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ABSTRACT

In today’s society, a growing number of users are demanding more sophisticated
services from wireless communication devices. In order to meet these rising demands, it
has been proposed to- increase the capacity of the wireless channel by using more than
one antenna at the transmitter and receiver, thereby creating multiple-input multiple-
output (MIMO) channels. Using MIMO communication techniques is a promising way to
improve wireless communication technology because in a rich-scattering environment the
capacity increases linearly with the number of antennas. However, increasing the number
of transmit antennas also increases the complexity of detection at an exponential rate. So
while MIMO channels have the potential to greatly increase the capacity of wireless
communication systems, they also force a greater computational burden on the receiver.
Even suboptimal MIMO detectors that have relatively low complexity have been shown
to achieve unprecedented high spectral efficiency. However, their performance is far
inferior to the optimal MIMO detector, meaning they require more transmit power. The
fact that the optimal MIMO detector is an impractical solution due to its prohibitive
complexity leaves a performance gap between sub-bptimal detectors (ZF, MMSE,SIC)
that require reasonable complexity and the optimal detector.

In this thesis work, the performance comparison of different MIMO detectors
namely, optimal, sub-optimal and near-optimal detectors are done. The MIMO detection

is then extended to iterative decoding scheme to improve the performance.
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Chapter 1

Introduction

Wireless communications is one of the big engineering suécess stories of the last
20 years not only from a scientific point of view, where the progress has been
phenomenal, but also in terms of market size and impact on society. In fact wireless
permeates every aspect of our lives. The demands on bandwidth and spectral availability
are endless as the wireless systems continue to strive for ever higher data rates. Multiple
access wireless communications is being deployed for both fixed and mobile applications.
In fixed applications, the wireless networks provide voice or data for fixed subscribers.
Mobile networks offering voice and data services can be divided in to two classes: high
mobility, to serve high speed vehicle borne users, and low mobility, to serve pedestrian
users.

The gradual evolution of mobile communication systems follows the quest for high
data rates, measured in bits/sec (bps) and with a high spectral efficiency, measured in
bps/Hz. The first mobile communications systems were analog and are today referred to
as systems of the first generation. In the beginning of 1990s, the first digital systems
emerged, dehpted as second generation (2G) systems, the most popular 2G system
introduced was the global system for mobile communications (GSM)[1], which operates
in the 900MHz or the 1800MHz band and supports data rates up to 22.8bbit/s. Another
popular 2G system is the TDMA/136, which is also a digital cellular system. To
accomplish higher data rates, two add-ons were developed for GSM, nameiy high-speed
circuit switched data (HSCSD) and the general packet radio service (GPRS), providing
data rates up to 38.4 kbit/s and 172.2 kbit/s, respectively.

The demand for yet higher data rates forced the development of a new generation of
wireless systems, the so- called third generation (3G). 3G systems are characterized by a
maximum data rate of at least 384kbit/s for mobile and 2Mbit/s for indoors.

One of the leading technologies for 3G systems is the now well-known universal

mobile telephone system (UMTS)[also referred to as wideband code-division multiplex



(WCDMA) or ULTRA FDD/TDD].UMTS represents a revolution in terms of services
and data speeds from 'today’s “second generation” mobile networks. UMTS and
WCDMA are already a reality and have been used in many parts of the world. To yield
3G data rates, an alternative approach was made with the enhanced data rates for GSM
evolution (EDGE) concept. The EDGE system is based on GSM and operates in the same
frequency bands. The significantly enhanced data rates are obtained by meansv of a new
modulation scheme, which is more efficient than the GSM modulation scheme. As for
GSM, two add-ons were developed for EDGE, namely enhanced circuit switched data
(ECSD) and the erhanced general packet radio service (EGPRS). The maximum data
rate of the EDGE system is 473.6kbit/s, which is accomplished by means of EGPRS.
2.5G systems, based on GPRS technology, a natural evolutionary stepping stone towards
UMTS also provided faster data services.

The new IEEE and High Performance Radio Local Area Network (HIPERLAN)
standards specify bit rates up to 54Mbit/s, although 24Mbit/s will be the typical rate used
in most applications. Such high data rates impose large bandwidths, thus pushing carrier
frequencies for values higher than the UHF band. .

The goal of the next generation of wireless systems-the fourth gemeration
(4G) is to provide data rates yet higher than the ones of 3G while granting the same
degree of user mobility. 4G is expected to deliver more advanced versions of the same
improvements provided by 3G, such as enhanced multimedia, smooth streaming video,
universal access and portability across all types of devices. 4G enhancements are
expected to include world wide “roaming” capability. As was projected for the ultimate
3G system, 4G might actually connect the entire globe and be operable from any location
on-or above-the surface of earth. This aspect makes it distinctly different from the
technologies developed until now.

In addition to 3G’s technical challenges, there are problems from a financial aspect,
such as justifying the large expense of building systerris based on less-than-compatible
2G technologies. In contrast, 4G wireless networks that are Internet Protocol (IP)-based
have an intrinsic advantage over their predecessors. IP tolerates a variety of radio
protocols. It allows you to design a core network that gives you complete flexibility as to
what shape the access network will take. A 4G IP network has also certain financial



advantages. Equipment costs are much lower than what they used to be for 2G and 3G

systems.

1.1 Multiple-Input Multiple-Output System/[2]

Perhaps one of the most interesting trends in wireless communication is the
proposed use of multiple input multiple output (MIMO) systems. A MIMO system uses
multiple transmitter antennas and multiple receiver antennas to break a multipath channel
into several individual spatial channels. Now MIMO systems represent a huge change in
how wireless communication systems are designed. This change reflects how we view
multipath in a wireless system.

The Prospects of MIMO

From an information theoretic perspective, increasing the number of antennas
essentially allows to achieve higher spectral efficiency compared to single-input single-
output (SISO) systems. Actual transmission schemes exploit this higher capacity by
leveraging three types of partially contradictory gains:

e Array gain refers to picking up a larger share of the transmitted power at the
receiver which mainly allows to extend the range of a communication system and to
suppress interference. .

e Diversity gain counters the effects of variations in the channel, known as fading,
which increases link-reliability and QoS. .

e Multiplexing gain allows for a linear increase in spectral efficiency and peak data
rates by transmitting multiple data streams concurrently in the same frequency band. The
number of parallel streams is thereby limited by the number of transmit or receive
éntennas, whichever is smaller.

The Old Perspective: The ultimate goéll of wireless communications is to combat the
distortion caused by multipath in order to approach the theoretical limit of capacity for a
band-limited channel.

The new Perspective: Since multipath propagation actually represents multipath
channels between a transmitter and receiver, the ultimate goal of wireless
communications is to use multipath to provide higher total capacity than the theoretical

limit for a conventional bandlimited channel.



The basic idea is to usefully exploit the multipath rather than mitigate' it,
considering the multipath itself as a source of diversity that allows the parallel
transmission of N independent substreams from the same user. The exploitation of
diversity and parallel transmission of several data streams on different propagation paths
at the same time and frequency allows for extremely large capacities compared to
conventional wireless systems. The prospect of many orders of magnitude improvement
in wireless communication performance at no cost of extra spectrum (only hardware and
complexity are added) is largely responsible for the success of MIMO as a topic for new
research. Pioneering work by Foschini [3], and Telatar [4] ignited much interest in this
area by predicting remarkable spectral efficiencies for wireless systems with multiple
antennas when the channel exhibits rich scattering and its variations can be accurately
tracked.

The large spectral efficiencies associated with MIMO channels are based on the
premise that a rich scattering environment provides independent transmission paths from
each transmit antenna to each receive antenna. Therefore, for single-user systems, a
transmission strategy that exploits this structure achieves capacity on approximately

min(N, M) separate channels, where N is the number of transmit antennas and A/ is the
number of receive antennas. Thus, capacity scales linearly withmin(N, M) relative to a

system with just one transmit and one receive antenna. This capacity increase requires a
- scattering environment such that the matrixes of channel gains between transmit and
receive antenna pairs has full rank and independent entries, and that perfect estimates of

these gains are available at the receiver.

1.1.1  Detection in MIMO Systems

Of course, the benefits of using multiple antennas at the transmitter and receiver
do not come without costs. One fundamental obstacle for MIMO systems is the increased
complexity of recovering the transmitted information. As the capacity increases linearly
with the number of antennas, the complexity of the detection problem increases
exponentially with the number of transmit antennas. Among the various popular MIMO

wireless communication schemes, the BLAST (Bell Labs Layered Spacé Time)



approaches are particularly attractive. BLAST attempts to achieve the potentially large
channel. capacity offered by the MIMO system. Diagonal Bell Labs Layered Space-Tinie '
(DBLAST) algorithm has been proposed by Foschini for this purpose, which is capable
of achieving a substantial part of the MIMO capacity [5]. However, a high complexity of
the algorithm implementation is its substantial drawback. A simpliﬁéd version of the
BLAST algorithm is known as Vertical Bell Labs Layered Space-Time (VBLAST). It is
capable of achieving high spectral efficiency while being relatively simple to implement.

The optimal detection is performed by the maximum-likelihood (ML) detector,
which finds the best symbol vector from among an exponential number of possibilities, is
prohibitively complex even for small numbers of channel inputs. Suboptimal detectors
can achieve the same spectral efficiency as the ML detector, but they need more transmit
power to do so. In fact, the performance of MIMO detectors is measured by the amount
of transmit power, or signal-to-noise ratio (SNR), they require to recover the transmitted
data. The ML detector has optimal 'performance, but requires exponential complexity in
return. Some suboptimal detectors like the zero-forcing (ZF) detector and the minimum
mean square error (MMSE) detector require only linear complexity, but they cannot
achieve optimal performance. This gives rise to an inherent trade-off between
performance and complexity in MIMO detection.

However, recent advances in signal processing techniques have led to the
development of the Sphere Decoder (SD) which is based on the enumeration of points in
the search set that are located with in a sphere of some radius centered at a target. It is
also called ‘Lattice decoder’ which offers near-ML performance for MIMO channels at
an average case with polynomial time complexity. Lattice (sphere) decoders are used to
simplify the exponentially complex search problem in ML decoders for MIMO systems
with higher modulation constellations. Two types of lattice decoding algorithms are
available in the literature, namely Fincke-Pohst algorithm [6][7] called Sphere decoder
(SD)and Schnorr-Euchner algorithm[8][9] called (SE).The performance of these two
algorithms are equal but they differ in the search method employed.

A new approach to solving the detection problem is éreated by viewing the
channel output as a point in the lattice generated by the channel matrix. This approach

helps the detector because the matrix that generates this lattice is not unique, and the



receiver can find “better” matrices that generate the same lattice. Lattice-aided detectors
achieve near- ML performance by using a lattice-reduction algorithm [10] (such as the
LLL algorithm, KZ algorithm) to create a more orthogonal effective channel. However,
finding the best lattice-reduction is in general an NP-complete problem, and the viability
of lattice-aided detection is limited in practice by the high complexity of lattice-reduction
algorithms. Particularly on wireless channels that vary rapidly with time, the high

overhead of lattice reduction can waste much of the computational savings.

1.2 Statement of problem

This work is aimed at performance study of signal detection strategies in MIMO
system. ’

The work is presented as follows

¢ Capacity of MIMO channels , MIMO detection schemes and their complexity

¢ Performance evaluation of iterative detection and decoding of MIMO channel.

1.3 Organization of the Report

Chapter one gives an overview of the evolution of wireless systems through 2G,
3G and 4G systems. It summarizes the problem statement for the thesis work.

Chapter two reviews the MIMO system capacity which achieves large spectral
efficiencies so as to meet high bit rate demand in wireless communications, and discus
the MIMO detection schemes which includes optimal detector, near-optimal detectors
and shb-optimal detectors. Detailed analysis of near-optimal detectors and their
complexity will also be discussed.

Chapter three discusses the application of MIMO detection to iterative decoding
which improves the performance. '

Chapter four presents the implementation details of different MIMO detection
schemes and iterative decoding of MIMO detection. Simulation results are also included

and the related issues are studied.



Chapter 2

Capacity of MIMO Channels and Detection Schemes

Multiple-input multiple-output (MIMO) systems are today regarded as one of the
most promising research areas in wireless communications. This is due to the fact that a
MIMO channel can offer a significant capacity gain over a traditional Single-Input
Single-Output (SISO) channel. In this chapter we present the capacity of MIMO channels
and we then introduce different MIMO decoding solutions. Sphere decoding algorithm

and Schnorr-Euchner strategy are presented in detail.

2.1 MIMO System Model
The idea behind MIMO is that the signals on the transmit antennas at one end and -

the receive antennas at the other end are “combined” in such a way that the quality (bit-
error rate or BER) or the data rate (bits/sec) of the communication for each MIMO user
will be improved. Consider a MIMO system with a transmit array of M antennas and a

receive array of V antennas. The block diagram of such a system is shown in Fig.2.1.

Detector —»

Ny

Figure 2.1: 4 MIMO system model



The MIMO channel model can be represented as

y=Hs+n 2.1
where §= [s,‘sz, ......... sM:[T is the transmitted symbol vector, j=[y,},,.......,]| is the
received symbol vector, and n = [nl, L — n N]is an independent identically distributed

(i.i.d) complex zero—mean Gaussian noise vector with variance o°per dimension.

Moreover H denotes the N x M channel matrix ,whose elements h;represent the

complex transfer functions from the j th transmit antenna to the i th receive antenna, and
are all i.i.d. complex zero-mean Gaussian with variance % per dimension . it is assumed

that the channel matrix is random and that the receiver has perfect channel knowledge. It

is also assumed that the channel is memoryless, i.e., for each use of the channel an
independent realization of H is drawn.

A general entry of the channel matrix is denoted by {hu} This represents the

. < . . .
complex gain of the channel between the jth transmitter and the ith receiver. With a
MIMO system consisting of M transmit antennas and N receive antennas, the channel

matrix is written as

hll °tt th
H=| i -

By, Py
hy=a+jp
— [(az +ﬂ2 )[k—jamtan(ﬂ/a)
=[p-¢™
In a rich scattering environment with no line-of-sight (LOS), the channel gains lhy[ are

usually Rayleigh distributed.

2.2 SISO Channel Capacity [11][12]

If the input and oufput ofa rriemoryless wireless channel are the random variables

X and Y respectively, then the channel capacity is defined as



C=maxI(X;Y) (2.2)

p(x)
where 1 (X ;Y ) represents the mutual information between X and Y. Equation (2.2)
states that the mutual information is maximized with respect to all possible transmitter
statistical distributions p(x). Mutual information is a measure of the amount of

information that one random wvariable contains about another variable. The mutual

information between X and Y can also be written as
I(X;Y) = HY)- H(Y/X),
where H(Y | X)represents the conditional entropy between the random variables X and

Y. The entropy of a random variable can be described as a measure of the amount of
information required on average to describe the random variable. It can also described as

a measure of the uncertainty of the random variable. Note that the mutual information

between X and ¥ depends on the properties of the channel (through a channel matrix H )
and the properties of X (through the probability distribution of .X).

The ergodic (mean) capacity of a random channel with M =1,and N =1 and an

average transmit power constraint F,.can be expressed as

C=EH{ max I(X;Y)} . 2.3)

p(X)P<Pp
where P is the average power of a single channel codeword transmitted over the channel
and E, denotes the expectation over all channel realizations. The capacity of the channel

is now defined as the maximum of the mutual information between the input and the
output over all statistical distributions on the input that satisfy the power constraint., If
each channel symbol at the transmitter is denoted by s, the average power constraint can

be expressed as
P=E[|s[ |<p,

Using (2.3), the ergodic (mean) capacity of a SISO system (M = N =1) with a random

complex channel gain 4, is given by

C=%b%4“p%f”' 2.4)



where p is the average signal-to-noise (SNR) ratio at the receiver branch, If Ihul is

Rayleigh, hnl2 follows a chi-squared distribution with two degrees of freedom. Eq.(2.4)

can then be written as
C=E, {log2 (l+p-;(22)}

where y. is a chi-square distributed random wvariable with two degrees of freedom.
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Figure 2.2: Ergodic capacity a Rayleigh fading SISO channel (dotted line)
compared to the Shannon capacity of a SISO channel (solid line).

Fig.2.2 shows the Shannon capacity of a Gaussian channel (solid line) and the capacity of
a Rayleigh fading channel (dotted line). The capacity of Rayleigh fading channel
approaches Shannon capacity by a difference of 1to 2 dB. As we deploy more receiver
antennas the statistics of capacity improve and with N receiver antennas, we' have a
SIMO system with capacity given by [11]

C=E,{log, [1+pi|h,. |2) 2.5)

i=1

10



where . are the entries of a column vector represents a channel matrix. Contrasting with

Equation (2.4), we see that || is replaced by a sum of squares. We call this system an

optimum combining system (OC (V)).Optimum refers to taking full advantage of what
the received vector tells us about the transmitted signal. The crucial feature of Eq.(2.5) is
that increasing the value of N only results in a logarithmic increase in average capacity.
Similarly, if we opt for transmit diversity, in the common case, where the transmitter
does not have channel knowledge, we have a multiple-input—single-output (MISO)

system with M transmitter antennas and the capacity is given by

p & 2
C=1 1+=—> |A
ng( M,z=11| rl )

here h, represents the entries of a row vector represents the channel matrix, the

normalization by M ensures a fixed total transmitter power. Here again the capacity has a
logarithmic relationship with A.
We next consider the use of diversity at both transmitter and receiver giving rise

to a MIMO system.

2.3 MIMO Channel Capacity[11][12]

The capacity of a random MIMO channel with power constraint P, can be
expressed as

C=EH{ max I(S‘;jz)} (2.6)

P(X)tr(®)<Pr

where @ =E {§§T'}is the covariance matrix of the transmit signal vector §. Irrespective

of the number of transmit antennas, the total transmit power is limited to 7, . By using Eq
(2.1) and the relation between mutual information and entropy, (2.6) can be expanded as

follows for a given H
1(3:5)=h(5)-h(5/5)
=h(5) - h(H5 +#/5)

=h(5)-h(3)

! Subscript T denotes the Hermitian transpose

11



=h(y)—h(n) 2.7

where A(-) in this case denotes the differential entropy of a continuous random variable.

It is assumed that the transmit vector § and the noise vector # are independent. Eq. (2.7)

is maximized when y is Gaussian, since the normal distribution maximizes the entropy

for a given variance. The differential entropy of a real Gaussian vector y € R"with zero
mean and covariance matrix K is equal to %log2 ((27re)" detX ) For a complex Gaussian

vector yeC”, the differential entropy is less than or equal to log,det (JzeK ) with
equality if and only if p is a circularly symmetric complex Gaussian with
K=E { j_)"ﬁ}.Assuming the optimal Gaussian distribution for the transmit vector §, the
covariance matrix of the received complex vector y is given by [10]
| E{j5'} = E{(#5 + &) (H5 + i)}

= E{H3s" [} + E {iiit" }

= HOH + K"

=K‘+K" (2.8)
where K¢ = HOH' , and the subscript d and »denote the desired part and noise part

respectively of Eq.(2.8). The maximum mutual information of a random MIMO channel

is then given by
1(5:5)=h(3)~h(A)
- =log, [ det(ze(K* + k")) |- log, [ det (mek")]
K‘+K")]-log, [det (57)]
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When the transmitter has no knowledge about the channel, it is optimal to use a uniform
power distribution. The transmit covariance matrix is then given by

@:%IN

It is also common to assume uncorrelated noise in each receiver branch described by the
covariance matrix K" =01, . The ergodic (mean) capacity for a complex AWGN

MIMO channel can then be expressed as

C=E, {log2 [det([N + ofl;\l HA' )]}

This can also be written as

- P_ it
C=E, {log2 l:det (IN + i, HH H} 2.9)

P, . . . .
where p =—L-is the average signal-noise ratio(SNR) at each receiver branch. By the law
o

of large numbers, the term Lflﬁ " 1, as M gets large and N gets fixed. Thus the
M

capacity in the limit of large M is

C=Ez{N log,(1+p)} (2.10)

Further analysis of the MIMO channel capacity given in (2.9) is possible by

diagonalizing the product matrix HH" either by eigenvalue decomposition or singular

value decomposition. By using eigenvalue decomposition, the matrix product is written
as

HH' = EAE! (2.11)

where E is the eigenvector matrix with orthonormal columns and A is a diagonal matrix

with the eigenvalues on the main diagonal. Using this notation (2.9) can be written as
C=E, {logz l:det (IN + %EAE*):'} 2.12)

The matrix product HH' can also be described by using singular value decomposition
on the channel matrix H written as | - '

H=UYV" (2.13)
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where U and V' are unitary matrices of left and right singular vectors respectively, and
2. is a diagonal matrix with singular values on the main diagonal. All elements on the

diagonal are zero except for the first £ elements. The number of non-zero singular values
k equals the rank of the channel matrix. Using (2.9) and (2.13), the MIMO channel

capacity can be written as

C=E, {logz [det(l,v +I’D{—Uzz* U*ﬂ} (2.14)

After diagonalizing the product matrix HH', the capacity formulas of the MIMO
channel now includes unitary and diagonal matrices only. It is then easier to see that the
total capacity of a MIMO channel is made up by the sum of parallel AWGN SISO
subchannels. The number of parallel subchannels is determined by the rank of the
channel matrix. In general, the rank of the channel matrix is given by

rank (H )=k <min(M,N) (2.15)

Using (2.15) together with the fact that the determinant of unitary matrix is equal to 1,
(2.12) and (2.14) can be expressed respectively as

C=E, {ilog2(1+ﬁ}pj)} (2.16)

i=]
: P
=E, {Zlog2 (1 +=o? )} (2.17)
= M
In (2.16), Aare the eigenvalues of the diagonal matrix Aand in (2.18) o are the

squared singular values of the diagonal matrix > . The maximum capacity of a MIMO
channel is reached in the unrealistic situation when each of the M transmitted signals is
received by the same set of N antennas without interference. With optimal combining at
the receiver and receive diversity only (M = 1), the channel capacity

can be expressed as

C=E, {Ing (1+p'ZZZN)}
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where 2, is the chi-distributed random variable with 2N degrees of freedom. If there

are M transmit antennas and optimal combining between N antennas at the receiver, the

capacity can be written as
C=E_ {M.-log (1+—‘ - )} (2.19)
H 2 M 2N ‘

Eq.(2.19) represents the upper bound of a Rayleigh fading MIMO channel. Fig.2.3 shows

the comparison between Shannon capacity of SISO channel and the upper bound of

(2.19) with M = N =6[11]. The Figure clearly shows the potential of MIMO technology.
Ergodic capacity of a MIMO fading channel
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Fig.2.3. The Shannon capacity of a SISO channel (dotted line)

compared to the ergodic capacity of a Rayleigh fading MIMO

channel (solid line) with A =N=6.
2.3.1 Antenna Selection

The capacity of the MIMO channel is reduced with a rank deficient channel

matrix. A rank deficient channel matrix means that some columns in the channel matrix
are linearly dependent. When they are linearly dependent, they can be expressed as a
linear combination of the other columns in the matrix. The information within these
- columns is then in some way redundant and is not contributing to the capacity of the
channel. The idea of transmit antenna selection is to improve the capacity by not using

the transmit antennas that correspond to the linearly dependent columns, but instead
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where Z()and Z(-)denote the real and imaginary parts (-) respectively . Since the

elements of H are assumed to be i.i.d complex Gaussian , H has a full rank of 2M .

Therefore , the set {Hs} can be considered as the lattice A(H) generated by H . The

rows of H are called basis vectors for A(H ), 2M is said to be the dimension of A(H),

and the transmitted vector s acts as the coordinates of a lattice point.

At a receiver, a detector forms an estimate of the transmitted symbol, §. The optimal
detector minimizes the average probability of error, i.e., it minimizes p(§ # §) This is
achieved by the maximum-likelihood (ML) design, which performs the non-linear
optimization. '

There are three categories of solutions to MIMO decoding, the optimal Maximum
Likelihood decoder (MLD), the near-optimal sphere decoder and the sub-optimal
decoder.

2.4.1 The Optimal Maximum Likelihood Decoder

Consider a linear MIMO system shown in fig 2.1 To communicate over
this channel, we are faced with the task of detecting a set of m =2M transmitted
symbols from a set of » = 2N observed signals. Observations are corrupted by the non-
ideal communication channel, typically modelled as a linear system followed by an
additive noise vector. We take the transmitted symbols from a known finite alphabet Q)
of size B . The detector role is to choose one of the B™ possible transmitted symbol
vectors based on the available data. If §is the estimated symbol vector ,then the symbol

vector whose (posterior) probability of having been sent, given the observed signal vector

Y, is the largest:
$0 argmax p ( s was sent |y is observed ) (2:21)
seQ”
_ argmax p (y is observed | .s was sent) p (s was sent ) (222)
e Q™ p(y is observed )

" Equation (2.21) is known as the Maximum A posteriori Probability (MAP) detection rule.

Making the standard assumption that the symbol vectors s € B” are equiprobable, i.e.,
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that' p( s was sent )is constant ,the optimal MAP detection rule can be written as

§0 argmax p(y is observed | s was sent ) (2.23)
sEQm .

A detector always returns an optimal solution satisfying (2.22) is called Maximum
Likelihood (ML) detector. Since n is assumed as additive white Gaussian noise, the

probability density function of n is

1
——p-mf?
. 1 952
p( y is observed| s was sent )=—e o (2.24)
2.n -
(8mo )
and consequently the maximum likelihood estimate (2.23) for s given y is
3\
1
—|y-rsl?
2
§ =argmax| — ¢ 20
se QM (2”0.2 )”’
\ /
~ argmin (|y-Hs[ ) 2.25)

seQ™
Thus, the ML detector chooses the message § which yields the smallest distance

between the received vector, y , and hypothesized message, Hs.

The ML detector of equation (2.25) represents a discrete non linear optimization
problem over Q™ candidate vectors§ € Q. Unfortunately such problems are hard to
solve and for generalyand Hs, the problem (2.25) is called NP-hard. However, for

moderate sizes, M , there are efficient algorithms available for the solution of (2.25).

2.4.2 Sub-Optimal Decoder
Linear MIMO detection methods start by considering the input-output relation of
a MIMO system in (2.20) as an unconstrained linear estimation problem, which can be

solved according to a least-squares (i.e., zero-forcing (ZF)) or minimum mean squared

18



error (MMSE) criterion. For sub-optimal detection , we consider the model presented in
section (2.1)
Zero-Forcing detector[13]
ZF detection aims at a perfect separation of the parallel data streams. It solves the
unconstrained least squares estimation problem to obtain
s=Hy, ' ' (2.26)
where H'denotes the Moore-Penrose pseudo-inverse of the channel matrix H and is
defined as
H =(H"H)" H" 2.27)
In the special case, if the number of transmitting antennas are equal to number of
receiving antennas (m = )the Moore-Penrose pseudo-inverse is identical to the
straightforward inverse of H , which may be obtained immediately with lower
complexity as
H =g (2.28)
The application of (2.27) or (2.28) to (2.26) yields s, whose entries will not necessarily

be integers, round them of to closest integer (a process referred to as slicing) to obtain
§,= [ ot y] (2:29)
The above ‘GB is called Babai estimate.

Now considering the equation (2.27) and replacing the received vector y with the model

(2.20) yields,
§=H' (Hs+n)

I s n,. where ", H'n

So that the effective channel between the transmitter and slicer at the receiver now
corresponds to a identity matrix I . Hence, the interference from all other parallel streams
has been eliminated completely as desired. However, the drawback of the ZF estimate is
that perfect separation of the  transmitted data streams entails an enhancement of the

additive noise, which is now given by n,,.
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MMSE estimator[13]

Instead of forcing the interference terms to zero, regardless of the noise, MMSE
detection minimizes the overall expected error by taking the presence of the noise into
account. The optimum tradeoff between interference cancellation and noise enhancement

is achieved by setting
-1 '
G= (H” H+ 2021) HY (2.30)
and §= Gy results

A="' +
S=Hs+n,, .

Where H=G H is the effective channel after MMSE equalization, Gn.

" rinase ™
As opposed to the ZF case, the off-diagonal elements of H are no longer zero, which
leads to the expected residual interference. However, the MMSE estimator is also a

biased estimator which causes the diagonal entries of the effective channel to be smaller

than one (I;I’_ ; <1). The result is shrinkage of the constellation after MMSE equalization.

Successive Interference Canceilation[] 3]

SIC is based on the previously described linear estimation algorithms. However, a
nonlinear interference cancellation stage partially exploits the knowledge that the entries
of the transmitted vector s have been chosen from a finite set of constellation points. The
symbols of the parallel data streams are no longer all detected at once. Instead, they are -
considered one after another and their contribution is subtracted (removed) from the
received vector before proceeding to detect the next stream.

For the mathematical description of basic SIC algorithm without ordering we
assume that the first stream is detected first, followed by the second, and so forth until the

last. It is convenient to represent the channel matrix H into number of columns and rows
H=[h h, - h,]=

The SIC algorithm can be stated by the following pseudo code

20



Y=y
for R=0tom-1

find weight vector w,,_,,
8, =slice(w,_,¥,.))

Vive = Ve — h’m—kém—k
end
In the above algorithm, for each value of the index %, the entries of the auxiliary vector

¥,., are weighted by the components of the weight vector w,_, and linearly combined
to account for the effect of the interference. The weight vector w,_, can be calculated

from the following two cases

ZF nulling:In this case, interference from the yet undetected symbols is nulled.

H, ,=[h hy - h,,]

— T
wm—k - Hm-—k em—k

H

m—-k"" m-k

-1, . :
where H' , =H (H' ) is the pseudo inverse of H,, ,, and e, , is a

(m — k) x 1column vector that consists of all zeros except for the(m — k) th entry whose
value is 1. |
MMSE nulling: The weight vector using MMSE nulling is
w, , =(H,_ H, ,+25°I)h,,
2.4.3 Near-optimal detectors
Near-optimal detectors gives near-ML performance with reduced complexity

compared to optimal detection. Sphere(Lattice) decoders are called near-optimal

detectors, which we describe below.
Sphere (Lattice) Decoders:

Sphere decoding is based on the enumeration of points in the search set that are
located within a sphere of some radius centered at a target , e.g., the received signal point.
the Fincke-Pohst (F-P)[5] and Schnorr-Euchner (S-E)[6] techniques are two

computationally efficient means of realizing this enumeration. To avoid confusion, the

21



lattice decoder using Fincke-Pohst strategy is called Sphere Decoder(SD), and the lattice
décoder using the Schnorr-Euchner strategy is called (SE.)
Redefining the integer-least squares problem
§ = argmin (" y—Hs”z ) : 2.31)
se DLm
where DL”’ is the m -dimensional square lattice spanned by L — PAM constellation in
each dimension . The above problem has a simple geometric interpretation. As the entries

of s run over the points in the L— PAM constellation, s spans the ‘rectangular’ m -
dimensional lattice DL”’ .For any given lattice- generating matrix H , the n-dimensional

vector Hs spans a ‘skewed’ lattice. Thus given the skewed lattice Hs and the vector y,
the integer-least squares problem is to find “closest” lattice point (in Euclidean sense) to

» , as shown in Fig.2 4.

Fig. 2.4 Geometrical interpretation of the integer least-squares problem

2.4.3.1. Sphere Decoding Algorithm (SD)[13-17]

The basic premise in sphere decoding is rather simple: attempt to search over only
lattice points s € DL’" that lie in a certain sphere of radius d around the given received

vector y, thereby reducing the search space and hence the required computational effort

as shown in Fig 2.5. Clearly, the closest lattice point inside the sphere will also be the
closest lattice point for the whole lattice. However, closer scrutiny of this basic idea leads

to two key questions.
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(D

@

How to choosed ? Clearly, if d is too large, we may obtain too many pbints and
the search may remain exponential in size, whereas if d is too small, we may
obtain no points inside the sphere.

A natural candidate ford 1is the covering radius of the lattice, defined to
be the smallest radius of spheres centered at the lattice points that cover the
entire space. This is clearly the smallest radius that guarantees the existence of a
point inside the sphere for any vector y . The problem with this choice of d is that
determining the covering radius for a given lattice is itself NP hard.

Another choice is to use d as the distance between the Babai estimate

(2.29) and the vector y, e, d=”y-H§B

|, since this radius guarantees the

existence of at least one lattice point (here the Babai estimate) inside the sphere.
However, it may happen that this choice of radius will yield too many lattice

points lying inside the sphere.

Fig. 2.5 Idea behind sphere decoder

How can we tell which lattice points are inside the sphere? If this requires
testing the distance of each lattice point from y (to determine whether it is less

thand ), then there is no point in sphere decoding as we shall still need an

exhaustive search.

Sphere decoding does not really address the first question. However, it does propose an

- efficient way to answer the second one. The basic observation is the following. Although

it is difficult to determine the lattice points inside a general m dimensional sphere, it is
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trivial to do so in the (one-dimensional) case of m =1.The reason is that a one-
dimensional sphere reduces to the endpoints of an interval and so the desired lattice
points will be the integer values that lie in this interval. We can use this observation to go
from dimension k£ to dimensionk +1. Suppose we have determined all % -dimensional
lattice points that lie in a sphere of radiusd . Then for any such & -dimensional point, the
set of admissible values of the %k +1-th dimensional coordinate that lie in the higher

dimensional sphere of the same radius d forms an interval.

.

k=2

m=4
k=3
k=4

Fig.2.6. Sample tree generated to determine lattice points in a four-dimensional sphere

The above means that we can determine all lattice points in a sphere of dimension
m and radius d by successively determining all lattice points in spheres of lower
dimensions 1,2,...m and the same radius d. Such an algorithm for determining the
lattice points in an m -dimensional sphere essentially constructs a tree where the branches
in the & th level of the tree correspond to the lattice points inside the sphere of radius d
and dimension £ as shown in Fig 2.6. Moreover, the complexity of such an algorithm will
depend on the size of the tree,i.e ,on the number of lattice points ViSitedbe the algorithm
in different dimensions.

Assuming n > m, i.e, there are at least as many equations as unknowns i iny=~ Hs

Note that the lattice point Hs lies inside a sphere of radius d centered at y if, and only
if,
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d?s|y- Hsf (2.32)
In order to break the problem into the subproblems described above, it is useful to

introduce the QR factorization of the matrix H .

R |
H = Q[O } (2.33)

(n—m)xm
where Ris an mxm upper triangular matrix and Q = [Ql Qz:l is an »xn orthogonal

matrix. The matrices Q1 and Q2represent the first m and last »—m orthonormal

columns of @, respectively. The condition (2.32) can, therefore be written as

-1, Q?.J[ﬂs

. 2
o]

* - §
o, 0

2
2|0y Rs +

2
a2’ >

2

Q2 y

where (EI)* here denotes matrix transpose . In other words

7 -foyof ler-nf @3

2
Defining y = Ql* y and d’? =d? - “QZ* y” allows us to rewrite this as

d“2 3 |y~ 3 r s, (2.35)

where 7;;denotes an (i, j) entry of R. Here is where the upper triangular property of

Rcomes in handy. The right -handed side( RHS) of the above inequality can be

expanded as

d” > (ym ~TnmSm )2 + (ym—l T TnamSm ~ T, m15ma )2 te. (2.36) -

- where the first term depends only on s, , the second term on {sm,sm_l},and ‘SO on.

Therefore, a necessary condition for Hs to lie inside the sphere is that
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d” 2(y, ~Tyms )2

mm~-m

This condition is equivalent to s,, belonging to the interval

[__‘d +ym] <s, < {—d ”mJ @237)
rm,m rm,m

where [ 0] denotes rounding to the nearest larger element in the set of numbers that spans
the lattice. Similarly, LD_] denotes rounding to the nearest smaller element in the set of
numbers that spans the lattice. But the condition (2.37) is by no means sufficient. For
every s, satisfying (2.37), defining

dﬁ—l =d” - (ym - rm,msm)

and Ymajm = Yma1 ~ Tnam$ a stronger necessary condition can be

m-1,m%m >

2

found by looking at the first two terms in (2.36), which leads to s, _, belonging to the

interval
—d  + Y um d . +y _
{ ml Tm -’s s, s[w (2.38)
rm—l,m—l rm—l,m—l

One can continue in a similar fashion for s,,_,and so on untils,, there by obtaining all

lattice points belonging to (2.32).
Sphere-Decoding Algorithm [15]:

Input: @, R, y, y=Q,"y, d

' 2 2 * 2
1. set k=m,dm =d —“Qz.}’ s Ymfm+1 = Vm

d, + —d, +
2. (Bounds for s,) Set UB(s,) = M > S = M) -1
Thk Thk
3. (Increase s,) s, =s, +1.1f 5, <UB(s,), go to 5; else, go to 4.

4. (Increase k) k=Fk+1;if k=m+1, terminate algorithm; else, go to 3.
5. (Decrease k)if k=1,goto6;else k=k-1,

. :
2
. _ 2 _ g2 _
Vs = Ve Z "%.iSj » d,” =d, (yk+1/k+2 rk+l,k+lsk+1) and go to 2.

j=k+1
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6. Solution found. Save s and its distance from y,d) —d* + (3, —1,;5,)* and

go to 3.

The subscript k/k+1 in y,,, above is used to denote received signal y, adjusted with

the already estimated symbol components sk+i., ..... S, - Furthermore, in steps 2 and 3 of

the code , there is unit spacing between any two nearest elements of the set spanning the
lattice. If the lattice is scaled, i.e if the spanning between two neighbors in the set
spanning the lattice is different from 1, those algorithm steps needs to be adjusted
accordingly.

Fincke-Pohst makes use of the unconstrained least-squares solution

§=H" y=R'Q’y . In this case it follows that ||Q2‘ y ’2 =| y"2 — | Hs [2 , and so, inequality
(2.34) becomes
& -y +| 8] = |RG-9)[ @39
Expanding (2.35) we can write,
2
"
d12 = rr:m(sr'n —gm)2 +r1:—l m—1 ><[Sm—l _‘ls:m—l + o sm _§m)J +.... (2‘40)
| ’ rm—l,m—l
and using (2.37) and (2.38)
[ d ]SS,,,S[MLJ
rm,m rm,m
R d . R ’ 4 .
and St~ = S8 S| Sy T respectively ,
m-1,m—1 rm—l,m—l

r
where we have defined §,,_,,, =4, ——="—(s, —§,,). We can now alternately write the

rm—l,m—l

algorithm as follows.
Input: R, p,s,d

. Set k=m, d2=d® —|p| +|H["» 3y =5,

m+1

2. (Bounds for s,) Set z=dj /1, , UB(s,)=| 2+ 8 |» 8 =[—2+54 |1

3. (Increase s,) s, =s, +1.1If 5, <UB(s,), go to 5; else go to 4
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4. (Increase k) k=k+1;if k =m+1, terminate algorithm; else go to 3
5. (Decrease k)if k=1 goto6;else k=k-1, |

* m
K .
S =& — kf - )
Skfrar = Sk j=§k+:l( AJ(S;’ Si)»

2
2__ g2 __ L2 _3
diy=di ~Tenin (Sk+l Sk+1/k+2) and go to 2.

‘ : : ' ' A )2
6. Solution found. Save s and its distance from y, d.’ —d;* +7} (s] -s]/z) and

go to 3.
2.4.3.2. Schnorr-Euchner Strategy (SE)[9][18][19]
This algorithm has the same principle as the SD , which means searching for the
closest point inside a sphere.
Redefining the closest lattice point problem
§=arg min(" y-Hs”z)
seQ™

where Qis the set of real entries in the constellation , e.g Q = {—3,—1,1, 3} in the case of
16-QAM. This algorithm is based on two stages. The first stage consists in searching the
“Babai point” (BP), which represents a first estimation, but is not necessarily, the closest
point. Finding the BP gives us a bound of the error. In the second stage, we modify the
BP until the closest point is reached. We oscillate in turn each component to build the
closest point (unlike the sphere decoder, we don’t have 2 minimum and maximum bound
for each BP component). The time needed to finish the search for the closest point is
closely related to the BP, which means related to the SNR. In fact, if the BP is very far
from the closest point, i.e for low SNRs, the algorithm is slow to converge. However,if
the BP is close to the closest point, i.e for high SNRs, the algorithm converges rapidly.

In SE algorithm, from the perspective of lattice, an p = 2M -dimensional lattice
is decomposed into p k-dimensional (k=1,2,...p) sublattices. The algorithm

calculates the orthogonal distance y between two points in the adjacent sublattices , and
tries to find the smallest possible accumulated distance bestdist between the p-

dimensional sublattice and the one dimensional sublattice. The basicb SE algorithm is
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given in [9] for infinite lattice , which is not suitable to employ in MIMO systems , since

the finite lattice constellation is used in MIMO systems.

Modified SE algorithm for the QAM constellations: _

A SE algorithm tailored to the g — @AM (g = 4,186,...) constellation is presented
in [ 9]. To avoid an infinite loop or an incorrect result due to finite constellation used, the
algorithm [20] adopts a search method which allows an over flow . However only the
lattice vector u belonging to the constellation is kept. There are probabilities in this
search method where most of the elements in belong to 0 , but remaining elements do
not belong to Q. In such a case, the lattice vector u is not kept and it has to be
recalculated, which increases the algorithm complexity.

Another reduced complexity SE algorithm for MIMO systems [19] overcomes the
above problem in which only those lattice points u, (k = 1,2,...11,) belonging to Q are
investigated and kept. The new reduced-complexity SE algorithm is sub-optimal to [20]
and its pseudo code is listed below. The matrix L is the inverse and transpose of matrix
R,ie L=R”.The matﬁx Rand @ are the upper triangular matrix and the orthogonal

matrix in the QR-decomposition of the channel matrix H = QR , respectively.

Algorithm SE1: § = SE1(L,Q,y)

1. n=2M iesizeof L /* dimension #*/

2. bestdist= 2 /* current distance record */

3. k=p /% dimension of examined layer*/
4. di.;'t,, =0 /* distance to examined layer */
5.e,=y"QL |

6. u, =rint(e,,) /* examined lattice point */

7. v =(ew —us) /b

8. step, = sgn(y) /* offset to next layer */

9. loop |

10. newdist = dist, + y*
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11. if newdist < bestdist then

12.
13.
14.
15.
16.
17.

18.
19.

20.

21.
22.
23.
24.

25.
26.
27.

28.
29.
30.

31.
32.
33.
34.
35.
36.

37.
38.

if 2 >1 then
for 1=1,2...k-1 do

€1 = Chy — Y ¥y
end for
k=k-1 /* move down */
dist, = newdist

u, =rini(e,,) /* closest layer */

y= (ekk - u’k)/lkk

step, = sgn(y)

else
S=u /*Best lattice point so far */
bestdist = newdist /* update record */
k=k+1 /* move up*/
y=2°

for j=1to 2 do

u, =u, +2*step, /* next layer */

step, = —step, — sgn (stepk)

if u, € constellation then

y=(ew— uk)/lkk
goto (10)
end if
end for
end if
else

if 2 == p then
return §

else
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39. goto (24)

40. endif
41 endif
42. end loop

the SE algorithm actually constructs a tree of p levels, where the branches in the
% th level of the tree correspond to the lattice points in the % -dimensional sublattice. If
¥” is considered as the metric of each branch, the objective of SE is to find the path with

the smallest accumulated metric bestdist between the first and p th level of the tree.

2.5 Complexity Analysis
2.5.1 Sphere Decoding Algorithm:

Fincke-Pohst give the complexity analysis of the SD algorithm[6]. Their main
result is that the number of arithmetic operations of the aforementioned Sphere Decoding

(SD) algorithms in section 2.4.3.1(excluding steps 1-3) is at most

l_4d2t_| +m-1
| 4d%t |

2

where ¢ =max (rfl,.... T ) . In practice, ¢ grows proportionally to (rl“,’1 , for example is

%(2m3+3m2—5m)+%(m2+12m—7)>< (2[ -d2tJ+1) +1| 4D

"m.m

simply the squared norm of the first column of H , which has n entries), and d”grows
proportionally to m, and so the upper bound on the number of computations in (2.41)
can be quite large. Although it does depend on the lattice-generating matrix H (through
the quantity t), it offers little insight into the complexity of the algorithm.
Vikalo[15][22][23] evaluated the complexity of the sphere-decoding algorithm
using the geometric interpretation. As mentioned earlier, the complexity of the sphere-
decoding algorithm depends on th_e size of the generated tree in Fig. 2.6 , which is equal
to the sum of the number of lattice points in spheres of radius d and the dimensions

k=1,2,...,m. The size of this tree depends on the matrix H as well as on the vectory.

Therefore, unlike the complexity of solving the unconstrained least-squares problem,
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which only depends on m and 7 and not on the specific H and y, the complexity of the
sphere-decoding algorithm is data dependent.

1)  Expected Complexity: Since the integer least-squares problem is NP hard, the
worst-case complexity of sphere decoding is exponential. However, if we assume that the
matrix H and the vector y are generated randomly (according to some known ‘
distributions), then the complexity of the algorithm will itself be a random variable. For
any arbitrary point y and an arbitrary lattice H , the expected number of lattice points
inside the % -dimensional sphere of radius d is proportional to its volume and is given

by[24] -

k
72

@

Therefore, the expected total number of points visited by the sphere decoding scheme is

d* (2.42)

proportional to the total number of lattice points inside the spheres of dimension

k=12,..m

P=3_" g
=Z d (2.43)

A simple lower bound on Pcan be obtained by considering only the voluine of an

arbitrary intermediate dimension, say %

o | &
MG

P> T gF[Zemd )P 1 (2.44)
—1“[—+1J k k .

where we have assumed m >% 0 land have used Stirling’s formula for the Gamma

DO (N
Q

function. Clearly, P, and its lower bound, depend on the radius d”. This must be chosen
in such a way that the probability of the sphere decoder finding a lattice point does not
vanish to zero. This clearly requires the volurne of the m -dimensional sphere not to tend

to zero, i.e.,
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Qerd? % 1 .
= 1 .
( ™ ] T~ OO (245)

1
which for large m implies that 2exd® = m1+(41). Plugging this into the lower bound for
P yields

IS

1 m. 1 11

525 235 2 (2.46)

= m_
where & (4)>1.

This last expression clearly shows that the expected number of points P and, hence, the
complexity of the algorithm grows exponentially in m .
' A Random model:

In communications applications, however, the vector yis not arbitrary, but rather

is a lattice point perturbed by additive noise with known statistical properties.

y=Hs+n
where the entries of n are independent. N (0,”) random variables with known variance,
and the entries of H are independent N (0,1) random variables. Furthermore, H and

n are mutually independent. -
Choice of Radius

The first by-product of this assumption is a method to determine the desired
radiusd. Note that (1/ 0'2)-||n"2 = (1/ 0'2)-"y—Hs"2is a z°random variable with

n degrees of freedom. Thus, we may choose the radius to be a scaled variance of the

noise
d* = anc”® (2.47)
in such a way that with a high probability, we find a lattice point inside the sphere
Pl |
——e 'di=1-¢ (2.48)
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where the ihtegrand is the probability density function of the y”random variable with n

ciegrees of freedom, and 1 — & is set to a value closeto 1, say, 1—& = 0.99.( If the point
is not found, we can increase the probability 1 - &, adjust the radius , and search again.)

Now, as mentioned earlier, the complexity of the sphere-decoding algorithm is
proportional to the number of nodes visited on the tree in Fig.2.6 and, consequently, to
the number of points visited in spheres of radius d and the dimensionsk =1,2....,m.
Hence, the expected complexity is proportional to the number of points in such spheres
that the algorithm visits on average. Thus the expected complexity of the sphere-
decoding algorithm is given by [15][22]

(2.49)

m

C (m, o’ ,d2) =" (expected # of points in. k-dim sphere of radius d)-(flops/ point)

T ),
~ "

0 E,(k,d* =anc®) 0 f,(k) =2k +11

The coefficient f,(k)=2k+11 is the number of elementary operations (additions,
subtractions, and multiplications) that the Fincke-Pohst algorithm performs per each
visited point in dimensionk. Ep(k,dz)' is the expected number of points inside the
k —dimensional sphere of radius d. Suppose that the lattice point s, was transmitted
a1_1d that the vector y=Hs,+n was received. The probébility that an arbitrary lattice point

s, lies in a sphere of radius d around y can be computed to be

a2

S 3 k
) d2 k _ — 2’5—1 14
o® +|s,- s, 2 T(k/2)

0

Note that the above probability depends only on ”sa —s,|", i.e on the squared norm of an

t

arbitrary lattice point in the % -dimensional lattice. Therefore

) 2
Ep(k’dz) = g{;}’ [?‘Z—H,g} . (# of lattice points with "sa -5, “z = l)

Let (# of lattice points with |s, - st”2 = l)=rk(n) ,
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- k
Then r,(n)is given by the coefficient of x” in the expansion (1 + ZZ x™ )

m=1"
The above argument leads to the following result.
Theoreml (Expected complexity for infinite lattices):
Under the aforementioned assumptions, the expected cbmplexity of the sphere

decoder is given by

C(m,o*)=>( 2k+17)2rk( )y[“m" kj (2.50)
k=1 =0 +1°2
where « is such that y(am,m)=1-¢ }
. . logC ( m, 0'2) )
It is often useful to look at the complexity exponent B pee— which approaches a
ogm
constant if the expected complexity is polynomial, and grows as if it is
ogm

exponential.
In communication problems, we are usually concemed with L—-PAM

constellations

Dm_{_L—l _L-3 L-3 L-1}”’
L 2’ 2 77 2 7 2

m(L2 —1)

120

such constellations, computing the expected complexity is more involved than for infinite

In this case, rather than noise variance o, we are interested in SNR, p = .For

lattices.
Theorem? (Expected complexity for finite lattices):
Under the aforementioned assumptions, the expected complexity of the sphere

decoder for a 2 — PAM constellation is

;™

am
C(m.p)= Zf(k)Z( } - g (2.51)

k=1 =0
m (L2 - 12)

" Fora 4 — PAM constellation it'is
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am k
Zf <k>Z Z( Jé’kh(l)y i s (2.52)

k=1 —
m(L2 — 12)

where g, (1)is the coefficient of x' in the polynomial

(1+x+x4+x9)h(1+2x+x4)k_h

. The number of elementary operations per visited point in abo{/e equations
fp(k) =2kR+9+2L
2.5.2 Schnorr-Euchner Strategy:
Referring to SE algorithni[8-9][18—21], the algorithm .complexity is given by
the number of searched sublattices, i.e the number of evaluation on line {(9)in

algorithm SE1(section 2.4.3.2), It is observed that the complexity becomes excessively
high when signal-to-noise ratio (SNR) is low, since algorithm search oscillates too
frequently among the sublttices.

Fano-Like Metric Bias:

A Fano-like metric bias can be applied for SE to alleviate the complexity problem
mentioned above. With this fano-like métric bias, the branches in higher levels should
have a larger metric bias than those in lower levels, reflecting the fact that they are far
away from the end of the tree and hence less likely to be part of the smallest path.

From (2.20) and (2.25), the average value of the smallest path is

E{|y-Hs|'} = E{|n[ } = ano” (2.42)

It is therefore reasonable to choose @ as the metric bias for one level of the tree, where

0<a <1 is a constant. The metric bias for the k-level tree is simply the sum of the

biases for the following i-level (i=1,2, 3,...,k—l) trees. Moreover, the squared

orthogonal distance 3”is expressed as a portion of l,, for k-dimensional sublattice [9],
the Fano-like metric bias for SE is thus to be:
F,=F_+ac’l_, (£=2,3,...n)

where £ 0 0. With this metric bias, the SE can be modified as below
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Algorithm SE_FM: § =SE FM (L,0,y,F)
e In Algorithm SE1 (section 2.4.3.2), replace Line {11) with :
Janodist = newdist + F,
if fanodist < bestdist then
Early Termination:
The eq. (2.42) also implies that the loop in SE can be terminated early as soon as
the currently small distance bestdist is smaller than a pre-calculated distance
D = fno?
where £ is a noise level dependent constant that needs to be estimated for each SNR
point. The algorithm complexity thus can be further reduced. The pre-calculated distance
Dis simply the average value of the smallest distance bestdist at each SNR point, which
can be determined by simulating the algorithm in [18]. With this early termination
criteria, the SE1 is modified as [19]
Algorithm SE_ET: §=SE_ET (L,0,,D)
e In Algorithm SE1 (section 2.4.3.2), insert the following lines between
Line(23) and (24)
If bestdist < D then return §

end if
Furthermore, The algorithm SE can be improved to be SE2 which combines the

algorithm with Fano-like metric bias and early termination.

2.6 Comparison of the SD and the SE[20-21]

Both SD and SE are ML decoders, which enables us to conclude that the two
algorithms perform well. The two algorithms have the same principle, the search for the
closest point, but differ mainly in the search method. In the following we will compare
the complexities of these two algorithms.

Since the multiplications are the most expensive operations in terms of machine

cycles compared to addition and comparison, only multiplications will be taken in
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account to measure the complexity. The complexity of the algorithm is defined by the
number of multiplications carried out until convergence.

However both algorithms, before attacking the closest point searching phase,
need a preparation phase, which we will qualify by pre-decoding phase, and also an
initialization phase. To study the complexity of both algorithms, it is worth studying and
comparing first their respe‘ctive pre-decoding and initialization phases, and subsequently
their respective closest point searching method. Finally we will compare their respective
total complexity [20].
2.6.1Comparison of pre-decoding and initialization phases{20-21]

As shown in the flow-charts of the SD and the SE, in pre-decoding and
initialization phases we have essentially two operations : the first one consists in the
calculation of a triangular form of the matrix H . For that we can use either QR
decomposition or Cholesky decomposition. The second one consists in the calculation of

the Zero Forcing point (ZF). When using QR decomposition, we decompose H, and
then we define G = R”, where G is a lower triangular matrix, this needs —§—N * operations.

When using Cholesky decomposition, we have first to calculate the Gram matrix of H,
~defined as Gram=HH", and so we decompose Gram to obtainGram =U"U, where

U is an upper triangular matrix, and then G=U" . The total number of operations needed
is%N * + N . By comparing the number of operations needed for each decomposition, we

remark ﬁnmediately that the QR decomposition is less expensive in terms of operations.

For second operation, we need first to calculate the inverse of the transfer matrix
of the channel H .The Zero Forcing point is defined by the equation (2.29), which is also
called the “ Babai point™ .

§s=H'y

For the SD, we will use matrix G to build matrix Q. Using the matrix Q and the
ZF point we calculate the minimum and maximum bound of each closest point
component. For the SE also, we do not need the matrix G but its inverse L= G™. For
SE; the ZF point represents the first point found by the algorithm which will be adjusted

to obtain the closest point.
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[+4
The total number of multiplications necessary to carry out the pre-decoding and

the initialization phases using QR decomposition for the SD and the SE respectively are:
3 §N2, Uy 3nely
3 2 6 2 3

We remark immediately that the pre-decoding and initialization phases of SE are heavier

N+

than that of the SD. In fact the SE uses %N 3 +—§N more multiplications than SD. How

crucial is this disadvantage depends on the lattice dimension N .

In fact, for small lattice dimensions, the number of multiplications in the pre-
decoding phase is of the same order of magnitude as that of the searching phase, so the
pre-decoding phase has an influence on the total complexity of both algorithms. This
influence is more significant for fast fading channels, where the pre-decoding phase are
made more frequently. For large lattice dimensions, the number of multiplications in the
pre-decoding phase is very small compared to those in the searching phase, and we can

say that the pre-decoding phase doesn’t influence the total complexity of the algorithm.

39



Chapter 3

Iterative Detection and Decoding

In the previous chapter, we have discussed different MIMO detection schemes
and their complexity analysis. In this chapter, we present the MIMO transmission model

*for iterative decoding using modified sphere decoding.

3.1 Transmission Scheme:

Fig.3.1 shows the iterative decoding scheme using MIMO channel with M -
transmitting antennas and N -receiving antennas. The vector of information bits b is
encoded with convolutional code [25] to obtain the vector of coded bits ¢, which is then
interleaved to result in the vector ¢. The vector ¢ is modulated onto a quadrature
amplitude modulation (QAM)-constellation. Assume that each constellation symbol

represents p,, modulation bits (e.g., for a @ — QAM constellation, p, = log, @).Then the
modulation is performed by taking blocks of vector ¢ of length p, M and mapping them

(e.g., by means of a simple Gray mapping) into M —dimensional symbol vectors. The
resulting symbols are transmitted across the channel as given by the model

| y=Hs+n 3.1
Therefore, a block of p, M coded bits (corresponding to a single symbol vector) is
transmitted per each channel use. Let us denote these blocks of coded bits as
[11

M c® ..., c"P) . Assume that the total length of the vector ¢ is p,p,, M . Then the entire

vector ¢ can be blocked as _
o= [cm JE clm] (3.2)

and transmitted in p, channel uses.

Consider that the %% channel use (i.e., the block ¢*'has been modulated onto
symbol vector s and transmitted across the channel). On the receiver side, the received

vector yand a priori probabilities of the components of the symbol vectors,
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Fig.3.1 MIMO transmission and iterative receiver model

{p(s), D(8;),..., P(8y,)} , are processed by an MIMO detector in order to obtain both the

estimated bits in the current block ¢*! and the reliability information about these

decisions. Let us denote bits in the block c*by c;,i=1,2...,p, M . The reliabilities of
the decisions for the coded bits ¢;can be expressed in the form of log-likelihood ratio

(LLR) as

_ 1. Ple; =+1/y]
L (c;/y)=1og ol =—1/] (3.3)

(we represent logical 1 with amplitude level+1, and logical O with amplitude level -1).
Let us denote the reliability information for the block ¢! by

L1[k]=[L1(C1/y) Lc,/y) - Ll(chM/y)]

and let L, denote a vector of concatenated blocks of reliabilities
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LJ _ [le le Ll[pc]:l
collected over all p,uses of the channel. Then L, is a vector of LLRs corresponding to
all the bits in the vector c.

The vector L, is deinterleaved to obtain vector L', which is then used by a

channel decoder to form the estimate of the information bit vector 13, as well as to

provide L,’, the a posteriori reliability information for the coded bits vector ¢'.

A posteriori reliability information for the vector cis obtained by interleaving L, into
L, . Let us denote the a posteriori reliability information for the block ¢*! by L™,

Furthermore, assume that the bits ¢,,i =1,2...., p, M, in the block ¢! are independent.
Then the posteriori probabilities for the components of the symbol vector s (symbol

vector corresponding to the block ¢/*!) can easily be found from L, using the modular

mapping function. These probabilities {p(s;), D(8,),...., p(Sy,)} can now be used to run
the MIMO detector algorithm [i.e evaluate (3.3)] once again.Hence, the MIMO detector
is an iterative one, and we use the described scheme for iterative joint detection and
decoding in MIMO systems.[Note that for first iteration of the MIMO detector, we
assume that all symbols are equally likely]. For a simple convolutional code at encoder,
the channel decoder is a simple soft-in soft-out detector ,such as Bhal, Cocke, Jelinek,
and Raviv algorithm of [ 25][26].

The computational complexity of traditional algorithms for evaluation (3.3) can
be prohibitive for applications in multi antenna systems. Since the sphere decoding
algorithm of Fincke and Phost described in chapter 2 results in the ML estimate of s
with reasonable complexity, a modification to the sphere decoding algorithm yields soft

information with low complexity.

3.2 Modified F-P Algorithm for MAP Detection [27][28]
Redefining the MAP detection rule which maximizes the posterior probability

Py, (8/3)
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max p,,(s/) G4
seDj ' . .

Using Bayes’ rule

p,(3/8)p,(8)
p,(»)

argmax p,, (8/y) = argmax

=argmaxp,,(y/s)p,(s)

Further, by assuming that the symbols s,,s,,....,s,, are independent, we can write

m m
() =] pls;) = 2"
k=1

Then, for a known channel in additive white Gaussian noise (AWGN), (3.4) is equiValent

to optimization problem

seDP

m1n[”y Hs” —Zlogp(sk)J 3.5

For an iterative decoding scheme, we also require soft information, i.e., the probability

that each bit is decoded correctly. To this end, consider the LLR defined in (3.3) and,

consider the k™ channel use (that is , the current symbol vector s is obtained by

modulating coded block c*! = [cl c, - cpmM] onto an L —PAM constellation)
ple; = +1/y]
(c,/y) =log —i——==
b/ ple; =-1/y]
=log 215 =T [y’c" —+1]
ply.e,=-1]

Xana PL2/€" P[]
Zc[k]:c,:—lp[y/C[k]:lpl:C[é]]

Assuming independent bits ¢, CoreesrCp g (3.6) becomes

[4]
L(c;/») = log 2L =) pla: +1] +log 2 _+1p|:y/c ]H mp[ ]

= log

(3.6)

ple = ch__lp[y/c[”]]_[ aple ]
Lla(ci) le(ci)

where L, (c;) and L, (c,) denote so-called a priori and extrinsic parts of the total soft

information, respectively. [Note that, when used in an iterative decoding scheme, it is
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only L, (c,) that is passed to the other decoding block(s) in the scheme.] Since the block

¢! is uniquely mapped into the symbol vector s, it follows that for an AWGN channel

Do PLY/SITT P[]
b loes = eI, o]

Z Jp-Hs['+ Jog pls;)
8:c;=+1 e

=log (3.7

2
Z e“i]y“Hsll +2. o8 plsj]
8ie;=—1

Computing (3.7) over the entire signal space D) is of prohibitive complexity. Instead, we

constrain ourselves to those s € D/ for which the argument in (3.5) is small. [ Note that

these are the signal vectors whose contribution to the numerator and denominator in (3.7)
is significant.]
Applying the idea of the Fincke-pohst algorithm, we search for the points s that
belong to the geometric body described by
n
r’>(s—8)R'R(s—§) - > log p(s,) (3.8)
=1
where R is the lower triangular matrix obtained from the QR factorization of H .
(Note that this is no longer a hypersphere.) The search radius rin (3.8) can be chosen
according to the statistical properties of the noise and the a priori distribution of s .

A necessary condition for s_ to satisfy (3.8) follows:

rl (s, —8,7—logp(s,)<r’ : (3.9)
Moreover, for every s, satisfying (3.9), we define

r,=r—ry (s, -8, +log p(s,)

and obtain a stronger necessary condition for (3.8) to hold

r
. m-1,m-1 Y
~
sm—l/m

2
2 T, A
Tn-1,m-1 [sm—l - ém—l + = (sm - sm)] - ]'Og b (sm-l) = rni—l

The procedure continues until all the components of vector s are found. The FP-MAP

algorithm can be summarized as follows
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Input: R, y,S,7, p,(s)

2 A a
s Sm/m+l =S

1. Setk=m, r=r —||y”2 +||HS
2. (Bounds for s,) Set z= % > UB(s) =| 248y |5 8 = =2+ e |1

3. (Increase s,) s, =s, +1.If ;. (s, — ék/k+1)2 >ry* +log p(s,) and s, <UB(s,),
go to (3), else proceed. If s, <UB(s,) go to (5), else go to-(4)

4. (Increase k) k=k+1;if £ =m+1, terminate algorithm; else go to (3)
5. (Decrease k)if k=1 goto (6).Else k=k-1,

2 r
~ _ .y _ k,j _ ~
Strks1 = Sk § : / (Sj Sj) g
J=k+1 k& .

A S (Sk+1 — Sz )2 +log p(s,.,), and go to 2.
6. Solution found. Save s and go to (3).
Assume that the search yields the set of points 3 = {s“),s(z),...,s(’s)}. The vector
s € Sthat minimizes (3.5) is the solution to the MAP detection problem (3.4).The soft
information for each bit ¢, can be estimated from (3.7), by only summing the terms in the

numerator and denominator such that s'€ 5. Now (3.7) can be approximated using Max-

~

Log algorithm as
L(c;/) = max(-|y~ Hs[' + 3 log p['s;]) ~max(-|y - Hs| + 3 log p[s;])

3.3 Channel Decoder

The ouput of MIMO detector is deinterleaved and given to-a channel decoder to
form the estimate of the information bit vector, as well as to provide the a posteriori
reliability information of coded bits. The channel decoder is a soft-in soft-out decoder
(BCIJR algorithm) and is described below .In the following, symbols in ( ) refer to Fig.3.1
BCIJR Algorithm [25]

Let u (b) be the information sequence and v (c’) be the coded information

sequence and r (L‘l) be the received sequence. Then BCJR algorithm calculates the a

posteriori L —values
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L) =1n[§81 :j;:ﬂ (3.10)

(Note: from the Fig.3.1, L, = L(u,))

called the APP L —values, of each information bit, and the decoder output is given by

B +1if L(ul)>0 3 B
ul“{—lif L(ul)<0 ,=0,1,..,h-1. - (3.11)

Rewriting the APP value p(u, = +1/r) as follows

p(w, =+1r) 2, P(r/v) p(u)

plu = +1fr) <SR S s

where U} is the set of all information sequences w such that u, = +1, vis the transmitted

(3.12)

codeword corresponding to the information sequence u, and p(r/ v) is the pdf of the

received sequence r given v. Rewriting p(ul' = —1/r) in the same way, we can write

~ the expression in (3.10) for the APP L-values as

_ Zuewp(r/v)p(u)
L(“l)‘m{zueg,-pv/v)p(“)}

where Uj is the set of all information sequence u such that u, = —1. MAP decoding can

(3.13)

be achieved by computing the APP L -values L(ul),l =0,1,---,A -1 directly from

€q.(3.13) and then applying (3.11); however, except for short block lengths A, the
amount of computation required is prohibitive. For codes with trellis structure and a
reasonable number of states, such as short constraint length convolutional codes, eq.
(3.13) can be simplified by making use of the trellis structure of the code as

plu, =+Lr Z o s)e fp(sz =58, =57T)
p(uz=+1/r)= ( lp(r) )= (s'5)eZ, p(r)

(3.14)

where 2/ is the set of all state pairs 5, =5’ and s,,; = s that corresponds to the input bit
w, = —1lattime /. Reformulating the expression p(u, = —1/r)in the same way, we can

now write (3.10) for the APP L —values as

46



(3.15)

L(w)= ln{Z(s',s)ezrp(sl = S:’Sm =sr )}’
Z(s’,s)szl' p(s=5.8,=57)
where ¥ is the set of all state pairs s, =’ and s;,; = s that correspond to the input bit
u, =—1 at time /. Equations (3.13) and (3.1‘5) are equivalent expressions for APP
L— value L(u,), but whereas the summation in (3.13) extend over a set of
2" information sequences, the summations in (3.15) extend only over a set of 2° state

pairs. Hence for large block lengths A, (3.15) is considerably simpler to evaluate.

The joint pdf’s p (s', s,r) in (3.15) can be evaluated recursively as follows

p(ss,r)=p(s,s,r.1.1.), (3.16)
where r,_, represents the portion of received sequence r before time !, and r,,
represents the portion of the received sequence r after time [, application of Baye’s rule
yields '
p(s.s,r)=p(r../s,s14,1) P(s,5.10:11)

=p(r./s sram)p(sn/sny)p(sing)  G.17)

=p(n../s)p(s11/s)p(s'1q)
where the last equality follows from the fact that the probability of the received branch at
time /depends only on the state and input bit at time /. Defining

a(s)=p(s'1.) (3.18a)
7i(s8)=p(s,1/5) | (3.18b)
B (s) = p(1:./5), (3.18¢)
we can write (3.17) as
p(s,s.r)=B,.(s)r(s,8)a(s). (3.19)

We can now rewrite the expression for the probability «,,, (s)as

al+l (S) = p(s, rt<l+l) = Z 'p(s"s’ r;:<l+1)

s'eoy
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= Z p(s,rl/s', Vi )p(s’; rt<l)

s'eoy

= p(s.n/s)p(s'1y) (3.20)

s'eoy

PRACEICACH

s'eoy

where o, s the set of all states at time /. Thus we can compute a forward metric

[ (s) for each state-s at time /+1 using the forward recursion (3.20). Similarly we

can write the expression for the probability B,(s)

A(s)= 2 7(5,8) B (5) (3:21)

€01

where o,,, is the set of all states at time / +1, and we can compute a backward metric
B (s’) for each state s' at time ! using the backward recwrsion (3.21). The forward

recursion begins at time [ = 0 with initial condition

‘ Ls=0
() = {0 z Py (3.22)

Since the encoder starts in all-zero state S; = 0, and we use (3.20) to recursively compute

a,,(s),l=0,1,---,K—-1, where K=h+m is the length of the input sequence.

Similarly, the backward recursion begins at time [ = K with initial condition

Ls=0
Be () = {0 z iy (3.23)

since the encoder also ends in the all-zero state S, = @, and we use (3.'21) to recursively
compute S,(s),l=K-1,K—-2,--,0.
We can write the branch metric y, (s’,s) as

)= p(s.n/s) = PLEST)
71(8,8)—13(,,/) p(s')

- [P(S"S)][P(S"s’")} (3.29)

p(s") || p(s.9)

p(S/S’)p(ii/é',S) = p(w)p(n/v,)
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where u, is the input bit and v, the output bits corresponding to the state transition

s'— s at time /. For a continuous output AWGN channel, if s’ — sis a valid state

transition,

n B, o
E, ] el (3.25)

1 (626) = () /) = ()
where ”"z - Uz"2 is the squared Euclidean distance between the (normalized by \/ITS )
received branch r; and the transmitted branch v, at time /; however , if s — s is not a
valid state transition, p(s/s’) and ,(s',s)are both zero. The algorithm that computes
the APP L —value L(ul) using (3.15),(3.19),and the metrics defined in (3.20)-(3.23) and
(3.25) is called MAP algorithm. |

We introduce some modifications to above algoﬁthm that result in greater

computational efficiency. First, we note from (3.19)-(3.21) and (3.25) that the constant

term ( - ] always appears raised to the power h in the expression for the pdf
N, '

nh
p(s',s,r)_ Thus , ( IZZ\ST J will be a factor of every term in the numerator and
TV,

- denominator summations of (3.15), and its effect will cancel. Hence, the modified branch
metric
7,(s,8) = p(ul)e'E‘/ Nolp—oif (3.26)

[p(ul =+1)/p(y, = —i)]ﬂ
{1+ [p(w, =+1)/p(w, = -1)]"]

iLa(u'l)

p(ul = :tl) =

- (3.27)

- {1 + eiL“_(”')}

_ e e

B {1 + e'L°("’)}

— AleuJLa(uf)/z ,
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We use (3.27) to replace p(y,)in (3.26) for 1=0,1,2,---h—1, that is , for each
information bit. For the termination bits u,, l=h,h+1,---,h+m—-1= K -1, however,

where p(u,) =1and L, (ul) = oo for each valid state transition, (3.26) can be written as
7 (s’, s) = AleuxLa(u:)/2e-(Es/No)iJn-v:H2’
= A" @B NoXrr) il ilf

= A, e‘(ﬁnﬂz +n)eu,La(u,)/2€(L¢ /2)nv,)

- AlBle(”iLa(”l )/2)e(Le/2)("r"l) 1=

7.(,8) = p(w) o~/ Noln-viff

— o (Eu/Nofm-uff ’

- Ble(l“/z)(r"”‘), I=h,h
where B, = | +nis a constant independent of the codewd
the channel reliability factor.

From the eq.(3.19)-(3.23) and (3.28), the pdf p(s,s,r) contains the factors
;:_01 A, and H:: B, an these will be factors for every term in the numerator and
denominator summations of (3.15), and their effect will be cancel. Hence,
7,(s,8) = e la@)2gLe/2nw) 101 ... 1, (3.292)
7, (s8)= ™) 1= p h41, K -1 (3.29b)
Note that when the input bits are equally likely, L, (w,) =0, and simplified branch
metric is given by
y.(s,8) =P 1 =012 K1 (3.30)
By using the following identity , we can simplify the equations (3.20),(3.21) and (3.29)
max"’(x,y) = ln(e" + ey) = max (x,y)+ ln(l + e'lx'yl) (3.31)
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L(u’)+£“—r,-vl,l=0,l,~--h—1
7i(shs) =ty (she)=y 22 (3.322)
E”rl-vl,l=h,h+1,---,K—1

a; i (s)=Ine,, (s)=1n ) »,(s,s)x(s)

s'eoy

—In Y L) (3.32b)

s'eo;

= max;'eo‘, [yl‘ (8’73) +a; (S’)],l = 0:1,"',K -1

" 0, s=0
% (s)=Ina,(s) = {%, cep (3.320)
B (s)=InB(s)=In 3 7(5.8)B.(s)
“ln Y (L7 i (e)] (3.324)

~max), [ (56) + Aia () = K =LK ~2,-,0

f@-m(ae)-{ % 070 6329

, s=0

The use of max” function in (3.32b) and (3.32d) follows from the fact that these
recursive equations involve calculating the log of a sum of two exponential functions, one

corresponding to each valid state transition. Further we can now write the expressions for
the pdf p(s',s,7)in (3.19) and the APP L —value L(x,)in (3.15) as
p(s',8,1) = PinlIia)ei(?) (333
and
L(u,)= ln{ > el (S'>} - 1n{ > fulhisya (s')} (3.34)
(s's)exf (s8)ezr
Each of two terms in eq.(3.34) involves calculating the log of a sum of 2” exponential

terms, one corresponding to each state in trellis. So we can apply the max’ function
defined in (3.31) to (3.34) and the APP L —value can be expressed as
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L(w,)= max, o . [ Bia(8)+7,(s8)+ o (s’):| —max; . [ B (s) +7,(s,8)+a; (s’)]
| (3.35)
The decision is made according to (3.11) to get the decoded information bits. |

A posteriori reliability information for the vector cis obtained by interleaving

eq.(3.35) L, into L, . Let us denote the a posteriori reliability information for the
block ¢ by L™ Furthermore, assume that the bits c,,i =1,2....,p, M , in the block
c® are independent. Then the posteriori probabilities for the components of the symbol
vector s (symbol vector corresponding to the block ¢*!) can easily be found from LZ[k]

by using equation (3.27) and these probabilities can be used to run MIMO detector (FP-
MAP algorithm) once again.

3.4 Computational Complexity of FP-MAP Algorithm[27]
The complexity of the FP-MAP algorithm can be found following the outline of
- the calculation of the complexity of original Fincke-Pohst algorithm in chapter.2.

However, the probability that an arbitrary point s, belongs to a k& —dimensional sphere of
radius r around the transmitted point s,(which we need to compute the expected number

of points the FP-MAP algorithm visits) now becomes

120 < o
A K —1) 2alogp(s)
P, =7 , (3.36)
’ 2( 14122 _ ls. —s ||2 2
m(IZ-1p'"e

First and foremost, (3.36) is a function of the a priori probabilities, which are generally

not known in advance to iterations. Second, since each point 8, in a lattice has a distinct a
priori probability affiliated with it, argument of the probability function (3.36) will, in
general, be different for each pair of points(s,,s,). Hence, to compute the expected
number of points, one needs to consider all the possible pairs of points (s,,s,)and the

corresponding probabilities (3.36) which , as the size of the problem increases, clearly

becomes rather cumbersome. However we note that since log p(s )<0,j=12,..,m.

we have
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12p
an +m21—1 ].ng(s ) <an

Hence, from the complexity of original Finke-Pohst and FP-MARP, it follows that for the
same choice of radius r
pFP-MAP o psz:P

and we conclude that, for same choice of r, the expected number of points that the FP-
MAP algorithm visits is upper bounded by the expected number of points visited by the
original sphere decoding algorithm. Thus, the expected complexity of the FP-MAP is
roughly upper bounded by the expected complexity of the sphere decoding , for same
choice of r.[“Roughly” upper bounded because since the a priori probabilities enter the

algorithm, there are two additional operations per each visited point; this is accounted for
by changing (2k + 17) to (2k + 19) in the original FP complexity.]

Theorem

The complexity of FP-MAP algorithm for a 2-PAM constellation is

an + 1L22p ogp(s) itk
C(m,p)= Zf (k)Z[ ]( m 22 ; — (3.37)
=0 1+ ——2'0 - '

m (L’ -12)

For a 4-PAM constellation it is
12p m

an + TZH log p(s;)

Clmr) = 3T 33 ) Jowtr| — 2L pomik
1+ m(L* -12)
(3.38)

where g, (I)is the coefficient of x' in the polynomial

(1+:)c+x4 +x9)h(1+2x+x4)k_h
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Chapter 4

Simulation Results

This chapter pi'esents the performance comparison of different signal detection
strategies for MIMO systems .The simulation results for the complexity analysis of the
algorithms are also included. Finally the performance results of an iterative detection and

decoding for MIMO channel are presented.

4.1 Simulation results on the error performance of MIMO Detectors

As mentioned in previous chapters, there are three categories of solutions to
MIMO decoding, the optimal Maximum Likelihood decoder (MLD), near-optimal sphere
decoder, and the sub-optimal decoder

A MIMO system with M = 4 transmit and N = 4 receive antennas is considered
in the simulation. The entries of channel matrix H are assumed to be i.i.d. zero-mean
‘complex Gaussian variables. The channel is assumed to be known at the receiver, and 16-
QAM symbols are used for transmission.
The following are the common steps and simulation parameters for all detection
strategies :
Step. 1 Generate a random data stream and demultiplex in to A substreams
Step.2. The demultiplexed.data is mapped in to 16-QAM symbols and is modulated.
Step.3. Generate complex Gaussian channel matrix H . The channel is assumed to be
known at the receiver.
Step.4. Generate zero-mean complex Gaussian noise vector with variance o”. Add noise

to the channel impaired transmit vector s to obtain the receive vector y .

< Number of transmit antennas M = 4 , and receive antennas N =4

** Modulation Scheme - 16 — QAM
% Average energy per bit £, =1
% Variance o” = (ME, /21log,(g))10™V°  E =2(q-1)/3, ¢ =16;(q - QAM)
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4.1.1. Sub-optimal detectors
Zero-Forcing Detector: This is a liner detector, which is basically multiplication of the
spatial filter with the received vector. The spatial filter is typically the inverse of the

channel matrix. The zero-forcing detector solution is
§=H'y 4.1)
MMSE Detector: Taking additive noise into account, The MMSE detector produces the

following estimate
-1

§=(HHH+20-21) HTy “2)

Successive Interference Cancellation: SIC technique is based on removing the

interfering signal from the received signal, one at a time as they are nulled by nulling

vectors. The nulling vectors can be derived using either ZF or MMSE criterion. The

symbols of the parallel data streams are no longer all detected at once. Instead, they are

considered one after anothér and their contribution (after slicing ) is subtracted (removed)
from the received vector before proceeding to detect the next stream.
SIC is performed on the received vector yas follows

It is convenient to represent the channel matrix H into number of columns and

TOWS
H,

H=[h, h, - h,]- }‘:’2
H n
The SIC algorithm can be stated by the following pseudo code
=y
for k=0 to m—1

find weight vector w,,_,

8,1, = slice(w,_,¥,.,,)

Yive = Vg — hm-ksm-k

end
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In the above algorithm, for each value of the index %, the entries of the auxiliary vector

¥, are weighted by the components of the weight vector w,_, and linearly combined
to account for the effect of the interference. The weight vector w,_, can be calculated

from the following two cases

ZF nulling:In this case, interference from the yet undetected symbols is nulled.

H, ,=[h hy - h,,]

= it
w,, =H e

m—-k>~m—k

where H'  =H_, (H'

m—k

H

m-k

-1, . .
) is the pseudo inverse of H_,, and e_, is a

(m - k) x 1column vector that consists of all zeros except for the (m — k) th entry whose

value is 1.

MMSE nulling: The weight vector using MMSE nulling is
w, ,=(H, H,  +25°1)h,_,

The estimated symbol vector is demodulated and demultiplexed into binary data.

Fig4.1 compares the BER performance between the linear detectors (ZF detector,
MMSE detector) and successive interference cancellation (SIC). Among the three, ZF
detector has poor BER performance due to the fact that the perfect separation of
transmitted data streams entails the enhancement of the additive noise. MMSE detector
performs better compared to ZF, because it minimizes the overall expected error by
taking the presence of noise into account. SIC results in better performance as compared
to the other two methods. |

Fig.4.2 shows the performance in terms of BER for MMSE detector in case of
non constant modulus modulation schemes like 16— QAM and 64-QAM .

Figure clearly shows the performance dégradation of 15dB at 10" BER for
64 — QAM compared to16 — QAM . '
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Bit Error Rate
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Bit Error Rate
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SNRindB

Fig.4.1. BER performance comparison of ZF, MMSE, SIC ina 4 x4
MIMO system with 16 — QAM modulation

SNR in dB
Fig.4.2. BER performance comparison of MMSE Detector in a

4x 4 MIMO system with 16 — QAM and 64 — QAM modulation
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4.1.2. Optimal and near-optimal Detectors
Optimal detector: _

The essential of MIMO decoding is to solve (2.1). The optimal solution is the ML

decoding. v
§= argmin(” y-Hs”z) ' 4.3)
se

where 5 consists of all possible vectors of s.
The procedure to perform exhaustive ML decoding is as follows
Generate 3 which consists of all possible vectors of s . Perform exhaustive search (4.3)
for each symbol vector and obtain best § . The estimated symbols are 16-QAM
demodulated and demapped to bits. The N -dimensional decoded data is multiplexed in

to a single bit stream.

Near-optimal decoders:

As discussed in chapter.2, the-sphere decoding algorithms can achieve near-ML
performance for MIMO decoding for reasonable complexity. The sphere decoding
algorithms have two kinds of implementation strategies, The Fincke-Pohst strategy called
SD and the Schnorr-Euchner strategy called SE.

(1) Sphere decoder

Sphere decoder is based on the enumeration of points in the search set that are located
with in a sphere of some radius centered at a target. The following are the steps to
perform Sphere decoding.

Step.l Pre-decoding phase: The inputs to the sphere decoder are H,y,d . QR-

decomposition is performed to calculate the triangular form of matrix H .

Step.2 Initialization phase: Calculate the Zero-Forcing point (ZF-point) as an initial
estimate, and initialize the sphere dimension.

Step.3 Search phase: Calculate the bounds for each component of the estimate. Search
for the closest point using bounds and get the best estimate.

The detailed flowchart is given below
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Input
H,yd

QR-decomposition
of H
L=R"
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Calculate ZF point §,, = H 'y

>
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»
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Update §k/k+1

Update d,”

No

Yes

Output

P

A

Calculate bounds for s,

Se = [_Z +§k/k+l—| -1,

z=dy[r, UB(s,) = LZ+§k/k+lJ >

s
I«

No

s, =s,+1
Yes
No
k=k+1
k=m+1
Yes
Terminate

Fig.4.3. Flowchart for Sphere Decoding Algorithm




(2) Schnorr-Euchner strategy

This algorithm has the same principle as the SD: the search for the closest point.
This algorithm is based on two stages. The first stage consists in seafching for the “Babai
point” (BP), which represents a first estimation, but is not necessarily, the closest point.
Finding the BP gives us a bound on the error. In the second stage, we modify the BP until
the closest point is reached. We zigzag around each BP component in turn to build the
closest point (unlike the sphere decoder, there is no minimum and maximum bound for
each BP component). The time needed to find the closest point is closely related to BP,
which means closely related to the SNR. In fact, if the BP is very far from the closest
point, i.e for low SNRs, the algorithm takes much more time to converge. However, if the
BP is close to the closest point, i.e for high SNRs, the algorithm converges rapidly. This
algorithm searches for entire vector in the tree at same time, even if one component of the
estimate is not belongs to the constellation, it once again calculates all the components of
the estimate.This algorithm is called as the Schnorr-Euchner reference algorithm.

A modified Schnorr-Euchner algorithm in contrast to the above algorithm
searches for individual components of the estimate which belongs to constellation. The

following flow charts give the detailed description.
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A 4

QR-decomposition
of H
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>
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€, 1, =€ —JV* L,,i=12..k-1
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Output i

step, = —step, — sgn(step,)
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u, =u, +2*step,

u € constellation
l Yes

E=k+1
bestdist = newdist

A

u=u

step, = —step, — sgn.(step,)
Y= (ekk — Uy )/ b

U, =u, +2=lfstepk

Fig.4.4. Flowchart for Schnorr-Euchner algorithm
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u, =rint(e,,)
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Fig.4.5. Flowchart for Modified Schnorr-Euchner strategy
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Fig.4.6. gives the BER performance comparison of Exhaustive ML, Sphere
decoding algorithm (SD) for a 4 x 4 MIMO system. BER of Sphere decoder is evaluated
over 10,00,000 independent channel realizations and BER of exhaustive ML is evaluated
over 10,000 independent channel realizations. The performance of sphere decoder
approaches exhaustive ML search with reasonable complexity.

Fig.4.7. shows the BER performance comparison of different detection methods
namely ZF detector, MMSE detector, SIC, Exhaustive ML, and Sphere decoder. Clearly
exhaustive ML and SD outperforms by nearly 10dB at BER of 10~ compared to other
techniques but there is a trade off between BER performance and computational
complexity. In VLSI implementation point of view, we need systems with low
complexity so that the design may become easy, for which we can effort to lose the
performance but when high performance is needed, optimal, near-optimal detectors play
major role with high computational cost.

Fig.4.8 compares the BER performance of Schnorr-Euchner strategy and its
variants by considering 4 x4 MIMO system with 16 — QAM modulation. Simulations

are carried out over 10,00,000 independent channel realizations. Clearly, a BER of 107°
can be attained at SNR =22dB by all Schnorr-Euchner algorithms, while the performance
deference between SE-reference and SE1 (Modified SE) is minor. It is also clear from
figure that SE-reference outperforms SE1 by about 1dB when BER =10. However, the
performance difference between SE-reference and SE2 is about 0.5 dB when BER=10"°,
which shows that suitable early termination criteria could improve the BER performance

of SE1 at high SNR.
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Fig.4.6. BER performance comparison of Exhaustive ML, Sphere Decoding
Algorithm in a 4 x 4 MIMO system with 16 — QAM .
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Fig.4.7. BER performance comparison of different MIMO detection

schemes in a 4 x 4 MIMO system with 16 — QAM .
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Fig.4.8. BER performance of Schnorr-Euchnerr strategies in a 4 x 4 MIMO
system with 16 — QAM modulation.
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4.2 Comparison of Computational Complexity

ML detector gives ﬂ;e optimum performance for small number of antennas and
for small constellations, but if the number of antennas increases at transmitter or at
receiver or if the constellation size increases, the complexity of ML detector increases
exponentially. Near-optimal detectors give near-ML performance with polynomial
complexity.

Fig.4.9. shows the performance in terms of average number of multiplications
needed to detect a symbol vector. Considering a 4x4 MIMO system with
16 — QAM modulation, 16 bits will be transmitted per each channe.l realization. Now

exhaustive ML detector performs (4.3) by searching over 2'° possible transmitted vectors
for each channel realization which results in a huge complexity problem. Now consider a
real MIMO channel model in which the channel matrix is of size 8 x 8 and the received

vector is of size8x1. If we perform exhaustive ML search given by (4.3) over all

possible symbol vectors, the detector needs (64+1)164 = 4259840 multiplications to

detect a symbol vector which is infeasible with current technologies. If we increase the
number of antennas or the constellation size, the complexity of ML detector will increase
exponentially. On the other hand, sphere decoder searches for the estimate with
reasonable complexity which varies with SNR, because as SNR increases, the radius gets
adapted there by the search space gets reduced, which means the perturbed point gets
closer to the estimate. The average number of multiplications can be found by counting
the multiplications in the search phase of sphere decoding algorithm described in section
2.4.3.1. For simplicity, the preprocessing computations are not included. In case of SIC
also, the ZF nulling vector computations are neglected, but indeed they results in hea\;y
computational complexity as the pseudo inverse requires more multiplications. It is clear
from the Fig.4.9 that SIC results in less number of multiplications compared to
exhaustive ML and SD but it has poor BER performance.

Fig.4.10. compares the average number of multiplications required for the sphere
decoder (searching phase), when the radius is fixed to 1 and when radius is a function of
SNR. The number of multiplications can be calculated through simulation of sphere
decoding algorithm described in section 2.4.3.1. When the SNR is low, the search
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oscillates in between the layers which results in more multiplications, which can be found
by incrementing the count each time the search visits step.5. Clearly the Fig.4.10
confirms the need to adapt the radius according to SNR. Note that by using as adapted
radius, we obtain smallest number of multiplications especially at small SNRs, for
example at 5dB, We have around 750 multiplications less than the other case. This
improvement of the SD will obviously irﬁprove the total complexity of thé SD.

Fig.4.11. plots the algorithm complexity of Schnorr-Euchner and its variants. The
algorithm complexity is defined as the average number of searched sublattices per

syrﬁbol vector, i.e number of evaluations on Line (9) in algorithm SE1 described in

section 2.4.3.2.. So the term average number of sublattices per symbol vector comes from
the fact that the number of times the loop is repeated before termination of the algorithm.
It is clear from the figure that SE1 reduces the complexity of SE-reference significantly at
low and moderate SNR. Moreover the algorithm complexity is further reduced in SE2,
which combines SE1 with Fano like metric bias and SE1-Early termination. The effects
of SE1 with Fano like metric bias and SE1-Early termination are different on complexity
reduction. SE1-Fano l.ike metric bias is more effective at low SNR than at high SNR,
since the value of o is too small at high SNR to affect the path metric of the higher level
of the tree.

Fig.4.12 shows the complexity exponent for sphere decoder as a function of
number of number of transmit antennas m for SNR=20dB, for L — PAM constellation

logC(m,p)

with L = 2. It is plotted for eq.(2.50) as a complexity exponent 1
ogm

It is clear

from the figure that for small constellations the expected complexity is polynomial,

where as for large constellations the expected complexity would be exponential.

69



M=4,N=4,16-QAM

- 8
S 10
O
9 7
é 10
@ & S S
e . 6 :
S 10 ¢ - s
@ i ==@== Exhaustive ML
S 10° ==~¢—- SD(Radius as a function of SNR)
[0 ]
QO
=
P e SO PO SO OO
o }
g 10
‘6
= 3
810
E
g __________
2( H ! TRt |
S 10 Emmmmm e ————— il
s :
S S S SO RSSO S
< 101 | | 1 L
0 5 10 15 20 25

SNR(dB)

Fig.4.9. Computational complexity comparison of Exhaustive ML, SD
(Radius as a function of SNR), and SIC.

M=4,N=4,16-QAM
5000 y : : ;
5 L ; : —=-IF= Radius=1
E 4500 r‘-- —=0-— SD(Radius as a functicn of SNR), |
Y : : ; ;
8 N
L s ST M — .
7 \
LT U S O -
2 \
S \
| 3000 [--------o- U S SO 4
=} ‘\‘
5 . S S SO IO _
g 2500 *‘\ '
4 20 “\ i
S 00 - P e e e e e -
g \\\ ?-\\
\, ~ ' t '
~ : : : ;
L e A R SPSERS SR i
s K NN | |
B 1000 leeo o] >V T TSRS I e _
z Sty : sessdnes
i ‘N’-:::.-—— : :
500 i ' i el " B
0 5 ) 10 15 20 25
SNR

Fig.4.10. Number of multiplications required for Sphere Decoder as a function
SNR in a 4 x 4 MIMO system with 16 — QAM

70



M=4,N=4,16-QAM
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4.3 Simulation for Iterative MIMO detection using modified Sphere decoding
algorithm

An iterative detection and decoding process is performed which improves the
performance of coded MIMO detection. Here we use an optimal soft input-soft output
detector for channel decoding .The IDD approach improves the detection performance by
utilizing the detector output.
Simulation steps required for the IDD scheme by referring Fig.3.1 is outlined as follows

Step.1. Generate binary data of 1000 bits per one block.

Step.2. The information is encoded by R =1/2 rate non-systematic convolutional code
with memory length 2. The generating polynomials are G,(D)=1+D+D?
and G, (D) =1+ D?. The coded sequence is interleaved and modulated by means of

simple Gray mapping onto a 16-QAM modulation scheme, and transmitted through
4 x 4 MIMO channel. The trellis for the above convolutional code is given by

State l 10 l+1
11

01

10

00

Fig. 4.13 Trellis for rate % -convolutional encoder with memory 2

In Fig.4.13 the transition, corresponds to zero information bit is shown by dotted line
and the transition, correspond to one information bit is shown by thick line.
Step.3. On the receiver side, by using FP-MAP algorithm described in section 3.2, we

compute the soft bit information as follows

72



2
Z e—"y—Hs[] +Zjlogp[sj]
sie;=+1

Ll (Ci /y) = IOg _]|y_Hs|]2+Zjlogp[sj]
8i;=—1

where c;is the coded information from which current symbol vector s is obtained.

Step.4. The vector L, is deinterleaved which is then used by channel decoder (soft

input-soft output decoder) to form the estimate of the information bit vector l;, as well as
to provide L, the a posteriori reliability information for the coded bits vector ¢’. The
channel decoder finds the APP L —values by using the above trellis and the equations
described in section 3.3.

Step.5. A posteriori reliability information for the vector ¢ is obtained by interleaving

L; into L,,which will converted to the a posteriori probabilities for the components of

symbol vector sand those probabilities will be used by FP-MAP algorithm .

Step.6. steps3 to 5 can be repeated to improve the performance.

Fig.4.14 shows the BER performance comparison of IDD based MIMO detection
using modified sphere decoding algorithm (FP-MAP) for iterationl and interation3. The

performance is improved for iteration 3 by 1.5 dB at BER10™®. Thus the IDD based
. MIMO detection gives better performance compared to normal MIMO detection.
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Fig.4.14. BER performance curve for IDD based MIMO detection in 4 x 4
MIMO system with 16 — QAM modulation
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Chapter 5

Conclusion

This dissertation work is aimed at the performance comparison of different
detection schemes in multiple input multiple output (MIMO) systems, namely opthﬁal
(ML), sub-optimal (ZF, MMSE, SIC )and near-optimal (Sphere) detectors . The MIMO
detection is then extended to iterative decoding scheme which results in improved
performance. The simulation results can be summarized as follows
<> Among the sub-optimal detectors (ZF, MMSE, SIC), the performance of SIC is
better compared to the linear detectors such as ZF, MMSE. Linear detectors can achieve
the diversity order ‘only N—~M +1, but compared to linear detectors, SIC achieves
increased diversity order with each iteration. While the first detected stream sees a
diversity order N — M +1, the second achieves N — M + 2 and so forth.

% The optimal performance is achieved by ML detectors but its complexity
increases exponentially with number of antennas or the constellation size. Near-ML
performance is achieved by near optimal decoding schemes such as sphere decoding
algorithm and Schnorr-Euchner algorithm at the cost of polynomial complexity for
smaller constellations. But if the constellation size increases, the complexity of these two
algorithms increases exponentially. For same specifications, the BER performé.nces of
sphere decoding algorithm and Schnorr-Euchner algorithm are same, but differ in the
complexity.

> Sphere decoding algorithm performance is dependent on the choice of radius.
When the radius is fixed , algorithm requires more number of multiplications specially at
low SNRs, but when the radius is adapted according to SNR, the complexity is
reasonable even at low SNRs. The complexity of Schnorr-Euchner algorithm is reduced
by its variants such as Fano like metric bias, early termination and the combination of

these two , with only a small degradation in BER performance at high SNR.
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< A further improvement in performance is achieved for a coded ‘MIMO detection
using iterative décoding scheme, in which the modified sphere decoding algorithm (FP-
MAP) reduces the complexity of MIMO detection. It has been proved that, for the same
choice of radius, the expected number of points that the FP-MAP algorithm visits is
~ upper bounded by the expected number of points visited by original sphere decoding
algorithm. This simplified IDD scheme is quiet important as the demand grows for higher
spectral efficiency in future wireless systems.
Future work

In evaluating the performance of different detection schemes in MIMO systems, it
is assumed that the channel is perfectly known to the receiver. Effect of imperfect
channel estimation at the receiver on the performance of near optimal ML decoder needs
to be investigated.. A lattice aided reduction algorithms can also be implemented to
reduce the lattice size. Orthogonal frequency division multiplexing (OFDM) may be
combined with MIMO to increases the diversity gain and enhance the system capacity on
time variant and frequency selective channels. A direct application of the MIMO
detectors can be applied to each subcarrier in a MIMO-OFDM system. The number of
MIMO detectors required to implement a MIMO-OFDM system is the number of
subcarriers that the OFDM system employ. Recently developed fixed complexity sphere
decoders (FSD) can also be applied to the case where an outer code is used in the MIMO
system (Turbo-MIMO system).
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