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- ABSTRACT

Association rule mining is a data mining technique used to find interesting
associations among.a large set of data items. For finding association rules from

market-basket databases customer-buying habits between the different items (that

"~ customers place in their shopping basket) are analyzed. The discovery of such

associations can help retailers develop market strategies by gaining insight into which
items are frequently purchased together by customers. -Sometifn'eé these association
rule mining results diéclose some new implicit information about individuals which is
against privacy policies.'

N

In vertically distributed databases, the data is vertically partitioned among various
sites. These sites wish to work together to find globally valid association rules
without revealing'indiv.idual transaction data. So some privacy-preserving method
~must be used, which protect the privacy of the distributed databases and at the same

time gives accurate association rules.

In this thesis, we propose an 'algorithm for finding association rules from vertically
distributed Boolean databases which maintains a balance between the accuracy of the
mining results and the privacy of the databases. For: preserving the privacy, database
. is distorted by XORing the Boolean data with a boolean random variable, and then
adding some fake transactions in the distorted database. All frequent itemsets are
generated for Master’s partition. Then intersection of the TIDs of frequent itemsets of
Master and real TIDs of other partitions is done. If the intersectién value is greater
than or equal to some minimum support value (provided by Master Partition) only
then the algorithm proceeds. Then the partitions are combined only for the TIDs of
Master’s partition. Then association rule rhining is done by on the combined database
and a set of the relative TIDs are made for each candidate itemset. Then again the
intersection is performed by third party for each set of TIDs of frequent itemsets to
check whether the. itemset is frequent in the réal TIDs or not. If the third party sends

‘OK’ then association rules are generated from the frequent itemsets.

- il



CONTENTS

CANDIDATE’S DECLARATION

ACKNOWLEDGEMENTS....cciuiiiiiiiiiiiiiii s,
ABSTRACT............. e ————— e e e ndil
TABLE OF CONTENTS. . ouiiiiiiiiiiietttiieieaiariiiiirrnnrncirssessnneessenes
Chapter 1 Introduction..... EEEREr et ea et
1.1 Introduction
1.2 Motivation for work
1.3 Problem Statement
1.4 Organization of the Dissertation
Chapter 2 Literature Review . .. ..ot iinnt ettt eeeensannns
2.1 AsSociation Rule Miriing
2.2 Data Modification Methods
2.3 Apriori Algorithm'
2.4 Data Layout Alternatives
Chapter 3 Proposed Algorithm for Privacy Preserving Association
‘Rule Mining on Vertically Partitioned Database. . .. ...
3.1 Assumptions for Proposed Algorithm
'3.2 Distortion Procedure
3.3 Execution Procedure of Proposed Algorithm

3.4

Phases of the Proposed Algorithm

v

[S—

W

14

18

18
20
20
22



Chapter 4 Implementation Details

4.1
4.2
4.3
4.4
4.5

Chapter 5 Result and Discussion

5.1
5.2

Database Used
Distortion Module
Intersection Module
Union Module
Apriori ‘

Results and Discussion

Analysis

Chapter 6 Conclusions and Future Work

6.1
6.2

REFERENCES. .. ... ittt ittt et ttnancttnearaeeaeaanenns
LIST OF PUBLICATIONS

APPENDIX A: SOURCE CODE LISTING

Conclusions

Suggestions for future work

........................................

28

28
28.
28
28
29

36

36

39

41
41
41



CHAPTER 1
IN TRODUC TION

1.1  Introduction

Génerally, data mihing (sofnetimes called knowledge discovery: in data) is the proéess
~ of analyzing data. from different perspectives and summarizing it into useful

information - information that can be used to increase re{/enué, cuts costs, or both. It
allows users to analyze data from ményd'iffere'nt dimensions or angles, categorize it,
and summarize the relationships identified. Technically, data mining is the proc'eés of
ﬁhdihg correlations or‘pétterns. among dozens of fields in large relational databases.
Data mining consists of five major elements: |

o Extract, transform, and load transaction data onto the data warehouse syst‘erﬁ.

« Store and manage the data in a multidimensional database system.

~« Provide data access to business analysts and IT professionals.
« Analyze the data by application software. |

s Present the data in-a useful format, such as a graph or table.
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Fig 1.1 Data Mining is the core of Knowledge Discovery Process



1.2 Motivation

Security and privacy are important issues for any data collection because the data is
shared and is intended to be used for making some decisions; Also, when we need
~ data for customer profiling, user behavior understanding, etc., large amounts of
sensitive and private ddta about individuals has to be gathered and stored. This makes
it difficult to maintain the conﬁdenfciality of the data and prevent its illegal access.
Also, sometimes data mining results disclose some new implicit information about
individuals which is .against privacy policies. As the information stored in databases
is usually quite valuable, databases with all sorts of contents are regularly sold.
Moreover, sometimes data can be withheld for the competitive advantage that can be
attained by discovering the implicit knowledge. If data mining results in discovering
the implicit knowledge then this information can be widely distributed and used

without control [1].

For these reasons, pri‘}écy preserving data mining is essentially an emerging area of ‘
research in data mining, where data mining algorithms are developed for modifying
the original data in some way, so that private data and private knowledge remains
private even after the data mining process. The main consideration in privacy
preserving data mining is the preservation of sensitive raw data and sensitive
: knowledgé that can be rﬁined from the database. For preserving the privacy, sensitive
raw data like identifiers, names, addresses etc. must be modified or removed from the
original database, so that the data recipient may not be able to get any personal details
of the data provider. Also the sensitive knowledge that c.ari be mined from the
database must be omittéd; as such information can équally ‘compromise the data

© privacy [2].

In data mining of \fertically partitioned databases, a site want to perform association
rule mining from the data partitioned among various sites. But the sites may not want
to disclose to each other their individual database for the purpose of preserving the

confidentiality of their database. As each site holds some attributes of each



transaction, and the sites wish to work together to find globally valid association rules
without reve'alingvindividual transaction data. So some privacy-preserving method
must be used, which protect the privacy of the partitioned databases and at the same

© time gives accurate association rules.

. A typical example in data mining of partitioned databases where privacy can be of
great impéftance is in the field of medical research. Consider the case where a
number of different hospitals wish to jointly mine their patient data, for the purpose
of medical research. Privacy polic‘y.and law do not allow these hospitals from even
pooling their data 6r re‘?ealing it to each other due to the cdnﬁde’ntiali_ty of patient
records. Although hospitals are allowed to release data as long as the identifiers, such
as namé, éddress, and etc., are removed, it is not safe enough because the re-
identification attack can link different public databases to - relocate the original
. subjects. In order to pursue mutual gains and relieve the publib from the privacy’
" concerns, we need privacy-preserving dist-n'buted‘ data mining protocols, which allow
distributed data mining to take place- while protecting privacy of underlying

distributed data.

Another example is multiple competing supermarkets, each having an extra large set
of data records of its customers’ buying behaviors; want to conduct data mining on
their joint data set for mutual benefit. Since these companies are competitors in the
market, they do not want to disclose too much about their customers’ information to
each other, but they know the resulits obtained from this collaboration could bring

them an advantage over other competitors.

1.3 Problem Statement

The aim of proposed research work is to design a technique for preserving the privacy
of vertically partitioned database which is used for association rule mining. The

following aspects are considered in the designing of the algorithm:



1. The proposed algorithm is designed for boolean data (specific example
taken is market-basket data) _
2. The partitions are disjoint with respect to each other except TIDs Whlch are

common to all.

1.4 Organizatio'n‘ofthe Thesis

The report is d1v1ded into seven chapters including thlS introductory chapter. The rest

of this thesis report is organized as follows

Chapter 2 provides a brief description of literature review on association rules mining
from market basket data, on Apriori algorithm is used widely for discovering large
. frequent itemset from market-basket data and then the various data modification

methods and finally various possible data laybut alternatives of market basket data. -

Chapter 3 provides a detailed description of proposed algorithms for finding frequent

itemsets and finding association rule between the frequent itemsets.

Chapter 4 provides a brief description of the data structure and the implementation

details of the proposed algorithm.

Chapter 5 describes the results and discussion on the results. It also provides an

analysis on the correctness of the proposed algorithm.

Chapter 6 concludes the dissertation and 'gives some suggestions for future work.



. CHAPTER 2

Literature Review

In this chapter, we discuss about Association rule mining, literature review on privacy
preserving association rule mining and various data layout alternatives for market-

basket databases.
2.1 Association Rule Mining

Association rule mining finds association or correlation relationships among a large
~ set of data items. With massive amount of data continuouély being collected and
stored, many industfies are becoming interésted in mining association rules from their
databases. The discovery of interesting association relationship among huge amount
of business transaction records can help in many business decision making processes

such as catalog design, cross marketing, and loss leader analysis [4].

A typical example of association rule mining is market basket analysis. This process
analyzes customer-buying habits by finding association between the different items
that customers place in their shopping basket. The discovery of such associations can
help retailers develop market strategies by -gaining insight into which ‘items are

frequently purchased together by customers.

For instances, if customers are buying milk, how likely are they, to also buy bread ‘
(what kind of bread) on the same trip to the supermarket? Such information can lead
to increase éales by helping retailers do selective marketing and plan their shelf Space'.
- For éxample, placing fnilk and bread with close proximity may further encourage the

sales of items together within single visits to the store.

If we think of the universe as the set of itéms available at the store, then each item has

a boolean variable representing the presence or absence of that item. Each basket can



then be represented by a boolean vector of values assigned to these variables. The |
Boolean vectors can then be analyzed by buying patterns that reflect items that are
frequently associated or purchased together. These patterns are represented in the
form of assqciatioﬁ rules. For example, the information that customers who purchase
computers also need to buy financial management software at the same time is

represented in association rules as follows:
Computer = financial _management _ sofiware [support = 2%, confidence = 60%]

Rule support and confidence are two measures of rule interestingness that were
described as follows: | 4

Each discovered pattern should have a m'easure of certainty associated with it that
assesses the Validity ‘or ‘trustworthiness’ of the pattern. A certainty measure for
associat-ion rules of the form ‘4 = B’, where A and B are sets of items, is
confidence. Given a set of task relevant data tuples (or transactions in a transaction

database) the confidence of ‘4 = B’ is defined as follows:

# tuples containing _both _A_and _B

Confid A= B)=
onﬁ ence( ) # _ fuples B containing _ A

- The potential usefulness of a pattern is a factor defining its interestingness. It can be
estimated by a utility function, such as support. The support of an association pattern’
refers to the percentage of task-relevant &ata tuples for which the pattern is true. For
association'ruies of the form ‘4 = B’, where A and B are sets of items, the suppdrt is

~ defined as follows:

_tuples _containing _both_A_and _B

' #
AY 4= B)=
uppor| ) Total _number _of _tuples

A support of 2% for association rule means that 2% of all -the transactions under
arialysis show that computer and financial . management software are purchased

together. A confidence of 60% means that 60% of the customers who purchased a -



computer also bought the software. Typically association rules are considered
interesting if they satisfy both a minimum support threshold and a. 'minimum

confidence threshold. Such thresholds can be set by users or domain experts.

Let 7 ={i,,i,,......,1,,} be set of items. Let D be a set of database transactions where

each transaction T is a set of items such that7T < 7. Each transaction is associated
‘with an identifier, called TID. Let A be a set of items. A transaction T is said to
contain A if and only if 4 < 7. An association rule is an implication of the form 4

= Bwhere Act, Bc7,and AN B=¢. The rule 4 = B holds in the transaction

set D with support s, where s is the percentage of transactions of D that contains.
AUV B (i.e. both A and B). This is taken to be the probability (4w B) The rule 4 =
B has confidence c in the transaction set D, if ¢ is the percentage of transactions in D
containing A that also contain B. This is taken to be conditiohal probability, P (B/A)
that is, ’ . | |
Support (A = B) =P (AU B)
~ Confidence (A = B) =P (B/4)

Rules that satisfy both a minimum supportvthre'shold' (min_sup) and a minimum
- confidence threshold (min_conf) are called strong. By convention, we write support

and confidence values so as to occur between 0% to 100%, rather than 0 to 1.0.

A set of items is referred to as an itemset. An itemset that contains k items is a k-
itemset. The set {computer, ﬂnancial_management_software} is a 2-itemset. The
occurrence frequency of an itemset is the number of transactions that contains that
itemset. This is also known simi)ly as the frequency, support count or count of the
itemset. An itemset satisfies minimum support if the occurrence of frequency of the
itemset is greater than or equal to the product of min_sup and- the total number of
transactions in D. The number of transactions required for the itemset to satisfy

minimum support is therefore equal to the minimum support count. If an itemset



satisfies minimum support, then it isa frequent itemset. The set of frequent k-itemsets

is commonly denoted by Lg.

Association rule mining is a two step process. The two steps are:

1. Find all fre(juent itemsets: In this step, all those itemsets which occur at least as
frequently as a pre-defined minimum support count (considered as frequent
itemsets) are celculated.

- 2. Generate strong association rules from the frequent itemsets: Those rules

which satisfy minimum support and minimum confidence (considered as st‘rong‘

- association rules) are generated.

The overall performance of mining association rules-is determined by the first step.

2.2 Data Modification Methods:

To preserve the privacy of the data, the real data is modified by using different
methods of modification discussed as follows: |

(i) Perturbation or Distortion: In pertﬁrbetion, privacy ié preserved by replacing
| the original Valee by a new value or altered by adding some noise in it.

(i) Merging: In merging, privacy is preserved by combining several values into a

| commeon category.

(iii) Swapping: In swapping, privacy is preserved by interchanging the values of

‘the records each other.

Another way of categorizing data modification techniques is based on heuristics,

cryptography and reconstruction.

A, Heuristic-Based T echniqués: In heuristic-based techniqlies only- some of the
' selected values of the data are mbdiﬁe‘d instead of all available values. For modifying
the selected values, we can use various methods of data modification like

perturbation, merging, swapping, etc.



B. C’ryptography-Based Techniqués.; In cryptography-based techniques, first the data
entered by the péoplé is encrypted (éhanged) by using different cryptography
algorithms such that at the end of the computation, no one knows anything except his
own inputvand' results. Depending on the type of application, many cryptography
algorithms like. RSA algorithm, ElGamal Enbryption scheme,; Triple DES, etc. are
_ used for encrypting the data For preservation of prlvacy of the data in cryptography—
based techniques, the encrypted data is either kept by a server and the miner queries -
the server for mining on the data or shared by several miners, who can only jointly.

mine it. The aim is to protect the private data of the people as much as possible.

C. Reconstruction-Based Techniques: In reconstruction-based techniques, the values
in individual records  are randomized and then the randomized values  are

reconstructed and then the new reconstructed values are disclosed for data mining.

In the proposed algorithm, we used the distortion method for modifying the real
values of the Vértf»cally partitioned databases discussed by S.J. Riz_:vi and J.R. Haritsa
~in [9]. | | ' |

2.3 Apriori Algorithm

The common algorithm used to compute large itemset is the Apriori algorithm. The
Apr10r1 algorithm has become a ‘data mining classic and most data mining algorithms
are based upon it. The first pass of the algorlthm simply counts item occurrences to
- determine the large- 1-items. A subsequent pass, say pass k, consists of two phases.
First, the lafge itemset Ly; found in the (k—l)th pass are used to gen_eréte the candidate
itemsets Cy, using the Apriorigen function. Then; the database is scanned and the
"~ support of the_candidates in Cx is counted. For fast counting, we need to efficiently

~ determine the candi_datés in Cy that are contained in a given transaction. The apriori -

algbrithm works as follows [5]:



1. L1 = {large 1-itemsets};

2. for (k= 2; L # O; k++) do begin

3. C. = apriori-gen(Ly. ;) //New candidates
4. - forall transactions f in d._;:ltabase do begin |
5. 'C, = subset(Cy, .f) //Candidates c-ontained in¢
6. forall candidates ¢ € C;do begin

7. c.count++; -

8. End

9. L= {c eCy| c.count > minsup}
10.|  End

11. | Answer = C’,JL;C

- Apriori-gen function:

The most important step of apriori algorithm is step 3 in the prune step in apriori-gen
" function, which makes sure that all subsets of a candidate itemset are frequent. The
_basic idea is that any subset of a large iternset must be large. Theréfore, the candidate
itemsets having k items can be generatéd by joining large itemsets having k-1 items,
and deleting those that contain any subset that is not large. The apriori-gen function
takes as argument L, the set-of all large (k-1)-itemsets. It returns a superset of the
‘set 6f all large k~it¢msets. ‘The -funétion works as follows. First, the join step joins Li.1

with L [5]:

Join Step:
1. | insert into Ck .
2. | select p.item,, p.items, . . . ,p.itemy.], q.itemy;
3. | from Lip, Li1q N
4. | where p.item; = q.item,, . . . ,p.itemng.z = q.itemy., p.itemy.; < q.itemy.;;

10



Prune Step: The prune step deletes all itemsets ¢ € Cy such that some (k-1) -subset of

cisnotin Ly;:

i. forall itemséts_é‘ e Crdo
2. forall (k - 1)-subsets sofedo
3. if (s ¢ L) then
4. delete ¢ from C
S end
6. end
| 7. | end
Subset Sunction:

Candidate itemsets Cy are stored in a hash tree. A node of the haéh tree either contains.
a list of itemsets ( a leaf hode) or a hash tablé' (an interior node). In an interior node,
- each bucket of the hash table points to.another node. The root of the hash tree is
defined to be at depth 1. An interior node at dei)th d points to nodes at depth d+1.-
Itemsets are stored ‘in the leaves. When we add an itemset ¢, we start from the root
and go down the tree until we reach a leaf. At an interior node at depth d, decide
which branch to follow ‘by applying a hash function to the d™ item of the itemset. All
nodes are initially created as leaf nodes. When the number of itemsets in a leaf node

exceeds a specified threshold, the leaf node is converted to an interior node.

Starting from the root node, the subset function finds all the candidates contained in a
transaction ¢ as follows: If we are at a leaf, find which of the ite‘rrisets in the leaf are
contained in ¢ and add féferences to them to the answer set. If we are at an interior
- node and we have reached it by .hashing the item 7, we hash on each item that comes
after / in ¢ and recursively applies this procedure to the node in the corrésponding

bycket. For the root node, we hash on every item in 7.

To see why the subset function returns the desired set of references, consider what |

happeris at the root node. For any itemset ¢ contained in the transaction t, the first

11,



(item of ¢ must be in £. At the root, by hashing on every item in we assume that we
only ignore itemsets that starts with an item not in ¢ Similar arguments are applied at
lower depths. The only additional factor is that, since the items in any itemset are
ordered, if we reach the current node by hashing the item i, we only need to consider

the items in ¢ that occur after i.

Agrawal and Srikant [6] have proposed the apriori algorithm for discovering all
sigriiﬁcant association rules between items in a large (not distributed) database of

transactions. However, this work does not address privacy concerns.

Later in [7], the authors propose a procedure in which some or all the numerical
attributes are p,erfurbed by a randomized value distortion so that both the original
~ values and their distribu;tions are c.:hanged. The propos‘ed procedure then performs- a
reconstruction of the driginal distribution. This reconstruction does not reveal the-
original values of the data, and yet allows the learning of decision trees. Another
péper [8] shows a reconstruction method, which does not entail information loss with

respect to the original distribution.

Other ran‘domizatioﬁ techhiquesl were proposed in order to provide association rules
mining without revealing sensitive information about individuals [9, 2]. These
techniques are based on probabilistic distortion of user data in the way that can
provide a high degree of privacy and retain a high level of accu.racy of the result. For
example, in [9], the value of the attribute is retai'ned' with probability p and flipped
. with probability 1- p ‘The presented experimental results showed that distortion
probability of p = 0.1 is ideally suited to .provide both privacy and-good mining

results. . But this work is also for central database of transactions.
In [1'0] the existing data mining algorithms (for a centralized database) are used for

mining association rules from the database which is partitioned among several sites.

The algorithm is applied for each site independently and combines the results, but this

12



- method will often fail to achieve a globally valid result. Because this can cause a
disparity between local and global results ([11]) include:
* Values for a single entity may be split across sources. Data mining at
individual sites will be unable to detect cross-site correlations. |
. 'The same item rﬁay be duplicated at different sites, and will be ovér-weighted
in the results. |
e Data at a single site is likely to-be from a homogeneous population, hiding

geographic'or demographic distinctions between that population and others.

To overcome the above problems, algorithms were proposed for partitioning data
between sites. The al.gb'ri'tf-lms that were proposed for horizontally partitioned data
" (i.e., each site contains basically the same schema), include Cheung et al. [12],
Kantarcioglu and Clifton [13] and Kantarcioglu arid Vaidya [14]. Some of them use
Crypt'ographic‘techniqu’es to minimize the amount of disclosed information [13] or a
special architecture [14]. This architecture contains sites that sequentially add noise to
the original data, conﬁpute the answer with noise and remove the noise from the
answer. All these ‘methods work with ‘the assumption that no collusion occurs

between the sites and the sites follow the protocol precisely.

There has been much work addressing Secure Multiparty Cbmputation. It was first
investigated by Yao '[15], and later, after Géldriech pr@ved existence of a secure
: confputation for any feasible function [16], some algorithms based on his Circuit
Evaluation Protocol have been proposed. But the general method, which is based on’
Boolean circuits, is inefficient for large i.n‘puts.Du and Atallah [17] proposed a more
efficient techﬁique for some cases of the multi-party computation pi'oblem. One of
them'is the Two-Party Scalar Product Protocol. In [18], an algorithm is presented for
association rule mining Which requires the intensive use of secure computation in

order to preserve privacy.

The main work on mining association rules from vertically. partitioned data across

several databases, where the columns in the table are at different sites is done by

13



Vaidya and Clifton in [11] and by and by Boris Rozenberg and Ehud Gudes in [19].
In [11], Vaidya and Clifton presented some successful solutions for fhe database
| vertically partitioned among two sites. But these algorithms ‘have the‘ potential for
inferﬁng private information based on the results in certain cases. Then in [19], Boris
Rozenberg and Ehud Gudes presented another solution for preserving privacy. But
their algorithm also has the potential for inferring private information if the miner has
some external knowledge about the customers. This external knowledge problem was
one of the main motivations for our algorithms. |

2.4 Data Layout Alternatives

Conceptually, a market-basket database is a two-dimensional matrix where the rows
represent individual customer purchase transactions and the columns represent the
items on sale. This matrix can be implemented in the following four different ways

[4], which are pictorially shown in fig. 2.1

ﬁorizontal Item-vector (HIV): The database is orgaﬁized'as a set of rows with each
row storing a transaction identifier (TID) and a bit-vector of 1’s and 0’s to represent
for each of the items on sale, its presence or absence, respectively in the transaction
(Figure a). o ‘ | _

- Horizontal Item-list (HIL): This similar to HIV, except that each row stores an
ordered list of item—identiﬁefs (IID), representing only the items actually purchased in |

the transaction (Figure b).

Vertically Tid-vector (VTV): The database is organized as a set of columns with
each column storing an .item-identifier (IID) and a bit vector of 1’s and 0’s to
represent the presence or absence, respebtively’, of the item in the set of customer
: trané”action‘s (Figure c). Note that a VTV database occupies exactly the same space as

an HIV repi‘esentatioh.



Vértical Tid-list (VTL): This is similar to VTV, except that each column stores an
ordered list of only the TIDs of the transactions in which the item was purchased

" (Figure d). Note that a VTL database occupies exactly the same space as an HIL

representation.
TID Item IDs TID } Item IDs -
11 2 3 4 5.... , ' .
1 .0 1 1 o. 1 1 3 4 7
2 0O 1 1 0 0 2 2 3 & 10
3 1.0 o0 1 1 3 1 4 5
4 0O 11 1 -0 4 2 3 4 9 13
 (a) HIV (b) HIL
TID Ttem IDs o Item IDs
: 1 2- 3 4..... ' 1 2 3 4.....
1 1 0 1 11 1 2 1 1
2 0 1 1 0 — 3 4 2 3
3 1 0 0 1 4 4
4 0 1 1 1
(© VIV : | . (@ VTL

- Fig. 2.1 Data Layout Alternatives of Market-Basket Data |

In our research work, we worked on VTV data layout.
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Merits of vertical mining:
The vertical layout -of market-basket database appears to be a natural choice for
achieving association rule mining’s objective of discovering correlated items. More

specifically, it has the following major advantages over the horizontal layout:

‘Firstly, computing the supports of the itemsets is simpler and faster with the vertical
~ layout since it involves only the intersections of TID-lists or TID-vectors, operations
~ that are well suppoi;ted by current database-systems. In contrast, complex hash-tree.

data structures and functions are required to perform the same function for horizontal

layouts (e.g. [3D).

Secondly, with the vertical layout, there is an automatic reduction of the database
before each scan in that _-o'nly these itemsets that are relevant to the following scan of
the mining process are accessed from disk. In the horizontal layout, however,
extraneous information that happens to be part of a row in which useful information is
present is also transferred from disk to memory. This is because database reductions
are’ comparatlvely ‘hard to implement in the horizontal layout. Further, even if
- reductions were possible, the extraneous information can be removed only in the scan
following the one in which its irrelevance .is discovered. Therefore, there is always a

reduction lag of at least one scan in the horizontal layout.

Thirdly, bit-vector formats, due to their sequences of 0’s and 1°s, offer scope for
compression. From this perspective also, the vertical layout is preferred since a VIV
format results in higher compression ratios than the equivalént HIV format. This is
because compression techniques typically perform better with large datasets since
there is greater opportunity for identifying repeating patterns. — in a VTV, the length
of the dataset is 'proportional to the number of customer 'transaetions, whereas for
HIV, it is lifnited to the-number of items in the database, usually a fixed quantity that

" is small relative to the number of tuples in the database.
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‘Finélly_’, the vertical layout permifs asynchronods computation of the frequent
itemsets. For examble, given a database With itenﬁs A, B, C, ohce the supports of the
items A and B are known, counting the support of their combination AB can
commerce even if item C has not yet been fully counted. This is in marked contrast to
the horizontal approach where the counting of - all ifemséts has to proceed
synchronously- with the scan of the database. A careful algorithmic design is required
" to ensure that the aboife mentioned inherent advantages of the vertical layout are:

translated into ta_ngible performance beneﬁts.
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CHAPTER 3

Proposed Work {pox frivac, @fﬁseﬁ\f?ng, A;igcc’t‘cxhbn Rale- Minin

In this chapter we Will discuss the proposed algorithm for preserving the privacy of
- the vertically partltloned databases when they are used for discovering frequent

itemsets. Our Work is an extension of the work done by B. Rozenberg at al. in [19]

3.1 }ASSQ&pHOOS "JDO*(. Pﬂ)?w&i Wodk B

-~—

In our proposed algorithm, we assume partition i of vertically partitioned database as
' Master partition, who wants to find out the frequent itemsets. Other partitions of the
database only provide their partition data for mining but w1ll not do any global
computations & Third Party performs intersection of the TIDs. This third party is not

~ trusted with the database, but it is trusted with computations).

We assume that in all partitions of the database, the domain o‘f the TIDs is. the same
and its size'is .equa'l to n - some number that depends on the area of the business. The
number of transactions in each partrtion is up to n and the TIDs range from 1 to n.
When fake transactions are introduced, they use ‘‘unoccupied’” TIDs. When
information between the parties is shared, then only information in which some
attributes are real (in one of the databases) is of use. That is, a fake transaction whose
- corresponding TID in the other database is empty, is not considered at all. Also when
-each partition computes. large itemsets 'it does not know Wheth’er the attributes

corresponding to his real transaction, are real or not. -
The flow chart for the proposed approach for privacy preserving association rule

mining is drawn in Figure 3.1. . The flowchart is showing all 4 phases of the proposed

algorlthm which are descrrbed just after the figure.
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3.2. Distortion Procedure:

There are many data modification methods for disterting the data as discussed in

chaptér 2. We. are lising the following data distortion method for m(')difying or

dlstortmg the values of the vertically partltloned database described by S.J. Rizvi. at
al. in [9]: '

A customer tuple can be conSIdered to be a random vector X = { X, }, such that X,=

Oorl. We generate the dlstorted vector from this customer tuple by computing ¥ =

dtstort(X ) where ¥, = =X ,XOR rl; and’ rl,. is (100 - r;.), v, is a random variable with
density function f(r) = bernoulli(p) (0 <p < 1). That is, r, takes a value 1 with

probability p and 0 with probability 1 - p.

- After dlstortmg the database w1th the above descrlbed method, . add some’ fake

~ transactions (by SImply puttmg 1 randomly in non existing transactions) in thé.

3.2

distorted database to get_the final distorted database.
Execution Procedure of the proposed algorithm:

The execution procedure of the proposed algorithm is as follows:

I. Firstly phase 1 ( can be called as ‘Mining Check phase”) is executed, in which
the Master (ith partition in vertically distributed database) finds out all
frequent itemsets-in its own partition for some minimum support value by
using aﬁriori _allgorlithm discussed inchapter 2. After finding all frequent -
itemsets Master partition sends the TIDs of the frequenf itemsets and the other

. partitions send their real TIDs to the Third Party. Then the Third Party find
out fhe intersection of the TIDs sent to him by using the. “Third Party’s

‘ exeeution proeess’.‘If the intersection is greater than or equal to the minimum
| -support value, the Third Party sends “Ok” (which means mining is possible)

to all partitions, otherwise sends “NotOk” (which mearis mining is not
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possible) to all partitions. The algorithm proceeds only if all partitio_né get -
“Ok” from the Third Party. ‘

2. If all partitions-gets f‘Ok” from thé Third Party then phase 2 is execut'ed. In
this phase, all partitions’ distort their own data by usirig the distortion method
~described above and by adding fake transactions in the distorted data and send
it to Master partitidn. | N
3. Then phase 3 is executed in which Master partition makes the global database
by joining the Item TID’s values of all partitions only for the real TIDs of its
own partiﬁon. After niak_ing a global database, the Master partition finds all
frequent itemsefs from the global. database. Then the Master sends the
transaction IDs of the frequent it'ern.set‘ to the Third Party with some minimum-
support valué to check that the number of real transactions present in a
freq,u.er'lt' itemset. The Third Pérty executes the ‘Third Party’s execution
process’ to calculate the size of the intersection of the received set with the set
“of all real ID’s of all p.artitio,ns‘of the databégse other than master partition, if
this intersection value is greater than equal to the minimum support value, it
sends an ‘OK’’ to the Master, which means that the itemset is also frequent in

the all real partitions of the database.

4. Then phase 4 is executed, in which association rules are generated for all-

those fr'equent‘iternsets.for which the third party sends ‘OK’.

In this algorithm there is no communication with partitions other than Master
partition after initial submission of their partition data and since the Third Party just
aﬁswérs ““Ok’’ or ““Not .(-)k” to the Master partition, the master partition knows only
that' some minimum number of the transaction IDs (equal to;the‘ minimum threshold
.value) aré common in both databases. Alsb, the Third ,Party does not have knoWledgé

of the partition’s data, so its role and the trust required is very limited.
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- BM4 Prases of the proposéd algorithm:

1.~ Phase 1: This phaSe is ‘Mining check’ phase. The following steps are included in
this phase: | ' |

.- | Using apriori-gen function, generate all frequent itemsets froin Master’s
. | partition. | | '

2. | Send all TIDs of Master partition présént in frequent itemsets and all the real
TIDs of all partitions other than Master partition to the Third party.

3. | Receive the response from the Third party whether mining is possible or not l

| (See third party execution phase). If the mining is possible then continue.

- 2. Phase '_2_:‘ Thi‘s 7ph'a‘se is ‘Data Préprocessing’ phase. The following steps.- are

, ihcluded in this phase:

1.. | Distort all vertical partitions of the database (by using the distortion
| procedure) and then add some fake transactions in it.

2. - | Send all distorted partitions to the Master.

3. Phase 3: Th‘is" pha'se is ‘Master’s Execution phase’. The foIloWi:ng steps are

included in this phase:

1. | Build the glqbal database (GDB) with true TIDs from its own partition and
' attributes from its own and other i)artitidns of the database.

2. | Using apriori-gen fuhction, generate all frequent itemsets from GDB.

-'For each frequent itemset: o "

i. ‘Buildthe set of relative TIDs

ii. Check with the third party whether the itemset is frequent.

1

Third party execution phase: The ‘Third party execution'p_hésé’. used in the above 3.

‘phases for calculating thé. intersection of _TDS Ainclud_es the following thé steps:



Receive TIDs from the two parties (MTID, STID)
2. | IMTID N STID| > minsup) -
send “OK” 4
while (Master not finished) do.
receive set of TID’s from Master
if [|MTID N STID| = minsup) then
send “OK” to the Ma_sfer
" else - o
send “NotOK” to the Master
. end while |
else // mining is not possible!

‘Send “NotOK?

Phase 4: This phase is ‘Association rule -generation.phase’. In this phase firstly, the
value of ¢ (the minimal confidence value) is taken for by the Maeter partition. Then
the following Master’s execution process end Third party execution precess is
executed for calculating the confidence: | |

. a) Master’s E.)éecution process:

' Send c to the thlrd party. _
2. | For each frequent itemset Z, generate all possible rules X = Y such that Z
= XY according to the Master’s real transactions. '
3. | For each rule from step 2 do: ‘ .
' Generate two sets of ids: 7/Dx (IDs of all real transaction that contain
X) and TIDxy (IDs of all real transaction that contain AY).
Send TIDx and TIDxy to the 3™ party.
| Receive from the 3™ party “OK” or “NOT”.
4. | Send to 3 party “FINISH”,
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b) Third party execution process::

| Receive ¢ from the Master.
' 2. | While not “FINISH” do:
o Receive two sets from the Master (7/Dx and, 7. Iny)

Calculate answer = (lTIny A STIDI cj, where STID is the set of all

| TIDx M STID |~

real TIDs of the other partitions.

Send answer to the Master.

Now we will explam the proposed algorlthm with the help of sample database
(vertlcally partltloned in two 31tes) Let the Ist (Master’s) and 2™ two vertical
'partltlons of the databases. are:

"Table 3.1 1% (Master’s) Partition’s Real Data

Transaction IDs | Item IDs
— [a[B[c[D
1 1{1]0]0
2 1{1({0)0
6 1[1[1]0
7 T[1]o]1
9 1{110]1

" Table3.2 2" Partition’s Real Data ‘ ‘

Transaction IDs "~ Item IDs

| TE(F(G|HI]]
1 1|1]1]olofo
2 111 [t[1]0
4 ojtT[o[1 |01
G TIT[1]ol1[1
7 i{1[1]0]0]0
10 o[1fo[L |01
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Let the Value of -minimum support ié 4, Master'partition will find the frequent
itemsets in its partition. {A, B} is frequent itemset in Mastef’s p%lrtition. Th‘e"TiDs in
which {A, B} is présent-afe {1,2, 6,7, 9}. So, both partifions-'sends TIDs {1, 2, 6, 7,
9} and {1, 2, 4, 6, 7, 10} to Third Party. Now Third Party calculates the size of the
intersection of the two sets ([{1, 2, 6, !7, 9} N {1,2,4,6,7, 10}| =4) and sends ‘OK’
'ti) each partition which means that mining is possible (because the size of intersection
> minimal support). ﬂ‘After this step, each side distorts. the database by using' the -
" distortion method described above and then add some fake transactions in their
partitions and then 2™ partition sends .the resulting distorted database to the 1%

(Master part‘ition) partition.

- ~_Table 3.3 - 1% Partition’s (NIaster"s) Distorted Database ;("v‘vith r = 80%) without

fake transactions’

Transaction IDs Item IDs

"A|B|C|D
1 1]1]0]o0
2 111]ol1
6 11|10
7 11 ]1]1
9 T[1]o01

Table 3.4 2™ Partition’s Distorted Database (with r = 80%) without fake

transactions
’i‘ransaction IDs | . Item IDs

T [E[F|G|H[I[J
1 1]1(1]0]0]1
2 1{1)1]1]0]0
4 O|1|0:1]0O}|1
6 1 (101171
7 T]1]1]0]0]0
10 O[T |[0[1]0(1
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Table 3.5 1° Partition’s (Master’s) Distorted Database with fake transactions

Transaction IDs | Ttem IDs
’ A[B|C|D

1 1100
2 T[1]0]1
3 o111
4 o[1]1]0
5 T[{o]o 1

6 Tl1[1]o0

7 i{1]1]1

8 10|01

9 11101
10 1{o|1]o0

Table 3.6 2™ Partition’s Distorted Database with fake transactions

Transaction IDs - Item IDs

E|F|G|H|I[J

1 NREREREE
2 111 ]1]0]0
3 111 |1]o[1
4 0l1]0]1]0][1
5 Tilol1[1]1]0
6 Tl1]o| 111
7 1|1[1]/0(0][0
8 0Djo0J|o|1|1]0
9 1[1[1]0l0]0
10 o|l1]o|1]0]1

Table 3.7 1% Partition’s (Master’s) Global Database

Transaction IDs Item IDs

| A[B|[C|D|E|F|[G[H[I]]J
1 i[r{ofofr{1[1|0]0]1
"2 1l1]ojo|1]1]1[1]0]o0
6 1101|101 [1]1
7 T[1jo|1]t[t|L|o]o[0
9 i(1]o|1]t|1]1[0]0]0
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Table 3.8 2" Partition’s Global Database

Transaction IDs : " Ttem IDs

" AIB[C|D|E[F|G|H[T]J
T T{ifolo]1][1[1[0]0]0
2 1110 T|[1]1[1]1]1]0
4 ot 1]ofJoj1]o]1]o|1]
6 T[t[r|of[1[t|[t{o]T]1
7 T[T {11 ][1[1]i]0]0]0
0 - [1]o|r]ojo]r|e]T[o[1

Now Master generates the freqﬁen_t itemsets from its global détaﬁase by using apriori-
generation function éndhe found that itemset I={A,B, E F, G} is. frequent in the
gl()bél database. Then the Master wants to know if the itemset I = {A, B, E, F, G} that
is frequent in the above global Master’s database is frequent in the 2nd Partition. The
Master sends the transaction IDs that contains the frequent iteniset to the Third Parfy
({1;2, 6,7, 9}). The Third Party calculates the size of the_r interéectibn of the received
. set with the set of all feal TID’s of 2™ partition, and since the size of the résult (1, 2,

6, 7) is greater than 6r equal to 4, it sends an “Ok’’ to the Master.
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CHAPTER 4
IMPLEMENTATION DETAILS

" The implementation of the proposed Algorithm is done in C++ and Java. The.

Y.l

Mo

implementation details of the proposed algorithm are listed as follows:

DATABASE

The vertical partmon database used in the thesis is the database used in [22] The
transaction database is taken as an m X n matrix. Transacgon 1 appears in row one.
Cqufnns are separated by a space and represent‘ items. A ‘1 indicates that item is

present in the transaction and a 0 indicates it is not.

DISTORT. C

. This program is used to distort the Boolean Market-basket database. The program

takes input from a -file which contains the boolean database A boolean random

- number is generated by usmg rand () functlon.- The amount of occurrence of Tand 0

Uy

for this random number can be controlled by the user. Then this random number is

XORéd with the values in the database for distorting the database values. Then the

distorted database is stored in other file.

INTERSECT C

This program calculates the number of common transactlon IDs from the TIDs

‘entered in it. The some value for minimum support is also provided. If the number of

. common transactions is greater than or equal to the rriinimu'm support value, the

pfogram returns “OK?” to the database owner, else return “NotOK”.

' UNION.C

ThlS program is used to merge dlfferent partltlons of the database on the basis of the

TIDs provided. First, the transactions IDs (TIDs) of the ‘Master’s partmons are
“matched with the TIDs of the other part1t10ns of the database. If a TID is common in
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.5

all partmons of the database then the values are combmed If the TID is present only

in Master s database then the item values for that TID are taken as they are and ‘0’ is ‘

" entered for items of the other partitions. .

APRIORLJAVA

.This program creates a user interface which contains three buttons — Open F ile, Add

Support and Run. ‘Open File’ button is used to open the database file. ‘Add Support’

.button is used to add the minimum support for ﬁndmg assocratlon rules ‘Run’ button

is used to run the apriori algorrthm

i

public Apriori (String s)

This constructor is used to create user interface.

* public void _actionP‘erform'ed(ActionEVer_lt ‘event)

This function is use_d to perform the —open file, read file, add minimum support and

© run actions. - .

protected void createTtreeTopLevel ()

This function generates top level (i.e. I** level) of the T-tree.

protected void createTtreel.evelN() _
This function performs the process of determining the remaining levels'in the T-tree’

(other than the top level), level by level in an "Apriori" manner by adding support,

. then performing pruning and generate loop until there are no more levels to generate.

protected void addSupportToTtreeLevelN(mt level)

| Thls function performs the process of adding support to a given level in the T-tree

(other than the top level).

prlvate void addSupportToTtreeFmdLevel (TtreeNode[] linkRef, int level, int
endIndex, short[] itemSet) .
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This function operates in a recursive manner to first find the appropriate level in the
- T-tree before processing the required level (when found). linkRef is the refere;nce to
the current sub-branch of T-tree (start at.top of tree), level is the level marker, set to.
the required level at the start and then decremented by 1 on each recursion. endIndex
is the length of current level in a sub-branch of the T-tree. itemSet is the current

itemset under consideration.

protecfed void prdneLevelN(TtreeNodé [1 linkRef, int level)

This function performs the pruning of the gi{/en level in the T-tree. Pruning carried
out according to value of minSupport field. linkRef is the reference to the current
sub-branch of T-tree (start at top of tree), level is the level rharker, set to the required

~ level at the start and then decremented by 1 on each recursion.

protected void generateLevel2()

This function generates level 2 of the T-tree. The general ‘generateLevelN’ method
assumes we have to first find the right level in the T-tree, that is not necessary in this
case of level 2.

protected void generateLevelN (TtreeNode[] linkRef, int level, int requiredLevel,
short[] itemSet)

This function performs the process of generating remaining levels in the T-tree (other
than top and 2nd levels) By procéeding in a recursive manner level by level until the

required level is reached. Example, if we have a T-tree of the form:

(A) == (B) - (C)

@A) A 3 ‘ S
Where all nodes are supborted and we wish to add the third level we would walk the
tree and attempt to add new nodes to every level 2 node found. Having found the
correct level we stei:) through starting from B (we cannot add a node to A), so in this
case there is 'only one node from which a level 3 node may be attached. linkRef is the

reference to the current sub-branch of T-tree (start at top of tree). level is the level
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- marker, set to 1 at the start of the recursion and incremented by 1 on each repetition.

requiredLevel is the required level. itemSet is the current itemset under consideration.

protected ".'oid generateNextLevel (TtreeNode[] parentRef, int endIndex,
short[] itemSet) |
This function generates a new fevel in the T-tree from a gvivven "parent” node.
Example 1, given the fol.lowing: | | -

(A) == (B) - (C)

l l.
(A) (A) - (B)

where we wish to add a'level 3 node to node (B), i.e. the node {A}, we would.
| proceed as follows: - | _ o '
Generate a new levél in the T-tree attached to node (B) of length one less than the
numeric equivalent of B i.e. 2-1=1. Lbop through parent level from (A) to node
immediately before (B). For each supported parent node create an itemset label by
combing the index of the parent node (e.g. A) with tﬁe complete itemset label for B --
- {C, B} (note revefse order), thus for parent node (B) we would get a new Ievél in
the T4tree with one node in it --—- {C, B, A} represented as A. For this node to be a
 candidate large item set its size-1 subsets must be supported, there are three of these
in this example {C,A}, {C,B} and {B,A}. We know that the first two are supported
because they ar'evih' the ‘eurrent branch, but {B, A} isA in another branch. So we must
. generate this set and test it. More generally we must test all cardinality-1 subsets.

which do not inélude the first element. This is done using the method

- testCombinations.

Example 2, given:
(A) - (D)

_ o | |
(A) == (B) ~— (©)
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where we wish to add a level 4 node (A) to (B) this would represent the complete
label {D C, B, A}, the N—I subsets will then be {{D, C, B}, {D, C, A}, {D, B, A}
and {C, B, A}}. We know the first two are supported because they are contamed in
the current sub-branch of the T-tree, {D, B, A} and {C, B, A} are not. parentRef is
_the ’reference to the level in the sub-branch of the T-tree under consideration.
.endIndex is the index of the current node under consideration. itemSet is the complete
. labe!‘represented by the current node (required to generate further itemsets to be X-
checked). .

- protected boolean testCombinations (short[] currentItemSet)

This function performs the process of testing whether the N-1 sized sub-sets of a
newiy created T-tree node are supported elsewhere in the Ttree --- (a process referred
~ to as "X-Checking™). Thus given a candidate large itemsets whose size-1 subsets are
contained (supported) in the current branch of the T-tree, tests whether size-1 subsets
contained in other branches are supported. Proceed as follows:

Using current item set split this into twe subsets: itemSet1 = first two items in current
item - set, itemSet2 = remainder of items in current item set, Calculate size-1
combinations in itemSet2, For each combination from (2) append to itemSetl.
Example 1:

currentltemSet = {A,B,C},

' jtemSetl = {B, A} (change of ordering),

“size={A,B,C}-2=1

itemSet2 = {C} (currentltemSet with first two elements removed).

Now_calculate ‘eombinatjons between {B, A} and {C}.

Example 2

currentltemSet = {A, B, "C,' D}

E itemSet] = {B,A} (change of ordering)

itemSet2 = { C D} (currentItemSet with first two elements removed)
calculate combinations between {B, A} and {C Dy

currentItemSet the glven 1temset
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pfivate boolean conibinations (short{] sofarSet, int startIndex, int endIndex,
short[] itemSetl1, short[] itemSet2)

This function determines the cardinality N combinétions of a given itemset and then
checks whether thdse combinations are supported in the .T-tree. Operates in a
recursive manner.

Example 1: Given --- sofarSet = null, startIndex = 0, @hdlndex =2, itemSet]l = {B, A}
and itemSet2 = {C}, : N |

' itemSet2.length = 1, endIndex = 2 greater than itenﬁSe'tZ.Ivength'

. if condition succeeds | _ _ :

tesSet = null+{B, A} = {B, A}

retutn true if {B, A} supported and

return null otherwise

Example 2: Given --- sofarSet = null, startIndex = 0, end'Ind_eX = 2, itemSetl = {B, A}
and itemSet2 = {C, D} ' | ’ '
endindex not greater than length {C, D}
go into loop '
. tempSet = {} + {C} = {C}
| combinatibns with --- sofarSet={C}, startindex=1,
endIndex=3, itemSet] = {B; AY¥ and itemSet2 = {C}
endIndex greater than length {C, D}-_..
testSet = {C} + {B, A} = {C, B, A}
-tempSet = {} + {D} = {D}
combinations with --- sofarSet={D}, startindex=1,
endIndefx=3,.iten-18et1 = {B,A} and itemSet2 = {C}
endIndex greater than Iehgth {C,D}.
testSet = {D} + {B,A} = {D,B,A}

‘sofarSet is the combination itemset generated so far (set to null at start), startindex is

- the current index in the given itemSet2 (set to 0 at start). endIndex is the current index

‘of the given itemset (set to 2 at start) and incremented on each recursion until it is’
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greater than the length of itemset2. itemSet1 is the first two elements (reversed) of the

total label for the current item set. itemSet2 is the remainder of the current item set.

private boolean findItemSetInTtree (short[] itemSet)

This function éomrnences the process of determining if an itemset exists in a T-tree.
Used to X-check existance of Ttree nodes when generating new levels of the Tree.
Note that T—treé'néde .labels are stored in "reverse", e.g. {3, 2, l}. itemset is the given

. itemset (in reverse order). It returns true if itemset found and false otherwise. '

private boolean findItemSetInTtree2 - (Shbrt[] itemSet, int index, int lastIn:dex,
TtreeNode[] linkRef) - | ‘
This function returns true if the given itemset is found in the T-tree and false
otherwise. It operates r’ecﬁrsiv’ely.‘ itemSet is the given .itemset. indéx is the current
index in the given T-tree level (set to 1 at start). lastfndex is the end index of thé

current T-tree level. linRef is the reference to the current T-tree level.

-private void addSuppqrt()
- This function add the minimum support value and enable run button if have data and

' a minimum support value.

private void getFiléNameO _

This function displays an ‘oi:)en file dialog box so that the user can select file to open.
If “OK” button is clicked then the file is opened and if cancel buiton is clicked then
return. Obtain selected file and read the file if the file is readable (i.e. not a directory
etc.).‘Enable run button if have data and a minimum support value. Output the no. of

rows & columns to text area.
‘private boolean checkFileName()

- This function check the ‘whether the selected file is a text file or not. Tt returns false if

selected file is a directory or is not a file name or access is denied. -
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private void checkLine (int counter, String str)

This function check whether input file is of appropriate boolean input.

public void inputDataSet() throws IOException ‘

'This function reads input data from file specified in command line argument.

A' protected void outputItemSet .(sliort[] itemSet)

This function outputs a given item set. itemSet is the given item.set.

public void outputFrequentSets() -
This function commences the process of outputting the frequent sets contained in the

'T—tr-ee.» _

private int OutpﬁtFrequentSets .(int number, shoit[] itemSetSofar, int size,
TtreeNode[] linkRef) | o |

-This function outputs T-tree frequent sets. It operates ina recursive manner. nurmber
is the number of frequent sets so far. itemSétSofaf is the label for a T-treenode as
. generated sofar. Size is‘ the length/size of the current array level in the T-tree. linkRef"
is the reference to the _'qurreht array level in the T-tree. It returns the incremented

' (pbssibly) number the number of frequent sets so far.

protected sliort[] reallocl (short[] oldItemSet, short newElement)
This function resizes give:n item set so that its length is increased by one and append
new elemernt. oldltemSet is the original item set. newElement is the new

element/attribute to be appended. It returns the combined itein set.
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CHAPTER 5
RESULTS AND DISCUSSION

5.1 Results and DiSCussion

Impact of Distortién on Privacy of data:

120 -
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40 {
20 -

Accuracy and Privacy

0 & r '_l'| I.rrl T T

0

Distortion -

O 10 20 30 40 50 60 70 80 90 10 11

0

| —e— Privacy

—s— Accuracy

Figure 5.1 Distortion v/s Acéhracy and Privacy of the database

The above graph is showing that as the distortion of the database increases, the
accuracy of the frequent. itemsets decreases, but the privacy of the database increases.

So we can choose the amount of distortion done on the database where requirement of

accuracy and privacy both are fulfilled.

Impact of Distortion on Accuracy of Association Rules:

The graph drawn below is showing that as the distortion (probability of occurrence of
1 as random variable) increases the accuracy of the frequent itemsets decreases. As
the distortion increases, the frequent itemsets contains some false positives and false

negatives. False posi'tivé ‘means that the distorted database contains some frequent
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itemsets which are not frequent in the real database. False negative means that some
of the itemsets which are frequent in the real database are not frequent in the distorted

~ database.
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0 - - T T A T S T i :lx ‘ =T _ EA - : T | = T :
o] 10 20 30 40 B0 60 70 80 90 100 110
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‘Fig:5.2 Probability of occurrence of 1 v/s accurﬁc_y of the frequent itemsets
Execution Time v/s Database size:

~ As the database size (number of transactions) increases, the execution time of finding

frequent itemset also increases.

.Exe_cutidn Time v/s Database Size

No. of Transactions
o1
o
o
o
1

TN
T

0 - l . ‘lj/;}‘z P _Ir 3 |~ .‘ © *I T | ¥ v] S I
0 600 1200 1800 2400 3000 36C0 4200 4800 5400 6000

Execution Time (in millisec) .

 Fig 5.3 Database Size v/s Execution Time
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In the above graph the execution time is for a database havi-n_g 8 itemsets with 30%
minimum support.- As  the database size (number of transactions) increases the

~ execution time of apriori algorithm for generating frequent itemsets also increases.

Impact of Minimum Support on Execution time:

The value of minimum ‘support diréctl); affects the execution time of the algorithm.
As we are assuming that in market-basket database, the number 6f 1’s is less than the
number of 0’s. So the nurﬁber of itemsets -having high minimum support is less.- If the
value of minimum support is less then the numbér of frequent itemsets is more and if
the value of minimum support is more then the number of fréquent itemsets is less.
The graph below is showing that as the minimum support for'.'generating frequent

itemset increases, the execution time decreases.

Minimum Support v/s Execution Time

Execution Time

0 20 40 60 80 100 120-
Minimum S_upport (in %age)

Fig 5.4 Minimum Support Value v/s Execution Time

38



. 5.2 Analysis

Correctness:.

The glgbrithms for fréquen't itemsets mining use the apriori-gen function to generate
all candidates for lérgé itemsets. In each iteration k, a large k- itemset that was found
by the Master accordlng to its true transactlons 1s checked by the other party. So, all
existing large itemsets are found. In the algorlthm for association rules mining, the
Master generates all possible rules from frequent itemsets found earlier and checks

with the 2™ Party the resulted confidence. So, all existing rules 'a_lre found.

. Information dzsclosed by our algorithm:

| Here, we discuss the information dlsclosed be&re the algorlthm starts and-
information dlsclosed during and after the algorithm operation. Our algorithm
disclosure depends whether we assume the existence of external knowledge. If no
external knowledge is aésumed, then before starting the algorithm, the only
information the Master has is that mining is possible.” Since Master Party has no -
knowledge of the real or fake transactions and their values, the probability of any
transaction of the 2" Party to be true is minsup/r, Where r is the number of real

transactions on the local database.

If no external knowl.ed'ge is assumed, still a corrupt Master ié able to learn exactly
- which transactions in the other party’s database are fake. In order to do so, it should
operate in the folloWing way: Assume that the minimal support threshold is 4. The
Master sends to the trusted party sets of --éxactly four TIDs until it receives an ‘‘OK”’
answer, which means all four TIDs are not fake. Then it chooses three of thesé, and
for éVery other TID j it-sends to the trusted party a set containing these three TIDs
together with j. The answer of the trusted party is ““OK”’ if and only if j is not a fake
TID. But, as the database is distorted, then also the only 1nformat10n the Master has is
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that this individuals participate in the two databases, but he does not know whether

that real transaction is really “‘real’’ or not.

If there is any externél knowledge, as the database is distortéd’, then also the only
information the Master party has is thaf this inciividuals participate in the two
databaées, bﬁt'he does not know whether their real transaction is really ‘‘real’” or not.
With distortion probability of p = 0.1, the resulted exbectéd error is less than (kv *
10) %, where k is the number of suspected transactions, and r is the number of real

transactions of some side and usually k<<r.

At present there is no standard definition for the measure of privacy loss. In our
. algorithm, we use as the measure for privacy loss, the probability of 'learnin‘g whether

a particular transaction value is real or fake.

“In our algorithm, the parties do not know the exact support for each tested itemset.
This decreases the probability that the Master will learn that a set of items on another
site has a given property, and it occurs only when the global support value is above or

_equal to the threshold value, and is also ecjual to the Master’s support.

-
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- CHAPTER 6
- CONCLUSIONS

6.1 Conclusions

We focus our attention on the problem of privacy preserving association rule mining
in vertically partitioned databases. While other existing approaches try to overconie
the problem of information discloéure_, there still exist cases in which some
information may be disclosed. In this'work, we propose an algorithm for discovering
all frequent itemsets and then generating association rules from them in vertically
partitidned databases, without disclosing individual transaction values. The proposed

algorithm preserve the privacy of vertically partitioned data by distorting all pari‘iti_ons
data (by XORing the boolean data values with a boolean random variable) -and then"
adding some fake transaction in the distorted data. The proposed algorithm does
mi.ning check (to check whether some frequent itemsets occur in the Master partition)
'ip the starting phase of the algorithm to avoid the unnecessary computations. The
_ proposéd algorithm also put a limit on the number of fake transactions responsible for
‘making an itemset as frequent itemset. This algorithm reduces the amount of
disclosed information up to some extent. In our proposed algorithm, a balance
between privacy and accuracy can be maintained by choosing the amount of

distortion.
- 6.2 Suggestions for further work

In our proposed Wofk, we had used Boolean vertically partitioned database. In future

work, we will try to extend the proposed algorithm for numeric database.
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APPENDIX A: SOURCE CODE LISTING

DISTORT.C

*********************************************************************

#inClude<stdio.h> -

- #include<conio.h>

 #include<stdlib.h> -
#include<dos.h>

- void main()
A4 -
FILE *fp;
FILE *fw;
float temp;
int i=0,j=0, pos = 1
int count=0, countl 0;
. static int a[100];
char ch;
int chl; »
- static int row=0, col=0;
int total,totall; |
struct time t1,t2; -
void tlmedlff( struct time t1, struct time t2) :

clrscr();"
pos=l;
fp = fopen("test.txt","r");
fw = fopen("result.txt","w");
iffp=NULL) '
; A
printf("cannot open the file\n");
exit(1);
. ,
-~ if(fw==NULL) .
(- Nt

- printf("cannot open the file\n");
exit(1); '

 gettime(&t1);



srand(20);

while(total>0)

( ,

temp=(int)rand()%10;
printf("\t%d" temp);
a[i++]=temp/9.0;

. total--;

3

for(i=0;i<(row*col);i++)
{ '
int k, templ=1; -
if(a[il=1)
{ .
int temp=0;
countl++;
if(count1>totall)
a[i]=temp;
) I

. k=totall-count; _
while(countl<totall)

{
a[k++]=templ;
S T
13

while((ch = fgete(fp)) != EOF)
{ , .
- countt++;
1f(count>4 && ch '—'\n')
{
chl=a[j};
printf(" %d\t" a[]])
jtt; :
ch= ch’\chl
fprintf(fw, "%C" ch);
pos++;

else .
ch= ch”0; '

forintf(fw,"%c", ch);
pos++;



¥

}
- if{ch == "n")
fprintf(fw,"\n"); -
‘pos = 1;
count=0;
3

if(count<=3)
fprintf(fw,"%c",ch);

b
fclose(fp);
fclose(fw);
gettime(&t2);. _
~ getch(); o

} .
void timediff(struct time t1, struct time t2)

struct time t3;

- t3.ti_hour=t2.ti_hour - t1.ti_hour;

t3.ti_min= t2.ti_min - t1.ti min;

t3.ti_sec=t2.ti_sec - tl.ti_sec;

t3.ti, hund=t2.ti_hund - t1.ti_hund;

pr-intf("\n %02d:%02d:%02d:%02d", t3.ti_hour,t3.ti_min,t3.ti_sec,t3.ti_hund);
} )
****************************%*******************************%********

INTERSECT.C \

st s she sk s s sfe sk ofe she ok s sl o sl s sk sfe e s sfe ke ofe oo ke e oo sfe ofe s sl sfe sfe sfe sk e sie sfe s e s sk sk ofe she sl sk s sfe ol e s sk sfe she ok she sfe s oske sfeskeoske sfe ks skeok ok

#include<stdio.h>
#include<conio.h>
#include<do‘s.h>

void main()
{ ,
FILE *fl;
FILE *f2;
int al[10];
int a2[10];
int nl;



int n2;

char chl,ch2;

int count=0;

int min_-sup;

int 1=0;

int j=0;

struct time t1,t2;

void timediff( struct time t1, struct time t2);

- clrser();

f1 = fopen("test.txt","r"); ,
2 = fopen("testt.txt","r™);

if((fl==NULL) || (f2==NULL))
{
prmtf("cannot open the ﬁle\n"),
o exit(1); .
;o
gettlme(&tl) :
Whlle((chl—fgetc(fl))'—EOF)
{
al[i++] = atoi(&chl);
while((ch1=fgetc(f1))!="\n")
{ .
if(chl == EOF)
break;-

Y- .
if(ch1 == EOF)
break;
3 | -
while((ch2=fgetc(f2))!=EOF)
{ .
‘a2[j++]= atoi(&ch2);
while((ch2=fgetc(f2))!="\n") .
A 3 '
if(ch2 == EOF)
break;

I |
if(ch2==EQF)
break;.

nl=i;
n2=j;



forti=0 ;i<nl;i++)
( ,
for(j=0;j<n2;j++)

iffal[i}==a2[j])
{
)

count++;
)
}

gettime(&t2);
printf("n Enter the Minimum support : ™);
scanf("%d",&min_sup);

if(min_sup<=count)
printf("\n OK, Mining is possible");

else . _ ‘
printf("\n NotOK, Mining is not possible");

printf("\n Intersection is : %d ", count);

getch();

} o

void timediff(struct time t1, struct time t2)
struct time t3;

- 13.ti_hour= t2.ti- hour - t1.ti_hour;
t3.ti_min=t2.ti_min - t1.ti_min;
t3.ti_sec=12.ti_sec - tl.ti_sec;

. t3.ti_hund=12.ti hund - tl.ti_hund;

printf("\n %02d:%02d:%02d:%02d", t3.ti_hour,t3.ti_min,t3.ti_sec,t3.ti_hund);

s g f e s s e fe e ook e s e e ofe oo sl s e s sl fe fe ok o s s sk e ek s e ekl o sl e ek ook s s kb sk R stk ok

- JOIN.C

#include<stdio.h>
#include<conio.h>
- #include<stdlib.h>
* #include<dos.h>



void main()
{
FILE *fl;
FILE *12;
FILE *f3; .
. float temp = 0;
. int pos = 1;
~ struct time tl t2;
void timediff( struct t1me tl, struct time t2),

char ch;

static char a[20][20];

- static int al[20]; -
static int b1[20]; ,
static char b[20][20]; .
char chl, ch2; ‘
int count=0;
static int count1=0;
static int count2=0,;
int ch3=0;
int ch4;

intx, y;
static int i=0, r=0, s=0, j=0, k=0, I= 0
static int m=0, n=0;
static int row1=0, row2=0;
clrscr();

fl=fopen("sample.txt","r");
f2=fopen("samplel .txt” "r  ")
f3=fopen("union.txt","w");

if((fl==NULL) || (f2=¥NULL))

{

- printf("cannot open the file.\n");
exit(1);

3}

gettlme(&tl)

‘ whlle((chl—fgetc(fl)) '—EOF)

{ .

if{ch1!="\n")

[



. . countl++;

a[i][j++]=chl;

. if(countl==1) :

-~ al[k++]=atoi(&chl);
} .

else

o{ -
x=countl;
count1=0;
i+t »

J=0;

. rowl++;

} S

- while((ch2=fgetc(f2)) !=EOF)

{ R

- if(ch2!="n")

{ .

- count2++;
b[r][s++]=ch2;
if(count2=—=1)
{
}

3

else

t

b1[l++]=atoi(&ch2);

y=count2;
count2=0;
r++;

s=0;
row2z++;
) :
I

while(m<row1 && n<row?2)

if(al[m]==bl[n])

{ S

~ fprintf(f3,"%c",a[m]{0]);
fprintf(f3," ");
for(i=3;i<x;it++)

fprintf(f3,"%c" ,a[m][i]);



for(j=3;j<y;j++)
fprintf(£3;"%c",b[n][j1);

fprintf(B , ll\rlll)';

m+-+;

nt++;

}

if((al [m]<bl [n]) && al[m] 1= NULL && bl [n] 1= NULL)
- _
fprmtf(B "oHc a[m] [O]),
fprintf(f3," ™);
for(i=3;i<x;i++) .
fprintf(f3,"%c" a[m] [1])
for(G=3;j<y;j++) .
fprintf(f3,"%d",ch3);
fprintf(f3, "\n")
m++;

}
if((al[m]>b1[n]) && al[m] !=NULL && b1[n] I=NULL)
fprintf(£3,"%c",b[n][0]);

. fprintf(f3," "); .
- for(i=3;i<x;i++)
fprintf(f3,"%d",ch3);
for(=3;j<y;j++)
fprintf(f3,"%c",b[n][j]);
fprintf(f3, "\n")
n++;

if(rn>=row1 & & n<=row2)
( .
- fprintf(f3,"%c",b[n][0]);
fprintf(f3," ");//printf("\n%d",al[m]);

for(i=3;i<x;i++)
fprintf(f3,"%d" ch3)

for(j=3;j<y;j++)
fprintf(f3,"%c"; ;b[n][D);

fprintf(f3, "\n")

N+ '



if(m<=rowl && n>=row2)
{ ) .
fprintf(f3,"%c",a[m][0]);
fprintf(3," ");
for(i=3;i<x; 1++)
fprintf(f3,"%c" ,a[m][i]);
for(j=6;j<y;j++)
fprintf(f3,"%d",ch3);
fprintf(f3,"\n"); :
O mtt;
Y :
fclbse(fl);
fclose(f2);
fclose(f3);
gettime(&t2);
getch();
}
Void timediff(strut:t time t1, struct time t2)
{ : o -
-+ . struct time t3
t3.ti_hour=t2.ti hour tl.ti _hour;
t3.ti_min=t2.ti_min - t1.ti_min;
t3.ti_sec=1t2.ti_sec - tl.ti_sec;
't3.ti_hund=t2.ti_hund -t1.ti_hund,

~ printf("\n %02d:%02d:%02d:%02d", t3.ti. hour,t3.ti_min,t3.ti_sec,t3.ti_hund);

s 3k ok ok s ok o ok ok sk ok ok ok ok ok ok 3k ok 3K 5 ok ok ok ok ok ok ok ok 3k ok ok ok ok ok ok 3k ok sk ok skoofe ofe ok sfe ok s ok sk 3o e sie sk ok ok 3k sheoofe ok ofe s sk sk skeskok sk kiR

. Apriori

*************************************************#*******************

import java.io.*;

import java.util.*;

import java.awt.®; :
- import java.awt. event *;
import javax.swing.*;

publlc class Aprlorl extends JFrame lmplements ActionListener

{
pr1vate BufferedReader ﬁleInput

prlvate J TextArea textArea;



private JButton openButton, minSupport, runButton; .

protected class TtreeNode:
{ |
- protected int support = 0;

protected TtreeNode[] childRef = null;

protected TtreeNode(){}

‘ private TtreeNode(int sup)

{
support = sup;
h
}

private TtreeNode[] startTtreeRef;
private short[][] dataArray = null;

private static final double MIN_SUPPORT = 0.0;
private static final double MAX_SUPPORT = 100.0;

~ private boolean inputFormatOkFlag = true;
private boolean haveDataFlag = false;
private boolean hasSupportFlag = false;
private boolean nextLevelExists = true ;

private File fileName;

private int numRows = 0;

-private int numCols = 0;

private double support = 20.0;

private double minSupportRows = 1.0;

public Apriori(String s)
{

super(s);

Container container = getContentPane();
container.setBackground(Color.pink);
container.setLayout(new BorderLayout(5,5));

runButton = new JButton("Run");
runButton.addA ctionListener(this);
runButton.setEnabled(false);

openButton = new JButton("Open File");



openBufton.addActionListener(_this) ;

minSupport = new JButton("Add Min. Sup.");
minSupport.addActionListener(this);

. JPanel buttonPanel = new JPanel();
buttonPanel.setLayout(new GridLayout(1, 3)),

~ buttonPanel.add(openButton);
buttonPanel.add(minSupport);
buttonPanel.add(runButton);
container.add(buttonPanel, BorderLayout NORTH),

textArea = new JTextArea(40, 15)
textArea.setEditable(false);
. container.add(new J ScroIlPane(textArea),BorderLayout.CENTER) ;

. JPanel creditsPanel = new JPanel()
creditsPanel. setBackground(Color pink);
creditsPanel.setLayout(new GridLayout(4,1));
Label creditLabell = new Label("IIT Roorkee " + "Privacy Preserving
Association Rule Mining");
Label creditLabel2 = new Label(" ");
Label cred1tLabel3 = new Label("Created by Susheela (May "+ "2008)"),

cred1tsPanel-.add(credltL_abelI);
creditsPanel.add(creditLabel2);
creditsPanel.add(creditLabel3);
: contamer add(credltsPanel BorderLayout SOUTH);

publ_ic void actionPerformed(ActionEvent event)
_ if (event.getActionCommand().equals("Open File"))
getFileName();
if (event.getActionCommand().equals("Read File"))
readFile();
if (event.getActionCommand(). equals("Add Min. Sup "))
addSupport(); .
- if (event.getActionCommand(). equals("Run"))
aprlorlT()



/*7. . ; : . e ¥
/* ' APRIORI-T X
* ; D ¥/

- private void. ap"rioriTO
{ ' :
textArea. append("Aprlorl -T (Mmlmum support threshold =" + support +

"%)\n- A —--------\n" + "Generating K=1 large
ltemsets\n"); ' o

. minSupportRows = numRows*support/ 100 0
,_createTtreeTopLevel(), : :
generateLevel2(),
-createTtreeLevelN();
textArea.append("\n");
outputFrequentSets();

protected void ci‘eateTtreeTopLevel()
{ - | .
startTtreeRef = new TtreeNode[numCols+1];
for (int index=1;index<=numCols;index++)
startTtreeRef[index] = new TtreeNode();

createTtreeTopLevel2();

. pruneLevelN(startTtreeRéf ,1);

prétected void createTtreeTopLevélZ() . _
{

for (int inde‘x1=0;index1<dataArr‘ay.length;index1++) ‘

5 if (dataArrayfindex1] = mull)

{ for (int ;ndéx2=0;index2'<dafaAr_ray[index 1] .lén gth ;index2++)
' b \ st%tTt‘r_eeRe'f[d'ataArray“[i-ndexl]k[index2]v].sﬁupport++;



protected void cfeateTtreeLevelN()

{ .
int nextLevel=2;
while (nextLevelExists)
{ P
~ textArea.append("Generating K=" + nextLevel + " large itemsets\n"); -
addSupportToTtreeLevelN(nextLevel); -
pruneLevelN(startTtreeRef,nextLevel);
nextLevelExists=false;
generateLevelN(startTtreeRef, 1,nextLevel,null);
nextLevel++; :
.} '
}

protected void addSupportToTtr’eeLevelN(int level)

for. (int index=0;index<dataArray.length;index-++)
{ . .
~ if (dataArray[index] != null)
' addSupportToTtreeFindLevel(startTtreeRef, level,
dataArray[index].length, dataArray[index]);
¥
}

3

private void addSupportToTtreeFindLevel(TtreeNode[] linkRef; int level,
- int endIndex, short[] itemSet)
{ : :

, if(lével —1) .
A fér (int index1=0;index1 < endIndex;index1++)
© if (linkR‘et[itemSétLindexl]] 1= nuli)

{} l‘ihkRef[item Set[iﬁdexl']j].suppoft++';.



3

3

else
£ _ | A
for (int index=0;index<endIndex;index++)
¢ .
if (linkRef[itemSet[index]] = null)
if (hnkRef[xtemSet[mdex]] childRef = null)
addSupportToTtreeFmdLevel(l1nkRef[1temSet[mdex]].
: childRef; level -1,index 1temSet)
3
h
13
L — R S 7
AR | ~ PRUNING =~ Y

protected void ptuneLe{/elN(TtréeNodé [] linkRef, int levé])ﬂ
‘¢ ) - .
int size = linkRef.length;

if (level = 1)
{

for (mt mdexl 1; mdexl < size; mdex1++)

if (lmkRef[mdexl] 1= null)
{ .
~ if (linkRefindex1]. support < mmSupportRows)
: - linkReflindex1] = null;
h : S

y o
}

else
for (int index1=1;index1 < size;index1++)
¢ vt
if (linkRef[indexl] 1= null)

if (lmkRet[mdexl] childRef != null) :
. pruneLevelN(lmkRet[mdexl] chlldRef level- 1)



o

}
h
}
G . : : R VA
/* LEVEL GENERATION ' */
/% ' ' */
protected void generateLevel2()
 nextLevelExists=false;
- for (int index=2'index<sta11:TtreeRef.length'index++)
{
if (startTtreeRef[mdex] f— null) generateNextLevel(startTtreeRef
1ndex ;srealloc2(null,(short) index));
-} , ‘
}

protected void generateLevelN(TtreeNode[] linkRef, int level

1

3

int requ1redLevel short]] 1temSet)

int index1;
int localSize = linkRef.length;

if (level == requiredLevel)

{ ‘
for (index1=2;index 1<localSize;index1++)
[ , ' :
if (linkRef[index1] != null)
generateNextLevel(linkRef,index1, realloc2(itemSet,(short) index1));
} . .
else
{ -
for (index1=2;index1<localSize;index1++)
{ - | '
if (linkRef[index1] != null) -
{
generateLevelN(hnkRef[mdex1] childRef,level+1,
: ' requiredLevel,realloc2(itemSet, (short) 1ndexl))
3



X protected void generateNextLevel(TtreeNode[] parentRef, int endIndex,
- short[] itemSet)

parentRef[endIndex] childRef = new TtreeNode{endIndex];
short[] newltemSet; :
TtreeNode currentNode = parentRcf[endIndex],

- for (int index=1 ;index<endIndex;index++)
¢ | \
if (parentRef[index] = null)
{
newItemSet = realloc2(1temSet (short) mdex)
if (testCombmatlons(newItemSet))
{
currentNode. chlldRef[lndex] new TtreeNode()
nextLevelEx1sts—true -
-} - :

else

-3
3

currentNode.childRéf[index] = null;

protected boolean testCombinations(short[] currentltemSet)

{ -
if (currentltemSet.length < 3)

- . return(true);

short[] itemSetl = new short[2];
itemSet1[0] = currentltemSet[1];
itemSet1[1] = currentltemSet[0];

int size = currentltemSet.length-2;
short[] itemSet2 = removeFirstNelements(currentltemSet,2);

r_eturn(combinations(null;O,Z;itemS etl,itemSet2));



’ prlvate boolean combmatlons(short[] sofarSet int startIndex,
1r1t endIndex short[] itemSet1, short[] itemSet2)
‘ -if (endIndex > 1temSet2.l_ength)
{ S
short[] testSet = append(sofarSet,itemSet1);
. return(findItemSetInTtree(testSet));
} .
else
{
short]] tempSet
- for (int index=startIndex; 1ndex<endIndex 1ndex++)
{
tempSet rcalloc2(sofarSet itemSet2[index]);
if (!combinations(tempSet,index+1,endIndex+1,itemSet]1,
N itemSet2)) return(false); :
} | :
h
return(true); -

}

- ‘ — S

/* : T-TREE SEARCH METHODS _ */

- » , e ¥/

prlvate boolean ﬁndItemSetInTtree(short[] 1temSet)

1f (startTtreeRef[ltemSet[O]] 1= null)

{

-int IastIndex = itemSet.length-1; -
if (lastindex == 0) return(true);
else return(findItemSetInTtree2(itemSet, 1 lastIndex,
startTtreeRef[itemSet[0]].childRef));

-} ‘ '
else ‘

return(false);

prlvate boolean ﬁndItemSetInTtree2(short[] 1temSet int 1ndex
- int lastIndex, TtreeNode[] llnkRef)



if (IinkRef[itemSet[index]] 1= null)

if (index == lastIndex)
return(true);
else : ' : a ,
return(findltemSetInTtree2(itemSet,index+1,lastIndex,
linkRef[itemSet[index]].childRef));
else 4
return(false);
/* */
/* - GET MINIMUM SUPPORT VALUE . */
/* e i ‘ */
private void addSupport()
{ .
try
{

while (true)
A
String stNuml = JOptionPane. showInputDlalog( "Input minimum " +
o support value between "+ MIN_SUPPORT + " and " +
: MAX _SUPPORT);
if (stNum1.indexOf{(".") > O).
- support = Double.parseDouble(stNum1);
else .
suppoit = Integer.parselnt(stNum1);
if (support>—MIN SUPPORT && support<=MAX SUPPORT)
break; ‘
JOptionPane.showMessageDialog(null, -
"MINIMUM SUPPORT VALUE INPUT ERROR:\n" +
"input = " + support +
- "\nminimum support input must be a floating point\n" +
"number between " + MIN_SUPPORT + " and " +
-MAX SUPPORT);
3
textArea. append( "Minimum support ="+ support + ”%\n”),
hasSupportFlag—true
} :
catch(NumberFormatException e)

{



| hasSupportFlag=false;
runButton.setEnabled(false);

}

if (haveDataFlag && hasSupportFlag)
runButton.setEnabled(true);

o
. . - : */
e ' OPEN NAME ‘ */

/3 e . . v

| pfiyate void getFileNzime()_
{ ‘ .
JFileChooser fileChooser = new JFileChooser();

fileChooser.setFileSeléctionMode(JFileChooser. FILES _ONLY);
int result = fileChooser.showOpenDialog(this);

if (result JFlleChooser CANCEL _ OPTION) return;

fileName = .ﬁleChooser.getSelectedFlle();
if (checkFileName())

{
}

if (inputFormatOkFlag)
{ _

readFile() 3

if (checkOrdering())
{ .
if (haveDataFlag & & hasSupportFlag)
runButton.setEnabled(true);

outputDataArray(); : ,
textArea.append("Number of records = " + numRows +"\n");
countNumCols();
textArea. append("Number of columns = " + numCols + "\n");
¥
-else.
{

haveDataFlag false;
inputFormatOkFlag = true;
textArea.append("Error reading file: " + fileName + "\n\n");
‘ runButton setEnabled(false)
)



}.

}
private boolean checkFileName()
( _ _
' if (fileName.exists())
{ .
if (fileName.canRead())
- if (fileName.isFile(}))
return(true);
else

JOptionPane. showMessageD1alog(null "FILE ERROR: File i isa
directory™); .
}
else-

JOptlonPane showMessageDlang(null "FILERROR: Access denied");

)

else o : _
JOptionPane.showMessageDialog(null, "FILE ERROR: No such file!");

return(false); -

}

private void readFile()

{
try
|

1nputFormatOkF lag=true;

getNumberOfLines();

if (inputFormatOkFlag)

{ .

. dataArray = new shortfnumRows][];

inputDataSet();
haveDataFlag = true;

¥

else
¢ .
haveDataFlag = false;

textArea. append("Error reading file: " + fileName + "\n\n");
runButton.setEnabled(false); ,

}
3



o

-catch(IOException ioException)
{ ,
' JOptionPane.showMessageDialog(this,"Error reading File",
~ "Error 5: ",JOptionPane. ERROR_MESSAGE);
closeFile(); o
System.exit(1); .’
}

private void getNumb.erOfLines() thrdws IOException
¢ 4 | |
. int counter = 0;

openFile();

- String line = fileInput.readLine();.
while (line = null) '

{ .

checkLme(counteHl line);

StringTokenizer datalLine = new StrmgTokemzer(lme),

int numberOfTokens = dataLine.countTokens();

if (numberOfTokens == 0) break;

counter++;

line = fileInput.readLine();

}

numRows = counter;
closeFile();

¥
- private void checkLine(int counter, String str)

: fdr (int index=0;index <str.length();index++)
A
if ('Character Ileglt(str charAt(mdex)) && ’
!Character. 1sWh1tespace(str charAt(index)))
{

J OptlonPane showMessageDlalog(null "FILE INPUT ERROR:\ncharcater " +
"on line " + counter + " is not a digit or white space");
mputFormatOkF lag = false - '
_break; . - :
}
3
¥



public void inputDataSet() throws IOException
{ . o
int rowlndex=0; :
textArea. append("Readmg input ﬁle\n" + fileName + "\n")
openFlle() '

S‘tring line = fileInput.readLine();
_ while (line !=null) -~
{ E
StringTokenizer datal.ine = new StringTokenizer(line);
int numberOfTokens = datal.ine. countTokens()
if (numberOfTokens == 0) break;
short[] code = b1nConvers1on(dataL1ne numberOfTokens);
if (code != null) »
{
int codeLength = code. length
dataArray[rowIndex] = new short[codeLength]
for (int colIndex=0;colIndex<codeLength; colIndex++) '
dataArray[rowIndex][collndex] = code[collndex];
) §

else
dataArray[rowIndex]— null
rowIndex-++;
line = fileInput.readLine();

3
| closeFile();

private short[] binConversion(StringTokenizer dataLine, int numberOfTokens)

.
short number;

- short[] newltemSet = null, .
for (int. tokenCounter—O tokenCounter < numberOfTokens; tokenCounter++)

{

number = new Short(dataLme.nextToken()).shortValue() ;
-newltemSet = realloc1(newltemSet,number);

Yo _
return(newltemsSet);
pri\}ate boolean checkOrdering() -

{ .



boolean result = true;
for(lnt index=0; mdex<dataArray length 1ndex++)
{
if ('checkLmeOrdermg(mdex+1 dataArray[mdex]))
: result=false;
-}

return(result);
} ‘ |
private boolean checkLineOrdering(int lineNum, short[] itemSet)

{
for (int index=0;index<itemSet.length-1;index++)
{

if (1temSet[1ndex] >= 1temSet[1ndex+ 1 ])

{
JOptlonPane showMessageDlalog(null "FILE FORMAT ERROR: \n" +

"Attribute data in lme " 4+ lineNum + " not in numeric order"),
return(false)
} A .
} :

return(true);

SN

private void countNumcCols()
A
~ int maxAttribute=0; :
for(int index=0;index<dataArray.length;index++)
{ | .
int lastIndex = dataArray[index].length-1;
if (dataArray[mdex] [lastIndex] > maxAttrlbute)
maxAttribute = dataArray[mdex][lastIndex],
} ‘

numCols = maxAttribute;

3

/% - - : - e ]

e OUTPUT METHODS - */
Ve . Ji

. public void outpUtDataArray()
{ : B
for(int index=0;index<dataArray:length;index++)

{

outputltemSet(dataArray[index]);



- . textArea.append("\n");
DR o

protected void outputltemSet(short[] itemSet)

{

String itemSetStr = " {"
int countet = 0; '
. for (int mdex~—0 1ndex<1temSet length; 1ndex++)

{

if (counter 1=0) item'SetStr = itemSetStr + ",";
counter++;

1temSetStr = 1temSetStr + 1temSet[1ndex]

1 :
textArea.appe‘nd(iter_nSetStr +");

N

pubhc void outputFrequentSets()
A

_Int number = 1

~ textArea. append("FREQUENT (LARGE) ITEM SETS (Wlth support
counts)\n" +

» - u‘ ) ’ . N : __;_;\ni.u);
R short[] itemSetSOfar = new short[1]; :
for (int: mdex—l mdex <= numCols; mdex++)
{
if (startTtreeReﬂmdex] '—null)
o |
if (startTtreeReﬂmdex] .support >= minSupportRows)
4
textArea. append("[" + number+"] {" + index + "} ="+
startTtreeRefJindex]. support + "\n");
1temSetSofar[0] = (short) index;
number = outputFrequentSets(number+1 itemSetSofar,
index startTtreeRef[mdex] childRef);
}

o

} ‘ .
' textArea;appehd‘("\n");
-} S



private int outputFrequentSets(lnt number, short[] itemSetSofar, int size,
TtreeNode[] lmkRet)
{

if (linkRef = nuil)

' (number);. -

for (int index=1; index < size; index++)

{ ‘ |

if (linkRef[index] != null)

{ R

if (linkRef[index].support >= minSupportRows)

{ .
- short[] newltemSetSofar = realloc2(1temSetSofar (short) index);

textArea.append("[" + number + "] ");

outputltemSet(newltemSetSofar);

textArea.append(" = " + linkRef[index].support + "\n")

number = outputFrequentSets(number + 1,newltemSetSofar,

index lmkRef[mdex] chlldRef)
} A

}
}

return(number);

}

/% , */
Vel FILE HANDLING UTILITIES */
- S— e —- ' - ¥/

private void openFile()
{ -
. try
{
FileReader file = new FileReader(fileName);
fileInput = new BufferedReader(file); -
catch(JOException ioException)
{ ‘ _
JOptionPane.showMessageDialog(this,"Error Opening File",
. "Error 4: ",JOptionPane.ERROR - MESSAGE);
3

private void closeFile() |

{



if (fileInput 1= null)

i
try
fileInput.close();
} .
catch (JOException ioException)
JOptionPane.showMessageDialog(this,"Error Opening File",
"Error 4: ",JOptionPane. ERROR_MESSAGE);
} . ‘
¥
} .
fE ARM UTILITIES */.
/* . : : ok /

protected short[] realloc1(short[] oldIltemSet, short newElement)

{

if (oldTtemSet = null)
. short[] newltemSet = {newElement};
return(newltemSet); =~

}

int oldItemSetLength = oldItemSet.length;
short[] newltemSet = new short[oldItemSetLength+1];

int index; - I

for (index=0;index < oldItemSetLength;index++) -
‘newltemSet[index] = oldItemSet[index];

newltemSet[index] = newElement; -

return(newltemSet);

N protected éhort[] append(short[] itemSet1, shortf] itemSet2)
' if (itemSet1 == null)
return(copyltemSet(itemSet2));
else if (itemSet2 == null) -
- return(copyltemSet(itemSet1));



' _short[] newltemSet = new short[itemSet1.length+itemSet2.length];
int index1; - ‘ _ -
_ for(index1'=0;index1<itemSet1.1ength;indqx1++) _
A
¥

. for(int index2=0;ihdex2<itemSet2.lengfh;index2+—l;), -

}

return(newltemSet);

newltemSet[index1]=itemSet1 [index1];

newitemSet[indexl+index2]=itiemSet2 [index2]; |

} .
g pratected short[] realloc2(short[] oldItemSet, short newElement)

{ o

if (oldItemSet == null)

short[] newltemSet = {newElement};
return(newltemSet);

}

* _ int oldIitemSetLength = oldItemSet.length;
short[] newltemSet = new short[oldItemSetLength+1];

newlItemSet[0] = newElement;.
for (int index=0;index < oldItemSetLength;index++)
newltemSet[index+1] = oldItemSet[index];

return(newltemSet) ;

}A'.

pro_tected short[]‘removeFirstNelementé(short[] olditemSet, int n)
{ - ‘
if (oldItemSet.length == n) return(null);
else
' short[] newltemSet = new short[oldItemSet.length-n];
for (int'index=0 ;sindex<newltemSet.length;index++) . -

{



newitemSet[index] = oldItemSet[iﬁdex+n];

H
return(newltemSet);
¥
3
protected short[] copyltemSet(short[] itemSet)
{
‘ If (itemSet == null)
- return(null);
short[] newltemSet = new short[itemSet.length];
-for(int index=0;index<itemSet.length;index-++)
newltemSet[index] = itemSet[index];
-} : '
- return(newltemSet);
}
e - —. S—
/* . - MAIN.METHOD _ */
/% : — ; */

public static void inain(Stri_ng[] args) throws IOException
¢ - |

Apriori newFile = new Apriori("Apriori");
newFile.setDefaultCloseOperation(JFrame. EXIT_ON_CLOSE);
newFile.setSize(500,800);

-newFile.setVisible(true);
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