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ABSTRACT 

A pattern matching algorithm is used to find the presence of the pattern in a given 

block of data. Pattern matching is used to test whether things have a desired structure, 

to find relevant structure, to retrieve the aligning parts, and to substitute the matching 

part with something else. Sequence (or specifically text string) patterns are often 

described using regular expressions (i.e. backtracking) and matched using respective 

algorithms. Sequences can also be seen as trees branching for each element into the 

respective element and the rest of the sequence, or as trees that immediately branch 

into all elements. Pattern matching is useful in the field of text editing, highly 

computation intensive works like bioinformatics (pattern matching in biological 

sequence databases or amino acid sequence databases), networking (high-speed 

intrusion detection system), syntax analysis, operating systems, internet related 

searches to name a few. 

Sequential pattern matching algorithms have almost reached their limits in terms of 

performance improvement. They are already linear in time complexity and the 

effective decrement in number of character comparisons is too less. In our work we 

first analyze most of the existing sequential and parallel pattern matching algorithms 

in terms of complexity, character comparisons and time of execution. Based on our 

analysis we try to parallelize the fastest sequential pattern matching algorithm — 

TVSBS to study the performance improvement. We use IBM Cell-Broadband Engine 

to implement our algorithm. 
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Chapter 1 " 

INTRODUCTION 

Pattern matching algorithms are used to find one or more occurrence of the given 

pattern in a given text. There are many sequential pattern matching algorithms having 

various complexities and efficiencies. But if we run these algorithms on 

bioinformatics or biomedical databases, they take up huge processing time and cost 

because of the size of the database. So, to improve the performance of pattern 

matching algorithms they were made to be executed in parallel. Multi processor 

systems are costly solutions for this parallelization. Multi-core systems are able to 

deliver better solution in a cost effective way. As all the commercial processors turn 

multi-core [I] our goal is to optimize the pattern matching problem for these systems. 

Cell Broadband Engine is a new 9-core heterogeneous multi-core processor from 

IBM. The architecture of Cell Broadband Engine proposes tremendous improvement 

over its other counterparts. We provide a performance comparison for our 

implementation of parallelized pattern matching in Cell Broadband Engine. 

The minimum number of comparisons needed for pattern matching is still an 

open problem. Derivations of new and better algorithms for pattern matching are still 

possible but chances are rare that any new algorithm will drastically improve 

performance over the previous best. This has been evident for the last few years. The 

best algorithm so far, TVSBS [2], improves over SSABS only in number of 

comparisons — not in time or space complexity. The only way to make things fast is 

to exploit parallelism in a multi-processor or in a multi-core environment. Parallel 

String matching algorithms based on dataflow architecture is in existence from as 

early as 1999. Before that PRAM algorithms for parallel pattern matching also had 

been developed that produced a Boolean array MATCH[1 ... N] as output. The 

Boolean array contained a true value at each position where an occurrence of the 

pattern started. CRCW-PRAM was one of the pioneers in these types of algorithms. 

Later Galil algorithm [3] produced the best result, 0(logm) in case of constant size 

alphabets. It has been also proved that the lower bound on the number of 
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comparisons in case of a parallel string matching algorithm is 0 (log log m) for 

pattern P[1 ... m] in text T[1 ... 2m]. The optimal algorithm for parallel multiple 

pattern matching works in a complexity 0 (log L) where each pattern is of length L. 

Also algorithm for 2-D parallel pattern matching exists that works in 0(n2 ) [4]. 

Recent works in parallel pattern matching [5] are in fields of high-speed 

intrusion detection system [6] and source-level programming [7] among others. Still 

now very less work has been done in this problem that exploits the capabilities of 

either homogeneous or heterogeneous multi-core architecture. An algorithm that 

takes advantage of this has the potential to deliver an improved running time for the 

pattern matching problem. In this paper we propose a parallelized version of TVSBS 

[2] implemented in IBM Cell Processor and the performance gain due to the 

parallelization. The preprocessing phase of the algorithm is performed serially 

whereas the searching phase is performed in parallel. A performance comparison of 

non-parallel algorithms in the same machine (using only 1 core) is given and the 

execution time gain is plotted in case of the parallelized version. 

1.1 Pattern Matching Algorithms 

Some broad categories of pattern matching are primitive pattern matching, tree pattern 

matching, multiple pattern matching and 2D pattern matching. Our study concerns the 

primitive pattern matching algorithms. The general behavior of sequential pattern 

matching algorithm is based on comparison of characters one at a time. It includes 

two distinct steps. The first is aligning the pattern against a given text (the aligned 

portion, known as window) and comparison among the characters of the pattern and 

the window. In case of a mismatch, the next step is to reposition the window by 

shifting it one character to the right and repeating the first step. The worst case 

complexity of this procedure is 0(mn). In order to improve the complexity, all the 

algorithms try to pre-calculate a shift value table and use that while shifting. This 

introduces a new pre-processing step but decreases the overall complexity to linear 

order, typically 0(m + n). These approaches are based on finite state automaton. 

However there are algorithms that make the character comparisons from left-to-right 

and algorithms that make the same from right-to-left. 
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1.1.1 Sequential Pattern Matching 

We formally define a class of sequential pattern matching algorithms that includes all 

variations of Morris-Pratt algorithm [18]. For the last twenty years it was known that 

the complexity of such algorithms is bounded by a linear function of the text length. 

Recently, substantial progress has been made in identifying lower bounds. But the 

lower bound or in other words the minimum number of comparisons needed for 

sequential pattern matching algorithms is still an open problem. 

1.1.2 Parallel Pattern Matching 

We describe a parallel algorithm that finds all occurrences of a pattern string in a 

subject string in O(log n) time, where n is the length of the subject string. The number 

of processors employed is of the order of the product of the two string lengths. 

1.1.3 Multi-Dimensional Pattern Matching 

Multi-dimensional pattern matching deals with type of text and pattern having more 

than one dimension. Normally multi-dimensional pattern matching extends to 3 

dimensions. 

1.2 Problem Statement 

The pattern matching problem can be formally defined as follows: given a pattern 

P E E' with length IPI = m and text string T E E' with length ITI = n, where 

m, n> 0 and m < n if P occurs as a substring of T, find the first occurrence, that is 

find s such that T [s + 1 ... s + m] =P[1   ...m](0 <—s <—n—m). There has been 

many paradigm shifts toward the solution of the problem. Also new type of pattern 

matching problems came up due to special need of other application areas. To 

improve the performance of pattern matching algorithms they were made to be 

executed in parallel. 



First attempt 
GCATCGCAGAGAGTATACAGTACG 

1 
GCAGAGAG 
Shift by: 1 

Second attempt 
GCATCGCAGAGAGTATACAGTACG 

321 
GCAGAGAG 

Shift by: 4 

Third attempt 
GCATCGCAGAGAGTATACAGTACG 

87654321 
GCAGAGAG 

Shift by: 7 MATCH 

Figure 1.1: Example of Pattern Matching using Boyer-Moore Algorithm 

1.3 Organization of the Report 

The rest of the report is organized as follows. In chapter 2 we analyze the existing 

sequential and parallel pattern matching algorithms in a common framework and in a 

common dataset. We also provide a graphical representation of our result to show 

which algorithm performs the best among those discussed. Chapter 3 deals with the 

preliminaries of patterns in bioinformatics and IBM Cell Broadband Engine 

Architecture. In chapter 4 we discuss the methodology applied to parallelize pattern 

matching algorithm for Cell Broadband Engine. Chapter 5 consists of the 

implementation details, data sets and results. We conclude the report in chapter 6. 
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Chapter 2 

ANALYSIS OF EXISTING PATTERN MATCHING ALGORITHMS 

The general behavior of sequential pattern matching algorithm is based on 

comparison of characters one at a time. It includes two distinct steps. The first is 

aligning the pattern against a given text (the aligned portion, known as window) and 

comparison among the characters of the pattern and the window. In case of a 

mismatch, the next step is to reposition the window by shifting it one character to the 

right and repeating the first step. The worst case complexity of this procedure 

is 0 (mn). In order to improve the complexity, all the algorithms try to pre-calculate a 

shift value table and use that while shifting. This introduces a new pre-processing step 

but decreases the overall complexity to linear order, typically 0(m + n). These 

approaches are based on finite state automaton. However there are algorithms that 

make the character comparisons from left-to-right and algorithms that make the same 

from right-to-left. 

We now discuss some algorithms that perform the character comparison from 

left-to-right. The first is the Baeza et al. [ 14] algorithm (also known as Shift-and and 

Shift-Or algorithm) that pre-computes a set of bitmasks containing one bit for each 

element of the pattern and then does the rest of the work with bitwise operations. The 

algorithm is used in UNIX command "grep" as it also has the potential for 

"approximately equal" matches. Following the brute-force approach, there is Morris-

Pratt algorithm and following that is the Knuth et al. [KMP] algorithm that works by 

pre-calculating the required shift value in case a mismatch occurs. For a long time 

KMP algorithm was the fastest algorithm for single-dimensional exact pattern 

matching. After KMP's success many algorithms refined the KMP-way and reduced 

effective number of comparisons. These include Apostolico and Crochemore 

algorithm [22], Not-so-naive algorithm, DFA algorithm and Simon Algorithm [16]. 

Apostolico and Crochemore algorithm decreased the number of failure attempts to 

reduce character comparisons. Not-so-naive algorithm followed the searching 

behavior of Apostolico and Crochemore algorithm to improve the performance of 
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brute-force algorithm. The DFA algorithm used finite automaton techniques and the 

Simon algorithm that improves over DFA. 

Next we discuss the right-to-left type of algorithms. The first algorithms in 

this category is Boyer and Moore algorithm that introduced the idea of "bad-

character shift" and "good-suffix shift". The algorithms that improved Boyer and 

Moore [8] were Tuned-BM, Turbo-BM , Apostolico and Giancarlo , Quick-Search 

and Zhu and Takaoka . Improving the time-complexity of Quick-Search algorithm 

was SSABS algorithm and Berry and Ravindran algorithm [11]. The latest and best 

algorithm in this type of pattern matching uses the concepts of SSABS and Berry and 

Ravindran algorithm [18] and is known as TVSBS algorithm. TVSBS has a time 

complexity of 0(n/(m + 2)) and performs at most 0(m(n -- m + 1)) character 

comparisons in the worst case. 

There are also other algorithms that do not fall into any of these two prominent 

categories. This class includes examples like Colussi algorithm, Two Way algorithm, 

String Matching on Ordered alphabets, Horspool Algorithm, Smith algorithm, Raita 

algorithm to mention a few. 

2.1 Complexity Comparison of Sequential Pattern Matching Algorithms 

Brute-force exact pattern matching algorithm has a time complexity of 0(mn) 
whereas Morris-Pratt [10] algorithm has a linear time complexity of 0(m + n). We 

find that the number of character comparisons performed by these two algorithms we 

shall see that Brute-force performs at most 2n comparisons and Morris-Pratt performs 

at most Zn — 1 comparisons. Other algorithms that operate in similar number of 

character comparisons are Boyer-Moore (3n chracter comparisons), Apostolico-

Crochemore (3/2n character comparisons) and Colussi (3/2n character 

comparisons). Some other algorithms like quick search and skip-search has a 

quadratic time complexity at the worst case. Table 2.1 gives an overview of 

complexities of the most important pattern matching algorithms. TVSBS is derived 

upon the fact that Berry-Ravindran algorithm has the best pre-processing step, where 

as SSABS has the best searching phase. Figure 2.1 shows the performance 



comparison among Brute-Force, Morris-Pratt, KMP, Colussi, AXAMAC, Boyer-

Moore, Quick-Search, Skip-Search, SSABS. SSABS is the best among these. This 

graph uses the data achieved by S.S. Sheik etal. at Bioinformatics Centre (DIC), the 

Interactive Graphics Based Molecular Modelling facility (IGBMM) and the 

Supercomputer Education and Research Centre, IISc, Bangalore, using the old Swiss-

Prott dataset. X-axis represents the length of the pattern and Y-axis represents time of 

processing in milliseconds. 

Fig.2.1 Graph showing the performance comparisons of algorithms Brute-Force (BF), Morris-
Pratt [MP], KMP, Colussi, AXAMAC, Boyer-Moore [BM], Quick-Search [QS], Skip-Search, 

SSABS. 

Table 2.1: Asymptotic performance comparison of exact string-matching algorithms 

ESMAs tc SC Pt cc 

Brute Force O(mn) constant no 2n 
Algorithm extra space preprocessing 

Morris-Pratt 0(n+m) O(m) O(m) 2n-1 
Algorithm 

Apostolico- O(n) O(m) O(m) 3/2n 
Crochemore 
Algorithm 

Boyer-Moore O(mn) 0(m +JET) O(m +JET) 3n 
Algorithm 

Quick Search O(mn) O(NI) O(m +IEI) quadratic 
Algorithm worst case 
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SSABS O([n/(m+l)]) - - O(m(n-m+1)) 
Algorithm worst case 

Zhu-Takaoka O(mn) O(m+lEl^2) O(m+IEI^2) quadratic 
Algorithm worst case 

Berry- O(mn) O(m+lE~^2) 0(m+IEI^2) - 
Ravindran 
Algorithm 

TVSBS 0([n/(m+2)]) O(IEI+k'IEI) O(IEI+k^~EI) O(m(n-m+1)) 
Algorithm worst case 

Colussi O(n) O(m) 0(m) 3/2n 
Algorithm 

Skip Search O(mn) O(m +II) O(m +IEI) ' O(n), 
Algorithm quadratic 

worst case 

2.2 Performance comparison of Pattern Matching Algorithms 

We compared all the pattern matching algorithms for pattern lengths 4, 8, 12, 16 and 

20 against alphabet sizes of 10 and 20. Different alphabet sizes show almost the same 

performance difference among different algorithms. From table 2.2 and table 2.3 we 

conclude that TVSBS is the best sequential pattern matching algorithm in most of the 

cases. We measured the times in milliseconds and calculated the relative scores with 

respect to TVSBS (reference frame 1). We measured time in milliseconds and the 

divided the time needed by other algorithms with the time needed by TVSBS 

algorithm. In this way we derived a ratio of performance of all the algorithms. Table 

2.2 displays results of alphabet size 10 and Table 2.3 does so for alphabet size 20. We 

used UniProt KnowledgeBase for the experiment. The Machine Used was a PC with 

Intel Core2Duo E4300 (1.8 GHz) running on nForce 650i Ultra, 2 GB DDR2 

800MHz RAM, GeForce 8600GT graphics processor. Standard GCC compiler with 

compiler optimization turned off was used. The Operating System was Fedora Core 5. 
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SSABS O([n/(m+l)]) - - O(m(n-m+1)) 
Algorithm worst case 

Zhu-Takaoka O(mn) O(m+IYIA2) O(m+JEI^2) quadratic 
Algorithm worst case 

Berry- O(mn) O(m+IEI^2) O(m+lEI^2) - 
Ravindran 
Algorithm 

TVSBS 0([n/(m+2)]) O(IEI+k' 	I) O(IEI+k^IEI) O(m(n-m+1)) 
Algorithm worst case 

Colussi O(n) O(m) O(m) 3/2n 
Algorithm 

Skip Search O(mn) O(m +jEj) O(m +I I) ' O(n), 
Algorithm quadratic 

worst case 

2.2 Performance comparison of Pattern Matching Algorithms 

We compared all the pattern matching algorithms for pattern lengths 4, 8, 12, 16 and 

20 against alphabet sizes of 10 and 20. Different alphabet sizes show almost the same 

performance difference among different algorithms. From table 2.2 and table 2.3 we 

conclude that TVSBS is the best sequential pattern matching algorithm in most of the 

cases. We measured the times in milliseconds and calculated the relative scores with 

respect to TVSBS (reference frame 1). We measured time in milliseconds and the 

divided the time needed by other algorithms with the time needed by TVSBS 

algorithm. In this way we derived a ratio of performance of all the algorithms. Table 

2.2 displays results of alphabet size 10 and Table 2.3 does so for alphabet size 20. We 

used UniProt KnowledgeBase for the experiment. The Machine Used was a PC with 

Intel Core2Duo E4300 (1.8 GHz) running on nForce 650i Ultra, 2 GB DDR2 

800MHz RAM, GeForce 8600GT graphics processor. Standard GCC compiler with 

compiler optimization turned off was used. The Operating System was Fedora Core 5. 
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The 2°d  column of the 2"d  row in table 2.2 says that the brute-force algorithm takes a 

time of 4.59 units in case of UniProt knowledgebase with alphabet length 10 and 

pattern length 4 if the TVSBS takes 1 unit of time. 

Table 2.2: Performance comparison of ESMAs. Database Used: UniProt 
Knowledgebase. Alphabet size: 10 

Pattern Length 

Name 4 8 12 16 20 

Brute Force 4.59 4.85 4.91 4.86 4.81 

Moriss - Pratt 1.66 1.74 1.61 1.88 1.68 

Knuth - Morris - pratt 1.71 1.77 1.81 1.61 1.79 

COLUSSI 1.69 1.81 1.86 1.71 1.69 

Galil - Giancarlo 1.78 1.91 1.91 1.81 1.89 

Apostolico - Crochemore 1.85 1.89 1.89 1.86 1.81 

Boyre - Moore 1.33 1.19 1.27 1.28 1.31 

Turbo - Boyre - Moore 2.20 1.94 2.17 2.01 2.25 

Apostolico - Giancarlo 4.01 3.12 3.65 3.82 3.16 

Reverse Colussi 1.64 1.35 1.46 1.56 1.35 

HORSPOOL 1.40 1.28 1.28 1.47 1.26 

TUNED Boyre - Moore 1.49 1.38 1.37 1.31 1.21 

Quick Search 2.11 1.94 2.06 2.08 2.28 

SMITH 2.16 1.89 1.95 2.08 1.83 

Zhu - Takaoka 1.26 1.06 1.05 1.25 1.15 

Berry - Ravindran 1.80 1.54 1.44 1.73 1.63 

AUT 5.56 5.88 5.85 5.87 5.46 

SIMON 2.14 2.24 2.18 2.28 1.95 

Forward Dawg Matching 10.7 13.17 11.8 10.5 11.8 

RF 3.71 2.68 2.95 3.18 3.85 

Turbo Reverse Factor 4.45 3.25 4.28 3.85 4.18 

Backward Oracle Matching 1.75 1.43 1.68 1.52 1.68 

SKIP Search 1.91 1.91 1.98 2.08 1.95 
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KMPSKIP 1.55 1.52 1.48 1.58 1.46 

BNDM 1.43 1.16 1.53 1.24 1.18 

Karp-Robin 1.74 1.29 1.64 1.53 1.75 

Shift-Or 1.10 1.84 1.85 1.54 1.93 

Not-So-Naive 1.82 1.91 1.48 1.93 1.34 

RAITA 1.22 1.14 1.28 1.28 1.33 

Galil - Seiferas 3.45 3.65 3.48 3.16 3.66 

Two-Way 1.51 1.47 1.48 1.33 1.44 

String Matching on Ordered Alphabets 2.55 2.68 2.68 2.73 2.68 

Optimal Mismatch 1.28 1.17 1.28 1.08 1.18 

Maximal Shift 1.52 1.14 1.28 1.48 1.66 

SSABS 1.08 1.07 1.02 0.99 1.11 

TVSBS 1 1 1 1 1 

Table 2.3: Performance comparison of ESMAs. Database Used: UniProt 
Knowledgebase. Alphabet size: 20 

Name 4 8 12 16 20 

Brute Force 4.49 4.53 4.34 4.53 4.34 

Moriss - Pratt 1.45 1.74 1.61 1.88 1.68 

Knuth - Morris - pratt 1.56 1.77 1.81 1.61 1.79 

COLUSSI 1.13 1.81 1.86 1.71 1.69 

Galil - Giancarlo 1.61 1.91 1.91 1.51 1.89 

Apostolico - Crochemore 1.57 1.89 1.89 1.86 1.81 

Boyre - Moore 1.8 1.19 1.36 1.28 1.31 

Turbo - Boyre - Moore 2.12 1.94 2.17 2.01 2.25 

Apostolico - Giancarlo 4.25 3.12 3.65 3.82 3.16 

Reverse Colussi 1.64 1.35 1.57 1.56 1.35 

HORSPOOL 1.40 1.28 1.1 1.47 1.26 

TUNED Boyre - Moore 1.49 1.38 1.37 1.31 1.21 

Quick Search 2.11 1.94 2.06 2.3 2.28 
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SMITH 2.6 1.89 1.1 2.08 1.83 

Zhu - Takaoka 1.26 1.06 1.05 1.25 1.15 

Berry - Ravindran 1.80 1.54 1.44 1.73 1.63 

AUT 5.56 5.88 5.56 5.87 5.46 

SIMON 2.14 2.24 2.18 2.28 1.95 

Forward Dawg Matching 10.7 13.23 11.8 10.8 11.8 

RF. 3.71 2.68 2.77 3.18 3.85 

Turbo Reverse Factor 4.45 3.25 4.28 3.85 4.18 

Backward Oracle Matching 1.87 1.43 1.68 1.45 1.45 

SKIP Search 1.91 1.91 1.45 2.08 1.95 

KMPSKIP 1.55 1.8 1.86 1.58 1.46 

BNDM 1.43 1.16 1.53 1.24 1.18 

Karp-Robin 1.74 1.29 1.64 1.45 1.75 

Shift-Or 1.21 1.84 1.78 1.54 1.56 

Not-So-Naive 1.82 1.56 1.48 1.93 1.34 

RAITA 1.22 1.14 1.28 1.87 1.33 

Galil - Seiferas 3.45 3.34 3.48 3.16 3.66 

Two-Way 1.51 1.23 1.23 1.45 1.44 

String Matching on Ordered Alphabets 2.55 2.68 2.68 2.73 2.68 

Optimal Mismatch 1.28 1.17 1.28 1.08 1.18 

Maximal Shift 1.52 1.14 1.28 1.45 1.66 

SSABS 1.08 1.07 1.02 0.99 1.11 

TVSBS 1 1 1 1 1 

2.3 Parallelized Pattern Matching Algorithms 

To provide optimal speedup to the pattern matching problems and to exploit the 

architectural efficiency of distributed systems, pattern matching problems were ported 

into parallel systems. Most of the parallel solutions to the pattern matching problems 

are due to specific applications. In 1991 it was first proposed and proved that the best 

parallel solution of pattern matching problem will have a lower bound 

of 12(log log m) [4]. In the special case of a single processor, we have the classical 
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string matching problem. For this problem the algorithm due to Knuth, Morris, and 

Pratt (KMP77) preprocesses the pattern string in O(M) time and then processes each 

text set of size N in time O(N). Clearly both the bounds are asymptotically optimal. 

Aho and Corasick [3] extended the approach in KMP77 and obtained an optimal 

algorithm for multiple pattern matching, that is, one that runs in O(M) preprocessing 

time and O(N) text processing time; their algorithm works in the more general case 

when the pattern strings are not necessarily of identical lengths. 

We are concerned with parallel algorithms for pattern matching. For the special 

case of k=1, algorithms are known that are simultaneously time and work optimal for 

both the preprocessing and the text processing stages. However, unlike the sequential 

setting, their techniques cannot be extended to give optimal parallel algorithms [5] for 

the multiple pattern matching problem. This is because the notion of periodicity of a 

string that is crucial in existing parallel algorithms does not seem to extend naturally 

to multiple strings. Based on alternate strategies several efficient, but suboptimal, 

algorithms were designed for multiple pattern matching. These performed at least O(N 

log L) work for text processing. The known optimal algorithms for multiple pattern 

matching include deterministic and randomized variants. 

Dataflow parallel approaches solve the exact matching and the k-mismatches 

problems with time complexities of O((n / d) + a), where a = log m for the 

hierarchical scheme, m for the linear scheme, and 0 for the broadcasting scheme. 

Required time to process length n reference string is reduced by a factor of d by using 

d identical computation parts in parallel. With linear systolic array architecture, m PEs 

are needed for serial design and d*m PEs are needed for parallel design, where m is 

the pattern size and the d is the controllable degree of the parallelism (i.e. number of 

streams used). 

2.4 Patterns in Bioinformatics 

The past decade has witnessed an explosion of the amount and complexity of 

bioinformatics data such as DNA and protein sequences, gene and protein 

expressions, structures, pathways, genetic information, biomedical text data, and 
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molecular images. Although the analyses of these data involve pattern recognition and 

data mining, novel and efficient data analysis techniques are. yet to be discovered to 

realize their true potential. 

Bioinformatics is aimed at discovering knowledge from life sciences data with the aid 

of Information Technology, to find answers to unresolved problems in biology. One 

of the important discoveries of pattern recognition in bioinformatics is that specific 

patterns of our genomes and proteomes are able to tell our characters and how prone 

we are for certain diseases. In the coming years, medical-  practitioners will be able to 

personalize our medication by just looking at these patterns. 

DNA molecules store the blueprint of cell function. Information stored in 

DNA, a chain of four nucleotides (A, T, G, and C), is first transcribed to mRNA and 

then translated to the functional form of life, proteins. The initiation of translation or 

transcription process depends on the presence of specific signals and patterns, referred 

to as motifs, present in DNA and RNA. Research on in silico detection of specific 

patterns of DNA sequences such as genes, binding sites, and promoters, leads to better 

understanding of molecular level function of a cell. Comparative genomics focus on 

comparison of different genomes to find conserved patterns or significant mutations 

over the evolution, which could possess some functional significance. Construction of 

evolutionary trees is useful to infer how genome and proteome are evolved and 

branch across species by ways of a complete library of motifs and genes. 

A protein's functionality or interaction with other proteins is mainly 

determined by its 3-D structure. Prediction of protein's 3-D structure from its I -D 

amino-acid sequence remains an important problem in structural genomics; protein-

protein interactions are responsible for most molecular functions in living cells. 

Computational modeling and visualization tools of 3-D structures of proteins and 

interaction help biologists to infer cellular activities. 

The challenge in functional genomics is to analyze gene expressions 

accumulated by microarray techniques to discover co-regulated genes and thereby 
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gene regulatory networks. Discovering and understanding how genes and proteins 

interact in specific pathways are gateways to systems biology. Molecular and cellular 

imaging provides techniques for in vivo sensing or imaging of cellular events such as 

movement of cells and subcellular localization of proteins. Potential techniques to 

fuse and integrate different types of life sciences data are yet to be realized. 

The ever expanding knowledge of biomedical and phenotype data, combined 

with genotypes, is becoming difficult to be analyzed by traditional methods. 

Advanced data mining techniques, where the use of metadata for constructing precise 

descriptors of medical concepts and procedures, are required in the field of medical 

informatics. The vast amount of biological literature is posing new challenges in the 

field of text mining. These text mining techniques along with the aid of information 

fusion methods could help find pathways and interaction networks. 

Today, high throughput and high content screening techniques allow biologists 

to gather data at an unprecedented rate. However, pattern recognition techniques to 

make inferences from these data are not evolving at a rate sufficient to meet the 

demand. 

2.5 Applications of Pattern Matching 

Though the classical problem and solution of pattern matching are applicable to a 

wide variety of applications ranging from Operating systems to Computer Networks, 

we are interested in its application in the field of bioinformatics. Here are some fields 

in bioinformatics where pattern matching can be useful: 

1) Computational and comparative genomics 

2) Functional genomics 

3) Structural genomics and proteomics 

4) Chem informatics, chemigenomics 

5) Systems biology, pathway analysis 

6) Phylogenic analysis of species, sequences, structures, etc. 

7) Immunoinformatics 
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Chapter 3 

CELL BROADBAND ENGINE ARCHITECTURE 

While chip multiprocessors (CMPs) have been touted as an approach to deliver 

increased performance, adoption had been slow because frequent scaling for 

uniprocessor-based design was continuing to deliver performance improvements. 

However, at the turn of the millennium, the diminishing returns of uniprocessor 

designs became painfully clear and we set.  out to leverage chip multiprocessing to 

deliver a significant performance boost over traditional uniprocessor-centric solutions. 

Thus, a confluence of factors is leading to a surge in CMP designs across the 

industry. From a purely performance centric view, frequency scaling is running out of 

steam: technology-based frequency improvements are increasingly difficult, while the 

performance potential of deeper pipelining is all but exhausted. As demonstrated by 

Srinivasan et al., the low power/performance efficiency of deep pipelining makes 

deeply pipelined designs unattractive under power dissipation constraints. 

The emergence of chip multiprocessors is the effect of a number of shifts 

taking place in the industry: limited marginal returns on deep pipelining reduced 

benefits of technology scaling for higher frequency operation, and a power crisis 

making many "traditional" solutions non-viable. Another challenge for architects of 

high performance system include burgeoning design and verification complexity and 

cost, to find ways to translate the increased density of new CMOS technologies based 

on Dennard's scaling theory into delivered performance. 

The situation in many ways mirrors the dawn of RISC architectures, and it 

may be useful to draw the parallels. Then as now, technological change was rife. The 

emerging large scale integration production enabled the building of competitive 

processors using a single chip, with massive cost reductions. Alas, the new 

technology presented constraints in the form of device count, limiting design 
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complexity and making a streamlined new class of architectures — microprocessors — a 

preferred class. 

At the same time, pipelined designs showed a significant performance benefit. 

With the limited CAD tools available for design and verification at the time, this gave 

a significant practical advantage to simpler designs which were tractable with the 

available tools. Finally, the emergence of new compiler technologies helping to 

marshal the performance potential using instruction scheduling to exploit pipelined 

designs and performing register allocation to handle the increasingly severe disparity 

between memory and processor performance rounded out the picture. I Then as now, 

innovation in the industry was reaching new heights. Where RISC marked the 

beginning of single chip processors, chip multiprocessors mark the beginning of 

single chip systems. This increase in new innovative solutions is a response to new 

constraints defying the established solutions, and giving new technologies an 

opportunity to overcome the incumbent technology's advantages in terms of 

optimization efforts. 

When the ground rules change, high optimization often means that established 

technologies cannot respond to new challenges. Innovation starts slowly, but captures 

public perception in a short, sudden instant when the technology limitations become 

overbearing. Thus, while chip multiprocessors have conceptually discussed for over a 

decade, they have become the newest set of performance methods to deliver 

increasing system performance across a wide range of applications. Where a few 

years ago, the "treasure chest" of architecture methods seemed all but exhausted, with 

high-end solutions implementing all of them (pipelining, dynamic prediction, register 

renaming, out of order execution, multi-level cache hierarchies,. . . ), the chip 

multiprocessor revolution is filling the treasure chest with new concepts. 

3.1 Cell Broadband Engine 

The Cell Broadband Engine was designed from ground up to address the diminishing 

returns available from a frequency-oriented single core design point by exploiting 

application parallelism and embracing chip multiprocessing. We refer to Kahle et 
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al.[19J for a detailed overview of the Cell Broadband Engine Architecture, and 

Hofstee for an analysis of Cell Broadband Engine power efficiency. Gschwind et al. 

gives an overview of the Cell Synergistic Processor architecture based on a 

pervasively data parallel computing (PDPC) approach, and Flachs et al. describes the 

SPU micro architecture. To deliver a quantum leap in application performance in a 

power constrained environment, we decided to exploit application parallelism at all 

levels: 

data level parallelism with pervasive SIMD instruction support, 

instruction-level parallelism using a statically scheduled and power aware 

microarchitecture, 

thread-level parallelism with a multi-core design approach, and 

SPE 

(Synergistic 	SPE 	SPE 	SPE 
Processor 
Element) 

Memory Interface 	Xld 
PPE 	 Controller (MIC) 	Channeb 

(PowerPC 	 Element Interconnect Bus (EIB~ 
Processor 	

Cell Broadband Element)Chan 
Engine Interface 	Channaly 

(BEIj 

SPE  SPE  SPE  SPE 

Figure 3.1 A Schematic diagram of CBEA 

compute-transfer parallelism using programmable data transfer engines. 

A key optimization is to deliver the best combination of parallelism degrees at each 

level, to ensure good utilization efficiency of the available resources by applications 

and to optimize system performance across the hardware and software stack, under 

area and power constraints. Data-level parallelism offers an efficient method to 
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increase the amount of computation at very little cost over a scalar computation. This 

is possible because the control complexity — which typically scales with number of 

instructions in flight — remains unchanged, i.e., the number of instructions fetched, 

decoded, analyzed for dependencies, the number of register file accesses and write 

backs, and the number of instructions committed remain unchanged. 

Sharing execution units for both scalar and SIMD computation reduces the 

marginal power consumption of SIMD computation even further by eliminating 

control and datapath duplication. When using shared scalar/SIMD execution units, the 

only additional power dissipated for providing SIMD execution resources is dynamic 

power for operations performed, and static power for the area added to support SIMD 

processing, as the control and instruction handling logic is shared between scalar and 

SIMD data paths. 

When sufficient data-parallelism is available, SIMD computation is also the 

most power efficient solution, because increase in power dissipation is for actual 

operations performed. Thus, SHAD power/performance efficiency greater than what 

can be achieved by multiple scalar execution units. Adding multiple scalar execution 

units duplicates control logic for each execution unit, and leads to increased processor 

complexity. This increased processor complexity is necessary to route the larger 

number of instructions (i.e., wider issue logic), to discover data-parallelism from a 

sequential instruction stream, plus potential data management (e.g., register renaming) 

and miss-speculation penalties incurred to rediscover and exploit data parallelism in a 

sequential instruction stream. Using a short 128b SIMD vector increases the 

likelihood of using a large fraction of computation units, and thus represents an 

attractive power/performance tradeoff. 

Sharing of execution units for scalar and SIMD processing can be 

accomplished either architecturally, as in the Cell SPE, or microarchitecturally, as in 

the Cell PPE. Architectural sharing further increases efficiency of SIMD software 

exploitation by reducing data sharing cost. The Cell Broadband Engine also exploits 

instruction level parallelism with a statically scheduled power-aware multi-issue 
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microarchitecture. We provide statically scheduled parallelism between execution 

units to allow instruction dual-issue. Dual-issue is limited to instruction sequences 

which match the provisioned execution units of a comparable single-issue 

microprocessor. This limits in two respects [21]: (1) Instructions must be scheduled to 

match the resource profile as no instruction re-ordering is provided to increase the 

potential for multi-issue. (2) Execution units are not duplicated to increase multi-issue 

potential. While these decisions represent a limitation on dual issue, they imply that 

parallel execution is inherently power-aware. No additional reorder buffers, register 

rename units, commit buffers and similar structures are necessary, reducing core 

power dissipation. 

Because the resource profile is known, a compiler can statically schedule 

instruction to the resource profile. Instruction level parallelism as used in the Cell 

Broadband Engine avoids the power inefficiency of wide issue architectures, because 

no execution units (and their inherent static and dynamic power dissipation) are added 

for marginal performance increase. Instead, parallel execution becomes energy-

efficient because the efficiency of the core is increased by dual-issuing instructions: 

instead of incurring static power for an idle unit, the execution is performed in 

parallel, leading directly to a desirable reduction in energy-delay product. 

As a first order approximation, let us consider energy to consist of the sum of 

energy per operation to execute all operations of a program ecompute and a leakage 

power component dissipated over the entire execution time of the program eleakage . 

For normalized execution time t = 1, this gives a normalized energy delay metric of 

(ecompute + eleakage). 

By speeding up execution time using parallel execution, but without without 

adding hardware mechanisms or increasing the level of speculation, the energy-delay 

product is reduced. The new reduced execution time s, s < 1, is a fraction of the 

original (normalized) execution time t. The energy-delay product of power-aware 

parallel execution is (ecompute +eleakage xs) xs. Note that both the energy and delay 

factors of the energy-delay product are reduced compared to non-parallel execution. 
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The total energy is reduced by scaling the leakage power to reflect the reduced 

execution time, whereas the energy ecompute remains constant, as the total number of 

executed operations remains unchanged. In addition to speeding execution time by 

enabling parallel computation, ILP also can improve average memory latency by 

concurrently servicing multiple outstanding cache misses. In this use of ILP, a 

processor continues execution across a cache miss to encounter clusters of cache 

misses. This allows to concurrently initiate the cache reload for several accesses and 

overlap a sequence of memory accesses. The Cell BE cores support a stall on use 

policy which allows applications to initiate multiple data cache reload operations. 

While ILP provides a good vehicle to discover cache misses which can be serviced in 

parallel, it only has limited success in overlapping computation with the actual data 

cache miss service. Intuitively, instruction level parallelism can only cover a limited 

amount of the total cache miss service delay, a result confirmed by Karkhanis and 
Smith. 

Thread-level parallelism (TLP) [20] is supported with a multithreaded PPE 

core and multiple SPE cores on a single Cell Broadband Engine chip. TLP delivers a 

significant boost in performance by providing ten independent execution contexts to 

multithreaded applications, with a total performance exceeding 200 GFLOPS. TLP is 

a key to deliver high performance with high power/performance efficiency, as 

described by Salapura et al.. To ensure performance of a single thread, we also exploit 

a new form a parallelism which we refer to as compute-transfer parallelism(CTP). To 

exploit memory more efficiently, compute-transfer parallelism considers data 

movement as an explicitly scheduled operation which can be controlled by the 

program to improve data delivery efficiency. Using application-level knowledge, 

explicit data transfer operations are inserted into the instruction stream sufficiently 

ahead of their use to ensure data availability and reduce program idle time. In the Cell 

Broadband Engine, bulk data transfers are performed by eight Synergistic Memory 

Flow controllers coupled to the eight Synergistic Processor Units. 

Finally, to deliver a balanced CMP system, addressing the memory bottleneck 

is of prime importance to sustain application performance. Today, memory 
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performance is already limiting performance of a single thread. Increasing per-thread 

performance becomes only possible by addressing the memory wall head-on [19]. To 

deliver a balanced system design point with a chip multiprocessor, the memory 

interface utilization must be improved even more because memory interface 

bandwidth is growing more slowly than aggregate chip computational performance. 

3.2 Cell Software Development Kit: 

An SDK is available for the Cell Broadband Engine. The SDK contains the essential 

tools required for developing programs for the Cell Broadband Engine. The SDK 

consists of numerous components including the following: 

• The IBM Full System Simulator for the Cell Broadband Engine, systemsim. 

• system root image containing Linux execution environment for use within 

systemsim. 

• GNU tools including c and c++ compilers, linkers, assemblers and binary utilities 

for both PPU and SPU. 

• IBM xlc (c and c++) compiler for both PPU and SPU. 

• newlib for the SPU. newlib is a C standard library designed for use on embedded 

systems. 

• gdb debuggers for both PPU and SPU with support for remote gdb server 

debugging. The PPU debugger also provides combined, PPU and SPU, debugging. 

• PPC64 Linux with CBE enhancements. 

• SPE Runtime management library supporting SPE thread services - libspe. A next 

generation prototype SPE Runtime management, libspe2, is also provided. 

• Static timing analysis timing tool, spu_timing, that instruments assembly source 

(either compiler or programmer generated) with expected instruction timing details. 

• System wide profiler for Linux call oprofile. 

• An Eclipse - based Integrated Development Environment (IDE) to improve 

programmer productivity and integration of development tools. 

• Standardized SIMD math libraries for the PPU's Vector/SIMD Multimedia 

Extension and the SPU. 

• Example source code containing samples, libraries, workloads, and prototype tools. 

See the following section for more details. 

22 



Chapter 4 

DESIGN OF PARALLELIZED PATTERN MATCHING FOR CELL BE 

In this chapter we explain the workings of SSABS and TVSBS and how we derived 

our algorithm by modifying and parallelizing the above two. 

4.1 SSABS 
After a careful analysis of the existing algorithms, recently Sheik—Sumit—Anindya- 

Balakrishnan—Sekar (SSABS) proposed a new algorithm. The algorithm, SSABS, 

blends the advantages of QS and RAITA. In this algorithm, the order of character 

comparisons performed between the window and the search-string during each 

attempt is fixed. First, the rightmost characters of the window and the search string 

are compared. Secondly, the leftmost characters of the window and the search-string 

are compared, and then rests of the characters are compared in right to left order. In 

case of a mismatch in any one of the above-stated comparisons, the algorithm does 

not compare the remaining characters of the window. After either a match or a 

mismatch, the algorithm computes the shift of the window by finding the position of 

the bad character (character placed immediately after the window) in the search 

string. This shift value for all the characters in the alphabet are computed in the 

preprocessing phase and are used in the search phase. Hence, the algorithm SSABS is 

efficient and works well in most practical situations. We now deal with some 

simulated data to show the working process of this algorithm. 

Preprocessing Phase ( performed by qsBc) 

Part of the sequence Considered for the Test Run. 

y (window) = 

MARTKQTARKSTGG KAPRKQLATKAARKSAPSTGGVKKPH RYRPGTV 

x (pattern) _ 

KAPRKQL 

n = 47,m=7,a=20 
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(SSABS) 

Search Phase 

Stage 1• 

Compare the last ( or first) characters 

m 

match 

Compare the last ( or first) characters 

match 
Stage 2 

Compare remaining characters Until mismatch occur or 
all the m-2 characters match 

Stage 3 

Calculation of the distance using qsBc 

Working Example (searching phase) 

~0000~000 ©000© ©00000 

First attempt: 
MARTKQTARKSTGGKAPRKQLATKAARKSAPSTGGVKKPHRYRPGTV 

KAPRKQL 
Shift = gsBc[A] = 61/ Stage 3- shifted by j += qsBc[y jJ + m ] J, j=0, m=7, y[7] 

Second attempt: 
6  13 

MARTKQTARKSTGGKAPRKQLATKAARKSAPSTGGVKKPHRYRPGTV 

KAPRKQL 
Shift = qsBc[G] = 8//Stage  3- shifted by j += gsBcf y [ j + m J ], j=6, m=7, y[13] 
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Third attempt: 
14 	 21 

MARTKQTARKSTGGKAPRKQLATKAARKSAPSTGGVKKPHRYRPGTV 
2765431 

KAPRKQL 
Shift = gsBc[A] = 6//Stage  1 & 2 & 3 shifted by j += gsBc[y f j + m J], j=14, m=7, y[21] 

Fourth attempt: 	 20 	 27 

MARTKQTARKSTGGKAPRKQLATKAARKSAPSTGGVKKPHRYRPGTV 
1 

KAPRKQL 
Shift = qsBc[K] = 31/Stage 3 shifted by ] += gsBc(y [ j + m J], j=20, m=7, y[27] 

Fifth attempt: 	 23 	 30 

MARTKQTARKSTGGKAPRKQLATKAARKSAPSTGGVKKPHRYRPGTV 
1 

KAPRKQL 
Shift = gsBc[P] = 5 // Stage 3 shifted by ] += gsBc(yjj + mJ], j=23, m=7, y[30] 

Sixth attempt: 
28 	 35 

MARTKQTARKSTGGKAPRKQLATKAARKSAPSTGGVKKPHRYRPGTV 
I 

KAPRKQL 
Shift = qsBc[v] = 8 // stage 3 shifted by] += gsBcf y(j + mJJ, j=28, m=7, y[35] 

Seventh attempt: 
36 

MARTKQTARKSTGGKAPRKQLATKAARKSAPSTGGVKKPHRYRPGTV 
1 

KAPRKQL 
Shift = gsBc[p] = 5 // stage 3 shifted by j += gsBcj y If  + mJ J, j=36, m=7, 
Compare until j< n - m, so stop 

Total number of attempts: 7 

Total number of character comparisons: 13 

Figure 4.1 Working example of SSABS 
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4.2 TVSBS 

As pointed out earlier, for a better performance, one needs to implement an efficient 

way of pre-processing the pattern to get a better shift value. Secondly, good 

methodology should be employed in the searching phase. TVSBS is a blend of Berry-

Ravindran, and SSABS algorithms. The Berry—Ravindran bad character (hereafter, 

brBc) function is found to be effective during the preprocessing phase and the same 

has been implemented in the proposed algorithm with suitable modifications. The 

searching phase of this algorithm is exactly similar to that of the SSABS algorithm. 

The order of comparisons is carried out by comparing the last character of the window 

and that of the pattern first and once they match, the algorithm further compares the 

first character of the window and that of the pattern. This establishes an initial 

resemblance between the pattern and the window. The remaining characters are then 

compared from right to left until a complete match or a mismatch occurs. After each 

attempt, the skip of the window is gained by brBc shift value for the two consecutive 

characters immediately next to the window. The brBc function has been exploited to 

obtain the maximal shift and this reduces the number of character comparisons. These 

factors are collectively responsible for the improved performance of this algorithm. 

• Working Example (searching phase) 

• First attempt: 

ATCTAAC AATCATAACCCTAATTGGCAGAGAGAGAATCAATCGAATCA 
1 

GCAGAGA G 
Shift = brsc[T][Cl = 10 

• Second attempt: 

ATCTAAC AATCATAACCCTAATTGGCAGAGAGAGAATCAATCGAATCA 
1 

GCAGAGAG 
Shift = brBc[AJ{A] = 10 

OR 



• Third attempt: 

ATCTAAC AATCATAACCCTAATTGGCAGAGAGAGAATCAATCGAATCA 

1 

GCAGAGAG 
Shift = brBc[G][A] = 1 

• Fourth attempt: 

ATCTAAC AATCATAACCCTAATTGGCAGAGAGAGAATCAATCGAATCA 

2 	1 

GCAGAGAG 
Shift = brBc[G][T] = 1 

• Fifth attempt: 
ATCTAAC AATCATAACCCTAATTGGCAGAGAGAGAATCAATCGAATCA 

28765431 

GCAGAGAG 
Shift = brBc[A]f G] = 2 

• Sixth attempt: 
28 	 35 

ATCTAAC AATCATAACCCTAATTGGCAGAGAGAGAATCAATCGAATCA 

2 	1 

GCAGAGAG 

Shift = brBc[A][A] = 10 

• Seventh attempt: 
36 

ATCTAAC AATCATAACCCTAATTGGCAGAGAGAGAATCAATCGAATCA 

1 

GCAGAGAG 

• Total number of attempts: 7 

• Total number of character comparisons: 16 

Figure 4.2 Working example of TVSBS 
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4.3 Parallel Pattern Matching Algorithm for Multi-core systems 

Combining the above two approaches along with the data-parallelism approach to 

solve algorithms parallel, we derive a new parallel algorithm for pattern matching. 

Though the algorithm itself is applicable to any kind of parallel system, we tested the 

algorithm against heterogeneous multi-core system. In our algorithm the 

preprocessing phase is modified Berry—Ravindran bad character function and the 

searching phase is modified SSABS in parallel. In the proposed algorithm we 

consider brBc over qsBc (Quick Search Bad Character) and bmBc (Boyer-Moore Bad 

Character) for the following reasons: 

1. In qsBc the shift value is assigned for a character immediately next to the 

window, say a, based on the rightmost occurrence of that character. However 

brBc calculates the shift value based on the rightmost occurrence of two 

consecutive character, say ab, where b is the character next to a in the pattern, 

outside the window. The probability of the rightmost occurrence of ab in the 

pattern as compared to that of a, is very less. Therefore brBc always provides a 

better shift than qsBc or utmost an equal shift is obtained. 

2. brBc value is always defined to be > 1, and hence this could work 

independently to implement a fast algorithm, while bmBc yields a shift value 

< 0 in some cases which requires the use of bmGs (Boyer-Moore Good Suffix) 

to calculate the skip of the window. 
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4.3.1 Algorithm without DMA 

Serial Pre-processing phase: 

Bad character function: 

1 ifx[M-1]=a, 
brBc[a, b] = min m — i + 1 if x[i]x[1 + 1] = ab, 

m+1ifx[O]=b, 
m + 2 otherwise 

Parallel searching phase: 

1) Let us define the degree of parallelism as p - 1 or m — 1, whichever is less, 

where p is the number of cores in a multi-core processor and m is the 

pattern length. 

2) Compare the last character of the pattern with the last character of the 

window, the first one with first. Now compare 2 3rd 	(m-1)th character 

of the pattern with the corresponding characters of the window. All of 

these comparisons are done in parallel. Each core does one comparison. 

3) In case of a mismatch (found by any core), the information is passed to the 

controlling core and the next window location is calculated from the skip 

value table. . 

• Working Example (searching phase) 

• First attempt: 

ATCTAAC AATCATAACCCTAATTGGCAGAGAGAGAATCAATCGAATCA 
2 3 4 5 67 8 1 

GCAGAGA G 
Shift = brBc[TJ[CJ = 10 	 Numbers represent cores 

• Second attempt: 

ATCTAAC AATCATAACCCTAATTGGCAGAGAGAGAATCAATCGAATCA 

2 34 56 78 1 

GCAGAGAG 
Shift = brBc[A][A] = 10 



• Third attempt: 

ATCTAAC AATCATAACCCTAATTGGCAGAGAGAGAATCAATCGAATCA 

2 34 5 6 7 8 1 

GCAGAGAG 

Shift= brBc[G][A] = 1 

• Fourth attempt: 

ATCTAAC AATCATAACCCTAATTGGCAGAGAGAGAATCAATCGAATCA 

2 3 4 5 6 7 8 1 

GCAGAGAG 

Shift= brBc[G][T] = 1 

• Fifth attempt: 

ATCTAAC AATCATAACCCTAATTGGCAGAGAGAGAATCAATCGAATCA 

28765431 

GCAGAGAG 

Shift = brBc[A][G] = 2 

• Sixth attempt: 
28 	 35 

ATCTAAC AATCATAACCCTAATTGGCAGAGAGAGAATCAATCGAATCA 

234 56781. 

GCAGAGAG 
Shift= brBc[A] [A] = 10 

• Seventh attempt: 
36 

ATCTAAC AATCATAACCCTAATTGGCAGAGAGAGAATCAATCGAATCA 

2 3 4 5 6 7 8 1 

GCAGAGAG 

• Total number of attempts: 7 

• Total number of time units spent for character comparisons: 7 or less 

• Maximum degree of parallelism: 8 

Figure 4.3 Working example of Parallel Pattern Matching without DMA 
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4.3.2 Algorithm using DMA 

Serial Pre-processing phase: 

Bad character function: 

1 ifx[M-1] =a, 

brBc[a, b] — min m — i + 1 if x[i]x[i + 1] = ab, 
m+Iifx[O]=b, 
m + 2 otherwise 

Parallel searching phase: 

1) Let us define the degree of parallelism as p - 1 or m — 1, whichever is less, 

where p is the number of cores in a multi-core processor and m is the 

pattern length. 

2) Pre-assume that mismatch occurs and use DMA Double Buffering to the 

available processors/cores. (This step increases performance because in 

any given biological string number of mismatches is far more than number 

of matches.) 

3) In case of a match (found by any core), the information is passed to the 

controlling core and the location is printed as output. 

Working Example (searching phase) 

First attempt: 

i  1:Is  

ATCTAAC AATCATAACCCTAATTGGCAGAGAGAGAATCAATCGAATCA 
11111111 

GCAGAGA G 
Shift= brBc[T][C] = 10 	 Numbers represent cores 

Second attempt: 

ATCTAAC AATCATAACCCTAATTGGCAGAGAGAGAATCAATCGAATCA 

2 22 22 22 2 

GCAGAGAG 
Shift = brBc[A] [A] = 10 

31 



• Third attempt: 

ATCTAAC AATCATAACCCTAATTGGCAGAGAGAGAATCAATCGAATCA 

3 33 33 3 3 3 

GCAGAGAG 
Shift= brBc[G][A] = 1 

• Fourth attempt: 

ATCTAAC AATCATAACCCTAATTGGCAGAGAGAGAATCAATCGAATCA 

4 44 4 4 4 4 4 

GCAGAGAG 
Shift = brBc[G][A] = 1 

• Fifth attempt; 

ATCTAAC AATCATAACCCTAATTGGCAGAGAGAGAATCAATCGAATCA 

55555555 

GCAGAGAG 
Shift = brBc[A][GJ = 2 

• Sixth attempt: 

ATCTAAC AATCATAACCCTAATTGGCAGAGAGAGAATCAATCGAATCA 

6 6 6 6 6 6 6 6 

GCAGAGAG 
Shift = brBc[A][A] = 10 

Seventh attempt: 
36 

ATCTAAC AATCATAACCCTAATTGGCAGAGAGAGAATCAATCGAATCA 

77777777 

GCAGAGAG 

• Total number of attempts: 7 

• Total number of time units spent for character comparisons: 1 

• Maximum degree of parallelism: 8 

Figure 4.4 Working example of Parallel Pattern Matching with DMA 
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Chapter 5 

IMPLEMENTATION AND RESULTS 

Here, we will discuss some of the implementation issues and different designing 

parameters. In addition, we will do the performance analysis with the help of 

experimental results. 

5.1 Performance Parameters 

We use accuracy and running time as the performance parameters to test Parallel 

Pattern Matching in cell processor. For accuracy comparison we compare the results 

achieved by our algorithm with the BM algorithm results. 

The running time is defined as the time required identifying all the patterns in the text. 

5.2 Data Set 

We have tested our algorithm on both, the actual and simulated data. 

5.2.1 Simulated Data 

We used two stings to test our programs before testing them on actual biological data. 

The strings we used were: 

ATCTAACAATCATAACCCTAATTGGCAGAGAGAGAATCAATCGAATCA 

and 

MARTKQTARKSTGGKAPRKQLATKAARKSAPSTGGVKKPHRYRPGTV 

5.2.2 Actual biological Data 

I. 	UniProt 

Until recently, the EBI/SIB Swiss-Prot + TrEMBL databases and the PIR Protein 

Sequence Database (PIR-PSD) coexisted as protein databases with differing protein 

sequence coverage and annotation priorities. In 2002, EBI, SIB, and PIR (at the 
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Georgetown University Medical Center and National Biomedical Research 

Foundation) joined forces as the UniProt consortium. The primary mission of the 

consortium is to support biological research by maintaining a high quality database 

that serves as a stable, comprehensive, fully classified, richly and accurately annotated 

protein sequence knowledgebase, with extensive cross-references and querying 

interfaces freely accessible to the scientific community. 

The UniProt Knowledgebase (UniProtKB) provides the central database of 

protein sequences with accurate, consistent, rich sequence and functional annotation. 

The UniProt Knowledgebase consists of two sections: Swiss-Prot - a section 

containing manually-annotated records with information extracted from literature and 

curator-evaluated computational analysis, and TrEMBL - a section with 

computationally analyzed records that await full manual annotation. 

Swiss-Prot is an annotated protein sequence database. It was established in 

1986 and maintained collaboratively, since 1987, by the group of Amos Bairoch first 

at the Department of Medical Biochemistry of the University of Geneva and now at 

the Swiss Institute of Bioinformatics (SIB) and the EMBL Data Library (now the 

EMBL Outstation - The European Bioinformatics Institute (EBI)). The Swiss-Prot 

Protein Knowledgebase consists of sequence entries. Sequence entries are composed 

of different line types, each with their own format. For standardization purposes the 

format of Swiss-Prot follows as closely as possible that of the EMBL Nucleotide 

Sequence Database. 

Swiss-Prot distinguishes itself from protein sequence databases by four distinct 

criteria: 

a) Annotation 

In Swiss-Prot, as in many sequence databases, two classes of data can be 

distinguished: the core data and the annotation. 

For each sequence entry the core data consists of: 
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• The sequence data; 

• The citation information (bibliographical references); 

• The taxonomic data (description of the biological source of the protein). 

The annotation consists of the description of the following items: 

• Function(s) of the protein; 

• Posttranslational modification(s) such as carbohydrates, phosphorylation, 

acetylation and GPI-anchor; 

• Domains and sites, for example, calcium-binding regions, ATP-binding sites, 

zinc fingers, homeoboxes, SH2 and SH3 domains and kringle; 

• Secondary structure, e.g. alpha helix, beta sheet; 

• Quaternary structure, i.g. homodimer, heterotrimer, etc.; 

• Similarities to other proteins; 

• Disease(s) associated with any number of deficiencies in the protein; 

• Sequence conflicts, variants, etc. 

b) Minimal redundancy 

Many sequence databases contain, for a given protein sequence, separate 

entries which correspond to different literature reports. In Swiss-Prot we try as 

much as possible to merge all these data so as to minimize the redundancy of 

the database. If conflicts exist between various sequencing reports, they are 

indicated in the feature table of the corresponding entry. 

c) Integration with other databases 

It is important to provide the users of biomolecular databases with a degree of 

integration between the three types of sequence-related databases (nucleic acid 

sequences, protein sequences and protein tertiary structures) as well as with 

specialized data collections. Swiss-Prot is currently cross-referenced to more 

than 50 different databases. Cross-references are provided in the form of 

pointers to information related to Swiss-Prot entries and found in data 

collections other than Swiss-Prot. This extensive network of cross-references 
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allows Swiss-Prot to play a major role as a focal point of biomolecular 

database interconnectivity. 

d) Documentation 

Swiss-Prot is distributed with a large number of index files and specialized 

documentation files. Some of these files have been available for a long time 

(this user manual, the release notes, the various indices for authors, citations, 

keywords, etc.), but many have been created recently and new files are being 

added continuously. 

II. Nucleotide Sequence 

We also tested our program on nucleotide sequences and amino acid sequences. A 

total of 837 gene sequences (comprising of nucleotides, 826.31 MB size) have been 

used to test the power of the proposed algorithm as was done with TVSBS. The data 

set contains 4-characters (nucleotides) viz., A(Adenine - 239490165), C(Cytosine - 

183940124), G(Guanine - 183818044) and T(Thymine - 239419854) and hence the 

alphabet size is equal to 4. In order to avoid bias in the result the calculation was 

carried out for different pattern lengths the execution time was significantly reduced 

as shown in table 5.5. 

III. Amino Acid Sequence 

The case study with amino acid residues had a larger alphabet size of 20. Again as 

with TVSBS, we used 453861 gene sequences (191.24 MB). In this case the alphabet 

set used is A(13100890), C(1839722), D(8295604), E(9841468), F(6335049), 

G(10713539), H(3349835), I(9562897), K(8668206), L(15356872), M(3715491), 

N(6697619), P(6900621), Q(5838973), R(8414478), S(10200603), T(8319861), 

V(10559951), W(1837371), Y(4820702). 

5.3 Implementation 
The algorithms were tested in a PC having Intel Core2Duo E4300 CPU (1.8 GHz), 

2GB Ram @ 800 MHz. The algorithms were coded in C Programming language and 

were run on Fedora Core 5 Operating System running over Windows Vista using 



VMware Server 1.0.4. We used the IBM Cell Broadband Engine simulator for 

simulating the algorithm in a multi-core environment. 

Command Window 
	

GUI Window 
	

Console Window 

systemsim% 
	

[user@bringup 1# 

Linux on Simulated Machine 
Simulated System 

Cell Simulated Machine 

IBM Full System Simulator Simulator 

Linux Operating System Base Simulator 
Base processor Hosting Environment 

Figure 5.1: Implementation details 

A multi-core system does not have much processing power/time wasted in 

communication. But still it is normally a significant factor. IBM cell processor is 

better than other processors in this aspect. We used DMA for communication among 

memory and synergistic processing cores' local stores inside the cell broadband 

engine. The programming language used was C and the compiler was GCC without 

any optimizations. 

5.4 Accuracy Comparison 

We compared the accuracy of our algorithm with the famous BM algorithm. For 

pattern length varying from 2 to 20 we applied both the algorithms to the same data 

sets. The results are shown in Table 5.1. The patterns found by our algorithm and BM 

was the same. 
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Table 5.1: Result of Accuracy comparison 

Sequence Length 4 8 12 16 20 30 40 

Simulated data 1 100% 100% 100% 100% 100% 100% 100% 

Simulated Data 2 100% 100% 100% 100% 100% 100% 100% 

UniProt — Human* 100% 100% 100% 100% 100% 100% 100% 

UniProt — Sprot* 100% 100% 100% 100% 100% 100% 100% 

UniProt—tREmbl*  100% 100% 100% 100% 100% 100% 100% 

*we tested with portions of these databases as they are very large and running BM on 

them usually takes much time. 

5.5 Results for Actual Biological Data Set 

Experiments were performed over the UniProt data set. UniProt data set consist of 

Swiss-Prot and tREmbl data sets. We removed the descriptions and documentations 

and performed out experiment on the sequence data. Table 5.1 shows the best results 

for UniProt dataset. Time units are in second. There was a 32 times improvement in 

terms of time units spent for the same dataset using our algorithm with DMA. 

Table 5.2: Result of Our algorithms on UniProt Human Database 

Sequence Length 4 8 12 16 20 

UniProt — Human* 
38 39 38.45 40.51 42.66 

Algorithm with DMA 

UniProt — Human* 
51 50.6 52 54.1 50 

Algorithm without DMA 

Table 5.3: Result of Our algorithms on Swiss-Prot Database 

Sequence Length 2 4 6 8 10 12 14 16 20 

UniProt — Sprot* 
452 460 455 459 460 476 453 484 446 

Algorithm with DMA 

UniProt — Sprot* 
587 573 587 579 569 586 576 597 576 

Algorithm w/o DMA 
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Sequence Length 2 4 6 8 10 12 14 16 20 

UniProt — tREmbl* 
244 246 247 249 250 246 287 246 251 

Algorithm with DMA 

UniProt — tREmbl* 

Algorithm without 321 316 324 302 321 310 319 317 320 

DMA 

Table 5.4: Result of Our algorithms on tREmbl Database 

The following table shows the result obtained by our algorithm and TVSBS. It is clear 

from the above results and this that the proposed algorithm outperforms the others 

irrespective of the alphabet sizes. 

Table 5.5: Result of Parallel Pattern Matching algorithm in nucleotide and amino acid 
databases 

Sequence Length 4 8 12 16 20 

Nucleotide sequence - 
1038 978 999 993 983 

TVSBS 

Nucleotide sequence - 
516 560 545 559 560 

Algorithm with DMA 

Nucleotide sequence - 
624 643 603 640. 644 

Algorithm without DMA 

Amino Acid sequence - 
138 120 116 113 110 

TVBSB 

Amino Acid sequence — 
9 6.9 7.8 6.6 6.4 

Algorithm with DMA 

Amino Acid sequence - 
12 11.6 10 10.2 11 

Algorithm without DMA 

From the above two results we notice a slightly better speedup in case of the uniProt 

database than in the nucleotide and amino acid databases. The reason for this is the 
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inherent nature in the uniProt database. Our algorithm is based on bad character 

function and pre-assumption that a mismatch shall occur. As a result if a mismatch 

occurs then the algorithm works faster because of two reasons: 

a) The comparison between the pattern and window took less time than a 

match. 

b) The next window is already available because of DMA double 

buffering. 

But as with the nucleotide and amino acid sequences the number of matches is higher 

than that of uniProt knowledgebase. As a result the running time increases because of 

the following reasons: 

a) More matches means more time spent for comparison purposes. 

b) The SPU has to flush the next DMA operation and output the result to 

the console. So one DMA cycle gets lost. 

As a result of above factors the speedup achieved was varying between 20 times to 

maximum 32 times (as can be seen from the worked example in section 4.3). In worst 

case scenario also our algorithm performs better than any other sequential pattern 

matching algorithm on these biological datasets. 

We also plotted the different execution time of our algorithm by disabling some 

vector processor cores and compared it with TVSBS in an uniprocessor machine. 

Also the difference in execution time due to DMA and DMA double buffering was 

noted. The following plots reflect our findings. 
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Figure 5.2 Graphical representation of speedup with respect to number of cores 
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Figure 5.3: Result of execution of parallel pattern matching algorithm on CBEA in different 
situations. Y axis represents time in milliseconds 
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Figure 5.4: Comparative results of execution of parallel pattern matching algorithm using DMA 
and DMA double buffering on CBEA in different situations. Y axis represents time in 
milliseconds 	 - 
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CHAPTER 6 

CONCLUSION AND FUTURE WORK 

6.1 Conclusion 

In this thesis first we have shown through the statistics that although there is no 

theoretical lower bound in the number of comparisons to be performed for serial 

primitive pattern matching algorithms, any new algorithm, will not be capable of 

improving the time complexity drastically. But new age pattern matching 

applications demand faster processing. The only way is to harness the strength of 

parallelization. We implemented the parallel version of one of the best pattern 

matching algorithm i.e., TVSBS in a heterogeneous, multi-core processing 

environment i.e., the IBM Cell Broadband Engine. A significant speedup was 

achieved. The strategy proposed in the thesis can be extended to several other 

pattern matching algorithm to harness the computation gain by parallelization on Cell 

BE architecture. 

6.2 Future Work 

The following are some areas of future work that ensue from the thesis: 

1. Repeat the experiment in other than bioinformatics datasets that are available. 

2. Modify the DMA portion of the algorithm to make it suitable for other 

homogeneous and heterogeneous multi-core processors. 

3. Rewrite the program in STAPL or similar language to test its effect on multi-

processor environment. 

4. Scale the program to be applicable to cell blade server or similar having 16 or 

more SPUs. 
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APPENDIX A 

The following is the analysis and comparison of several pattern matching algorithms 

highlighting their limitations and their advantages. 

1. Brute Force algorithm: 

• no preprocessing phase; 
• constant extra space needed; 
• always shifts the window by exactly 1 position to the right; 
• comparisons can be done in any order; 
• searching phase in O(mn) time complexity; 
• 2n expected text characters comparisons. 

2. DFA algorithm: 

• builds the minimal deterministic automaton recognizing the language E*x; 
• extra space in O(m it) if the automaton is stored in a direct access table; 
• preprocessing phase in 0(m rr) time complexity; 
• searching phase in 0(n) time complexity if the automaton is stored in a direct 

access table, O(nlog(rr)) otherwise. 

3. Karp-Rabin algorithm: 

• uses an hashing function; 
• preprocessing phase in 0(m) time complexity and constant space; 
• searching phase in O(mn) time complexity; 
• O(n+m) expected running time. 

4. Shift Or algorithm: 

• uses bitwise techniques; 
• efficient if the pattern length is no longer than the memory-word size of the 

machine; 
• preprocessing phase in O(m + 1T) time and space complexity; 
• searching phase in 0(n) time complexity (independent from the alphabet size 

and the pattern length); 
• adapts easily to approximate string matching. 

5. Morris-Pratt algorithm: 

• performs the comparisons from left to right; 
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• preprocessing phase in O(m) space and time complexity; 
• searching phase in O(n+m) time complexity (independent from the alphabet 

size); 
• performs at most 2n- I information gathered during the scan of the text; 
• delay bounded by m. 

6. Knuth-Morris-Pratt algorithm: 

• performs the comparisons from left to right; 
• preprocessing phase in 0(m) space and time complexity; 
• searching phase in O(n+m) time complexity (independent from the alphabet 

size); 
_ (5) 

• delay bounded by log4 

	

	
2 

(m) where <Pis the golden ratio (  

7. Simon algorithm: 

• economical implementation of A(x) the minimal Deterministic Finite Automaton 
recognizing Fsx; 

• preprocessing phase in 0(m) time and space complexity; 

• searching phase in 0(m+n) time complexity (independent from the alphabet size); 
• at most 2n-1 text character comparisons during the searching phase; 
• delay bounded by min{1 + 1og2m, it}. 

8. Colussi algorithm: 

• refinement of the Knuth, Morris and Pratt algorithm; 
• partitions the set of pattern positions into two disjoint subsets; the positions in the 

first set are scanned from left to right and when no mismatch occurs the positions of 
the second subset are scanned from right to left; 

• preprocessing phase in 0(m) time and space complexity; 

• searching phase in 0(n) time complexity; 
3 

• performs 2 n text character comparisons in the worst case. 

9. Galil-Giancarlo algorithm: 

• refinement of Colussi algorithm; 

• preprocessing phase in 0(m) time and space complexity; 

• searching phase in 0(n) time complexity; 
4 

• performs 3n text character comparisons in the worst case. 

10. Apostolico-Crochemore algorithm: 

• preprocessing phase in 0(m) time and space complexity; 
• searching phase in O(n) time complexity; 
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3 
• performs 2 n text character comparisons in the worst case. 

11. Not So Naive algorithm: 

• preprocessing phase in constant time and space; 
• searching phase in O(nm) time complexity; 
• slightly (by coefficient) sub-linear in the average case. 

12. Boyer-Moore algorithm; 

• performs the comparisons from right to left; 
• preprocessing phase in O(m+IT) time and space complexity; 
• searching phase in O(mn) time complexity; 
• 3n text character comparisons in the worst case when searching for a non 

periodic pattern; 
• O(n / m) best performance; 

13. Turbo-BM algorithm: 

• variant of the Boyer-Moore; 
• no extra preprocessing needed with respect to the Boyer-Moore algorithm; 
• constant extra space needed with respect to the Boyer-Moore algorithm; 

• preprocessing phase in 0(m+fr) time and space complexity; 

• searching phase in O(n) time complexity; 
• 2n text character comparisons in the worst case. 

14. Apostolico-Giancarlo algorithm: 

• variant of the Boyer-Moore algorithm; 

• preprocessing phase in 0(m+ IT) time and space complexity; 

• searching phase in 0(n) time complexity; 
3 

• 2 n comparisons in the worst case. 

15. Reverse Colussi algorithm: 

• refinement of the Boyer-Moore algorithm; 
• partitions the set of pattern positions into two disjoint subsets; 

• preprocessing phase in 0(m2) time and O(m Fr) space; 

• searching phase in 0(n) time complexity; 

• 2n text character comparisons in the worst case. 

16. Horspool algorithm: 

• simplification of the Boyer-Moore algorithm; 
• easy to implement; 
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• preprocessing phase in 0(m+rr) time and O(11) space complexity; 

• searching phase in O(mn) time complexity; 
• the average number of comparisons for one text character is between 1/ it and 2/(ff 

+1). 

17. Quick Search algorithm: 

• simplification of the Boyer-Moore algorithm; 
• uses only the bad-character shift; 
• easy to implement; 

• preprocessing phase in O(m+ it) time and 0(11) space complexity; 

• searching phase in 0(mn) time complexity; 
• very fast in practice for short patterns and large alphabets. 

18. Tuned Boyer-Moore algorithm: 

• simplification of the Boyer-Moore algorithm; 
• easy to implement; 
• very fast in practice. 

19. Zhu-Takaoka algorithm: 

• variant of the Boyer-Moore algorithm; 
• uses two consecutive text characters to compute the bad-character shift; 

• preprocessing phase in O(m+rr2) time and space complexity; 

• searching phase in O(mn) time complexity. 

20. Berry-Ravindran algorithm: 

• hybrid of the Quick Search and Zhu and Takaoka algorithms; 

• preprocessing phase in O(m+rr2) space and time complexity; 

• searching phase in 0(mn) time complexity. 

21. Smith algorithm: 

• takes the maximum of the Horspool bad-character shift function and the Quick 
Search bad-character shift function; 

• preprocessing phase in 0(m+R) time and 0(it) space complexity; 

• searching phase in 0(mn) time complexity. 

22. Raita algorithm: 

• first compares the last pattern character, then the first and finally the middle one 
before actually comparing the others; 

• performs the shifts like the Horspool algorithm; 

• preprocessing phase in 0(m+ 11) time and 0( 11) space complexity; 



23. A 

24. T 

• (searching phase in 0(mn) time complexity. 

Factor algorithm: 

uses the suffix automaton of ; 
fast on practice for long pattens and small alphabets; 
preprocessing phase in 0(m) time and space complexity; 
searching phase in O(mn) time complexity; 
optimal in the average. 

Reverse Factor algorithm: 

refinement of the Reverse Factor algorithm; 
preprocessing phase in 0(m) time and space complexity; 

searching phase in 0(n) time complexity; 
performs 2n text characters inspections In the worst case; 
optimal in the average. 

Dawg Matching algorithm: 

• . uses the suffix automaton of x; 
• 0(n) worst case time complexity; 
• performs exactly n text character inspections. 

0 

25. 

26. Bai 

27. Bai 

• 

28. Ga 

Nondeterministic Dawg Matching algorithm: 

variant of the Reverse Factor algorithm; 
uses bit-parallelism simulation of the suffix automaton of AR; 
efficient If the pattern length Is no longer than the memory-word size of the 
machine; 

Oracle Matching algorithm: 

version of the Reverse Factor algorithm using the suffix oracle of xR instead of the_ 
suffix automaton of 	 ~;~►D 
fast in practice for very long patterns and small alphabets; 	 .► 
preprocessing phase in 0(m) time and space complexity;  
searching phase in 0(mn) time complexity; 
optimal in the average. .•• 

.;&.# 

constant extra space complexity; 
preprocessing phase in O(m) time and constant space complexity; 
searching phase in 0(n) time complexity; 
performs 5n text character comparisons in the worst case. 
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29. Two Way algorithm: 

• requires an ordered alphabet; 
• preprocessing phase in 0(m) time and constant space complexity; 
• constant space complexity for the preprocessing phase; 
• searching phase in 0(n) time; 
• performs 2n-m text character comparisons in the worst case. 

30. String Matching on Ordered Alphabets: 

• no preprocessing phase; 
• requires an ordered alphabet; 
• constant extra space complexity; 
• searching phase in O(n) time; 
• performs 6n+5 text character comparisons in the worst case. 

31. Optimal Mismatch algorithm: 

• variant of the Quick Search algorithm; 
• requires the frequencies of the characters; 

• preprocessing phase in O(m2+ IT) time and O(m+ IT) space complexity; 

• searching phase in O(mn) time complexity. 

32. Maximal Shift algorithm: 

• variant of the Quick Search algorithm; 
• quadratic worst case time complexity; 

• preprocessing phase in O(m2+iT) time and O(m+FT) space complexity; 

• searching phase in O(mn) time complexity. 

33. Skip Search algorithm: 

• uses buckets of positions for each character of the alphabet; 
• preprocessing phase in O(m+rr) time and space complexity; 
• searching phase in O(mn) time complexity; 
• O(n) expected text character comparisons. 

34. KMP Skip Search algorithm: 

• improvement of the Skip Search algorithm; 
• uses buckets of positions for each character of the alphabet; 
• preprocessing phase in O(m+rr) time and space complexity; 
• searching phase in O(n) time complexity. 
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