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ABSTRACT 

Association rule mining is a data mining technique used to find interesting 

associations among . a large set of data _items. For finding association rules from 

market-basket databases customer-buying habits between the different items (that 

customers place in their shopping basket) are analyzed. The discovery of such 

associations can help retailers develop market strategies by gaining insight into which 

items are frequently purchased together by customers. -Sometimes these association 

rule mining results disclose some new implicit information about individuals which is 

against privacy policies. 

In . vertically distributed databases, the data is vertically partitioned among various 

sites. These sites wish to work together- to find globally valid association rules 

without revealing individual transaction data. So some privacy-preserving method 

must be used, which protect the privacy of the distributed databases and at the same 

time gives accurate association rules. 

In this thesis, we propose an algorithm for finding association rules from vertically 

distributed Boolean databases which maintains a balance between the accuracy of the 

mining results and the privacy of the databases. For. preserving the privacy, database 

• is distorted by XORing the boolean data with a. boolean random variable, and then 

adding some fake transactions in the distorted database. All frequent itemsets are 

generated for Master's partition. Then intersection of the TIDs of frequent itemsets of 

Master and real TIDs of other partitions is done. If the intersection value is greater 

than or equal to some minimum support value (provided by Master Partition) only 

then the algorithm proceeds. Then the partitions are combined only for the TIDs of 

Master's partition. Then association rule mining is done by on the combined database 

and a set of the relative TIDs are made for each candidate itemset. Then again the 

intersection is performed by third party for each set of TIDs of frequent itemsets to 

check whether the. itemset is frequent in the real TIDs or not. If the third party sends 

`OK' then association rules are generated from the frequent.  itemsets. 
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CHAPTER 1 

INTRODUCTION 

1.1 	Introduction 
Generally, data mining (sometimes called knowledge discovery in data) is the process 

of analyzing data . from different perspectives . and summarizing it into useful 

information - information that can be used to increase revenue, cuts costs, or both. It 

allows users to analyze data from many different dimensions or angles, categorize it, 

and, summarize the relationships identified. Technically, data mining is the process of 

finding correlations or patterns. among dozens of fields in large relational databases. 

Data mining consists of five major elements: 

• . Extract, transform, and load transaction data onto the data warehouse system. 

• Store and manage the data in a multidimensional database system. 

• Provide data access to business analysts and IT professionals. 

• Analyze the data by application software. 

• Present the data ina useful format, such as a graph or table. 

Selection 	Preprocessing 	Transformation 

Data. 
	 H::H 

Database 
	

Target Data 	Preprocessed Data 	'Transformed Data 

Data 
Mining 

Interpretation/  
Evaluation 

Knowledge 	; Patterns. 

' 	------------ -----=------------- 

Fig 1.1 Data Mining is the core of Knowledge Discovery Process 



1.2 Motivation 

Security and privacy are .important issues for .any data collection because the data is 

shared and is intended to be used for making some decisions. Also, when we need 

data for customer profiling, user behavior understanding, etc., large amounts of 

sensitive and private data about individuals has to be gathered and stored. This makes 

it difficult to maintain the confidentiality of the data and prevent its illegal access. 

Also, sometimes data mining results disclose some new implicit information about 

individuals which is against privacy policies. As the information stored in databases 

is usually quite valuable, databases with all sorts of contents are regularly sold. 

Moreover, sometimes data can be withheld for the competitive advantage that can be 

attained by discovering the implicit knowledge. If data mining results in discovering 

the implicit knowledge then this information can be widely distributed and used 

without control [1]. 

For these reasons, privacy preserving data mining is essentially an emerging area of 

research in data mining, where data mining algorithms are developed for modifying 

the original data in some way, so that private data and private knowledge remains 

private even after the data mining process. The main consideration in privacy 

preserving data mining is the preservation of sensitive raw data and sensitive 

knowledge that can be mined from the database. For preserving the privacy, sensitive 

raw data like identifiers, names, addresses etc. must be modified or removed from the 

original database, so that the data recipient may not be able to get any personal details 

of the data provider. Also the sensitive knowledge that can be mined from the 

database must be omitted; as such information can equally compromise the data 

privacy [2]. 

In data mining of vertically partitioned databases, a site want to perform association 

rule mining from the data partitioned among various sites. But the sites may not want 

to disclose to each other their individual database for the purpose of preserving the 

confidentiality of their database. As each site holds some attributes of each 
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transaction, and the sites wish to work together to find globally valid association rules 

without revealing individual transaction data. So some .privacy-preserving method 

must be used, which protect the privacy of the partitioned databases and at the same 

time gives accurate association rules. 

A typical example in data mining of partitioned databases where privacy can " be of 
great importance is in the field of medical research. Consider the case where a 

number of different hospitals wish to jointly mine their patient data, for the purpose 

of medical research.: Privacy policy and law do not allow these hospitals from even 

pooling their data or revealing it to each other due to the confidentiality of patient 

records. Although hospitals are allowed to release data as long as the identifiers, such 

as name, address, and etc., are removed, it is not safe enough because the re-

identification attack can link different public databases to• relocate the original 

subjects. In order to pursue mutual gains and relieve the public from the privacy• 

concerns, we need privacy-preserving distributed data mining protocols, which allow 

distributed data mining to take place while protecting privacy of underlying 

distributed data. 

Another example is multiple competing supermarkets, each having an extra large set 

of data records of its customers' buying behaviors; want to conduct data mining on 

their joint data set for mutual benefit. Since these companies are competitors in the 

market, they do not want to disclose too much about their customers' information to 

each other, but they know the results obtained from this collaboration could bring 

them an advantage over other competitors. 

1.3 Problem Statement 

The aim of proposed research work is to design a technique for preserving the privacy 
of vertically partitioned database which is used for association rule mining. The 

following aspects are considered in the designing of the algorithm: 
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1. The proposed algorithm is designed for boolean data (specific example 

taken is market-basket data). 

2. The partitions are disjoint with respect to each other except TIDs which are 

common to all. 

1.4 Organization of the Thesis 

The report is divided into seven chapters including this introductory chapter. The rest 

of this thesis report is organized as follows: 

Chapter 2 provides a brief description of literature review on association rules mining 

from market basket data, on Apriori algorithm is used widely for discovering large 

frequent itemset from market-basket data and then the various data modification 

methods and finally various possible data layout alternatives of market basket data. 

Chapter 3 provides a detailed description of proposed algorithms for finding frequent 

itemsets and finding association rule between the frequent itemsets. 

Chapter 4 provides a brief description of the data structure and the implementation 

details of the proposed algorithm. 

Chapter 5 describes the results and discussion on the results. It also provides an 

analysis on the correctness of the proposed algorithm. 

Chapter 6 concludes the dissertation and gives some suggestions for future work. 
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CHAPTER 2 

Literature Review 

In this chapter, we discuss about Association rule mining, literature review on privacy •  

preserving association rule mining and various data layout alternatives for market-

basket databases. 

2.1 Association Rule Mining 

Association rule mining finds association or correlation relationships among a large 

set of data items. With massive amount of data continuously being collected and 

stored, many industries are becoming interested in mining association rules from their 

databases. The discovery of interesting association relationship among huge amount 

of business transaction records can help in many business decision making processes 

such as catalog design, cross marketing, and loss leader analysis [4]. 

A typical example of association rule mining is market basket analysis. This process 

analyzes customer-buying habits by finding association between the different items 

that customers place in their shopping basket. The discovery of such associations can 

help retailers develop market strategies by - gaining insight into which -items are 

frequently purchased together by customers. 

For instances, if customers are buying milk, how likely are they, to also buy bread 

(what kind of bread) on the same trip to the supermarket? Such information can lead 

to increase sales by helping retailers do selective marketing and plan their shelf space. 

For example, placing milk and bread with close proximity may further encourage the 

sales of items together within single visits to the store. 

If we think of the universe as the set of items available at the store, then each item has 

a boolean variable representing the presence or absence of that item. Each basket can 
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then be represented by a boolean vector of values assigned to these variables. The 

Boolean vectors can then be analyzed by buying patterns that reflect items that are 

frequently associated or purchased together. These patterns are represented in the 

form of association rules. For example, the information that customers who purchase 

computers also need to buy financial management software at the same time is•

represented in association rules as follows: 

Computer = financial _ management _ software [support = 2% confidence = 60%] 

Rule support and confidence are two measures of rule interestingness that were 

described as follows: 

Each discovered pattern should have a measure of certainty associated with it that 

assesses the validity or `trustworthiness' of the pattern. A certainty measure for 

association rules of the form `A = B', where A and B are sets of items, is 

confidence. Given a set of task relevant data tuples (or transactions in a transaction 

database) the confidence of ̀ A = B' is defined as follows: 

Confidence(A B) =  # _ tuples _ containing _ both  A _ and _ B 
_ tuples containing _ A 

The potential usefulness of a pattern is a. factor defining its interestingness. It can be 

estimated by a utility function, such as support. The support of an association pattern 

refers to the percentage of task-relevant data tuples for which the pattern is true. For 

association - rules of the form ̀ A = B', where A and B are sets of items, the support is 

defined as follows: 

Support(A =. B) —  # _ tuples _ containing _both _ A _and = B 
Total — number _ of _ tuples 

A support of 2% for association rule means that 2% of all •the transactions under 

analysis show that computer and financial, management software are purchased 

together. A confidence of 60% means that 60% of the customers who purchased a 
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computer also bought the software. Typically association rules are considered 
interesting if they satisfy both a minimum support threshold and a, -minimum 
confidence threshold. Such thresholds can be set by users or domain experts. 

Let r = { i1 , i2,....., m}  be set of items. Let D be a set, of database transactions where 

each transaction T is a set of items such that T c r. Each transaction is associated 

with an identifier, called TID. Let A be a set of items. - A transaction T is said to 

contain A if and only if A c T. An association rule is an implication of the form A 

' B where A c r ,  B c r , and A n B = 0 . The rule A = B holds in the transaction 

set D with support's, where s is the percentage of transactions of D that contains-

Au B (i.e. both A and B). This is taken- to be the probability (Au B ). The rule A = 
B has confidence c in the transaction set D, if c is the percentage of transactions in D 

containing A that also contain B. This is taken to be conditional probability, P (B/A) 

that is, 

Support (A B) = P (AV B) 
Confidence (A B) = P (B/A) 

Rules that satisfy both a minimum support threshold (min sup) and a minimum 

confidence threshold (min conf) are called strong. By convention, we write support 

and confidence values so as to occur between 0% to 100%, rather than 0 to 1.0. 

A set of items is referred to as an itemset. An itemset that contains k-items is a k-

itemset. The set { computer, financial_managementsoftware} is a 2-itemset. The 

occurrence frequency of an itemset is the number of transactions that contains that 

itemset. This is also known simply as the frequency, support count or count of the 

itemset. An itemset satisfies minimum support if the occurrence of frequency of the 

itemset is greater than or equal to the product of min_sup and the total number of 

transactions in D. The number of .transactions required. for the itemset to satisfy 

minimum support is therefore equal to the minimum support count. If an itemset 

Vl 



satisfies minimum support, then it is a frequent itemset. The set of frequent k-itemsets 
is commonly denoted by LK. 

Association rule mining is a two step process. The two steps are: 

1. Find all frequent itemsets: In this step, all those itemsets which occur at least as 
frequently as a pre-defined minimum support count (considered as frequent 

itemsets) are calculated. 

2. Generate strong association rules from the frequent itemsets: Those rules 

which satisfy minimum support and ,minimum confidence (considered as strong 

association rules) are generated. 

The overall performance of mining association rules is determined by the first step. 

2.2 Data Modification Methods: 

To preserve the privacy of the data, the real data is modified by using different 

methods of modification discussed as follows: 	I  

(i) Perturbation or Distortion: In perturbation, privacy is preserved by replacing 

the original value by a new value or altered by adding some noise in it. 

(ii) Merging: In merging, privacy is preserved by combining several values into a 

common category. 

(iii) Swapping: In swapping, privacy is preserved by interchanging the values of 

the records each other. 

Another way of categorizing data modification techniques is based on heuristics, 

cryptography and reconstruction. 

A. Heuristic-Based Techniques: In heuristic-based techniques only some of the 

selected values of the data are modified instead of all available values. For modifying 

the selected values, we can use various methods of data modification like 

perturbation, merging, swapping, etc. 
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B. Cryptography-Based Techniques: In cryptography-based techniques, first the data 
entered by the people is encrypted (changed) by using different cryptography 

algorithms such that at the end of the computation, no one knows anything except his 

own input and results. Depending on the type of application, many cryptography 
algorithms like. RSA algorithm, ElGamal Encryption scheme, Triple DES, etc. are 

used for encrypting the data. For preservation of privacy of the data in cryptography-

based techniques, the encrypted data is either kept by a server and the miner queries 

the server for mining on the data or shared by several miners, who can only jointly. 

mine it. The aim is to protect the private data of the people as much as possible. 

C. Reconstruction-Based Techniques: In reconstruction-based techniques, the values 

in individual records . are randomized and then the randomized values are 

reconstructed and then the new reconstructed values are disclosed for data mining. 

In the proposed algorithm, we used the distortion method for modifying the real 

values of the vertically partitioned databases discussed by S.J. Rizvi and J.R. Haritsa 

in [9]. 

2.3 Apriori Algorithm 

The common algorithm used to compute large itemset is the Apriori algorithm. The 

Apriori algorithm has become a data mining classic and most data mining algorithms 

are based upon it. The first pass of the algorithm simply counts item occurrences to 

determine the large- 1-items. A subsequent pass, say pass k, consists of two phases. 

First, the large itemset Lk_1 found in the (k-1)th  pass are used to generate the candidate 

itemsets Ck, using the Apriorigen function. Then, the database is scanned and the 

support of the candidates in Ck is counted. For fast counting, we need to efficiently 

determine the candidates in Ck that are contained in a given transaction. The apriori -

algorithm works as follows [5]: 
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1. L1 = {large 1-itemsets}; 

2. for (k=2;Lk_l~ ❑;k++) dobegin 
3. Ck = apriori-gen(Lk I ) //New candidates 
4. forall transactions t in database do begin 
5. CI = subset(Ck, -t) //Candidates contained in t 
6. forall candidates. c E Ct do begin 

~ 7. 	 c.count++; 
8: 	 End 

9. Lk = {c E Ck J c.count > minsup} 

10. End 

11. Answer = UksLk 

Apriori-gen function: 

The most important step of apriori algorithm is step 3 in the prune step in apriori-gen 

function, which makes sure that all subsets of a candidate itemset are frequent. The 

basic idea is that any subset of a large iternset must be large. Therefore, the candidate 

itemsets having k items can be generated by joining large itemsets having, k-1 items, 

and deleting those that contain any subset that is not large. The apriori-gen function 
takes as argument Lk I , the set - of all large (k-1)-itemsets. It returns a superset of the 

- set of all large k-itemsets.'The function works as follows. First, the join step joins Lk_i 
with Lk-1 [5]: 

Join Step: 

1. insert into Ck 

2. select p. item,, p. item2, ... ,p. itemk_l, q. itemk_I 

-3.- from Lk-Ip, Lk-Iq 
4. where p. item, = q. item,, .. P. itemk Z = q. itemk-Z, P. item1c_I < q. item,c-l; 
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Prune Step: The prune step deletes all itemsets c E Ck  such that some (k-1) -subset of 
c is not in Lk_J: 

1. forall itemsets.  c E Ck do 
2. forall (k - 1)-subsets s of c do 
3. if (s 	L,_ j ) then 

- 4. 	 delete c from Ck 

5. end 

6. end 

7. end 

Subset function: 
Candidate itemsets Ck are stored in a hash tree. A node of the hash tree either contains. 

a list of itemsets (a leaf node) or a hash table (an interior node). In an interior node, 

each bucket of the hash table points to. another node. The root of the hash tree is 

defined to be at depth 1. An interior node at depth d points to nodes at depth d+l. 

Itemsets are stored in the leaves. When we add an itemset c, we start from the root 

and go down the tree until we reach a leaf. At an interior node at depth d, decide 

which branch to follow by applying a hash function to the dt' item of the itemset. All 

nodes are initially created as leaf nodes. When the number of itemsets in a leaf node 

exceeds a specified threshold, the leaf node is converted to an interior node. 

Starting from the root node, the subset function finds all the candidates contained in a 

transaction t as follows: If we are at a leaf, find 'which of the itemsets in the leaf are 

contained in t and add references to them to the answer set. If we are at an interior 

node and we have reached it by hashing the item i, we hash on each item that comes 

after i in t and recursively applies this procedure to the node in the corresponding 

bucket. For the root node, we hash on every item in t. 

To see- why the subset function returns the desired set of references, consider what 

happens at the root node. For any itemset c contained in the transaction t, the first 



item of c must be in t. At the root, by hashing on every item in t, we assume that we 

only ignore itemsets that starts with an item not in t.; Similar arguments are applied at 

lower depths. The only additional factor is that, since the items in any itemset are 

ordered, if we reach the current node by hashing the item i, we only need to consider 
the items in t that occur after i. 

Agrawal and Srikant [6] have proposed the apriori algorithm for discovering all 

significant association rules between items in a large (not distributed) database of 

transactions. However, this work does not address privacy concerns. 

Later in [7], the authors propose a procedure in which some or all the numerical 

attributes are perturbed by a 'randomized value distortion so that both the original 

values and their distributions are changed. The proposed procedure then performs a 

reconstruction of the original distribution. This reconstruction does not reveal the• 

original values of the data, and yet allows the learning of decision trees. Another 

paper [8] shows a reconstruction method, which does not entail information loss with 

respect to the original distribution. 

Other randomization techniques were proposed in order to provide association rules 

mining without revealing sensitive information about individuals [9, 2]. These 

techniques are based on probabilistic distortion of user data in the way that can 

provide a high degree of privacy and retain a high level of accuracy of the result. For 

example, in [9], the value of the attribute is retained with probability p and flipped 

with probability 1- p.. The presented experimental results showed that distortion 

probability of p T 0.1 is ideally suited to provide both privacy and 'good mining 

results. . But this work is also for central database of transactions. 

In [10] the existing data mining algorithms (for a centralized database) are used for 

mining association rules,  from the database which is partitioned among several sites. 

The algorithm is applied for each site independently and combines the results, but this 
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method will often fail to achieve a globally valid result. Because this can cause a 

. disparity between local and global results ([1 1]) include: 

• Values for a single entity may be split across sources. Data mining at 
individual sites will be unable to detect cross-site correlations. 

• The same item may be duplicated at different sites, and will be over-weighted 
in the results. 

• Data at a single site is likely to be from a homogeneous population, hiding 

geographic or demographic distinctions between that population and others. 

To overcome the above problems, algorithms were proposed for partitioning data 

between sites. The algorithms that were proposed for horizontally partitioned data 

(i.e., each site contains basically the same schema), include Cheung et al. [12], 

Kantarcioglu and Clifton [13] and Kantarcioglu and Vaidya [14]. Some of them use 

cryptographic techniquesto minimize the amount of disclosed information [13] or a 

special architecture [14]. This architecture contains sites that sequentially add noise to 

the original data, compute the answer with noise and remove the noise from the 

answer. All these methods work with the assumption that no collusion occurs 

between the sites and the sites follow the protocol precisely. 

There has been much work addressing Secure Multiparty Computation. It was first 

investigated by .Yao [15], and later, after Goldriech proved existence of a secure 

computation for any feasible function [16], some algorithms based on his Circuit 

Evaluation Protocol have been proposed. But the general method, which is based on 

Boolean circuits, is inefficient for large inputs. Du and Atallah [17] proposed a more 

efficient technique for some cases of the multi-party computation problem. One of 

them is the Two-Party Scalar Product Protocol. In [18], an algorithm is presented for 

association rule mining which requires the intensive use of secure_ computation in 

order to preserve privacy. 

The main work on mining association rules from vertically, partitioned data across 

several databases, where. the . columns in the table are . at different sites is done by 
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Vaidya and Clifton in [11] and by and by -Boris Rozenberg and Ehud Gudes' in [19]. 

In [11], Vaidya and Clifton presented some successful solutions for the database 
vertically partitioned-  among two sites. But .these algorithms have the potential for 
inferring private information based on the results in certain cases. Then in [19], Boris 

Rozenberg and Ehud Gudes presented another solution for preserving privacy. But 
their algorithm also has the potential for inferring private information if the miner has,  
some external knowledge about the customers. This external knowledge problem was 

one of the main motivations for our algorithms. 

2.4 Data Layout Alternatives 

Conceptually, a market-basket database is a two-dimensional matrix where the rows 

represent individual customer purchase transactions and the columns represent the 

items on sale. This matrix can be implemented in the following four different ways 

[4], which are pictorially shown in fig. 2.1 

Horizontal Item-vector (HIV): The database is organized- as a set of rows with each 

row storing a transaction identifier (TID) and a bit-vector of .1's and 0's to represent 

for each of the items on sale, its presence or absence, respectively in the transaction 

(Figure a). 

Horizontal Item-list (HIL): This similar to HIV, except that each row stores an 

ordered list of item-identifiers (IID), representing only the items actually purchased in 

the transaction (Figure b). 

Vertically Tid-vector (VTV): The database is organized as a• .set of columns with 

each column storing an .item-identifier (IID) and a bit vector of I's and 0's to 

represent the presence or absence, respectively, of the item in the set of customer 

transactions (Figure c). Note that a VTV database occupies exactly the same space as 
an HIV representation. 
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Vertical Tid-list (VTL): This is similar to VTV, except that each column stores an 

ordered list of only the TIDs of the transactions in which the item was purchased 

(Figure d). Note that a VTL database occupies exactly the same space as an HIL 
representation. 
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Fig. 2.1 Data Layout Alternatives of Market-Basket Data 

In our research work, we worked on VTV data layout. 



Merits of vertical mining: 
The vertical layout of market-basket database appears to be a natural choice for 

achieving association rule mining's objective of discovering correlated items. More 

specifically, it has the following major advantages over the horizontal layout: 

Firstly, computing. the supports of the itemsets is simpler and faster with the vertical 
layout since it involves only the intersections of TID-lists. or TID-vectors, operations 

that are well supported by current database. systems. In contrast, complex hash-tree. 

data structures and functions are required to perform the same function for horizontal 

layouts (e.g. [3]). 

Secondly, with the vertical layout, there is an automatic reduction of the database 

before each scan in that only those itemsets that are relevant to the following scan of 

the mining process are accessed from disk. In the horizontal layout, however, 

extraneous information that happens to be part of a row in which useful information is 

present is also transferred from disk to memory. This is because database reductions 

are' comparatively hard to implement in the horizontal layout. Further, even if 

reductions were possible, the extraneous information can be removed only in the scan 

following the one in.  which its irrelevance . is discovered. Therefore, there is always a 

reduction lag of at least one scan in the horizontal layout. 

Thirdly, bit-vector formats, due to their sequences of 0's and 1's, offer scope for 

compression. From this perspective also, the vertical layout is preferred since a VTV 

format results in higher compression ratios than the equivalent HIV format. This is 

because compression techniques typically perform better with large datasets since 

there is greater opportunity for identifying repeating patterns. — in a VTV, the length 

of the dataset is -proportional to the number of customer transactions, whereas for 

HIV, it is limited to the number of items in the database, usually a fixed quantity that 

is small relative to the number of tuples in the database. 
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Finally, the vertical layout permits asynchronous computation of the frequent 

itemsets. For example, given a database with items A, B, C, once the supports of the 

items A and B are known, counting the support of their combination AB can 

commerce even if item C has not yet been fully counted. This is in marked contrast to 

the horizontal approach where the counting of all itemsets has to proceed 
synchronously- with the scan of the database. A careful algorithmic design is required 

to ensure that the above mentioned inherent advantages of the vertical layout are 

translated into tangible performance benefits. 
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CHAPTER 3 

	

Proposed Work b° 4 tcc 	se  nc 	dcx n  ►u 	h r h 

on 	a 'on 
In this chapter we will discuss the proposed algorithm for preserving the privacy of 

the vertically partitioned .databases when they are used for discovering frequent 

itemsets. Our work is an extension of the .work done by B. Rozenberg at al. in [19]. 

3.1  

In our proposed algorithm, we assume partition i of vertically partitioned database as 

Master partition, who wants to find out the frequent itemsets. Other partitions of the 

database only provide their partition data for mining but will not do any global 

computations &. Third Party performs intersection of the TIDs. This third party is not 

trusted with the database, but it is trusted with computations). 

We assume that in all partitions of the database, the domain of the TIDs is. the same 

and its size-  is equal to n - some number that depends on the area of the business. The 

number of transactions in each partition is up to n and the TIDs range from I to n. 

When fake transactions are introduced, they use "unoccupied" TIDs. When 

information between the parties is shared, then only information in which some 

attributes are real (in one of the databases) is of use. That is, a fake transaction whose 

corresponding TID in the other database is empty, is not considered at all. Also when 

each partition computes large itemsets it does not know whether the attributes 

corresponding to his real transaction, are real or not. 

The flow chart for the proposed approach for privacy preserving association rule 

mining is drawn in Figure 3.1.. The flowchart is showing all 4 phases of the proposed 

algorithm which are described just after the figure. 
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3.2_ Distortion Procedure: 
There are many data modification methods for distorting the data as discussed in 
chapter 2. We, are. using the following data distortion method for .modifying or 

distorting the values of the vertically partitioned database described by S.J. Rizvi. at 
al. in [91: 

n 

A customer tuple can be considered to be a random vector X = {X; }, such that X. 

0 or 1. We generate the distorted vector from this customer tuple by computing Y = 

distort(X) where Y, = X ;  XOR ri, and - ri, is (100 - i ), r is a random variable with 

density function f (r) = bernoulli(p) (0 < p <_ 1). That is, ;;, takes a value 1 with 

probability p and 0 with probability 1 - p. 

After distorting the database with the above described method, . add some fake 

transactions (by simply putting 1 randomly in non existing transactions) in the 

distorted database to get the final distorted database. 

•3 Execution Procedure of the proposed algorithm: 

The execution procedure of the proposed algorithm is as follows: 

1-. Firstly phase 1 ( can be called as `Mining Check phase') is executed, in which 

the Master (ith partition in vertically distributed database) finds out all 

frequent itemsets in its own partition-  for some minimum support value by 

using apr-iori algorithm discussed in ' chapter 2. - After finding all frequent 

itemsets Master partition sends the TIDs of the frequent itemsets and the other 

partitions send their real TIDs to the Third Party. Then the Third Party find 

out the intersection of the TID's sent to him by using the. `Third Party's 

execution process'. If the intersection is greater than or equal to the minimum 

support value, the Third Party sends "Ok" (which means mining is possible) 

to all partitions, otherwise sends "NotOk" (which means mining is not 
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possible) to all partitions. The algorithm proceeds only if all partitions get 
"Ok" from the Third Party. 

2. If all partitions •• gets "Ok" from the Third Party then phase 2 is executed. In 

this phase, all partitions distort their own data by using the distortion method 
described above and by adding fake transactions in the distorted data and send 

it to Master partition. 

3. Then phase 3 is executed in which Master partition makes the global database 

by joining the Item TID's values of all, partitions only for the real TIDs of its 

own partition. After making a global database, the Master partition finds all 

frequent itemsets from the global. database. Then the Master sends the 

transaction IDs of the frequent itemset to the' Third Party with some minimum 

support value to check that the number of real transactions present in a 

frequent itemset. The Third Party executes the `Third Party's execution 

process' to -calculate the size *of the intersection of the received set with the set 

of all real ID's of all partitions of the database other than master partition, if 

this intersection value is greater than equal to the minimum support value, it 

sends an "OK" to the Master, which means that the itemset is also frequent in 

the all real partitions of the database. 

-4. Then phase 4 is executed, in which association rules are generated for all 

those frequent itemsets for which the third party sends `OK'. 

In . this algorithm there is no communication with partitions other than Master 

partition after initial submission of their partition data. and since the Third Party just 

answers "Ok" or "Not Ok" to the Master partition, the master-partition knows only 

that some minimum number of the transaction IDs '(equal to the minimum threshold 

value) are common in both databases. Also, the- Third .Party does not have knowledge 

of the partition's data, so its role and the trust required is very limited. 
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S4 Phases of the proposed algorithm: 

1. Phase 1: This phase is `Mining check' phase. The following steps are included in 
this phase: 

1. Using apriori-gen function, - generate all frequent itemsets from Master's 

partition. 

2. Send all TIDs of Master partition present in frequent itemsets and all the real 

TIDs of all partitions other than Master partition to the Third party. 

3. Receive the response from the Third party whether mining is possible or not 

(See third.party execution phase). If the mining is possible then continue. 

2. Phase 2: This phase is `Data Preprocessing phase. The following steps. are 

included in this phase: 

1. Distort all vertical partitions of the database (by using the distortion 

procedure) and then add some fake transactions in it. 

2. Send all distorted partitions to the Master. 

3. Phase 3: This 'phase is `Master's Execution' phase'. The following steps are 

included in this phase: 

1. Build the global database (GDB) with true TIDs from its own partition and 

attributes from its own and other partitions of the database. 

2. Using apriori-gen function, generate all frequent itemsets from GDB. 

3. For each frequent itemset: 

i. Build the'set of relative TIDs 
ii. Check with the third party whether the itemset is frequent. 

Third party execution phase: The `Third party execution phase'. used in the above 3. 

phases for calculating the intersection of TIDs includes the following the steps: 

0 
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1. Receive TIDs from the two parties (MTID, STID) 

2: If(IMTID f1 STIDI > minsup) 

send "OK" 

while (Master not finished) do 
receive set of TID's from Master 

if [lMTID fl STID 1 > minsup) then 

send "OK" to the Master 

else 

send "NotOK" to the Master 

end while 

else // mining is not possible! 

Send "NotOK" 

Phase 4: This phase is `Association rule generation. phase'. In this phase firstly, the 

value of c (the minimal confidence value) is taken for by the Master partition. Then 

the following Master's execution process and Third party execution process is 

executed for calculating the confidence: 

a) Master's Execution process: 

1. Send c to the third party. 
2. For each frequent itemset Z, generate all possible rules X Y such that Z 

XY according to the Master's real transactions. 

3. For each rule from step 2 do: 

Generate two sets of ids: TIDx (IDs of all real transaction that -contain 

X) and TIDxy (IDs of all real transaction that contain XY). 
Send TIDx and TIDxy to the 311  party. 

'Receive from the 31  party "OK" or "NOT". 

4. Send to 3`.d  party "FINISH". 
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b) Third party execution process:: 

1. Receive c from the Master. 

2. While not "FINISH" do: 
Receive two sets from the Master (TIDx and. TIDxy). 

Calculate answer = I TIDxy n STID ~ c I , where STID is the set of all 
TIDx n STID 

real TIDs of the other partitions. 
Send answer to the Master. 

Now we will explain the proposed algorithm with the help of sample database 
(vertically partitioned in two sites). Let the Ist (Master's) and 2' two vertical 

partitions of the databases, are: 
Table 3.1 1St (Master's) Partition's Real Data 

Transaction IDs Item IDs 

A B C D 

1 1- 1. 0 0 

2 1. 1 0 0 

6 1 1 1 0 

7 1 1 0 1 

9 1 1 0 1 

-Table 3.2 2nd Partition's Real Data 

Transaction IDs Item IDs 

E F G H I J 

1 1 1 1 0 0 0. 

2 1 1 1 1 1 0 

4 0 1 0 1 0 1 

6 1 l 1' 0 1 1 

7 1 1 1 0 0 0 

10 0 1 0 1 0 1 
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Let the value of , minimum support is 4. Master partition will find the frequent. 

•itemsets in its partition.{A, B} is frequent itemset in Master's partition. The 'TIDs in 

which {A, B} is present are {1, 2, 6, 7, 9}. So, both partitions'sends TIDs {1, 2, 6, 7, 

9} and { 1, 2, 4, 6, 7, 10} to Third Party: Now Third Party calculates the size of the 

intersection of the two sets (({1, 2, 6, 7, 9} (1 {1, 2, 4, 6, 7, 10}(= 4) and sends `OK' 

to each partition which means that mining is possible (because the size of intersection 

> minimal support). After this step, each side distorts the database-  by using the 

distortion method described above and then add some .fake . transactions in their 

partitions and then 2"d  partition sends the resulting distorted database to the 1st 

(Master partition) partition. 

Table 3.3 1st  Partition's (Master's) Distorted Database with r = 80%) without 

fake transactions 

Transaction IDs Item IDs` 

A B C D 

1 1 1 0 0 

2 1 1 0 1 

6 1 1 1 0 

7 1 1 1 1 

9 	. 1 1 0 1 

Table 3.4 2°d  Partition's Distorted Database (with r = 80%) without fake 

transactions 

Transaction IDs Item IDs 

E F G H I J 

1 1 1 1 0 0 1 

2 1 1 1 1 0 0 

4 0 1 0:1. 01 

6 1 1 0 1 1 1 

7 1 1 1 0 0 0 

10 0. 1 0 1 0 1 
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Table.3.5 I't  Partition's (Master's) Distorted Database with fake transactions 

Transaction IDs Item IDs 

A B C D 

1 1 1 0 0 

2 1 .1 , 0 1 

3 0 .1 1 1 

4 0 1 1 0 

5 1 0 0 1 

6 1.1 10 

7 1 1 1 1 

8 .  1 0 0 1 

9 1 1 0 1 

10 1 0 1 0. 

Table 3.6 2"d  Partition's Distorted Database with fake transactions 

Transaction IDs Item IDs 

E F G H I J 

1 1 1 1 0 0 1 

2 .1 1.1 1 0 0 

3 1 1 1 1 0 1 

4 0 1 0 10 1 

-5 1._U 1 1 1 0. 

6 1 1 0 1 1 1 

7 1 1 1 0 0. 0 

8 0 0 0 1 1 0 

9 1 1 1 0 0 0 

10 0 1 0 1 0 1 

Table 3.7 1St  Partition's (Master's) Global Database 
 -- 	- 	- 
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Table 3.8 2"d  Partition's Global Database 
Transaction IDs Item IDs 

A B C D E F G H I J 
1 1 1 0 0-  1 1.1 0- 0 0 

• 2 1 1 0 1 1 1 1.1 10 

4 0 1 `1 0 0 1 0 1 0 1 

6 1 1 1. 0 1 1 1 0 1 1 

7' 1 1- 1 1 1 1 1 0 0 0. 

10 1 0 1 0 0 1 0 1 0 1 

Now Master generates the frequent itemsets from its global database by using apriori-

generation function and.he found that itemset I = {A, B, E, F, G} is. frequent in the 

global database. Then the Master wants to know if the itemset I = {A, B, E, F, G} that 

is frequent in the above global Master's database is frequent in the 2nd Partition. The 

Master sends the transaction IDs that contains.  the frequent itemset to the Third Party 

(1, 2, 6, .7, 9}); The Third Party calculates the size of the. intersection of the received 

set with the set of all real TID's of 2"a  partition, and since the`size of the result (1, 2, 

6, 7) is greater than or equal to 4, it sends an "Ok" to the Master. 
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CHAPTER 4 

IMPLEMENTATION DETAILS 

The implementation of the proposed Algorithm is done in C++ and Java. The .. 

implementation details of the'proposed algorithm are listed as follows: 

4 . I DATABASE 
The vertical partition database used in the thesis is the database used in [22]. The 

transaction database is taken as 'an m x n matrix. Transaction 1 appears in row one. 
Columns are separated by a space and represent items. A 1 indicates that item is 

present in the transaction and a 0 indicates it is not. 

DISTORT.0 
This program is used to distort the Boolean Market-basket database. The program 

takes input from a -file which contains. the boolean database. A boolean random 

number is generated by using rand () function. The amount of occurrence of 1-and 0 

for this - random number can be controlled by the user. Then this random number is 

XORed with the values in the database for distorting the database values. Then the 

distorted database is -stored in other file. 

4e3 INTERSECT.0 
This program calculates the number of common transaction IDs from the TIDs 

entered in it. The some value for minimum support is also provided. If the number of 

common transactions is greater than or.  equal to the minimum support value, the 

program returns "OK" to the database owner, else return "NotOK". 

X14 UNION.0 

This _program is used to merge different partitions of the database on the basis of the 

TIDs provided. First, the transactions IDs (TIDs) of the Master's partitions are 

matched with the TIDs of the other partitions of the database. If a TID is common in 



all partitions of the database then the values are combined. If the. TID is present only 

in Master's database then the item values for that TID are taken as they are and `0' is 
entered for items of the other partitions.. 

4 •~ APRIORI.JAVA 
This program creates a user interface, which contains three buttons — Open File, Add 

Support, and Run. `Open File' button is used to open the database file. `Add Support' 

button is used to add the minimum support for finding association rules. `Run' button 

is used to run the apriori algorithm. 

public Apriori (String s) 

This constructor is used to create user interface. 

public void. actionPerformed(ActionEvent ,event) 

This function is used to perform the —open file, read file, add minimum support and 

run actions. 

.protected void createTtreeTopLevel 0 
This function generates top level (i.e. I" level) of the T-tree. 

protected void createTtreeLevelNO 

This function performs the process of determining the remaining levels in the T-tree 

(other than the top level), level by level in an "Apriori" manner by adding support, 

then performing pruning and generate loop until there are no more levels to generate. 

protected void addSupportToTtreeLevelN(int level) 

This function performs the_ process of adding support to a given level in the T-tree 

(other than the top level). 

private void addSupportToTtreeFindLevel (TtreeNode[] linihEef, int level, int 
endIndex, short[] itemSet) 
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This function operates in a recursive manner to first find the appropriate level in the 

T-tree before processing the required level (when found). linkRef is the reference to 

the current sub-branch of T-tree (start at _top of tree), level is the level marker, set to 
the required level at the -start and then decremented by 1 on each recursion-. endIndex 
is the length of current level in a sub-branch of the T-tree. itemSet is the current 
itemset under consideration. 

protected void pruneLevelN(TtreeNode [] linkRef, int level) 
This function performs the pruning of the given level in the T-tree. Pruning carried 

out according to value of minSupport field. linkRef is the reference to the current 

sub-branch of T-tree (start at top of tree), level is the level marker, set-to the required 

level at the start and then decremented by 1 on each recursion. 

protected void generateLevel2Q . 

This function generates level 2 of the T-tree. The general `generateLevelN' method 

assumes we have to first find the right level in the T-tree, that is not necessary in this 

case of level 2. 

protected void generateLevelN (TtreeNode[] linkRef, int level, int requiredLevel, 
short[] itemSet) 
This function performs the process of generating remaining levels in the T-tree (other 

than top and 2nd levels) by proceeding in a recursive manner level by level until the 

required level is reached. Example, if we have a T-tree of the form: 

(A) ----- (B) -----(C) 

(A) 	(A) ----- (B) 
Where all nodes are supported and we wish to add the third level we would walk the 

tree and attempt to add new nodes to every level 2 node found. Having found the 

correct level we step through starting from B (we cannot add a node to A), so in this 

case there is only one node from which a level 3 node may be attached. linkRef is the 

reference to the current sub-branch of T-tree (start at top of tree). level is the level 
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• marker, set to 1 at the start of the recursion and incremented by I on each repetition. 
requiredLevel is the required level. itemSet is the current itemset under consideration. 

protected void generateNextLevel (TtreeNode[] parentRef, int endIndex, 
short[] itemSet) 
This function generates a new level in the T-tree from a given "parent" node. 

Example 1, given the following: 

----- (A) 	(B) -----  (C) 

(A) 	-(A) ----- (B) 

where we wish 'to add a -  level 3 node to node (B), i.e. the node {A}, we would, 

proceed as follows: 

Generate a new level in the T-tree attached to node (B) of length one less than the 

numeric equivalent of B i.e. 2-1=1. Loop through' parent level from (A) to node 

immediately before (B): For each supported parent node create an itemset label by 

combing the index of the parent node (e.g. A) with the complete itemset label for B --

- { C, B } (note reverse order), thus for parent node (B) we would get a new level in 

the T-tree with one node in it --- {C, B, A} represented as A. For this node to be a 

candidate large item set its size-1 subsets must be supported, there are three of these 

in this example {C,A}, {C,B} and {B,A}. We know that the first'two are supported -

because they are in the current branch, but {B, A} is in another branch. So we must 

generate this set and test it. More generally we must. test all cardinality-1 subsets, 

which do not include the first element. This is done using the method 

testCombinations. 

Example 2, given: 
(A) -----(D) 	

.• (A) ----- (B) -----(C) 	 . 

(A) ----- (B) 
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where we wish to add a level 4 node (A). to (B) this would represent the complete 

label {D, C, B, A}, the N-1 subsets will then be {{D, C, B}, {D, C, A}, {D, B, A} 

and {C, B, A}}. We know the first' two are supported because they are contained in 

the current sub-branch of the T-tree, {D, B, A} and {C, B, A} are not. parentRef is 

the reference to the level in the sub-branch of the T-tree under consideration. 
endIndex is the index of the current node under consideration. itemSet is the complete 

label represented by the current node (required to generate further itemsets to be X-

checked). 

protected boolean testCombinations (short[] currentIteinSet) 
This function .performs the process of testing whether the N-1 sized sub-sets of a 

newly created T-tree node are supported. elsewhere in the Ttree --- (a process referred 

to as "X-Checking"). Thus .given a candidate large itemsets whose size-1 subsets are 

contained (supported) in the current branch of the T-tree, tests whether size-1 subsets 

contained in other branches are supported. Proceed as follows: 

Using current item 'set split this into two subsets: itemSetl = first two items in current 

item set, itemSet2 = remainder of items in current item set, Calculate size-1 

combinations in itemSet2, For each combination from (2) append to itemSetl. 

Example 1: 

currentItemSet = {A,B,C}, 

itemSetl = {B, A} (change of ordering), 

size = {A, B, C}-2 = 1 

itemSet2 = {C} (currentitemSet with first two elements removed). 

Now calculate combinations between {B, A} and {C}. 

Example 2: 

currentItemSet = {A, B, "C, D} 

itemSetl = {B, A} (change of ordering) 

itemSet2 = {C, D} (currentltemSet with first two elements removed) 

calculate combinations between {B, A} and {C, D}" 

currentItemSet the given itemset. 
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private boolean combinations (short[] sofarSet, int startIndex, int endIndex, 
short[] itemSetl, short[] itemSet2) 
This function determines the cardinality N combinations of a given itemset and then 

checks whether those combinations are supported in the ..T-tree. Operates in a 
recursive manner. 

Example 1:. Given --- sofarSet = null, startIndex = 0, endlndex = 2, itemSetl = {B, A} 

and itemSet2 = {C}, 

itemSet2.length = 1, endIndex = 2 greater than itemSet2.length 

if condition succeeds 

tesSet = null+{B, A} _ {B, A) 

retutn true if {B, A} .supported and 

return null otherwise 

Example 2: Given --- sofarSet = null, startIndex = 0, endIndex = 2, itemSetl = {B, A} 

and itemSet2 = { C, D} 

endindex not greater than length {C, D} 

go into loop 

tempSet={}+{C}={C} 

combinations with --- sofarSet={C}, startIndex=l, 

endIndex=3, itemSetl = {B, A} and itemSet2 = {C} 

endlndex greater than length {C, D}.. 

testSet = {C} + {B, A} = {C, B, A} 

temp Set = { } + {D} =. {D} 

combinations with --- sofarSet={D}, startIndex=l, 

endIndex=3, itemSetl =_ {B,A} and itemSet2 = {C} 

endIndex greater than length {C,D}- 

testSet = {D} + {B,A} _ {D,B,A} 

sofarSet is the combination itemset generated so far (set to null at start), startlndex is 

the current index in the given itemSet2 (set to 0 at start).. endlndex is the current index 

of the given itemset (set to 2 at start) and incremented on each recursion until it is 
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greater than the length of itemset2. itemSetl is the first two elements (reversed) of the 

total Iabel for the current item set. itemSet2 is the remainder of the current item set. 

private boolean findItemSetInTtree (short[] itemSet) 
This function commences the process of determining if an itemset exists in a T-tree. 

Used to X-check existance of Ttree nodes when generating new levels of the Tree. 

Note that T-tree-  node labels are stored in "reverse", e.g. {3, 2, 1 }. itemset is the given 

itemset (in reverse order). It. returns true if itemset found and false otherwise. 

private boolean findltemSetInTtree2 - (short[] itemSet, int index, int lastIndex, 

TtreeNode[1 linkRef) 
This function returns true if the given itemset is found in the T-tree and false 

otherwise. It operates recursively. itemSet is the given itemset. index is the current 

index in the given T-tree level (set to 1 at start). lastIndex is the end index of the 

current T-tree level. linRef is the reference to the current T-tree level. 

private void addSupportO 
This function add the minimum support'value and enable run button if have data and 

a minimum support value. 

private void. getFileNameO 
This function displays an open file dialog box so that the user can select file to open. 

If "OK" button is clicked then the file' is opened and if cancel button is clicked then 

return. Obtain selected file and read the file if the file is readable (i.e. not a directory 

etc.). Enable run button if have data and a minimum support value. Output the no. of 

rows & columns to text area. 

private boolean checkFileNameb 
This function check the -whether the selected file is a text file or not. -It returns false if 

selected file is a directory or is not a file name or access is denied. 
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private void checkLine (int counter, String str) 
This function check whether input file is of appropriate boolean input. 

public void inputDataSetO throws IOException 
This function reads input data. from file specified in command line argument. 

protected void outputItemSet -(short[] itemSet) 
This function outputs a given item set. itemSet is the given item. set. 

public void outputFrequeatSetsb 
This function commences the process of outputting the frequent sets contained in the 

T-tree. 

private int outputFrequentSets (int number, short[] itemSetSofar, int size, 

TtreeNodell linkRef) 
This function outputs T-tree frequent sets. It operates in a recursive manner.- number 

is the number of frequent sets so far. itemSetSofar is the label for a T-treenode as 

generated sofar. Size is the length/size of the current array level in the T-tree. linkR.ef 

is the reference to the current array level in the T-tree. It returns the incremented 

(possibly) number the number of frequent sets so far. 

protected short[] reallocl (short[] oldItemSet, short newElement) 

This function resizes given item set so that its length is increased by one and append 

new  element. oldltemSet is the original item set. newElement is the new 

element/attribute to be appended. It returns the combined item set. 
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CHAPTER 5 

RESULTS AND DISCUSSION 

5.1 Results and Discussion 

Impact of Distortion on Privacy of data: 

120 

cc 100 
80 

-a 
60 

40 
L 

20 

± Privacy 
- Accuracy 

0 
0 10 20. 30 40 50 60 70 80 90 10 11 

00 

 

Distortion 

Figure 5.1 Distortion v/s Accuracy and Privacy of the database 

The. above graph is showing that as the distortion of the database increases, the 

accuracy of the frequent. itemsets decreases, but the privacy of the database increases. 

So we can choose the amount of distortion done on the database where requirement of 

accuracy and privacy both are fulfilled. 

Impact of Distortion on Accuracy of Association Rules: 

The graph drawn below is showing that as .the distortion (probability of occurrence of 

1. as random variable) increases the accuracy of the frequent itemsets decreases. As 

the distortion increases, the frequent itemsets contains some false positives and false 

negatives. False positive •means that the distorted database contains some frequent 
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itemsets which are not frequent in the real database. False negative means that some 

of the itemsets which are frequent in the real database are not frequent in the distorted 

database. 
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Fig-5.2 Probability of occurrence of 1 v/s accuracy of the frequent itemsets 

Execution Time v/s Database size: 

As the database size (number of transactions) increases, the execution time of finding 

frequent itemset also increases. 
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In the above graph the execution time is for a database having 8 itemsets with 30% 

minimum support.. As the database size (number of transactions) increases the 

execution time of apriori algorithm for generating frequent itemsets also increases. 

Impact of Minimum Support on Execution. time: 

The value of minimum support directly affects the execution time of the algorithm. 

As we are assuming that in market-basket database, the number of 1's is Iess than the 

number of 0's. So the number of itemsets-having high minimum support is less.-If the 

value of minimum support is less then the number of frequent itemsets is more and if 

the value of minimum support is more then the number of frequent itemsets is less. 

The graph below- is showing that as the minimum support for .generating frequent 

itemset increases, the execution time decreases. 
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5.2 Analysis 

Correctness:. 
The algorithms for frequent itemsets mining use the apriori-gen function to generate 

all candidates for large itemsets. In each iteration k, a large k-itemset that was found 

by the Master according to its true transactions is checked by the other party. So, all 

existing large itemsets are found. In the algorithm for association rules mining, the 

Master generates all possible rules from frequent itemsets found earlier and checks 

with the 2°d  Party the resulted confidence. So, all existing rules are found. 

Information disclosed by our algorithm: 
Here, we discuss the information disclosed ' before the algorithm starts and 

information disclosed during and after the algorithm operation. Our algorithm 

disclosure depends whether we assume the existence of external knowledge. If no 

external knowledge is assumed, then before starting the algorithm, the only 

information the Master has is that mining is possible. Since Master Party has no 

knowledge of the real or fake transactions and their values, the probability of any 

transaction of the 2°a  Party to be true is minsup/r, where r is the number of real 

transactions on the local database. 

If no external knowledge is assumed, still a corrupt Master is able to learn exactly 

which transactions in the other party's database are fake. In order to do so, it should 

operate in the following way: Assume that the minimal support threshold is 4. The 

Master sends to the trusted party sets of exactly four TIDs until it receives an "OK" 

answer, which means all four TIDs are not fake. Then it chooses three of these, and 

for every other TID j it sends to the trusted party a set containing these three TIDs 

together with j. The answer of the trusted party is "OK" if and only if j is not a fake 

TID. But, as the database is distorted, then also the only information the Master has is 

M 



that this individuals participate in the two databases, but he ' does not know whether 

that real transaction is really "reaI" or not. 

If there is any external knowledge, as the database is distorted, then also the only 

information the Master party has is that this individuals participate in the two 
databases, but he does not know whether their real transaction is 'really "real" or not. 

with distortion probability of p = 0.1, the resulted expected error is less than (k/r 

10) %, where k is the number of suspected transactions, and r is the number of real 

transactions of some side and usually k<< r. 

At present there is no standard definition for the measure of privacy loss. In our 

algorithm, we use as the measure for privacy loss, the probability of learning whether 

a particular transaction value is real or fake. 

In our algorithm, the parties do not know the exact support for each tested itemset. 

This decreases the probability that the Master will learn that a -set of items on another 

site has a given property, and it occurs only when the global support value is above or 

equal to the threshold value, and is also equal to the Master's support. 



CHAPTER 6 

CONCLUSIONS 

6.1 Conclusions 

We focus our attention on the problem of privacy preserving association rule mining 

in vertically partitioned databases. While other existing approaches try to overcome 

the problem of information disclosure, there still exist cases in which some 
information may be disclosed. In this work, we propose an algorithm for discovering 

all frequent itemsets and then generating association rules from them in vertically 

partitioned databases, without disclosing individual transaction values. The proposed 

algorithm preserve the privacy of vertically partitioned data by distorting all partitions 

data (by XORing the boolean data values with a boolean random variable) and then 

adding some fake transaction in the distorted data. The proposed algorithm does 

mining check (to check whether some frequent itemsets occur in the Master partition) 

in the starting phase of the algorithm to avoid the unnecessary computations. The 

proposed algorithm also put a limit on the number of fake transactions responsible for 

making an itemset as frequent itemset: This algorithm reduces the amount of 

disclosed information up to some extent. In our proposed algorithm, a balance 

between privacy and accuracy can be maintained by choosing the amount of 

distortion. 

6.2 Suggestions for further work 

In our proposed work, we had used Boolean vertically partitioned database. In future 

work, we will try to extend the proposed algorithm for numeric database. 
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APPENDIX A: SOURCE CODE LISTING 

DISTORT.0 

#include<stdio.h> 
#include<conio.h> 
#include<stdlib.h> 
#include<dos.h> 

void main() 
{ 
FILE *fp; 
FILE *fw; 
float temp; 
int i=O,j=0, pos = 1; 
int count=0, countl=0; 
static int a[ 100]; 
charch; 
int chl; 
static int row=0, col=O; 
int total,total 1; 
struct time tl,t2; 
void timediff( struct time tl, struct time t2); 

clrscrO; 

pos=1; 
fp = fopen("test.txt","r"); 
fw = fopen("result.txt","w"); 

if(fp == NULL) 

printf("cannot open the file\n"); 
exit(1); 

I  

if(fw == NULL) 

printf("cannot open the file\n"); 
exit(1); 

gettime(&t 1); 



srand(20); 

while(total>0) 
{ 

temp=(int)randO% 10; 
printf("\t%d",temp); 
a[i++]=temp/9.0; 
total--; 

} 

for(i=0;i<(row*col);i++) 
{ 

int k, temp 1=1; 
if(a[i]==1) 
{ 

int temp=0; 
countl++; 
if(count 1 >total l ) 

} 
a[i]=temp; 

k=total 1-count; 
whi le(count 1 <total 1) 
{ 

a[k++]=temp 1; 
} 

}. 

while((ch = fgetc(fp)) != EOF) 
{ 

count++; 
if(count>4 && ch !='\n') 
{ 

ch 1=a[j]; 
printf(" %d\t",a[j]); 
J++; 	- 
ch = chAch 1; 
fpriritf(fw.,"%c", ch); 
pos++; 

} 
else 
{ 

ch = ch^0; 
fprintf(fw,"%c", ch); 
pos++; 



if(ch =_ '\n') 
{ 

fprintf(fw, "fin"); 
.'pos = 1; 

count=0; 
} 

if(count<=3 ) 
fprintf(fw,"%c",ch); 

} 

fclose(fp); 
fclose(fw); 

• gettime(&t2); . 
• getch(); 

} 
void timediff(struct time t1, struct time t2) 
{ 

struct time t3; 
t3.ti hour= t2.ti_hour - tl.ti_hour 

• t3.ti min= t2.ti_min - tl.ti_min; 
t3 .ti _sec= t2.ti_sec - tI.ti_sec; 
t3.ti, hand= t2.ti hund - ti .ti hund; 

printf("\n %02d:%02d:%02d:%02d", t3 .ti_hour,t3 .ti_min,t3 .ti_sec,t3 .ti_hund); 
I] 

INTERSECT.0 

#include<stdio.h> 
#include<conio.h> 
#include<dos.h> 

void.main() 
{ 

• FILE *fl; 	 • 
FILE *f2; 	• 
int al[10]; 
int a2[10]; 
int nl; 



int n2; 
char "ch l,ch2; 
int count=O; 
int min_ sup; 
int i=0; 
int j=0; 
struct time tl,t2; 
void timediff( struct time t1, struct time t2); 

clrscr(); 

fl = fopen("test.txt","r); 
f2 = fopen("testt.txt","r"); 

if((fl==NULL) 11 (f2==NULL)) 
{ 

printf("cannot open the file\nH); 
exit(1); 

gettime(&t 1); 
while((ch 1=fgetc(f l ))1=EOF) 
{ 

al[i++] = atoi(&chl); 
while((ch 1=fgetc(f l )) !='\n') 
{ 

if(ch 1 == EOF) 
break; 

} 
if(ch 1 == EOF) 

break; 
} 
while((ch2=fgetc(f2)) ! =EOF) 
{ 

a2[j++]= atoi(&ch2); 
while((ch2=fgetc(f2))!='\n') 

if(ch2 == EOF) 
break; 

} 
if(ch2==EOF) 

break; 
} 

n1i; 
n2 j; 



for(i=0;i<n 1; i++) 
{ 

for(j=0;j<n2;j++) 
{ 

if(a l [i]==a2[j ]) 
{ 

count++; 
} 

. 	.} 

} 
gettime(&t2); 
printf("\n Enter the Minimum support.: 
scanf("%d",&min_sup); 

if(min_sup<=count) 
printf("\n OK, Mining is possible"); 

else 
printf("\n NotOK, Mining is not possible"); 

printf("\n Intersection is: %d ", count); 

getch(); 
} 
void timediff(struct time tl, struct time t2). 
{ 

struct time t3; 
t3.ti hour= t2.ti-  hour - tl.ti_hour; 
t3.ti, min= t2.ti_min - tI.ti_min; 	 V 
t3.ti_sec= t2.ti_sec -` ti .ti_sec; 
t3.ti_hund= t2.ti hund - ti .ti hund; 

printf("\n %02d:%02d:%02d:%02d", t3 .ti_hour,t3 .ti_min,t3 .ti_sec,t3 .ti_hund); 
} 

JOIN.0 

#include<stdio.h> 	 . . 
#include<conio.h> 
#include<stdlib.h> 
#include<dos.h> 	 V 



void main() 
{ 
FILE *fl; 
FILE *f2; 
FILE *f3; 
float temp = 0; 
int pos = 1; 
struct time t l,t2; 
void timediff( struct time t1, struct time t2); 

char ch; 

static char a[20][20]; 
static int al [20]; 
static int b 1 [20]; 
static char b[20][20]; 
char chi, ch2; 
int count=0; 
static int countl=0; 
static int count2=0; 
int ch3=0; 
int ch4; 
int.x, y; 
static int i=0, r=0, s=0, j=0, k=0, 1=0; 
static int m=0, n=0; 
static int rowl=0, row2=0; 
clrscrO; 

f 1 Tfopen("sample.txt", "r"); 
f2=fopen("sample 1.txt","r"); 
f3=fopen("union.txt"., "w");  

if((fl==NULL) 11 (f2=NULL)) 
{ 	 ~„~ tom. ■ 	~ 	~ printf("cannot open-the file.\n"); 
exit(1); 

} 
gettime(&tl);  
while((chI=fgetc(fl)) !=EOF) 
{ 	- 

if(chl !='fin') 



countl++; 
a[i] [l++]=ch l; 
if(countl=l) 

al [k++]=atoi(&chl); 
} 

else 

x=countl; 
countl=O; 
i++; 

rowl++; 
} 

} 
while((ch2=fgetc(f2)) !=EOF) 

if(ch2!='fin') 
{ 

count2++; 
b[r] [s++]=ch2; 
if(count2=1) 
{ 

b 1 [1++]=atoi(&ch2); 
} 

} 
else 
{ 

y=count2; 
count2=0; 
r++; 
s=0; 
row2++; 

} 

while(m<rowl && n<row2) 
{ 

if(al [m]==b 1 [n]) 

fprintf(f3,"%c",a[m] [0]); 
fprintf(f3,". "); 
for(i=3;i<x;i++) 
{ 
fprintf(f3,"%c",a[m] [i]); 

} 



for(j=3;j<y;j++) 
fprintf(f3;"%c",b[n] [j]); 

fprintf(f3, "1n"); 
m++; 
n++; 

0 

if((al [m]<b l [n]) && al[m]  != NULL && b 1 [n] !=NULL) 
{ 

fprintf(f3,"%c",a[m] [0]); 
fprintf(f3.," "); 
for(i=3;i<x;i++) 

fprintf(f3,"%c",a[m] [i]); 
for(j=3;j <y;j++) 

fprintf(f3,"%d ".,ch3 ); 
fprintf(f3, "fin"); 
m++; 

} 

if((al [m]>b 1 [n]) && al [m] != NULL && hi [n] != NULL) 
{. 

fprintf(f3,'.'%c",b[n] [0]); 
fprintf(f3," - "); 
for(i=3;i<x;i++) 

fprintf(f3,"%d",ch3); 
for(j=3;j<y;j++) 

fprintf(f3;"%c",b[n] [1]); 
fprintf(f3,"fin"); . 
n++; 

P 

if(m>=rowl &&'n<=row2) 
{ 

fprintf(f3 ,"%c",b [n] [ 0] ); 
fprintf(f3," ");//printf("fin%d",al [m]); 

for(i=3;i<x;i++) 
fprintf(f3,"%d"-,ch3); 

for(j =3 ;j <y;j +±) 
fprintf(f3,"%c",b[n] [j]); 

fprintf(f3,"\n"); n++;  

.} 

} 



if(m<=rowl && n>=row2) 

fprintf(f3,"%c",a[m] [0]); 
fprintf(f3," "); 
for(i=3;i<x;i++) 

fprintf(f3,"%c",a[m] [i]); 
for(j=6;J <y;j±+) 

fpri ntf(f3,"%d ", ch3 ); 
• fprintf(f3, "\n "); 

m++; 
} 

fclose(fl ); 
fclose(f2); 
fclose(f3); 
gettime(&t2); 
getcho ; 

} 
void timediff(struct time ti, struct time t2) 

struct time t3; 
t3.ti_hour= t2.ti_hour - ti .ti_hour; 
t3.ti_min= t2.ti_min - tl.ti_min; 
t3.ti sec= t2.ti_sec - tl.ti_sec; 
t3.ti hund= t2.ti hund - tl.ti hund; 

printf("\n %02d:%02d:%02d:%02d", t3 .ti =hour,t3.ti min,t3.ti_sec,t3.ti_hund); 
} 

Apriori 
*****************=************ ************************************** 

import java.io.*; 
import java.util.*; 
import java.awt.*; 
import java. awt.event. *; 
import javax.swing.*; 

public class Apriori extends JFrame implements ActionListener 
{ 

private BufferedReader fileInput; 
private JTextArea textArea; 



private JButton openButton, minSupport, runButton; . 

protected class TtreeNode 
{ 

protected int support = 0; 
protected TtreeNode[] childRef = null; 
protected TtreeNode() { } 

private TtreeNode(int sup) 
{ 

support = sup; 
F] 

private TtreeNode[] startTtreeRef; 
private short[][] dataArray = null; 

private static final double MIN_SUPPORT = 0.0; 
private static final double MAX_SUPPORT = 100.0; 

private boolean inputFormatOkFlag = true; 
private boolean haveDataFlag = false; 
private boolean hasSupportFlag = false; 
private boolean r extLevelExists = true 

private File fileName; 
private int numRows = 0; 
private int numCols = 0; 
private double support = 20.0; 
private double minSupportRows = 1.0; 

public Apriori(String s) 
{ 

super(s); 

Container container.= getContentPaneo; 
• container. setBackground(Color.pink); 
container. setLayout(new BorderLayout(5,5)); 

runButton = new JButton("Run"); 
.runButton. addActionListener(this); 
runButton.setEnabled(false); 

openButton = new JButton("Open File");. 



openButton.addActionListener(this); 

minSupport = new JButton("Add Min. Sup."); 
minS upport. addActionLi stener(this); 

JPanel buttonPainel= new JPanel(); 
buttonPanel.setLayout(new GridLayout(1,3)); 
buttonPanel . add(openButton); 
buttonPan el .add (m i n S upp ort); 
buttonPanel.add(runButton); 
container. add(buttonP anel,BorderLayout.NORTH); 

textArea °. new JTextArea(40, 15); 
textArea. s etEd itab l e (false); 
container. add(new JScrollPane(textArea),BorderLayout.CENTER); 

JPanel creditsPanel = new JPanel(); 
cred itsP ane l . s etB ackground (Co lor.pink); 
creditsPanel .setLayout(new GridLayout(4, 1)); 
Label creditLabel l = new Label("IIT Roorkee " + "Privacy Preserving 
Association 	Rule Mining"); 

Label creditLabel2 = new Label(" "); 
Label creditLabel3 = new Label("Created by Susheela (May " + "2008)"); 

creditsPanel..add(creditLabel1); 
creditsPanel.add(creditLabel2); 
creditsPanel. add(creditLabel3); 
container.add(creditsPanel,BorderLayout. SOUTH); 

} 

public void actionPerformed.(ActionEvent event) 
{. 

if (event. getActionCommandO.equals("Open File")) 
getFileName(); 

if (event. getActionCommand().equals("Read File")) 
readFile(); 

if (event. getActionCommand().equals("Add Min. Sup.")) 
addSupportO; 

if (event. getActionCommand().equals('Run")) 
aprioriTO; 



/* --------------------------------------- ------------------------- */ 
/* 	 APRIORI-T 	 */ 
/* ---------- ----------------------------------------------------- */ 

private void. aprioriT() 
{ 

textArea.append("Apriori-T (Minimum support threshold = " + support + 
"%)~n=-----------------------------------------\n" + Generati.ng K=l large 
itemsets\n"); 

minSupportRows = numRows*support/100.0; 
createTtreeTopLevel(); 
generateLevel2O; 
createTtreeLevelNO; 
textArea. app end("fin"); 
outputFregi entSets(); 

} 

protected _void createTtreeTopLevel() 
{ 

startTtreeRef = new TtreeNode[numCols+ 1]; 
for (int index =1;index<=numCols;index++) 

startTtreeRef[index] = new TtreeNodeO; 

createTtreeTopLeve120; 

pruneLevelN(startTtreeRef, 1); 
} 

protected void createTtreeTopLevel2O 
{ 

for (int index 1=0; index 1 <dataArray. length; index l++) 
{ 

if (dataArray[indexI] != null) 
{ 

for (int- index2=0;index2<dataArray[index I]. length; index2++) 
{ 

startTtreeRef[dataArray[index l ] [index2]]. support++; 
} 	 . 

} 

} 



protected void createTtreeLevelNO 
• { 

int nextLevel=2; 

while (nextLevelExists) 
{ 

textArea.append("Generating K=" + nextLevel +" large itemsets\n"); - 
add SupportToTtreeLevelN(nextLevel); 
pruneLevelN(startTtreeRef,nextLevel); 
nextLevelExists=false; 
generateLevelN(startTtreeRef, 1 ,nextLevel,nul 1); 
nextLevel++; 

} 	.. 

} 

protected void addSupportToTtreeLevelN(int level) 

for. (int index=0index<dataArray.length;index++) 
{ 

if (dataArray[index] != null) 
{ 

addSupportToTtreeFindLevel(startTtreeRef, level, 
dataArray[index] .length, dataArray[index]); 

} 

0 
} 

private void addSupportToTtreeFindLevel(TtreeNode[] linkRef, int level, 
int endlndex, short[] itemSet) 

{ 

if (level = 1) 
{ 

for (int index l=0 ;index 1 < endIndex;index1++) 
{ 

• if (linkRef[itemSet[indexl]] != null) 

linkRef[item Set[index I]]. support++; . 
} 

} 



else 

• for (int index=0;index<endlndex;index++) 
{ 

if (linkRef[itemSet[index]] != null) 
{ 

if (linkRefjitemSet[index]].childRef != null) 
addSupportToTtreeFindLevel(linkRef[itemSet[index]] . 

childRef, level-1,index,itemSet); 
} 

} 
} 

} 

/*------------------ ---------------------------------------------------- */ 
/ 	 PRUNING V 	 */ 
/*---------------------------------=------------------------------  

protected void pruneLevelN(TtreeNode [] IinkRef, int level) . 
{ 

int size = linkRef.length; 

if (level == 1) 	• 
• 

{ 

	

	VV 	 V  
for (int.indexl-l;indexl < size;indexl++) 
{ 

if (linkRef[indexl] != null) 

• 
{ 

if (linkRef[index1].support <minSupportRows) 
linkRef[indexl] = null; 

} 
} 

.•} 

else 	 . 

for (int indexl=l;indexl < size;indexl++) 

if (linkRef[indexI] != null) 	 V 

-if (linkRef[indexIJ.childRef != null) 
pruneLeveiN(linkRef[index 1 	 );V 	 V 

 



ii 
} 

} 
} 

/*---------------------.-----------------------------=-----------------~- */ 
/* 	 LEVEL GENERATION 	 */ 
/*---------------------------------------------------------------------- */ 

protected void generateLevel2() 
{ 

nextLevelExists=false; 
• for (int index=2;index<startTtreeRef.length; index++) 

{ 
if (startTtreeReflindexj f= null) generateNextLevel(startTtreeRef, 

index,realloc2(null,(short) index)); 
} 

} 

protected void generateLevelN(TtreeNode[]. linkRef, int level, - 
int requiredLevel, short[] itemSet) 

{ 
int index I ; 	 • 

int localSize = linkRef.length; 

if (level == requiredLevel) 	• 

{ 
for (index 1=2;index1<localSize;index1++) 
{ 

if (linkRef[indexl] != null) 
generateNextLevel(linkRef,index 1, realloc2(itemSet,(short) index 1)); 

} 

else 
{ 

for (index 1=2; index 1<localSize;indexI++) 
{ 

if (linkRef[indexl] != null) 
{ 

generateLeve1N(linkRef[index 1 ] .chi ldRef, level+ 1, 
requiredLevel,realloc2(itemSet,(short) index 1)); 

} 



} 

} 

protected void generateNextLevel(TtreeNode[] parentRef, int endIndex, 
• short[] itemSet) 

{ 
parentRef[endlndex].childRef = new TtreeNode[endIndex]; 
short[] newItemSet; 
TtreeNode currentNode = parentRef[endIndex]; 

for (int index=l;index<endIndex;index++) 
{ 

if (parentRef[index] != null) 
{ 

newItemSet = realloc2(itemSet,(short) index); 
if (testCombinations(newItemSet)) 
{ 

currentNode.childReflindex] = new TtreeNode(); 
nextLevelExists=true; 

} 

else 
currentNode.childRef[index] = null; 

} 
} 

} 

protected boolean testCombinations(shott[] currentItemSet) 
{ 

if (currentItemSet.length -< 3) 	 • 
return(true); 

short[] itemSeti = new short[2]; 
itemSet1 [0] = currentItemSet[1]; 
itemSetl[1] = currentItemSet[O]; 

int size = currentItemSet.length-2; 
short[] itemSet2 = removeFirstNelemerits(currentltemSet,2); 

return(combinations(null,O,2,items et 1,itemSet2)); 



private boolean combinations(short[] sofarSet, int startIndex, 
int endIndex, short[] itemSet1, short[] itemSet2) 

{ 
if (endIndex > itemSet2.length) { 

short[] testSet = append(sofarSet,itemSetl); 
return(findItem S etInTtree(testS et)) ; 

} 

else 
{ 

short[] tempSet; 
for (int index=startlndex;index<endlndex;index++) 
{ 

temp Set = realloc2(sofarSet,itemSet2[index]); 
if (!combinations (temp Set, index+ 1,endIndex+ 1, item Set 1, 

itemSet2)) return(false); 
. 	} 

} 	 V  

return(true); 
} 

/*--------------------------------------- ---------------------------- */ 
/* 	 T-TREE SEARCH METHODS 	 */ 
/*---------------------------------------------------------------------- */ 

private boolean findItemSetInTtree(short[] itemSet) 

if (startTtreeRef[itemSet[O]] != null) 

int Iastlndex = itemS et. length-
if (lastlndex == 0) return(true); 
else return(findItemSetInTtree2(itemSet,1,lastlndex, 

startTtreeRefjitemSet[0]].childRef)); 
} 

else 
- 

	

	 V V return(false); 
} 

private boolean fndItemSetInTtree2(short[] itemSet, int index, 
int lastIndex, TtreeNode[] linlcRef) - 



{ 
if (linkRef[itemSet[index]] != null) 
{ 	. 

if (index = lastIndex) 
return(true); 

else 
return(findItemSetInTtree2(itemSet, index+ l ,lastlndex, 

linkRef[itemSet[index] ] .childRef)); 
} 

else 
return(false); 

} 

/* ---------------------------------------------------------------- */ 
/* 	GET MINIMUM SUPPORT VALUE 	 */ 
/* -------------------------------------------------------------- *% 

private void addSupportO 
{ 

try 
{ 

while (true)- 

String stNuml = JOptionPane.showInputDialog("Input minimum "+ 
support value between "+ MIN_SUPPORT + " and "+ 

MAX SUPPORT); 
if (stNuml.indexOf('.') > 0). 

support = Double.parseDouble(stNuml); 
else 

support = Integer.parselnt(stNum 1); 
if (support>=MIN_SUPPORT && support<=MAX_SUPPORT) 

break; - 
JOptionPane. showMessageDialog(nul1, 

"MINIMUM SUPPORT VALUE INPUT ERROR:\n" + 
"input = "+ support + 
"\nminimum support input must be a floating point\n" + 

"number between "+ MIN_SUPPORT.+ " and " + 
MAX SUPPORT); 

} 	 . 
textArea.append("Minimum support = "+ support + "%\n"); 
hasSupportFlag=true; 

} 
catch(NumberFormatException e) 



hasSupportFlag=false; 
runButton.setEnabled(false); 

} 

if (haveDataFlag && hasSupportFlag) 
runButton. setEnab led(true); 

} 

/* -------------- -------------------------------------------------- */ 
/* 	 OPEN NAME 	 */ 
1* --------------------------------------------------------------- */ 

private void getFileName() 
{ 

JFileChooser fileChooser = new JFileChooserO; 
fileChooser. setFileSelectionMode(JFileChooser. FILE S_ONLY); 
int result = fileChooser.showOpenDialog(this); 

if (result = JFileChooser.CANCEL_OPTION) return; 

fileName =..fileChooser.getSelectedFile(); 
if (checkFileNameO) 
{ 

readFileo ; 
I 

if (inputFormatOkFlag) 
{ 

if (checkOrderingo ) 
{ 

if (haveDataFlag && hasSupportFlag) 
runButton. setEnabled(true); 

outputDataArrayO; 
textArea.append("Number of records = " + numRows + 
countNumColsO; 
textArea.append("Number of columns = " + numCols + "\n"); 

} 
else.- 
{ 
• haveDataFlag = false; 
inputFormatOkFlag = true; 
textArea.append("Error reading file: " + fileName + 
runButton. setEnabled(false); 

} 



} 
I 

private boolean checkFileName() 
{ 

if (f leName.existsO) 
{ 

if (f leName.canReadO) 
{ 

if (fileName.isFileO) 
return(true); 

else 
JOptionPane.showMessageDialog(null,"FILE ERROR: File is a 

directory"); 
} 
else 

JOptionPane. showMessageDialog(nul 1, "FILERROR:- Access denied"); 
I. 
else 

JOptionPane.showMessageDialog(null, "FILE ERROR: No such file!"); 

return(false);. 
} 

private void readFileO 
{ 

try 
{ 

inputFormatOkF lag=true; 
getNumberOfLinesO; 
if (inputFormatOkFlag) 
{ 

dataArray = new short[numRows] []; 
inputDataSetO; 
haveDataFlag = true; 

} 
else 
{ 

haveDataFlag = false; 
textArea.append("Error reading file: "+ fileName + "\n\n"); 
runButton. setEnabled (false); 

} 

} 



• { 
catch(IOExceptiori ioException) 

JOptionPane.showMessageDialog(this,"Error reading File", 
"Error 5: ",JOptionPane.ERROR MES SAGE); 

closeFile(); 
System: exit(1); . 
} 

0 

private void getNumb.erOfLines() throws IOException 
{ 

int.  counter = 0; 
openFileo); 

String line = fileInput.readLine(); 
while (line != null) 
{ 

checkLine(counter+ 1, l ine); 
StringTokenizer dataLine = new StringTokenizer(line); 
int numberOfTokens = dataLine.countTokens(); 
if (numberOfTokens == 0) break; 
counter++; 
line =.fileInput.readLine(); 

ii 

numRows = counter; 
closeFile(); 

} 

private void checkLine(int counter, String str) 
{ 

for (int index=O;index <str.lengthO;index++) 
{ 

if (!Character.isDigit(str.charAt(index)) && 
!Character. is Whitespace(str.charAt(index))) 

{ 
JOptionPane.showMessageDialog(null,"FILE INPUT ERROR:\ncharcater " + 

"on line " + counter + "is not a digit or white space"); 
inputFormatOkFiag = false; 

break; 
} 

P 
} 



public void inputDataSet() throws IOException 
{ 	. 

int rowlndex=0; . 
textArea.append("Reading input file\n" + fileName + 
openFileO; 

String line =' filelnput.readLineO 
while (line !=null) 
{ 

StringTokenizer dataLine = new StringTokenizer(line); 
int numberOfTokens. = dataLine.countTokens(); 
if (numberOfTokens == 0) break; 
short[] code = binConversion(dataLine,numberOfTokens); 
if (code != null) 
{ 

int codeLength = code.length; 
dataArray[rowIndex] = new short[codeLength]; 
for (int colIndex=0;collndex<codeLength;colIndex++) 

dataArray[rowIndex][colIndex] = code[colIndex]; 
} 
else 

dataArray[rowIndex]= null; 
rowlndex++; 
line = fileInput.readLineo; 

} 

closeFile{); 
} 

private short[] binConversion(StringTokenizer dataLine, int numberOfTokens) 
{ 

short number; 
short[] newItemSet = null; 
for (int.tokenCounter=0;tokenCounter < numberOfI'okens;tokenCounter++) 
{ 

number = new Short(dataLine.nextTokenO).shortValueO; 
newltemSet = reallocI(newltemSet,number); 

} 
return(newItemSet); 

private boolean checkOrdering() 



boolean result = true; 
for(int index=0;index<dataArray.length;index++) { 

if (! checkLineOrdering(index+ 1,dataArray[index])) 
result= false; 

} 
return(result); 

} 
private boolean checkLineOrdering(int lineNum, short[] item Set) 
{ 

for (int index=0;index<itemSet.length-1;index++) 
{ 

if (itemSet[index] >= itemSet[index+l]) 
{ 

JOptionPane. showMessageD ialog(nul 1, "FILE FORMAT ERROR:\n" + 
"Attribute data in line " + lineNum + " not in numeric order"); 

return(false); 
} 

} 

• return(true); 
} 

private void countNumColso 	• 

int maxAttribute=O; 
for(int index=0;index<dataArray.length;index++) 
{ 

int lastIndex = dataArray[index].length-1; 
if (dataArray[index] [lastlndex] > maxAttribute) 

• maxAttribute = dataArray[index][lastlndex]; 
} 

numCols = maxAttribute; 

/* ------------------------------------------------- */ 
OUTPUT METHODS 	*/ 

/* -------------------------------------------------*1 

public void outputDathArrayO 
{ 	: 

for(int index=0;index<dataArray-.length;index++) 
{ 

outputltemS et(dataArray[index] ); 



textArea. append("\n "); 
} 

} 

protected void outputltemSet(short[] itemSet) 
{ 

String itemSetStr = 
int counter = 0; 
for (int index=0 index<itemSet. length; index++) 

if (counter. !=O) itemSetStr = itemSetStr + 
counter++; 
itemSetStr = itemSetStr + itemSet[index]; 

textArea.append(itemSetStr + 
} 

public void outputFrequentSetsO 
{ 

int number = 1; 

textArea.append("FREQUENT (LARGE) ITEM SETS . (with support 
counts)\n" + 

-- 	 -----\n"); 
short[] itemSetSofar = new short[1]; 
for (int-index=1; index <= numCols; index++) 
{ 

if (startTtreeRef[index] !=null) 

if (startTtreeRef[index].support >= minSupportRows) 
{ 

textArea.append("[" + number-+."] {" + index + "} _ " + 
startTtreeRef[index].support + "\n"); 

itemSetSofar[O]-  _ (short) index; 
• number = outputFrequentSets(number+ 1, item SetSofar, 

index,startTtreeRef[index] .childRef); 
} 

} 
} 	 • 

textArea. app end("\ri"); 	 • } 	 - 



private int outputFrequentSets(int number, short[] itemSetSofar, int size, 
TtreeNode[] linkRef) 

{ 
if (linkRef = null) 

(number); 
for (int index=l; index < size; index++) 
{ 

if (linkRef[index] != null) 
{ 

if (IinkRef[indexj.support >= minSupportRows) 
{ 

short[] newItemSetSofar = realloc2(itemSetSofar, (short) index); 
textArea.append(" [" +. number + "] "); 
o utputltem S et(n ewltem S etS ofar); 
textArea.append(" = " + - linkRefl index].support + "\n"); 
number = outputFrequentSets(number + 1,newltemSetSofar, 

index,linkRef[index].childRef); 
} 

} 

return(number); 
} 

/* -------------------------------------------------------*1 
/* 	FILE HANDLING UTILITIES * 	*/ 
/* ------------------------------------------------------- */ 

private void openFile() 
{ 

try 
{ 

FileReader file = new FileReader(fileName); 
fileInput = new. BufferedReader(file); 

} 
catch(IOException ioException) 
{ 

JOptionPane. showMessageDialog(this,"Error Opening File", 
"Error 4: ",JOptionPane.ERROR MESSAGE); 

} 
} 

private void closeFile() 
{ 



if (fileInput != null) 
{ 

try 
{ 

• fileInput.closeO; 
• } 

catch (IOException ioException) { 

JOptionPane. showMessageDialog(this, "Error Opening_ File", 
"Error 4: ",JOptionPane.ERROR_MES SAGE); 

} 
} 

} 

/* ------------- --------------------------------------- */ 
/* 	 ARM UTILITIES 	 */ 
/* -------------------------------------------------------*1 

protected short[] reallocl (short[] oldItemSet, short newElement) 
{ 	. 

if (oldItemSet == null) 
{ 

short[] newItemSet = {newElement}; 
return(newItemSet); 

}  

int oldItemSetLength = oldItemSet.length; 
short[] newItemSet = new short[oldltemSetLength+I]; 

int index; 
for (index=0;index < oldItemSetLength;index++) " 

newItemSet[index] = oldItemSet[index]; 
newltemSet[index] = newElement; 

return(newIternSet); 
} 

protected short[] append(short[] itemSetl, short[] itemSet2) 
{ 

if (itemSetl' _= null) 	• 	. 
return(copyltemSet(itemSet2)); 

else if (itemSet2 = null) 
return(copyItemS et(itemSet l )); 



• short[] newltemSet = new short[itemSetl.length+itemSet2.length]; 

int index 1; 
for(index I=0;index 1 <itemSet 1.length;index l++) 
{ 

newItem Set[index l ]=itemSet 1 [ index 1];  
} 

for(int index2=0;index2<itemSet2.length;index2++). { 

newItem S et[index l +index2] =item S et2 [index2] ; 
} 

• return(newItemSet); 
} 

protected short[] realloc2(short[} oldItemSet, short newElement) { 

if (oldItemSet == null) 

short[] newItemSet = {newElement}; 
return(newItemSet); 

} 

int oldItemSetLength = oldItemSet.length; 
short[] newItemSet = new short[oldltemSetLength+l]; 

newItemSet[O] = newElement; 
for (int index=O;index < oldItemSetLength;index++) 

newltemSet[index+ 1] = o'ldltemSet[index]; 

return(newItemSet); 
I] 

protected short[] removeFirstNelements(short[] oldltemSet, int n) 

if (oldItemSet.length == n) return(null); 
else 
{ 

short[] newItemSet = new short[oldltemSet.length-n]; 
for (int ' index=0; index<newItem Set. length; index++) - 
{ 



newItemSet[index] = oldItemSet[index+n]; 
} 
return(newItem Set); }  

protected short[] copyItemSet(shortj] itemSet) 
{ 

If (itemSet 	null) 
return(null); 

short[] newItemSet = new short[itemSet.length]; 
for(int index=O; index<itemS et.length; index++) 
{ 

newltemSet[index] = itemSet[index]; 
} 

return(newItemSet); 
} 

/* ----------------------------------- -------------------.*/ . 

	

/* 	 - MAIN. METHOD 	 */ 
/* ------------------------------------------------------*1 

public static void main(String[] args) throws IOException 
{ 

Apriori newFile = new Apriori("Apriori"); 
ncxNil~ile.setD,bfauItCloseOperation(JFrame.EXIT ON CLOSE); 
newFile.setSize(500,800); 
• newFile.setVisible(true); 	 • 

 

}  -- 

} 
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