
IMPLEMENTATION OF IMPROVED CBC MAC FOR
ARBITRARY LENGTH MESSAGES

A DISSERTATION
Submitted in partial fulfillment of the

requirements for the award of the degree

of

MASTER OF TECHNOLOGY

in

COMPUTER SCIENCE AND ENGINEERING

By

RANPISE SUDHIR RAMESH

x

DEPARTMENT OF ELECTRONICS AND COMPUTER ENGINEERING

INDIAN INSTITUTE OF TECHNOLOGY ROORKEE

ROORKEE - 247 667 (INDIA)

JUNE, 2008

CANDIDATE'S DECLARATION

I hereby declare that the work, which is being presented in the dissertation entitled

"Implementation of improved CBC MAC for arbitrary length messages" towards the

partial fulfillment of the requirement for the award of the degree of Master of

Technology in Computer Science and Engineering submitted in the Department of

Electronics and Computer Engineering, Indian Institute of Technology Roorkee,

Roorkee (India) is an authentic record of my own work carried out during the period

from June 2007 to June 2008, under the guidance of Dr. Padam Kumar, Professor,

Department of Electronics and Computer Engineering, IIT Roorkee.

I have not submitted the matter embodied in this dissertation for the award of any

other degree or diploma.

Date: Q ~-~O`~ I2©OS

Place: Roorkee 	 (RANPISE SUDHIR RAMESH)

CERTIFICATE

This is to certify that the above statement made by the candidate is correct to the best

of my knowledge and belief.

Date: C~ `~- O'T r 	0 6' 	 _ - - 	-

Place: Roorkee 	 (Dr. PADAM KUMAR)

Professor

Department of Electronics and Computer Engineering

IIT Roorkee 247 667

ACKNOWLEDGEMENTS

I would like to take this opportunity to extend my heartfelt gratitude to my guide and

mentor Dr. Manoj Mishra, Professor and Dr. Padam Kumar, Professor,

Department of Electronics and Computer Engineering, Indian Institute of Technology

Roorkee, for their trust in my work, their esteemed guidance, regular source of

encouragement and assistance throughout this dissertation work. I would state that the

dissertation work would not have been in the present shape without their inspirational

support and I consider myself fortunate to have done my dissertation under him.

I also extend my sincere thanks to Dr. D. K. Mehra, Professor, and Head of the

Department of Electronics and Computer Engineering.

Finally, I would like to say that I am indebted to my parents for everything that they

have done for me. All of this would have been impossible without their constant

support.

RANPISE SUDHIR RAMESH

ii

ABSTRACT

The CBC MAC (Cipher Block Chaining Message Authentication Code) is a well-

known method to generate a message authentication code based on a block cipher. It

is proved that the security of the CBC MAC for fixed message length mu bits, where

n is the block length of the underlying block cipher E. However, it is well known that

the CBC MAC is not secure unless the message length is fixed.

Therefore, several variants of CBC MAC have been proposed for variable length

messages like EMAC. XCBC and TMAC.

Here, we propose and implement another variant for CBC MAC and prove its

security for arbitrary length messages. The proposed mode takes only one key, K of a

block cipher E. Previously, XCBC requires three keys, (k + 2n) bits in total, and

TMAC requires two keys, (k + n) bits in total, where n denotes the block length of E.

The saving of the key length makes the security proof of proposed mode substantially

harder than those of XCBC.

iii

CONTENTS

CANDIDATE'S DECLARATION ... 	i
ACKNOWLEDGEMENTS... 	ii
ABSTRACT..
TABLEOF CONTENTS ... 	iv

CHAPTER 1: INTRODUCTION AND STATEMENT OF THE PROBLEM...... 	1

	

1.1 	Introduction 	 1

	

1.2 	Statement of the Problem 	 2

	

1.3 	Organization of the Dissertation 	 3

CHAPTER 2: BACKGROUND AND LITERATURE REVIEW 	4
2.1 Initialization Vector 4
2.2 Electronic Codebook (ECB) encryption mode 4
2.3 Cipher-block chaining (CBC) encryption mode 5
2.4 Cipher feedback (CFB) encryption mode 6
2.5 Output feedback (OFB) encryption mode 7

CHAPTER 3: AES ALGORITHM .. 9
3.1 Information security and cryptography 9
3.2 Cryptographic goals 10
3.3 Inputs and Outputs 1 1

3.3.1 	Bytes 11

3.3.2 	Arrays of Bytes 13
3.3.3 	The State 13
3.3.4 	The State as an Array of Columns 14

3.4 Algorithm Specification 15
3.5 Cipher 16

3.5.1 	SubBytesOTransformation 17

iv

3.5.2 ShiftRows() Transformation 19
3.5.3 MixColumns() Transformation 20
3.5.4 AddRoundKeyO Transformation 20

3.6 Key Expansion 21
3.7 Inverse Cipher 23

3.7.1 InvShiftRows() Transformation 24
3.7.2 InvSubBytesO Transformation 24
3.7.3 InvMixColumns() Transformation 24
3.7.4 Inverse of the AddRoundKeyO Transformation 24
3.7.5 Equivalent Inverse Cipher 24

CHAPTER 4: IMPLEMENTATION .. 27
4.1 Pre-processing 27
4.2 Tag-generation 33

28
4.3 Tag-verification 30

CHAPTER 5: RESULTS AND DISCUSSION ... 31

5.1 Results 31
5.2 Discussion 38

CHAPTER 6: CONCLUSION ... 	40

REFERENCES... 	41

V

Introduction And Statement Of The Problem

CHAPTER 1

INTRODUCTION AND STATEMENT OF THE PROBLEM

1.1 Introduction
In cryptography, a block cipher operates on blocks of fixed length, often 64 or 128 bits

where messages can be of any length. In block cipher, encrypting the same plaintext

under the same key always produces the same output. To overcome the problem several

modes of operation have been invented which allow block ciphers to provide

confidentiality for messages of arbitrary length.

These modes are:

1) CCM mode (Counter with CBC-MAC)

2) FAX mode (Encryption with Associated Data)

3) GCM mode (Galois/Counter Mode)

4) OCB mode (Offset Codebook Mode)

CCM mode (Counter with CBC-MAC) is a mode of operation for cryptographic block

ciphers. It is an authenticated encryption algorithm designed to provide both

authentication and privacy. CCM mode only defines 128-bit block ciphers. CCM

requires two cipher encryption operations for each block of encrypted and authenticated

message and one encryption per each block of associated authenticated data. [7, 8]

EAX mode is a mode of operation for cryptographic block ciphers. It is an

Authenticated Encryption with Associated Data (AEAD) algorithm designed to

simultaneously protect both authentication and privacy of the message (Authenticated

encryption) with a two-pass scheme, one pass for achieving privacy and one for

authenticity for each block. Being a two-pass scheme, FAX mode is slower than a well-

designed one-pass scheme based on the same primitives.

1

Introduction And Statement Of The Problem

GCM mode (Galois/Counter Mode) is a mode of operation for symmetric key

cryptographic block ciphers. It is an authenticated encryption algorithm designed to

provide both authentication and privacy. GCM mode defines block ciphers with a block

size of 128 bits. GCM requires one block cipher operation and one 128-bit

multiplication in the Galois field per each block (128 bit) of encrypted and

authenticated data. [7, 9]

OCB mode (Offset Codebook Mode) is a mode of operation for cryptographic block

ciphers. OCB performance overhead is minimal comparing to classical, non-

authenticating modes like CBC. OCB requires one block cipher encryption per each

block of encrypted and authenticated message and one encryption per each block of

additional associated data. There are also two extra encryptions required at the end of

process. [9]

Block ciphers are often proposed with several variants, in terms of a different secret key

size and corresponding number of rounds. The related-cipher attack model applicable to

related ciphers in the sense that they are exactly identical to each other, differing only

in the key size and most often also in the total number of rounds. Such related ciphers

must have identical key schedules irrespective of their difference in the total number of

rounds.

1.2 Statement of the Problem
There are several standard blocked cipher encryption modes for authentication but they

all are having some advantages and disadvantages. There is a need to find out whether

they all are secure or not. Also there is need to find out the opportunity to develop a

better mode of operation for cryptographic block cipher.

The main objective of the thesis is to develop a better mode of operation for

cryptographic block cipher.

2

Introduction And Statement Of The Problem

1.3 Organization of the Dissertation
This report comprises of seven chapters including this chapter that introduces the topic

and statement of the problem. The rest of the dissertation report is organized as follows:

Chapter 2 gives Background and literature review. It contains information about

different types of cipher text modes. Initialization vector is also discussed in this

chapter.

Chapter 3 gives details about the AES algorithm and various steps included in it.

Algorithms for cipher and inverse cipher are discussed here. Chapter explains

information security, cryptography and their goals.

Chapter 4 explains in details about the implementation of XMODE. Pre-processing,

Tag generation and Tag verification are major the steps included in this chapter.

Chapter 5 shows the results with respect to AES 128, AES 192 and AES 256 and the

key separation schemes used.

Chapter 6 concludes the work.

i<

Background And Literature Review

CHAPTER 2

BACKGROUND AND LITERATURE REVIEW

Block ciphers are often proposed with several variants, in terms of a different secret

key size and corresponding number of rounds. The related-cipher attack model

applicable to related ciphers in the sense that they are exactly identical to each other,

differing only in the key size and most often also in the total number of rounds. Such

related ciphers must have identical key schedules irrespective of their difference in

the total number of rounds. Block cipher operates on blocks of fixed length, often 64

or 128 bits. Because messages may be of any length, and because encrypting the same

plaintext under the same key always produces the same output, several modes of

operation have been invented which allow block ciphers to provide confidentiality for

messages of arbitrary length.

2.1 Initialization Vector (IV)

All these modes (except ECB) require an initialization vector, or IV -- a sort of

'dummy block to kick off the process for the first real block, and also to provide some

randomization for the process. There is no need for the IV to be secret, in most cases,

but it is important that it is never reused with the same key. For CBC and CFB,

reusing an IV leaks some information about the first block of plaintext, and about any

common prefix shared by the two messages. For OFB and CTR, reusing an IV

completely destroys security. In CBC mode, the IV must, in addition, be randomly

generated at encryption time. [15]

2.2 Electronic Codebook (ECB) encryption mode
The earliest modes described in the literature (eg, ECB, CBC, OFB and CFB) provide

only confidentiality, and do not ensure message integrity. Other modes have since

been designed which ensure both confidentiality and message integrity, such as

IAPM, CCM, EAX, GCM, and OCB modes. [12] Tweakable narrow-block

M

Background And Literature Review

encryption (LRW) mode, and wide-block encryption (CMC and EME) modes,

designed to securely encrypt sectors of a disk, are described in the article devoted to

disk encryption theory.

The earliest modes described in the literature (eg, ECB, CBC, OFB and CFB) provide

only confidentiality, and do not ensure message integrity. Other modes have since

been designed which ensure both confidentiality and message integrity, such as CCM,

EAX, GCM, and OCB modes. Tweakable narrow-block encryption (LRW) mode,

and wide-block encryption (CMC and EME) modes, designed to securely encrypt

sectors of a disk, are described in the article devoted to disk encryption theory.

A-1

I _

c_1
1

~r

Fig. 2.1. ECB Mode Encryption

The ECB mode is the simplest, where each plaintext block. Pi is independently

encrypted to a corresponding ciphertext block, Ci via the underlying block cipher, Ek

keyed by secret key.

2.3 Cipher-block chaining (CBC) encryption mode
In the cipher-block chaining (CBC) mode, each block of plaintext is XORed with the

previous ciphertext block before being encrypted. This way, each ciphertext block is

dependent on all plaintext blocks processed up to that point. Also, to make each

message unique, an initialization vector must be used in the first block.

5

Background And Literature Review

Pi_

Figure 2.2: CBC mode encryption

CBC has been the most commonly used mode of operation. Its main drawbacks are

that encryption is sequential (i.e., it cannot be parallelized), and that the message must

be padded to a multiple of the cipher block size. One way to handle this last issue is

through the method known as ciphertext stealing.

Note that a one-bit change in a plaintext affects all following ciphertext blocks, and a

plaintext can be recovered from just two adjacent blocks of ciphertext. As a

consequence, decryption can be parallelized, and a one-bit change to the ciphertext

causes complete corruption of the corresponding block of plaintext, and inverts the

corresponding bit in the following block of plaintext.

2.4 Cipher feedback (CFB) encryption mode
The cipher feedback (CFB) mode, a close relative of CBC, makes a block cipher into

a self-synchronizing stream cipher. Operation is very similar; in particular, CFB

decryption is almost identical to CBC encryption performed in reverse. [13,14]

0

M

Background And Literature Review

Figure 2.3: CFB mode encryption

Like CBC mode, changes in the plaintext propagate forever in the ciphertext, and

encryption cannot be parallelized. Also like CBC, decryption can be parallelized.

When decrypting, a one-bit change in the ciphertext affects two plaintext blocks: a

one-bit change in the corresponding plaintext block, and complete corruption of the

following plaintext block. Later plaintext blocks are decrypted normally.

Because each stage of the CFB mode depends on the encrypted value of the previous

ciphertext XORed with the current plaintext value, a form of pipelining is possible,

since the only encryption step which requires the plaintext is the final XOR. This is

useful for applications that require low latency between the arrival of plaintext and

the output of the corresponding ciphertext, such as certain applications of streaming

media.

2.5 Output feedback (OFB) encryption mode
The output feedback (OFB) mode makes a block cipher into a synchronous stream

cipher: it generates keystream blocks, which are then XORed with the plaintext

blocks to get the ciphertext. Just as with other stream ciphers, flipping a bit in the

ciphertext produces a flipped bit in the plaintext at the same location. This property

allows many error correcting codes to function normally even when applied before

encryption. [14, 15]

7

Background And Literature Review

F!i i`

i— iIr

Figure 4: OFB mode encryption

Each output feedback block cipher operation depends on all previous ones, and so

cannot be performed in parallel. However, because the plaintext or ciphertext is only

used for the final XOR, the block cipher operations may be performed in advance,

allowing the final step to be performed in parallel once the plaintext or ciphertext is

available.

AES Algorithm

CHAPTER 3

AES ALGORITHM

AES algorithm is a symmetric block cipher that can encrypt (encipher) and decrypt

(decipher) information. Encryption converts data to an unintelligible form called

ciphertext; decrypting the ciphertext converts the data back into its original form,

called plaintext. The AES algorithm is capable of using cryptographic keys of 128,

192, and 256 bits to encrypt and decrypt data in blocks of 128 bits.

The algorithm specified in this standard may be implemented in software, firmware,

hardware, or any combination thereof. The specific implementation may depend on

several factors such as the application, the environment, the technology used, etc. [1J

This standard specifies the Rijndael algorithm, a symmetric block cipher that can

process data blocks of 128 bits, using cipher keys with lengths of 128, 192, and 256

bits. Rijndael was designed to handle additional block sizes and key lengths; however

they are not adopted in this standard.

Throughout the remainder of this standard, the algorithm specified herein will be

referred to as "the AES algorithm." The algorithm may be used with the three

different key lengths indicated above, and therefore these different "flavors" may be

referred to as '`AES-128", "AES-192", and "AES-256".[2, 3]

3.1 Information security and cryptography

The concept of information will be taken to be an understood quantity. To introduce

cryptography, an understanding of issues related to information security in general is

necessary. Information security manifests itself in many ways according to the

situation and requirement. Regardless of who is involved, to one degree or another,

0

AES Algorithm

all parties to a transaction must have confidence that certain objectives associated

with information security have been met

Conceptually, the way information is recorded has not changed dramatically over

time. Whereas information was typically stored and transmitted on paper, much of it

now resides on magnetic media and is transmitted via telecommunications systems,

some wireless. What has changed dramatically is the ability to copy and alter

information. One can make thousands of identical copies of a piece of information

stored electronically and each is indistinguishable from the original. With information

on paper, this is much more difficult. What is needed then for a society where

information is mostly stored and transmitted in electronic form is a means to ensure

information security, which is independent of the physical medium recording or

conveying it and such that the objectives of information security rely solely on digital

information itself. [4]

3.2 Cryptographic goals

Confidentiality is a service used to keep the content of information from all but those

authorized to have it. Secrecy is a term synonymous with confidentiality and privacy.

There are numerous approaches to providing confidentiality, ranging from physical

protection to mathematical algorithms which render data unintelligible.

Data integrity is a service which addresses the unauthorized alteration of data. To

assure data integrity, one must have the ability to detect data manipulation by

unauthorized parties. Data manipulation includes such things as insertion, deletion,

and substitution.

Authentication is a service related to identification. This function applies to both

entities and information itself. Two parties entering into a communication should

identify each other. Information delivered over a channel should be authenticated as

to origin, date of origin, data content, time sent, etc. For these reasons this aspect of

10

AES Algorithm

cryptography is usually subdivided into two major classes: entity authentication and

data origin authentication. Data origin authentication implicitly provides data

integrity. [3]

Non-repudiation is a service which prevents an entity from denying previous

commitments or actions. When disputes arise due to an entity denying that certain

actions were taken, a means to resolve the situation is necessary. For example, one

entity may authorize the purchase of property by another entity and later deny such

authorization was granted. A procedure involving a trusted third party is needed to

resolve the dispute.

3.3 Inputs and Outputs

The input and output for the AES algorithm each consist of sequences of 128 bits

(digits with values of 0 or 1). These sequences will sometimes be referred to as

blocks and the number of bits they contain will be referred to as their length. The

Cipher Key for the AES algorithm is a sequence of 128, 192 or 256 bits. Other

input, output and Cipher Key lengths are not permitted by this standard.

The bits within such sequences will be numbered starting at zero and ending at one

less than the sequence length (block length or key length). The number i attached to a

bit is known as its index and will be in one of the ranges 0 <= i < 128, 0 <= i < 192 or

0 <= i < 256 depending on the block length and key length. [5]

3.3.1 Bytes

The basic unit for processing in the AES algorithm is a byte, a sequence of eight bits

treated as a single entity. The input, output and Cipher Key bit sequences described in

Sec. 4.1 are processed as arrays of bytes that are formed by dividing these sequences

into groups of eight contiguous bits to form arrays of bytes (see Sec. 3.3.2). For an

11

AES Algorithm

input, output or Cipher Key denoted by a, the bytes in the resulting array will be

referenced using one of the two forms, an or a[n], where n will be in one of the

following ranges:

Key length = 128 bits, 0 <= n < 16; Block length = 128 bits, 0 <— n < 16;

Key length = 192 bits, 0 <= n < 24;

Key length = 256 bits, 0 <= n < 32.

All byte values in the AES algorithm will be presented as the concatenation of its

individual bit values (0 or 1) between braces in the order {b7, b6, bs, b4, b3, b2, bi, bo}.

These bytes are interpreted as finite field elements using a polynomial representation:

b,x- +b f 6 +b;x- —b,x 4 +bi x-3 --- b_x - —bz x+b,. _
a =©

For example, {01 100011 } identifies the specific finite field element x 6 + ?i' -- —1

It is also convenient to denote byte values using hexadecimal notation with each of

two groups of four bits being denoted by a single character as in Fig. 1.

Bit Pattern Character
0000 0
0001 1
0010 2
0011 3

Bit Pattern Character
0100 4
0101 5
0110 6
0111 7

Bit Pattern Character
1000 8
1001 9
1010 a
1011 b

Bit Pattern Character
1100 C

1101 d
1110 e
1111 f

Figure 3.1. Hexadecimal representation of bit patterns.

Hence the element X01 10O011 1 can be represented as {63}, where the character

denoting the four-bit group containing the higher numbered bits is again to the left.

12

AES Algorithm

3.3.2 Arrays of Bytes

Arrays of bytes will be represented in the following form:

n0 a1 a, ...a1
The bytes and the bit ordering within bytes are derived from the 128-bit input

sequence

innpilto inplltl in7pult2 ___ Innput126 Iiipulti-,
as follows:

no = {inprrto. irnput1 _ input,}
a1 = { inputs. irnpluty_ innput15 };

(71 _ { inputs:o. input121, inpurl?7} .

The pattern can be extended to longer sequences (i.e., for 192- and 256-bit keys), so

that, in general,

= {inputs. ifputs,1-1.....

3.3.3 The State

Internally, the AES algorithm's operations are performed on a two-dimensional array

of bytes called the State. The State consists of four rows of bytes, each containing Nb

bytes, where Nb is the block length divided by 32. In the State array denoted by the

symbol s, each individual byte has two indices, with its row number r in the range 0

<= r < 4 and its column number c in the range 0 <= c < Nb. This allows an individual
byte of the State to be referred to as either sr.c or s[r,c]. For this standard, Nb=4. i.e., 0
<=c<4.

13

AES Algorithm

At the start of the Cipher and Inverse Cipher described in Sec. 3.7, the input — the

array of bytes 1110. iru 1 • • .. ir? 15 — is copied into the State array as illustrated in Fig.

3. The Cipher or Inverse Cipher operations are then conducted on this State array,

after which its final value is copied to the output — the array of bytes:
OI1t0. O1lt1. ... OW15.

4 4

input bites

in0 in4 in3 In 12

In 1 in3 in9 11113

In, U25 IYI10 I?114

Ill3 III- inn ??115

State a»Tm'

50,0 SC.1 S0 2 50.3

.51,0 S 1.1 1.2 ,5̀ .3

S20 S2.1 S'2 .S3

S3,0 -5 3.1 S3,2 .53.3

output bites

©utO O11t4 OlItg 011t12

02111 ODUF; O11t9 O1It13

Otlt2 OUTS OUtlp Olrti

OUt3 ou t7 OUtii Ol/ti5

Figure 3.2 State array input and output.

Hence, at the beginning of the Cipher or Inverse Cipher, the input array, in, is copied

to the State array according to the scheme:

s[r, c] = in[r + 4c] for 0 <= r <4 and 0 <= c <Nb,

and at the end of the Cipher and Inverse Cipher, the State is copied to the output array

out as follows:

out[r + 4c] = s[r, c] for 0 <= r < 4 and 0 <= c < Nb.

3.3.4 The State as an Array of Columns

The four bytes in each column of the State array form 32-bit words, where the row

number r provides an index for the four bytes within each word. The state can hence

be interpreted as a one-dimensional array of 32 bit words (columns), wo...w3, where

14

AES Algorithm

the column number c provides an index into this array. Hence, for the example in Fig.

3, the State can be considered as an array of four words, as follows:

= .5c 	S 1.Co.5:2.0 S30
	

IV -,=S0. ,.51_1S, ,S;

	

b1'1 = •SCF 1 .5' 1.1 S2. 1 S'3.1
	

IV-3 = 50351.3 S 2_ 3 S;; .

3.4 Algorithm Specification

For the AES algorithm, the length of the input block, the output block and the

State is 128 bits. This is represented by Nb = 4, which reflects the number of 32-bit

words (number of columns) in the State.

For the AES algorithm, the length of the Cipher Key, K, is 128, 192, or 256 bits.

The key length is represented by Nk = 4, 6, or 8, which reflects the number of 32-bit

words (number of columns) in the Cipher Key. [6]

For the AES algorithm, the number of rounds to be performed during the execution of

the

algorithm is dependent on the key size. The number of rounds is represented by Nr,

where Nr =10 when Nk = 4, Nr = 12 when Nk = 6, and Nr = 14 when Nk = 8.

The only Key-Block-Round combinations that conform to this standard are

given in Fig. 4. For implementation issues relating to the key length, block size and

number of rounds. [5, 6]

15

AES Algorithm

Key Length

(Nh, ii orris)

Block Size

(Nb words)

Number of
Rounds

(Nr)

4 4 10

6 4 1

S 4 14

AES-128

AES-192

AES-256

Figure 3.3. Key-Block-Round Combinations.

For both its Cipher and Inverse Cipher, the AES algorithm uses a round function that

is composed of four different byte-oriented transformations:

1) byte substitution using a substitution table (S-box),

2) shifting rows of the State array by different offsets,

3) mixing the data within each column of the State array, and

4) adding a Round Key to the State.

3.5 Cipher

At the start of the Cipher, the input is copied to the State array using the conventions

described in Sec. 3.4. After an initial Round Key addition, the State array is

transformed by implementing a round function 10, 12, or 14 times (depending on the

key length), with the final round differing slightly from the first Nr-1 rounds.

The round function is parameterized using a key schedule that consists of a one-

dimensional array of four-byte words derived using the Key Expansion routine.

16

AES Algorithm

The Cipher is described in the pseudo code in Fig. 3.4. The individual transformations

SubBytesO, ShiftRowsO, MixColumnsO, and AddRoundKeyO — process the State

and are described in the following subsections. In Fig. 3.4, the array w[] contains the

key schedule. As shown in Fig. 3.4, all Nr rounds are identical with the exception of

the final round, which does not include the MixColumnsO transformation.

Cipher(byte in[4*Nb], byte out[4*Nb], word w[Nb*(Nr+l)])

begin

byte state [4,Nb]

state = in

AddRoundKey(state, w[O, Nb-I])

for round = I step 1 to Nr-1

SubBytes(state)

ShiftRows(state)

MixColumns(state)

AddRoundKey(state, w[round*Nb, (round+1)*Nb-1])

end for

SubBytes(state)

ShiftRows(state)

AddRoundKey(state, w[Nr*Nb, (Nr+l)*Nb-1])

out = state

end

Figure 3.4. Pseudo Code for the Cipher.

3.5.1 SubBytesOTransformation

The SubBytesO transformation is a non-linear byte substitution that operates

independently on each byte of the State using a substitution table (S-box). This S-box

(Fig. 3.6), which is invertible, is constructed by composing two transformations:

17

AES Algorithm

S-BOX
SO.0 $0.1 s4.2 S0 1

r,c

"5=.:

10

2.2 S_.0 23

LIS~10
53.1 Si , 333

0.4 3C.1 'SC`_2 S0.3

X1.0

.S', i

1 ,
C

2.2

.3

S1.0 S' . 3

33.0 '53.. 53 , 53.3

Figure 3.5 SubBytes() applies the S-box to each byte of the State.

The S-box used in the SubBytesO transformation is presented in hexadecimal form in

Fig. 3.6. For example, if s[1,1] = {53}, then the substitution value would be

determined by the intersection of the row with index `5' and the column with index

`3' in Fig. 3.6. This would result in s' [1,1] having a value of {ed} .

Y
0 1 2 3 4 5 6 7 8 9 a b c d e f

0 63 7c 77 7b f2 6b 6f c5 30 01 67 2b fe d7 ab 76
1 ca 82 c9 7d fa 59 47 £0 ad d4 a2 of 9c a4 72 cO
2 b7 fd 93 26 36 3f f7 cc 34 a5 e5 fl 71 d8 31 15
3 04 c7 23 c3 18 96 05 9a 07 12 80 e2 eb 27 b2 75
4 09 83 2c la lb 6e 5a aO 52 3b d6 b3 29 e3 2f 84
5 53 dl 00 ed 20 fc bl 5b 6a cb be 39 4a 4c 58 of
6 dO of as fb 43 4d 33 85 45 f9 02 7f 50 3c 9f a8

X
7 51 a3 40 8f 92 9d 38 f5 be b6 da 21 10 ft f3 d2
8 cd Oc 13 ec 5f 97 44 17 c4 a7 7e 3d 64 5d 19 73
9 60 81 4f do 22 2a 90 88 46 ee b8 14 de Be Ob db
a eO 32 3a Oa 49 06 24 5c c2 d3 ac 62 91 95 e4 79
b e7 c8 37 6d 8d d5 4e a9 6c 56 f4 ea 65 7a ae 08
c ba 78 25 2e lc a6 b4 c6 e8 dd 74 if 4b bd 8b 8a
d 70 3e b5 66 48 03 f6 Oe 61 35 57 b9 86 cl id 9e
e el £8 98 11 69 d9 8e 94 9b le 87 e9 ce 55 28 df
f Sc al 89 Od bf e6 42 68 41 99 2d Of bO 54 bb 16

Figure 3.6 S-box: substitution values for the byte xy (in hexadecimal format).

AES Algorithm

3.5.2 ShiftRows() Transformation

In the ShiftRowsO transformation, the bytes in the last three rows of the State are

cyclically shifted over different numbers of bytes (offsets). The first row, r = 0, is not

shifted. This has the effect of moving bytes to `'lower" positions in the row, while the

"lowest" bytes wrap around into the "top" of the row.

S
	

S

O.1 3.2 .S 0j

S1_3 .S11 S"12 31.3

S_ a .S_, .S'„ S2 3

53.0 S3.1 's3.2 53.3

3:) Sr.1 o.' 3C.3

S:1 Sl, .S1; '51.c

22 23 2.O 52.1

S3. i S 3.O S5 .1 S '

(a)

1 2 3 < 5 d7 8 8 J 11 2 13 14 15

1 I591 131 2 61 iol 141 31 71 iii 151 41 81121 16 1

D 1 i 3 4 5 .8 7 8 9 '7 11 '2 13 14 15

I 1 I 8 liii 141 2 I GE iOI 131 3 I 7 I 9 1151 4 I 51 121 16 1

D 	1 	2 	3 	4 	5 	6 	7 	8 	9 	"J 	1 	• 2 	13 	1 G 	15

1 	6JThI 2 8 12 13 3 7 91II 	10 16

1 	3 	/ 	.5 	5 	8 	B 	0 	11 	'7 	13 	1t 	1S

1 ~, 1t i6 2 7 12 13 3 8 9 14 4 5 10 15

(b)

Figure 3.7: The shift of rows (a) in general and (b) in this implementation

19

AES Algorithm

3.5.3 MixColumnsO Transformation

The MixColumnsOtransformation operates on the State column-by-column, treating

each column as a four-term polynomial.

Figure 3.8 MixColumnsO operates on the State column-by-column.

3.5.4 AddRoundKey() Transformation

In the AddRoundKeyO transformation, a Round Key is added to the State by a simple

bitwise XOR operation. Each Round Key consists of Nb words from the key

schedule. Those Nb words are each added into the columns of the State. In the

Cipher, the initial Round Key addition occurs when round = 0, prior to the first

application of the round function (see Fig. 3.4). The application of the

AddRoundKeyOtransformation to the Nr rounds of the Cipher occurs when 1Z=

round <= Nr.

WE

1 — I-nIfI;'q :4:7\Th

AES Algorithm

Figure 3.9 AddRoundKey() XORs each column of the State with a word

from the key schedule.

3.6 Key Expansion

The AES algorithm takes the Cipher Key, K, and performs a Key Expansion routine

to generate a key schedule. The Key Expansion generates a total of Nb (Nr + 1)

words: the algorithm requires an initial set of Nb words, and each of the Nr rounds

requires Nb words of key data. The resulting key schedule consists of a linear array of

4-byte words, denoted [Wi], with i in the range 0 <= i < Nb(Nr + 1).

SubWordO is a function that takes a four-byte input word and applies the S-box to

each of the four bytes to produce an output word. The function RotWord() takes a

word [ao, al, az, a3] as input, performs a cyclic permutation, and returns the word [ai,

a2, a3, ao].

21

AES Algorithm

KeyExpansion(byte key[4*Nk], word w[Nb*(Nr+1)], Nk)

begin

word temp

i=0

while (i < Nk)

w[i] = word(key[4*i], key[4*i+1], key[4*i+2], key[4*i+3])

i=i+1

end while

i = Nk

while (i < Nb * (Nr+1)]

temp = w[i-1]

if (i mod Nk = 0)

temp = Sub Word(RotWord(temp)) xor Rcon[i/Nk]

else if (Nk > 6 and i mod Nk = 4)

temp = SubWord(temp)

end if

w[i] = w[i-Nk] xor temp

i=i+1

end while

end

Figure 3.10 Pseudo Code for Key Expansion.

22

AES Algorithm

3.7 Inverse Cipher

The Cipher transformations in Sec. 3.5 can be inverted and then implemented in

reverse order to produce a straightforward Inverse Cipher for the AES algorithm. The

individual transformations used in the Inverse Cipher — InvShiftRowsO,

InvSubBytesQ, InvMixColumnsO, and AddRoundKey() — process the State and are

described in the following subsections. [5,6]

InvCipher(byte in[4*Nb], byte out[4*Nb], word w[Nb*(Nr+l)])

begin

byte state[4,Nb]

state = in

AddRoundKey(state, w[Nr*Nb, (Nr+1)*Nb-1]) // See Sec. 5.1.4

for round = Nr-1 step -1 downto 1

InvShiftRows(state) // See Sec. 5.3.1

InvSubBytes(state) // See Sec. 5.3.2

AddRoundKey(state, w[round*Nb, (round+l)*Nb-1])

InvMixColumns(state) // See Sec. 5.3.3

end for

InvShiftRows(state)

InvSubBytes(state)

AddRoundKey(state, w[O. Nb-I])

out = state

end

Figure 3.11 Pseudo Code for the Inverse Cipher.

23

AES Algorithm

3.7.1 InvShiftRows() Transformation

InvShiftRowsOis the inverse of the ShiftRowsOtransformation. The bytes in the last

three rows of the State are cyclically shifted over different numbers of bytes (offsets).

The first row, r = 0, is not shifted. The bottom three rows are cyclically shifted by

Nb-shift(r, Nb) bytes, where the shift value shift(r,Nb) depends on the row number.

3.7.2 InvSubBytes() Transformation

InvSubBytes() is the inverse of the byte substitution transformation, in which the

inverse Sbox is applied to each byte of the State.

3.7.3 InvMixColumnsO Transformation

InvMixColumnsO is the inverse of the MixColumnsO transformation.

InvMixColumnsO operates on the State column-by-column, treating each column as a

four term polynomial

3.7.4 Inverse of the AddRoundKeyO Transformation

AddRoundKeyO is its own inverse, since it only involves an application of the XOR

operation.

3.7.5 Equivalent Inverse Cipher

In the straightforward Inverse Cipher presented in Fig. 3.12, the sequence of the

transformations differs from that of the Cipher, while the form of the key schedules

for encryption and decryption remains the same. However, several properties of the

AES algorithm allow for an Equivalent Inverse Cipher that has the same sequence of

24

AES Algorithm

transformations as the Cipher (with the transformations replaced by their inverses).

This is accomplished with a change in the key schedule. [6]

The two properties that allow for this Equivalent Inverse Cipher are as follows:

1. The SubBytesO and ShiftRowsO transformations commute; that is, a SubBytesO

transformation immediately followed by a ShiftRowsO transformation is equivalent

to a ShiftRowsO transformation immediately followed buy a SubBytesO

transformation. The same is true for their inverses, InvSubBytesO and InvShiftRows.

2. The column mixing operations - MixColumnsO and InvMixColumnsO — are linear

with respect to the column input, which means

InvMixColumns(state XOR Round Key)

= InvMixColumns(state) XOR InvMixColumns(Round Key).

These properties allow the order of InvSubBytes() and InvShiftRowsO

transformations to be reversed. The order of the AddRoundKey() and

InvMixColumnsO transformations can also be reversed, provided that the columns

(words) of the decryption key schedule are modified using the InvMixColumnsO

transformation.

25

AES Algorithm

EgInvCipher(byte in[4*Nb], byte out[4*Nb], word dw[Nb*(Nr+l)])

begin

byte state[4,Nb]

state = in

AddRoundKey(state, dw[Nr*Nb, (Nr+l)*Nb-1])

for round = Nr- I step -1 downto I

InvSubBytes(state)

InvShiftRows(state)

InvMixColumns(state)

AddRoundKey(state, dw[round*Nb, (round+1)*Nb-1])

end for

InvSubBytes(state)

InvShiftRows(state)

AddRoundKey(state, dw[O, Nb-1])

out = state

end

for i = 0 step 1 to (Nr+1)*Nb-I

dw[i] = w[i]

end for

for round = 1 step I to Nr- I

InvMixColumns(dw[round*Nb, (round+l)*Nb-1])

end for

Figure 3.12: Pseudo Code for the Equivalent Inverse Cipher.

26

Implementation

CHAPTER 4

IMPLEMENTATION

I am going use the name XMODE for this new variant of the CBC mode for our

convenience. It takes only one key, K (k bits) of a block cipher E. The key length, k

bits, is the minimum because the underlying block cipher must have a k-bit key K

anyway.

XMODE is a simple variant of the CBC MAC (Cipher Block Chaining Message

Authentication Code). It allows and is secure for messages of any bit length (while

the CBC MAC is only secure on messages of one fixed length, and the length must be

a multiple of the block length). Also, the efficiency of XMODE is highly optimized.

It is almost as efficient as the CBC MAC.

4.1 Pre-processing

The following steps can be done without the message.

L
MSB 	 LSB

L<<1

Fig. 4.1 Left shifting by one bit

27

Implementation

1. First, encrypt n-bit 0 (denoted by 0 ") to compute L . That is, let L be E (K, 0 ").

2. Check if the most significant bit of L is 0.

➢ If it is, let L.0 be L«1 , where L<<1 denotes a shift in which bits

increase in significance with the most significant bit being lost and a

zero coming into the least significant bit. See the figure.

➢ Otherwise, let L.0 be (L<<1) xor Constant , where Constant is the n-

bit 	constant. 	if 	n=128 	, 	then 	Constant 	is

0x00000000000000000000000000000087, and if n=64 , then

Constant is Ox000000000000001b, where bits are presented as

hexadecimal values with their most significant bits to the left.

3. Check if the most significant bit of L.0 is 0.

➢ If it is, let L.0 2 be (L.0 <<1 .

Otherwise, let L.0 2 be ((L. u) < < 1) xor Constant , where Constant is

the same as above.

4. Save L. a and L. a 2 .

4.2 Tag-generation

Let M be the message. Break M into blocks M[1J, M[2],..., Mimi , where each M[iJ

(i = 1 ,..., m-1) is n bits. The last message block Mimi may have fewer than n bits

(but it has 0 bits only if the message M is empty)

1. Let Y[O] be0".

2. For i = 1 to m-1 do : let Y[iJ be E(K, M[i] xor Y[i-1J) .

3. Check if the bit length of the last message block Mimi is n bits.

If it is, let X[m] be Mimi xor Y[m-1] xor L. u.

Otherwise,

let Mimi be M[m] 1 0 (n-1-(b" length of Mimi)) That is, append a 1 and then

append the minimum number of Os. so that the total length

becomes n bits. Let X[mJ be M[mJ xor Y[m-1J xor L. u 2

Implementation

4. Let T be E(K, X[mJ) .

5. Let Tag be the t-bit truncation of T

6. Return Tag.

Note that if the message length is a positive multiple of n , then L.0 is used.

Otherwise 10' padding and L. u 2 are used. If the message is an empty string, then

you have to append 10 "-' and use L. u 2

Here is the algorithmical description in pseudocode.

Algorithm XMODE(K, M)

1. L (E(K, On)

2. if msb(L) = 0 then L • u — L << 1

else L - u E- (L << 1) ex-or Constant

if msb(L - u) = 0 then L • U2 •--- (L - u) << 1

else L - U2 	((L . u) << 1) ex-or Constant

3. Y [0] 4— On

Break M into blocks M[1],M[2], ... , M[m]

/* IM[i]I=n for i=1,...,m- 1, and IM[m]I<-n/

4. for I - Itom -1do

Y [i] 	E(K,M[i] ex-or Y [i - 1])

5. if IM[m]I = n then X[m] — M[m] ex-or Y [m - 1] ex-or L • u

else X[m] — (M[m]IOn-1-IM[m]l) ex-or Y [m - 1] ex-or L - U2

6. T •- E(K,X[m])

7. Tag — t-bit truncation of T

return Tag

29

IN K

Implementation

4.3 Tag-verification

Suppose that you have received a message-tag pair (M, Tag) . To check if (M, Tag

is authentic, first, compute the tag Tag for the message M using the above Tag-

generation and your own secret key. If Tag '= Tag then M is authentic. Otherwise, M

is unauthentic.

Case MI = mn for some m >_ 1. In this case, M = M[1 J, M[2], ... , M[m] and IM[m]I = n.
Fig

Tag

Fig. 4.2 Tag generation

30

Results and Discussion

CHAPTER 5

RESULTS AND DISCUSSION

5.1 Results

➢ "K len." denotes the key length.

"#K sche." denotes the number of block cipher key schedulings. For RMAC,

it requires one block cipher key scheduling each time generating a tag.

"#M" denotes the number messages which the sender has MACed.

"#E invo." denotes the number of block cipher invocations to generate a tag

for a message M, assuming IMI > 0.

r "#E pre." denotes the number of block cipher invocations during the pre-

processing time. These block cipher invocations can be done without the

message.

"+kst" means that the key separation technique is used. OMAC does not need

the key separation technique since its key length is optimal in its own form.

For RMAC2, we assume that AES 128 is used to compute the CBC MAC tag,

and AES256 is used to encrypt it.

31

Results and Discussion

Table 5.1 Efficiency Comparison with AES128.

Name K len. #K sche. #E invo. #E pre.
RMAC 1 [AES 128] 256 1 + #M 1 +(M±1)/128 0
RMAC2[AES 128] 384 1+ #M 1 + (M/128) 0
EMAC[AES128] 256 2 1 + (M+1)/128 0
XCBC[AES128] 384 1 M/128 0
TMAC[AES128] 256 1 M/128 0

XMODE[AES128] 128 1 M/128 1

450
400
350

300
250
200
150
100

50
0

RMAC1 	EMAC 	TMAC

■ Key Length ■ Key schedule ❑ Invocations

Figure 5.1: Efficiency Comparison with AES128

32

Results and Discussion

Table 5.2 Efficiency Comparison with AES192.

Name K len. #K sche. #E invo. #E pre.
RMAC1[AES192] 384 1 + #M 1+(M+1)/128 0
EMAC[AES192] 384 2 1 +(M+1)/128 0
XCBC[AES192] 448 1 M/128 0
TMAC[AES192] 320 1 M/128 0

XMODE[AES192] 192 1 M/128 1

450

400

350

300

250

200

150

100

50

0
RMAC1 	EMAC 	XCBC 	TMAC 	XMODE

■ Key Length ■ Key schedule ❑ Invocations

Figure 5.2: Efficiency Comparison with AES192

33

Results and Discussion

Table 5.3 Efficiency Comparison with AES256

Name K len. #K sche. #E invo. #E pre.
RMAC1 [AES256] 512 1+ #M 1+(M+1)/128 0
EMAC[AES256] 512 2 1 +(M+1)/128 0
XCBC[AES256J 512 1 M/128 0
TMAC[AES256] 384 1 M/128 0

XMODE[AES256] 256 1 M/128 1

600

500

400

300

200

100

0
RMAC1 EMAC XCBC TMAC XMODE

■ Key Length ■ Key schedule ❑ Invocations

Figure 5.3: Efficiency Comparison with AES256

34

Results and Discussion

Table 5.4 Efficiency Comparison with AES128 and Key Separation Technique.

Name K len. #K sche. #E invo. #E pre.
RMAC 1 [AES 128] 128 2+ #M 1+(M+1)/128 0
RMAC2[AES128] 128 2 + #M I + (M/128) 0
EMAC[AES128] 128 3 1 +(M+1)/128 0
XCBC[AES128] 128 2 M/128 0
TMAC[AES128] 128 2 M/128 0

XMODE[AES128] 128 1 M/128 1

300

250

200

150

100

50

0
RMAC1 RMAC2 EMAC XCBC TMAC XMODE

® Key Length ■ Key schedule ❑ Invocations

Figure 5.4: Efficiency Comparison with AES128 and Key Separation Technique

35

Results and Discussion

Table 5.5 Efficiency Comparison with AES192 and Key Separation Technique..

Name K len. #K sche. #E invo. #E pre.
RMACI[AES192] 192 2 + #M 1+ (M+1)/128 3
EMAC[AES192] 192 3 1 +(M+1)/128 3
XCBC[AES192] 192 2 M/128 4
TMAC[AES192] 192 2 M/128 3

XMODE[AES192] 192 1 M/128 1

RMAC1 	EMAC 	XCBC 	TMAC 	XMODE

■ Key Length ■ Key schedule D Invocations

Figure 5.5: Efficiency Comparison with AES192 and Key Separation Technique

36

Results and Discussion

Table 5.6 Efficiency Comparison with AES256 and Key Separation Technique.

Name K len. #K sche. #E invo. #E pre.
RMAC 1 [AES256J 256 2 + #M 1+ (M+1)/128 4
EMAC[AES256] 256 3 1 +(M+1)/128 4
XCBC[AES256] 256 2 M/128 4
TMAC[AES256] 256 2 M/128 3

XMODE[AES256] 256 1 M/128 1

300

250

200

150

100

50

0
RMAC1 EMAC XCBC TMAC XMODE

■ Key Length ■ Key schedule ❑ Invocations

Figure 5.6: Efficiency Comparison with AES256 and Key Separation Technique

37

Results and Discussion

5.2 Discussions

None of RMAC. EMAC, XCBC, TMAC and OMAC is optimal in all efficiency

measures: "K len.", "#K sche.", "#E invo." and "#E pre." There is a tradeoff among

the above four measures.

Key length: In Tables 5.1-5.3, XMODE gives the best performance. It shows that

XMODE is as secure as EMAC. XCBC, and TMAC despite of its optimal key length.

In Tables 5.4-5.6, the key lengths of RMAC, EMAC, XCBC and TMAC can be

reduced to the optimal length. But the cost appears in the number of key schedulings

and the number of block cipher invocations during the pre-processing time.

Number of key schedulings: RMAC requires one block cipher key scheduling each

time generating a tag. In Tables 5.1-5.3, XCBC, TMAC and XMODE give the best

performance, while EMAC requires two block cipher key schedulings. In Tables 5.4-

5.6. it is obvious that XMODE gives the best performance.

Number of block cipher invocations: In Tables 5.1-5.6, RMAC and EMAC

requires one or two extra block cipher invocations compared to XCBC, TMAC and

XMODE.

This overhead is significant for short messages.

Number of block cipher invocations during the pre-processing time: In Tables

5.1-5.3, only XMODE requires one block cipher invocation. But this is not very

significant since:

:- It can be done in an idle time, and

It is performed infrequently compared to MAC generation. Thus one or two

block cipher invocations to generate a tag in RMAC and EMAC is much

more significant since it is performed on each message.

In XMODE, the gain for this cost is its optimal key length, which completely

eliminates the need for the key separation technique. We believe this is a very

reasonable and desirable tradeoff since:

WN

Results and Discussion

key separation technique is a very error-prone process in practice, and

key separation technique is used in many environment, but if it is used, then

other MACs have a significant key setup cost compared to XMODE.

In fact, the performance of XMODE is far better than RMAC, EMAC, XCBC and

TMAC in Tables 5.4-5.6.

WE

Conclusion

CHAPTER 6

CONCLUSION

Conclusion

The proposed mode allows and is secure for messages of any bit length (while the

CBC MAC is only secure on messages of one fixed length, and the length must be a

multiple of the block length). Also, the efficiency of this mode is highly optimized. It

is almost as efficient as the CBC MAC.

Proposed mode gives the best performance with AES 128, AES 192 and AES 256. It

is as secure as EMAC, XCBC, and TMAC despite of its optimal key length. RMAC

and EMAC require one or two extra block cipher invocations compared to XCBC,

TMAC and proposed mode. It saves the key length, which makes the security proof

of proposed mode substantially harder than those of XCBC.

References

REFERENCES

[1] "AES Algorithm (FIPS- 197) Advanced Encryption Standard", http://www.vocal.com,

(Last access date October 24, 2007).

[2] J. Daemen and V. Rijmen, The block cipher Rijndael, Smart Card research and

Applications, LNCS 1820, Springer-Verlag, pp. 288-296.

[3] A. Lee, Guideline for Implementing Cryptography in the Federal Government, National

Institute of Standards and Technology, NIST Special Publication, November 1999, pp.

800-21.

[4] "Implementation 	Experience 	with 	AES 	Candidate 	Algorithms",

http://www.seven77.demon.co.uk/aes.htm, (Last access date 25-11-2007).

[5] "Advanced Encryption Standard (AES).", U.S. DoC/NIST, FIPS Publication 197,

November 26, 2001.

[6] "Data Encryption Standard (DES).", U.S. DoC/NIST, FIPS Publication 46-3, October

25, 2004.

[7] K.G. Paterson and A. Yau, "Padding Oracle Attacks on the ISO CBC Mode Encryption

Standard", Topics in Cryptology - CT-RSA '04, LNCS, Vol. 2964, pp. 305-323,

Springer-Verlag, 2004.

[8] S. Vaudenay, "Security Flaws Induced by CBC Padding — Applications to SSL, IPSEC,

WTLS", Advances in Cryptology - Eurocrypt '02, LNCS, Vol. 2332, pp. 534-545,

Springer-Verlag. 2002.

41

References

[9] H. Wu, "Related-Cipher Attacks", ICICS '02, LNCS, Vol. 2513, pp. 447-455, Springer-

Verlag, 2002.

[10] E. Biham, J. Seberry, "Tweaking the IV Setup of the Py Family of Ciphers — The Ciphers

Tpy, TPypy, and TPy6," Published on the author's webpage at

http://www.cs.technion.ac.il/ biham/. January 25, 2007.

[11] S. Paul, B. Preneel '`On the (In)security of Stream Ciphers Based on Arrays and Modular

Addition," siacrypt 2006 (X. Lai and K. Chen, eds.), vol. 4284 of LNCS, pp. 69-83,

Springer-Verlag, 2006.

[12] P. Rogaway (submitter) and M. Bellare, J. Black, and T. Krovetz (auxiliary submitters).

OCB mode. Contribution to NIST. Cryptology ePrint archive, report 2001/26, Apr 1,

2001, 	revised 	Apr 	18, 	2001. 	ePrint.iacr.org 	and

csrc.nist.gov/encryption/modes/proposedmodes.

[13] A. Joux, "Cryptanalysis of the EMD Mode of Operation", Advances in Cryptology -

Eurocrypt '03, LNCS, Vol. 2656, pp. 1-16, Springer-Verlag, 2003.

[14] M. Bellare, P. Rogaway and D. Wagner. "The [AX mode of operation", University of California

Postprints, Paper 1218, 2004.

[15] "Block 	 cipher 	 modes 	 of 	 operation",

http://en.wikipedia.oriz/wiki/Block cipher modes of operation, (Last access date May

24, 2008).

42

	Title

	Abstract

	Chapter 1
	Chapter 2

	Chapter 3
	Chapter 4

	Chapter 5

	Chapter 6

	References

