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ABSTRACT 

Multipath fading channels introduces intersymbol interference (ISI), which is not 

known a priori, as such we face problem of data transmission over such channels. To 

protect the integrity of the data a controlled amount of redundancy is added (encoding) 

using an error correction code (ECC). For coded data transmission over such channels 

Douillard et al. proposed the "turbo equalization" approach, which is an iterative 

equalization and, decoding algorithm for receiver. The decoding strategy used to decode 

convolutional codes is the basic of 'turbo principle', which suggests the iterated 

exchange of soft information between different blocks of a communication receiver. The 

potential importance and applicability of this principle has been found to extend to a 

wide range of problems in communication. In iterative adaptive equalization and 

decoding, channel equalization and MAP decoding are jointly optimized in an iterative 

process. One drawback of this process is the exponentially increasing complexity of the 

equalization step. To overcome this, several equalizers applicable to "turbo equalization" 

requiring reduced complexity have been proposed. Furthermore, we present an alternate 

approach to rederive some of these approaches and equalize the received data in 

frequency domain. 

In this dissertation, simulation of iterative frequency domain equalization and Max-

Log-MAP decoding has been carried out in MATLAB environment. The performance 

has been evaluated using approximate MMSE Equalizer, approximate MMSE Equalizer 

with average variance and Max-Log-MAP algorithm for decoding. 
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Chapter 1 

INTRODUCTION 

Today we can observe a transition in the way we are living. The so-called 

information society replaces the established industrial society. Accelerated by genius 

inventions as the Internet or the mobile phone, people demand to communicate more 

often, with more parties, at increasing data rates, and over longer distances. Where we 

mainly interacted with our voice in the past, today a broad range of data such as voice, 

images, video, or software is exchanged. Besides this, noncommercial applications such 

as science or the military call for new approaches in communication technologies, e.g., to 

transmit with less energy or more securely. But in order to use any of the 

communications services available today, several complex data transmission problems 

have to be solved. These include the transmission of digital data over broad ranges of 

analog channels, such as wireline (e.g., telephone line, coaxial cable), fibre optic, or 

wireless (radio, underwater acoustics) channels. 

Wireless communications is, by any measure, the fastest growing segment of the 

communications industry. As such, it has captured the attention of the media and the 

imagination of the public. Cellular systems have experienced exponential growth over 

the last decade and there are currently around two billion users worldwide. Indeed, 

cellular phones have become a critical business tool and part of everyday life in most 

developed countries, and are rapidly replacing antiquated wireline systems in many 

developing countries. In addition, wireless local area networks currently supplement or 

replace wired networks in many homes, businesses, and campuses. Many new 

applications, including wireless sensor networks, automated highways and factories, 

smart homes and appliances, and remote telemedicine, are emerging from research ideas 

to concrete systems. The explosive growth of wireless systems coupled with the 

development of laptop and palmtop computers indicate a bright future for wireless 

networks, both as stand-alone systems and as part of the larger networking infrastructure. 

However, many technical challenges remain in designing robust wireless networks that 

deliver the performance necessary to support emerging applications. 

The vision of wireless communications supporting information exchange between 

people or devices is the communications frontier of the next few decades, and much of it 

already exists in some form. This vision will allow multimedia communication from 
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anywhere in the world using a small handheld device or laptop. Wireless networks will 

connect palmtop, laptop, and desktop computers anywhere within an office building or 

campus, as well as from the corner cafe. In the home these networks will enable a new 

class of intelligent electronic devices that can interact with each other and with the 

Internet in addition to providing connectivity between computers, phones, and 

security/monitoring systems. Many technical challenges must be addressed to enable the 

wireless applications of the future. These challenges extend across all aspects of the 

system design. As wireless terminals add more features, these small devices must 

incorporate multiple modes of operation to support the different applications and media. 

1.1 Broadband Wireless Access 
Broadband wireless access provides high-rate wireless communications between a 

fixed access point and multiple terminals. These systems were initially proposed to 

support interactive video service to the home, but the application emphasis then shifted 

to providing high speed data access (tens of Mbps) to the Internet, the WWW, and to 

high speed data networks for both homes and businesses. 

WiMAX is an emerging broadband wireless technology based on the IEEE 802.16 

standard. The core 802.16 specification is a standard for broadband wireless access 

systems operating at radio frequencies between 10 GHz and 66 GHz. Data rates of 

around 40 Mbps will be available for fixed users and 15 Mbps for mobile users, with a 

range of several kilometers. Many laptop and PDA manufacturers are planning to 

incorporate WiMAX once it becomes available to satisfy demand for constant Internet 

access and email exchange from any location. WiMAX will compete with wireless 

LANs, 3G cellular services, and possibly wireline services like cable and DSL. The 

ability of WiMAX to challenge or supplant these systems will depend on its relative 

performance and cost, which remain to be seen. 

The wireless radio channel poses a severe challenge as a medium for reliable high-

speed communication. It is not only susceptible to noise, interference, and other channel 

obstructions, but these change over time in unpredictable ways due to user movement. 

Variation due to multipath occurs over very short distances, on the order of the signal 

wavelength, so these variations are sometimes referred to as small-scale propagation 

effects. 
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These Broadband systems are likely to face unfriendly radio propagation 

environments, with multipath delay spread extending over tens or hundreds of bit 

intervals; interfering with the subsequently transmitted bits (This effect is called ISI) [1]. 

Choosing a suitable air interface technology is essential, in order to meet the required 

quality of service (QoS), and under various constraints such as bandwidth and equipment 

costs. The channel distortion resulting in ISI is not known a priori, which if left 

uncompensated, causes high error rates. The solution to ISI is to design a receiver that 

employs a means for compensating or reducing ISI in the receiver; this compensator for 

ISI is called an equalizer. 

• Classical Techniques for Equalization of Uncoded Data: 

Uncoded modulation does not use a coding step and simply feeds the data into a 

signal mapper and use a coding step and transmits the obtained, and in general complex, 

symbols over the channel. The ISI is removed through equalization. The data estimate is 

obtained from a signal mapper converting the hard decided equalized channel symbols to 

the input data alphabet. No channel coding (encoder/decoder) is used here. 

Standard equalization techniques can be applied to this scenario such as a linear 

equalizer (LE) or a decision feedback equalizer (DFE) ['1 1, 12 1. The basic idea is to obtain 

a symbol estimate by filtering the received data (LE) or by also filtering the past symbol 

decisions (DFE). Both the LE and DFE contain linear filters as basic functional elements. 

The DFE also contains a nonlinearity, namely a hard decision element, to provide 

estimate of past symbols for feedback. To implement the linear filters, several structures 

such as transversal, cascade, parallel, or lattice filter implementations are available. The 

associated parameters to set up the filters are obtained using the channel response and 

cost criteria such as the zero forcing (ZF) or minimum mean squared error (MMSE) 

criterion 1 1 1. 

Receivers using LE and DFE approaches are inherently suboptimal in terms of error 

probability since they are designed using different cost criteria. Also, some inherent 

weaknesses such as constraint filter lengths, noise enhancement in ZF-based solutions, or 

error propagation in DFE solutions limit the capabilities of pure LE or DFE approaches. 

Nonetheless, they are widely used in practice since a broad knowledge about them is 

available and the computational complexity is significantly smaller compared to optimal 

techniques. 
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For digital communication, a common cost criterion is the bit error rate (BER) of the 

system, which does not necessarily coincide with equalization criteria. The optimum 

receiver with respect to minimization of the BER is a maximum a-posteriori probability 

(MAP) or maximum likelihood (ML) detector. Such detectors does not remove ISI, but 

tries to find the most likely channel input given the output symbols disrupted by noise, 

which is equal to minimizing the BER. Whereas a ML detector assumes the symbols to 

be equally likely to occur on any value of the symbol alphabet, a MAP detector employs 

knowledge about the occurrence probability as well. An efficient implementation of the 

ML sequence estimation (MLSE) is the Viterbi algorithm (VA) 11 I, [3], which is 

described in standard literature about coding. A MAP symbol estimation (MAPSE) 

equalizer is often based on the forward-backward algorithm from Bahl et al. (BCJR) [4]. 

Unfortunately, all known MAP/ML-based methods suffer from high computational 

complexity with increasing channel length M and alphabet size q due to the exponential 

complexity 0(qm). Furthermore, they can be applied directly only blockwise, since a 

time reversed backward step is involved. 

❖ Classical Techniques for Equalization of Coded Data: 

Significant improvements of the BER performance are possible using coding [ 

However, there is now a trade-off between achievable performance improvement and 

decreased data rate using a particular coding scheme. 

Still an equalizer is required to accommodate ISI. The range of possible 

combinations of equalizers (LE, DFE, or ML/MAP) and coding schemes (e.g., block 

codes, convolutional codes) is virtually unlimited. The decoder is fed either with hard 

(decided) information (e.g., for algebraic block code decoding algorithms) or soft 

information (e.g., for ML/MAP detectors). Later decoding algorithms are standard for 

convolutional codes where the convolutional encoder is again analyzed as a finite state 

machine. An important result of the analysis of coded data transmission over ISI 

channels is that communicating soft information between the equalizer and the following 

decoder improves the receiver performance and surpasses similar receivers 

communicating hard information [4 

Some applications implement a coding step to overcome deficiencies of the chosen 

equa-lizer, e.g., the use of a DFE and low-redundancy coding to deal with the error 

propagation of the DFE [6]. 
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A variety of modern techniques employs a convolutional code and a ML/MAP 

equalizer. A significant amount of research has been done on these schemes. One of the 

major challenges is to decrease the computational complexity of both the ML/MAP 

equalizer and the convolutional decoder, which is typically also applying a ML/MAP 

detector, using suboptimal algorithms, and efficient use of the equalizer soft output 171. 
State-of-the-art systems include an interleaver after the encoder and a deinterleaver 

before the decoder to further improve the BER [7]. Interleaving shuffles symbols within 

a given time frame or block of data and thus decorrelates error events introduced by the 

equalizer between neighboring symbols. The interleaver will play a central role later for 

iterative solutions. 

Finally, Ariyavisitakul and Li [81 proposed a joint coding-equalization approach 

working with convolutional coding and a DFE. Here, within the DFE, soft information 

from the DFE forward filter output and tentative (hard) decisions from the following 

decoder using the VA are feedback. This system can be thought of as a link between 

separate receiver approaches, where equalization and decoding are distinct tasks 

performed only once, and joint equalization-decoding schemes, where the latter use 

extensive feedback of information from the decoder. 

❖ Iterative (Turbo) Techniques: 

previous two sections all ingredients to build an iterative system have been 

considered. These include the use of coding in addition to equalization, soft information 

for communication between the receiver functional blocks, and interleaving. An iterative 

receiver algorithm processes the received data by at least two distinct processing blocks, 

e.g., an equalizer and a decoder, interacting with each other in both directions. Turbo 

Equalization is an Iterative receiver algorithm for coded data transmission applying the 

"Turbo Principle", where equalization and decoding tasks are repeated on the same set of 

received data while feedback information from the decoder is incorporated into the 

equalization process until a termination or convergence criterion is matched. The "Turbo 

Principle" was originally developed for concatenated convolutional codes ("Turbo 

Coding" [91) and is now adapted to various communication problems such as trellis 

coded modulation (TCM) and Code Division Multiple Access (CDMA). 
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1.2 Statement of Problem 
A pure MAP-based solution for equalization and decoding is fastest in the bit error 

rate (BER) improvement over successive iterations and achieves these improvements at 

the lowest signal-to-noise ratios (SNRs) compared to all other techniques. But these 

ML/MAP-based solutions suffer from the high computational load for long channels 

(expensive equalizer) or convolutional codes with high memory order (expensive 

decoder). This situation is worsened since the equalization and decoding steps are 

performed several times for each block of data. Even with sophisticated algorithms, or 

suboptimal solutions, the inherent exponential complexity of the ML/MAP techniques 

limits their range of possible applications. 

In this dissertation, the performance of Approximate Linear Equalization working in 

the frequency domain, applied to Turbo Equalization has been evaluated for ISI channels 

using simulation techniques. Max-Log-Map algorithm is used for decoding process. 

1.3 Organization of the Dissertation 
Chapter 2 discusses the principle of turbo decoding scheme and Turbo-equalization. 

The transmission scheme, turbo decoder, MAP-algorithm, Iterative Turbo Decoding 

Principle, Improved MAP algorithm, and Iterative MAP-Equalization and MAP-

Decoding algorithm are described in detail. In chapter 3, we describe about SISO Linear.  

MMSE Estimator, Linear MMSE equalization is based on this estimator and also two 

different schemes of iterative equalization and MAP-decoding are discussed: 

• Approximate Linear MMSE Equalization and 

• Modified Approximate Linear MMSE Equalization with Average Variance. 

Turbo equalization using Frequency domain equalizer is also described which is 

followed by improved Max-Log-MAP algorithm and interleaver design. 

The simulation approach adopted for implementation of above mentioned 

algorithms is presented in chapter 4. The simulation results are presented in chapter 5. 

Finally we conclude our work in Conclusion and Future Scope in chapter 6. 
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Chapter 2 

TURBO DECODING SCHEME AND TURBO 

EQUALIZATION 

In this chapter, we first present the transmission scheme for turbo equalization and 

then introduce the turbo decoding scheme. Turbo decoding and turbo equalization 

algorithm are then presented in details. 

2.1 Transmission Scheme 
We Assume a coherent, symbol-spaced receiver front-end and precise knowledge of 

the signal phase and symbol timing, such that the channel can be approximated by an 

equivalent, discrete-time, baseband model, as shown in Fig: 2.1, where the transmit 

filter, the channel, and the receive filter are represented by a discrete-time linear filter, 

with the finite-length impulse response(FIR) [I 0] 

h[n]= Aii  hk  8[n — k] 	 (2.1) 
k=0 

of length M. The coefficients hk are assumed to be time-invariant and known to the 

receiver. 

Data -■• Transmitter Receiver Data 
Estimate 

    

Additive 
Noise 

Fig: 2.1 Representation of a Data Transmission System 

To simplify the derivations, all the systems to be investigated contain the same 

transmitter shown together with the ISI channel in Fig: 2.2. The binary data in encoded 

with a binary convolutional encoder yielding the code symbols c,,, which are mapped to 

the alphabet V of the signal constellation. For simplicity we assume binary phase shift 

keying (BPSK), i.e. V = f+1, -1), and that the channel impulse response coefficients hk 
and noise samples con  are real valued. 
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ISI 
Channel 

Data -40. Encoder 

The transmission and receiving tasks are applied to blocks of data bits b, c {0, 1} of 

length Kd. They are encoded to Ke=-Kd/R + K, code symbols c,,, n = 1, 2, ..., Kc, cne 

where R E [0,1] is the code rate and Ko  > 0 is any overhead introduced by the encoder, for 

e.g. termination sequence. The interleaver permutes the c„ and outputs lc symbols xn, n 

= 1, 2, ..., K„ x, 6, to be transmitted over the ISI channel. This operation is denoted xn 

= Men), where HO is a fixed random permutation on Ke  elements. The permutation IT 

10, the deinterleaver, reverses the HO operation. The noise is modeled as additive white 

Gaussian noise (AWGN), i.e., the noise samples con  are independent and identically 

distributed (i.i.d) with normal probability density function (pdf) 

4,(0 )=0(0 )/ 0-0)/ am 	 (2.2) 

and independent of data, where 0(x) = e-212  / 	. Given (2.1), the receiver input z,, is 

given by, 
M—I 

Zn  = (E hk Xn_k  + (On  
k=0 

(2.3) 

wn 

Fig: 2.2 Transmitter section of the data transmission scheme 

2.2 Turbo Decoder 
Turbo decoding is accomplished by more than one component (often two) decoders. 

Special decoding algorithms must be used which accept soft inputs and give soft outputs 

for the decoded sequence I.  1 j. These soft inputs and outputs provide not only an 

indication of whether a particular bit was a 0 or a 1, but also a likelihood ratio which 

gives the probability that the bit has been correctly decoded. The turbo decoder operates 

iteratively. In the first iteration the first component decoder provides a soft output giving 

an estimation of the original data sequence based on the soft channel inputs alone. It also 

provides an extrinsic output. The extrinsic output for a given bit is based not on the 

channel input for that bit, but on thesinformation for surrounding bits and the constraints 

imposed by the code being used. This extrinsic output from the first decoder is used by 

the second component decoder as a-priori information, and this information together 
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Interleaver 
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Interleaver 

Parity 2 

with the channel inputs are used by the second component decoder to give its soft output 

and extrinsic information. In the second iteration the extrinsic information from the 

second decoder in the first iteration is used as the a-priori information for the first 

decoder, and using this a-priori information the decoder can hopefully decode more bits 

correctly than it did in the first iteration. This cycle continues, with at each iteration both 

component decoders producing a soft output and extrinsic information based on the 

channel inputs and a-priori information obtained from the extrinsic information provided 

by the previous decoder. After each iteration the Bit Error Rate (BER) in the decoded 

sequence drops, but the improvements obtained with each iteration fall as the number of 

iterations increases so that for complexity reasons usually only between 4 and 12 

iterations are used. 

Fig: 2.3 Turbo Decoder Schematic 

The general structure of an iterative turbo decoder is shown in Fig: 2.3. Two 

component decoders are linked by interweavers in a structure similar to that of the 

encoder. As seen in the figure, each decoder takes three inputs, the systematically 

encoded channel output bits, the parity bits transmitted from the associated component 

encoder, and the information from the other component decoder about the likely values 

of the bits concerned. This information from the other decoder is referred to as a-priori 

information. The component decoders have to exploit both the inputs from the channel 

and this a-priori information. They must also provide what are known as soft outputs for 
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the decoded bits. Two suitable decoders are the so-called SOVA proposed by Hagenauer 

and Hoher and the MAP algorithm of Bhal. 

The decoder of Fig: 2.3 operates iteratively, and in the first iteration the first 

component decoder takes channel output values only, and produces a soft output as its 

estimate of the data bits. The soft output from the first encoder is then used as additional 

information for the second decoder, which uses this information along with the channel 

outputs to calculate its estimate of the data bits. Now the second iteration can begin, and 

the first decoder decodes the channel outputs again, but now with additional information 

about the value of the input bits provided by the output of the second decoder in the first 

iteration. This additional information allows the first decoder to obtain a more accurate 

set of soft outputs, which are then used by the second decoder as a-priori information. 

This cycle is repeated, and with every iteration the BER of the decoded bits tends to fall. 

However, the improvement in performance obtained with increasing numbers of 

iterations decreases as the number of iterations increases. Hence, for complexity reasons, 

usually only about eight iterations are used. 

The soft outputs from the component decoder are typically represented in terms of 

the so-called Log Likelihood Ratios (LLRs). The polarity of the LLR determines the sign 

of the bit, while its amplitude quantities the probability of a correct decision. The LLRs 

are simply, as their name implies, the logarithm of the ratio of two probabilities. For 

example, the LLR L(uk) for the value of a decoded bit uk is given by 

L(uk ) = In 
P(uk  = +1)) 

(2.4) 
P(uk  = —1) 

where P(uk  ) = +1 is the probability that the bit uk  = +1, and similarly for P(uk  ) —1 

. Notice that the two possible values of the bit are taken to be +1 and—1, rather than 1 

and 0, as this simplifies the derivations that follow. Fig: 2.4 shows how the LLR L(uk) of 

a bit uk = +1 varies. It can be seen from this figure that the sign of the LLR L(uk) of a bit 

uk will indicate whether the bit is more likely to be +1 or —1, and the magnitude of the 

LLR gives an indication of how likely it is that the sign of the LLR gives the correct 

value of uk. When the LLR L(uk ) rz• 0, we have P(uk  = +1) P(uk  = —1) 0.5 , and we 

cannot be certain about the value of uk. Conversely, when L(uk ) >> 0, we have 

P(uk  = +1) >> P(uk  = —1) and we can be almost certain that uk  = +1. 
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Given the LLR L(uk), it is possible to calculate the probability that uk = +1 or uk = -

1 as follows. Remembering that P(uk  = —1) =1— P(uk  = +1), and taking the exponent of 

both sides in Eq: 2.4, we can write: 

eLoo 
= Nuk= +1)  (2.5) 

1—P(uk  = +1) 
So, 

P(uk  = +1) = e L(uk) 

1 + eL( uk 

 

1 

 

(2.6) = 
1+ C L("k )  • 

Similarly: 

   

P(uk  -= +1) = 	
1
vu  

1 + e ki  

 

 

e-L(uk) 

 

(2.7) 

 

1 + e-L( uk 

 

and hence we can write: 

   

e-L(uk  )/2 
P(uk ±1) = 	 etL(uk)/2. 

1 e-L(uk )/2 (2.8) 

Fig: 2.4 LLR L(uk) versus the probability of uk = +1 
Apart from LLRs based on unconditional probabilities we are also interested in 

LLRs based on conditional probabilities. For example, in channel coding theory we are 
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interested in the probability that uk = ±1 based, or conditioned, on some received 

sequence z, and hence we may use the conditional LLRL(uk  z) , which is defined as, 

(

P(uk  = +1 I z)) 
P(uk  = —1 I z) 

The conditional probabilities are known as the a-posteriori probabilities of the 

decoded bit uk, and it is these a-posteriori probabilities that the component soft-in soft-

out decoders attempt to find. 

Apart from the conditional LLR based on the a-posteriori probabilities, we will also 

use conditional LLRs based on the probability that the receiver's matched filter output 

would be zk  given that the corresponding transmitted bit xk was either +1 or —1. This 

conditional LLR is written as L(zk  I xk ) and is defined as: 

L(zk  I xk )  In ( P(zk I xk = +1)) 

P(zk I xk = —1) 
(2.10) 

If we assume that the transmitted bit xk  = ±1 has been sent over a Gaussian or fading 

channel using BPSK modulation, then we can write for the probability of the matched 

filter output zk that: 

P (Z k  I X k  = +1) = 	
1 	exp 	Eb (zk  a)2  dz k , 	 (2.11) 

o-V221.  

where Eb is the transmitted energy per bit, o' is the noise variance and a is the fading 

amplitude (cf-- 1 for non-fading AWGN channels). Similarly, we have: 

	

P(zk ixk  = —1) =  1 exp
2cr" 

+ a)2  j-  dzk . 	 (2.12) 
o--127r  

Therefore, when we use BPSK over a (possibly fading) Gaussian channel, we can rewrite 

Eq: 2.10 as: 

xk  ) = ln (P(zk xk  = +DJ 
P(zk I xk  = —1) 

exp( 2a Eb 
2  k 
(z a)2  

Eb 
eXp 	 2(72  (zk + a)

21 
 

L(uk  I z) In (2.9) 

L(zk  

= In 
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EL 

2o-  
4a • zk 	 (2.13) 

= Lc  • zk  

where, Lc  is defined as channel reliability value, and depends only on the signal-to-noise 

ratio (SNR) and fading amplitude of the channel. Hence, for BPSK over a (possibly 

fading) Gaussian channel, the conditional LLR L(zk xk,), which is referred as the soft 

output of the channel, is simply the matched filter output zk multiplied by the channel 

reliability value L, 

Having introduced to LLRs, we now proceed to describe the operation of the MAP 

algorithm, which is one of the possible SISO component decoders that can be used in an 

iterative turbo decoder. 

2.2.1 The Maximum a posteriori Algorithm 

In 1974 Bahl, Cocke, Jelinek, and Raviv [121 introduced a MAP decoder, called the 

BCJR algorithm, that can be applied to any linear code, block or convolutional. The 

computational complexity of the BCJR algorithm is greater than that of the Viterbi 

algorithm, and thus Viterbi decoding is preferred in the case of equally likely 

information bits. When the information bits are not equally likely, however, better 

performance is achieved with MAP decoding. Also, when iterative decoding is 

employed, and the a priori probabilities of the information bits change from iteration to 

iteration, a MAP decoder gives the best performance. 

The MAP algorithm gives, for each decoded bit uk, the probability that this bit was 

+1 or —1, given the received symbol sequence z . As explained in previous section this is 

equivalent to finding the a-posteriori LLRL(uk  I z), where: 

L(uk I z) = In 
( P(uk  =  +11I))  

(2.14) 
P(uk  = —11z) 

Baye's rule allows us to rewrite this equation as: 

L(uk I z) = 1n 	 (2.15)
= +1 A z)  

(2.15) 
P(uk  = —1 n z) 

where by definition P(a n b) = P(a I b) • P(b) is the joint probability of a and b. 

13 



I 

P(Sk-l= Si A Sk  S A Z).'\  

L(uk  I z) = In E P(sk_.,S' A Sk  =S A Z) 

Uk =-1 

P(s' s z)\  

"k=+1 

E P(s' A S A Z) 

uk=-I 

=ln 

Let us now consider Fig: 2.5 showing the transitions possible for a constraint length 

two encoder, which has four encoder states, and since we consider a binary code, in each 

encoder state two state transitions are possible. One of these transitions is associated with 

the input bit of -1 shown as continuous line, while other transition corresponds to the 

input bit of +1 shown as a broken line. It can be seen from Fig: 2.5 that if the previous 

state Sk-1 and the present state Sk are known, then the value of the input bit uk, which 

caused the transition between these two states, will be known. For each uk= ±1, there are 

+1 

Fig: 2.5 Possible Transitions for an Encoder with Constraint Length Two 

four possible transitions that can occur and this set of transitions is 

Hence we can rewrite Eq: 2.15 as: 

mutually exclusive. 

(2.16) 

(2.17) 

The received sequence z can be split up into three sections: the received codeword 

associated with the present transition z k  , the received sequence prior to the present 

transition z j<k  and the received sequence after the present transition z j>k . We can thus 

write for the individual probabilities P(s' n s n z): 

P(S f  A S A Z) =P(S1  AS A Z i<k  A Z k  A Z >k) 
	

(2.18) 
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Using Baye's rule and the fact that if we assume that the channel is memoryless, 

then the future received sequence zi ,k  will depend only on the present state s and not on 

the previous state s' or the present and previous received channel sequences zk  and Z j  ‹k  

we can write: 

NS'  A S A Zi P(Z i>k  I {S' A S AZ j< k  A Z k })•P(S f  AS A Z i<k  A Z k ) 

- P(Z 	I S) • P(S'  ASA Z j<k  A Z k ) . 

- P(Z j>k I s) • P({z k  A s} {s' z i<k})• P(s' z j<  k ) 

- P(z j,k  I s) • P({z k  s} I s')- P(s' z i<k ) 

= /3k(s) • yk(s' ,$) • a k _1(s') 	 (2.19) 

where ak _i  (s') is the probability that the trellis is in state s' at time k —land the received 

channel sequence up to this point is zi ,k  , /''k  (s) is the probability that given the trellis is 

in state s at time k the future received channel sequence will be z j,k  , and lastly yk (s',$) is 

the probability that given the trellis was in state s' at time k —1, it moves to state s and the 

received channel sequence for this transition is z k  . 

We can now rewrite the expression for the probability ak(s) as, 

ak  (s) P (Sk  = s A j <k +1 ) 

= P(s A Zj<k  A Z k ) 

P(s A S'  A Z i<k  A Z: k ) 
all s' 

= E Is A Id I {s'  A 	})- P(s' z ) J <k 
all s' 

E P({s z k} I s')• P(s' Z j<k ) 
all s' 

= E ak-1(s') • 7 k(s% s) 
all s' 

(2.20) 

Thus, we can compute a forward metric ak(s) for each state s at time k using forward 

recursion (2.20). Similarly, we can compute a backward metric A_, (s') for each state s' at 

time k using backward recursion as, 

fik-1(s')= P (z J >k-11 s') 

= E (s) • r k (s' s). 	 (2.21) 
all s 
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The forward recursion begins at time k=0 with initial condition 

{I, s = 0 
0 

since the encoder starts at all-zero state So= 0. 

Similarly, the backward recursion begins at time k=K (K is the length of the input 

sequence) with initial condition 

fiK(s)= 
{1, s = 0 

0, s # 0 

since the encoder ends in the all-zero state So= 0. 

2.2.2 Calculation of the yk  (s', s) Values 

Using the definition ofy k (s',$) from Eq: 2.19 and Baye's rule we have: 

yk (s',$) = P({zk  A s} I s') 

= P(I {s' A s}) • P(s I s') 

= P(zk  I {s' n s} ) • P(uk ), 	 (2.22) 

ceo(s)= ,sue 0 

From Eq: 2.8 we have 

P(uk  ) = e
-L(uk 

)/2 (uk L(uk  )/2) 

+e -L(.012 (2.23) 
= r(1) • ,( umuk )/2) 

) 

where, as stated before, CL(„,) depends only on the LLR L(uk ) and not on whether uk is ±1. 

Again assuming the channel is memoryless we can write: 
n 

P(z k  I fs' A 	P(z k  I xk) =111)(z kr I xkl), 	 (2.24) 
1=1 

where x k  is the transmitted codeword associated with the transition from state Sk_i  = s' to 

state Sk  = 	xkl and zki  are the individual bits within the transmitted and received 

codewords. Assuming that the transmitted codeword x k  have been transmitted over a 

Gaussian channel using BPSK we have: 
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(2..25) 
dz k, n 

1=1 

rr 	1  p( zi,  I Is' A 	0, 5 
= n 	 exp (-- 	tz kr — "Aid 

1 
I 2 dzkl 77r 	LC

b 
 

1 
(z 	— axki)2  2a 	1.1  

Eb 	2x2 

exp(---Eb2  

(zk2  , + a 

udzkl 
1=1 

kl 	2axId  z 

K, 

(Cr 1276n  
1 

exp 
(0-  'NI7r)n  

	

Cl2) 	C ,.(3)  • exp 

	

-k 	••k 

2a2  I=1 

z/d xki  
cr2 	/.1 

where, Ca(2)  depends only on the channel SNR and on the magnitude of the received 

sequence z k  , while, Cx(:)  depends only on the channel SNR and on the fading amplitude. 

Hence we can write for yk  (s', s) : 

1k (s s) = P(uk) /3(k 11s' A s}) 

(---c  
L 	 (2.26) = C e040,,,)/2) . exp  
2 i=, E zk,;, • K, 

where C = CI)  \ • C2)  • C3)  does not depend on the sign of the bit uk or the transmitted Lcuk, • 	
Ak 

codeword x, and so is constant over the summation in the numerator and denominator in 

Eq: 2.17 and cancels out, similar argument is valid for constant K . 

Form Eq: 2.17 and Eq: 2.19 we can write for conditional LLR of uk, given the 

received sequence z k  as: 

(L cek _i  (Si ) k  (S t  S) • pk (s)` 
(s',$)= uk  =+1 

a k-1(s')* Yk(s',$).  fik(s) 
\ uk =-1  

L(uk  I z) = In (2.27) 

It is this LLRL(uk I  z) that the MAP decoder delivers. Summary of operations in the 

MAP algorithm is shown in Fig: 2.6. 

2.3 Iterative Turbo Decoding Principles 
In this section, we explain the concepts of extrinsic and intrinsic information, and 

highlight how the MAP algorithm described above, and other soft-in soft-out decoders, 

can be used in the iterative decoding of turbo codes. 
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(2.31) 

Consider first the expression for yk  (s', s) in Eq: 2.26, which is restated here for 

convenience: 

Yk (s', s) C e(ukuuk  )/2) 	L vIn 
P 	Z.,zkixid 	 (2.28) 

r=1 
Considering systematic code, where one of the n transmitted bits will be the systematic 

bit uk, and assuming this systematic bit is the first of the n transmitted bits, then we will 

have xki =uk, and we can rewrite Eq: 2.28 as: 

Yk (s 	s) = C • e(ukunk)/2) • exp 

= C.e•(ukmuk )/2) • exp 

where, z Ics  is the received version of the transmitted 

Zk (S 1  

2  
—
L

c zics uk  

zk, uk  

S) = exp 

2  

•exp 
J  

• 2,k  (s 

systematic 
n c

(— 
2 /.2 

L 	" 
i=2  

(2.29) 
s), 

bit xki =uk and: 

zk,x„ j. 	(2.30) 

Using Eq: 2.29 and remembering that in the numerator we have uk  = +1 for all terms 

in the summation, whereas in the denominator we have uk  = –1, we can rewrite Eq: 2.27 

as: 

E cek _1 (s1)•yk (s',$).flk (s)\ 
uk =+1 

E a (st) • yk  (s', s) • 16k  (S) 

uk  =-1 

E a k-101 e"(uk)" • 
+44,12 x k (s t, s) • Pk  (V) 

U k  =+1 
E ak_i (s)e+L(uk)/2,e+L,z,,,/2 

kkS '  , s) • flk  ( s ) 

uk =-1 

/ : 2.4  k-1(s1) • xk (s', s) • pk (s)` 

L(uk  I 	= ln 

in 

=L(uk )+Lczk, +ln 
E a k _, 	(s , s) • fik  (s) 
=-1 

= (uk  )+ Lc zks  + (uk ) 
where: 

LQ (uk ) = ln 

L a k  _i(si) • X k (S I  S) k(S) 
(s' 
uk  =+1 (2.32) E a k-1(•51) • X k(s' s) • A(s) 

‘,Uk 
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Thus we can see that the a-posteriori LLRL(uk  I z) calculated with the aid of the 

MAP algorithm can be viewed as comprising three additive soft-metric terms:- L(uk ), 

Lczk, and LE, (uk ). 

Channel Values 
LcZkl  

a priori 
information 

L(uk) 

Evaluate 
rk(s",$) 
Eq: 2.26 

Calculate LLR 
L(uk  z) 
Eq:2.27 

Evaluate 
Pk ( S ) 

Eq: 2.20 

Evaluate 
cx k _ i  (s i ) 
Eq: 2.20 

Fig: 2.6 Summary of the Key Operations in the MAP Algorithm 

The a-priori LLR term L(uk ) comes from P(uk ) in the expression for the branch 

transition probability yk  (s', s) .This probability should be generated by an independent 

source and is referred to as the a-priori probability of the kth information or systematic 

bit represented as +1 or —1, as illustrated in Fig: 2.7. Initially this value will be zero. The 

second term corresponds to the systematic bits conveyed by the channel and to the 

extrinsic LLR values. The final term is derived using the constraints imposed by the 

code used, from the a-priori information sequence L(un ) and the received channel 

information sequence z , excluding the received systematic bit zk, and the a-priori 

information L(uk ) for the bit uk. Hence it is referred to as the extrinsic LLR for the bit uk. 

We summarize below what is meant by the terms a-priori, extrinsic and a-posteriori 

information, which we use throughout this treatise. 

a priori: The a-priori information related to a bit is information known before 

decoding commences, from a source other than the received sequence or the code 

constraints. It is also sometimes referred to as intrinsic information for contrasting it with 

the extrinsic information to be described next. 
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a priori information 

combined channel 
and extrinsic in ormation 

Systematic 
Decoder 

Systematic bits 

Systematic and parity bits 

a posteriori information 

extrinsic 
information 

Fig: 2.7 Schematic of a Component Decoder Employed in a Turbo Decoder, Showing 
the Input Information Received and Output Information Corresponding to the Systematic 

and Parity Bits 

extrinsic: The extrinsic information related to a bituk  is the information provided by 

a decoder based on the received sequence and on the a-priori information, but excluding 

the received systematic bit zk, and the a-priori information L(uk) related to the bit uk  . 

Typically the component decoder provides this information using the constraints 

imposed on the transmitted sequence by the code used. It processes the received bits and 

the a-priori information surrounding the systematic bit uk  , and uses this information and 

the code constraints for providing information about the value of the bit uk  . 

a posteriori: The a-posteriori information related to a bit is the information that the 

decoder generates by taking into account all available sources of information concerning 

uk  . It is the a-posteriori LLR, i.e. L(uk  z), that the MAP algorithm generates as its 

output. 

When the series of iterations halts, after either a fixed number of iterations or when 

a termination criterion is satisfied, the output from the turbo decoder is given by the de-

interleaved a-posteriori LLRs of the second component decoder. The sign of these a 

posteriori LLRs gives the hard-decision output, i.e. whether the decoder believes that the 

transmitted data bit uk was +1 or —1, and in some applications the magnitude of these 

LLRs, which gives the confidence the decoder has in its decision, may also be useful. 
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2.4 Modifications of the MAP algorithm 
The MAP algorithm described above is much complex, as we see that the forward 

and backward metrics are the sums of exponential terms, one corresponding to each valid 

state transition in the trellis. This can be simplified by making use of the identity: 

max* (x,y) ln (ex + 	max(x, y) + ln (1 + exp (— Ix — NI)) 	(2.33) 

which will replace the computationally more difficult operation ln(ex + ) with a max 

function plus a lookup table for evaluating ln(1+ e-lx-''I). We first define the following 

log-domain metrics: 

Fk (S', S) :4= ln (yk (s',$)) 

In (C • e(uk L(uk )/2) - exp [ 	2a± zkl xkl 2,72 	1 1  

- ln (C e(ukL(uk)/ 2) • exp[— Z kl X kl i 2 1,1 

1 	L - C +—uk L(uk )+—t 2.4 zkixki, 2 	 /=1 

(2.34) 

where e = ln C does not depend on uk or on the transmitted codeword xk and so can be 

consi-dered a constant and omitted. 

Ak (s) ln (ak (s)) 

ln E a k _i (sr) • yk (sr,$) 
ail s' 

(2.35) 
= ln E exp [Ak_, (s') + rk (s', s)] 

~atl s' 
= max (Ak _i (s') + Fk (S', S)). s 

Similarly, 

Bk (si) In (fik_, (s')) 

= ln 	fik (s) yk (s', s)) 
all s 

= In (E exp [Bk (s) + Fk (S', Snj 
ails 

= M I X* (Bk(s)+r k (S' S)) 

 

 

(2.36) 
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AWGN 
w 

Fig: 2.8 Discrete Time Channel Model 

It may be emphasized here that the output of MAP-equalizer is the LLRs 

corresponding to each input channel symbol whereas in MAP-decoder there are two 

output LLRs, the first LLR is corresponding to information bits and the second LLR is 

corresponding to encoded symbol. Hence, using Eq: 2.27 the LLR for the MAP-equalizer 

is: 

E ak_i(s')'rk(s',$) -  fik (s) 
k  I z) = In E ak _1 (s) • r k (s' ,$)- f3k (s)  

“,,$)EB,),=-1 

(2.43) 

where, B,-/, = +1 is the set of transitions, Sk _i  = —> Sk  = s such that the jth  output digit of 

the encoded symbol xk is equal to +1. Similarly, B", = —1 is the set of transi-tions, 

Sk-l= --> Sk  = s such that the jth  output digit of the encoded symbol xk is equal to-1. 

ak  and 13k  denotes the forward and backward metric of the MAP-equalizer, which can be 

calculated by the same formula as given in Eq: 2.20 and Eq: 2.21 respectively. 

Similar to the derivation of Eq: 2.31, we can prove that the a posteriori LLR of the 

MAP-equalizer can also be written as: 

L (54 I z) = L(xk )+LC (xk  ) + (xk ) 	 (2.44) 
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L(.1c„ ) 
Interleaver • 	 

Li, (e„) 

data 
estimate 

Where, L(xk ) is the a priori LLR, L (xk ) is the channel LLR, and Le (xk ) is the extrinsic 

LLR of the MAP-equalizer. But unlike MAP-decoder, in MAP-equalizer, we cannot 

separate channel information and extrinsic information in the output of the equalizer as 

the ISI channel is equivalent to a non-systematic non-binary convolutional coder. At the 

starting iteration, the value of a priori LLR L(xk ) is equal to zero and in later iterations 

this quantity is obtained from MAP-decoder. 

2.6 Iterative MAP-Equalization and MAP-Decoding 
Fig: 2.9 show the Iterative MAP equalization and MAP decoding. The equalizer 

computes the a posteriori probabilities, PO% = x ( z) P (in  = x I  zo• • • ,zic.  ),x E V, given 

K, received symbols zn, n=1, 2, • Ke, and delivers a posteriori LLR L(xk  I z) about 

channel input symbols/bits and feeds the MAP-decoder the difference of a posteriori 

LLR L(.ik  I z) and a priori LLRL(ik  ): 

LE  (in  ) ln 	  
P(ien = +11 z) 

ln 
PR= +1) 

=  

	

(x„ = —11 1) 	(x„= —1) 	 (2.45) 
L(Z„ 11)—L(k) 

Fig: 2.9 Iterative MAP Equalization and MAP Decoding 
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The a priori LLR, which is L (in ) , represents priori information on the occurrence 

probability of x„ and is provided by the decoder. For initial equalization step, no a priori 

information is available and hence we have L n ) = 0, Vn . We emphasize that LE n ) is 

independent of L (in ) . This and the concept of treating feedback as a priori information 

are the two essential features of any system applying the turbo principle and turbo 

equalization in particular. The MAP decoder computes the APPs 

P (en  = x I L (el ) ,•• • , L l  )),xE 6, given IC, code bit LLRs L (en ) , n=1, 2, ..., k, and 

delivers a posteriori LLR about coded symbols/bits, and feeds the MAP-equalizer the 

difference of a posteriori LLR and a priori LLR: 

	

=+11 L(ei ),---,L(4)) 	p 
n 	
, +1) 

LD  (On ) In 	  ln 	 (2.46) 
P( =-1  L 	(OK,  )) 	P(en  = —1) 

where, LE  (in ) is considered to be a priori LLRL(cn  ) for the decoder. The interleaver 

II (.) and the deinterleaver H -l (•) provide the correct ordering of the LLRs 

L (3n ) = II -' (L E  (in  )) and L(.i r,)= H (LD  (an  )), which are input to the equalizer and 

decoder, respectively. The MAP decoder also computes the data bit estimates 

E., arg max P (b, = b I L(ci ),• • • , L (c lc )) . 	 (2.47) 
be{0,1) 
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Chapter 3 

TURBO EQUALIZATION USING MMSE EQUALIZER 

3.1 THE SISO EQUALIZER 
The SISO Equalizer derivation is developed in two steps. First the estimation step 

produces an estimate in  of the channel input xn  by processing  the receiver input z,, with 

help of priors L(xn). The next step is the formation of the soft output LE(xn ). Fig: 3.1 

shows the two functional parts (estimator, mapper) of the SISO equalizer for MMSE-LE 

estimator implementation including  the structure of the estimator. Given the channel co- 

Soft In-Soft Out Linear Equalizer 

Fig: 3.1 Components of the SISO equalizer 

efficients hk defined in Eq: 2.1 and the noise samples wn  the estimator input symbols zn 

are obtained as 
m_1 

zn  = E hkxn _k  wn 	 (3.1) 
kr:0 

The symbols xn are assumed to be independent, at least in a neighborhood around 

each symbol. This assumption will be essential for the derivation of the estimator and 

can be justified by de-correlating  properties of the interleaver since the code symbols cn 

are clearly independent, in particular neighboring  symbols. 
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3.2 Estimator Using Linear Equalizer 

As shown in Fig: 3.1 the estimator in the MMSE-LE implementation is a single 

linear filter, realized as a tapped delay line with time-varying parameters c,,,k. The filter 

has the impulse response 
+N2  

c[n] E coo[n — k] 
k =-N, 

(3.2) 

of length N where N=NI+N2+1. The output of the estimator is in , the MMSE linear 

estimate of xn  given Z<n-N2,n+N 1 >9 i  • e., 
+ N2 E 	d„ 	 (3.3) 

k=-N, 

where, do  is a time varying offset compensating for a possible nonzero mean of random 

variable xn  given the prior L(xn). With the vectors 
A r  

xn = [xn-M-N2 +1 Xn-M -N2  +2 • • Xn+Ni r 

	

r 	 iT 
W  n LWn-N2 Wn-N2  +1 • • • Wn+N, J 

A 
zn  = [Zn_ N2  Zn_ N2  +1  • • • Zn+NI  ]

T
, 

Cn  [en,N2  C:,N2 _1•• • C:, -N1  

and the N x(N + M — 1) matrix 

h 	h 	ho 0 	• • M -1 M -2 

A  0 hm  _1  hm  _2 	• ho * 

0 • 0  h„,,_, hm_2 	ho 

the vector zn  can be expressed using Eq: 3.1 as, 

zn  = Hxn  +wn. 

The equation to obtain in  is now written in matrix form using Eq: 3.3, 

in  = enHzn  + dn. 

To perform MMSE estimation, the statistics Yn  -4 E (xn ) and vn  Coy (xn , xn ) of the 

symbols ; are required. Usually, the xn  are assumed to be equiprobable and i.i.d., which 

corresponds to L (xn ) = 0, Vn , and yields zn  = 0 and vn  =1. For general L (;) E (the xn  

are not equiprobable) ;and vn  are obtained as 

0 
0 

(3.4) 

(3.5) 

(3.6) 

(3.7) 
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.7„ = E x.P(xn  =x),p(x„.+1)—P(x„=-0 
XE{-1,+1} 

egx") 1 
	 tanh(L(xn ) / 2) 

1+ e L(' )  1+ e L{''
, 
 

v„= E lx—E(xn )12.P(xn  = x) =1 
xe(-1,+1) 

The MMSE-LE parameter set (cn, dn) is obtained using the MMSE cost criterion 

(cn,dn )= arg min E{Ix„ 	1 2} . 	 (3.8) 
,EcN,d.c 

This vector optimization problem with N+1 parameters is easily solved using partial 

differentiation since there are no constraints imposed on the range of the parameter set: 

aE{Ixn  — .Z„)2} 
- 2 E{(x j, — c f ,H  z n — d,i )z H} = ON , 

acn  
(3.9) 

E{x„w ,H}+ E{x„x,HH H ) = E{c r,Hw nw „H} + E{c nH Hxnw ,H} 

+E{d„w H„}+ Efc H,,,w nxHH H 	 (3.10) 

+E{c„Hilx„x„HH  } + Efdnx„HHH ), 

zn  = E{c„Hwn} + E{cnì Hxn} + E{c1,}. 

From the noise specifications and the independence between wn  and xn , it follows that 

E{wn} = ON  and E{wnwnH} =TIN . Finally, the following equation system has to be 

solved for the parameters (c„,dn ): 

E{xnx„H  }H H  = elf 	 Hoinxlin }HH ) dnTinH HH 	
(3.11) 

:Tn  = C H • In  ± dn. 

Introducing the quantities 

Vn=Cov(x„,x,Y-  E{xnxn11  } — E{xn}E{xH„ } , 

Cov(x„,z n )='--  H (E{x„x*n} — E{xn}E{x„}), 

A 
U = [01x(N2 +M-1) 

s = Hu 

1 01.N,  

5E{Ixn  — in I 2} 
- 2 E{; — Cn z n  — clii} = 0. 

acin  

The solution to Eq: 2.9 is unique and the global minimum for Eq: 3.8 since the Jacobian 

matrix ofX'n (cn , dn) is positive definite unless all x,, are zero. Expanding using Eq: 3.7 

yields 
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yields the solution 

cn  = 	+ HVnle 	vns = Cov (zozn  ) 'Coy ( z„, x„ ), 

= - cnHH • In  = —c„HE{zn}. 

As such, the linear MMSE estimate inofxn  can be written as, 

xn =c"zn + dn  

	

+ vnsH  (6w2IN  + HVnIIH  ) (zn  — E n  }) 	(3.13) 

=+cov(x„,z„)cov(z„,zn )'•(z„ - H • In ) 

However, in  depends on L(xn )viaic„ and vn  . In order that in  be independent of L (xn ) , we 

set L (xn ) to 0 while computing 'in , yielding.Vn  = 0 and vn  =1. This changes Eq: 3.13 to 

Cov(zn,zn ) = 

• 

+ HATnfr + (1— )s•sH ), 

cn  = 

• 

+ HVAH  + (1— vn  )s • el's, 
(3.14) 

xn = sHCov(zn,zn ) 1 (zn  — H • In  + 	— 0)s) 

= (zn  — H + Ks) 

After MMSE equalization, for simplification the pdfs 	x),x E —1, +11 , are 

approximated by Gaussian distribution with the parameters fin  ,x  E(in  xn  = x) and 

crn2, Coy 

p(in  xn  = x) ch( ( , 	I Cr 12x) I an,x 	 (3.15) 

This assumption tremendously simplifies the computations of the SISO equalizer output 

LLR LE  (xn ) . It is important that LE  (xn ) should not depend on the particular a priori LLR 

L (xn )and therefore it is required that in  does not depend on L(xn ), else it would affect 

the derivation of MMSE equalization algorithms. The statistics ,unx  and o-n2 x  of in  are 

computed as, 

Ain,x  = cnH  (E (zn  I xn  x) — H • Tin  + KS) = X•CHn  S 

6nn x  = CnHCOV (Zn  , Zn  xn  = X) en  
= 	N  1 HVNHH  — VnS • SH  )Cn  
= enHs 	shr cn  ). 

The output LLR LE  (x ) follows as, 

(3.12) 

(xn, xn  I x„ =x). 
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LE(xn)= ln 
0 	an+1 l  o•n,+1 	2 xn/'""n,+1 

n Pn,-1) l 6n,-1) l 6n,-1 	6n,+1 	 (3.16) 

= 2cni  (z„ — H • + Ys) / (1— sHen ) 

When L (xn ) = 0, Vn , e.g., for the initial equalization step, we have .V„ = 0 and 

vn  = 1, Vn, yielding a time-invariant coefficient vector cn  = cm  (NA stands for no a priori 

information), the usual MMSE LE solution, 

0  -1 
'NA 	N 	nH H ± (1— V n )S • SH ) • S 

H \) 1  =/2 +H.H -S 

Approximate Implementation I: For computing cn  and LE W for each time step n, 

we need to compute the inverse of N x N matrix inverse, i.e., Coy (zn , zn  , which 

causes a high computational load. There are methods to reduce the computational load 

for e.g., a recursive algorithm to compute cn  from cn_, 113 I. In an alternate approach the 
• 

use of time-invariant coefficient vector cm  to compute ks n  reduces the computational 

burden. Given a general L(xn ) E , we have: 

= 	(zn  — H • + KS). 

The use of this approximation was justified by the excellent complexity / performance 

tradeoff. 

Approximate Implementation II: In this method instead of assuming all variances are 

one, we assume that all output bits have the same variance which is equal to their 

average variance. This variance changes during iterations based on the performance of 

the decoder. With this assumption, 
1 N -1 	1 N -I 	2 

V = 	vn  .1__NElYn I , =VINxN  
N n=0 	— n=0 

(3.17) 

1.(x)---o 

If we use the previous formula, the filter coefficients in the time domain would be, 

en = (0.2 4.N + vH HH  + (1— v)s • )-1  • s 	(3.18) 

Let A = 624.N + vH • le . When matrix inversion lemma is applied to Eq: 3.18, the 

result is: 
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en  = 	+ (1 — v)s • s H  11  • s 

( A -1 A s 	0-1  + H A -is  11  sH 	 .s  

—KA-'s•s .  Al • s 

=-A-' • s —(1 	K   )24-1  - s 
1 — v 

K 
	A-1  • s 
1—v 

where, K 	  - 	• (1— v) 1  +5H  11-ls 
1 

(3.19) 

3.3 Turbo Equalization Using Frequency Domain Equalizer 
In the approach derived in turbo equalization, a linear equalizer consists of a FIR 

filter coefficients ckn , k =—N1 ,- • , N 2 , of length N = N I + N2  -I- 1 is used as MMSE 

estimator j 14 I. 

We have the estimates in  computed by filtering zk  — E {z k } , k = n, n +1, . . n + L —1, 

with c , 

in  4 [E{x„}E{xn+,}...E{xn,,,_,}1=k-n7n,.....v„,_ir, 
in  = cif (zn —H. Tcn  + Yn1-1 - u). 

With this interpretation the equalization step can be denoted as follows: 

p '' I-1H • c 
(3.20) 

I =- (CircL  [c])H  zo  —(CircL  [p])H  xo  +pHuxo  

The advantage of this structure becomes obvious if we compute Eq: 3.17 in the 

frequency domain by applying DFT, which is done by multiplying a length L column 

vector containing elements in the time domain with the L x L matrix: 

F=°  (Wn ,),n,k = 0,1, ..., L —1, Wn, k  = exp( 271-nki  L  	, 

where, i -4 	. Rewriting Eq: 3.17 using the property L • F-1F = FHF = L • IL  of the DFT 

to yield the frequency domain vector X of the estimate Xn  : 
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C Fc = [Co  • • • CL_i ], 
T 

•-• 	 =[H. 	• 17 	, 

P -I Fp = FriDiag[11]11  Fe = Diag [fi]'  C = [(Co  

= F (CireL  [c[)H  F-T • zo  — F (CireL  [p[)' VI' • I°  

Diag [C]H  Fzo  — Diag [p]H F -10  + 1- FPHFu10  
L-1 

Diag [c]H  Fzo  _ Diag [p]H 	
1 

F • 10  + — • E(c*,, • H k )• FXo  
L k=0 

The vector C is written in terms of H as, 

C = Fc = 	+ HHH  Hu 

(C L_i  • 	_1 )1
7, 

(3.21) 

(3.22) 

= F AIL + F'Diag[il]Diag[fl]H 
 F) I  F'Diag[fI]Fu 

	

= (o-,v2IL  + 	Diag[iir ) Diag 	1 Lxi , 

CI(  — 	
Hk 	

* k 0,1,...,L —1. 
cri, + Hk  Hk  

Given the estimates I = 	, the equalizer output 4 (xn ) is computed as I 41 
L-1 

p = 	= u = E(ck  • H k ), 
L 

L-1 	 2  2  	 sign(i n )- — _3%1 (:)- 	, 
n.0 

LE  (Xn  = 	 n=09  0,1,...,L —1. 6_ 2  

For the first equalization step, no a-priori information is available from decoder. The 

equalizer assumes in this case that LI? (xn  ) = 0, Vn, and uses 

25c' 

	

LE, (x„) = 	uHilHe 1_  = 	1 .Ekl(ck Hk),  n = 0,1,...,L —1, 	(3.23) 

to computeL(xn ) 1151. We summarize the algorithm as below 

Input: 
•IT 

	

- Received symbols [zo 	zL_I] , a-priori information [L° (x ) • • • e (x Le  L-1  ) iT 

- channel and receiver characteristics h[n] and 6,2,, 
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Initialization: 

[Zo 	Z,_, 	DFT [zo  • • • zL_I I
T 

 

[1710 	 DFT[ho  h, ". hm-i 01.(L-m)j 

v,L-1 Hk Hk  
L 	H kick  

Equalization: 

)7,, 	 0,1, 
2 

[I° 	 DFT [Yo  - • • YL _i ]T  , 

fr  
;1(‘ 	k 	Z -1 -(ti 	11- skirl k  )X k—O 1.- • L —1 k 0_ w2 ci kirk  k 	o_w2  irk  k  k ,  

54_1] DFT [ 0 

,e2 
L  
j_

En
L-1"1sign(i  n).  

	 11Le  (Xn
25e,"p 

, = 0,1,• • • ,L —1. 
o-2  

(3.24) 

Now converting the approximate implementation II formula to the frequency domain, the 

filter coefficient would then be: 

irk  Ck -- 	 K   X 
1— V a2  + viikci: 

The estimated symbol in the frequency domain at the output of the FDE would be, 

K 	Irk  	K  	l i 42   — — Y k k = 	x Z k 	x 	X k  + pX k  
1—v 62  +v rik12 	1—v 0-2  + VIC412  

where, 
2 N-1 	1 K N-1  171

k  P = —EHkck = x 	xE 
N k=0 	N 1—v 	 - 

Cr2  +111141 

(3.25) 

(3.26) 

(3.27) 

3.4 Improved Max-Log-MAP Algorithm: The Log-MAP Extension 

The Log-MAP algorithm introduced in [if)! evaluates ak  (s'), A(s) , and yk  (s', s) in 

logarithmic terms. Using this approach, the forward and backward recursion is calculated 

as in Eq: 2.35 and Eq: 2.36 respectively, and using the identity in Eq: 2.33. On one hand, 

evaluation of the Log-MAP algorithm by exploiting the Jacobian logarithmic function, 
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Eq: 2.33, results in high complexity. On the other hand, saving the results of 

log (1+ exp (-1x — y1)) in a lookup table would introduce a quantization error caused by 

truncation of the input of the lookup table (this truncation is necessary because 

otherwise, the size of the look up table becomes extremely large, and the implementation 

is infeasible). Another problem with the Log-MAP algorithm is that multiple lookup 

tables are required for a wide range of operating signal-to-noise ratios (SNRs), thus 

increasing hardware cost. Moreover, in order to evaluate each MAP L-value at the output 

of the equalizer or the decoder, correction terms should be added to the intermediate 

results from the lookup tables recursively. Reading data from these tables is time 

consuming process, and thus, it is not desirable; however, high-speed adders and 

comparators can be implemented effectively, thereby reducing power and area; therefore, 

increasing the overall speed that is desperately needed by communication systems. It 

should be noted that the logarithmic term of Eq: 2.33 is effective when Ix — yl is around 

zero; otherwise, the effect of this term is negligible. Therefore, when MacLaurin Series 

expansion is employed to describe the logarithmic term around zero and neglecting 

orders greater than one [17], it comes up with 

log (1 + exp (—x)) w, log 2 — —1 x 	 (3.28) 

and since the logarithmic term of Eq: 2.33 is always greater than zero, this equation 

using Eq: 3.28 can be rewritten as follows, 

1 
max* (x, y) --zmax(x, y) + max (0, log 2 — 2 —Ix — y1) (3.29) 

Eq: 3.29 can be easily implemented using comparators, adders and a shift register. 

The block diagram in Fig: 3.2 show the node metric calculation units. In this figure, si  

refers to the state j at time k, while s.; and s7 refer to those previous states at time k-1 

which enter state sf  at time k. the delay element shown by "D" in this figure are 

employed in order to provide the node metric values at time k-1. The values of a k  (s) in 

this figure are computed for a turbo decoder (or a turbo equalizer) with n different states 

using Eq: 2.35. It should be noted that fik  (s) is determined using the same structure in 

backward recursion. Fig: 3.3 show the detailed architecture of each block in Fig: 3.2. It is 

evident from this figure that the implementation of the additional part in Eq: 3.29 in this 

method is simple and needs a smaller ship area size compared to the additional part in 
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the Log-MAP algorithm of Eq: 2.33 that needs multiple lookup tables for a wide range of 

SNRs, which increases the chip area and, consequently, the implementation cost. 

	...._ 	Node metric 
calculation unit 

State 0 
D 

D 

	

 	Node metric 
-Ow calculation unit 

r4P 	
State 1 

D 

Node metric 
calculation unit 	 

State 2 	
A,_, (4) 

D 

Ak _, (4) 

(sr) D 

A k  (So  ) 

A k  (S1) 

	• A, (S2 ) 

D 
(4) 

■ 

Node metric 
calculation unit 

State n-1 

D 

Ak _, s.,_, 
D 

	• Ak (S»-1) 

Ak _, (s:_, 

Fig: 3.2 Node Metric Calculation Unit for n Different States 

3.5 Interleaver Design 
The interleaver is an integral part of the overall turbo encoder, to achieve 

performance close to Shannon limit, the information block length (interleaver size) K is 

chosen to be very large, usually at least several thousand bits. The best interleaver 

reorders the bits in a pseudorandom manner. Conventional block (row-column) 

interleavers do not perform well in turbo codes, except at relatively short block lengths. 

Pseudorandom interleaving patterns can be generated in many ways, for example, 

by using a primitive polynomial to generate a maximum-length shift-register sequence 

whose 
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Fig: 3.3 Detailed Architecture of New Method 

cycle structure determines the permutation. Another method uses a computationally 

simple 

algorithm based on quadratic congruence 13], 

km(m +1) 
cm  = 	2 	(modK),0_ m K, 	 (3.30) 

to generate an index mapping function cm  -* cm+i  (mod K), where K is the interleaver 

size, 

--01u = (uo ,u,,•-•,u„, ) 

 

111 = (iii 	 • ** 	r 	) 0 2  I, 	,U  K-1 

    

Fig: 3.4 Interleaver 

and k is an odd integer. For example, for K=16 and k=1, we obtain, 

(co, , C2 , • • ',Cu ) — — (0,1,3,6,10,15,5,12,4,13,7,2,14,11,9,8) (3.31) 

which implies that index 0 ( input bituo ) in the interleaved sequence u' is mapped into 

index 1 in the original sequence u (i.e., uo = ul  ), index 1 in u' is mapped into index 3 

in u ( u; = u3  ), and so on, resulting in the permutation 
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n.[1,3,14,6,13,12,10,2,0,8,15,9,4,7,11,5] 	 (3.32) 
16 

If this interleaving pattern is shifted cyclically to the right r = 8 times, we obtain the 

interleaving pattern of 

[0,8,15,9,4,7,11,5,1,3,14,6,13,12,10,2] 	(3.33) 
16 

For K a power of 2, it has proved that these quadratic interleavers have statistical 

properties similar to those of randomly chosen interleavers, and thus they give good 

performance when used in turbo coding 1181. Other good interleaving patterns can be 

generated by varying k and r, and the special case r = K/2 (used to obtain Eq: 3.33) 

results in an interleaver that simply interchanges pairs of indices. This special case is 

particularly interesting in terms of implementation, since the interleaving and 

deinterleaving functions (both used in decoding) are identical. 
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Chapter 4 

SIMULATION DETAILS 

In this chapter, the steps involved in the simulation of Turbo equalization and 

decoding are described in detail. The simulation is done in MATLAB environment. 

4.1 Channel Encoder 
The channel encoder used in the simulation is rate 1/2 constraint length y = 2 non- 

systematic convolutional encoder (Fig: 4.1). Steps involved in channel encoder are given 

below. The D represents delay element 

Flow chart for simulating the encoder is shown in Fig: 4.2, the data frame is first 

zero padded by adding zeros equal to constraint length of encoder. Next, the contents of 

shift register are assumed to be zero initially. Later the contents are updated as can be 

seen from Fig: 4.1. 

(0) 

(0) 

Fig: 4.1 A (2,1,2) Nonsystematic Feedforward Encoder 

As the code rate we have considered is rate V2 the number of code bits obtained are 

equal to, 

n= 
 (k +  y)  
coderate 

(4.1) 

where, k is the frame length of message bit frame. For every message bit 2 code bits are 

generated as is evident Fig: 4.1, the first component of code bit is obtained by modulo 2 

addition of three inputs; present data bit and previous two data bits, whereas the second 
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component of code bit is obtained by modulo 2 addition of two inputs; present data bit 

and 2nd  previous data bit. Once the code bits for present time instant the contents of shift 

register are updated, and the process of obtaining code bits for every time instant is 

continued till the data frame end. 

After obtaining the entire code bits for a given data frame, the new formed code bits 

frame is passed through pseudorandom interleaver. The interleaved bits are then 

transmitted through ISI channel. We have generated independent and identically 

distributed AWGN noise samples and added these to the received signal samples. This 

set of data is first passed through the Equalizer block, for initial equalization step no a 
priori information is so we assume the transmitted data bits are equiprobable, with this 

assumption we have )7, = 0 and vn  =1, for all n Fig: 4.3 shows the flow chart 

corresponding to equalization step. The output of equalizer is the soft extrinsic values 

which are passed to decoder. 

4.2 Simulation of Decoder 
For decoder, we first calculate the value of log domain transition metric, 

F k 	as given in Eq: 2.34. Fig: 4.4 show the decoder trellis for 

convolutional encoder used in Fig: 4.1. We consider the following, 

So  —> [0 0] 

• —> [1 0] 

S, [0 1] 

• —> [1 1] 

—1 +1 +1 —1 +1 —1 —1 +1 
= 

 
—1 +1 —1 +1 +1 —1 +1 —1 

u = [-1 +1 —1 +1 —1 +1 —1 +1] 

where, each column in v corresponds to output code bits for following set of transitions, 

[S0  —> So, S0 	S1. S, —* S2, S1  -* S3, S2  --) SO, S2 	1, S3  -> S2  , S3  -3 S3  I 

and each element in u corresponds to input bit due to which the above corresponding set 

of transitions take place. 

As there are four different states we have 16 different combinations of state 

transition at every instant of input but not all of these 16 different transitions are valid 

transitions at all time instances. Following shows the list of valid state transitions. 
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Time Instant (i) Valid Transitions 

1 (S0  -3 So )and (So  -> S,) 

2 (S0  -> So  ), (So  -> SI  ), (S, -> S2 ) and (S, -› S3 ) 

3 to (message frame length - 2) 
(S0  -> So  ), (So  -> S,),(S, -> S2 ),(S, -> S3 ) 
(S2  -> So  ), (S2  -> S, ), (S3  --> S2 )and (S3  -> S3 ) 

(message frame length - 1) (So  -> So ),(S, --> S2 ),(S2  -> So )and (S3  -> S2 ) 

(message frame length) (S0  --> So )and (S2  --> So ) 

While calculating rk  (s',$) all other invalid transition at all time instants is 

considered as -oo . Fig: 4.5 show the flow chart that corresponds to calculating of 

transition metric. Since there are 8 valid transitions for almost entire message frame 

duration (except at beginning and ending) we form a matrix of dimension 8 x msg frame 
length. 

After calculating the value of Fk  (s',$), we calculate the value of Ak  (s) and 

Bk  (s') as given in Eq: 2.35 and Eq: 2.36 respectively. For the convolutional encoding 

we considered has four different states, as such we calculate at each time instant four 

different values of Ak  (s) and Bk  (s') . 

For calculating forward recursion algorithm, we first initialize Ak  (s) at time instant 

i=1, as follows, 

0 	s = So  
(s)--= 	(s) = 	 (4.2) -co s -0  
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( Start ) 

/ Zero pad given 
random bits. 
d=[data 0 0] 

/Set Shift Registers 
to zero 
A=[0 0] 

first component of code bits 
is mod 2 addition of present 
data bit and previous two 

data bits. 
c(j) = d(i) ,E0 A(00 A(2) 

1 
second component of code 
bits is mod 2 addition of 

present data bit and 
second previous data bit 

c(j+1)=d(i)0 A(2) 

Fig: 4.2 Flow Chart for Rate V2 Constraint Length 2 Nonsystematic Encoder (Contd...) 

4v 
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update shift register 
con tents 

A(2)=A(1) 
A(1)=d(i) 

 

       

  

update counter 
i=i+1 
j=j+2 

  

       

  

4 Cc.) 

   

Fig: 4.2(Contd...) Flow Chart for Rate 1/2 Constraint Length 2 Nonsystematic 

Encoder 

The following tables explains the possible transition that are needed for calculating 

forward recursion algorithm 

Present State 

(s) 
Possible Transitions to 

Present State 
Respective Previous States 

Corresponding to Transitions (s') 

So So  -+ So  and S2  --> So  So and S2 

 Si So  -3 Si  and S2  —> S, So and S2 

S2 S1 —> S2  andS3 •—> S2 Si  and S3  

S3 S1 —> S3 and S3 --> S3 Si  and S3 

Flow chart in Fig: 4.6 give the details for calculating Ak  (s) using forward recursive 

algorithm. 
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Finally, we can write for the a-posteriori LLRs: 

1 L a k _i (s')• yk (s',$)• iok (s) 
Y k  = 

E ak_,(sl• Y k (S i  S) k (s) 
(s,„0  

( E exp[Ak _i (sl+rk  (s',$) + Bk  (s)] 
(S .  ,S) 
Up = 

E exp[Ak _i  (se) + rk  (si,$)+ Bk  

\ k = 

L (uk  I 	= ln 

= In 

(2.37) 

Now we note that we can apply the max*  function to sums of more than two exponential 

terms by making use of the result, 

max*  (x, y, z) = In(ex + + ). max [max*  (x, y), zl, 	(2.38) 

Finally, we can express the LLRs as: 

1,( 14k z) max* (Ak-1  (s')+1-k  (si,$)+Bk (s)) (s ,  
uk  

— max*  (Ak_1 (s') + Fk  (SI, S) + Bk  (s)) 
(S' 
U p:=-1 

(2.39) 

The above algorithm which computes the LLRs using the log-domain metrics 

defined in Eq: 2.32, Eq: 2.33 and Eq: 2.34, and uses the max*  function defined in Eq: 

2.31 is called log-MAP algorithm, or the log-domain BCJR algorithm. The log-MAP 

algorithm because it uses just max (*) function and a lookup table, is considerably 

simpler to implement and provides greater stability than the MAP algorithm. 

An even simpler algorithm results if we ignore the correction term In(1+ 	in 

the max*  function and simply use the approximation, 

max*  (x, y) max (x, y) 	 (2.40) 

instead. Because the correction term is bounded by 0 < ln(1+ 	) s ln(2) = 0.693, the 

approximation is reasonably good whenever Imax (x, 	7. The algorithm that 

computes LLRs using the max function instead of max*  is called the MAX-log-MAP 

algorithm. 

2.5 MAP-Equalization Algorithm 
Considering coded transmission in mobile system, a mobile radio multi-path 

channel including transmit and receive filters can be modeled as tapped delay line digital 
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Using the equation P(xk  = ±1) = Ak  • exp(  L(xk). 'xi` 
2 

, the MAP-equalizer transition can 

system. This channel with intersymbol interference (ISI) can be regarded as a 

convolutional encoder 	(Fig: 2.8). We view channel encoder and ISI-channel as a 

serially concatenated coding scheme with channel as an inner encoder. If we know the 

coefficients h, of the discrete time channel model, we can decode the channel by means 

of MAP symbol estimation or sequence estimation. Output of the ISI-channel is given 

by: 
L 

Zk  = Ehi xk _i  +W k 	 (2.41) 
i=0 

From Fig: 2.8 it is clear that ISI channel is a rate 1/1 nonsystematic convolutional 

code whose outputs are in non-binary form. Hence the only difference in the metrics of 

the equalizer and of the channel decoder appears in the calculation of the branch 

transition probabilities yk (s',$). We use "Symbol-by-Symbol" MAP-algorithm for both 

equalization and decoding. For MAP-equalizer, the branch transition probabilities can be 

calculated as mentioned in Eq: 2.22, since ISI channel is equivalent to a rate 1/1 non-

systematic convolutional code, Eq: 2.22 can be rewritten as 

P(zk ixk ) = P(zk I xk) • dz k 	 (2.40) 

For received signal zk and AWGN channel with zero mean and variance 62  

1 
P(zk I x4 ) = 	 exp 

• /27r 
(

Zk -E hi Xk-i)

2  

i=0  

2 62  
(2.41) 

  

   

be calculated as: 
L 	 2 

Zk - E hi • xk-i) 
i=0  

2 • a2  

  

1 
Yk(s',$)= 	 exp 

o-  • 
Ai, • exp

(L(xk ) • xk  
2 

(2.42) 
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Fig: 4.4 Decoding Trellis for the (2,1,2) code 

45 



i=i+1 

F;  transition) = —00 j 

Time Instant 
i=1 

Calc @ 
Eq:2.34 

( Start ) 

/ Received LLR 
Values 

47  

/ Input v, u and 
all transition 
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For calculating backward recursion algorithm, we first initialize Bk  (s) at time 

instant i=frame length, as follows, 

{0 	s' So  
.framelength +1 ( s'  In framelength+1( s'

\ 

 = —00 	S f  # S 
(4.3) 

The following tables explains the possible transition that are needed for calculating 

backward recursion algorithm 

Present State 

(s') 
Possible Transitions from 

Present State 
Respective Next States 

Corresponding to Transitions (s) 

So S 	S and S --> S 0 ----> 	0 	0 	1 SO and Si 

Si S1 -> - 	S2 and S1 ---> S3 S2 and S3 

S2 S2 ---> S and 	---> S 0 	1 So and Si 

S3 S3 -4 S2 and S3 ----> S3 S2 and S3 

Flow chart in Fig: 4.7 give the details for calculating Bk  (s') using forward recursive 

algorithm. 

After calculating all the above metrics we now calculate the a posteriori value the 

output of decoder for all the coded bits and in final iteration we also calculate the data 

estimate. The LLR for coded bits is given by similar expression as in Eq: 2.39, which is 

modified as below. 

L (ck , I z = max*  (Ak  (s') + rk  (s',$) + Bk+, (s)) 
ck;=+1 

— max*  (Ak  (s') + rk  (sf,$)+ Bk+, (s)) 

i =1,2 
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Chapter 5 

SIMULATION RESULTS 

In simulation, the performance of iterative frequency domain equalization and 

decoding is evaluated for three different ISI channels, which are given below. 

i) Channel Proakis C: It is the worst frequency selective channel due to its spectral 

nulls. The channel parameters for this channel are: h = [0.227 0.46 0.688 0.46 

0.227]. 

ii) Channel Proakis B: This ISI channel also provides poor performance for the 

receiver using MMSE criterion for equalization. The channel parameters are: h = 

[0.407 0.815 0.407]. 

iii) Channel A: h = [0.336 0.858 0.336]. 

For simulation purpose we have transmitted code bits frame of length L=512, the 

choice for this value was based on pseudorandom interleaver design, because the 

quadratic interleaver we considered have statistical properties similar to those of 

randomly chosen interleaver and gives good performance if the interleaver size is a 

power of two. We have considered 2500 such frames for simulation purpose. For bit 

error rate calculations we have considered 0-12 db SNR range, at each SNR value 

independent and identically distributed Gaussian random variable samples are 2enerated. 

Noise variance is obtained by following equation, 	
#.*Web 

Nvar = 0.5 x10 A (—SNR /10) 

and noise samples are generated using the following formula, 

for i = 1 to transmitted frame length 4.1 5Nfretv. 
n(i) = j2 x N var x erfinv (2 x rand —1) 

end 
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Fig: 5.1 show the simulation details of approximate algorithm for channel Proakis C. 

The simulation is carried for four different iterations; with increase in iteration value 

there is improvement in BER performance. Notice from figure that at iteration 1 and 

SNR = 12 db we obtained bit error rate of order 10-2. With iteration 2 this order increases 

to 10-3, finally at iteration 4 and 6 BER attains a saturated value of 7-9 x 104. 

0 
	 ChlApproximate algorithm 

10 

-1 
10 

-2 cc 
W 10 co 

-3 
10 

-4 
10 

0 1 2 3 4 5 6 7 8 9 10 11 12 
SNR(db) 

Fig: 5.1 Simulation Result of Chl Approximate Algorithm 

At Iteration 1, BER of order 10-2  is attained at SNR — (12 — 12.5 db). At iteration 2, 

BER of order 10-2  is attained at SNR (9 - 9.5 db) and BER of order 10-3  is attained at 

SNR '— (12 — 12.5 db). At iteration 4, BER of order 10-2  is attained at SNR (8.5 — 9 db) 

and BER of order 10-3  is attained at (11 - 11.5 db). 

Notice that for iteration 2 compared to iteration 1, to attain a BER Of order 10-2  there 

is a gain of — 3 db, whereas for iteration 4 compared to iteration 2 this gain is only 0.5 

db. Similarly for iteration 4 compared to iteration 2, to attain BER of order 10-3  there is a 

gain of — 1 db. 
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Fig: 5.2 show the simulation details of approximate algorithm for channel Proakis B. 

The simulation is carried for four different iterations; with increase in iteration value 

there is improvement in BER performance. Notice from figure that at iteration 1 and 

SNR = 7db, SNR = 12 db we obtained bit error rate of order 10-3  and 104 respectively. 

With iteration 2, and SNR = 7db the order increases to I0-4, finally at iteration 4 and 6 

BER attains a saturated value of 7-9 x 10-5  atSNR = 7 db. 
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Fig: 5.2 Simulation Result for Ch2 Approximate Algorithm 

At Iteration 1, BER of order 10 is attained at SNR – (8 – 8.5 db). At iteration 2, 

BER of order 10'3 is attained at SNR 5 db and BER of order 10-4  is attained at SNR 

7.5 db. At iteration 4, BER of order 10-3  is attained at SNR (4 – 4.5 db) and BER of 

order 104  is attained at (6 – 7 db). 

Notice that for iteration 2 compared to iteration 1, to attain a BER Of order 10.3  there 

is a gain of (3 – 3.5 db), whereas for iteration 4 compared to iteration 2 this gain is only 

(0.5 – 1 db). Similarly for iteration 4 compared to iteration 2, to attain BER of order 10-4  

there is a gain of (1 – 1.5 db). 
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Fig: 5.3 show the simulation details of approximate algorithm for channel A. The 

simulation is carried for three different iterations; with increase in iteration value there is 

improvement in BER performance. Notice from figure that at iteration 1 for SNR = 6db 

and SNR = 9 db we obtained bit error rate of order 104  and 10-5  respectively. With 

iteration 2, and SNR = 6db the order increases to 6-7 x 10-5, finally at iteration 4 BER 

attains a value of 3 x 10-5. 
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Fig: 5.3 Simulation Result for Ch3 Approximate Algorithm 

At Iteration 1, BER of order 10-3  is attained at SNR (5 – 5.5 db). At iteration 2, 

BER of order 10-3  is attained at SNR – 4 db and BER of order 10-4  is attained at SNR 

5.5 db. At iteration 4, BER of order 10-3  is attained at SNR 3.5 db and BER of order 

10-4  is attained at 5 db. 

Notice that for iteration 2 compared to iteration 1, to attain a BER Of order 10-3  there 

is a gain of – (1 – 1.5 db), whereas for iteration 4 compared to iteration 2 this gain is 1.5 

db. Similarly for iteration 4 compared to iteration 2, to attain BER of order 10-4  there is a 

gain of –0.5 db. 
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Fig: 5.4 show the simulation details of approximate algorithm with average mean 

for channel Proakis C. The simulation is carried for three different iterations; with 

increase in iteration value there is no improvement in BER performance. Notice from 

figure that at iterations 1, 2, and 4 the BER performance obtained is similar to that of the 

BER performance obtained in iteration 1 for approximate algorithm. 
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Fig: 5.5 show the simulation details of approximate algorithm with average mean 

for channel Proakis B. The simulation is carried for three different iterations; with 

increase in iteration value there is no improvement in BER performance. Notice from 

figure that at iterations 1, 2, and 4 the BER performance obtained is similar to that of the 

BER performance obtained in iteration lfor approximate algorithm. 
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Fig: 5.5 Simulation Result for Ch2 Average Mean Algorithm 
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for channel A. The simulation is carried for three different iterations; with increase in 

iteration value there is no improvement in BER performance. Notice from figure that at 

iterations 1, 2, and 4 the BER performance obtained is better to that of the BER 

performance obtained in iteration 1 for approximate algorithm at SNRs greater than 7 db. 
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Fig: 5.7 show the simulation details of approximate algorithm with average variance 

for channel Proakis C. The simulation is carried for four different iterations; with 

increase in iteration value there is good improvement in BER performance. Notice from 

figure that at iterations 1, SNR = 12db BER is of 2 x 10.2  whereas at iteration 2 for same 

SNR value BER is .of order1.5 x 10-3  and for iterations 4 and 8, the BER attains a value 

around 1-2 x 104  which is good performance compared to approximate algorithm. 

Fig: 5.7 Simulation Result for Chl Average Variance Algorithm 

At Iteration 1, BER of order 10-2  is attained at SNR – (12 – 12.5 db). At iteration 2, 

BER of order 10-2  is attained at SNR – (9 - 9.5 db) and BER of order 10-3  is attained at 

SNR – (12 – 12.5 db). At iteration 4, BER of order 10-2  is attained at SNR (7.5 – 8 db) 

and BER of order 10-3  is attained at –10 db. 

Notice that for iteration 2 compared to iteration 1, to attain a BER Of order 10r2  there 

is a gain of – 3 db, whereas for iteration 4 compared to iteration 2 this gain is 1.5 db. 

Similarly for iteration 4 compared to iteration 2, to attain BER of order 10-3  there is a 

gain of (2 – 2.5 db). 
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Fig: 5.8 show the simulation details of approximate algorithm with average variance 

for channel Proakis B. The simulation is carried for two different iterations; with 

increase in iteration value there is good improvement in BER performance. Notice from 

figure that at iterations 1, SNR = 8 db and SNR = 12db BER is 2 x 10-3  and 5 x 10-5  

respectively, whereas at iteration 2 for SNR = 8 db value BER is of order 9 x 10-6. 
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Fig: 5.8 Simulation Results for Ch2 Average Variance Algorithm 

At Iteration 1, BER of order 10 is attained at SNR (8.5 — 9 db) and BER of order 
10-4  is attained at SNR (11 - 11.5 db). At iteration 2, BER of order 10-3  is attained at 

SNR (4 - 4.5 db) and BER of order 10-4 is attained at SNR (5.5 — 6 db). 

Notice that for iteration 2 compared to iteration 1, to attain a BER Of order 10-3  there 

is a gain of — 4.5 db. Similarly to attain BER of order 104  there is a gain of 5.5 db. 
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Fig: 5.9 show the simulation details of approximate algorithm with average variance 

for channel A. The simulation is carried for three different iterations; with increase in 

iteration value there is good improvement in BER performance. Notice from figure that 

at iterations 1, SNR = 5 db and SNR = 9 db BER is — 10-3  and —5 x 10-6  respectively, 

whereas at iteration 2 for SNR = 5 db value BER is of order — ie. For iteration 4 at 

SNR = 5 db BER is of order — 10-6. 

Ch 3 Average Variance 

Fig: 5.9 Simulation Results for Ch3 Average Variance Algorithm 

At Iteration 1, BER of order 10-3  and 104  are attained at SNR (5 — 5.5 db) and — 7 

db respectively. At iteration 2, BER of order 10, 104, and 10-5  are attained at SNR — 3 

db, 4 db, and 5 db respectively. At iteration 4, BER of order 104  and 10 are attained at 

SNR 3.5 db and 4.5 db. 

Notice that for iteration 2 compared to iteration 1, to attain a BER of order 10-3  and 

104  there is a gain of — (2 — 2.5 db) and 3 db respectively, whereas for iteration 4 

compared to iteration 2, to attain BER of order 10 and 10 the gain is only 0.5 db for 

both. 
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Chapter 6 

CONCLUSIONS AND FUTURE SCOPE 

In this dissertation, iterative frequency domain equalization and improved MAX-

LOG-MAP decoding technique has been considered in detail. In this approach MMSE 

linear equalizer has been used to equalize the ISI-channel, this Equalizer has replaced the 

original MAP equalizer. We have used the approximate version of linear MMSE 

equalization, in addition few more approximations were also considered. We have 

evaluated the performance of these techniques for rate Y2, constraint length 2, non-

systematic convolutional encoder as such we need 4 states MAP decoder. 

For MAP decoding we have used an improved MAX-LOG-MAP algorithm as this 

algorithm produces results almost equivalent to the optimum LOG-MAP algorithm and 

has obvious advantage over implementation. 

The following are the assumptions made for MMSE Linear equalization, 

• No a priori information about transmitted bits as such the transmitted bit 

statistics are zero mean and unit variance, for all the transmitted bits in a 

frame. This assumption is taken for initial iteration, and for further iteration 

the soft extrinsic output from the decoder is taken as a priori information 

1 and we calculate the statics according to .Vn 	
2 

tanh — (x„ )
J 
 and 
J 

vn  = 1 — kn r . 

❖ For first iteration, we consider no a priori information as such the statics are 

same as those with the first iteration assumptions considered in previous 

assumption. For further iterations, we take the block average of mean, as 

given by .5e =EY, =Etanh 1re  (xn ) 1 for entire frame and assign this 
do 	Vn 	l 

average value for all Tcn  . Similar to previous assumption we consider 

vn  =1 —Ixn1 2 . 

+ In this assumption, for first iteration, similar to previous assumption we 

consider no a priori information. For further iterations we calculate the 

60 



statistics according to Yn  = tanh 
C2 

 (;) and consider block average of 
2 e  

variance, as given by v = E tin  = E 1 —142 
Vn 	Vn 

From simulation results it may be observed that the BER performance 

characteristics increases with successive iterations and the improvement in performance 

of iterative Equalization and decoding is dependent on channel characteristics. We have 

considered three different channel characteristics for simulation purpose. 

Approximate algorithm with average variance has better performance 

characteristics. From Fig: 5.7, Fig: 5.8 and Fig: 5.9 observe that at low SNR values we 

are obtaining good order of BER, but this gain in performance is obtained at a cost of 

complexity as this algorithm requires calculation of matrix inversion whose order will be 

dependent on transmitted bit frame length. 

Even for highly dispersive channel Proakis C we have obtained a BER of Order le 

at SNR = 12 db with only four iterations. Hence it may be concluded that the iterative 

equalization and decoding is an efficient method for equalization and decoding in case of 

channels with significant amount of ISI. 

Obviously there is a future scope for this work, instead of calculating the time 

varying filter coefficients in every iteration using matrix inversion, there are recursive 

algorithms to compute them which reduces load tremendously. Other powerful coding 

methods like Low Density Parity Check (LDPC) codes can also be used for encoding 

and decoding for obtaining still better performance. 
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