
PERFOF 4 E IMPFOVEMENT OF PARALLEL
TTERN I ATCHIP1G ALGORITHM USING

CEO. -BROADBAND ENGINE

A DISSERTATION
Submttd in partial fulfillment of the

rsqulr.fl ,.nts for the award of the degree
of

MASTER OF TECHNOLOGY
In

COMPUTER SCIENCE AND ENGINEERING

By
RAJAISHI CHOWD[JURY

user
Text Box
*mgcl#012

CANDIDATE'S DECLARATION

I he by declare that the work, which is being in this dissertation report, entitled
"Pe ormance Improvement Of .Parallel Pattern Matching Algorithm using Cell
Bro dband Engine", is being submitted in partial fulfillment of the requirements for
the ward of the degree of Master of Technology in Computer Engineering, in the
Dep 	 ent of Electronics and Computer Engineering, Indian Institute of Technology*,
Roo kee is an authentic record of my own work, carried out from June 2007 to May
200 , under guidance and supervision of Dr. Ankush Mittal, Associate Professor
and Dr. Rajdeep Niyogi, Assistant Professor, Department of Electronics and
Con puter Engineering, Indian Institute of Technology, Roorkee.

The esults embodied in this dissertation have not submitted for the award of any other
or Diploma.

Da : 05• D6.2008
	 f a7io' ` ek1rw

Pine : Roorkee 	 (Rajarshi Chowdhury)

it

This "s to certify that the statement made by the candidate is correct to the best of my
kno ledge and belief.

Dr.4 nkush Mittal

Asst fate Professor

Dr. Rajdeep Niyogi

Assistant Professor'

I

ACKNOWLEDGEMENT

At the outset, I express my heartfelt gratitude to Dr. Ankush Mittal,

Associate. Professor and Dr. Raj deep Niyogi, Assistant Professor, Department of
Electronics and Computer Engineering at Indian Institute of Technology Roorkee, for

their valuable guidance, support, encouragement and immense help. I consider myself

extremely fortunate for getting the opportunity to learn and work under their able

supervision. I have deep sense of admiration for their innate goodness and

inexhaustible enthusiasm. It helped me to work in right direction to attain desired

objectives. Working under their guidance will always remain a cherished experience

in my memory and I will adore it throughout my life.

My sincere thanks are also due to rest of the faculty in the Department of Electronics

and Computer Engineering at Indian Institute of Technology Roorkee, for the

technical knowhow and analytical abilities they have imbibed in us which have helped

me in dealing with the problems I encountered during the project.

I am thankful to Mr. Ravi Gupta, research scholar in my department for his constant

encouragement in the initial stages of my work. I am grateful to Mr. Vinay Kumar,

Mr. Avinash Sharma and Mr. C. Shekar, my colleagues for being excellent peers and

creating a congenial environment for work.

I am greatly indebted to all my friends, who have graciously applied themselves to the

task of helping me with ample morale support and valuable suggestions. Finally, I

would like to extend my gratitude to all those persons who directly or indirectly
helped me in the process and contributed towards this work.

The pleasure of nearing completion of the course requirements is immense, but with it

carries the pain of leaving behind these wonderful two years of life in the sprawling

green campus of this great historical institute. I am proud for being the student of this
reputed institute.

I dedicate this work to my family for his support and encouragement throughout my
life.

Rajarshi Chowdhury

M. Tech. (CSE)

II

ABSTRACT

A pattern matching algorithm is used to find the presence of the pattern in a given

block of data. Pattern matching is used to test whether things have a desired structure,

to find relevant structure, to retrieve the aligning parts, and to substitute the matching

part with something else. Sequence (or specifically text string) patterns are often

described using regular expressions (i.e. backtracking) and matched using respective

algorithms. Sequences can also be seen as trees branching for each element into the

respective element and the rest of the sequence, or as trees that immediately branch

into all elements. Pattern matching is useful in the field of text editing, highly

computation intensive works like bioinformatics (pattern matching in biological

sequence databases or amino acid sequence databases), networking (high-speed

intrusion detection system), syntax analysis, operating systems, internet related

searches to name a few.

Sequential pattern matching algorithms have almost reached their limits in terms of

performance improvement. They are already linear in time complexity and the

effective decrement in number of character comparisons is too less. In our work we

first analyze most of the existing sequential and parallel pattern matching algorithms

in terms of complexity, character comparisons and time of execution. Based on our

analysis we try to parallelize the fastest sequential pattern matching algorithm —

TVSBS to study the performance improvement. We use IBM Cell-Broadband Engine

to implement our algorithm.

III

CONTENTS

Candidate's declaration and certificate i

Acknowledgement ii

Abstract iii

List of Figures vii

List of Tables viii

List of Abbreviations viii

Chapter 1: 	Introduction 1

1.1 	Pattern Matching Algorithms 2

1.2.1 Sequential Pattern Matching 3

1.2.2 Parallel Pattern Matching 3

1.2.3 Multi-Dimensional Pattern Matching 3

1.2 	Problem Statement 3

1.3 	Organization of Report 4

Chapter 2: Analysis of Existing Pattern Matching Algorithms 	5

2.1 	Complexity Comparison of Sequential Pattern Matching

Algorithms 	 6

2.2 Performance comparison of Pattern Matching Algorithms 	8

2.3 	Parallelized Pattern Matching Algorithms 	 11
2.4 	Patterns in Bioinformatics 	 12
2.5 	Applications of Pattern Matching 	 14

Chapter 3: Cell Broadband Engine Architecture 	 16
3.1 	Cell Broadband Engine 	 17
3.2 	Cell Software Development Kit 	 22

IV

Chapter 4: Design of Parallelized Pattern Matching Algorithm

for Cell BE 23

4.1 SSABS 23

4.2 TVSBS 26

4.3 Parallel Pattern Matching Algorithm for Multi-core systems 28

4.3.1 Algorithm without DMA 29

4.3.2 Algorithm with DMA 31

Chapter 5: Implementation and Results 33

5.1 Performance Parameters 33

5.2 Data Set 33

5.2.1 Simulated Data 33

5.2.2 Actual Biological Data

I. UniProt 33

II. Nucleotide Sequence 36

III. Amino Acid Sequence 36

5.3 Implementation 36

5.4 Accuracy Comparison 37

5.5 Result for Real Biological Data Set 38

Chapter 6: Conclusions and Future Work 42

6.1 Conclusions 42

6.2 Future Work 42

References 43

Publications 45
Appendix A 46

ON

LIST OF FIGURES

Page

No.

4

Figure
Title of the Figure

No.

	

1.1 	Example of Pattern Matching using Boyer-Moore Algorithm

	

2.1 	Graph showing the performance comparisons of algorithms Brute-

Force, Morris-Pratt, KMP, Colussi, AXAMAC, Boyer-Moore,

Quick-Search, Skip-Search, SSABS.

	

3.1 	A Schematic diagram of CBEA

	

4.1 	Working example of SSABS

	

4.2 	Working example of SSABS

	

4.3 	Working example of Parallel Pattern Matching without DMA

	

4.4 	Working example of Parallel Pattern Matching without DMA

	

5.1 	Implementation details

	

5.2 	Graphical representation of speedup with respect to number of
cores

	

5.3 	Result of execution of parallel pattern matching algorithm on

CBEA in different situations. Y axis represents time in

milliseconds

	

5.4 	Comparative results of execution of parallel pattern matching

algorithm using DMA and DMA double buffering on CBEA in

different situations. Y axis represents time in milliseconds

7

13

22

24

27

29

36

VI

LIST OF TABLES

Page
Table No. Title of the Table

No.

2.1 Asymptotic performance comparison of exact string-

matching algorithms

2.2 Running time comparison of ESMAs. Database Used:
9

UniProt KnowledgeBase. Alphabet size: 10

2.3 Alphabet size: 20. 11

5.1 Result of Accuracy comparison 37

5.2 Result of Our algorithms on UniProt Human Database 37

5.3 Result of Our algorithms on Swiss-Prot Database 37

5.4 Result of Our algorithms on. tREmbl Database 38

5.5 Result of Parallel Pattern Matching algorithm in
38

nucleotide and amino acid databases

VII

LIST OF ABBREVIATIONS

A Adenine

A Alanine

C Cysteine

C Cytosine

D Aspartic acid

DNA Deoxyribonucleic Acid

F Phenylalanine

G Glutamic acid

ESMA Exact String Matching Algorithm

H Histidine

I 	 Isoleucine

G 	 Guanine

K Lysine

L Leucine

M Methionine

N Asparagine

P Proline

Q Glutamine

R Arginine

S Serine

T Threonine

V Valine

RNA Ribose Nucleic Acid

W Tryptophan

T Thymine

Y Tyrosine

VIII

Chapter 1 "

INTRODUCTION

Pattern matching algorithms are used to find one or more occurrence of the given

pattern in a given text. There are many sequential pattern matching algorithms having

various complexities and efficiencies. But if we run these algorithms on

bioinformatics or biomedical databases, they take up huge processing time and cost

because of the size of the database. So, to improve the performance of pattern

matching algorithms they were made to be executed in parallel. Multi processor

systems are costly solutions for this parallelization. Multi-core systems are able to

deliver better solution in a cost effective way. As all the commercial processors turn

multi-core [I] our goal is to optimize the pattern matching problem for these systems.

Cell Broadband Engine is a new 9-core heterogeneous multi-core processor from

IBM. The architecture of Cell Broadband Engine proposes tremendous improvement

over its other counterparts. We provide a performance comparison for our

implementation of parallelized pattern matching in Cell Broadband Engine.

The minimum number of comparisons needed for pattern matching is still an

open problem. Derivations of new and better algorithms for pattern matching are still

possible but chances are rare that any new algorithm will drastically improve

performance over the previous best. This has been evident for the last few years. The

best algorithm so far, TVSBS [2], improves over SSABS only in number of

comparisons — not in time or space complexity. The only way to make things fast is

to exploit parallelism in a multi-processor or in a multi-core environment. Parallel

String matching algorithms based on dataflow architecture is in existence from as

early as 1999. Before that PRAM algorithms for parallel pattern matching also had

been developed that produced a Boolean array MATCH[1 ... N] as output. The

Boolean array contained a true value at each position where an occurrence of the

pattern started. CRCW-PRAM was one of the pioneers in these types of algorithms.

Later Galil algorithm [3] produced the best result, 0(logm) in case of constant size

alphabets. It has been also proved that the lower bound on the number of

1

comparisons in case of a parallel string matching algorithm is 0 (log log m) for

pattern P[1 ... m] in text T[1 ... 2m]. The optimal algorithm for parallel multiple

pattern matching works in a complexity 0 (log L) where each pattern is of length L.

Also algorithm for 2-D parallel pattern matching exists that works in 0(n2) [4].

Recent works in parallel pattern matching [5] are in fields of high-speed

intrusion detection system [6] and source-level programming [7] among others. Still

now very less work has been done in this problem that exploits the capabilities of

either homogeneous or heterogeneous multi-core architecture. An algorithm that

takes advantage of this has the potential to deliver an improved running time for the

pattern matching problem. In this paper we propose a parallelized version of TVSBS

[2] implemented in IBM Cell Processor and the performance gain due to the

parallelization. The preprocessing phase of the algorithm is performed serially

whereas the searching phase is performed in parallel. A performance comparison of

non-parallel algorithms in the same machine (using only 1 core) is given and the

execution time gain is plotted in case of the parallelized version.

1.1 Pattern Matching Algorithms

Some broad categories of pattern matching are primitive pattern matching, tree pattern

matching, multiple pattern matching and 2D pattern matching. Our study concerns the

primitive pattern matching algorithms. The general behavior of sequential pattern

matching algorithm is based on comparison of characters one at a time. It includes

two distinct steps. The first is aligning the pattern against a given text (the aligned

portion, known as window) and comparison among the characters of the pattern and

the window. In case of a mismatch, the next step is to reposition the window by

shifting it one character to the right and repeating the first step. The worst case

complexity of this procedure is 0(mn). In order to improve the complexity, all the

algorithms try to pre-calculate a shift value table and use that while shifting. This

introduces a new pre-processing step but decreases the overall complexity to linear

order, typically 0(m + n). These approaches are based on finite state automaton.

However there are algorithms that make the character comparisons from left-to-right

and algorithms that make the same from right-to-left.

2

1.1.1 Sequential Pattern Matching

We formally define a class of sequential pattern matching algorithms that includes all

variations of Morris-Pratt algorithm [18]. For the last twenty years it was known that

the complexity of such algorithms is bounded by a linear function of the text length.

Recently, substantial progress has been made in identifying lower bounds. But the

lower bound or in other words the minimum number of comparisons needed for

sequential pattern matching algorithms is still an open problem.

1.1.2 Parallel Pattern Matching

We describe a parallel algorithm that finds all occurrences of a pattern string in a

subject string in O(log n) time, where n is the length of the subject string. The number

of processors employed is of the order of the product of the two string lengths.

1.1.3 Multi-Dimensional Pattern Matching

Multi-dimensional pattern matching deals with type of text and pattern having more

than one dimension. Normally multi-dimensional pattern matching extends to 3

dimensions.

1.2 Problem Statement

The pattern matching problem can be formally defined as follows: given a pattern

P E E' with length IPI = m and text string T E E' with length ITI = n, where

m, n> 0 and m < n if P occurs as a substring of T, find the first occurrence, that is

find s such that T [s + 1 ... s + m] =P[1 ...m](0 <—s <—n—m). There has been

many paradigm shifts toward the solution of the problem. Also new type of pattern

matching problems came up due to special need of other application areas. To

improve the performance of pattern matching algorithms they were made to be

executed in parallel.

First attempt
GCATCGCAGAGAGTATACAGTACG

1
GCAGAGAG
Shift by: 1

Second attempt
GCATCGCAGAGAGTATACAGTACG

321
GCAGAGAG

Shift by: 4

Third attempt
GCATCGCAGAGAGTATACAGTACG

87654321
GCAGAGAG

Shift by: 7 MATCH

Figure 1.1: Example of Pattern Matching using Boyer-Moore Algorithm

1.3 Organization of the Report

The rest of the report is organized as follows. In chapter 2 we analyze the existing

sequential and parallel pattern matching algorithms in a common framework and in a

common dataset. We also provide a graphical representation of our result to show

which algorithm performs the best among those discussed. Chapter 3 deals with the

preliminaries of patterns in bioinformatics and IBM Cell Broadband Engine

Architecture. In chapter 4 we discuss the methodology applied to parallelize pattern

matching algorithm for Cell Broadband Engine. Chapter 5 consists of the

implementation details, data sets and results. We conclude the report in chapter 6.

4

Chapter 2

ANALYSIS OF EXISTING PATTERN MATCHING ALGORITHMS

The general behavior of sequential pattern matching algorithm is based on

comparison of characters one at a time. It includes two distinct steps. The first is

aligning the pattern against a given text (the aligned portion, known as window) and

comparison among the characters of the pattern and the window. In case of a

mismatch, the next step is to reposition the window by shifting it one character to the

right and repeating the first step. The worst case complexity of this procedure

is 0 (mn). In order to improve the complexity, all the algorithms try to pre-calculate a

shift value table and use that while shifting. This introduces a new pre-processing step

but decreases the overall complexity to linear order, typically 0(m + n). These

approaches are based on finite state automaton. However there are algorithms that

make the character comparisons from left-to-right and algorithms that make the same

from right-to-left.

We now discuss some algorithms that perform the character comparison from

left-to-right. The first is the Baeza et al. [14] algorithm (also known as Shift-and and

Shift-Or algorithm) that pre-computes a set of bitmasks containing one bit for each

element of the pattern and then does the rest of the work with bitwise operations. The

algorithm is used in UNIX command "grep" as it also has the potential for

"approximately equal" matches. Following the brute-force approach, there is Morris-

Pratt algorithm and following that is the Knuth et al. [KMP] algorithm that works by

pre-calculating the required shift value in case a mismatch occurs. For a long time

KMP algorithm was the fastest algorithm for single-dimensional exact pattern

matching. After KMP's success many algorithms refined the KMP-way and reduced

effective number of comparisons. These include Apostolico and Crochemore

algorithm [22], Not-so-naive algorithm, DFA algorithm and Simon Algorithm [16].

Apostolico and Crochemore algorithm decreased the number of failure attempts to

reduce character comparisons. Not-so-naive algorithm followed the searching

behavior of Apostolico and Crochemore algorithm to improve the performance of

5

brute-force algorithm. The DFA algorithm used finite automaton techniques and the

Simon algorithm that improves over DFA.

Next we discuss the right-to-left type of algorithms. The first algorithms in

this category is Boyer and Moore algorithm that introduced the idea of "bad-

character shift" and "good-suffix shift". The algorithms that improved Boyer and

Moore [8] were Tuned-BM, Turbo-BM , Apostolico and Giancarlo , Quick-Search

and Zhu and Takaoka . Improving the time-complexity of Quick-Search algorithm

was SSABS algorithm and Berry and Ravindran algorithm [11]. The latest and best

algorithm in this type of pattern matching uses the concepts of SSABS and Berry and

Ravindran algorithm [18] and is known as TVSBS algorithm. TVSBS has a time

complexity of 0(n/(m + 2)) and performs at most 0(m(n -- m + 1)) character

comparisons in the worst case.

There are also other algorithms that do not fall into any of these two prominent

categories. This class includes examples like Colussi algorithm, Two Way algorithm,

String Matching on Ordered alphabets, Horspool Algorithm, Smith algorithm, Raita

algorithm to mention a few.

2.1 Complexity Comparison of Sequential Pattern Matching Algorithms

Brute-force exact pattern matching algorithm has a time complexity of 0(mn)
whereas Morris-Pratt [10] algorithm has a linear time complexity of 0(m + n). We

find that the number of character comparisons performed by these two algorithms we

shall see that Brute-force performs at most 2n comparisons and Morris-Pratt performs

at most Zn — 1 comparisons. Other algorithms that operate in similar number of

character comparisons are Boyer-Moore (3n chracter comparisons), Apostolico-

Crochemore (3/2n character comparisons) and Colussi (3/2n character

comparisons). Some other algorithms like quick search and skip-search has a

quadratic time complexity at the worst case. Table 2.1 gives an overview of

complexities of the most important pattern matching algorithms. TVSBS is derived

upon the fact that Berry-Ravindran algorithm has the best pre-processing step, where

as SSABS has the best searching phase. Figure 2.1 shows the performance

comparison among Brute-Force, Morris-Pratt, KMP, Colussi, AXAMAC, Boyer-

Moore, Quick-Search, Skip-Search, SSABS. SSABS is the best among these. This

graph uses the data achieved by S.S. Sheik etal. at Bioinformatics Centre (DIC), the

Interactive Graphics Based Molecular Modelling facility (IGBMM) and the

Supercomputer Education and Research Centre, IISc, Bangalore, using the old Swiss-

Prott dataset. X-axis represents the length of the pattern and Y-axis represents time of

processing in milliseconds.

Fig.2.1 Graph showing the performance comparisons of algorithms Brute-Force (BF), Morris-
Pratt [MP], KMP, Colussi, AXAMAC, Boyer-Moore [BM], Quick-Search [QS], Skip-Search,

SSABS.

Table 2.1: Asymptotic performance comparison of exact string-matching algorithms

ESMAs tc SC Pt cc

Brute Force O(mn) constant no 2n
Algorithm extra space preprocessing

Morris-Pratt 0(n+m) O(m) O(m) 2n-1
Algorithm

Apostolico- O(n) O(m) O(m) 3/2n
Crochemore
Algorithm

Boyer-Moore O(mn) 0(m +JET) O(m +JET) 3n
Algorithm

Quick Search O(mn) O(NI) O(m +IEI) quadratic
Algorithm worst case

7

SSABS O([n/(m+l)]) - - O(m(n-m+1))
Algorithm worst case

Zhu-Takaoka O(mn) O(m+lEl^2) O(m+IEI^2) quadratic
Algorithm worst case

Berry- O(mn) O(m+lE~^2) 0(m+IEI^2) -
Ravindran
Algorithm

TVSBS 0([n/(m+2)]) O(IEI+k'IEI) O(IEI+k^~EI) O(m(n-m+1))
Algorithm worst case

Colussi O(n) O(m) 0(m) 3/2n
Algorithm

Skip Search O(mn) O(m +II) O(m +IEI) ' O(n),
Algorithm quadratic

worst case

2.2 Performance comparison of Pattern Matching Algorithms

We compared all the pattern matching algorithms for pattern lengths 4, 8, 12, 16 and

20 against alphabet sizes of 10 and 20. Different alphabet sizes show almost the same

performance difference among different algorithms. From table 2.2 and table 2.3 we

conclude that TVSBS is the best sequential pattern matching algorithm in most of the

cases. We measured the times in milliseconds and calculated the relative scores with

respect to TVSBS (reference frame 1). We measured time in milliseconds and the

divided the time needed by other algorithms with the time needed by TVSBS

algorithm. In this way we derived a ratio of performance of all the algorithms. Table

2.2 displays results of alphabet size 10 and Table 2.3 does so for alphabet size 20. We

used UniProt KnowledgeBase for the experiment. The Machine Used was a PC with

Intel Core2Duo E4300 (1.8 GHz) running on nForce 650i Ultra, 2 GB DDR2

800MHz RAM, GeForce 8600GT graphics processor. Standard GCC compiler with

compiler optimization turned off was used. The Operating System was Fedora Core 5.

0

SSABS O([n/(m+l)]) - - O(m(n-m+1))
Algorithm worst case

Zhu-Takaoka O(mn) O(m+IYIA2) O(m+JEI^2) quadratic
Algorithm worst case

Berry- O(mn) O(m+IEI^2) O(m+lEI^2) -
Ravindran
Algorithm

TVSBS 0([n/(m+2)]) O(IEI+k' 	I) O(IEI+k^IEI) O(m(n-m+1))
Algorithm worst case

Colussi O(n) O(m) O(m) 3/2n
Algorithm

Skip Search O(mn) O(m +jEj) O(m +I I) ' O(n),
Algorithm quadratic

worst case

2.2 Performance comparison of Pattern Matching Algorithms

We compared all the pattern matching algorithms for pattern lengths 4, 8, 12, 16 and

20 against alphabet sizes of 10 and 20. Different alphabet sizes show almost the same

performance difference among different algorithms. From table 2.2 and table 2.3 we

conclude that TVSBS is the best sequential pattern matching algorithm in most of the

cases. We measured the times in milliseconds and calculated the relative scores with

respect to TVSBS (reference frame 1). We measured time in milliseconds and the

divided the time needed by other algorithms with the time needed by TVSBS

algorithm. In this way we derived a ratio of performance of all the algorithms. Table

2.2 displays results of alphabet size 10 and Table 2.3 does so for alphabet size 20. We

used UniProt KnowledgeBase for the experiment. The Machine Used was a PC with

Intel Core2Duo E4300 (1.8 GHz) running on nForce 650i Ultra, 2 GB DDR2

800MHz RAM, GeForce 8600GT graphics processor. Standard GCC compiler with

compiler optimization turned off was used. The Operating System was Fedora Core 5.

8

The 2°d column of the 2"d row in table 2.2 says that the brute-force algorithm takes a

time of 4.59 units in case of UniProt knowledgebase with alphabet length 10 and

pattern length 4 if the TVSBS takes 1 unit of time.

Table 2.2: Performance comparison of ESMAs. Database Used: UniProt
Knowledgebase. Alphabet size: 10

Pattern Length

Name 4 8 12 16 20

Brute Force 4.59 4.85 4.91 4.86 4.81

Moriss - Pratt 1.66 1.74 1.61 1.88 1.68

Knuth - Morris - pratt 1.71 1.77 1.81 1.61 1.79

COLUSSI 1.69 1.81 1.86 1.71 1.69

Galil - Giancarlo 1.78 1.91 1.91 1.81 1.89

Apostolico - Crochemore 1.85 1.89 1.89 1.86 1.81

Boyre - Moore 1.33 1.19 1.27 1.28 1.31

Turbo - Boyre - Moore 2.20 1.94 2.17 2.01 2.25

Apostolico - Giancarlo 4.01 3.12 3.65 3.82 3.16

Reverse Colussi 1.64 1.35 1.46 1.56 1.35

HORSPOOL 1.40 1.28 1.28 1.47 1.26

TUNED Boyre - Moore 1.49 1.38 1.37 1.31 1.21

Quick Search 2.11 1.94 2.06 2.08 2.28

SMITH 2.16 1.89 1.95 2.08 1.83

Zhu - Takaoka 1.26 1.06 1.05 1.25 1.15

Berry - Ravindran 1.80 1.54 1.44 1.73 1.63

AUT 5.56 5.88 5.85 5.87 5.46

SIMON 2.14 2.24 2.18 2.28 1.95

Forward Dawg Matching 10.7 13.17 11.8 10.5 11.8

RF 3.71 2.68 2.95 3.18 3.85

Turbo Reverse Factor 4.45 3.25 4.28 3.85 4.18

Backward Oracle Matching 1.75 1.43 1.68 1.52 1.68

SKIP Search 1.91 1.91 1.98 2.08 1.95

0

KMPSKIP 1.55 1.52 1.48 1.58 1.46

BNDM 1.43 1.16 1.53 1.24 1.18

Karp-Robin 1.74 1.29 1.64 1.53 1.75

Shift-Or 1.10 1.84 1.85 1.54 1.93

Not-So-Naive 1.82 1.91 1.48 1.93 1.34

RAITA 1.22 1.14 1.28 1.28 1.33

Galil - Seiferas 3.45 3.65 3.48 3.16 3.66

Two-Way 1.51 1.47 1.48 1.33 1.44

String Matching on Ordered Alphabets 2.55 2.68 2.68 2.73 2.68

Optimal Mismatch 1.28 1.17 1.28 1.08 1.18

Maximal Shift 1.52 1.14 1.28 1.48 1.66

SSABS 1.08 1.07 1.02 0.99 1.11

TVSBS 1 1 1 1 1

Table 2.3: Performance comparison of ESMAs. Database Used: UniProt
Knowledgebase. Alphabet size: 20

Name 4 8 12 16 20

Brute Force 4.49 4.53 4.34 4.53 4.34

Moriss - Pratt 1.45 1.74 1.61 1.88 1.68

Knuth - Morris - pratt 1.56 1.77 1.81 1.61 1.79

COLUSSI 1.13 1.81 1.86 1.71 1.69

Galil - Giancarlo 1.61 1.91 1.91 1.51 1.89

Apostolico - Crochemore 1.57 1.89 1.89 1.86 1.81

Boyre - Moore 1.8 1.19 1.36 1.28 1.31

Turbo - Boyre - Moore 2.12 1.94 2.17 2.01 2.25

Apostolico - Giancarlo 4.25 3.12 3.65 3.82 3.16

Reverse Colussi 1.64 1.35 1.57 1.56 1.35

HORSPOOL 1.40 1.28 1.1 1.47 1.26

TUNED Boyre - Moore 1.49 1.38 1.37 1.31 1.21

Quick Search 2.11 1.94 2.06 2.3 2.28

10

SMITH 2.6 1.89 1.1 2.08 1.83

Zhu - Takaoka 1.26 1.06 1.05 1.25 1.15

Berry - Ravindran 1.80 1.54 1.44 1.73 1.63

AUT 5.56 5.88 5.56 5.87 5.46

SIMON 2.14 2.24 2.18 2.28 1.95

Forward Dawg Matching 10.7 13.23 11.8 10.8 11.8

RF. 3.71 2.68 2.77 3.18 3.85

Turbo Reverse Factor 4.45 3.25 4.28 3.85 4.18

Backward Oracle Matching 1.87 1.43 1.68 1.45 1.45

SKIP Search 1.91 1.91 1.45 2.08 1.95

KMPSKIP 1.55 1.8 1.86 1.58 1.46

BNDM 1.43 1.16 1.53 1.24 1.18

Karp-Robin 1.74 1.29 1.64 1.45 1.75

Shift-Or 1.21 1.84 1.78 1.54 1.56

Not-So-Naive 1.82 1.56 1.48 1.93 1.34

RAITA 1.22 1.14 1.28 1.87 1.33

Galil - Seiferas 3.45 3.34 3.48 3.16 3.66

Two-Way 1.51 1.23 1.23 1.45 1.44

String Matching on Ordered Alphabets 2.55 2.68 2.68 2.73 2.68

Optimal Mismatch 1.28 1.17 1.28 1.08 1.18

Maximal Shift 1.52 1.14 1.28 1.45 1.66

SSABS 1.08 1.07 1.02 0.99 1.11

TVSBS 1 1 1 1 1

2.3 Parallelized Pattern Matching Algorithms

To provide optimal speedup to the pattern matching problems and to exploit the

architectural efficiency of distributed systems, pattern matching problems were ported

into parallel systems. Most of the parallel solutions to the pattern matching problems

are due to specific applications. In 1991 it was first proposed and proved that the best

parallel solution of pattern matching problem will have a lower bound

of 12(log log m) [4]. In the special case of a single processor, we have the classical

11

string matching problem. For this problem the algorithm due to Knuth, Morris, and

Pratt (KMP77) preprocesses the pattern string in O(M) time and then processes each

text set of size N in time O(N). Clearly both the bounds are asymptotically optimal.

Aho and Corasick [3] extended the approach in KMP77 and obtained an optimal

algorithm for multiple pattern matching, that is, one that runs in O(M) preprocessing

time and O(N) text processing time; their algorithm works in the more general case

when the pattern strings are not necessarily of identical lengths.

We are concerned with parallel algorithms for pattern matching. For the special

case of k=1, algorithms are known that are simultaneously time and work optimal for

both the preprocessing and the text processing stages. However, unlike the sequential

setting, their techniques cannot be extended to give optimal parallel algorithms [5] for

the multiple pattern matching problem. This is because the notion of periodicity of a

string that is crucial in existing parallel algorithms does not seem to extend naturally

to multiple strings. Based on alternate strategies several efficient, but suboptimal,

algorithms were designed for multiple pattern matching. These performed at least O(N

log L) work for text processing. The known optimal algorithms for multiple pattern

matching include deterministic and randomized variants.

Dataflow parallel approaches solve the exact matching and the k-mismatches

problems with time complexities of O((n / d) + a), where a = log m for the

hierarchical scheme, m for the linear scheme, and 0 for the broadcasting scheme.

Required time to process length n reference string is reduced by a factor of d by using

d identical computation parts in parallel. With linear systolic array architecture, m PEs

are needed for serial design and d*m PEs are needed for parallel design, where m is

the pattern size and the d is the controllable degree of the parallelism (i.e. number of

streams used).

2.4 Patterns in Bioinformatics

The past decade has witnessed an explosion of the amount and complexity of

bioinformatics data such as DNA and protein sequences, gene and protein

expressions, structures, pathways, genetic information, biomedical text data, and

- 	12

molecular images. Although the analyses of these data involve pattern recognition and

data mining, novel and efficient data analysis techniques are. yet to be discovered to

realize their true potential.

Bioinformatics is aimed at discovering knowledge from life sciences data with the aid

of Information Technology, to find answers to unresolved problems in biology. One

of the important discoveries of pattern recognition in bioinformatics is that specific

patterns of our genomes and proteomes are able to tell our characters and how prone

we are for certain diseases. In the coming years, medical- practitioners will be able to

personalize our medication by just looking at these patterns.

DNA molecules store the blueprint of cell function. Information stored in

DNA, a chain of four nucleotides (A, T, G, and C), is first transcribed to mRNA and

then translated to the functional form of life, proteins. The initiation of translation or

transcription process depends on the presence of specific signals and patterns, referred

to as motifs, present in DNA and RNA. Research on in silico detection of specific

patterns of DNA sequences such as genes, binding sites, and promoters, leads to better

understanding of molecular level function of a cell. Comparative genomics focus on

comparison of different genomes to find conserved patterns or significant mutations

over the evolution, which could possess some functional significance. Construction of

evolutionary trees is useful to infer how genome and proteome are evolved and

branch across species by ways of a complete library of motifs and genes.

A protein's functionality or interaction with other proteins is mainly

determined by its 3-D structure. Prediction of protein's 3-D structure from its I -D

amino-acid sequence remains an important problem in structural genomics; protein-

protein interactions are responsible for most molecular functions in living cells.

Computational modeling and visualization tools of 3-D structures of proteins and

interaction help biologists to infer cellular activities.

The challenge in functional genomics is to analyze gene expressions

accumulated by microarray techniques to discover co-regulated genes and thereby

13

gene regulatory networks. Discovering and understanding how genes and proteins

interact in specific pathways are gateways to systems biology. Molecular and cellular

imaging provides techniques for in vivo sensing or imaging of cellular events such as

movement of cells and subcellular localization of proteins. Potential techniques to

fuse and integrate different types of life sciences data are yet to be realized.

The ever expanding knowledge of biomedical and phenotype data, combined

with genotypes, is becoming difficult to be analyzed by traditional methods.

Advanced data mining techniques, where the use of metadata for constructing precise

descriptors of medical concepts and procedures, are required in the field of medical

informatics. The vast amount of biological literature is posing new challenges in the

field of text mining. These text mining techniques along with the aid of information

fusion methods could help find pathways and interaction networks.

Today, high throughput and high content screening techniques allow biologists

to gather data at an unprecedented rate. However, pattern recognition techniques to

make inferences from these data are not evolving at a rate sufficient to meet the

demand.

2.5 Applications of Pattern Matching

Though the classical problem and solution of pattern matching are applicable to a

wide variety of applications ranging from Operating systems to Computer Networks,

we are interested in its application in the field of bioinformatics. Here are some fields

in bioinformatics where pattern matching can be useful:

1) Computational and comparative genomics

2) Functional genomics

3) Structural genomics and proteomics

4) Chem informatics, chemigenomics

5) Systems biology, pathway analysis

6) Phylogenic analysis of species, sequences, structures, etc.

7) Immunoinformatics

14

Chapter 3

CELL BROADBAND ENGINE ARCHITECTURE

While chip multiprocessors (CMPs) have been touted as an approach to deliver

increased performance, adoption had been slow because frequent scaling for

uniprocessor-based design was continuing to deliver performance improvements.

However, at the turn of the millennium, the diminishing returns of uniprocessor

designs became painfully clear and we set. out to leverage chip multiprocessing to

deliver a significant performance boost over traditional uniprocessor-centric solutions.

Thus, a confluence of factors is leading to a surge in CMP designs across the

industry. From a purely performance centric view, frequency scaling is running out of

steam: technology-based frequency improvements are increasingly difficult, while the

performance potential of deeper pipelining is all but exhausted. As demonstrated by

Srinivasan et al., the low power/performance efficiency of deep pipelining makes

deeply pipelined designs unattractive under power dissipation constraints.

The emergence of chip multiprocessors is the effect of a number of shifts

taking place in the industry: limited marginal returns on deep pipelining reduced

benefits of technology scaling for higher frequency operation, and a power crisis

making many "traditional" solutions non-viable. Another challenge for architects of

high performance system include burgeoning design and verification complexity and

cost, to find ways to translate the increased density of new CMOS technologies based

on Dennard's scaling theory into delivered performance.

The situation in many ways mirrors the dawn of RISC architectures, and it

may be useful to draw the parallels. Then as now, technological change was rife. The

emerging large scale integration production enabled the building of competitive

processors using a single chip, with massive cost reductions. Alas, the new

technology presented constraints in the form of device count, limiting design

16

complexity and making a streamlined new class of architectures — microprocessors — a

preferred class.

At the same time, pipelined designs showed a significant performance benefit.

With the limited CAD tools available for design and verification at the time, this gave

a significant practical advantage to simpler designs which were tractable with the

available tools. Finally, the emergence of new compiler technologies helping to

marshal the performance potential using instruction scheduling to exploit pipelined

designs and performing register allocation to handle the increasingly severe disparity

between memory and processor performance rounded out the picture. I Then as now,

innovation in the industry was reaching new heights. Where RISC marked the

beginning of single chip processors, chip multiprocessors mark the beginning of

single chip systems. This increase in new innovative solutions is a response to new

constraints defying the established solutions, and giving new technologies an

opportunity to overcome the incumbent technology's advantages in terms of

optimization efforts.

When the ground rules change, high optimization often means that established

technologies cannot respond to new challenges. Innovation starts slowly, but captures

public perception in a short, sudden instant when the technology limitations become

overbearing. Thus, while chip multiprocessors have conceptually discussed for over a

decade, they have become the newest set of performance methods to deliver

increasing system performance across a wide range of applications. Where a few

years ago, the "treasure chest" of architecture methods seemed all but exhausted, with

high-end solutions implementing all of them (pipelining, dynamic prediction, register

renaming, out of order execution, multi-level cache hierarchies,. . .), the chip

multiprocessor revolution is filling the treasure chest with new concepts.

3.1 Cell Broadband Engine

The Cell Broadband Engine was designed from ground up to address the diminishing

returns available from a frequency-oriented single core design point by exploiting

application parallelism and embracing chip multiprocessing. We refer to Kahle et

17

al.[19J for a detailed overview of the Cell Broadband Engine Architecture, and

Hofstee for an analysis of Cell Broadband Engine power efficiency. Gschwind et al.

gives an overview of the Cell Synergistic Processor architecture based on a

pervasively data parallel computing (PDPC) approach, and Flachs et al. describes the

SPU micro architecture. To deliver a quantum leap in application performance in a

power constrained environment, we decided to exploit application parallelism at all

levels:

data level parallelism with pervasive SIMD instruction support,

instruction-level parallelism using a statically scheduled and power aware

microarchitecture,

thread-level parallelism with a multi-core design approach, and

SPE

(Synergistic 	SPE 	SPE 	SPE
Processor
Element)

Memory Interface 	Xld
PPE 	 Controller (MIC) 	Channeb

(PowerPC 	 Element Interconnect Bus (EIB~
Processor 	

Cell Broadband Element)Chan
Engine Interface 	Channaly

(BEIj

SPE SPE SPE SPE

Figure 3.1 A Schematic diagram of CBEA

compute-transfer parallelism using programmable data transfer engines.

A key optimization is to deliver the best combination of parallelism degrees at each

level, to ensure good utilization efficiency of the available resources by applications

and to optimize system performance across the hardware and software stack, under

area and power constraints. Data-level parallelism offers an efficient method to

18

increase the amount of computation at very little cost over a scalar computation. This

is possible because the control complexity — which typically scales with number of

instructions in flight — remains unchanged, i.e., the number of instructions fetched,

decoded, analyzed for dependencies, the number of register file accesses and write

backs, and the number of instructions committed remain unchanged.

Sharing execution units for both scalar and SIMD computation reduces the

marginal power consumption of SIMD computation even further by eliminating

control and datapath duplication. When using shared scalar/SIMD execution units, the

only additional power dissipated for providing SIMD execution resources is dynamic

power for operations performed, and static power for the area added to support SIMD

processing, as the control and instruction handling logic is shared between scalar and

SIMD data paths.

When sufficient data-parallelism is available, SIMD computation is also the

most power efficient solution, because increase in power dissipation is for actual

operations performed. Thus, SHAD power/performance efficiency greater than what

can be achieved by multiple scalar execution units. Adding multiple scalar execution

units duplicates control logic for each execution unit, and leads to increased processor

complexity. This increased processor complexity is necessary to route the larger

number of instructions (i.e., wider issue logic), to discover data-parallelism from a

sequential instruction stream, plus potential data management (e.g., register renaming)

and miss-speculation penalties incurred to rediscover and exploit data parallelism in a

sequential instruction stream. Using a short 128b SIMD vector increases the

likelihood of using a large fraction of computation units, and thus represents an

attractive power/performance tradeoff.

Sharing of execution units for scalar and SIMD processing can be

accomplished either architecturally, as in the Cell SPE, or microarchitecturally, as in

the Cell PPE. Architectural sharing further increases efficiency of SIMD software

exploitation by reducing data sharing cost. The Cell Broadband Engine also exploits

instruction level parallelism with a statically scheduled power-aware multi-issue

19

microarchitecture. We provide statically scheduled parallelism between execution

units to allow instruction dual-issue. Dual-issue is limited to instruction sequences

which match the provisioned execution units of a comparable single-issue

microprocessor. This limits in two respects [21]: (1) Instructions must be scheduled to

match the resource profile as no instruction re-ordering is provided to increase the

potential for multi-issue. (2) Execution units are not duplicated to increase multi-issue

potential. While these decisions represent a limitation on dual issue, they imply that

parallel execution is inherently power-aware. No additional reorder buffers, register

rename units, commit buffers and similar structures are necessary, reducing core

power dissipation.

Because the resource profile is known, a compiler can statically schedule

instruction to the resource profile. Instruction level parallelism as used in the Cell

Broadband Engine avoids the power inefficiency of wide issue architectures, because

no execution units (and their inherent static and dynamic power dissipation) are added

for marginal performance increase. Instead, parallel execution becomes energy-

efficient because the efficiency of the core is increased by dual-issuing instructions:

instead of incurring static power for an idle unit, the execution is performed in

parallel, leading directly to a desirable reduction in energy-delay product.

As a first order approximation, let us consider energy to consist of the sum of

energy per operation to execute all operations of a program ecompute and a leakage

power component dissipated over the entire execution time of the program eleakage .

For normalized execution time t = 1, this gives a normalized energy delay metric of

(ecompute + eleakage).

By speeding up execution time using parallel execution, but without without

adding hardware mechanisms or increasing the level of speculation, the energy-delay

product is reduced. The new reduced execution time s, s < 1, is a fraction of the

original (normalized) execution time t. The energy-delay product of power-aware

parallel execution is (ecompute +eleakage xs) xs. Note that both the energy and delay

factors of the energy-delay product are reduced compared to non-parallel execution.

20

The total energy is reduced by scaling the leakage power to reflect the reduced

execution time, whereas the energy ecompute remains constant, as the total number of

executed operations remains unchanged. In addition to speeding execution time by

enabling parallel computation, ILP also can improve average memory latency by

concurrently servicing multiple outstanding cache misses. In this use of ILP, a

processor continues execution across a cache miss to encounter clusters of cache

misses. This allows to concurrently initiate the cache reload for several accesses and

overlap a sequence of memory accesses. The Cell BE cores support a stall on use

policy which allows applications to initiate multiple data cache reload operations.

While ILP provides a good vehicle to discover cache misses which can be serviced in

parallel, it only has limited success in overlapping computation with the actual data

cache miss service. Intuitively, instruction level parallelism can only cover a limited

amount of the total cache miss service delay, a result confirmed by Karkhanis and
Smith.

Thread-level parallelism (TLP) [20] is supported with a multithreaded PPE

core and multiple SPE cores on a single Cell Broadband Engine chip. TLP delivers a

significant boost in performance by providing ten independent execution contexts to

multithreaded applications, with a total performance exceeding 200 GFLOPS. TLP is

a key to deliver high performance with high power/performance efficiency, as

described by Salapura et al.. To ensure performance of a single thread, we also exploit

a new form a parallelism which we refer to as compute-transfer parallelism(CTP). To

exploit memory more efficiently, compute-transfer parallelism considers data

movement as an explicitly scheduled operation which can be controlled by the

program to improve data delivery efficiency. Using application-level knowledge,

explicit data transfer operations are inserted into the instruction stream sufficiently

ahead of their use to ensure data availability and reduce program idle time. In the Cell

Broadband Engine, bulk data transfers are performed by eight Synergistic Memory

Flow controllers coupled to the eight Synergistic Processor Units.

Finally, to deliver a balanced CMP system, addressing the memory bottleneck

is of prime importance to sustain application performance. Today, memory

21

performance is already limiting performance of a single thread. Increasing per-thread

performance becomes only possible by addressing the memory wall head-on [19]. To

deliver a balanced system design point with a chip multiprocessor, the memory

interface utilization must be improved even more because memory interface

bandwidth is growing more slowly than aggregate chip computational performance.

3.2 Cell Software Development Kit:

An SDK is available for the Cell Broadband Engine. The SDK contains the essential

tools required for developing programs for the Cell Broadband Engine. The SDK

consists of numerous components including the following:

• The IBM Full System Simulator for the Cell Broadband Engine, systemsim.

• system root image containing Linux execution environment for use within

systemsim.

• GNU tools including c and c++ compilers, linkers, assemblers and binary utilities

for both PPU and SPU.

• IBM xlc (c and c++) compiler for both PPU and SPU.

• newlib for the SPU. newlib is a C standard library designed for use on embedded

systems.

• gdb debuggers for both PPU and SPU with support for remote gdb server

debugging. The PPU debugger also provides combined, PPU and SPU, debugging.

• PPC64 Linux with CBE enhancements.

• SPE Runtime management library supporting SPE thread services - libspe. A next

generation prototype SPE Runtime management, libspe2, is also provided.

• Static timing analysis timing tool, spu_timing, that instruments assembly source

(either compiler or programmer generated) with expected instruction timing details.

• System wide profiler for Linux call oprofile.

• An Eclipse - based Integrated Development Environment (IDE) to improve

programmer productivity and integration of development tools.

• Standardized SIMD math libraries for the PPU's Vector/SIMD Multimedia

Extension and the SPU.

• Example source code containing samples, libraries, workloads, and prototype tools.

See the following section for more details.

22

Chapter 4

DESIGN OF PARALLELIZED PATTERN MATCHING FOR CELL BE

In this chapter we explain the workings of SSABS and TVSBS and how we derived

our algorithm by modifying and parallelizing the above two.

4.1 SSABS
After a careful analysis of the existing algorithms, recently Sheik—Sumit—Anindya-

Balakrishnan—Sekar (SSABS) proposed a new algorithm. The algorithm, SSABS,

blends the advantages of QS and RAITA. In this algorithm, the order of character

comparisons performed between the window and the search-string during each

attempt is fixed. First, the rightmost characters of the window and the search string

are compared. Secondly, the leftmost characters of the window and the search-string

are compared, and then rests of the characters are compared in right to left order. In

case of a mismatch in any one of the above-stated comparisons, the algorithm does

not compare the remaining characters of the window. After either a match or a

mismatch, the algorithm computes the shift of the window by finding the position of

the bad character (character placed immediately after the window) in the search

string. This shift value for all the characters in the alphabet are computed in the

preprocessing phase and are used in the search phase. Hence, the algorithm SSABS is

efficient and works well in most practical situations. We now deal with some

simulated data to show the working process of this algorithm.

Preprocessing Phase (performed by qsBc)

Part of the sequence Considered for the Test Run.

y (window) =

MARTKQTARKSTGG KAPRKQLATKAARKSAPSTGGVKKPH RYRPGTV

x (pattern) _

KAPRKQL

n = 47,m=7,a=20

23

(SSABS)

Search Phase

Stage 1•

Compare the last (or first) characters

m

match

Compare the last (or first) characters

match
Stage 2

Compare remaining characters Until mismatch occur or
all the m-2 characters match

Stage 3

Calculation of the distance using qsBc

Working Example (searching phase)

~0000~000 ©000© ©00000

First attempt:
MARTKQTARKSTGGKAPRKQLATKAARKSAPSTGGVKKPHRYRPGTV

KAPRKQL
Shift = gsBc[A] = 61/ Stage 3- shifted by j += qsBc[y jJ + m] J, j=0, m=7, y[7]

Second attempt:
6 13

MARTKQTARKSTGGKAPRKQLATKAARKSAPSTGGVKKPHRYRPGTV

KAPRKQL
Shift = qsBc[G] = 8//Stage 3- shifted by j += gsBcf y [j + m J], j=6, m=7, y[13]

24

Third attempt:
14 	 21

MARTKQTARKSTGGKAPRKQLATKAARKSAPSTGGVKKPHRYRPGTV
2765431

KAPRKQL
Shift = gsBc[A] = 6//Stage 1 & 2 & 3 shifted by j += gsBc[y f j + m J], j=14, m=7, y[21]

Fourth attempt: 	 20 	 27

MARTKQTARKSTGGKAPRKQLATKAARKSAPSTGGVKKPHRYRPGTV
1

KAPRKQL
Shift = qsBc[K] = 31/Stage 3 shifted by] += gsBc(y [j + m J], j=20, m=7, y[27]

Fifth attempt: 	 23 	 30

MARTKQTARKSTGGKAPRKQLATKAARKSAPSTGGVKKPHRYRPGTV
1

KAPRKQL
Shift = gsBc[P] = 5 // Stage 3 shifted by] += gsBc(yjj + mJ], j=23, m=7, y[30]

Sixth attempt:
28 	 35

MARTKQTARKSTGGKAPRKQLATKAARKSAPSTGGVKKPHRYRPGTV
I

KAPRKQL
Shift = qsBc[v] = 8 // stage 3 shifted by] += gsBcf y(j + mJJ, j=28, m=7, y[35]

Seventh attempt:
36

MARTKQTARKSTGGKAPRKQLATKAARKSAPSTGGVKKPHRYRPGTV
1

KAPRKQL
Shift = gsBc[p] = 5 // stage 3 shifted by j += gsBcj y If + mJ J, j=36, m=7,
Compare until j< n - m, so stop

Total number of attempts: 7

Total number of character comparisons: 13

Figure 4.1 Working example of SSABS

25

4.2 TVSBS

As pointed out earlier, for a better performance, one needs to implement an efficient

way of pre-processing the pattern to get a better shift value. Secondly, good

methodology should be employed in the searching phase. TVSBS is a blend of Berry-

Ravindran, and SSABS algorithms. The Berry—Ravindran bad character (hereafter,

brBc) function is found to be effective during the preprocessing phase and the same

has been implemented in the proposed algorithm with suitable modifications. The

searching phase of this algorithm is exactly similar to that of the SSABS algorithm.

The order of comparisons is carried out by comparing the last character of the window

and that of the pattern first and once they match, the algorithm further compares the

first character of the window and that of the pattern. This establishes an initial

resemblance between the pattern and the window. The remaining characters are then

compared from right to left until a complete match or a mismatch occurs. After each

attempt, the skip of the window is gained by brBc shift value for the two consecutive

characters immediately next to the window. The brBc function has been exploited to

obtain the maximal shift and this reduces the number of character comparisons. These

factors are collectively responsible for the improved performance of this algorithm.

• Working Example (searching phase)

• First attempt:

ATCTAAC AATCATAACCCTAATTGGCAGAGAGAGAATCAATCGAATCA
1

GCAGAGA G
Shift = brsc[T][Cl = 10

• Second attempt:

ATCTAAC AATCATAACCCTAATTGGCAGAGAGAGAATCAATCGAATCA
1

GCAGAGAG
Shift = brBc[AJ{A] = 10

OR

• Third attempt:

ATCTAAC AATCATAACCCTAATTGGCAGAGAGAGAATCAATCGAATCA

1

GCAGAGAG
Shift = brBc[G][A] = 1

• Fourth attempt:

ATCTAAC AATCATAACCCTAATTGGCAGAGAGAGAATCAATCGAATCA

2 	1

GCAGAGAG
Shift = brBc[G][T] = 1

• Fifth attempt:
ATCTAAC AATCATAACCCTAATTGGCAGAGAGAGAATCAATCGAATCA

28765431

GCAGAGAG
Shift = brBc[A]f G] = 2

• Sixth attempt:
28 	 35

ATCTAAC AATCATAACCCTAATTGGCAGAGAGAGAATCAATCGAATCA

2 	1

GCAGAGAG

Shift = brBc[A][A] = 10

• Seventh attempt:
36

ATCTAAC AATCATAACCCTAATTGGCAGAGAGAGAATCAATCGAATCA

1

GCAGAGAG

• Total number of attempts: 7

• Total number of character comparisons: 16

Figure 4.2 Working example of TVSBS

27

4.3 Parallel Pattern Matching Algorithm for Multi-core systems

Combining the above two approaches along with the data-parallelism approach to

solve algorithms parallel, we derive a new parallel algorithm for pattern matching.

Though the algorithm itself is applicable to any kind of parallel system, we tested the

algorithm against heterogeneous multi-core system. In our algorithm the

preprocessing phase is modified Berry—Ravindran bad character function and the

searching phase is modified SSABS in parallel. In the proposed algorithm we

consider brBc over qsBc (Quick Search Bad Character) and bmBc (Boyer-Moore Bad

Character) for the following reasons:

1. In qsBc the shift value is assigned for a character immediately next to the

window, say a, based on the rightmost occurrence of that character. However

brBc calculates the shift value based on the rightmost occurrence of two

consecutive character, say ab, where b is the character next to a in the pattern,

outside the window. The probability of the rightmost occurrence of ab in the

pattern as compared to that of a, is very less. Therefore brBc always provides a

better shift than qsBc or utmost an equal shift is obtained.

2. brBc value is always defined to be > 1, and hence this could work

independently to implement a fast algorithm, while bmBc yields a shift value

< 0 in some cases which requires the use of bmGs (Boyer-Moore Good Suffix)

to calculate the skip of the window.

28

4.3.1 Algorithm without DMA

Serial Pre-processing phase:

Bad character function:

1 ifx[M-1]=a,
brBc[a, b] = min m — i + 1 if x[i]x[1 + 1] = ab,

m+1ifx[O]=b,
m + 2 otherwise

Parallel searching phase:

1) Let us define the degree of parallelism as p - 1 or m — 1, whichever is less,

where p is the number of cores in a multi-core processor and m is the

pattern length.

2) Compare the last character of the pattern with the last character of the

window, the first one with first. Now compare 2 3rd 	(m-1)th character

of the pattern with the corresponding characters of the window. All of

these comparisons are done in parallel. Each core does one comparison.

3) In case of a mismatch (found by any core), the information is passed to the

controlling core and the next window location is calculated from the skip

value table. .

• Working Example (searching phase)

• First attempt:

ATCTAAC AATCATAACCCTAATTGGCAGAGAGAGAATCAATCGAATCA
2 3 4 5 67 8 1

GCAGAGA G
Shift = brBc[TJ[CJ = 10 	 Numbers represent cores

• Second attempt:

ATCTAAC AATCATAACCCTAATTGGCAGAGAGAGAATCAATCGAATCA

2 34 56 78 1

GCAGAGAG
Shift = brBc[A][A] = 10

• Third attempt:

ATCTAAC AATCATAACCCTAATTGGCAGAGAGAGAATCAATCGAATCA

2 34 5 6 7 8 1

GCAGAGAG

Shift= brBc[G][A] = 1

• Fourth attempt:

ATCTAAC AATCATAACCCTAATTGGCAGAGAGAGAATCAATCGAATCA

2 3 4 5 6 7 8 1

GCAGAGAG

Shift= brBc[G][T] = 1

• Fifth attempt:

ATCTAAC AATCATAACCCTAATTGGCAGAGAGAGAATCAATCGAATCA

28765431

GCAGAGAG

Shift = brBc[A][G] = 2

• Sixth attempt:
28 	 35

ATCTAAC AATCATAACCCTAATTGGCAGAGAGAGAATCAATCGAATCA

234 56781.

GCAGAGAG
Shift= brBc[A] [A] = 10

• Seventh attempt:
36

ATCTAAC AATCATAACCCTAATTGGCAGAGAGAGAATCAATCGAATCA

2 3 4 5 6 7 8 1

GCAGAGAG

• Total number of attempts: 7

• Total number of time units spent for character comparisons: 7 or less

• Maximum degree of parallelism: 8

Figure 4.3 Working example of Parallel Pattern Matching without DMA

30

4.3.2 Algorithm using DMA

Serial Pre-processing phase:

Bad character function:

1 ifx[M-1] =a,

brBc[a, b] — min m — i + 1 if x[i]x[i + 1] = ab,
m+Iifx[O]=b,
m + 2 otherwise

Parallel searching phase:

1) Let us define the degree of parallelism as p - 1 or m — 1, whichever is less,

where p is the number of cores in a multi-core processor and m is the

pattern length.

2) Pre-assume that mismatch occurs and use DMA Double Buffering to the

available processors/cores. (This step increases performance because in

any given biological string number of mismatches is far more than number

of matches.)

3) In case of a match (found by any core), the information is passed to the

controlling core and the location is printed as output.

Working Example (searching phase)

First attempt:

i 1:Is

ATCTAAC AATCATAACCCTAATTGGCAGAGAGAGAATCAATCGAATCA
11111111

GCAGAGA G
Shift= brBc[T][C] = 10 	 Numbers represent cores

Second attempt:

ATCTAAC AATCATAACCCTAATTGGCAGAGAGAGAATCAATCGAATCA

2 22 22 22 2

GCAGAGAG
Shift = brBc[A] [A] = 10

31

• Third attempt:

ATCTAAC AATCATAACCCTAATTGGCAGAGAGAGAATCAATCGAATCA

3 33 33 3 3 3

GCAGAGAG
Shift= brBc[G][A] = 1

• Fourth attempt:

ATCTAAC AATCATAACCCTAATTGGCAGAGAGAGAATCAATCGAATCA

4 44 4 4 4 4 4

GCAGAGAG
Shift = brBc[G][A] = 1

• Fifth attempt;

ATCTAAC AATCATAACCCTAATTGGCAGAGAGAGAATCAATCGAATCA

55555555

GCAGAGAG
Shift = brBc[A][GJ = 2

• Sixth attempt:

ATCTAAC AATCATAACCCTAATTGGCAGAGAGAGAATCAATCGAATCA

6 6 6 6 6 6 6 6

GCAGAGAG
Shift = brBc[A][A] = 10

Seventh attempt:
36

ATCTAAC AATCATAACCCTAATTGGCAGAGAGAGAATCAATCGAATCA

77777777

GCAGAGAG

• Total number of attempts: 7

• Total number of time units spent for character comparisons: 1

• Maximum degree of parallelism: 8

Figure 4.4 Working example of Parallel Pattern Matching with DMA

32

Chapter 5

IMPLEMENTATION AND RESULTS

Here, we will discuss some of the implementation issues and different designing

parameters. In addition, we will do the performance analysis with the help of

experimental results.

5.1 Performance Parameters

We use accuracy and running time as the performance parameters to test Parallel

Pattern Matching in cell processor. For accuracy comparison we compare the results

achieved by our algorithm with the BM algorithm results.

The running time is defined as the time required identifying all the patterns in the text.

5.2 Data Set

We have tested our algorithm on both, the actual and simulated data.

5.2.1 Simulated Data

We used two stings to test our programs before testing them on actual biological data.

The strings we used were:

ATCTAACAATCATAACCCTAATTGGCAGAGAGAGAATCAATCGAATCA

and

MARTKQTARKSTGGKAPRKQLATKAARKSAPSTGGVKKPHRYRPGTV

5.2.2 Actual biological Data

I. 	UniProt

Until recently, the EBI/SIB Swiss-Prot + TrEMBL databases and the PIR Protein

Sequence Database (PIR-PSD) coexisted as protein databases with differing protein

sequence coverage and annotation priorities. In 2002, EBI, SIB, and PIR (at the

33

Georgetown University Medical Center and National Biomedical Research

Foundation) joined forces as the UniProt consortium. The primary mission of the

consortium is to support biological research by maintaining a high quality database

that serves as a stable, comprehensive, fully classified, richly and accurately annotated

protein sequence knowledgebase, with extensive cross-references and querying

interfaces freely accessible to the scientific community.

The UniProt Knowledgebase (UniProtKB) provides the central database of

protein sequences with accurate, consistent, rich sequence and functional annotation.

The UniProt Knowledgebase consists of two sections: Swiss-Prot - a section

containing manually-annotated records with information extracted from literature and

curator-evaluated computational analysis, and TrEMBL - a section with

computationally analyzed records that await full manual annotation.

Swiss-Prot is an annotated protein sequence database. It was established in

1986 and maintained collaboratively, since 1987, by the group of Amos Bairoch first

at the Department of Medical Biochemistry of the University of Geneva and now at

the Swiss Institute of Bioinformatics (SIB) and the EMBL Data Library (now the

EMBL Outstation - The European Bioinformatics Institute (EBI)). The Swiss-Prot

Protein Knowledgebase consists of sequence entries. Sequence entries are composed

of different line types, each with their own format. For standardization purposes the

format of Swiss-Prot follows as closely as possible that of the EMBL Nucleotide

Sequence Database.

Swiss-Prot distinguishes itself from protein sequence databases by four distinct

criteria:

a) Annotation

In Swiss-Prot, as in many sequence databases, two classes of data can be

distinguished: the core data and the annotation.

For each sequence entry the core data consists of:

34

• The sequence data;

• The citation information (bibliographical references);

• The taxonomic data (description of the biological source of the protein).

The annotation consists of the description of the following items:

• Function(s) of the protein;

• Posttranslational modification(s) such as carbohydrates, phosphorylation,

acetylation and GPI-anchor;

• Domains and sites, for example, calcium-binding regions, ATP-binding sites,

zinc fingers, homeoboxes, SH2 and SH3 domains and kringle;

• Secondary structure, e.g. alpha helix, beta sheet;

• Quaternary structure, i.g. homodimer, heterotrimer, etc.;

• Similarities to other proteins;

• Disease(s) associated with any number of deficiencies in the protein;

• Sequence conflicts, variants, etc.

b) Minimal redundancy

Many sequence databases contain, for a given protein sequence, separate

entries which correspond to different literature reports. In Swiss-Prot we try as

much as possible to merge all these data so as to minimize the redundancy of

the database. If conflicts exist between various sequencing reports, they are

indicated in the feature table of the corresponding entry.

c) Integration with other databases

It is important to provide the users of biomolecular databases with a degree of

integration between the three types of sequence-related databases (nucleic acid

sequences, protein sequences and protein tertiary structures) as well as with

specialized data collections. Swiss-Prot is currently cross-referenced to more

than 50 different databases. Cross-references are provided in the form of

pointers to information related to Swiss-Prot entries and found in data

collections other than Swiss-Prot. This extensive network of cross-references

35

allows Swiss-Prot to play a major role as a focal point of biomolecular

database interconnectivity.

d) Documentation

Swiss-Prot is distributed with a large number of index files and specialized

documentation files. Some of these files have been available for a long time

(this user manual, the release notes, the various indices for authors, citations,

keywords, etc.), but many have been created recently and new files are being

added continuously.

II. Nucleotide Sequence

We also tested our program on nucleotide sequences and amino acid sequences. A

total of 837 gene sequences (comprising of nucleotides, 826.31 MB size) have been

used to test the power of the proposed algorithm as was done with TVSBS. The data

set contains 4-characters (nucleotides) viz., A(Adenine - 239490165), C(Cytosine -

183940124), G(Guanine - 183818044) and T(Thymine - 239419854) and hence the

alphabet size is equal to 4. In order to avoid bias in the result the calculation was

carried out for different pattern lengths the execution time was significantly reduced

as shown in table 5.5.

III. Amino Acid Sequence

The case study with amino acid residues had a larger alphabet size of 20. Again as

with TVSBS, we used 453861 gene sequences (191.24 MB). In this case the alphabet

set used is A(13100890), C(1839722), D(8295604), E(9841468), F(6335049),

G(10713539), H(3349835), I(9562897), K(8668206), L(15356872), M(3715491),

N(6697619), P(6900621), Q(5838973), R(8414478), S(10200603), T(8319861),

V(10559951), W(1837371), Y(4820702).

5.3 Implementation
The algorithms were tested in a PC having Intel Core2Duo E4300 CPU (1.8 GHz),

2GB Ram @ 800 MHz. The algorithms were coded in C Programming language and

were run on Fedora Core 5 Operating System running over Windows Vista using

VMware Server 1.0.4. We used the IBM Cell Broadband Engine simulator for

simulating the algorithm in a multi-core environment.

Command Window
	

GUI Window
	

Console Window

systemsim%
	

[user@bringup 1#

Linux on Simulated Machine
Simulated System

Cell Simulated Machine

IBM Full System Simulator Simulator

Linux Operating System Base Simulator
Base processor Hosting Environment

Figure 5.1: Implementation details

A multi-core system does not have much processing power/time wasted in

communication. But still it is normally a significant factor. IBM cell processor is

better than other processors in this aspect. We used DMA for communication among

memory and synergistic processing cores' local stores inside the cell broadband

engine. The programming language used was C and the compiler was GCC without

any optimizations.

5.4 Accuracy Comparison

We compared the accuracy of our algorithm with the famous BM algorithm. For

pattern length varying from 2 to 20 we applied both the algorithms to the same data

sets. The results are shown in Table 5.1. The patterns found by our algorithm and BM

was the same.

37

Table 5.1: Result of Accuracy comparison

Sequence Length 4 8 12 16 20 30 40

Simulated data 1 100% 100% 100% 100% 100% 100% 100%

Simulated Data 2 100% 100% 100% 100% 100% 100% 100%

UniProt — Human* 100% 100% 100% 100% 100% 100% 100%

UniProt — Sprot* 100% 100% 100% 100% 100% 100% 100%

UniProt—tREmbl* 100% 100% 100% 100% 100% 100% 100%

*we tested with portions of these databases as they are very large and running BM on

them usually takes much time.

5.5 Results for Actual Biological Data Set

Experiments were performed over the UniProt data set. UniProt data set consist of

Swiss-Prot and tREmbl data sets. We removed the descriptions and documentations

and performed out experiment on the sequence data. Table 5.1 shows the best results

for UniProt dataset. Time units are in second. There was a 32 times improvement in

terms of time units spent for the same dataset using our algorithm with DMA.

Table 5.2: Result of Our algorithms on UniProt Human Database

Sequence Length 4 8 12 16 20

UniProt — Human*
38 39 38.45 40.51 42.66

Algorithm with DMA

UniProt — Human*
51 50.6 52 54.1 50

Algorithm without DMA

Table 5.3: Result of Our algorithms on Swiss-Prot Database

Sequence Length 2 4 6 8 10 12 14 16 20

UniProt — Sprot*
452 460 455 459 460 476 453 484 446

Algorithm with DMA

UniProt — Sprot*
587 573 587 579 569 586 576 597 576

Algorithm w/o DMA

38

Sequence Length 2 4 6 8 10 12 14 16 20

UniProt — tREmbl*
244 246 247 249 250 246 287 246 251

Algorithm with DMA

UniProt — tREmbl*

Algorithm without 321 316 324 302 321 310 319 317 320

DMA

Table 5.4: Result of Our algorithms on tREmbl Database

The following table shows the result obtained by our algorithm and TVSBS. It is clear

from the above results and this that the proposed algorithm outperforms the others

irrespective of the alphabet sizes.

Table 5.5: Result of Parallel Pattern Matching algorithm in nucleotide and amino acid
databases

Sequence Length 4 8 12 16 20

Nucleotide sequence -
1038 978 999 993 983

TVSBS

Nucleotide sequence -
516 560 545 559 560

Algorithm with DMA

Nucleotide sequence -
624 643 603 640. 644

Algorithm without DMA

Amino Acid sequence -
138 120 116 113 110

TVBSB

Amino Acid sequence —
9 6.9 7.8 6.6 6.4

Algorithm with DMA

Amino Acid sequence -
12 11.6 10 10.2 11

Algorithm without DMA

From the above two results we notice a slightly better speedup in case of the uniProt

database than in the nucleotide and amino acid databases. The reason for this is the

39

inherent nature in the uniProt database. Our algorithm is based on bad character

function and pre-assumption that a mismatch shall occur. As a result if a mismatch

occurs then the algorithm works faster because of two reasons:

a) The comparison between the pattern and window took less time than a

match.

b) The next window is already available because of DMA double

buffering.

But as with the nucleotide and amino acid sequences the number of matches is higher

than that of uniProt knowledgebase. As a result the running time increases because of

the following reasons:

a) More matches means more time spent for comparison purposes.

b) The SPU has to flush the next DMA operation and output the result to

the console. So one DMA cycle gets lost.

As a result of above factors the speedup achieved was varying between 20 times to

maximum 32 times (as can be seen from the worked example in section 4.3). In worst

case scenario also our algorithm performs better than any other sequential pattern

matching algorithm on these biological datasets.

We also plotted the different execution time of our algorithm by disabling some

vector processor cores and compared it with TVSBS in an uniprocessor machine.

Also the difference in execution time due to DMA and DMA double buffering was

noted. The following plots reflect our findings.

35

30

25

20 	 Speedup with DMA

15 	 Speedup without DMA

10

5

0

0 	2 	4 	6 	8 	10

Figure 5.2 Graphical representation of speedup with respect to number of cores

40

Execution Time
900
800
700
600
500
400
300
200 ■ Execution Time

100
0

°~ o~~~ ~QJ 	.QJ 	C 	~QJ
,

QQ

Figure 5.3: Result of execution of parallel pattern matching algorithm on CBEA in different
situations. Y axis represents time in milliseconds

900

800

700

600

500 	—

400

300 DMA

■ DMA Double Buffering 200

100 	iii 	ii iii 	iii 	 -

0

°`
\'1
	hQJ ~QJ 	~QJ 	~QJ Q

Figure 5.4: Comparative results of execution of parallel pattern matching algorithm using DMA
and DMA double buffering on CBEA in different situations. Y axis represents time in
milliseconds 	 -

41

CHAPTER 6

CONCLUSION AND FUTURE WORK

6.1 Conclusion

In this thesis first we have shown through the statistics that although there is no

theoretical lower bound in the number of comparisons to be performed for serial

primitive pattern matching algorithms, any new algorithm, will not be capable of

improving the time complexity drastically. But new age pattern matching

applications demand faster processing. The only way is to harness the strength of

parallelization. We implemented the parallel version of one of the best pattern

matching algorithm i.e., TVSBS in a heterogeneous, multi-core processing

environment i.e., the IBM Cell Broadband Engine. A significant speedup was

achieved. The strategy proposed in the thesis can be extended to several other

pattern matching algorithm to harness the computation gain by parallelization on Cell

BE architecture.

6.2 Future Work

The following are some areas of future work that ensue from the thesis:

1. Repeat the experiment in other than bioinformatics datasets that are available.

2. Modify the DMA portion of the algorithm to make it suitable for other

homogeneous and heterogeneous multi-core processors.

3. Rewrite the program in STAPL or similar language to test its effect on multi-

processor environment.

4. Scale the program to be applicable to cell blade server or similar having 16 or

more SPUs.

42

REFERENCES

[1] David, G. — Industry Trends: Chip Makers turn to multi-core processors.
Computer, 38(5): pp. l 1-13,2005.

[2] Thathoo, R., Virmani, A., Sai Lakshmi, S., Balakrishnan, N., Sekar, K. TVSBS: A
fast exact pattern matching algorithm for biological sequences. Current Science,
91(1), pp.47-53, 2006.

[3] Breslauer, D., GaliI, Z. A Lower Bound for Parallel String Matching. Proceedings
of the twenty-third annual ACM symposium on Theory of computing, pp. 439-443,
1991.

[4] Mongelli, H., Song, S. Efficient Two-Dimensional Parallel Pattern Matching With
Scaling. Proceedings of the first annual ACM-SIAM symposium on Discrete
algorithms, pp. 344-357, 1990.

[5] Muthukrishnan, S. Simple Optimal Parallel Multiple Pattern Matching. Journal of
Algorithms 34, pp. 1-13, 2000.

[6] Lu, H., Zheng, K., Liu, B., Zhang, X., Liu, Y. A Memory-Efficient Parallel String
Matching Architecture For High Speed Intrusion Detection, IEEE Journal in selected
areas in communication, 24(10), pp.1793-1805, 2006.

[7] Mishra, J. Derivation of a Parallel String Matching Algorithm. Information
Processing Letters, 85(5), pp. 255-260, 2003.

[8] Boyer, R., Moore, S. A Fast String Searching Algorithm. Comm. ACM, 10, pp.
762-772, 1977.

[9] Dany Breslauer, Zvi Galil. An Optimal O(log log n) Time Parallel String
Matching Algorithm. Siam J. Comput., 19, pp. 1051-1058, 1990.

[10] Coremen, T., Leiserson, C. Rivest, R. Stein, C. Introduction to Algorithms, 2nd

Edition. Prentice-Hall of India Pvt. Ltd. pp.906-932, 2006.

[11] Lecroq, T. Experimental Results on String Matching Algorithms. Software-
Practice and Experience. Vol. 25, pp. 727-765, 1995.

[12] Tarhio, J., Ukkonen, E. Approximate Boyer-Moore String Matching. Siam J.
Comput., Vol. 22, pp. 243-260, 1993.

43

[13] Mukherjee, A. Hardware Algorithms for Determining Similarity Between Two
Strings. IEEE Trans. On Computers, 38(4), pp. 600-603, 1989.

[14] Yates, B., Gonnet, R., A New Approach to Text Searching. Communications of
the ACM. 35(10), pp. 74-82, 1992.

[15] Apostolico A., Crochemore M. Optimal Canonization of all substrings of a
string. Information and Computation. 95(1), pp. 76-95, 1991.

[16] Simon, I. String Matching Algorithms and Automata. Results and Trends in
Theoretical Computer Science, pp. 386-395, 1994.

[17] Hwan Park, J., George, K. Parallel String Matching Algorithms Based on
Dataflow. Proceedings of the 32"d Hawaii International Conference on System
Sciences, pp.1-10, 1999.

[18] Christian Charras, Thierry Lecroq. Handbook of Exact String-Matching
Algorithms, 2004 available at www-igm.univ-mlv.fr/—Iecroq/string/string.ps

[19] Khale, J., Day, M., Hofstee, H., Johns, C., Maeurer, T., Shippy, D. Introduction
to the Cell Microprocessor. IBM Journal of Research and Development [DOI:
10.1147/rd.494.05 89]

[20] Gschwind, M., IBM T.J. Watson Research Centre, Erb, D., Sid Manning, and
Nutter, M., IBM Austin. An Open-source Environment for Cell Broadband Engine
System Software. IEEE Computer Society, pp.37-47, 2007.

[21] Samuel W., Shalf, J., Oliker, L., Husbands, P., Kamil, S., Yelick K. The Potential
of the Cell Processor for Scientific Computing. Lawrence Berkeley National
Laboratory, University of California [Paper LBNL-59071], pp.9-20, 2006

[22] Crochemore, M. Off-line serial exact string searching, in Pattern Matching
Algorithms, ed. A. Apostolico and Z. Galil, Chapter 1, pp 1-53, Oxford University
Press,1997

[23] Crochemore, M., Hancart, C.Pattern Matching in Strings, in Algorithms and
Theory of Computation Handbook, M.J. Atallah ed., Chapter 11, pp 11-1--11-28,
CRC Press Inc., Boca Raton, FL,1999

MA,

PUBLICATIONS

1. Chowdhury, R., Niyogi, R., Mittal, A. A Performance Analysis of Sequential and
Parallel Pattern Matching Algorithms — Proceedings of National Conference on

Algorithms (NCA'08), May 16-17, 2008 . -

2. Chowdhury, R. Optimizing Performance of Pattern Matching Algorithms for
Multi-Core Systems — Proceedings of International Conference on Challenges and

Developments in IT (ICCDIT'08), May 30, 2008

45

APPENDIX A

The following is the analysis and comparison of several pattern matching algorithms

highlighting their limitations and their advantages.

1. Brute Force algorithm:

• no preprocessing phase;
• constant extra space needed;
• always shifts the window by exactly 1 position to the right;
• comparisons can be done in any order;
• searching phase in O(mn) time complexity;
• 2n expected text characters comparisons.

2. DFA algorithm:

• builds the minimal deterministic automaton recognizing the language E*x;
• extra space in O(m it) if the automaton is stored in a direct access table;
• preprocessing phase in 0(m rr) time complexity;
• searching phase in 0(n) time complexity if the automaton is stored in a direct

access table, O(nlog(rr)) otherwise.

3. Karp-Rabin algorithm:

• uses an hashing function;
• preprocessing phase in 0(m) time complexity and constant space;
• searching phase in O(mn) time complexity;
• O(n+m) expected running time.

4. Shift Or algorithm:

• uses bitwise techniques;
• efficient if the pattern length is no longer than the memory-word size of the

machine;
• preprocessing phase in O(m + 1T) time and space complexity;
• searching phase in 0(n) time complexity (independent from the alphabet size

and the pattern length);
• adapts easily to approximate string matching.

5. Morris-Pratt algorithm:

• performs the comparisons from left to right;

46

• preprocessing phase in O(m) space and time complexity;
• searching phase in O(n+m) time complexity (independent from the alphabet

size);
• performs at most 2n- I information gathered during the scan of the text;
• delay bounded by m.

6. Knuth-Morris-Pratt algorithm:

• performs the comparisons from left to right;
• preprocessing phase in 0(m) space and time complexity;
• searching phase in O(n+m) time complexity (independent from the alphabet

size);
_ (5)

• delay bounded by log4

	

	
2

(m) where <Pis the golden ratio (

7. Simon algorithm:

• economical implementation of A(x) the minimal Deterministic Finite Automaton
recognizing Fsx;

• preprocessing phase in 0(m) time and space complexity;

• searching phase in 0(m+n) time complexity (independent from the alphabet size);
• at most 2n-1 text character comparisons during the searching phase;
• delay bounded by min{1 + 1og2m, it}.

8. Colussi algorithm:

• refinement of the Knuth, Morris and Pratt algorithm;
• partitions the set of pattern positions into two disjoint subsets; the positions in the

first set are scanned from left to right and when no mismatch occurs the positions of
the second subset are scanned from right to left;

• preprocessing phase in 0(m) time and space complexity;

• searching phase in 0(n) time complexity;
3

• performs 2 n text character comparisons in the worst case.

9. Galil-Giancarlo algorithm:

• refinement of Colussi algorithm;

• preprocessing phase in 0(m) time and space complexity;

• searching phase in 0(n) time complexity;
4

• performs 3n text character comparisons in the worst case.

10. Apostolico-Crochemore algorithm:

• preprocessing phase in 0(m) time and space complexity;
• searching phase in O(n) time complexity;

47

3
• performs 2 n text character comparisons in the worst case.

11. Not So Naive algorithm:

• preprocessing phase in constant time and space;
• searching phase in O(nm) time complexity;
• slightly (by coefficient) sub-linear in the average case.

12. Boyer-Moore algorithm;

• performs the comparisons from right to left;
• preprocessing phase in O(m+IT) time and space complexity;
• searching phase in O(mn) time complexity;
• 3n text character comparisons in the worst case when searching for a non

periodic pattern;
• O(n / m) best performance;

13. Turbo-BM algorithm:

• variant of the Boyer-Moore;
• no extra preprocessing needed with respect to the Boyer-Moore algorithm;
• constant extra space needed with respect to the Boyer-Moore algorithm;

• preprocessing phase in 0(m+fr) time and space complexity;

• searching phase in O(n) time complexity;
• 2n text character comparisons in the worst case.

14. Apostolico-Giancarlo algorithm:

• variant of the Boyer-Moore algorithm;

• preprocessing phase in 0(m+ IT) time and space complexity;

• searching phase in 0(n) time complexity;
3

• 2 n comparisons in the worst case.

15. Reverse Colussi algorithm:

• refinement of the Boyer-Moore algorithm;
• partitions the set of pattern positions into two disjoint subsets;

• preprocessing phase in 0(m2) time and O(m Fr) space;

• searching phase in 0(n) time complexity;

• 2n text character comparisons in the worst case.

16. Horspool algorithm:

• simplification of the Boyer-Moore algorithm;
• easy to implement;

48

• preprocessing phase in 0(m+rr) time and O(11) space complexity;

• searching phase in O(mn) time complexity;
• the average number of comparisons for one text character is between 1/ it and 2/(ff

+1).

17. Quick Search algorithm:

• simplification of the Boyer-Moore algorithm;
• uses only the bad-character shift;
• easy to implement;

• preprocessing phase in O(m+ it) time and 0(11) space complexity;

• searching phase in 0(mn) time complexity;
• very fast in practice for short patterns and large alphabets.

18. Tuned Boyer-Moore algorithm:

• simplification of the Boyer-Moore algorithm;
• easy to implement;
• very fast in practice.

19. Zhu-Takaoka algorithm:

• variant of the Boyer-Moore algorithm;
• uses two consecutive text characters to compute the bad-character shift;

• preprocessing phase in O(m+rr2) time and space complexity;

• searching phase in O(mn) time complexity.

20. Berry-Ravindran algorithm:

• hybrid of the Quick Search and Zhu and Takaoka algorithms;

• preprocessing phase in O(m+rr2) space and time complexity;

• searching phase in 0(mn) time complexity.

21. Smith algorithm:

• takes the maximum of the Horspool bad-character shift function and the Quick
Search bad-character shift function;

• preprocessing phase in 0(m+R) time and 0(it) space complexity;

• searching phase in 0(mn) time complexity.

22. Raita algorithm:

• first compares the last pattern character, then the first and finally the middle one
before actually comparing the others;

• performs the shifts like the Horspool algorithm;

• preprocessing phase in 0(m+ 11) time and 0(11) space complexity;

23. A

24. T

• (searching phase in 0(mn) time complexity.

Factor algorithm:

uses the suffix automaton of ;
fast on practice for long pattens and small alphabets;
preprocessing phase in 0(m) time and space complexity;
searching phase in O(mn) time complexity;
optimal in the average.

Reverse Factor algorithm:

refinement of the Reverse Factor algorithm;
preprocessing phase in 0(m) time and space complexity;

searching phase in 0(n) time complexity;
performs 2n text characters inspections In the worst case;
optimal in the average.

Dawg Matching algorithm:

• . uses the suffix automaton of x;
• 0(n) worst case time complexity;
• performs exactly n text character inspections.

0

25.

26. Bai

27. Bai

•

28. Ga

Nondeterministic Dawg Matching algorithm:

variant of the Reverse Factor algorithm;
uses bit-parallelism simulation of the suffix automaton of AR;
efficient If the pattern length Is no longer than the memory-word size of the
machine;

Oracle Matching algorithm:

version of the Reverse Factor algorithm using the suffix oracle of xR instead of the_
suffix automaton of 	 ~;~►D
fast in practice for very long patterns and small alphabets; 	 .►
preprocessing phase in 0(m) time and space complexity;
searching phase in 0(mn) time complexity;
optimal in the average. .••

.;&.#

constant extra space complexity;
preprocessing phase in O(m) time and constant space complexity;
searching phase in 0(n) time complexity;
performs 5n text character comparisons in the worst case.

50

29. Two Way algorithm:

• requires an ordered alphabet;
• preprocessing phase in 0(m) time and constant space complexity;
• constant space complexity for the preprocessing phase;
• searching phase in 0(n) time;
• performs 2n-m text character comparisons in the worst case.

30. String Matching on Ordered Alphabets:

• no preprocessing phase;
• requires an ordered alphabet;
• constant extra space complexity;
• searching phase in O(n) time;
• performs 6n+5 text character comparisons in the worst case.

31. Optimal Mismatch algorithm:

• variant of the Quick Search algorithm;
• requires the frequencies of the characters;

• preprocessing phase in O(m2+ IT) time and O(m+ IT) space complexity;

• searching phase in O(mn) time complexity.

32. Maximal Shift algorithm:

• variant of the Quick Search algorithm;
• quadratic worst case time complexity;

• preprocessing phase in O(m2+iT) time and O(m+FT) space complexity;

• searching phase in O(mn) time complexity.

33. Skip Search algorithm:

• uses buckets of positions for each character of the alphabet;
• preprocessing phase in O(m+rr) time and space complexity;
• searching phase in O(mn) time complexity;
• O(n) expected text character comparisons.

34. KMP Skip Search algorithm:

• improvement of the Skip Search algorithm;
• uses buckets of positions for each character of the alphabet;
• preprocessing phase in O(m+rr) time and space complexity;
• searching phase in O(n) time complexity.

51

	Title
	Abstract
	Chapter 1
	Chapter 2
	Chapter 3
	Chapter 4
	Chapter 5
	Conclusion
	References
	Appendix

