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ABSTRACT 

In today's society, a growing number of users are demanding more sophisticated 

services from wireless communication devices. In order to meet these rising demands, it 

has been proposed to- increase the capacity of the wireless channel by using more than 

one antenna at the transmitter and receiver, thereby creating multiple-input multiple-

output (HOMO) channels. Using MIMO communication techniques is a promising way to 

improve wireless communication technology because in a rich-scattering environment the 

capacity increases linearly with the number of antennas. However, increasing the number 

of transmit antennas also increases the complexity of detection at an exponential rate. So 

while MIMO channels have the potential to greatly increase the capacity of wireless 

communication systems, they also force a greater computational burden on the receiver. 

Even suboptimal MIMO detectors that have relatively low complexity have been shown 

to achieve unprecedented high spectral efficiency. However, their performance is far 

inferior to the optimal MIMO detector, meaning they require more transmit power. The 

fact that the optimal MIMO detector is an impractical solution due to its prohibitive 

complexity leaves a performance gap between sub-optimal detectors (ZF, MMSE,SIC) 

that require reasonable complexity and the optimal detector. 

In this thesis work, the performance comparison of different MIMO detectors 

namely, optimal, sub-optimal and near-optimal detectors are done. The MIMO detection 

is then extended to iterative decoding scheme to improve the performance. 
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Chapter 1 

Introduction 

Wireless communications is one of the big engineering success stories of the last 

20 years not only from a scientific point of view, where the progress has been 

phenomenal, but also in terms of market size and impact on society. In fact wireless 

permeates every aspect of our lives. The demands on bandwidth and spectral availability 

are endless as the wireless systems continue to strive for ever higher data rates. Multiple 
access wireless communications is being deployed for both fixed and mobile applications. 

In fixed applications, the wireless networks provide voice or data for fixed subscribers. 

Mobile networks offering voice and data services can be divided in to two classes: high 

mobility, to serve high speed vehicle borne users, and low mobility, to serve pedestrian 
users. 

The gradual evolution of mobile communication systems follows the quest for high 
data rates, measured in bits/sec (bps) and with a high spectral efficiency, measured in 

bps/Hz. The first mobile communications systems were analog and are today referred to 
as systems of the first generation. In the beginning of 1990s, the first digital systems 
emerged, denoted as second generation (2G) systems, the most popular 2G system 
introduced was the global system for mobile communications (GSM)[1], which operates 
in the 900MHz or the 1800MHz band and supports data rates up to 22.8bbit/s. Another 

popular 2G system is the TDMA/136, which is also a digital cellular system. To 
accomplish higher data rates, two add-ons were developed for GSM, namely high-speed 
circuit switched data (HSCSD) and the general packet radio service (GPRS), providing 
data rates up to 38.4 kbit/s and 172.2 kbit/s, respectively. 

The demand for yet higher data rates forced the development of a new generation of 
wireless systems, the so- called third generation (3G). 3G systems are characterized by a 
maximum data rate of at least 384kbit/s for mobile and 2Mbitls for indoors. 

One of the leading technologies for 3G systems is the now well-known universal 
mobile telephone system (UMTS)[also referred to as wideband code-division multiplex 
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(WCDMA) or ULTRA FDD/TDD].UMTS represents a revolution in terms of services 

and data speeds from today's "second generation" mobile networks. UMTS and 

WCDMA are already a reality and have been used in many parts of the world. To yield 

3G data rates, an alternative approach was made with the enhanced data rates for GSM 
evolution (EDGE) concept. The EDGE system is based on GSM and operates in the same 

frequency bands. The significantly enhanced data rates are obtained by means of a new 

modulation scheme, which is more efficient than the GSM modulation scheme. As for 

GSM, two add-ons were developed for EDGE, namely enhanced circuit switched data 
(ECSD) and the enhanced general packet radio service (EGPRS). The maximum data 

rate of the EDGE system is 473.6kbit/s, which is accomplished by means of EGPRS. 

2.5G systems, based on GPRS technology, a natural evolutionary stepping stone towards 

UMTS also provided faster data services. 

The new IEEE and High Performance Radio Local Area Network (HIPERLAN) 

standards specify bit rates up to 54Mbit/s, although 24Mbit/s will be the typical rate used 

in most applications. Such high data rates impose large bandwidths, thus pushing carrier 

frequencies for values, higher than the UHF band. 

The goal of the next generation of wireless systems-the fourth generation 
(4G) is to provide data rates yet higher than the ones of 3G while granting the same 

degree of user mobility. 4G is expected to deliver more advanced versions of the same 

improvements provided by 3G, such as enhanced multimedia, smooth streaming video, 

universal access and portability across all types of devices. 4G enhancements are. 

expected to include world wide "roaming" capability. As was projected for the ultimate 

3G system, 4G might actually connect the entire globe and be operable from any location 

on-or above-the surface of earth. This aspect makes it distinctly different from the 

technologies developed until now. 

In addition to 3G's technical challenges, there are problems from a financial aspect, 

such as justifying the large expense of building systems based on less-than-compatible 

2G technologies. In contrast, 4G wireless networks that are Internet Protocol (IP)-based 

have an intrinsic advantage over their predecessors. IP tolerates a variety of radio 

protocols. It allows you to design a core network that gives you complete flexibility as to 

what shape the access network will take. A 4G IP network has also certain financial 
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advantages. Equipment costs are much lower than what they used to be for 2G and 3G 

systems. 

1.1 Multiple Input Multiple-Output System[2J 
Perhaps one of the most interesting trends in wireless communication is the 

proposed use of multiple input multiple output (MIMO) systems. A MIMO system uses 

multiple transmitter antennas and multiple receiver antennas to break a multipath channel 

into several individual spatial channels. Now MIMO systems represent a huge change in 

how wireless communication systems are designed. This change reflects how we view 

multipath in a wireless system. 

The Prospects of MIMO 
From an information theoretic perspective, increasing the number of antennas 

essentially allows to achieve higher spectral efficiency compared to single-input single-

output (SISO) systems. Actual transmission schemes exploit this higher capacity by 

leveraging three types of partially contradictory gains: 

• Array gain refers to picking up a larger share of the transmitted power at the 

receiver which mainly allows to extend the range of a communication system and to 

suppress interference. . 

• Diversity gain counters the effects of variations in the channel, known as fading, 

which increases link-reliability and QoS. . 

• Multiplexing gain allows for a linear increase in spectral efficiency and peak data 
rates by transmitting multiple data streams concurrently in the same frequency band. The 

number of parallel streams is thereby limited by the number of transmit or receive 

antennas, whichever is smaller. 

The Old Perspective: The ultimate goal of wireless communications is to combat the 

distortion caused by multipath in order to approach the theoretical limit of capacity for a 

band-limited channel. 

The new Perspective: Since multipath propagation actually represents multipath 

channels between a transmitter and receiver, the ultimate goal of wireless 

communications is to use multipath to provide higher total capacity than the theoretical 

limit for a conventional bandlimited channel. 
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The basic idea is to usefully exploit the multipath rather than mitigate it, 

considering the multipath itself as a source of diversity that allows the parallel 

transmission of N independent substreams from the same user. The exploitation of 
diversity and parallel transmission of several data streams on different propagation paths 

at the same time and frequency allows for extremely large capacities compared to 

conventional wireless systems. The prospect of many orders of magnitude improvement 

in wireless communication performance at no cost of extra spectrum (only hardware and 

complexity are added) is largely responsible for the success of MIMO as a topic for new 
research. Pioneering work by Foschini [3], and Telatar [4] ignited much interest in this 

area by predicting remarkable spectral efficiencies for wireless systems with multiple 

antennas when the channel exhibits rich scattering and its variations can be accurately 
tracked. 

The large spectral efficiencies associated with MIMO channels, are based on the 

premise that a rich scattering environment provides independent transmission paths from 
each transmit antenna to each receive antenna. Therefore, for single-user systems, a 

transmission strategy that exploits this structure achieves capacity on approximately 

min(N,M) separate channels, where N is the number of transmit antennas and M is the 

number of receive antennas. Thus, capacity scales linearly with min(N, M) relative to a 

system with just one transmit and one receive antenna. This capacity increase requires a 
scattering environment such that the matrixes of channel gains between transmit and 

receive antenna pairs has full rank and independent entries, and that perfect estimates of 
these gains are available at the receiver. 

.1.1.1 Detection in MIMO Systems 
Of course, the benefits of using multiple antennas at the transmitter and receiver 

do not come without costs. One fundamental obstacle for MIMO systems is the increased 

complexity of recovering the transmitted information. As the capacity increases linearly 

with the number of antennas, the complexity of the detection problem increases 

exponentially with the number of transmit antennas. Among the various popular MIMO 

wireless communication schemes, the BLAST (Bell Labs Layered Space Time) 
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approaches are particularly attractive. BLAST attempts to achieve the potentially large 
channel capacity offered by the MIMO system. Diagonal Bell Labs Layered Space-Time 

(DBLAST) algorithm has been proposed by Foschini for this purpose, which is capable 
of achieving a substantial part of the MIMO capacity [5]. However, a high complexity of 

the algorithm implementation is its substantial drawback. A simplified version of the 

BLAST algorithm is known as Vertical Bell Labs Layered Space-Time (VBLAST). It is 

capable of achieving high spectral efficiency while being relatively simple to implement. 

The optimal detection is performed by the maximum-likelihood (ML) detector, 

which finds the best symbol vector from among an exponential number of possibilities, is 

prohibitively complex even for small numbers of channel inputs. Suboptimal detectors 

can achieve the same spectral efficiency as the ML detector, but they need more transmit 

power to do so. In fact, the performance of MIMO detectors is measured by the amount 
of transmit power, or signal-to-noise ratio (SNR), they require to recover the transmitted 

data. The ML detector has optimal performance, but requires exponential complexity in 

return. Some suboptimal detectors like the zero-forcing (ZF) detector and the minimum 

mean square error (MMSE) detector require only linear complexity, but . they cannot 
achieve optimal performance. This gives rise to an inherent trade-off between 

performance and complexity in MIMO detection. 
However, recent advances in signal processing techniques have led to the 

development of the Sphere Decoder (SD) which is based on the enumeration of points in 

the search set that are located with in a sphere of some radius centered at a target. It is 
also called `Lattice decoder' which offers near-ML performance for MIMO channels at 

an average case with polynomial time complexity. Lattice (sphere) decoders are used to 
simplify the exponentially complex search problem in ML decoders for MIMO systems 

with higher modulation constellations. Two types of lattice decoding algorithms are 
available in the literature, namely Fincke-Pohst algorithm [6] [7] called Sphere decoder 

(SD)and Schnorr-Euchner algorithm[8][9] called (SE).The performance of these two 
algorithms are equal but they differ in the search method employed. 

A new approach to solving the detection problem is created by viewing the 
channel output as a point in the lattice generated by the channel matrix. This approach 

helps the detector because the matrix that generates this lattice is not unique, and the 
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receiver can find "better" matrices that generate the same lattice. Lattice-aided detectors 

achieve near- ML performance by using a lattice-reduction algorithm [10] (such as the 

LLL algorithm, KZ algorithm) to create a more orthogonal effective channel. However, 

fmding the best lattice-reduction is in general an NP-complete problem, and the viability 
of lattice-aided detection is limited in practice by the high complexity of lattice-reduction 

algorithms. Particularly on wireless channels that vary rapidly with time, the high 

overhead of lattice reduction can waste much of the computational savings. 

1.2 Statement of problem 
This work is aimed at performance study of signal detection strategies in MIMO 

system. 
The work is presented as follows 

❖ Capacity of MIMO channels , MIMO detection schemes and their complexity 

❖ Performance evaluation of iterative detection and decoding of MIMO channel. 

1.3 Organization of the Report 
Chapter one gives an overview of the evolution of wireless systems through 2G, 

3G and 4G systems. It summarizes the problem statement for the thesis work. 
Chapter two reviews the MIMO system capacity which achieves large spectral 

efficiencies so as to meet high bit rate demand in wireless communications, and discus 

the MIMO detection schemes which includes optimal detector, near-optimal detectors 
and sub-optimal detectors. Detailed analysis of near-optimal detectors and their 

complexity will also be discussed. 
Chapter three discusses the application of MIMO detection to iterative decoding 

which improves the performance. 

Chapter four presents the implementation details of different MIMO detection 
schemes and iterative decoding of MIMO detection. Simulation results are also included 

and the related issues are studied. 
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Chapter 2 

Capacity of MIMO Channels and Detection Schemes 

Multiple-input multiple-output (MIMO) systems are today regarded as one of the 

most promising research areas in wireless communications. This is due to the fact that a 

MIMO channel can offer a significant capacity gain over a traditional Single-Input 
Single-Output (SISO) channel. In this chapter we present the capacity of MIMO channels 

and we then introduce different MIMO decoding solutions. Sphere decoding algorithm 
and Schnorr-Euchner strategy are presented in detail. 

2.1 MIMO System Model 
The idea behind MIMO is that the signals on the transmit antennas at one end and 

the receive antennas at the other end are "combined" in such a way that the quality (bit-
error rate or BER) or the data rate (bits/sec) of the communication for each MIMO user 

will be improved. Consider a MIMO system with a transmit array of M antennas and a 
receive array of N antennas. The block diagram of such a system is shown in Fig.2. 1. 

nN 

Figure 2.1: A MIMO system model 



The MIMO channel model can be represented as 

y=K+n 	 (2.1) 

where s = [s, s2 ..........SM1T is the transmitted symbol vector, y = [y, y..........., yv ]T is the 

received symbol vector, and n = [n1 , n2,.......nN ] is an independent identically distributed 

(i.i.d) complex zero—mean Gaussian noise vector with variance a2 per dimension. 

Moreover H denotes the N x M channel matrix ,whose elements h;j represent the 

complex transfer functions from the j th transmit antenna to the i th receive antenna, and 

are all i.i.d. complex zero-mean Gaussian with variance 12 per dimension. it is assumed 

that the channel matrix is random and that the receiver has perfect channel knowledge. It 

is also assumed that the channel is memoryless, i.e., for each use of the channel an 

independent realization of H is drawn. 

A general entry of the channel matrix is denoted by fh;, } . This represents the 

complex gain of the channel between the jth transmitter and the ith receiver. With a 

MIMO system consisting of M transmit antennas andN receive antennas, the channel 
matrix is written as 

1111 ... "1M 
H= 

hNl ... hwnr 

hij =a+j/3 

_ (a2 +F' 2 )Eb-i tan(Qla) 

=h;~l•e 

In a rich scattering environment with no line-of-sight (LOS), the channel gains I h I are 

usually Rayleigh distributed. 

2.2 SISO Channel Capacity [11][121 
If the input and output of a memoryless wireless channel are the random variables 

X and Y respectively, then the channel capacity is defined as 
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C = max I (X; Y) 	 (2.2) 
p(x) 

where I(X;Y) represents the mutual information between X and Y. Equation (2.2) 

states that the mutual information is maximized with respect to all possible transmitter 
statistical distributions p(x). Mutual information is a measure of the amount of 

information that one random variable contains about another variable. The mutual 

information between X and Y can also be written as 

I (X; Y) = H(Y) — H(Y/X), 

where H(Y I X) represents the conditional entropy between the random variables X and 

Y. The entropy of a random variable can be described as a measure of the amount of 

information required on average to describe the random variable. It can also described as 
a measure of the uncertainty of the random variable. Note that the mutual information 

between X and Y depends on the properties of the channel (through a channel matrix H) 
and the properties ofX (through the probability distribution of X). 

The ergodic (mean) capacity of a random channel with M =1, and N = I and an 

average transmit power constraint PT  can be expressed as 

C=E- max max I(X;Y)} 	 (2.3) 
 111 

where P is the average power of a single channel codeword transmitted over the channel 

and EH  denotes the expectation over all channel realizations. The capacity of the channel 

is now defined as the maximum of the mutual information between the input and the 
output over all statistical distributions on the input that satisfy the power constraint., If 

each channel symbol at the transmitter is denoted by s, the average power constraint can 

be expressed as 

P= E[1s12 ]_< PT 

Using (2.3), the ergodic (mean) capacity of a SISO system (M = N = 1) with a random 

complex channel gain 1i is given by 

C=EH {log,(1+p•Jai,12 )} 	 (2.4) 
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where p is the average signal-to-noise (SNR) ratio at the receiver branch, If I4 , I is 

Rayleigh, Ih„ 12 follows a chi-squared distribution with two degrees of freedom. Eq.(2.4) 

can then be written as 

C=EH{log2(l+p•Z2)} 

where ,~z is a chi-square distributed random variable with two degrees of freedom. 

SISO Capacity 

I 
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Figure 2.2: Ergodic capacity a Rayleigh fading SISO channel (dotted line) 

compared to the Shannon capacity of a SISO channel (solid line). 

Fig.2.2 shows the Shannon capacity of a Gaussian channel (solid line) and the capacity of 

a Rayleigh fading channel (dotted line). The capacity of Rayleigh fading channel 

approaches Shannon capacity by a difference of Ito 2 dB. As we deploy more receiver 

antennas the statistics of capacity improve and with N receiver antennas, we have a 
SIMO system with capacity given by [11] 

N 
C=Eg { lo 2 1+p 	h; 12 	 (2.5) 
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where hL are the entries of a column vector represents a channel matrix. Contrasting with 

Equation (2.4), we see that Ih„ I2 is replaced by a sum of squares. We call this system an 

optimum combining system (OC (N)).Optimum refers to taking full advantage of what 
the received vector tells us about the transmitted signal. The crucial feature of Eq.(2.5) is 
that increasing the value of N only results in a logarithmic increase in average capacity. 

Similarly, if we opt for transmit diversity, in the common case, where the transmitter 
does not have channel knowledge, we have a multiple-input—single-output (MISO) 

system with Mtransmitter antennas and the capacity is given by 
M 

C = log2 1 + ~' 1 l h. lZ 
M ;_1 

here h, represents the entries of a row vector represents the channel matrix, the 

normalization by M ensures a fixed total transmitter power. Here again the capacity has a 

logarithmic relationship with M. 
We next consider the use of diversity at both transmitter and receiver giving rise 

to a MIMO system. 

2.3 MIMO Channel Capacity[11J[121 
The capacity of a random MIMO channel with power. constraint PT can be 

expressed as 
C=EH { max I( ;J)'  (2.6) 

lll P(X):!r(~)SPT 	 1J) 

where () = E 19PI } is the covariance matrix of the transmit signal vector s . Irrespective 

of the number of transmit antennas, the total transmit power is limited to PT . By using Eq 

(2.1) and the relation between mutual information and entropy, (2.6) can be expanded as 

follows for a given ft 

I(s;y)=h(y)—h(y/§) 

=h(y)—h(K+n/s) 

1 Subscript j denotes the Hermitian transpose 
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=h(y)—h(n) 
	

(2.7) 

where h (•) in this case denotes the differential entropy of a continuous random variable. 

It is assumed that the transmit vector and the noise vector n are independent. Eq. (2.7) 
is maximized when y is Gaussian, since the normal distribution maximizes the entropy 

for a given variance. The differential entropy of a real Gaussian vector y E R" with zero 

mean and covariance matrix K is equal to I loge  ((27re)" det K) . For a complex Gaussian 

vector y E C" , the differential entropy is less than or equal to Iog2  det (;reK) with 

equality if and only if y is a circularly symmetric complex Gaussian with 

K = E { yyt { .Assuming the optimal Gaussian distribution for the transmit vector s , the 

covariance matrix of the received complex vector y is given by [10] 

E{yyt } = E{(K +n)(K+n)1  
= E {IL !Ht } + E {nnt } 

=Kd  +Kn 
	

(2.8) 

where K d  = H(DH'f  , and the subscript d and n denote the desired part and noise part 
respectively of Eq.(2.8). The maximum mutual information of a random MIMO channel 
is then given by 

I(s;y)=h(y) —h(n) 

= log2  [det (ice (Kd  + k"))] — Iog2  [det (7reKn )] 

= log, [det (Kd  + K")] — loge  [det (K")] 

=1og2  Idet ((K d +K")(K")-1)1 

=1og2 
 L

det (Kd  (K°)-1 + IN  )] 

=1og2 [det(ft.i!t (K")-1  + IN)] 
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When the transmitter has no knowledge about the channel, it is optimal to use a uniform 
power distribution. The transmit covariance matrix is then given by 

=MIN 

It is also common to assume uncorrelated noise in each receiver branch described by the 

covariance matrix K" = c .[ . The ergodic (mean) capacity for a complex AWGN 

MIMO channel can then be expressed as 

C=EH loge  det(IN + PT  iiI1 
Cr M 

This can also be written as 

C = EH  loge  det (IN  + M Hit )IJ (2.9) 

where p = PZ is the average signal-noise ratio(SNR) at each receiver branch By the law 
6 

of large numbers, the term I HHt -> IN  as M gets large and N gets fixed. Thus the 

capacity in the limit of large M is 

C=EH {N•log2 (l+p)} 	 (2.10) 

Further analysis of the MIMO channel capacity given in (2.9) is possible by 

diagonalizing the product matrix HHt  either by eigenvalue decomposition or singular 
value decomposition. By using eigenvalue decomposition, the matrix product is written 
as 

HHt = EAEt 	(2.11) 

where E is the eigenvector matrix with orthonormal columns and A is a diagonal matrix 
with the eigenvalues on the main diagonal. Using this notation (2.9) can be written as 

C = EH  loge  det I, + M EAEt )If (2.12) 

The matrix product HHt can also be described by using singular value decomposition 

on the channel matrix H written as 

H = UY-Vt 	(2.13) 
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where U and V are unitary matrices of left and right singular vectors respectively, and 

, is a diagonal matrix with singular values on the main diagonal. All elements on the 

diagonal are zero except for the first k elements. The number of non-zero singular values 

k equals the rank of the channel matrix. Using (2.9) and (2.13), the MIMO channel 

capacity can be written as 

C = E f  1ogZ  det ( IN  + M U Y-t  ut)]} 	 (2.14) 

After diagonalizing the product matrix HHt, the capacity formulas of the MIMO 

channel now includes unitary and diagonal matrices only. It is then easier to see that the 

total capacity of a MIMO channel is made up by the sum of parallel AWGN SISO 

subchannels. The number of parallel subchannels is determined by the rank of the 

channel matrix. In general, the rank of the channel matrix is given by 

rank (A) = k <_ min (M, N) 	 (2.15) 

Using (2.15) together with the fact that the determinant of unitary matrix is equal to 1, 

(2.12) and (2.14) can be expressed respectively as 
k 

C = EH 	log, l + M 	 (2.16) 

k 

=EH  logy l+M6,2 	 (2.17) 

In (2.16), A.;  are the eigenvalues of the diagonal matrix A and in (2.18) o are the 

squared singular values of the diagonal matrix Y . The maximum capacity of a MIMO 

channel is reached in the unrealistic situation when each of the M transmitted signals is 

received by the same set of N antennas without interference. With optimal combining at 

the receiver and receive diversity only (M = 1), the channel capacity 

can be expressed as 

C=EH {loge (l+p•xzN )} 
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where %N is the chi-distributed random variable with 2N degrees of freedom. If there 

are M transmit antennas and optimal combining between N antennas at the receiver, the 

capacity can be written as 

C=EK M-log z (1+M•x2N ) 	 (2.19) 

Eq.(2.19) represents the upper bound of a Rayleigh fading MIMO channel. Fig.2.3 shows 

the comparison between Shannon capacity of SISO channel and the upper bound of 

(2.19) with M = N =6 [11]. The Figure clearly shows the potential of MIMO technology. 
Er odic capacity of a MIMO fading channel 

h  k 

~+y  ♦s.ilay;.a.iiY>.ai~.l.S a.a.,naasaiaY!<1aV.a as.. e~ salasaYlYr ...ata.!!sY of ai. ~t Ya.Yia IIYia.IAA - 

i y 	•.f.aY.~Y.,..a.a.ya.a.a.aaVj.sa,.n,.iyYi..i.isa'}..tYfaaY a  a, alai. ~................ajaY.YS.fa 

,$P'.'  ,....r......Ya.,.j.:,...rr¢.r......:a~S...........  ....y'~•.as...~......... ~>........ j........ 

:~✓  .....r:j........r...... ,.}......  .i..<.  ...• .y........j.....>...{........j....... 

3L  0  ao  -s  -3  -s  .7a  3~  as3 

SNR [dB] 

Fig.2.3. The Shannon capacity of a SISO channel (dotted line) 

compared to the ergodic capacity of a Rayleigh fading MIMO 

channel (solid line) with M = N =6. 
2.3.1 Antenna Selection 

The capacity of the MIMO channel is reduced with a rank deficient channel 

matrix. A rank deficient channel matrix means that some columns in the channel matrix 

are linearly dependent. When they are linearly dependent, they can be expressed as a 

linear combination of the other columns in the matrix. The information within these 

columns is then in some way redundant and is not contributing to the capacity of the 

channel. The idea of transmit antenna selection is to improve the capacity by not using 

the transmit antennas that correspond to the linearly dependent columns, but instead 
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where /2(•) and I(.) denote the real and imaginary parts (•) respectively . Since the 

elements of H are assumed to be i.i.d complex Gaussian, H has a full rank of 2M . 

Therefore , the set {Hs} can be considered as the lattice A(H) generated by H. The 

rows of H are called basis vectors for A(H) , 2M is said to be the dimension of A(H) , 

and the transmitted vectors acts as the coordinates of a lattice point. 

At a receiver, a detector forms an estimate of the transmitted symbol, .. The optimal 

detector  minimizes  the average probability of error, i.e., it minimizes p( # s) This is 

achieved by the maximum-likelihood (ML) design, which performs the non-linear 

optimization. 

There are three categories of solutions to MIMO decoding, the optimal Maximum 

Likelihood decoder (MLD), the near-optimal sphere decoder and the sub-optimal 

decoder. 

2.4.1 The Optimal Maximum Likelihood Decoder 
Consider a linear MIMO system shown in fig 2.1 To communicate over 

this channel, we are faced with the task of detecting a set of m = 2M transmitted 
symbols from a set of n = 2N observed signals. Observations are corrupted by the non-

ideal communication channel, typically modelled as a linear system followed by an 
additive noise vector. We take the transmitted symbols from a known finite alphabet S2 

of size B . The detector role is to choose one of the B"' possible transmitted symbol 

vectors based on the available data. If s is the estimated symbol vector ,then the symbol 

vector whose (posterior) probability of having been sent, given the observed signal vector 

y, is the largest: 

❑ 	arg max p (s was sent I y is observed) 	 (2.21) 

= arg max p (y is observed  I s was sent) p (s was sent) 	(2.22) 
s E Qm 	 P (Y is observed) 

Equation (2.21) is known as the Maximum A posteriori Probability (MAP) detection rule. 

Making the standard assumption that the symbol vectors s E B'" are equiprobable, i.e., 
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that p ( s was sent ) is constant the optimal MAP detection rule can be written as 

D arg max p (y is observed I s was sent) 	 (2.23) 
SEnm 

A detector always returns an optimal solution satisfying (2.22) is called Maximum 

Likelihood (ML) detector. Since n is assumed as additive white Gaussian noise, the 

probability density function of n is 

- 12  Il y-Hs l2 

p(y is observed) s was sent )= 1 	e  26 
2n (27ca ) 

and consequently the maximum likelihood estimate (2.23) for s given y is 

(2.24) 

1  S = arg max 
sESim (2,162)n 

1  11y Hsll2 -  
e 262  

= arg min (ily-HS112 ) 	 (2.25) 
sESZm  

Thus, the ML detector chooses the message i which yields the smallest distance 

between the received vector, y , and hypothesized message, Hs. 

The ML detector of equation (2.25) represents a discrete non linear optimization 

problem over 92m  candidate vectors s E SZm  . Unfortunately such problems are hard to 

solve and for general y and Hs, the problem (2.25) is called NP-hard. However, for 

moderate sizes, M, there are efficient algorithms available for the solution of (2.25). 

2.4.2 Sub-Optimal Decoder 
Linear MIMO detection methods start by considering the input-output relation of 

a MIMO system in (2.20) as an unconstrained linear estimation problem, which can be 

solved according to a least-squares (i.e., zero-forcing (ZF)) or minimum mean squared 
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error (MMSE) criterion. For sub-optimal detection , we consider the model presented in 

section (2.1) 

Zero-Forcing detector[13J 
ZF detection aims at a perfect separation of the parallel data streams. It solves the 

unconstrained least squares estimation problem to obtain 

s = H' y , 	 (2.26) 

where Ht  denotes the Moore-Penrose pseudo-inverse of the channel matrix H and is 

defined as 
Ht  = ( H H H )-' H" 	 (2.27) 

In the special case, if the number of transmitting antennas are equal to number of 

receiving antennas (m = n )the Moore-Penrose pseudo-inverse is identical to the 

straightforward inverse of H, which may be obtained immediately with lower 

complexity as 

Ht  =H 1 	 (2.28) 

The application of (2.27) or (2.28) to (2.26) yields s , whose entries will not necessarily 

be integers, round them of to closest integer (a process referred to as slicing) to obtain 

iB  = [ Hly] 	 (2.29) 

The above sB  is called Babai estimate. 

Now considering the equation (2.27) and replacing the received vector y with the model 

(2.20) yields, 

s = Ht  (Hs+n) 

I s + nZF  where nZF  = Htn 

So that the effective channel between the transmitter and slicer at the receiver now 

corresponds to a identity matrix I. Hence, the interference from all other parallel streams 

has been eliminated completely as desired. However, the drawback of the ZF estimate is 

that perfect separation of the transmitted data streams entails an enhancement of the 

additive noise, which is now given by nZF 
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MMSE estimator[13J 
Instead of forcing the interference terms to zero, regardless of the noise, MMSE 

detection minimizes the overall expected error by taking the presence of the noise into 

account. The optimum tradeoff between interference cancellation and noise enhancement 

is achieved by setting 

G = (H H H + 2621)-1  H H 	 (2.30) 

and s = Gy 	results 

i=Hs +n SE  
Where H=G  H is the effective channel after MMSE equalization, nMMSE  = G n. 

As opposed to the ZF case, the off-diagonal elements of H are no longer zero, which 
leads to the expected residual interference. However, the MMSE estimator is also a 

biased estimator which causes the diagonal entries of the effective channel to be smaller 

than one (H.. <1). The result is shrinkage of the constellation after MMSE equalization. 

Successive Interference Cancellation[131 

SIC is based on the previously described linear estimation algorithms. However, a 

nonlinear interference cancellation stage partially exploits the knowledge that the entries 

of the transmitted vector s have been chosen from a finite set of constellation points. The 
symbols of the parallel data streams are no longer all detected at once. Instead, they are 

considered one after another and their contribution is subtracted (removed) from the 

received vector before proceeding to detect the next stream. 
For the mathematical description of basic SIC algorithm without ordering we 

assume that the first stream is detected first, followed by the second, and so forth until the 
last. It is convenient to represent the channel matrix H into number of columns and rows 

H1  

H =[h h2 ... Jim]::: 
H2  

Hn  

The SIC algorithm can be stated by the following pseudo code 



y1= y 

for k=0 to m-1 

find weight vector Wm_k 

Sm_k  = slice (Wm_kyk+l ) 

Yk+2 = Yk+1 — hm-ksm-k 

end 

In the above algorithm, for each value of the index k, the entries of the auxiliary vector 

yk+l are weighted by the components of the weight vector w,,-k  and linearly combined 

to account for the effect of the interference. The weight vector w,,_k  can be calculated 

from the following two cases 
ZF nulling: In this case, interference from the yet undetected symbols is nulled. 

Hm_k- = [hl  h2  ... hm_k 

fi 
Wm-k = Hm-kem-k 

where Hm_k = H. (HH_hH„t_k) I  is the pseudo inverse of Hm_k  , and em_k  is a 

(m — k) x 1 column vector that consists of all zeros except for the (m — k) th entry whose 

value is 1. 

MMSE nulling: The weight vector using MMSE nulling is 

Wm-k  = (H;;•  k'mk + 20 2  I) hm-k 

2.4.3 Near-optimal detectors 
Near-optimal detectors gives near-ML performance with reduced complexity 

compared to optimal detection. Sphere(Lattice) decoders are called near-optimal 

detectors, which we describe below. 

Sphere (Lattice) Decoders: 

Sphere decoding is based on the enumeration of points in the search set that are 

located within a sphere of some radius centered at a target, e.g., the received signal point. 

the Fincke-Pohst (F-P)[5] and Schnorr-Euchner (S-E)[6] techniques are two 

computationally efficient means of realizing this enumeration. To 'avoid confusion, the 
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lattice decoder using Fincke-Pohst strategy is called Sphere Decoder(SD), and the lattice 

decoder using the Schnorr-Euchner strategy is called (SE.) 
Redefining the integer-least squares problem 

s = arg min (11Y_js' Y 

	 (2.31) 
sEDLm  

where DL' is the m -dimensional square lattice spanned by L — PAM constellation in 

each dimension. The above problem has a simple geometric interpretation. As the entries 

of s run over the points in the L — PAM constellation, s spans the `rectangular' m - 

dimensional lattice DLm  .For any given lattice- generating matrix H, the n -dimensional 

vector Hs spans a `skewed' lattice. Thus given the skewed lattice Hs and the vector y, 
the. integer-least squares problem is to find "closest" lattice point (in Euclidean sense) to 
y , as shown in Fig.2.4. 

Fig. 2.4 Geometrical interpretation of the integer least-squares problem 

2.4.3.1. Sphere Decoding Algorithm (SD)113-1 7] 
The basic premise in sphere decoding is rather simple: attempt to search over only 

lattice points s E DL' that lie in a certain sphere of radius d around the given received 

vector y, thereby reducing the search space and hence the required computational effort 

as shown in Fig 2.5. Clearly, the closest lattice point inside the sphere will also be the 

closest lattice point for the whole lattice. However, closer scrutiny of this basic idea leads 
to two key questions. 	 V 	 V 
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(1) 	How to choose d? Clearly, if d is too large, we may obtain too many points and 

the search may remain exponential in size, whereas if d is too small, we may 

obtain no points inside the sphere. 

A natural candidate for d is the covering radius of the lattice, defined to 

be the smallest radius of spheres centered at the lattice points that cover the 

entire space. This is clearly the smallest radius that guarantees the existence of a 

point inside the sphere for any vector y . The problem with this choice of d is that 

determining the covering radius for a given lattice is itself NP hard. 

Another choice is to use d as the distance between the Babai estimate 

(2.29) and the vector y, i.e., d = I I y - HsB  II , since this radius guarantees the 

existence of at least one lattice point (here the Babai estimate) inside the sphere. 

However, it may happen that this choice of radius will yield too many lattice 
points lying inside the sphere. 

(2) 	How can we tell which lattice points are inside the sphere? 	If this requires 

testing the distance of each lattice point from y (to determine whether it is less 

thand), then there is no point in sphere decoding as we shall still need an 

exhaustive search. 

Sphere decoding does not really address the first question. However, it does propose an 

efficient way to answer the second one. The basic observation is the following. Although 

it is difficult to determine the lattice points inside a general m dimensional sphere, it is 
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trivial to do so in the (one-dimensional) case of m =1.The reason is that a one-

dimensional sphere reduces to the endpoints of an interval and so the desired lattice 

points will be the integer values that lie in this interval. We can use this observation to go 

from dimension k to dimension k +1. Suppose we have determined all k -dimensional 
lattice points that lie in a sphere of radius d . Then for any such k -dimensional point, the 

set of admissible values of the k + I -th dimensional coordinate that lie in the higher 

dimensional sphere of the same radius d forms an interval. 

k=1 

k=2 

k=3 

k=4 

Fig.2.6. Sample tree generated to determine lattice points in a four-dimensional sphere 

The above means that we can determine all lattice points in a sphere of dimension 
m and radius d by successively determining all lattice points in spheres of lower 

dimensions 1,2.....m and the same radius d. Such an algorithm for determining the 

lattice points in an m -dimensional sphere essentially constructs a tree where the branches 
in the k th level of the tree correspond to the lattice points inside the sphere of radius d 
and dimension k as shown in Fig 2.6. Moreover, the complexity of such an algorithm will 
depend on the size of the tree,i.e on the number of lattice points visited by the algorithm 
in different dimensions. 

Assuming n ? m, i.e, there are at least as many equations as unknowns in y ~~ Hs 

Note that the lattice point Hs lies inside a sphere of radius d centered at y if, and only 
if, 
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a2 _ ~Ly - Hs!12 	 (2.32) 
In order to break the problem into the subproblems described above, it is useful to 

introduce the QR factorization of the matrix H. 

R 
H=Q 1 0 
	 (2.33) 

where R is an m x m upper triangular matrix and Q = [Q1 Q2] is an n x n orthogonal 

matrix. The matrices Ql and Q2 represent the first m and last n - m orthonormal 

columns of Q, respectively. The condition (2.32) can, therefore be written as 

rRl 112 

	

d2 >_ y-[QQ 	
1[ ]  s 

0 
2 

[

Q* R > Q2* y _ 0 S 

> IIQI*y 
— RsII2 

+ IIQ2*YI12 

where (0)* here denotes matrix transpose . In other words 

d2 - IIQ2*yll2 > IIQI*y — RS112 	 (2.34) 

Defining y = Ql* y and _ di2 = d 2 - 
IIQ2*YI1

2 allows us to rewrite this as 

2 
m m 

d' ? m Y; - 	. r,iS . 	 (2.35) 
i1 	3=i 

where r j denotes an (i, j) entry of R. Here is where the upper triangular property of 

R comes in handy. The right -handed side( RHS) of the above inequality can be 
expanded as 

di2 ~ (Y m — rm.mSm )2 + (ym-1 — rmlmsm — rm-l,m-1Sm_)2 ... 	 (2.36) 

where the first term depends only on sm , the second term on {Sm , Sm_1 } ,and so on. 

Therefore, a necessary condition for Hs to lie inside the sphere is that 
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r2 	 2  d > -( ym  - rmm Sm ) 

This condition is equivalent to sm  belonging to the interval 

—d' + y d' + y < sm  <_ 	'" 	 (2.37) 
rmm I 	 rmm 

where r❑1 denotes rounding to the nearest larger element in the set of numbers that spans 

the lattice. Similarly, L❑J denotes rounding to the nearest smaller element in the set of 

numbers that spans the lattice. But the condition (2.37) is by no means sufficient. For 

every sm  satisfying (2.37), defining 

dr2  = di2 S 2  m-1 	- (ym - r m,m m ) 

and 	 ym-1/m = Yin-1 - rm-1,msm , a stronger necessary condition can be 

found by looking at the first two terms in (2.36), which leads to sm_1  belonging to the 

interval 

—d1 + ym-1/m  < 	dm-1 + ym-1/m 	 (2.38) - m-1 

	

rm-1,m-1 	 rm-1,m-1 

One can continue in a similar fashion for sm_2  and so on until s1 , there by obtaining all 

lattice points belonging to (2.32). 
Sphere-Decoding Algorithm [15]: 

Input: Q, R, y, y=Q1'y, d 

1. set k = m , d r 2  = d 2 -  Im ,ym/m+l = ym 

2. (Bounds for sk ) Set UB(Sk ) _  `dk + yk /k+l)  , Sk  =  ( -dk + yk/k+l) - 1  

	

rk,k 	 rk,k 

3. (Increase sk ) sk  = sk  + 1. If sk  _< UB(sk ) , go to 5; else, go to 4. 

4. (Increase k) k = k +1; if k = m +1, terminate algorithm; else, go to 3. 
5. (Decrease k) if k =1, go to 6; else k = k —1, 

rn 2  
Yk - 	rsj 	d'2  = dk+1 - (yk+1/k+2 - rk+1,k+lSk+1) and go to 2. 

j=k+1 



6. Solution found. Save s and its distance from y, dm — dli2  + (y1 — rl 1s1 )2  and 

go to 3. 

The subscript k/k +1 in yk/k+l  above is used to denote received signal Yk  adjusted with 

the already estimated symbol components sk+l. ...... s7z  . Furthermore, in steps 2 and 3 of 

the code , there is unit spacing between any two nearest elements of the set spanning the 
lattice. If the lattice is scaled, i.e if the spanning between two neighbors in the set 

spanning the lattice is different from 1, those algorithm steps needs to be adjusted 
accordingly. 

Fincke-Pohst makes use of the unconstrained least-squares solution 

s Hty.  R-'Q,'y . In this case it follows that IIQZ`y'Iz  = Ilyl12  —IIHSIIZ, and so, inequality 

(2.34) becomes 

d2 _11y112  + IIHiII2  >- IIR(s - s)IIZ 

Expanding (2.35) we can write, 
z 

d'2 > rm   m  (S -  Sm  )z  + Ym_1,m-1 x Sm-1 - Sm-1 + m-1'm  (Sm  - Sm ) +.... 

rm-1,m-1 

and using (2.37) and (2.38) 

d' 1 < d' 
Sm  	Sm  < m  + 

Ym ,m 	 rmm 

_ d' 	 d' m-1 	 m-1  and 	Sm-1/m 	— Sm-1 — Sm-IJm + 
r'm-lm1 	 rm-1,m1 

(2.39) 

(2.40) 

respectively, 

where we have defined sm_1/m = sm-1 — rm-1'm  (S
m  — Sm ) . We can now alternately write the 

rm-1,m-1 

algorithm as follows. 

Input: R, y, s, d 

1. Set k=m,  dm = d2 - IIyIIZ + IIHSII2 , m/m+1 — Sm 

2. (Bounds for sk ) Set Z = dk /Ykk  , UB(sk ) = LZ + Sk/k+l J , Sk = r-? +Sk/k+l l -1  

3. (Increase sk ) sk  = sk  +1. If sk  < UB(sk ) , go to 5; else go to 4 
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4. (Increase k) k = k +1; if k = m +1, terminate algorithm; else go to 3 

5. (Decrease k) if k =1 go to 6; else k = k —1, 

sk/k+l — sk  J 	
1 \ 	

,k ) rk,j  r   

	

k 	i 

2  d  k — dk+l — 'k +1,k+1 ( Sk+1 — sk+1/k+2 ) and go to 2. 

6. Solution found. Save s and its distance from y, dm — d; 2  + r,1(sl  — s1/2  )2  and 

go to 3. 
2.4.3.2. Schnorr Euchner Strategy (SE)[91[18J[19] 

This algorithm has the same principle as the SD , which means searching for the 
closest point inside a sphere. 

Redefining the closest lattice point problem 

s = argmin(IIy HSII2) 
sEUm  

where 0 is the set of real entries in the constellation, e.g Q = }-3,-1,1, 3} in the case of 

16-QAM. This algorithm is based on two stages. The first stage consists in searching the 

"Babai point" (BP), which represents a first estimation, but is not necessarily, the closest 

point. Finding the BP gives us a bound of the error. In the second stage, we modify the 
BP until the closest point is reached. We oscillate in turn each component to build the 

closest point (unlike the sphere decoder, we don't have a minimum and maximum bound 
for each BP component). The time needed to finish the search for the closest point is 

closely related to the BP, which means related to the SNR. In fact, if the BP is very far 
from the closest point, i.e for low SNRs, the algorithm is slow to converge. However,if 

the BP is close to the closest point, i.e for high SNRs, the algorithm converges rapidly. 

In SE algorithm, from the perspective of lattice, an p = 2M -dimensional lattice 

is decomposed into p k -dimensional (k =1,2,....p) sublattices. The algorithm 

calculates the orthogonal distance y between two points in the adjacent sublattices , and 

tries to find the smallest possible accumulated distance bestdist between the p - 

dimensional sublattice and the one dimensional sublattice. The basic SE algorithm is 
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given in [9] for infinite lattice, which is not suitable to employ in MIMO systems, since 

the finite lattice constellation is used in MIMO systems. 

Modified SE algorithm for the QAM constellations: 
A SE algorithm tailored to the q — QAM (q = 4,16,...) constellation is presented 

in [ 9]. To avoid an infinite loop or an incorrect result due to finite constellation used, the 

algorithm [20] adopts a search method which allows an over flow . However only the 

lattice vector u belonging to the constellation is kept. There are probabilities in this 

search method where most of the elements in u belong to , but remaining elements do 

not belong to fl. In such a case, the lattice vector u is not kept and it has to be 

recalculated, which increases the algorithm complexity. 

Another reduced complexity SE algorithm for MIMO systems [19] overcomes the 

above problem in which only those lattice points uk  (k =1,2,...n) belonging to 0 are 

investigated and kept. The new reduced-complexity SE algorithm is sub-optimal to [20] 

and its pseudo code is listed below. The matrix L is the inverse and transpose of matrix 

R, i.e L = R-T  . The matrix Rand Q are the upper triangular matrix and the orthogonal 

matrix in the QR-decomposition of the channel matrix H = QR , respectively. 

Algorithm SEI: s = SE I (L,Q, y) 

1. n = 2M i.e size of L 	/* dimension */ 

2. bestdist = 210 	 /* current distance record * / 
3. k = p 	 1* dimension of examined layer *1 

4. distk  = 0 	 /* distance to examined layer */ 

5. ek  = yT  QL 

6. uk  = rint (ekk ) 	 /* examined lattice point */ 

7. y = ( ems  - Uk)/lkk 

8. stepk  = sgn(y) 	 /* offset to next layer */ 

9. loop 

10. newdist = distk +? 
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11. if newdist < bestdist then 
12.  if k > 1 then 

13.  for i= 1,2...k-1 do 

14.  ek-1,i = ek,d — y * lki 

15.  end for 
16.  k=k-1 /* move down*/ 
17.  distk  = newdist 

18.  uk  = rint(ekk ) /* closest layer */ 

19.  

20.  stepk  = sgn(y) 

21.  else 

22.  s = u /* Best lattice point so far * / 

23.  bestdist = newdist /* update record*/ 
24.  k = k + 1 /* move up * / 

25.  y=25  

26.  for j =1 to 2 do 

27.  uk  = uk  + 2 * stepk  /* next layer * / 

28.  step, = —step, — sgn(stepk ) 

29.  if uk  E constellation then 

30.  
31.  goto (10) 

32.  end if 
33.  end for 
34.  end if 
35.  else 
36.  if k = p then 

37.  returns 
38.  else 
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39. goto (24) 

40. end if 

41 end if 

42. end loop 
the SE algorithm actually constructs a tree of p levels, where the branches in the 

k th level of the tree correspond to the lattice points in the k -dimensional sublattice. If 

y2 is considered as the metric of each branch, the objective of SE is to find the path with 

the smallest accumulated metric bestdist between the first and p th level of the tree. 

2.5 Complexity Analysis 

2.5.1 Sphere Decoding Algorithm: 

Fincke-Pohst give the complexity analysis of the SD algorithm[6]. Their main 
result is that the number of arithmetic operations of the aforementioned Sphere Decoding 

(SD) algorithms in section 2.4.3.1(excluding steps 1-3) is at most 

L4d2tj + m —1 
6(2m3 +3m2 -5m)+2(m2 +12m-7)x (2[~&+l) 	+1 (2.41) 

L4d2tJ 

where t = max (r12 , ...., rm,,,~) . In practice, t grows proportionally to n (r , for example is 

simply the squared norm of the first column of H, which has n entries), and d2 grows 

proportionally to m, and so the upper bound on the number of computations in (2.41) 

can be quite large. Although it does depend on the lattice-generating matrix H (through 

the quantity t ), it offers little insight into the complexity of the algorithm. 

Vikalo[15][22][23] evaluated the complexity of the sphere-decoding algorithm 

using the geometric interpretation. As mentioned earlier, the complexity of the sphere-

decoding algorithm depends on the size of the generated tree in Fig. 2.6 , which is equal 

to the sum of the number of lattice points in spheres of radius d and the dimensions 

k =1,2,..., m. The size of this tree depends on the matrix H as well as on the vector y. 
Therefore, unlike the complexity of solving the unconstrained least-squares problem, 
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which only depends on m and n and not on the specific H and y , the complexity of the 

sphere-decoding algorithm is data dependent. 
1) Expected Complexity: Since the integer least-squares problem is NP hard, the 

worst-case complexity of sphere decoding is exponential. However, if we assume that the 
matrix H and the vector y are generated randomly (according to some known 

distributions), then the complexity of the algorithm will itself be a random variable. For 
any arbitrary point y and an arbitrary lattice H, the expected number of lattice points 

inside the k -dimensional sphere of radius d is proportional to its volume and is given 
by[24] 

k 
~2 

dk 	 (2.42) 
Fl —+1 

Therefore, the expected total number of points visited by the sphere decoding scheme is 

proportional to the total number of lattice points inside the spheres of dimension 

k 
m ~2 

P = 	k 	dk 	 (2.43) 
k°l rl —+1 

A simple lower bound on P can be obtained by considering only the volume of an 

arbitrary intermediate dimension, say k 
k 	 k 

2 1 	
(2.44) 

r —+1  
2 

where we have assumed m >_ k ❑  1 and have used Stirling's formula for the Gamma 

function. Clearly, P, and its lower bound, depend on the radius d2 . This must be chosen 
in such a way that the probability of the sphere decoder fording a lattice point does not 

vanish to zero. This clearly requires the volume of the m -dimensional sphere not to tend 
to zero, i.e., 
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m 

2e rd2 2 1 = 0(1) 	 (2.45) 
m Vm 

which for large m implies that 2e7rd2 = ml+('m) . Plugging this into the lower bound for 
P yields 

1+(/)2 	 ml 11 
p > m  m 	1— 	1 S2,5 2m2S 2 	 (2.46) 

:ck Vl^ 

where 8=(%)>1. 

This last expression clearly shows that the expected number of points P and, hence, the 
complexity of the algorithm grows exponentially in m. 

A Random model: 
In communications applications, however, the vector y is not arbitrary, but rather 

is a lattice point perturbed by additive noise with known statistical properties. 
y = Hs + n 

where the entries of n are independent. N (0,62) random variables with known variance, 

and the entries of H are independent N (0,1) random variables. Furthermore, H and 

n are mutually independent. 

Choice of Radius 
The first by-product of this assumption is a method to determine the desired 

radius d. Note that (1/a-2 ) • Ilnll2 = (1 62 ) • Ily-Hsll2 is a x2 random variable with 

n degrees of freedom. Thus, we may choose the radius to be a scaled variance of the 
noise 

d2 = ano 2 	 (2.47) 

in such a way that with a high probability, we find a lattice point inside the sphere 
an n 
2 A2-1 

f

) 
—e-2 d~ =1– s 	 (2.48) 

°r(2 
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where the integrand is the probability density function of the x2 random variable with n 

degrees of freedom, and 1— s is set to a value close to 1, say, 1— s = 0.99.( If the point 

is not found, we can increase the probability 1— &, adjust the radius, and search again.) 

Now, as mentioned earlier, the complexity of the sphere-decoding algorithm is 
proportional to the number of nodes visited on the tree in Fig.2.6 and, consequently, to 

the number of points visited in spheres of radius d and the dimensions k = 1, 2...., m. 
Hence, the expected complexity is proportional to the number of points in such spheres 

that the algorithm visits on average. Thus the expected complexity of the sphere-

decoding algorithm is given by [15] [22] 

(2.49) 

m 

C (m, r2 , d2 ) _ L((expected # of points in k-dim sphere of radius d) • (flops / point) 
k=1 

❑ E p (k,d2 =~an 2 ) 	 ❑  f(k) = 2k +11 

The coefficient f p (k) = 2k +11 is the number of elementary operations (additions, 

subtractions, and multiplications) that the Fincke-Pohst algorithm performs per each 

visited point in dimensionk. Ep(k,d2 ) is the expected number of points inside the 

k — dimensional sphere of radius d. Suppose that the lattice point s, was transmitted 

and that the vector y Hst+nwas received. The probability that an arbitrary lattice point 

sQ lies in a sphere of radius d around y can be computed to be 

d 	k 

y 02 + Il sa - st ll2 ' 	
= 

d2 

rJ2+~8a-stfl 	_1 

f 	 ' (— k I 0 

Note that the above probability depends" only on Ilsa — sE II2 , i.e on the squared norm of an 

arbitrary lattice point in the k -dimensional lattice. Therefore 

( 
E p(k,d2 ) _ y d 2 , k 

+ l 	
• (# of lattice points with (ISO — st 11 = l) 

1_o a 2 

Let (# of lattice points with Ilsa — stll2 = l)=rk(n) 
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k 

Then rk (n) is given by the coefficient of x7z in the expansion 1 + 2z xm2 
m=1 

The above argument leads to the following result. 

Theoreml (Expected complexity for infinite lattices): 
Under the aforementioned assumptions, the expected complexity of the sphere 

decoder is given by 

	

C(m,cr2 ) _ (2k+17)~r (n)y a 
2+1 
+1,k 	 (2.50) 

F=1 	 1=0 k 	2  

where a is such that y(am, m) =1— c 

logC(m,62 ) 
It is often useful to look at the complexity exponent 	

to m 	
which approaches a 

g 

constant if the expected complexity is polynomial, and grows as to 	if it is 
g in 

exponential. 
In communication problems, we are usually concerned with L — PAM 

constellations 

D—{ 
m 	L-1 L-3 L-3 L-11 m 

m (L2 —1) 
In this case, rather than noise variance o2, we are interested in SNR, p = 1262 .For 

such constellations, computing the expected complexity is more involved than for infinite 

lattices. 

Theorem2 (Expected complexity for finite lattices): 
Under the aforementioned assumptions, the expected complexity of the sphere 

decoder for a 2— PAM constellation is 

k am k C(m,p) = I f(k)  
k=1 	t=0 l 	1+ 	12 pl 	2 

m(L2 —12) 

For a 4 — PAM constellation it is 

(2.51) 
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"t k 	1 k  k 	 am 	k 	 2.52 

	

1+  12pl '2 	 ( ) 
k=1 	1

m(L2  —12) 

where gkh  (1) is the coefficient of x` in the polynomial 

(l+x+x4  +x9 )h  (1+2x+x' )k-h  

The number of elementary operations per visited point in above equations 

fp(k)=2k+9+2L 

2.5.2 Schnorr-Euchner Strategy: 
Referring to SE algorithm[8-9][18-21], the algorithm complexity is given by 

the number of searched sublattices, i.e the number of evaluation on line (9) in 

algorithm SE 1(section 2.4.3.2), It is observed that the complexity becomes excessively 
high when signal-to-noise ratio (SNR) is low, since algorithm search oscillates too 
frequently among the sublttices. 

Fano-Like Metric Bias: 
A Fano-like metric bias can be applied for SE to alleviate the complexity problem 
mentioned above. With this fano-like metric bias, the branches in higher levels should 

have a larger metric bias than those in lower levels, reflecting the fact that they are far 

away from the end of the tree and hence less likely to be part of the smallest path. 
From (2.20) and (2.25), the average value of the smallest path is 

E {IIy Hs1I 2 } = E{IInhI2 } = anC2 
	

(2.42) 

It is therefore reasonable to choose aa-2  as the metric bias for one level of the tree, where 

0 _< a < 1 is a constant. The metric bias for the k -level tree is simply the sum of the 

biases for the following i -level (i = 1, 2, 3,..., k —1) trees. Moreover, the squared 

orthogonal distance y2  is expressed as a portion of lkk  for k -dimensional sublattice [9], 

the Fano-like metric bias for SE is thus to be: 

Fk  = Fk-, + a621k-1.k-1 	(k = 2,3,..., n) 

where F D 0. With this metric bias, the SE can be modified as below 



Algorithm SE_FM: i = SE_FM (L, Q, y, F) 

• In Algorithm SE1 (section 2.4.3.2), replace Line (1 1) with: 

fanodist = newdist + Fk  

if fanodist < bestdist then 

Early Termination: 
The eq. (2.42) also implies that the loop in SE can be terminated early as soon as 

the currently small distance bestdist is smaller than a pre-calculated distance 

D = ,(3n62  

where /3 is a noise level dependent constant that needs to be estimated for each SNR 

point. The algorithm complexity thus can be further reduced. The pre-calculated distance 

D is simply the average value of the smallest distance bestdist at each SNR point, which 

can be determined by simulating the algorithm in [18]. With this early termination 
criteria, the SE1 is modified as [19] 

Algorithm SE ET: s= SE ET (L, Q, y, D) 

• In Algorithm SE1 (section 2.4.3.2), insert the following lines between 

Line (23) and (24) 

If bestdist <D then return i 

end if 
Furthermore, The algorithm SE can be improved to be SE2 which combines the 

algorithm with Fano-like metric bias and early termination. 

2.6 Comparison of the SD and the SE[20-21J 
Both SD and SE are ML decoders, which enables us to conclude that the two 

algorithms perform well. The two algorithms have the same principle, the search for the 
closest point, but differ mainly in the search method. In the following we will compare 

the complexities of these two algorithms. 

Since the multiplications are the most expensive operations in terms of machine 

cycles compared to addition and comparison, only multiplications will be taken in 
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account to measure the complexity. The complexity of the algorithm is defined by the 
number of multiplications carried out until convergence. 

However both algorithms, before attacking the closest point searching phase, 

need a preparation phase, which we will qualify by pre-decoding phase, and also an 

initialization phase. To study the complexity of both algorithms, it is worth studying and 

comparing first their respective pre-decoding and initialization phases, and subsequently 

their respective closest point searching method. Finally we will compare their respective 
total complexity [20]. 

2.6.1 Comparison ofpre-decoding and initialization phases[20-21J 
As shown in the flow-charts of the SD and the SE, in pre-decoding and 

initialization phases we have essentially two operations : the first one consists in the 
calculation of a triangular form of the matrix H.. For that we can use either QR 

decomposition or Cholesky decomposition. The second one consists in the calculation of 
the Zero Forcing point (ZF). When using QR decomposition, we decompose H, and 

then we define G = RT , where G is a lower triangular matrix, this needs 2  N3  operations. 

When using Cholesky decomposition, we have first to calculate the Gram matrix of H, 

defined as Gram = HHT  , and so we decompose Gram to obtain Gram = UT  U , where 
U is an upper triangular matrix, and then G = UT. The total number of operations needed 

is 6 N3  + N. By comparing the number of operations needed for each decomposition, we 

remark immediately that the QR decomposition is less expensive in terms of operations. 

For second operation, we need first to calculate the inverse of the transfer matrix 

of the channel H .The Zero Forcing point is defined by the equation (2.29), which is also 
called the " Babai point". 

For the SD, we will use matrix G to build matrix Q. Using the matrix Q and the 

ZF point we calculate the minimum and maximum bound of each closest point 

component. For the SE also, we do not need the matrix G but its inverse L = G 1 . For 

SE, the ZF point represents the first point found by the algorithm which will be adjusted 

to obtain the closest point. 



0 
The total number of multiplications necessary to carry out the pre-decoding and 

the initialization phases using QR decomposition for the SD and the SE respectively are: 

5 N3+ 3 N2,  11N3+ 3 N2+1 N  

3 	2 	6 	2 	3 

We remark immediately that the pre-decoding and initialization phases of SE are heavier 

than that of the SD. In fact the SE uses 6  N3  +--- N more multiplications than SD. How 

crucial is this disadvantage depends on the lattice dimension N. 

In fact, for small lattice dimensions, the number of multiplications in the pre-

decoding phase is of the same order of magnitude as that of the searching phase, so the 
pre-decoding phase has an influence on the total complexity of both algorithms. This 

influence is more significant for fast fading channels, where the pre-decoding phase are 

made more frequently. For large lattice dimensions, the number of multiplications in the 

pre-decoding phase is very small compared to those in the searching phase, and we can 

say that the pre-decoding phase doesn't influence the total complexity of the algorithm. 
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Chapter 3 

Iterative Detection and Decoding 

In the previous chapter, we have discussed different MIMO detection schemes 
and their complexity analysis. In this chapter, we present the MIMO transmission model 

for iterative decoding using modified sphere decoding. 

3.1 Transmission Scheme: 
Fig.3.1 shows the iterative decoding scheme using MIMO channel with M - 

transmitting antennas and N -receiving antennas. The vector of information bits b is 
encoded with convolutional code [25] to obtain the vector of coded bits c', which is then 

interleaved to result in the vector c. The vector c is modulated onto a quadrature 

amplitude modulation (QAM)-constellation. Assume that each constellation symbol 

represents p.. modulation bits (e.g., for a Q — QAM constellation, Pm  =1og2  Q ).Then the 

modulation is performed by taking blocks of vector c of length pmM and mapping them 

(e.g., by means of a simple Gray mapping) into M — dimensional symbol vectors. The 

resulting symbols are transmitted across the channel as given by the model 

y=Hs+n 	 (3.1) 

Therefore, a block of p.M coded bits (corresponding to a single symbol vector) is 

transmitted per each channel use. Let us denote these blocks of coded bits as 

d11 , d21,..., 	Assume that the total length of the vector c is pp„M . Then the entire 

vector c can be blocked as 

c = ICIll  C[21 ... C LPc] l 	 (3.2) 

and transmitted in p, channel uses. 

Consider that the k`/' channel use (i.e., the block eI k l has been modulated onto 

symbol vector s and transmitted across the channel). On the receiver side, the received 

vector y and a priori probabilities of the components of the symbol vectors, 
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Transmitter: 

Receiver: 

y 

Fig.3.1 MIMO transmission and iterative receiver model 

are processed by an MIMO detector in order to obtain both the 

estimated bits in the current block c1k3 and the reliability information about these 

decisions. Let us denote bits in the block e 1 by ci , i = 1, 2..., p„t M . The reliabilities of 

the decisions for the coded bits c~ can be expressed in the form of log-likelihood ratio 

(LLR) as 

L1 (ca /y) = log 
P[c1 = +1/y] 
P[c1 = —1/y] 

(3.3) 

(we represent logical 1 with amplitude level+l, and logical 0 with amplitude level -1). 

Let us denote the reliability information for the block c(k] by 

L`k' = [Li(ci/y) L1 (c2/y) ... Ll (CpmM / y )] 

and let L1 denote a vector of concatenated blocks of reliabilities 
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LI  = [ L [l1 j[2] ... T. [Pc]] 

collected over all p, uses of the channel. Then Ll  is a vector of LLRs corresponding to 

all the bits in the vector c. 

The vector Ll  is deinterleaved to obtain vector L11 , which is then used by a 

channel decoder to form the estimate of the information bit vector b , as well as to 

provide L2', the a posteriori reliability information for the coded bits vector c' 

A posteriori reliability information for the vector c is obtained by interleaving L2' into 

L2 . Let us denote the a posteriori reliability' information for the block c[k3  by L2 '. 

Furthermore, assume that the bits CL  , i =1,2...., pM , in the block c1k3  are independent. 

Then the posteriori probabilities for the components of the symbol vector s (symbol 

vector corresponding to the block c[k] ) can easily be found from L2  using the modular 

mapping function. These probabilities {p(sl ), p(s2 )...... p(sM )} can now be used to run 

the MIMO detector algorithm [i.e evaluate (3.3)] once again.Hence, the MIMO detector 

is an iterative one, and we use the described scheme for iterative joint detection and 

decoding in MIMO systems.[Note that for first iteration of the MIMO detector, we 
assume that all symbols are equally likely]. For a simple convolutional code at encoder, 

the channel decoder is a simple soft-in soft-out detector such as Bhal, Cocke, Jelinek, 

and Raviv algorithm of [ 25] [26]. 

The computational complexity of traditional algorithms for evaluation (3.3) can 

be prohibitive for applications in multi antenna systems. Since the sphere decoding 

algorithm of Fincke and Phost described in chapter 2 results in the ML estimate of s 

with reasonable complexity, a modification to the sphere decoding algorithm yields soft 

information with low complexity. 

3.2 Modified F-P Algorithm for MAP Detection [27][28] 
Redefining the MAP detection rule which maximizes the posterior probability 

p81 (s/y) 
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max p./,, (sly) 
sEDL 
	 (3.4) 

Using Bayes' rule 

Py 	(s) argmaxps/y(s/y) = argmax /s 	SPy(y) 

= argmax pyls (y/s)P8 (s) 

Further, by assuming that the symbols S1, S21..... sm are independent, we can write 

p8(s) _ [Jp(s~) = e

,
k 11ogP(sk ) 

k=11 

Then, for a known channel in additive white Gaussian noise (AWGN), (3.4) is equivalent 

to optimization problem 

min Ily — Hs~l2 — log p(sk) . 

	

SE [ 
	m 	

(3.5) 

For an iterative decoding scheme, we also require soft information, i.e., the probability 

that each bit is decoded correctly. To this end, consider the LLR defined in (3.3) and, 

consider the kth channel use (that is , the current symbol vector s is obtained by 

modulating coded block c[k] _ [c1 C2 • • • CPPM ] onto an L — PAM constellation) 

L1(c1/y) = log P[ç = +1/y] 
P[c1= —l./y] 

=logp[y,cj =+1] 
P[y,cl = —1] 

= log 1c[k1:c 	1°j=+1 [y/e[k1 ] p [C[k1 
	

(3.6) 

Assuming independent bits c1 ,c2 ,...,CPPM , (3.6) becomes 

L1(cz/y) = log P[c̀  = +1] +log le[k]:c;=+lp[y/CR' ]fJi.,i i p [ci] 

p[ci = —1] 	Eckk1:c1�  i p [ y /c," ]JJ.ii.ip[ c11 

	

Lia( Ci) 	 Lle(Ci) 

where Lid (Cl ) and Lle(ci ) denote so-called a priori and extrinsic parts of the total soft 

information, respectively. [Note that, when used in an iterative decoding scheme, it is 
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only Lle(ci ) that is passed to the other decoding block(s) in the scheme.] Since the block 

c[k]  is uniquely mapped into the symbol vectors, it follows that for an AWGN channel 

L1(cti/y) =log  18:c4=+1p[y/ s ]  fl.  p[ s; 
1 s:Ci=-1  P [y/s] R P [si j 

e-ily-HsJI 2+  .1OgP[S;] 

= log 	2 	 (3.7) e_Iy-HslI +y jb0 P[S;] 
s:c =-1 

Computing (3.7) over the entire signal space Di is of prohibitive complexity. Instead, we 

constrain ourselves to those s E DL for which the argument in (3.5) is small. [ Note that 

these are the signal vectors whose contribution to the numerator and denominator in (3.7) 

is significant.] 

Applying the idea of the Fincke-pohst algorithm, we search for the points s that 

belong to the geometric body described by 
n 

r2  >_ (s — s)s R*R(s — s) — Ilogp(sk ) 	 (3.8) 
k=1 

where R is the lower triangular matrix obtained from the QR factorization of H. 

(Note that this is no longer a hypersphere.) The search radius r in (3.8) can be chosen 

according to the statistical properties of the noise and the a priori distribution of s. 

A necessary condition for s n  to satisfy (3.8) follows: 

rmm  (Sm  _8m )2   — log p(sm ) < r2 	 (3.9) 

Moreover, for every sm_satisfying (3.9), we define 

= r2  — rmm  (Sm  — Sm )2  +log P(sm) 

and obtain a stronger necessary condition for (3.8) to hold 
2 r  

r -l.m-1 [ Sm_1 — m-1 + m-1' m  (Sm  — Sm ) — log P(sm-1 ) — r2  m-1 rm-1, m-1 

Sm-1/m 

The procedure continues until all the components of vector s are found. The FP-MAP 
algorithm can be summarized as follows 



Input: R, y, s, r, ps (s) 
_ 

1. Set k = m , rm = r2 — Iylf
2 

+ IJHSII
2 

, Sm/m+1 = Sm 

2. (Bounds for sk ) Set Z = ~k rk k , UB(Sk ) _ [Z + sk/k+l ] , Sk = I —Z + Sk/k+l l — 1 

3. (Increase sk ) sk = sk + 1. If r(  sk — Sk/k+1)2 > rk2 + log p(Sk ) and Sk S UB(sk ) , 

go to (3), else proceed. If sk < UB(sk ) go to (5), else go to (4) 

4. (Increase k) k = k + 1; if k = m + 1, terminate algorithm; else go to(3) 

5. (Decrease k) if k =1 go to (6). Else k = k-1, 

k
Sk/k+1 = Sk —j

E,(rl'k,k )(S.  

rk — r'+ — rk+1,k+1 ( Sk+l — Sk+1/k+2 )2 + log p(sk+t ), and go to 2. 

6. Solution found. Save s and go to (3). 

Assume that the search yields the set of points S = {s(1) , s(2),..., s(`S ) } . The vector 

s E S that minimizes (3.5) is the solution to the MAP detection problem (3.4).The soft 

information for each bit ci can be estimated from (3.7), by only summing the terms in the 

numerator and denominator such that s E S . Now (3.7) can be approximated using Max-
Log algorithm as 

L1(cjyy) = max (— Ily — Hslf 2 + E,log p [s1]) —max (—Ily — Hs112 + Z. log p[s;]) 

3.3 Channel Decoder 
The ouput of MIMO detector is deinterleaved and given to a channel decoder to 

form the estimate of the information bit vector, as well as to provide the a posteriori 
reliability information of coded bits. The channel decoder is a soft-in soft-out decoder 

(BCJR algorithm) and is described below .In the following, symbols in () refer to Fig.3.1 

BCJR Algorithm [25] 

Let u (b) be the information sequence and v (c') be the coded information 

sequence and r (L;) be the received sequence. Then BCJR algorithm calculates the a 

posteriori L —values 
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L(u1 ) = 
[ p (u1 = +1/r) 

In  
P(ui =_1/r)] 	

(3.10) 
 

(Note: from the Fig.3.1, LZ = L (u,) ) 

called the APP L — values, of each information bit, and the decoder output is given by 

+lif L(u1 )>0 ut = —lif L(u' ) <0 ,l 
=0,1,...,h-1. 	 (3.11) 

Rewriting the APP value p (u1 = +1/r) as follows 

p (ui = +1/r) = p (ul = +1, r) — 
E
___ p ( r_v ) P (u) 	

(3.12) 
P(r) 	u P(r/v)P(u) 

where U1 is the set of all information sequences u such that ul = +1, v is the transmitted 

codeword corresponding to the information sequence u, and p(r/v) is the pdf of the 

received sequence r given v. Rewriting p (ul = —1/r) in the same way, we can write 

the expression in (3.10) for the APP L-values as 

[ UEU; P(rIv)P(u) 

	

L(u1 ) =1n 
	

(3.13) 

where U is. the set of all information sequence u such that ul = —1. MAP decoding can 

be achieved by computing the APP L -values L (u1 ), l = 0,1, • • • , h —1 directly from 

eq.(3.13) and then applying (3.11); however, except for short block lengths h, the 

amount of computation required is prohibitive. For codes with trellis structure and a 

reasonable number of states, such as short constraint length convolutional codes, eq. 

(3.13) can be simplified by making use of the trellis structure of the code as 

p( 	+1 ~r) = P(ul =+1,r) — 	(s.$)E~t P(sa = s ,sai = s,r) 	
(3.14) ul = 	p (r) 	 p (r) 

where Zl is the set of all state pairs sl = s' and sl+l = s that corresponds to the input bit 

u1 = —1 at time 1. Reformulating the expression p (u1 = —1/r) in the same way, we can 

now write (3.10) for the APP L — values as 



~aS = s , `' 1 1 — sr) 

L (u) =1n 	 (3.15) 

where Ei is the set of all state pairs sl = s' and sl+l = s that correspond to the input bit 

ul = —1 at time 1.. Equations (3.13) and (3.15) are equivalent expressions for APP 

L — value L(ul ) , but whereas the summation in (3.13) extend over a set of 

2h-1 information sequences, the summations in (3.15) extend only over a set of 20 state 

pairs. Hence for large block lengths h, (3.15) is considerably simpler to evaluate. 

The joint pdf's p (s', s, r) in (3.15) can be evaluated recursively as follows 

p(s',s,r) = p(s',s,rc<l ,r ,r>1), 
	 (3.16) 

where rt<l represents the portion of received sequence r before time l , and rt>l 
represents the portion of the received sequence rafter time 1, application of B aye's rule 

yields 

P(s' ,s,r) = P(rc>a/s' ,s,, <vr)P(s' ,s,ra<c ,r) 

=p(rc>ais',ss,rIs',rc<a)P(s',r,,) 	(3.17) 

= P`r>a/s)p(s,r/s')p(s' ,rc<a) 
where the last equality follows from the fact that the probability of the received branch at 

time 1 depends only on the state and input bit at time 1. Defining 

we can write (3.17) as 

a1( s' )=p( s',r<~) 

yl( s',$ ) — p( s,r/ s' ) 

/ii+1 (s) =  

P (s', s, r) = Q (s) it (s', s) a1 (s'). 

(3.18a) 

(3.18b) 

(3.18c) 

(3.19) 

We can now rewrite the expression for the probability al+l (s) as 

/ 
a1+1 (s) = p(s,rc<E+1) —  

S'O', 
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S'EQ1 

	

I P(s,r'i/s')P(s',rc<t) 	 (3.20) 
S'EQ' 

_Iy,(s',$)a,(s'), 
S'EQ' 

where 61 s the set of all states at time 1. Thus we can compute a forward metric 

ai+l (s) for each state s at time 1 +1 using the forward recursion (3.20). Similarly we 

can write the expression for the probability /3, (s') 

	

/i (s') = I Yt (s',$)/i+i (s) 	 (3.21) 
SEQI+f 

where al+l is the set of all states at time 1+1,  and we can compute a backward metric 

fl (s') for each state s' at time 1 using the backward recursion (3.21). The forward 

recursion begins at time 1= 0 with initial condition 

ao IS) = 1,s=0 
O,s~O 

(3.22) 

Since the encoder starts in all-zero state So = 0, and we use (3.20) to recursively compute 

al+l (s) , l = 0,1,..., K —1 , where K = h + m is the length of the input sequence. 

Similarly, the backward recursion begins at time 1= K with initial condition 

/3K(
_ 1,s=0 

8) o,s:0 
(3.23) 

since the encoder also ends in the all-zero state So = 0, and we use (3.21) to recursively 

compute 8,(s),l = K -1,K-2,.••,0. 

We can write the branch metric yl (s',$) as 

Ya (s',$) (s,r/s') = p s,s,r = p 	l 	p (s') 

— p(s',$) p(s',s,r) 

	

— p (s,) 	p (s,, s) 	 (3.24) 

P(s/s')P(r/s',$) = P(u1)P(r/v1) 

48 



where ul is the input bit and vl the output bits corresponding to the state transition 

s' – s at time 1. For a continuous output AWGN channel, if s' - s is a valid state 

transition, 
n Es U yl (s''S) = p(uc) p(,/v1) 

= p(u1)1 
E FE 
 e-

No ll►t — tl~' 	
(3.25) 

where Il ri – vl 11' is the squared Euclidean distance between the (normalized by i ) 

received branch rl and the transmitted branch vl at time 1; however , if s' – s is not a 

valid state transition, p (s/s') and yl (s', s) are both ' zero. The algorithm that computes 

the APP L – value L (ul ) using (3.15),(3.19),and the metrics defined in (3.20)-(3.23) and 

(3.25) is called MAP algorithm. 

We introduce some modifications to above algorithm that result in greater 

computational efficiency. First, we note from (3.19)-(3.21) and (3.25) that the constant 

term F n 
E 	always appears raised to the power h in the expression for the pdf 

nh 

p (s', s, r) . Thus , 	N 	will be a factor of every term in the numerator and 
0 

denominator summations of (3.15), and its effect will cancel. Hence, the modified branch 
metric 

	

yt (s',$) = p( ul )e Es/Nollrt-ttll 	 (3.26) 

p(ul ±1~ _ 
[p(ul = +1)/p(u, _ –1)]f1 

=  
{1 + [ p (ul = +1)/p (ul =_i)] '} 

e±Lot) 

{1 + }L~ ("t) } 	
(3.27) 

— 	e-' (ut)/2 	
eutl'o(ut)/2 

{l+e (&)} 

= Ale",1~(u1}/2 



We use (3.27) to replace p(u1) in (3.26) for 1 = O,1,2,• • • h —1, that is , for each 

information bit. For the termination bits u1 , 1= h, h + 1,..., h + m —1= K —1, however, 

where p(u1) =1 and La (u1 ) = ±cc for each valid state transition, (3.26) can be written as 

yl (s', s) = Aleu' (ut)/2e—(Ee/No/Il~Y—Dt92 s 

= A e"1 a(-1)/2e(2E9/No)(r,'v )-frII2-II°,If 
l 

= A e-(IrIr+n)eu,Lo(ut)/2e(Lr /2)(►r U1) 	 (3.28a) _ l 

= A1BIe(",La(µ)/2)e(L,/2Xr,-v,),l  

= e-(E.1NO$-j-V11f 	/►M•!~~/"~" 
= Ble(I c/2)(rl'VI) l = h, ]~  ~4 

where Bi -1k 112 + n is a constant independent of the codewo 	end 9~ S /N0 is 

the channel reliability factor. 

From the eq.(3.19)-(3.23) and (3.28), the pdf p (s', s, r) contains the factors 

i 1 o Al and fl' B1 an these will be factors for every term in the numerator and 

denominator summations of (3.15), and their effect will be cancel. Hence, 

yt (s', s) =e(L~/2Xn v,) 1 = 0,1,... h —1, 	(3.29a) 

yl (s', s) = e 2x-1•°' ) , l = h, h + 1,... K —1 	 (3.29b) 

Note that when the input bits are equally likely, La (u1 ) = 0, and simplified branch 

metric is given by 

Ti (s',$) = e(2K,l = 0,1,2,...,K —1 	 (3.30) 

By using the following identity , we can simplify the equations (3.20),(3.21) and (3.29) 

max' (x, y) =1n (ex + e'') = max (x, y) + In (1 + e-Ix-''I) 	(3.31) 

50 



ulL2 ul) + L ri vl ,1= 0, 1,• h-1 

	

7 (s',$)=lny1 (s',$)= J 	 (3.32a) 
L 
2 rl -v j,l = h,h+1,•-•,K-1 

	

as+1 (s) =1n a1+1 (s) = in 	y (s', s> 1(s') 
S•E61 

	

=1n 	e[r~ (S 	 (S )] 	
(3.32b) 

S,Eo.' 

=max:,.,,[7* (s',$)+a, (s')],1=0,1,•••,K-1 

ao (s) =1nao (s) = 0
' 	s 0 	

(3.32c) 
s~0 

/3i (s')=1n/3i(s')=1n E y1(s',$)/3i+1(s) 
seal+~ 

=1n 	e~r~ 	 (3.32d) 
SEQ,+1 

= maxs [yc (s',$)+Qi (s')] ,l = K -1,K-2,...,0 

 

0,  s = 0 
f (s) = In (fK (s)) _ 	 (3.32e) 

	

—00, 	s~0 

The use of max* function in (3.32b) and (3.32d) follows from the fact that these 

recursive equations involve calculating the log of a sum of two exponential functions, one 

corresponding to each valid state transition. Further we can now write the expressions for 

the pdf p (s', s, r) in (3.19) and the APP L — value L(u) in  (3.15) as 

p (s', s, r) = eQ1+~(s)}r~ (s•,$)+a; (s•) 	
(3.33) 

and 

L (u1 ) = in 	e 1(s)+71(s•,$)+«; (s') — In 	Z eQ;+~ (s)}r; (s•,$)+a; (s•) 	
(3.34) 

(S',S)EY 	 (S•~S)E~~ 

Each of two terms in eq.(3.34) involves calculating the log of a sum of 2" exponential 

terms, one corresponding to each state in trellis. So we can apply the max* function 
defined in (3.31) to (3.34) and the APP L —value can be expressed as 
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L (ul ) =mars S)E~; [jif~ (s) + yi (s', s) + a~ (s')l —mars S)EE, [ 4 (s) + yy (s', s) + ai (s')] 
(3.35) 

The decision is made according to (3.11) to get the decoded information bits. 

A posteriori reliability information for the vector cis obtained by interleaving 

eq.(3.35) LL into L2 . Let us denote the a posteriori reliability information for the 

block dk1 by L2[k3 .Furthermore, assume that the bits c~ , i =1, 2...., pmM , in the block 

c[k] are independent. Then the posteriori probabilities for the components of the symbol 

vector s (symbol vector corresponding to the block c[k] ) can easily be found from L21k' 

by using equation (3.27) and these probabilities can be used to run NUMO detector (FP-

MAP algorithm) once again. 

3.4 Computational Complexity of FP MAPAlgorithm[27] 
The complexity of the FP-MAP algorithm can be found following the outline of 

the calculation of the complexity of original Fincke-Pohst algorithm in chapter.2. 

However, the probability that an arbitrary point sa belongs to a k — dimensional sphere of 

radius r around the transmitted point s, (which we need to compute the expected number 

of points the FP-MAP algorithm visits) now becomes 

	

12p 	M an + m(L2-1) E- logAsd n—m+k 
(3.36) 

	

p8° —Y 2 1+ 12p 	I sa —st112 ' 	2 m(L —1) 

First and foremost, (3.36) is a function of the a priori probabilities, which are generally 

not known in advance to iterations. Second, since each point sa in a lattice has a distinct a 

priori probability affiliated with it, argument of the probability function (3.36) will, in 

general, be different for each pair of points (s sa) . Hence, to compute the expected 

number of points, one needs to consider all the possible pairs of points (s sa )and the 

corresponding probabilities (3.36) which, as the size of the problem increases, clearly 

becomes rather cumbersome. However we note that since log p(s1) — 0, j =1, 2,..., m . 

we have 
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an + m2p 1) J. l logp(sj) < an 

Hence, from the complexity of original Finke-Pohst and FP-MAP, it follows that for the 

same choice of radius r 
FP-MAP ~ FP 

	

Psa 	Psa 

and we conclude that, for same choice of r, the expected number of points that the FP-

MAP algorithm visits is upper bounded by the expected number of points visited by the 

original sphere decoding algorithm. Thus, the expected complexity of the FP-MAP is 

roughly upper bounded by the expected complexity of the sphere decoding , for same 

choice of r . ["Roughly" upper bounded because since the a priori probabilities enter the 

algorithm, there are two additional operations per each visited point; this is accounted for 

by changing (2k + 17) to (2k + 19) in the original FP complexity.] 

Theorem 
The complexity of FP-MAP algorithm for a 2-PAM constellation is 

12p 

	

C m, p = m f (k) k k an+ 
m(L2 —1) ~.-1 log P(s;) n — m + k 	(3.37) 

k=1 	1=0
p 	l 	

1 + 	12pl 	 2 
m(L2 -12) 

For a 4-PAM constellation it is 

12p 	„z an + 	 log p(s . ) 

	

c(m,p)°~fp(k>~ kh(l)Y 	
"z(L2 _1) ~=1 	~ n—m+k 

k=1 	1 2 h=o h 	 1+ 	
12 pl 	

~ 	
2 

m(L2 -12) 

(3.38) 

where gkh (l) is the coefficient of xl in the polynomial 

(l+x+x4 +x9)h(1+2x+x4
)k-h 
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Chapter 4 

Simulation Results 

This chapter presents the performance comparison of different signal detection 

strategies for MIMO systems The simulation results for the complexity analysis of the 

algorithms are also included. Finally the performance results of an iterative detection and 
decoding for MIMO channel are presented. 

4.1 Simulation results on the error performance of MIMO Detectors 
As mentioned in previous chapters, there are three categories of solutions to 

MIMO decoding, the optimal Maximum Likelihood decoder (MUD), near-optimal sphere 

decoder, and the sub-optimal decoder 

A MIMO system with M = 4 transmit and N = 4 receive antennas is considered 
in the simulation. The entries of channel matrix H are assumed to be i.i.d, zero-mean 

complex Gaussian variables. The channel is assumed to be known at the receiver, and 16-
QAM symbols are used for transmission. 

The following are the common steps and simulation parameters for all detection 
strategies: 

Step.] Generate a random data stream and demultiplex in to M substreams 
Step.2. The demultiplexed data is mapped in to 16-QAM symbols and is modulated. 

Step. 3. Generate complex Gaussian channel matrix H. The channel is assumed to be 
known at the receiver. 

Step. 4. Generate zero-mean complex Gaussian noise vector with variance c72.  Add noise 
to the channel impaired transmit vector s to obtain the receive vector y. 

❖ Number of transmit antennas M = 4, and receive antennas N = 4 
❖ Modulation Scheme - 16 — QAM 

❖ Average energy per bit Eb  =1 

❖ Variance .2  = ( MES  /21og2  (q))10-sNR/I° , Es  = 2(q — 1)/3 , q = 16 ;(q — QAM) 
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4.1.1. Sub-optimal detectors 
Zero-Forcing Detector: This is a liner detector, which is basically multiplication of the 
spatial filter with the received vector. The spatial filter is typically the inverse of the 

channel matrix. The zero-forcing detector solution is 

s = H -1  y 	 (4.1) 

MMSE Detector: Taking additive noise into account, The MMSE detector produces the 
following estimate 

s = ( HHH + 20.21)'  H H y 	 (4.2) 

Successive Interference Cancellation: SIC technique is based on removing the 
interfering signal from the received signal, one at a time as they are nulled by nulling 

vectors. The nulling vectors can be derived using either ZF or MMSE criterion. The 

symbols of the parallel data streams are no longer all detected at once. Instead, they are 
considered one after another and their contribution (after slicing) is subtracted (removed) 

from the received vector before proceeding to detect the next stream. 

SIC is performed on the received vector y as follows 

It is convenient to represent the channel matrix H into number of columns and 
rows 

H1  

H = [hl  h2  ... h.] = H2 

Ha  
The SIC algorithm can be stated by the following pseudo code 

y1 =y 

for k=0 tom-1 
find weight vector 10m-k 

Sm_k  = slice (Wm.-kyk+1) 

yk+2 = Yk+1 — hm-ksm-k 

end 
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In the above algorithm, for each value of the index k, the entries of the auxiliary vector 

yk+1 are weighted by the components of the weight vector w,t_k  and linearly combined 

to account for the effect of the interference. The weight vector w,t_k  can be calculated 

from the following two cases 

ZF nulling.•In this case, interference from the yet undetected symbols is nulled. 

Hm k = [h, h2 ... Jim-k] 

fi 
Wm-k = Hm-kem-k 

where Hm_k = Hm_k (H7n_k11m_k)1 is the pseudo inverse of H„L-k  , and e1z_k  is a 

(m — k) x 1 column vector that consists of all zeros except for the (m — k) th entry whose 

value is 1. 

MMSE nulling: The weight vector using X MSE nulling is 

wm_k  = ( Hm-k H'_k  + 20.21) hm_k 

The estimated symbol vector is demodulated and demultiplexed into binary data. 

Fig.4.1 compares the BER performance between the linear detectors (ZF detector, 

MMSE detector) and successive interference cancellation (SIC). Among the three, ZF 

detector has poor BER performance due to the fact that the perfect separation of 

transmitted data streams entails the enhancement of the additive noise. MMSE detector 

performs better compared to ZF, because it minimizes the overall expected error by 

taking the presence of noise into account. SIC results in better performance as compared 

to the other two methods. 

Fig.4.2 shows the performance in terms of BER for MMSE detector in case of 

non constant modulus modulation schemes like 16 — QAM and 64 — QA M . 

Figure clearly shows the performance degradation of 15dB at 10-1  BER for 

64—QAMcompared to16—QAM. 
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Fig. 4.2. BER performance comparison of MIVISE Detector in a 

4 x 4 MIMO system with 16— QAM and 64— QAM modulation 
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4.1.2. Optimal and near-optimal Detectors 
Optimal detector: 

The essential of MIMO decoding is to solve (2.1). The optimal solution is the ML 

decoding. 

= argmin(jjy Hsll2 ) 	 (4.3) 
sES 

where S consists of all possible vectors of s. 

The procedure to perform exhaustive ML decoding is as follows 

Generate S which consists of all possible vectors of s S. Perform exhaustive search (4.3) 

for each symbol vector and obtain best . The estimated symbols are 16-QAM 

demodulated and demapped to bits. The N -dimensional decoded data is multiplexed in 
to a single bit stream. 

Near-optimal decoders: 
As discussed in chapter.2, the sphere decoding algorithms can achieve near-ML 

performance for MTMO decoding for reasonable complexity. The sphere decoding 

algorithms have two kinds of implementation strategies, The FIncke-Pohst strategy called 
SD and the Schnorr-Euchner strategy called SE. 

(1) Sphere decoder 
Sphere decoder is based on the enumeration of points in the search set that are located 

with in a sphere of some radius centered at a target. The following are the steps to 
perform Sphere decoding. 

Step.1 Pre-decoding phase: The inputs to the sphere decoder are H, y, d . QR- 

decomposition is performed to calculate the triangular form of matrix H. 

Step.2 Initialization phase: Calculate the Zero-Forcing point (ZF-point) as an initial 
estimate, and initialize the sphere dimension. 

Step.3 Search phase: Calculate the bounds for each component of the estimate. Search 

for the closest point using bounds and get the best estimate. 

The detailed flowchart is given below 
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QR-decomposition 
Input 	I 	of H H,y,d 	 L  = R-T 

Calculate ZF point sZF = H -1 y 

Set k=m 
d =d2 - 11y112 +IIHSII2 

Sm/m+1 — Sm 

Calculate bounds for Sk  

Z— dkIrkkI UB(sk)=LZ+sk/k+1J ,  

Sk  = I —Z + Sk/k+l 1 — 1 , 

k=k-1 
Update Sk/k +1 

dk'2 	
Sk  Sk  + l 

Update dk  

No 	Yes 

k=1 zZ 	Sk  SUB(Sk) 

Yes 
k=k+1 

Output 
S 

No 
k=m+1 

Yes 
Terminate 

Fig.4.3. Flowchart for Sphere Decoding Algorithm 



(2) Schnorr-Euchner strategy 

This algorithm has the same principle as the SD: the search for the closest point. 

This algorithm is based on two stages. The first stage consists in searching for the "Babai 

point" (BP), which represents a first estimation, but is not necessarily, the closest point. 
Finding the BP gives us a bound on the error. In the second stage, we modify the BP until 

the closest point is reached. We zigzag around each BP component in turn to build the 

closest point (unlike the sphere decoder, there is no minimum and maximum bound for 
each BP component). The time needed to fmd the closest point is closely related to BP, 

which means closely related to the SNR. In fact, if the BP is very far from the closest 
point, i.e for low SNRs, the algorithm takes much more time to converge. However, if the 
BP is close to the closest point, i.e for high SNRs, the algorithm converges rapidly. This 
algorithm searches for entire vector in the tree at same time, even if one component of the 

estimate is not belongs to the constellation, it once again calculates all. the components of 

the estimate.This algorithm is called as the Schnorr-Euchner reference algorithm. 

A modified Schnorr-Euchner algorithm in contrast to the above algorithm 
searches for individual components of the estimate which belongs to constellation. The 
following flow charts give the detailed description. 
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Fig.4.4. Flowchart for Schnorr-Euchner algorithm 

62 



QR-decomposition 
Input 	 of H 
H,y 	 L = R-T 

Calculate ZF point sZF = H -1 y 

bestdist = 210 
k=n 
distk  =0 

Uk = rint(ekk) 
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63 



Yes 
B 	 k=n 	 Output u 

No 

D 

A 	 6=u 
bestdist = newdist 

D 

k=k+1 

for j =1to2 
uk  = uu  +2 *stepk  
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Fig.4.5. Flowchart for Modified Schnorr-Euchner strategy 
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Fig.4.6. gives the BER performance comparison of Exhaustive ML, Sphere 

decoding algorithm (SD) for a 4 x 4 MIMO system. BER of Sphere decoder is evaluated 

over 10,00,000 independent channel realizations and BER of exhaustive ML is evaluated 

over 10,000 independent channel realizations. The performance of sphere decoder 
approaches exhaustive ML search with reasonable complexity. 

Fig.4.7. shows the BER performance comparison of different detection methods 

namely ZF detector, MMSE detector, SIC, Exhaustive ML, and Sphere decoder. Clearly 

exhaustive ML and SD outperforms by nearly 10dB at BER of 10-3  compared to other 

techniques but there is a trade off between BER performance and computational 

complexity. In VLSI implementation point of view, we need systems with low 
complexity so that the design may become easy, for which we can effort to lose the 

performance but when high performance is needed, optimal, near-optimal detectors play 

major role with high computational cost. 

Fig.4.8 compares the BER performance of Schnorr-Euchner strategy and its 

variants by considering 4 x 4 MIMO system with 16 — QAM modulation. Simulations 

are carried out over 10,00,000 independent channel realizations. Clearly, a BER of 10-5  
can be attained at SNR 22dB by all Schnorr-Euchner algorithms, while the performance 

deference between SE-reference and SE1 (Modified SE) is minor. It is also clear from 

figure that SE-reference outperforms SE 1 by about 1 dB when BER =10-6  . However, the 

performance difference between SE-reference and SE2 is about 0.5 dB when BER=10-6  , 

which shows that suitable early termination criteria could improve the BER performance 

of SE1 at high SNR. 
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4.2 Comparison of Computational Complexity 
ML detector gives the optimum performance for small number of antennas and 

for small constellations, but if the number of antennas increases at transmitter or at 
receiver or if the constellation size increases, the complexity of ML detector increases 
exponentially. Near-optimal detectors give near-ML performance with polynomial 

complexity. 

Fig.4.9. shows the performance in terms of average number of multiplications 
needed to detect a symbol vector. Considering a 4 x 4 MIMO system with 

16 — QAM modulation, 16 bits will be transmitted per each channel realization. Now 

exhaustive ML detector performs (4.3) by searching over 216  possible transmitted vectors 
for each channel realization which results in a huge complexity problem. Now consider a 

real MIMO channel model in which the channel matrix is of size 8 x 8 and the received 

vector is of size 8 x 1. If we perform exhaustive ML search given by (4.3) over all 

possible symbol vectors, the detector needs (64 + 1)164  = 4259840 multiplications to 

detect a symbol vector which is infeasible with current technologies. If we increase the 
number of antennas or the constellation size, the complexity of ML detector will increase 

exponentially. On the other hand, sphere decoder searches for the estimate with 
reasonable complexity which varies with SNR, because as SNR increases, the radius gets 

adapted there by the search space gets reduced, which means the perturbed point gets 

closer to the estimate. The average number of multiplications can be found by counting 

the multiplications in the search phase of sphere decoding algorithm described in section 

2.4.3.1. For simplicity, the preprocessing computations are not included. In case of SIC 

also, the ZF nulling vector computations are neglected, but indeed they results in heavy 

computational complexity as the pseudo inverse requires more multiplications. It is clear 

from the Fig.4.9. that SIC results in less number of multiplications compared to 

exhaustive ML and SD but it has poor BER performance. 

Fig.4. 10. compares the average number of multiplications required for the sphere 

decoder (searching phase), when the radius is fixed to 1 and when radius is a function of 

SNR. The number of multiplications can be calculated through simulation of sphere 

decoding algorithm described in section 2.4.3.1. When the SNR is low, the search 



oscillates in between the layers which results in more multiplications, which can be found 

by incrementing the count each time the search visits step.5. Clearly the Fig.4.10 

confirms the need to adapt the radius according to SNR. Note that by using as adapted 

radius, we obtain smallest number of multiplications especially at small SNRs, for 
example at 5dB, we have around 750 multiplications less than the other case. This 

improvement of the SD will obviously improve the total complexity of the SD. 

Fig.4.1 1. plots the algorithm complexity of Schnorr-Euchner and its variants. The 

algorithm complexity is defined as the average number of searched sublattices per 

symbol vector, i.e number of evaluations on Line (9) in algorithm SE1 described in 

section 2.4.3.2.. So the term average number of sublattices per symbol vector comes from 
the fact that the number of times the loop is repeated before termination of the algorithm. 
It is clear from the figure that SE1 reduces the complexity of SE-reference significantly at 

low and moderate SNR. Moreover the algorithm complexity is further reduced in SE2, 
which combines SE1 with Fano like metric bias and SE1-Early termination. The effects 

of SE1 with Fano like metric bias and SE1-Early termination are different on complexity 
reduction. SE1-Fano like metric bias is more effective at low SNR than at high SNR, 

since the value of 62  is too small at high SNR to affect the path metric of the higher level 
of the tree. 

Fig.4.12 shows the complexity exponent for sphere decoder as a function of 
number of number of transmit antennas m for SNR=20dB, for L — PAM constellation 

with L =2.  It is plotted for eq.(2.50) as a complexity exponent log C (m
'
p) 

 It is clear 
logm  

from the figure that for small constellations the expected complexity is polynomial, 

where as for large constellations the expected complexity would be exponential. 
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4.3 Simulation for Iterative MIMO detection using modified Sphere decoding 
algorithm 

An iterative detection and decoding process is performed which improves the 

performance of coded MIMO detection. Here we use an optimal soft input-soft output 

detector for channel decoding The IDD approach improves the detection performance by 

utilizing the detector output. 

Simulation steps required for the IDD scheme by referring Fig.3.1 is outlined as follows 
Step. 1. Generate binary data of 1000 bits per one block. 

Step.2. The information is encoded by R =1/2 rate non-systematic convolutional code 

with memory length 2. The generating polynomials are G, (D) =1 + D + D2 

and G2 (D) =1+ D2 . The coded sequence is interleaved and modulated by means of 

simple Gray mapping onto a 16-QAM modulation scheme, and transmitted through 

4 x 4 MIMO channel. The trellis for the above convolutional code is given by 

	

State 	 1 	10 	1+1  

11 

`. 	01 

01  

0 	` 
10  

	

00 	------00----='~J 

Fig. 4.13 Trellis for rate I -convolutional encoder with memory 2 

In Fig.4.13 the transition, corresponds to zero information bit is shown by dotted line 

and the transition, correspond to one information bit is shown by thick line. 

Step.3. On the receiver side, by using FP-MAP algorithm described in section 3.2, we 

compute the soft bit information as follows 
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e—II y—Hsll2+~~ log P[sJ ] 

L1 (c1 / y) = log 	5:~~=+~ 	2 

e-Ily-Hsj~ +Z j'Ogp [s;] 

where c~ is the coded information from which current symbol vector s is obtained. 

Step.4. The vector L, is deinterleaved which is then used by channel decoder (soft 

input-soft output decoder) to form the estimate of the information bit vector b, as well as 

to provide L2 , the a posteriori reliability information for the coded bits vector c'. The 

channel decoder finds the APP L — values by using the above trellis and the equations 
described in section 3.3. 

Step.5. A posteriori reliability information for the vector c is obtained by interleaving 

L2 into L2 ,which will converted to the a posteriori probabilities for the components of 

symbol vector s and those probabilities will be used by FP-MAP algorithm. 

Step.6. steps3 to 5 can be repeated to improve the performance. 

Fig.4.14 shows the BER performance comparison of IDD based MIMO detection 

using modified sphere decoding algorithm (FP-MAP) for iteration) and interation3. The 

performance is improved for iteration 3 by 1.5 dB at BER 10-3 . Thus the IDD based 
MIMO detection gives better performance compared to normal MIMO detection. 
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Chapter 5 

Conclusion 

This dissertation work is aimed at the performance comparison of different 

detection schemes in multiple input multiple output (NUMO) systems, namely optimal 

(ML), sub-optimal (ZF, MMSE, SIC )and near-optimal (Sphere) detectors . The MIMO 

detection is then extended to iterative decoding scheme which results in improved 
performance. The simulation results can be summarized as follows 
❖ Among the sub-optimal detectors (ZF, MMSE, SIC), the performance of SIC is 
better compared to the linear detectors such as ZF, MMSE. Linear detectors can achieve 
the diversity order only N — M +1, but compared to linear detectors, SIC achieves 

increased diversity order with each iteration. While the first detected stream sees a 
diversity order N — M + 1, the second achieves N — M +2 and so forth. 
❖ The optimal performance is achieved by ML detectors but its complexity 

increases exponentially with number of antennas or the constellation size. Near-ML 
performance is achieved by near optimal decoding schemes such as sphere decoding 

algorithm and Schnorr-Euchner algorithm at the cost of polynomial complexity for 

smaller constellations. But if the constellation size increases, the complexity of these two 

algorithms increases exponentially. For same specifications, the BER performances of 

sphere decoding algorithm and Schnorr-Euchner algorithm are same, but differ in the 
complexity. 

❖ Sphere decoding algorithm performance is dependent on the choice of radius. 

When the radius is fixed, algorithm requires more number of multiplications specially at 

low SNRs, but when the radius is adapted according to SNR, the complexity is 

reasonable even at low SNRs. The complexity of Schnorr-Euchner algorithm is reduced 

by its variants such as Fano like metric bias, early termination and the combination of 

these two , with only a small degradation in BER performance at high SNR. 
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❖ A further improvement in performance is achieved for a coded MIMO detection 

using iterative decoding scheme, in which the modified sphere decoding algorithm (FP-

MAP) reduces the complexity of MIMO detection. It has been proved that, for the same 

choice of radius, the expected number of points that the FP-MAP algorithm visits is 

upper bounded by the expected number of points visited by original sphere decoding 

algorithm. This simplified IDD scheme is quiet important as the demand grows for higher 

spectral efficiency in future wireless systems. 

Future work 
In evaluating the performance of different detection schemes in MILMO systems, it 

is assumed that the channel is perfectly known to the receiver. Effect of imperfect 

channel estimation at the receiver on the performance of near optimal ML decoder needs 

to be investigated.. A lattice aided reduction algorithms can also be implemented to 

reduce the lattice size. Orthogonal frequency division multiplexing (OFDM) may be 
combined with MIMO to increases the diversity gain and enhance the system capacity on 

time variant and frequency selective channels. A direct application of the MIMO 

detectors can be applied to each subcarrier in a MIMO-OFDM system. The number of 

MIMO detectors required to implement a MIMO-OFDM system is the number of 

subcarriers that the OFDM system employ. Recently developed fixed complexity sphere 

decoders (FSD) can also be applied to the case where an outer code is used in the MIMO 
system (Turbo-MIMO system). 
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