules from vertically, partitioned data across

several databases, where. the . columns in the table are . at different sites is done by

13

Vaidya and Clifton in [11] and by and by -Boris Rozenberg and Ehud Gudes' in [19].

In [11], Vaidya and Clifton presented some successful solutions for the database
vertically partitioned- among two sites. But .these algorithms have the potential for
inferring private information based on the results in certain cases. Then in [19], Boris

Rozenberg and Ehud Gudes presented another solution for preserving privacy. But
their algorithm also has the potential for inferring private information if the miner has,
some external knowledge about the customers. This external knowledge problem was

one of the main motivations for our algorithms.

2.4 Data Layout Alternatives

Conceptually, a market-basket database is a two-dimensional matrix where the rows

represent individual customer purchase transactions and the columns represent the

items on sale. This matrix can be implemented in the following four different ways

[4], which are pictorially shown in fig. 2.1

Horizontal Item-vector (HIV): The database is organized- as a set of rows with each

row storing a transaction identifier (TID) and a bit-vector of .1's and 0's to represent

for each of the items on sale, its presence or absence, respectively in the transaction

(Figure a).

Horizontal Item-list (HIL): This similar to HIV, except that each row stores an

ordered list of item-identifiers (IID), representing only the items actually purchased in

the transaction (Figure b).

Vertically Tid-vector (VTV): The database is organized as a• .set of columns with

each column storing an .item-identifier (IID) and a bit vector of I's and 0's to

represent the presence or absence, respectively, of the item in the set of customer

transactions (Figure c). Note that a VTV database occupies exactly the same space as
an HIV representation.

14

Item IDs

L'
	2 	3 	4.....

Hr11 1

HLiJ 23
4 4

CID

H

Vertical Tid-list (VTL): This is similar to VTV, except that each column stores an

ordered list of only the TIDs of the transactions in which the item was purchased

(Figure d). Note that a VTL database occupies exactly the same space as an HIL
representation.

ITID

2

3

Item IDs
1 2 3 4 5..

1 - 	1) 	1 	1

n 	1 	1 	O 	n ----

Ii 	-0 	0 	1 	1.

n 	.1 	1 	1 	n :---

(a) HI V

TID

1

2

3

4

Item IDs

1 - 4 `7

7 	R 10

1 4 5

7. 1 4 9 I

TID

1

2

3

14

Item IDs
1 	2 	3 	4.....

1 0 1 1

0 1 1 0

1 0. 0 1

0 1 1 1

(c) VTV (d) VTL

Fig. 2.1 Data Layout Alternatives of Market-Basket Data

In our research work, we worked on VTV data layout.

Merits of vertical mining:
The vertical layout of market-basket database appears to be a natural choice for

achieving association rule mining's objective of discovering correlated items. More

specifically, it has the following major advantages over the horizontal layout:

Firstly, computing. the supports of the itemsets is simpler and faster with the vertical
layout since it involves only the intersections of TID-lists. or TID-vectors, operations

that are well supported by current database. systems. In contrast, complex hash-tree.

data structures and functions are required to perform the same function for horizontal

layouts (e.g. [3]).

Secondly, with the vertical layout, there is an automatic reduction of the database

before each scan in that only those itemsets that are relevant to the following scan of

the mining process are accessed from disk. In the horizontal layout, however,

extraneous information that happens to be part of a row in which useful information is

present is also transferred from disk to memory. This is because database reductions

are' comparatively hard to implement in the horizontal layout. Further, even if

reductions were possible, the extraneous information can be removed only in the scan

following the one in. which its irrelevance . is discovered. Therefore, there is always a

reduction lag of at least one scan in the horizontal layout.

Thirdly, bit-vector formats, due to their sequences of 0's and 1's, offer scope for

compression. From this perspective also, the vertical layout is preferred since a VTV

format results in higher compression ratios than the equivalent HIV format. This is

because compression techniques typically perform better with large datasets since

there is greater opportunity for identifying repeating patterns. — in a VTV, the length

of the dataset is -proportional to the number of customer transactions, whereas for

HIV, it is limited to the number of items in the database, usually a fixed quantity that

is small relative to the number of tuples in the database.

16

Finally, the vertical layout permits asynchronous computation of the frequent

itemsets. For example, given a database with items A, B, C, once the supports of the

items A and B are known, counting the support of their combination AB can

commerce even if item C has not yet been fully counted. This is in marked contrast to

the horizontal approach where the counting of all itemsets has to proceed
synchronously- with the scan of the database. A careful algorithmic design is required

to ensure that the above mentioned inherent advantages of the vertical layout are

translated into tangible performance benefits.

17

CHAPTER 3

	

Proposed Work b° 4 tcc 	se nc 	dcx n ►u 	h r h

on 	a 'on
In this chapter we will discuss the proposed algorithm for preserving the privacy of

the vertically partitioned .databases when they are used for discovering frequent

itemsets. Our work is an extension of the .work done by B. Rozenberg at al. in [19].

3.1

In our proposed algorithm, we assume partition i of vertically partitioned database as

Master partition, who wants to find out the frequent itemsets. Other partitions of the

database only provide their partition data for mining but will not do any global

computations &. Third Party performs intersection of the TIDs. This third party is not

trusted with the database, but it is trusted with computations).

We assume that in all partitions of the database, the domain of the TIDs is. the same

and its size- is equal to n - some number that depends on the area of the business. The

number of transactions in each partition is up to n and the TIDs range from I to n.

When fake transactions are introduced, they use "unoccupied" TIDs. When

information between the parties is shared, then only information in which some

attributes are real (in one of the databases) is of use. That is, a fake transaction whose

corresponding TID in the other database is empty, is not considered at all. Also when

each partition computes large itemsets it does not know whether the attributes

corresponding to his real transaction, are real or not.

The flow chart for the proposed approach for privacy preserving association rule

mining is drawn in Figure 3.1.. The flowchart is showing all 4 phases of the proposed

algorithm which are described just after the figure.

i

0
o • Q

v ~
o ~

U O o l'+
I G) a °

y
 . !

v~ 	 ~► cOa q d
o C C

v ~
En

O v

w

rl)

LLT

3.2_ Distortion Procedure:
There are many data modification methods for distorting the data as discussed in
chapter 2. We, are. using the following data distortion method for .modifying or

distorting the values of the vertically partitioned database described by S.J. Rizvi. at
al. in [91:

n

A customer tuple can be considered to be a random vector X = {X; }, such that X.

0 or 1. We generate the distorted vector from this customer tuple by computing Y =

distort(X) where Y, = X ; XOR ri, and - ri, is (100 - i), r is a random variable with

density function f (r) = bernoulli(p) (0 < p <_ 1). That is, ;;, takes a value 1 with

probability p and 0 with probability 1 - p.

After distorting the database with the above described method, . add some fake

transactions (by simply putting 1 randomly in non existing transactions) in the

distorted database to get the final distorted database.

•3 Execution Procedure of the proposed algorithm:

The execution procedure of the proposed algorithm is as follows:

1-. Firstly phase 1 (can be called as `Mining Check phase') is executed, in which

the Master (ith partition in vertically distributed database) finds out all

frequent itemsets in its own partition- for some minimum support value by

using apr-iori algorithm discussed in ' chapter 2. - After finding all frequent

itemsets Master partition sends the TIDs of the frequent itemsets and the other

partitions send their real TIDs to the Third Party. Then the Third Party find

out the intersection of the TID's sent to him by using the. `Third Party's

execution process'. If the intersection is greater than or equal to the minimum

support value, the Third Party sends "Ok" (which means mining is possible)

to all partitions, otherwise sends "NotOk" (which means mining is not

0

possible) to all partitions. The algorithm proceeds only if all partitions get
"Ok" from the Third Party.

2. If all partitions •• gets "Ok" from the Third Party then phase 2 is executed. In

this phase, all partitions distort their own data by using the distortion method
described above and by adding fake transactions in the distorted data and send

it to Master partition.

3. Then phase 3 is executed in which Master partition makes the global database

by joining the Item TID's values of all, partitions only for the real TIDs of its

own partition. After making a global database, the Master partition finds all

frequent itemsets from the global. database. Then the Master sends the

transaction IDs of the frequent itemset to the' Third Party with some minimum

support value to check that the number of real transactions present in a

frequent itemset. The Third Party executes the `Third Party's execution

process' to -calculate the size *of the intersection of the received set with the set

of all real ID's of all partitions of the database other than master partition, if

this intersection value is greater than equal to the minimum support value, it

sends an "OK" to the Master, which means that the itemset is also frequent in

the all real partitions of the database.

-4. Then phase 4 is executed, in which association rules are generated for all

those frequent itemsets for which the third party sends `OK'.

In . this algorithm there is no communication with partitions other than Master

partition after initial submission of their partition data. and since the Third Party just

answers "Ok" or "Not Ok" to the Master partition, the master-partition knows only

that some minimum number of the transaction IDs '(equal to the minimum threshold

value) are common in both databases. Also, the- Third .Party does not have knowledge

of the partition's data, so its role and the trust required is very limited.

21

S4 Phases of the proposed algorithm:

1. Phase 1: This phase is `Mining check' phase. The following steps are included in
this phase:

1. Using apriori-gen function, - generate all frequent itemsets from Master's

partition.

2. Send all TIDs of Master partition present in frequent itemsets and all the real

TIDs of all partitions other than Master partition to the Third party.

3. Receive the response from the Third party whether mining is possible or not

(See third.party execution phase). If the mining is possible then continue.

2. Phase 2: This phase is `Data Preprocessing phase. The following steps. are

included in this phase:

1. Distort all vertical partitions of the database (by using the distortion

procedure) and then add some fake transactions in it.

2. Send all distorted partitions to the Master.

3. Phase 3: This 'phase is `Master's Execution' phase'. The following steps are

included in this phase:

1. Build the global database (GDB) with true TIDs from its own partition and

attributes from its own and other partitions of the database.

2. Using apriori-gen function, generate all frequent itemsets from GDB.

3. For each frequent itemset:

i. Build the'set of relative TIDs
ii. Check with the third party whether the itemset is frequent.

Third party execution phase: The `Third party execution phase'. used in the above 3.

phases for calculating the intersection of TIDs includes the following the steps:

0

22

1. Receive TIDs from the two parties (MTID, STID)

2: If(IMTID f1 STIDI > minsup)

send "OK"

while (Master not finished) do
receive set of TID's from Master

if [lMTID fl STID 1 > minsup) then

send "OK" to the Master

else

send "NotOK" to the Master

end while

else // mining is not possible!

Send "NotOK"

Phase 4: This phase is `Association rule generation. phase'. In this phase firstly, the

value of c (the minimal confidence value) is taken for by the Master partition. Then

the following Master's execution process and Third party execution process is

executed for calculating the confidence:

a) Master's Execution process:

1. Send c to the third party.
2. For each frequent itemset Z, generate all possible rules X Y such that Z

XY according to the Master's real transactions.

3. For each rule from step 2 do:

Generate two sets of ids: TIDx (IDs of all real transaction that -contain

X) and TIDxy (IDs of all real transaction that contain XY).
Send TIDx and TIDxy to the 311 party.

'Receive from the 31 party "OK" or "NOT".

4. Send to 3`.d party "FINISH".

23

b) Third party execution process::

1. Receive c from the Master.

2. While not "FINISH" do:
Receive two sets from the Master (TIDx and. TIDxy).

Calculate answer = I TIDxy n STID ~ c I , where STID is the set of all
TIDx n STID

real TIDs of the other partitions.
Send answer to the Master.

Now we will explain the proposed algorithm with the help of sample database
(vertically partitioned in two sites). Let the Ist (Master's) and 2' two vertical

partitions of the databases, are:
Table 3.1 1St (Master's) Partition's Real Data

Transaction IDs Item IDs

A B C D

1 1- 1. 0 0

2 1. 1 0 0

6 1 1 1 0

7 1 1 0 1

9 1 1 0 1

-Table 3.2 2nd Partition's Real Data

Transaction IDs Item IDs

E F G H I J

1 1 1 1 0 0 0.

2 1 1 1 1 1 0

4 0 1 0 1 0 1

6 1 l 1' 0 1 1

7 1 1 1 0 0 0

10 0 1 0 1 0 1

24.

Let the value of , minimum support is 4. Master partition will find the frequent.

•itemsets in its partition.{A, B} is frequent itemset in Master's partition. The 'TIDs in

which {A, B} is present are {1, 2, 6, 7, 9}. So, both partitions'sends TIDs {1, 2, 6, 7,

9} and { 1, 2, 4, 6, 7, 10} to Third Party: Now Third Party calculates the size of the

intersection of the two sets (({1, 2, 6, 7, 9} (1 {1, 2, 4, 6, 7, 10}(= 4) and sends `OK'

to each partition which means that mining is possible (because the size of intersection

> minimal support). After this step, each side distorts the database- by using the

distortion method described above and then add some .fake . transactions in their

partitions and then 2"d partition sends the resulting distorted database to the 1st

(Master partition) partition.

Table 3.3 1st Partition's (Master's) Distorted Database with r = 80%) without

fake transactions

Transaction IDs Item IDs`

A B C D

1 1 1 0 0

2 1 1 0 1

6 1 1 1 0

7 1 1 1 1

9 	. 1 1 0 1

Table 3.4 2°d Partition's Distorted Database (with r = 80%) without fake

transactions

Transaction IDs Item IDs

E F G H I J

1 1 1 1 0 0 1

2 1 1 1 1 0 0

4 0 1 0:1. 01

6 1 1 0 1 1 1

7 1 1 1 0 0 0

10 0. 1 0 1 0 1

25

Table.3.5 I't Partition's (Master's) Distorted Database with fake transactions

Transaction IDs Item IDs

A B C D

1 1 1 0 0

2 1 .1 , 0 1

3 0 .1 1 1

4 0 1 1 0

5 1 0 0 1

6 1.1 10

7 1 1 1 1

8 . 1 0 0 1

9 1 1 0 1

10 1 0 1 0.

Table 3.6 2"d Partition's Distorted Database with fake transactions

Transaction IDs Item IDs

E F G H I J

1 1 1 1 0 0 1

2 .1 1.1 1 0 0

3 1 1 1 1 0 1

4 0 1 0 10 1

-5 1._U 1 1 1 0.

6 1 1 0 1 1 1

7 1 1 1 0 0. 0

8 0 0 0 1 1 0

9 1 1 1 0 0 0

10 0 1 0 1 0 1

Table 3.7 1St Partition's (Master's) Global Database
 -- 	- 	-

0 u0®®®®uu O©uu®©®ME0
_____uvuuuuuuuu _____uuuuuuuugu uuuuuuuuuu

M

Table 3.8 2"d Partition's Global Database
Transaction IDs Item IDs

A B C D E F G H I J
1 1 1 0 0- 1 1.1 0- 0 0

• 2 1 1 0 1 1 1 1.1 10

4 0 1 `1 0 0 1 0 1 0 1

6 1 1 1. 0 1 1 1 0 1 1

7' 1 1- 1 1 1 1 1 0 0 0.

10 1 0 1 0 0 1 0 1 0 1

Now Master generates the frequent itemsets from its global database by using apriori-

generation function and.he found that itemset I = {A, B, E, F, G} is. frequent in the

global database. Then the Master wants to know if the itemset I = {A, B, E, F, G} that

is frequent in the above global Master's database is frequent in the 2nd Partition. The

Master sends the transaction IDs that contains. the frequent itemset to the Third Party

(1, 2, 6, .7, 9}); The Third Party calculates the size of the. intersection of the received

set with the set of all real TID's of 2"a partition, and since the`size of the result (1, 2,

6, 7) is greater than or equal to 4, it sends an "Ok" to the Master.

27

CHAPTER 4

IMPLEMENTATION DETAILS

The implementation of the proposed Algorithm is done in C++ and Java. The ..

implementation details of the'proposed algorithm are listed as follows:

4 . I DATABASE
The vertical partition database used in the thesis is the database used in [22]. The

transaction database is taken as 'an m x n matrix. Transaction 1 appears in row one.
Columns are separated by a space and represent items. A 1 indicates that item is

present in the transaction and a 0 indicates it is not.

DISTORT.0
This program is used to distort the Boolean Market-basket database. The program

takes input from a -file which contains. the boolean database. A boolean random

number is generated by using rand () function. The amount of occurrence of 1-and 0

for this - random number can be controlled by the user. Then this random number is

XORed with the values in the database for distorting the database values. Then the

distorted database is -stored in other file.

4e3 INTERSECT.0
This program calculates the number of common transaction IDs from the TIDs

entered in it. The some value for minimum support is also provided. If the number of

common transactions is greater than or. equal to the minimum support value, the

program returns "OK" to the database owner, else return "NotOK".

X14 UNION.0

This _program is used to merge different partitions of the database on the basis of the

TIDs provided. First, the transactions IDs (TIDs) of the Master's partitions are

matched with the TIDs of the other partitions of the database. If a TID is common in

all partitions of the database then the values are combined. If the. TID is present only

in Master's database then the item values for that TID are taken as they are and `0' is
entered for items of the other partitions..

4 •~ APRIORI.JAVA
This program creates a user interface, which contains three buttons — Open File, Add

Support, and Run. `Open File' button is used to open the database file. `Add Support'

button is used to add the minimum support for finding association rules. `Run' button

is used to run the apriori algorithm.

public Apriori (String s)

This constructor is used to create user interface.

public void. actionPerformed(ActionEvent ,event)

This function is used to perform the —open file, read file, add minimum support and

run actions.

.protected void createTtreeTopLevel 0
This function generates top level (i.e. I" level) of the T-tree.

protected void createTtreeLevelNO

This function performs the process of determining the remaining levels in the T-tree

(other than the top level), level by level in an "Apriori" manner by adding support,

then performing pruning and generate loop until there are no more levels to generate.

protected void addSupportToTtreeLevelN(int level)

This function performs the_ process of adding support to a given level in the T-tree

(other than the top level).

private void addSupportToTtreeFindLevel (TtreeNode[] linihEef, int level, int
endIndex, short[] itemSet)

29

This function operates in a recursive manner to first find the appropriate level in the

T-tree before processing the required level (when found). linkRef is the reference to

the current sub-branch of T-tree (start at _top of tree), level is the level marker, set to
the required level at the -start and then decremented by 1 on each recursion-. endIndex
is the length of current level in a sub-branch of the T-tree. itemSet is the current
itemset under consideration.

protected void pruneLevelN(TtreeNode [] linkRef, int level)
This function performs the pruning of the given level in the T-tree. Pruning carried

out according to value of minSupport field. linkRef is the reference to the current

sub-branch of T-tree (start at top of tree), level is the level marker, set-to the required

level at the start and then decremented by 1 on each recursion.

protected void generateLevel2Q .

This function generates level 2 of the T-tree. The general `generateLevelN' method

assumes we have to first find the right level in the T-tree, that is not necessary in this

case of level 2.

protected void generateLevelN (TtreeNode[] linkRef, int level, int requiredLevel,
short[] itemSet)
This function performs the process of generating remaining levels in the T-tree (other

than top and 2nd levels) by proceeding in a recursive manner level by level until the

required level is reached. Example, if we have a T-tree of the form:

(A) ----- (B) -----(C)

(A) 	(A) ----- (B)
Where all nodes are supported and we wish to add the third level we would walk the

tree and attempt to add new nodes to every level 2 node found. Having found the

correct level we step through starting from B (we cannot add a node to A), so in this

case there is only one node from which a level 3 node may be attached. linkRef is the

reference to the current sub-branch of T-tree (start at top of tree). level is the level

30

• marker, set to 1 at the start of the recursion and incremented by I on each repetition.
requiredLevel is the required level. itemSet is the current itemset under consideration.

protected void generateNextLevel (TtreeNode[] parentRef, int endIndex,
short[] itemSet)
This function generates a new level in the T-tree from a given "parent" node.

Example 1, given the following:

----- (A) 	(B) ----- (C)

(A) 	-(A) ----- (B)

where we wish 'to add a - level 3 node to node (B), i.e. the node {A}, we would,

proceed as follows:

Generate a new level in the T-tree attached to node (B) of length one less than the

numeric equivalent of B i.e. 2-1=1. Loop through' parent level from (A) to node

immediately before (B): For each supported parent node create an itemset label by

combing the index of the parent node (e.g. A) with the complete itemset label for B --

- { C, B } (note reverse order), thus for parent node (B) we would get a new level in

the T-tree with one node in it --- {C, B, A} represented as A. For this node to be a

candidate large item set its size-1 subsets must be supported, there are three of these

in this example {C,A}, {C,B} and {B,A}. We know that the first'two are supported -

because they are in the current branch, but {B, A} is in another branch. So we must

generate this set and test it. More generally we must. test all cardinality-1 subsets,

which do not include the first element. This is done using the method

testCombinations.

Example 2, given:
(A) -----(D) 	

.• (A) ----- (B) -----(C) 	 .

(A) ----- (B)

31-

where we wish to add a level 4 node (A). to (B) this would represent the complete

label {D, C, B, A}, the N-1 subsets will then be {{D, C, B}, {D, C, A}, {D, B, A}

and {C, B, A}}. We know the first' two are supported because they are contained in

the current sub-branch of the T-tree, {D, B, A} and {C, B, A} are not. parentRef is

the reference to the level in the sub-branch of the T-tree under consideration.
endIndex is the index of the current node under consideration. itemSet is the complete

label represented by the current node (required to generate further itemsets to be X-

checked).

protected boolean testCombinations (short[] currentIteinSet)
This function .performs the process of testing whether the N-1 sized sub-sets of a

newly created T-tree node are supported. elsewhere in the Ttree --- (a process referred

to as "X-Checking"). Thus .given a candidate large itemsets whose size-1 subsets are

contained (supported) in the current branch of the T-tree, tests whether size-1 subsets

contained in other branches are supported. Proceed as follows:

Using current item 'set split this into two subsets: itemSetl = first two items in current

item set, itemSet2 = remainder of items in current item set, Calculate size-1

combinations in itemSet2, For each combination from (2) append to itemSetl.

Example 1:

currentItemSet = {A,B,C},

itemSetl = {B, A} (change of ordering),

size = {A, B, C}-2 = 1

itemSet2 = {C} (currentitemSet with first two elements removed).

Now calculate combinations between {B, A} and {C}.

Example 2:

currentItemSet = {A, B, "C, D}

itemSetl = {B, A} (change of ordering)

itemSet2 = {C, D} (currentltemSet with first two elements removed)

calculate combinations between {B, A} and {C, D}"

currentItemSet the given itemset.

32

private boolean combinations (short[] sofarSet, int startIndex, int endIndex,
short[] itemSetl, short[] itemSet2)
This function determines the cardinality N combinations of a given itemset and then

checks whether those combinations are supported in the ..T-tree. Operates in a
recursive manner.

Example 1:. Given --- sofarSet = null, startIndex = 0, endlndex = 2, itemSetl = {B, A}

and itemSet2 = {C},

itemSet2.length = 1, endIndex = 2 greater than itemSet2.length

if condition succeeds

tesSet = null+{B, A} _ {B, A)

retutn true if {B, A} .supported and

return null otherwise

Example 2: Given --- sofarSet = null, startIndex = 0, endIndex = 2, itemSetl = {B, A}

and itemSet2 = { C, D}

endindex not greater than length {C, D}

go into loop

tempSet={}+{C}={C}

combinations with --- sofarSet={C}, startIndex=l,

endIndex=3, itemSetl = {B, A} and itemSet2 = {C}

endlndex greater than length {C, D}..

testSet = {C} + {B, A} = {C, B, A}

temp Set = { } + {D} =. {D}

combinations with --- sofarSet={D}, startIndex=l,

endIndex=3, itemSetl =_ {B,A} and itemSet2 = {C}

endIndex greater than length {C,D}-

testSet = {D} + {B,A} _ {D,B,A}

sofarSet is the combination itemset generated so far (set to null at start), startlndex is

the current index in the given itemSet2 (set to 0 at start).. endlndex is the current index

of the given itemset (set to 2 at start) and incremented on each recursion until it is

33

greater than the length of itemset2. itemSetl is the first two elements (reversed) of the

total Iabel for the current item set. itemSet2 is the remainder of the current item set.

private boolean findItemSetInTtree (short[] itemSet)
This function commences the process of determining if an itemset exists in a T-tree.

Used to X-check existance of Ttree nodes when generating new levels of the Tree.

Note that T-tree- node labels are stored in "reverse", e.g. {3, 2, 1 }. itemset is the given

itemset (in reverse order). It. returns true if itemset found and false otherwise.

private boolean findltemSetInTtree2 - (short[] itemSet, int index, int lastIndex,

TtreeNode[1 linkRef)
This function returns true if the given itemset is found in the T-tree and false

otherwise. It operates recursively. itemSet is the given itemset. index is the current

index in the given T-tree level (set to 1 at start). lastIndex is the end index of the

current T-tree level. linRef is the reference to the current T-tree level.

private void addSupportO
This function add the minimum support'value and enable run button if have data and

a minimum support value.

private void. getFileNameO
This function displays an open file dialog box so that the user can select file to open.

If "OK" button is clicked then the file' is opened and if cancel button is clicked then

return. Obtain selected file and read the file if the file is readable (i.e. not a directory

etc.). Enable run button if have data and a minimum support value. Output the no. of

rows & columns to text area.

private boolean checkFileNameb
This function check the -whether the selected file is a text file or not. -It returns false if

selected file is a directory or is not a file name or access is denied.

34

private void checkLine (int counter, String str)
This function check whether input file is of appropriate boolean input.

public void inputDataSetO throws IOException
This function reads input data. from file specified in command line argument.

protected void outputItemSet -(short[] itemSet)
This function outputs a given item set. itemSet is the given item. set.

public void outputFrequeatSetsb
This function commences the process of outputting the frequent sets contained in the

T-tree.

private int outputFrequentSets (int number, short[] itemSetSofar, int size,

TtreeNodell linkRef)
This function outputs T-tree frequent sets. It operates in a recursive manner.- number

is the number of frequent sets so far. itemSetSofar is the label for a T-treenode as

generated sofar. Size is the length/size of the current array level in the T-tree. linkR.ef

is the reference to the current array level in the T-tree. It returns the incremented

(possibly) number the number of frequent sets so far.

protected short[] reallocl (short[] oldItemSet, short newElement)

This function resizes given item set so that its length is increased by one and append

new element. oldltemSet is the original item set. newElement is the new

element/attribute to be appended. It returns the combined item set.

35

CHAPTER 5

RESULTS AND DISCUSSION

5.1 Results and Discussion

Impact of Distortion on Privacy of data:

120

cc 100
80

-a
60

40
L

20

± Privacy
- Accuracy

0
0 10 20. 30 40 50 60 70 80 90 10 11

00

Distortion

Figure 5.1 Distortion v/s Accuracy and Privacy of the database

The. above graph is showing that as the distortion of the database increases, the

accuracy of the frequent. itemsets decreases, but the privacy of the database increases.

So we can choose the amount of distortion done on the database where requirement of

accuracy and privacy both are fulfilled.

Impact of Distortion on Accuracy of Association Rules:

The graph drawn below is showing that as .the distortion (probability of occurrence of

1. as random variable) increases the accuracy of the frequent itemsets decreases. As

the distortion increases, the frequent itemsets contains some false positives and false

negatives. False positive •means that the distorted database contains some frequent

36

itemsets which are not frequent in the real database. False negative means that some

of the itemsets which are frequent in the real database are not frequent in the distorted

database.

120

100

so

60

•40

20

10 20 30 40 50 60 70 80 90 100 110

Distortion (in %age)

Fig-5.2 Probability of occurrence of 1 v/s accuracy of the frequent itemsets

Execution Time v/s Database size:

As the database size (number of transactions) increases, the execution time of finding

frequent itemset also increases.

Execution Time v/s Database Size

10000
rn 9000
0 8000

7000
vi 6000
~. 5000
'- 4000

3000
d 2000

1000
0

0 600 1200 1800 2400 3000 3600 42004800 5400 6000

Execution Time (in millisec)

Fig 5.3 Database Size v/s Execution Time

W

37

In the above graph the execution time is for a database having 8 itemsets with 30%

minimum support.. As the database size (number of transactions) increases the

execution time of apriori algorithm for generating frequent itemsets also increases.

Impact of Minimum Support on Execution. time:

The value of minimum support directly affects the execution time of the algorithm.

As we are assuming that in market-basket database, the number of 1's is Iess than the

number of 0's. So the number of itemsets-having high minimum support is less.-If the

value of minimum support is less then the number of frequent itemsets is more and if

the value of minimum support is more then the number of frequent itemsets is less.

The graph below- is showing that as the minimum support for .generating frequent

itemset increases, the execution time decreases.

Minimum Support .v/s Execution Time

16000

14000

d 12000
E
j 10000
c
0 8000

as 6000

w 4000

✓~iIIItt

0 	.20 	40 	60 	80 	100

Minimum Support (in %age)

120- 1

Fig 5.4 Minimum Support Value v/s Execution Time

5.2 Analysis

Correctness:.
The algorithms for frequent itemsets mining use the apriori-gen function to generate

all candidates for large itemsets. In each iteration k, a large k-itemset that was found

by the Master according to its true transactions is checked by the other party. So, all

existing large itemsets are found. In the algorithm for association rules mining, the

Master generates all possible rules from frequent itemsets found earlier and checks

with the 2°d Party the resulted confidence. So, all existing rules are found.

Information disclosed by our algorithm:
Here, we discuss the information disclosed ' before the algorithm starts and

information disclosed during and after the algorithm operation. Our algorithm

disclosure depends whether we assume the existence of external knowledge. If no

external knowledge is assumed, then before starting the algorithm, the only

information the Master has is that mining is possible. Since Master Party has no

knowledge of the real or fake transactions and their values, the probability of any

transaction of the 2°a Party to be true is minsup/r, where r is the number of real

transactions on the local database.

If no external knowledge is assumed, still a corrupt Master is able to learn exactly

which transactions in the other party's database are fake. In order to do so, it should

operate in the following way: Assume that the minimal support threshold is 4. The

Master sends to the trusted party sets of exactly four TIDs until it receives an "OK"

answer, which means all four TIDs are not fake. Then it chooses three of these, and

for every other TID j it sends to the trusted party a set containing these three TIDs

together with j. The answer of the trusted party is "OK" if and only if j is not a fake

TID. But, as the database is distorted, then also the only information the Master has is

M

that this individuals participate in the two databases, but he ' does not know whether

that real transaction is really "reaI" or not.

If there is any external knowledge, as the database is distorted, then also the only

information the Master party has is that this individuals participate in the two
databases, but he does not know whether their real transaction is 'really "real" or not.

with distortion probability of p = 0.1, the resulted expected error is less than (k/r

10) %, where k is the number of suspected transactions, and r is the number of real

transactions of some side and usually k<< r.

At present there is no standard definition for the measure of privacy loss. In our

algorithm, we use as the measure for privacy loss, the probability of learning whether

a particular transaction value is real or fake.

In our algorithm, the parties do not know the exact support for each tested itemset.

This decreases the probability that the Master will learn that a -set of items on another

site has a given property, and it occurs only when the global support value is above or

equal to the threshold value, and is also equal to the Master's support.

CHAPTER 6

CONCLUSIONS

6.1 Conclusions

We focus our attention on the problem of privacy preserving association rule mining

in vertically partitioned databases. While other existing approaches try to overcome

the problem of information disclosure, there still exist cases in which some
information may be disclosed. In this work, we propose an algorithm for discovering

all frequent itemsets and then generating association rules from them in vertically

partitioned databases, without disclosing individual transaction values. The proposed

algorithm preserve the privacy of vertically partitioned data by distorting all partitions

data (by XORing the boolean data values with a boolean random variable) and then

adding some fake transaction in the distorted data. The proposed algorithm does

mining check (to check whether some frequent itemsets occur in the Master partition)

in the starting phase of the algorithm to avoid the unnecessary computations. The

proposed algorithm also put a limit on the number of fake transactions responsible for

making an itemset as frequent itemset: This algorithm reduces the amount of

disclosed information up to some extent. In our proposed algorithm, a balance

between privacy and accuracy can be maintained by choosing the amount of

distortion.

6.2 Suggestions for further work

In our proposed work, we had used Boolean vertically partitioned database. In future

work, we will try to extend the proposed algorithm for numeric database.

41

REFERENCES

1. Osmar R. ZaIane, "Chapter I.• Introduction to Data Mining", CMPUT690
Principles of Knowledge Discovery in Databases, 1999.

2. V.S. Verykios, E. Bertino, I.N. Fovino, L.P. Provenza, Y. Saygin, and Y.
Theodoridis, "State-of-the-Art in Privacy Preserving Data Mining", ACM
SIGMOD Record, vol. 3, no. 1, Mar. 2004, pp. 50-57.

3.. 	R. Agarwal, S. Ghosh, T. Imielinski, B. Iyer, and A. Swami, " An Interval
Classifier for Database Mining Applications". In. Proc. of the VLDB
Conference, Vancouver, British Columbia, Canada, August 1992, pp. 560-573.

4. A. Savasare, E. Omiescinski, and S. Navathe, "An Efficient Algorithm for
Mining Association Rules in Large Databass", In. Proc. of 21St Intl Conf on
Very large Databases (VLDB), 1995, pp. 432-444.

5. R. Agrawal and R. Srikant, "Fast Algorithms for Mining Association Rules in
large Databases ", Research Report RJ 9839, IBM Almaden Research Center,
San Jose, California, pp. 207-216, June .1994.

6. R. Agrawal, R. Srikant, "Fast algorithms for mining association rules ", In:
Proceedings of the 20th International Conference on Very Large Data Bases,
Santiago, Chile, September 12-15, 1994, pp. 1-32.

7. R. Agrawal and R. Srikant, "Privacy preserving data mining", In: Proceedings
of ACM SIGMOD International Conference on Management of Data, May
2000, pp. 439-450.

8. D. Agrawal and CC. Agrawal, "On the design and quantification of privacy
preserving data mining algorithms", In: Troceedings. 20th ACM SIGACT-
SIGMOD Symposium on Principles of Database Systems, May 2001, pp. 247-
255.

9. S.J. Rizvi and J.R. Haritsa, "Maintaining data privacy in association rule
mining", In Proceedings 28th VLDB Conference,. Hong Kong, China, 2002,
pp. 1-12.

10. A. Prodomidis, P. Chan, -S. Stofo, "Meta-learning in Distributed Data Mining
Systems: Issues and Approaches", AAAI/MIT Press, 2000 (Chapter 3).

11. J. Vadya and C. Clifton, "Privacy Preserving Association Rule Mining in
Vertically Partitioned Data ", In: Proceedings of SIGKDD 2002, Edmonton,
Alberta, Canada, 2002, pp. 639-645.

42

12. D.W.-L. Cheung, V. Ng, A.W.-C. Fu, and Y. Fu, "Efficient mining of
association rules in distributed databases ", IEEE Transactions on Knowledge
and Data Engineering 8 (6) (1996), pp. 911-922.

13. M. Kantarcioglu and C. Clifton.. "Privacy preserving distributed mining of
association rules in horizontally partitioned data", In: Proceedings of ACM
SIGMOD Workshop on Research Issues in Data Mining and Knowledge
Discovery, DMKD, September 2004 (Vol. 16, No. 9), pp. 1026-1037.

14. M. Kantarcioglu and J. Vaidya, "An architecture for privacy preserving
mining of client information ", IEEE ICDM Workshop on Privacy, Security and
Data Mining, Volume 14, Maebashi, Japan, December 2002, pp. 37 - 42.

15. A.C. Yao, "How to generate and exchange secrets ", In: Proceedings of the
27th IEEE Symposium on Foundations of Computer Science, 1986, pp. 162-
167.

16. O. Goldreich, S. Micali, A. Wigderson, "How to play any mental game---a
completeness theorem for protocols with honest majority ", in: - Proceedings,
19th ACM Symposium on the Theory of Computing, 1987, pp. 218-229.

17. Du, M.J. AtalIah, "Secure multi party computational geometry", In:
Proceedings of the 7th International Workshop on Algorithms and Data
Structures, Providence, Rhode Island, Jan 2001, pp. 165-179.

18.. J. Vaidya, C. Clifton, "Secure set intersection cardinally with application to
association rule mining", Journal of Computer Security, Volume 13, April
2005, pp. 593-622.

19. Boris Rozenberg and Ehud Gudes, "Association rule mining in vertically
partitioned databases ", Data & Knowledge Engineering, Volume 59, Issue
2, November 2006, pp. 378-396.

20. R. Agrawal, T. Imielinski, and A.M. Swami, "Mining association rules
between sets of items in large databases ", In: Proceedings of the 1993 ACM
SIGMOD International Conference on Management of Data, Washington,
1993, pp. 207-216.

21. B. Rozenberg and E. Gudes, "Collaborative privacy preserving frequent
itemset mining in vertically partitioned databases", In: Proceedings IFIP
WG 11.3 International Conference on Data and application security, Estes Park,
Colorado, 2003, pp.91-104.

43

22. S. Brin, R. -Motwani, J.D. Ullman, S. Tsur, "Dynamic Itemset Counting and
Implication Rules for Market Basket Data", SIGMOD Record, Volume 6,
Number 2: New York, June 1997, pp. 255 - 264.

LIST OF PUBLICATIONS

[1] Susheela Dahiya, Durga Toshniwal, "Privacy Preserving Data Mining Using

Reconstruction-Based Techniques", Accepted in AICTE Sponsored , National

Seminar On "Enterprise Information Systems".

APPENDIX A: SOURCE CODE LISTING

DISTORT.0

#include<stdio.h>
#include<conio.h>
#include<stdlib.h>
#include<dos.h>

void main()
{
FILE *fp;
FILE *fw;
float temp;
int i=O,j=0, pos = 1;
int count=0, countl=0;
static int a[100];
charch;
int chl;
static int row=0, col=O;
int total,total 1;
struct time tl,t2;
void timediff(struct time tl, struct time t2);

clrscrO;

pos=1;
fp = fopen("test.txt","r");
fw = fopen("result.txt","w");

if(fp == NULL)

printf("cannot open the file\n");
exit(1);

I

if(fw == NULL)

printf("cannot open the file\n");
exit(1);

gettime(&t 1);

srand(20);

while(total>0)
{

temp=(int)randO% 10;
printf("\t%d",temp);
a[i++]=temp/9.0;
total--;

}

for(i=0;i<(row*col);i++)
{

int k, temp 1=1;
if(a[i]==1)
{

int temp=0;
countl++;
if(count 1 >total l)

}
a[i]=temp;

k=total 1-count;
whi le(count 1 <total 1)
{

a[k++]=temp 1;
}

}.

while((ch = fgetc(fp)) != EOF)
{

count++;
if(count>4 && ch !='\n')
{

ch 1=a[j];
printf(" %d\t",a[j]);
J++; 	-
ch = chAch 1;
fpriritf(fw.,"%c", ch);
pos++;

}
else
{

ch = ch^0;
fprintf(fw,"%c", ch);
pos++;

if(ch =_ '\n')
{

fprintf(fw, "fin");
.'pos = 1;

count=0;
}

if(count<=3)
fprintf(fw,"%c",ch);

}

fclose(fp);
fclose(fw);

• gettime(&t2); .
• getch();

}
void timediff(struct time t1, struct time t2)
{

struct time t3;
t3.ti hour= t2.ti_hour - tl.ti_hour

• t3.ti min= t2.ti_min - tl.ti_min;
t3 .ti _sec= t2.ti_sec - tI.ti_sec;
t3.ti, hand= t2.ti hund - ti .ti hund;

printf("\n %02d:%02d:%02d:%02d", t3 .ti_hour,t3 .ti_min,t3 .ti_sec,t3 .ti_hund);
I]

INTERSECT.0

#include<stdio.h>
#include<conio.h>
#include<dos.h>

void.main()
{

• FILE *fl; 	 •
FILE *f2; 	•
int al[10];
int a2[10];
int nl;

int n2;
char "ch l,ch2;
int count=O;
int min_ sup;
int i=0;
int j=0;
struct time tl,t2;
void timediff(struct time t1, struct time t2);

clrscr();

fl = fopen("test.txt","r);
f2 = fopen("testt.txt","r");

if((fl==NULL) 11 (f2==NULL))
{

printf("cannot open the file\nH);
exit(1);

gettime(&t 1);
while((ch 1=fgetc(f l))1=EOF)
{

al[i++] = atoi(&chl);
while((ch 1=fgetc(f l)) !='\n')
{

if(ch 1 == EOF)
break;

}
if(ch 1 == EOF)

break;
}
while((ch2=fgetc(f2)) ! =EOF)
{

a2[j++]= atoi(&ch2);
while((ch2=fgetc(f2))!='\n')

if(ch2 == EOF)
break;

}
if(ch2==EOF)

break;
}

n1i;
n2 j;

for(i=0;i<n 1; i++)
{

for(j=0;j<n2;j++)
{

if(a l [i]==a2[j])
{

count++;
}

. 	.}

}
gettime(&t2);
printf("\n Enter the Minimum support.:
scanf("%d",&min_sup);

if(min_sup<=count)
printf("\n OK, Mining is possible");

else
printf("\n NotOK, Mining is not possible");

printf("\n Intersection is: %d ", count);

getch();
}
void timediff(struct time tl, struct time t2).
{

struct time t3;
t3.ti hour= t2.ti- hour - tl.ti_hour;
t3.ti, min= t2.ti_min - tI.ti_min; 	 V
t3.ti_sec= t2.ti_sec -` ti .ti_sec;
t3.ti_hund= t2.ti hund - ti .ti hund;

printf("\n %02d:%02d:%02d:%02d", t3 .ti_hour,t3 .ti_min,t3 .ti_sec,t3 .ti_hund);
}

JOIN.0

#include<stdio.h> 	 . .
#include<conio.h>
#include<stdlib.h>
#include<dos.h> 	 V

void main()
{
FILE *fl;
FILE *f2;
FILE *f3;
float temp = 0;
int pos = 1;
struct time t l,t2;
void timediff(struct time t1, struct time t2);

char ch;

static char a[20][20];
static int al [20];
static int b 1 [20];
static char b[20][20];
char chi, ch2;
int count=0;
static int countl=0;
static int count2=0;
int ch3=0;
int ch4;
int.x, y;
static int i=0, r=0, s=0, j=0, k=0, 1=0;
static int m=0, n=0;
static int rowl=0, row2=0;
clrscrO;

f 1 Tfopen("sample.txt", "r");
f2=fopen("sample 1.txt","r");
f3=fopen("union.txt"., "w");

if((fl==NULL) 11 (f2=NULL))
{ 	 ~„~ tom. ■ 	~ 	~ printf("cannot open-the file.\n");
exit(1);

}
gettime(&tl);
while((chI=fgetc(fl)) !=EOF)
{ 	-

if(chl !='fin')

countl++;
a[i] [l++]=ch l;
if(countl=l)

al [k++]=atoi(&chl);
}

else

x=countl;
countl=O;
i++;

rowl++;
}

}
while((ch2=fgetc(f2)) !=EOF)

if(ch2!='fin')
{

count2++;
b[r] [s++]=ch2;
if(count2=1)
{

b 1 [1++]=atoi(&ch2);
}

}
else
{

y=count2;
count2=0;
r++;
s=0;
row2++;

}

while(m<rowl && n<row2)
{

if(al [m]==b 1 [n])

fprintf(f3,"%c",a[m] [0]);
fprintf(f3,". ");
for(i=3;i<x;i++)
{
fprintf(f3,"%c",a[m] [i]);

}

for(j=3;j<y;j++)
fprintf(f3;"%c",b[n] [j]);

fprintf(f3, "1n");
m++;
n++;

0

if((al [m]<b l [n]) && al[m] != NULL && b 1 [n] !=NULL)
{

fprintf(f3,"%c",a[m] [0]);
fprintf(f3.," ");
for(i=3;i<x;i++)

fprintf(f3,"%c",a[m] [i]);
for(j=3;j <y;j++)

fprintf(f3,"%d ".,ch3);
fprintf(f3, "fin");
m++;

}

if((al [m]>b 1 [n]) && al [m] != NULL && hi [n] != NULL)
{.

fprintf(f3,'.'%c",b[n] [0]);
fprintf(f3," - ");
for(i=3;i<x;i++)

fprintf(f3,"%d",ch3);
for(j=3;j<y;j++)

fprintf(f3;"%c",b[n] [1]);
fprintf(f3,"fin"); .
n++;

P

if(m>=rowl &&'n<=row2)
{

fprintf(f3 ,"%c",b [n] [0]);
fprintf(f3," ");//printf("fin%d",al [m]);

for(i=3;i<x;i++)
fprintf(f3,"%d"-,ch3);

for(j =3 ;j <y;j +±)
fprintf(f3,"%c",b[n] [j]);

fprintf(f3,"\n"); n++;

.}

}

if(m<=rowl && n>=row2)

fprintf(f3,"%c",a[m] [0]);
fprintf(f3," ");
for(i=3;i<x;i++)

fprintf(f3,"%c",a[m] [i]);
for(j=6;J <y;j±+)

fpri ntf(f3,"%d ", ch3);
• fprintf(f3, "\n ");

m++;
}

fclose(fl);
fclose(f2);
fclose(f3);
gettime(&t2);
getcho ;

}
void timediff(struct time ti, struct time t2)

struct time t3;
t3.ti_hour= t2.ti_hour - ti .ti_hour;
t3.ti_min= t2.ti_min - tl.ti_min;
t3.ti sec= t2.ti_sec - tl.ti_sec;
t3.ti hund= t2.ti hund - tl.ti hund;

printf("\n %02d:%02d:%02d:%02d", t3 .ti =hour,t3.ti min,t3.ti_sec,t3.ti_hund);
}

Apriori
*****************=************ **************************************

import java.io.*;
import java.util.*;
import java.awt.*;
import java. awt.event. *;
import javax.swing.*;

public class Apriori extends JFrame implements ActionListener
{

private BufferedReader fileInput;
private JTextArea textArea;

private JButton openButton, minSupport, runButton; .

protected class TtreeNode
{

protected int support = 0;
protected TtreeNode[] childRef = null;
protected TtreeNode() { }

private TtreeNode(int sup)
{

support = sup;
F]

private TtreeNode[] startTtreeRef;
private short[][] dataArray = null;

private static final double MIN_SUPPORT = 0.0;
private static final double MAX_SUPPORT = 100.0;

private boolean inputFormatOkFlag = true;
private boolean haveDataFlag = false;
private boolean hasSupportFlag = false;
private boolean r extLevelExists = true

private File fileName;
private int numRows = 0;
private int numCols = 0;
private double support = 20.0;
private double minSupportRows = 1.0;

public Apriori(String s)
{

super(s);

Container container.= getContentPaneo;
• container. setBackground(Color.pink);
container. setLayout(new BorderLayout(5,5));

runButton = new JButton("Run");
.runButton. addActionListener(this);
runButton.setEnabled(false);

openButton = new JButton("Open File");.

openButton.addActionListener(this);

minSupport = new JButton("Add Min. Sup.");
minS upport. addActionLi stener(this);

JPanel buttonPainel= new JPanel();
buttonPanel.setLayout(new GridLayout(1,3));
buttonPanel . add(openButton);
buttonPan el .add (m i n S upp ort);
buttonPanel.add(runButton);
container. add(buttonP anel,BorderLayout.NORTH);

textArea °. new JTextArea(40, 15);
textArea. s etEd itab l e (false);
container. add(new JScrollPane(textArea),BorderLayout.CENTER);

JPanel creditsPanel = new JPanel();
cred itsP ane l . s etB ackground (Co lor.pink);
creditsPanel .setLayout(new GridLayout(4, 1));
Label creditLabel l = new Label("IIT Roorkee " + "Privacy Preserving
Association 	Rule Mining");

Label creditLabel2 = new Label(" ");
Label creditLabel3 = new Label("Created by Susheela (May " + "2008)");

creditsPanel..add(creditLabel1);
creditsPanel.add(creditLabel2);
creditsPanel. add(creditLabel3);
container.add(creditsPanel,BorderLayout. SOUTH);

}

public void actionPerformed.(ActionEvent event)
{.

if (event. getActionCommandO.equals("Open File"))
getFileName();

if (event. getActionCommand().equals("Read File"))
readFile();

if (event. getActionCommand().equals("Add Min. Sup."))
addSupportO;

if (event. getActionCommand().equals('Run"))
aprioriTO;

/* --------------------------------------- ------------------------- */
/* 	 APRIORI-T 	 */
/* ---------- --- */

private void. aprioriT()
{

textArea.append("Apriori-T (Minimum support threshold = " + support +
"%)~n=---\n" + Generati.ng K=l large
itemsets\n");

minSupportRows = numRows*support/100.0;
createTtreeTopLevel();
generateLevel2O;
createTtreeLevelNO;
textArea. app end("fin");
outputFregi entSets();

}

protected _void createTtreeTopLevel()
{

startTtreeRef = new TtreeNode[numCols+ 1];
for (int index =1;index<=numCols;index++)

startTtreeRef[index] = new TtreeNodeO;

createTtreeTopLeve120;

pruneLevelN(startTtreeRef, 1);
}

protected void createTtreeTopLevel2O
{

for (int index 1=0; index 1 <dataArray. length; index l++)
{

if (dataArray[indexI] != null)
{

for (int- index2=0;index2<dataArray[index I]. length; index2++)
{

startTtreeRef[dataArray[index l] [index2]]. support++;
} 	 .

}

}

protected void createTtreeLevelNO
• {

int nextLevel=2;

while (nextLevelExists)
{

textArea.append("Generating K=" + nextLevel +" large itemsets\n"); -
add SupportToTtreeLevelN(nextLevel);
pruneLevelN(startTtreeRef,nextLevel);
nextLevelExists=false;
generateLevelN(startTtreeRef, 1 ,nextLevel,nul 1);
nextLevel++;

} 	..

}

protected void addSupportToTtreeLevelN(int level)

for. (int index=0index<dataArray.length;index++)
{

if (dataArray[index] != null)
{

addSupportToTtreeFindLevel(startTtreeRef, level,
dataArray[index] .length, dataArray[index]);

}

0
}

private void addSupportToTtreeFindLevel(TtreeNode[] linkRef, int level,
int endlndex, short[] itemSet)

{

if (level = 1)
{

for (int index l=0 ;index 1 < endIndex;index1++)
{

• if (linkRef[itemSet[indexl]] != null)

linkRef[item Set[index I]]. support++; .
}

}

else

• for (int index=0;index<endlndex;index++)
{

if (linkRef[itemSet[index]] != null)
{

if (linkRefjitemSet[index]].childRef != null)
addSupportToTtreeFindLevel(linkRef[itemSet[index]] .

childRef, level-1,index,itemSet);
}

}
}

}

/*------------------ -- */
/ 	 PRUNING V 	 */
/*---------------------------------=------------------------------

protected void pruneLevelN(TtreeNode [] IinkRef, int level) .
{

int size = linkRef.length;

if (level == 1) 	•
•

{

	

	VV 	 V
for (int.indexl-l;indexl < size;indexl++)
{

if (linkRef[indexl] != null)

•
{

if (linkRef[index1].support <minSupportRows)
linkRef[indexl] = null;

}
}

.•}

else 	 .

for (int indexl=l;indexl < size;indexl++)

if (linkRef[indexI] != null) 	 V

-if (linkRef[indexIJ.childRef != null)
pruneLeveiN(linkRef[index 1);V 	 V

ii
}

}
}

/*---------------------.-----------------------------=-----------------~- */
/* 	 LEVEL GENERATION 	 */
/*-- */

protected void generateLevel2()
{

nextLevelExists=false;
• for (int index=2;index<startTtreeRef.length; index++)

{
if (startTtreeReflindexj f= null) generateNextLevel(startTtreeRef,

index,realloc2(null,(short) index));
}

}

protected void generateLevelN(TtreeNode[]. linkRef, int level, -
int requiredLevel, short[] itemSet)

{
int index I ; 	 •

int localSize = linkRef.length;

if (level == requiredLevel) 	•

{
for (index 1=2;index1<localSize;index1++)
{

if (linkRef[indexl] != null)
generateNextLevel(linkRef,index 1, realloc2(itemSet,(short) index 1));

}

else
{

for (index 1=2; index 1<localSize;indexI++)
{

if (linkRef[indexl] != null)
{

generateLeve1N(linkRef[index 1] .chi ldRef, level+ 1,
requiredLevel,realloc2(itemSet,(short) index 1));

}

}

}

protected void generateNextLevel(TtreeNode[] parentRef, int endIndex,
• short[] itemSet)

{
parentRef[endlndex].childRef = new TtreeNode[endIndex];
short[] newItemSet;
TtreeNode currentNode = parentRef[endIndex];

for (int index=l;index<endIndex;index++)
{

if (parentRef[index] != null)
{

newItemSet = realloc2(itemSet,(short) index);
if (testCombinations(newItemSet))
{

currentNode.childReflindex] = new TtreeNode();
nextLevelExists=true;

}

else
currentNode.childRef[index] = null;

}
}

}

protected boolean testCombinations(shott[] currentItemSet)
{

if (currentItemSet.length -< 3) 	 •
return(true);

short[] itemSeti = new short[2];
itemSet1 [0] = currentItemSet[1];
itemSetl[1] = currentItemSet[O];

int size = currentItemSet.length-2;
short[] itemSet2 = removeFirstNelemerits(currentltemSet,2);

return(combinations(null,O,2,items et 1,itemSet2));

private boolean combinations(short[] sofarSet, int startIndex,
int endIndex, short[] itemSet1, short[] itemSet2)

{
if (endIndex > itemSet2.length) {

short[] testSet = append(sofarSet,itemSetl);
return(findItem S etInTtree(testS et)) ;

}

else
{

short[] tempSet;
for (int index=startlndex;index<endlndex;index++)
{

temp Set = realloc2(sofarSet,itemSet2[index]);
if (!combinations (temp Set, index+ 1,endIndex+ 1, item Set 1,

itemSet2)) return(false);
. 	}

} 	 V

return(true);
}

/*--------------------------------------- ---------------------------- */
/* 	 T-TREE SEARCH METHODS 	 */
/*-- */

private boolean findItemSetInTtree(short[] itemSet)

if (startTtreeRef[itemSet[O]] != null)

int Iastlndex = itemS et. length-
if (lastlndex == 0) return(true);
else return(findItemSetInTtree2(itemSet,1,lastlndex,

startTtreeRefjitemSet[0]].childRef));
}

else
-

	

	 V V return(false);
}

private boolean fndItemSetInTtree2(short[] itemSet, int index,
int lastIndex, TtreeNode[] linlcRef) -

{
if (linkRef[itemSet[index]] != null)
{ 	.

if (index = lastIndex)
return(true);

else
return(findItemSetInTtree2(itemSet, index+ l ,lastlndex,

linkRef[itemSet[index]] .childRef));
}

else
return(false);

}

/* -- */
/* 	GET MINIMUM SUPPORT VALUE 	 */
/* -- *%

private void addSupportO
{

try
{

while (true)-

String stNuml = JOptionPane.showInputDialog("Input minimum "+
support value between "+ MIN_SUPPORT + " and "+

MAX SUPPORT);
if (stNuml.indexOf('.') > 0).

support = Double.parseDouble(stNuml);
else

support = Integer.parselnt(stNum 1);
if (support>=MIN_SUPPORT && support<=MAX_SUPPORT)

break; -
JOptionPane. showMessageDialog(nul1,

"MINIMUM SUPPORT VALUE INPUT ERROR:\n" +
"input = "+ support +
"\nminimum support input must be a floating point\n" +

"number between "+ MIN_SUPPORT.+ " and " +
MAX SUPPORT);

} 	 .
textArea.append("Minimum support = "+ support + "%\n");
hasSupportFlag=true;

}
catch(NumberFormatException e)

hasSupportFlag=false;
runButton.setEnabled(false);

}

if (haveDataFlag && hasSupportFlag)
runButton. setEnab led(true);

}

/* -------------- -- */
/* 	 OPEN NAME 	 */
1* --- */

private void getFileName()
{

JFileChooser fileChooser = new JFileChooserO;
fileChooser. setFileSelectionMode(JFileChooser. FILE S_ONLY);
int result = fileChooser.showOpenDialog(this);

if (result = JFileChooser.CANCEL_OPTION) return;

fileName =..fileChooser.getSelectedFile();
if (checkFileNameO)
{

readFileo ;
I

if (inputFormatOkFlag)
{

if (checkOrderingo)
{

if (haveDataFlag && hasSupportFlag)
runButton. setEnabled(true);

outputDataArrayO;
textArea.append("Number of records = " + numRows +
countNumColsO;
textArea.append("Number of columns = " + numCols + "\n");

}
else.-
{
• haveDataFlag = false;
inputFormatOkFlag = true;
textArea.append("Error reading file: " + fileName +
runButton. setEnabled(false);

}

}
I

private boolean checkFileName()
{

if (f leName.existsO)
{

if (f leName.canReadO)
{

if (fileName.isFileO)
return(true);

else
JOptionPane.showMessageDialog(null,"FILE ERROR: File is a

directory");
}
else

JOptionPane. showMessageDialog(nul 1, "FILERROR:- Access denied");
I.
else

JOptionPane.showMessageDialog(null, "FILE ERROR: No such file!");

return(false);.
}

private void readFileO
{

try
{

inputFormatOkF lag=true;
getNumberOfLinesO;
if (inputFormatOkFlag)
{

dataArray = new short[numRows] [];
inputDataSetO;
haveDataFlag = true;

}
else
{

haveDataFlag = false;
textArea.append("Error reading file: "+ fileName + "\n\n");
runButton. setEnabled (false);

}

}

• {
catch(IOExceptiori ioException)

JOptionPane.showMessageDialog(this,"Error reading File",
"Error 5: ",JOptionPane.ERROR MES SAGE);

closeFile();
System: exit(1); .
}

0

private void getNumb.erOfLines() throws IOException
{

int. counter = 0;
openFileo);

String line = fileInput.readLine();
while (line != null)
{

checkLine(counter+ 1, l ine);
StringTokenizer dataLine = new StringTokenizer(line);
int numberOfTokens = dataLine.countTokens();
if (numberOfTokens == 0) break;
counter++;
line =.fileInput.readLine();

ii

numRows = counter;
closeFile();

}

private void checkLine(int counter, String str)
{

for (int index=O;index <str.lengthO;index++)
{

if (!Character.isDigit(str.charAt(index)) &&
!Character. is Whitespace(str.charAt(index)))

{
JOptionPane.showMessageDialog(null,"FILE INPUT ERROR:\ncharcater " +

"on line " + counter + "is not a digit or white space");
inputFormatOkFiag = false;

break;
}

P
}

public void inputDataSet() throws IOException
{ 	.

int rowlndex=0; .
textArea.append("Reading input file\n" + fileName +
openFileO;

String line =' filelnput.readLineO
while (line !=null)
{

StringTokenizer dataLine = new StringTokenizer(line);
int numberOfTokens. = dataLine.countTokens();
if (numberOfTokens == 0) break;
short[] code = binConversion(dataLine,numberOfTokens);
if (code != null)
{

int codeLength = code.length;
dataArray[rowIndex] = new short[codeLength];
for (int colIndex=0;collndex<codeLength;colIndex++)

dataArray[rowIndex][colIndex] = code[colIndex];
}
else

dataArray[rowIndex]= null;
rowlndex++;
line = fileInput.readLineo;

}

closeFile{);
}

private short[] binConversion(StringTokenizer dataLine, int numberOfTokens)
{

short number;
short[] newItemSet = null;
for (int.tokenCounter=0;tokenCounter < numberOfI'okens;tokenCounter++)
{

number = new Short(dataLine.nextTokenO).shortValueO;
newltemSet = reallocI(newltemSet,number);

}
return(newItemSet);

private boolean checkOrdering()

boolean result = true;
for(int index=0;index<dataArray.length;index++) {

if (! checkLineOrdering(index+ 1,dataArray[index]))
result= false;

}
return(result);

}
private boolean checkLineOrdering(int lineNum, short[] item Set)
{

for (int index=0;index<itemSet.length-1;index++)
{

if (itemSet[index] >= itemSet[index+l])
{

JOptionPane. showMessageD ialog(nul 1, "FILE FORMAT ERROR:\n" +
"Attribute data in line " + lineNum + " not in numeric order");

return(false);
}

}

• return(true);
}

private void countNumColso 	•

int maxAttribute=O;
for(int index=0;index<dataArray.length;index++)
{

int lastIndex = dataArray[index].length-1;
if (dataArray[index] [lastlndex] > maxAttribute)

• maxAttribute = dataArray[index][lastlndex];
}

numCols = maxAttribute;

/* --- */
OUTPUT METHODS 	*/

/* ---*1

public void outputDathArrayO
{ 	:

for(int index=0;index<dataArray-.length;index++)
{

outputltemS et(dataArray[index]);

textArea. append("\n ");
}

}

protected void outputltemSet(short[] itemSet)
{

String itemSetStr =
int counter = 0;
for (int index=0 index<itemSet. length; index++)

if (counter. !=O) itemSetStr = itemSetStr +
counter++;
itemSetStr = itemSetStr + itemSet[index];

textArea.append(itemSetStr +
}

public void outputFrequentSetsO
{

int number = 1;

textArea.append("FREQUENT (LARGE) ITEM SETS . (with support
counts)\n" +

-- 	 -----\n");
short[] itemSetSofar = new short[1];
for (int-index=1; index <= numCols; index++)
{

if (startTtreeRef[index] !=null)

if (startTtreeRef[index].support >= minSupportRows)
{

textArea.append("[" + number-+."] {" + index + "} _ " +
startTtreeRef[index].support + "\n");

itemSetSofar[O]- _ (short) index;
• number = outputFrequentSets(number+ 1, item SetSofar,

index,startTtreeRef[index] .childRef);
}

}
} 	 •

textArea. app end("\ri"); 	 • } 	 -

private int outputFrequentSets(int number, short[] itemSetSofar, int size,
TtreeNode[] linkRef)

{
if (linkRef = null)

(number);
for (int index=l; index < size; index++)
{

if (linkRef[index] != null)
{

if (IinkRef[indexj.support >= minSupportRows)
{

short[] newItemSetSofar = realloc2(itemSetSofar, (short) index);
textArea.append(" [" +. number + "] ");
o utputltem S et(n ewltem S etS ofar);
textArea.append(" = " + - linkRefl index].support + "\n");
number = outputFrequentSets(number + 1,newltemSetSofar,

index,linkRef[index].childRef);
}

}

return(number);
}

/* ---*1
/* 	FILE HANDLING UTILITIES * 	*/
/* --- */

private void openFile()
{

try
{

FileReader file = new FileReader(fileName);
fileInput = new. BufferedReader(file);

}
catch(IOException ioException)
{

JOptionPane. showMessageDialog(this,"Error Opening File",
"Error 4: ",JOptionPane.ERROR MESSAGE);

}
}

private void closeFile()
{

if (fileInput != null)
{

try
{

• fileInput.closeO;
• }

catch (IOException ioException) {

JOptionPane. showMessageDialog(this, "Error Opening_ File",
"Error 4: ",JOptionPane.ERROR_MES SAGE);

}
}

}

/* ------------- --------------------------------------- */
/* 	 ARM UTILITIES 	 */
/* ---*1

protected short[] reallocl (short[] oldItemSet, short newElement)
{ 	.

if (oldItemSet == null)
{

short[] newItemSet = {newElement};
return(newItemSet);

}

int oldItemSetLength = oldItemSet.length;
short[] newItemSet = new short[oldltemSetLength+I];

int index;
for (index=0;index < oldItemSetLength;index++) "

newItemSet[index] = oldItemSet[index];
newltemSet[index] = newElement;

return(newIternSet);
}

protected short[] append(short[] itemSetl, short[] itemSet2)
{

if (itemSetl' _= null) 	• 	.
return(copyltemSet(itemSet2));

else if (itemSet2 = null)
return(copyItemS et(itemSet l));

• short[] newltemSet = new short[itemSetl.length+itemSet2.length];

int index 1;
for(index I=0;index 1 <itemSet 1.length;index l++)
{

newItem Set[index l]=itemSet 1 [index 1];
}

for(int index2=0;index2<itemSet2.length;index2++). {

newItem S et[index l +index2] =item S et2 [index2] ;
}

• return(newItemSet);
}

protected short[] realloc2(short[} oldItemSet, short newElement) {

if (oldItemSet == null)

short[] newItemSet = {newElement};
return(newItemSet);

}

int oldItemSetLength = oldItemSet.length;
short[] newItemSet = new short[oldltemSetLength+l];

newItemSet[O] = newElement;
for (int index=O;index < oldItemSetLength;index++)

newltemSet[index+ 1] = o'ldltemSet[index];

return(newItemSet);
I]

protected short[] removeFirstNelements(short[] oldltemSet, int n)

if (oldItemSet.length == n) return(null);
else
{

short[] newItemSet = new short[oldltemSet.length-n];
for (int ' index=0; index<newItem Set. length; index++) -
{

newItemSet[index] = oldItemSet[index+n];
}
return(newItem Set); }

protected short[] copyItemSet(shortj] itemSet)
{

If (itemSet 	null)
return(null);

short[] newItemSet = new short[itemSet.length];
for(int index=O; index<itemS et.length; index++)
{

newltemSet[index] = itemSet[index];
}

return(newItemSet);
}

/* ----------------------------------- -------------------.*/ .

	

/* 	 - MAIN. METHOD 	 */
/* --*1

public static void main(String[] args) throws IOException
{

Apriori newFile = new Apriori("Apriori");
ncxNil~ile.setD,bfauItCloseOperation(JFrame.EXIT ON CLOSE);
newFile.setSize(500,800);
• newFile.setVisible(true); 	 •

} --

}

	Title
	Abstract
	Chapter 1
	Chapter 2
	Chapter 3
	Chapter 4
	Chapter 5
	Chapter 6
	Appendix

