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ABSTRACT 

The CBC MAC (Cipher Block Chaining Message Authentication Code) is a well-

known method to generate a message authentication code based on a block cipher. It 

is proved that the security of the CBC MAC for fixed message length mu bits, where 

n is the block length of the underlying block cipher E. However, it is well known that 

the CBC MAC is not secure unless the message length is fixed. 

Therefore, several variants of CBC MAC have been proposed for variable length 

messages like EMAC. XCBC and TMAC. 

Here, we propose and implement another variant for CBC MAC and prove its 

security for arbitrary length messages. The proposed mode takes only one key, K of a 

block cipher E. Previously, XCBC requires three keys, (k + 2n) bits in total, and 

TMAC requires two keys, (k + n) bits in total, where n denotes the block length of E. 

The saving of the key length makes the security proof of proposed mode substantially 

harder than those of XCBC. 
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Introduction And Statement Of The Problem 

CHAPTER 1 

INTRODUCTION AND STATEMENT OF THE PROBLEM 

1.1 Introduction 
In cryptography, a block cipher operates on blocks of fixed length, often 64 or 128 bits 

where messages can be of any length. In block cipher, encrypting the same plaintext 

under the same key always produces the same output. To overcome the problem several 

modes of operation have been invented which allow block ciphers to provide 

confidentiality for messages of arbitrary length. 

These modes are: 

1) CCM mode (Counter with CBC-MAC) 

2) FAX mode (Encryption with Associated Data) 

3) GCM mode (Galois/Counter Mode) 

4) OCB mode (Offset Codebook Mode) 

CCM mode (Counter with CBC-MAC) is a mode of operation for cryptographic block 

ciphers. It is an authenticated encryption algorithm designed to provide both 

authentication and privacy. CCM mode only defines 128-bit block ciphers. CCM 

requires two cipher encryption operations for each block of encrypted and authenticated 

message and one encryption per each block of associated authenticated data. [7, 8] 

EAX mode is a mode of operation for cryptographic block ciphers. It is an 

Authenticated Encryption with Associated Data (AEAD) algorithm designed to 

simultaneously protect both authentication and privacy of the message (Authenticated 

encryption) with a two-pass scheme, one pass for achieving privacy and one for 

authenticity for each block. Being a two-pass scheme, FAX mode is slower than a well-

designed one-pass scheme based on the same primitives. 
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GCM mode (Galois/Counter Mode) is a mode of operation for symmetric key 

cryptographic block ciphers. It is an authenticated encryption algorithm designed to 

provide both authentication and privacy. GCM mode defines block ciphers with a block 

size of 128 bits. GCM requires one block cipher operation and one 128-bit 

multiplication in the Galois field per each block (128 bit) of encrypted and 

authenticated data. [7, 9] 

OCB mode (Offset Codebook Mode) is a mode of operation for cryptographic block 

ciphers. OCB performance overhead is minimal comparing to classical, non-

authenticating modes like CBC. OCB requires one block cipher encryption per each 

block of encrypted and authenticated message and one encryption per each block of 

additional associated data. There are also two extra encryptions required at the end of 

process. [9] 

Block ciphers are often proposed with several variants, in terms of a different secret key 

size and corresponding number of rounds. The related-cipher attack model applicable to 

related ciphers in the sense that they are exactly identical to each other, differing only 

in the key size and most often also in the total number of rounds. Such related ciphers 

must have identical key schedules irrespective of their difference in the total number of 

rounds. 

1.2 Statement of the Problem 
There are several standard blocked cipher encryption modes for authentication but they 

all are having some advantages and disadvantages. There is a need to find out whether 

they all are secure or not. Also there is need to find out the opportunity to develop a 

better mode of operation for cryptographic block cipher. 

The main objective of the thesis is to develop a better mode of operation for 

cryptographic block cipher. 
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1.3 Organization of the Dissertation 
This report comprises of seven chapters including this chapter that introduces the topic 

and statement of the problem. The rest of the dissertation report is organized as follows: 

Chapter 2 gives Background and literature review. It contains information about 

different types of cipher text modes. Initialization vector is also discussed in this 

chapter. 

Chapter 3 gives details about the AES algorithm and various steps included in it. 

Algorithms for cipher and inverse cipher are discussed here. Chapter explains 

information security, cryptography and their goals. 

Chapter 4 explains in details about the implementation of XMODE. Pre-processing, 

Tag generation and Tag verification are major the steps included in this chapter. 

Chapter 5 shows the results with respect to AES 128, AES 192 and AES 256 and the 

key separation schemes used. 

Chapter 6 concludes the work. 
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Background And Literature Review 

CHAPTER 2 

BACKGROUND AND LITERATURE REVIEW 

Block ciphers are often proposed with several variants, in terms of a different secret 

key size and corresponding number of rounds. The related-cipher attack model 

applicable to related ciphers in the sense that they are exactly identical to each other, 

differing only in the key size and most often also in the total number of rounds. Such 

related ciphers must have identical key schedules irrespective of their difference in 

the total number of rounds. Block cipher operates on blocks of fixed length, often 64 

or 128 bits. Because messages may be of any length, and because encrypting the same 

plaintext under the same key always produces the same output, several modes of 

operation have been invented which allow block ciphers to provide confidentiality for 

messages of arbitrary length. 

2.1 Initialization Vector (IV) 

All these modes (except ECB) require an initialization vector, or IV -- a sort of 

'dummy block to kick off the process for the first real block, and also to provide some 

randomization for the process. There is no need for the IV to be secret, in most cases, 

but it is important that it is never reused with the same key. For CBC and CFB, 

reusing an IV leaks some information about the first block of plaintext, and about any 

common prefix shared by the two messages. For OFB and CTR, reusing an IV 

completely destroys security. In CBC mode, the IV must, in addition, be randomly 

generated at encryption time. [15] 

2.2 Electronic Codebook (ECB) encryption mode 
The earliest modes described in the literature (eg, ECB, CBC, OFB and CFB) provide 

only confidentiality, and do not ensure message integrity. Other modes have since 

been designed which ensure both confidentiality and message integrity, such as 

IAPM, CCM, EAX, GCM, and OCB modes. [12] Tweakable narrow-block 
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encryption (LRW) mode, and wide-block encryption (CMC and EME) modes, 

designed to securely encrypt sectors of a disk, are described in the article devoted to 

disk encryption theory. 

The earliest modes described in the literature (eg, ECB, CBC, OFB and CFB) provide 

only confidentiality, and do not ensure message integrity. Other modes have since 

been designed which ensure both confidentiality and message integrity, such as CCM, 

EAX, GCM, and OCB modes. Tweakable narrow-block encryption (LRW) mode, 

and wide-block encryption (CMC and EME) modes, designed to securely encrypt 

sectors of a disk, are described in the article devoted to disk encryption theory. 

A-1  

I _ 

c_1 
1 

~r 

Fig. 2.1. ECB Mode Encryption 

The ECB mode is the simplest, where each plaintext block. Pi is independently 

encrypted to a corresponding ciphertext block, Ci via the underlying block cipher, Ek 

keyed by secret key. 

2.3 Cipher-block chaining (CBC) encryption mode 
In the cipher-block chaining (CBC) mode, each block of plaintext is XORed with the 

previous ciphertext block before being encrypted. This way, each ciphertext block is 

dependent on all plaintext blocks processed up to that point. Also, to make each 

message unique, an initialization vector must be used in the first block. 
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Pi_ 

Figure 2.2: CBC mode encryption 

CBC has been the most commonly used mode of operation. Its main drawbacks are 

that encryption is sequential (i.e., it cannot be parallelized), and that the message must 

be padded to a multiple of the cipher block size. One way to handle this last issue is 

through the method known as ciphertext stealing. 

Note that a one-bit change in a plaintext affects all following ciphertext blocks, and a 

plaintext can be recovered from just two adjacent blocks of ciphertext. As a 

consequence, decryption can be parallelized, and a one-bit change to the ciphertext 

causes complete corruption of the corresponding block of plaintext, and inverts the 

corresponding bit in the following block of plaintext. 

2.4 Cipher feedback (CFB) encryption mode 
The cipher feedback (CFB) mode, a close relative of CBC, makes a block cipher into 

a self-synchronizing stream cipher. Operation is very similar; in particular, CFB 

decryption is almost identical to CBC encryption performed in reverse. [ 13,14] 
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Figure 2.3: CFB mode encryption 

Like CBC mode, changes in the plaintext propagate forever in the ciphertext, and 

encryption cannot be parallelized. Also like CBC, decryption can be parallelized. 

When decrypting, a one-bit change in the ciphertext affects two plaintext blocks: a 

one-bit change in the corresponding plaintext block, and complete corruption of the 

following plaintext block. Later plaintext blocks are decrypted normally. 

Because each stage of the CFB mode depends on the encrypted value of the previous 

ciphertext XORed with the current plaintext value, a form of pipelining is possible, 

since the only encryption step which requires the plaintext is the final XOR. This is 

useful for applications that require low latency between the arrival of plaintext and 

the output of the corresponding ciphertext, such as certain applications of streaming 

media. 

2.5 Output feedback (OFB) encryption mode 
The output feedback (OFB) mode makes a block cipher into a synchronous stream 

cipher: it generates keystream blocks, which are then XORed with the plaintext 

blocks to get the ciphertext. Just as with other stream ciphers, flipping a bit in the 

ciphertext produces a flipped bit in the plaintext at the same location. This property 

allows many error correcting codes to function normally even when applied before 

encryption. [14, 15] 
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F!i i` 

i— iIr  

Figure 4: OFB mode encryption 

Each output feedback block cipher operation depends on all previous ones, and so 

cannot be performed in parallel. However, because the plaintext or ciphertext is only 

used for the final XOR, the block cipher operations may be performed in advance, 

allowing the final step to be performed in parallel once the plaintext or ciphertext is 

available. 



AES Algorithm 

CHAPTER 3 

AES ALGORITHM 

AES algorithm is a symmetric block cipher that can encrypt (encipher) and decrypt 

(decipher) information. Encryption converts data to an unintelligible form called 

ciphertext; decrypting the ciphertext converts the data back into its original form, 

called plaintext. The AES algorithm is capable of using cryptographic keys of 128, 

192, and 256 bits to encrypt and decrypt data in blocks of 128 bits. 

The algorithm specified in this standard may be implemented in software, firmware, 

hardware, or any combination thereof. The specific implementation may depend on 

several factors such as the application, the environment, the technology used, etc. [ 1J 

This standard specifies the Rijndael algorithm, a symmetric block cipher that can 

process data blocks of 128 bits, using cipher keys with lengths of 128, 192, and 256 

bits. Rijndael was designed to handle additional block sizes and key lengths; however 

they are not adopted in this standard. 

Throughout the remainder of this standard, the algorithm specified herein will be 

referred to as "the AES algorithm." The algorithm may be used with the three 

different key lengths indicated above, and therefore these different "flavors" may be 

referred to as '`AES-128", "AES-192", and "AES-256".[2, 3] 

3.1 Information security and cryptography 

The concept of information will be taken to be an understood quantity. To introduce 

cryptography, an understanding of issues related to information security in general is 

necessary. Information security manifests itself in many ways according to the 

situation and requirement. Regardless of who is involved, to one degree or another, 
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all parties to a transaction must have confidence that certain objectives associated 

with information security have been met 

Conceptually, the way information is recorded has not changed dramatically over 

time. Whereas information was typically stored and transmitted on paper, much of it 

now resides on magnetic media and is transmitted via telecommunications systems, 

some wireless. What has changed dramatically is the ability to copy and alter 

information. One can make thousands of identical copies of a piece of information 

stored electronically and each is indistinguishable from the original. With information 

on paper, this is much more difficult. What is needed then for a society where 

information is mostly stored and transmitted in electronic form is a means to ensure 

information security, which is independent of the physical medium recording or 

conveying it and such that the objectives of information security rely solely on digital 

information itself. [4] 

3.2 Cryptographic goals 

Confidentiality is a service used to keep the content of information from all but those 

authorized to have it. Secrecy is a term synonymous with confidentiality and privacy. 

There are numerous approaches to providing confidentiality, ranging from physical 

protection to mathematical algorithms which render data unintelligible. 

Data integrity is a service which addresses the unauthorized alteration of data. To 

assure data integrity, one must have the ability to detect data manipulation by 

unauthorized parties. Data manipulation includes such things as insertion, deletion, 

and substitution. 

Authentication is a service related to identification. This function applies to both 

entities and information itself. Two parties entering into a communication should 

identify each other. Information delivered over a channel should be authenticated as 

to origin, date of origin, data content, time sent, etc. For these reasons this aspect of 
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cryptography is usually subdivided into two major classes: entity authentication and 

data origin authentication. Data origin authentication implicitly provides data 

integrity. [3] 

Non-repudiation is a service which prevents an entity from denying previous 

commitments or actions. When disputes arise due to an entity denying that certain 

actions were taken, a means to resolve the situation is necessary. For example, one 

entity may authorize the purchase of property by another entity and later deny such 

authorization was granted. A procedure involving a trusted third party is needed to 

resolve the dispute. 

3.3 Inputs and Outputs 

The input and output for the AES algorithm each consist of sequences of 128 bits 

(digits with values of 0 or 1). These sequences will sometimes be referred to as 

blocks and the number of bits they contain will be referred to as their length. The 

Cipher Key for the AES algorithm is a sequence of 128, 192 or 256 bits. Other 

input, output and Cipher Key lengths are not permitted by this standard. 

The bits within such sequences will be numbered starting at zero and ending at one 

less than the sequence length (block length or key length). The number i attached to a 

bit is known as its index and will be in one of the ranges 0 <= i < 128, 0 <= i < 192 or 

0 <= i < 256 depending on the block length and key length. [5] 

3.3.1 Bytes 

The basic unit for processing in the AES algorithm is a byte, a sequence of eight bits 

treated as a single entity. The input, output and Cipher Key bit sequences described in 

Sec. 4.1 are processed as arrays of bytes that are formed by dividing these sequences 

into groups of eight contiguous bits to form arrays of bytes (see Sec. 3.3.2). For an 
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input, output or Cipher Key denoted by a, the bytes in the resulting array will be 

referenced using one of the two forms, an or a[n], where n will be in one of the 

following ranges: 

Key length = 128 bits, 0 <= n < 16; Block length = 128 bits, 0 <— n < 16; 

Key length = 192 bits, 0 <= n < 24; 

Key length = 256 bits, 0 <= n < 32. 

All byte values in the AES algorithm will be presented as the concatenation of its 

individual bit values (0 or 1) between braces in the order {b7, b6, bs, b4, b3, b2, bi, bo}. 

These bytes are interpreted as finite field elements using a polynomial representation: 

b,x-  +b f  6 +b;x-  —b,x 4  +bi x-3  --- b_x -  —bz x+b,. _ 
a =© 

For example, {01 100011 } identifies the specific finite field element x 6  + ?i' -- —1 

It is also convenient to denote byte values using hexadecimal notation with each of 

two groups of four bits being denoted by a single character as in Fig. 1. 

Bit Pattern  Character 
0000 0 
0001 1 
0010 2 
0011 3 

Bit Pattern Character 
0100 4 
0101 5 
0110 6 
0111 7 

Bit Pattern Character 
1000 8 
1001 9 
1010 a 
1011 b 

Bit Pattern Character 
1100 C 

1101 d 
1110 e 
1111 f 

Figure 3.1. Hexadecimal representation of bit patterns. 

Hence the element X01 10O011 1 can be represented as {63}, where the character 

denoting the four-bit group containing the higher numbered bits is again to the left. 
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3.3.2 Arrays of Bytes 

Arrays of bytes will be represented in the following form: 

n0 a1 a, ...a1  
The bytes and the bit ordering within bytes are derived from the 128-bit input 

sequence 

innpilto inplltl in7pult2 ___ Innput126 Iiipulti-, 
as follows: 

no  = {inprrto. irnput1 _ .... input,} 
a1  = { inputs. irnpluty_ .... innput15 }; 

(71 _ { inputs:o. input121, .... inpurl?7} . 

The pattern can be extended to longer sequences (i.e., for 192- and 256-bit keys), so 

that, in general, 

= {inputs. ifputs,1-1.....  

3.3.3 The State 

Internally, the AES algorithm's operations are performed on a two-dimensional array 

of bytes called the State. The State consists of four rows of bytes, each containing Nb 

bytes, where Nb is the block length divided by 32. In the State array denoted by the 

symbol s, each individual byte has two indices, with its row number r in the range 0 

<= r < 4 and its column number c in the range 0 <= c < Nb. This allows an individual 
byte of the State to be referred to as either sr.c or s[r,c]. For this standard, Nb=4. i.e., 0 
<=c<4. 
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At the start of the Cipher and Inverse Cipher described in Sec. 3.7, the input — the 

array of bytes 1110. iru 1 • • .. ir? 15 — is copied into the State array as illustrated in Fig. 

3. The Cipher or Inverse Cipher operations are then conducted on this State array, 

after which its final value is copied to the output — the array of bytes: 
OI1t0. O1lt1. ... OW15. 

4 4 

input bites 

in0 in4 in3 In 12 

In 1 in3 in9 11113 

In, U25 IYI10 I?114 

Ill3 III- inn ??115 

State a»Tm' 

50,0 SC.1 S0 2 50.3 

.51,0 S 1.1 1.2 ,5̀ .3 

S20 S2.1 S'2 .S3 

S3,0 -5 3.1 S3,2 .53.3 

output bites 

©utO O11t4 OlItg 011t12 

02111 ODUF; O11t9 O1It13 

Otlt2 OUTS OUtlp Olrti 

OUt3 ou t7 OUtii Ol/ti5 

Figure 3.2 State array input and output. 

Hence, at the beginning of the Cipher or Inverse Cipher, the input array, in, is copied 

to the State array according to the scheme: 

s[r, c] = in[r + 4c] for 0 <= r <4 and 0 <= c <Nb, 

and at the end of the Cipher and Inverse Cipher, the State is copied to the output array 

out as follows: 

out[r + 4c] = s[r, c] for 0 <= r < 4 and 0 <= c < Nb. 

3.3.4 The State as an Array of Columns 

The four bytes in each column of the State array form 32-bit words, where the row 

number r provides an index for the four bytes within each word. The state can hence 

be interpreted as a one-dimensional array of 32 bit words (columns), wo...w3, where 
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the column number c provides an index into this array. Hence, for the example in Fig. 

3, the State can be considered as an array of four words, as follows: 

= .5c 	S 1.Co.5:2.0 S30 
	

IV -,=S0. ,.51_1S, ,S; 

	

b1'1 = •SCF 1 .5' 1.1 S2. 1  S'3.1 
	

IV-3 = 50351.3 S 2_ 3 S;;  . 

3.4 Algorithm Specification 

For the AES algorithm, the length of the input block, the output block and the 

State is 128 bits. This is represented by Nb = 4, which reflects the number of 32-bit 

words (number of columns) in the State. 

For the AES algorithm, the length of the Cipher Key, K, is 128, 192, or 256 bits. 

The key length is represented by Nk = 4, 6, or 8, which reflects the number of 32-bit 

words (number of columns) in the Cipher Key. [6] 

For the AES algorithm, the number of rounds to be performed during the execution of 

the 

algorithm is dependent on the key size. The number of rounds is represented by Nr, 

where Nr =10 when Nk = 4, Nr = 12 when Nk = 6, and Nr = 14 when Nk = 8. 

The only Key-Block-Round combinations that conform to this standard are 

given in Fig. 4. For implementation issues relating to the key length, block size and 

number of rounds. [5, 6] 

15 



AES Algorithm 

Key Length 

(Nh,  ii orris) 

Block Size 

(Nb words) 

Number of 
Rounds 

(Nr) 

4 4 10 

6 4 1 

S 4 14 

AES-128 

AES-192 

AES-256 

Figure 3.3. Key-Block-Round Combinations. 

For both its Cipher and Inverse Cipher, the AES algorithm uses a round function that 

is composed of four different byte-oriented transformations: 

1) byte substitution using a substitution table (S-box), 

2) shifting rows of the State array by different offsets, 

3) mixing the data within each column of the State array, and 

4) adding a Round Key to the State. 

3.5 Cipher 

At the start of the Cipher, the input is copied to the State array using the conventions 

described in Sec. 3.4. After an initial Round Key addition, the State array is 

transformed by implementing a round function 10, 12, or 14 times (depending on the 

key length), with the final round differing slightly from the first Nr-1 rounds. 

The round function is parameterized using a key schedule that consists of a one-

dimensional array of four-byte words derived using the Key Expansion routine. 
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The Cipher is described in the pseudo code in Fig. 3.4. The individual transformations 

SubBytesO, ShiftRowsO, MixColumnsO, and AddRoundKeyO — process the State 

and are described in the following subsections. In Fig. 3.4, the array w[] contains the 

key schedule. As shown in Fig. 3.4, all Nr rounds are identical with the exception of 

the final round, which does not include the MixColumnsO transformation. 

Cipher(byte in[4*Nb], byte out[4*Nb], word w[Nb*(Nr+l)]) 

begin 

byte state [4,Nb] 

state = in 

AddRoundKey(state, w[O, Nb-I]) 

for round = I step 1 to Nr-1 

SubBytes(state) 

ShiftRows(state) 

MixColumns(state) 

AddRoundKey(state, w[round*Nb, (round+1)*Nb-1]) 

end for 

SubBytes(state) 

ShiftRows(state) 

AddRoundKey(state, w[Nr*Nb, (Nr+l)*Nb-1]) 

out = state 

end 

Figure 3.4. Pseudo Code for the Cipher. 

3.5.1 SubBytesOTransformation 

The SubBytesO transformation is a non-linear byte substitution that operates 

independently on each byte of the State using a substitution table (S-box). This S-box 

(Fig. 3.6), which is invertible, is constructed by composing two transformations: 
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S-BOX 
SO.0 $0.1 s4.2 S0 1 

r,c 

"5=.: 

10  

2.2 S_.0 23 

LIS~10 
53.1 Si , 333 

0.4 3C.1 'SC`_2 S0.3 

X1.0 

.S', i 

1 , 
C 

2.2 

.3 

S1.0 S' . 3 

33.0 '53.. 53 , 53.3 

Figure 3.5 SubBytes() applies the S-box to each byte of the State. 

The S-box used in the SubBytesO transformation is presented in hexadecimal form in 

Fig. 3.6. For example, if s[ 1,1 ] = {53},  then the substitution value would be 

determined by the intersection of the row with index `5' and the column with index 

`3' in Fig. 3.6. This would result in s' [ 1,1 ] having a value of {ed} . 

Y 
0 1 2 3 4 5 6 7 8 9 a b c d e f 

0 63 7c 77 7b f2 6b 6f c5 30 01 67 2b fe d7 ab 76 
1 ca 82 c9 7d fa 59 47 £0 ad d4 a2 of 9c a4 72 cO 
2 b7 fd 93 26 36 3f f7 cc 34 a5 e5 fl 71 d8 31 15 
3 04 c7 23 c3 18 96 05 9a 07 12 80 e2 eb 27 b2 75 
4 09 83 2c la lb 6e 5a aO 52 3b d6 b3 29 e3 2f 84 
5 53 dl 00 ed 20 fc bl 5b 6a cb be 39 4a 4c 58 of 
6 dO of as fb 43 4d 33 85 45 f9 02 7f 50 3c 9f a8 

X 
7 51 a3 40 8f 92 9d 38 f5 be b6 da 21 10 ft f3 d2  
8 cd Oc 13 ec 5f 97 44 17 c4 a7 7e 3d 64 5d 19 73 
9 60 81 4f do 22 2a 90 88 46 ee b8 14 de Be Ob db 
a eO 32 3a Oa 49 06 24 5c c2 d3 ac 62 91 95 e4 79 
b e7 c8 37 6d 8d d5 4e a9 6c 56 f4 ea 65 7a ae 08 
c ba 78 25 2e lc a6 b4 c6 e8 dd 74 if 4b bd 8b 8a 
d 70 3e b5 66 48 03 f6 Oe 61 35 57 b9 86 cl id 9e 
e el £8 98 11 69 d9 8e 94 9b le 87 e9 ce 55 28 df 
f Sc al 89 Od bf e6 42 68 41 99 2d Of bO 54 bb 16 

Figure 3.6 S-box: substitution values for the byte xy (in hexadecimal format). 
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3.5.2 ShiftRows() Transformation 

In the ShiftRowsO transformation, the bytes in the last three rows of the State are 

cyclically shifted over different numbers of bytes (offsets). The first row, r = 0, is not 

shifted. This has the effect of moving bytes to `'lower" positions in the row, while the 

"lowest" bytes wrap around into the "top" of the row. 

S 
	

S 

O.1 3.2 .S 0j 

S1_3 .S11 S"12 31.3 

S_ a .S_, .S'„ S2 3 

53.0 S3.1 's3.2 53.3 

3:) Sr.1 o.' 3C.3 

S:1 Sl, .S1; '51.c 

22 23 2.O 52.1 

S3. i S 3.O S5 .1 S ' 

(a)  

1 2 3 < 5 d7 8 8 J 11 2 13 14 15 

1 I591 131 2  61 iol 141 31 71 iii 151 41 81121 16 1 

D 1 i 3 4 5 .8 7 8 9 '7 11 '2 13 14 15 

I 1 I 8 liii 141 2 I GE iOI 131 3 I 7 I 9 1151 4 I 51 121 16 1  

D 	1 	2 	3 	4 	5 	6 	7 	8 	9 	"J 	1 	• 2 	13 	1 G 	15 

1 	6JThI 2 8 12 13 3 7 91II 	10 16 

1 	3 	/ 	.5 	5 	8 	B 	0 	11 	'7 	13 	1t 	1S 

1 ~, 1t i6 2 7 12 13 3 8 9 14 4 5 10 15 

(b)  

Figure 3.7: The shift of rows (a) in general and (b) in this implementation 
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3.5.3 MixColumnsO Transformation 

The MixColumnsOtransformation operates on the State column-by-column, treating 

each column as a four-term polynomial. 

Figure 3.8 MixColumnsO operates on the State column-by-column. 

3.5.4 AddRoundKey() Transformation 

In the AddRoundKeyO transformation, a Round Key is added to the State by a simple 

bitwise XOR operation. Each Round Key consists of Nb words from the key 

schedule. Those Nb words are each added into the columns of the State. In the 

Cipher, the initial Round Key addition occurs when round = 0, prior to the first 

application of the round function (see Fig. 3.4). The application of the 

AddRoundKeyOtransformation to the Nr rounds of the Cipher occurs when 1Z= 

round <= Nr. 
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Figure 3.9 AddRoundKey() XORs each column of the State with a word 

from the key schedule. 

3.6 Key Expansion 

The AES algorithm takes the Cipher Key, K, and performs a Key Expansion routine 

to generate a key schedule. The Key Expansion generates a total of Nb (Nr + 1) 

words: the algorithm requires an initial set of Nb words, and each of the Nr rounds 

requires Nb words of key data. The resulting key schedule consists of a linear array of 

4-byte words, denoted [Wi], with i in the range 0 <= i < Nb(Nr + 1). 

SubWordO is a function that takes a four-byte input word and applies the S-box to 

each of the four bytes to produce an output word. The function RotWord() takes a 

word [ao, al, az, a3] as input, performs a cyclic permutation, and returns the word [ai, 

a2, a3, ao]. 
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KeyExpansion(byte key[4*Nk], word w[Nb*(Nr+1)], Nk) 

begin 

word temp 

i=0 

while (i < Nk) 

w[i] = word(key[4*i], key[4*i+1], key[4*i+2], key[4*i+3]) 

i=i+1 

end while 

i = Nk 

while (i < Nb * (Nr+1)] 

temp = w[i-1] 

if (i mod Nk = 0) 

temp = Sub Word(RotWord(temp)) xor Rcon[i/Nk] 

else if (Nk > 6 and i mod Nk = 4) 

temp = SubWord(temp) 

end if 

w[i] = w[i-Nk] xor temp 

i=i+1 

end while 

end 

Figure 3.10 Pseudo Code for Key Expansion. 
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3.7 Inverse Cipher 

The Cipher transformations in Sec. 3.5 can be inverted and then implemented in 

reverse order to produce a straightforward Inverse Cipher for the AES algorithm. The 

individual transformations used in the Inverse Cipher — InvShiftRowsO, 

InvSubBytesQ, InvMixColumnsO, and AddRoundKey() — process the State and are 

described in the following subsections. [5,6] 

InvCipher(byte in[4*Nb], byte out[4*Nb], word w[Nb*(Nr+l)]) 

begin 

byte state[4,Nb] 

state = in 

AddRoundKey(state, w[Nr*Nb, (Nr+1)*Nb-1]) // See Sec. 5.1.4 

for round = Nr-1 step -1 downto 1 

InvShiftRows(state) // See Sec. 5.3.1 

InvSubBytes(state) // See Sec. 5.3.2 

AddRoundKey(state, w[round*Nb, (round+l)*Nb-1 ]) 

InvMixColumns(state) // See Sec. 5.3.3 

end for 

InvShiftRows(state) 

InvSubBytes(state) 

AddRoundKey(state, w[O. Nb-I]) 

out = state 

end 

Figure 3.11 Pseudo Code for the Inverse Cipher. 
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3.7.1 InvShiftRows() Transformation 

InvShiftRowsOis the inverse of the ShiftRowsOtransformation. The bytes in the last 

three rows of the State are cyclically shifted over different numbers of bytes (offsets). 

The first row, r = 0, is not shifted. The bottom three rows are cyclically shifted by 

Nb-shift(r, Nb) bytes, where the shift value shift(r,Nb) depends on the row number. 

3.7.2 InvSubBytes() Transformation 

InvSubBytes() is the inverse of the byte substitution transformation, in which the 

inverse Sbox is applied to each byte of the State. 

3.7.3 InvMixColumnsO Transformation 

InvMixColumnsO is the inverse of the MixColumnsO transformation. 

InvMixColumnsO operates on the State column-by-column, treating each column as a 

four term polynomial 

3.7.4 Inverse of the AddRoundKeyO Transformation 

AddRoundKeyO is its own inverse, since it only involves an application of the XOR 

operation. 

3.7.5 Equivalent Inverse Cipher 

In the straightforward Inverse Cipher presented in Fig. 3.12, the sequence of the 

transformations differs from that of the Cipher, while the form of the key schedules 

for encryption and decryption remains the same. However, several properties of the 

AES algorithm allow for an Equivalent Inverse Cipher that has the same sequence of 
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transformations as the Cipher (with the transformations replaced by their inverses). 

This is accomplished with a change in the key schedule. [6] 

The two properties that allow for this Equivalent Inverse Cipher are as follows: 

1. The SubBytesO and ShiftRowsO transformations commute; that is, a SubBytesO 

transformation immediately followed by a ShiftRowsO transformation is equivalent 

to a ShiftRowsO transformation immediately followed buy a SubBytesO 

transformation. The same is true for their inverses, InvSubBytesO and InvShiftRows. 

2. The column mixing operations - MixColumnsO and InvMixColumnsO — are linear 

with respect to the column input, which means 

InvMixColumns(state XOR Round Key) 

= InvMixColumns(state) XOR InvMixColumns(Round Key). 

These properties allow the order of InvSubBytes() and InvShiftRowsO 

transformations to be reversed. The order of the AddRoundKey() and 

InvMixColumnsO transformations can also be reversed, provided that the columns 

(words) of the decryption key schedule are modified using the InvMixColumnsO 

transformation.  

25 



AES Algorithm 

EgInvCipher(byte in[4*Nb], byte out[4*Nb], word dw[Nb*(Nr+l )]) 

begin 

byte state[4,Nb] 

state = in 

AddRoundKey(state, dw[Nr*Nb, (Nr+l)*Nb-1 ]) 

for round = Nr- I step -1 downto I 

InvSubBytes(state) 

InvShiftRows(state) 

InvMixColumns(state) 

AddRoundKey(state, dw[round*Nb, (round+1)*Nb-1]) 

end for 

InvSubBytes(state) 

InvShiftRows(state) 

AddRoundKey(state, dw[O, Nb-1 ]) 

out = state 

end 

for i = 0 step 1 to (Nr+1)*Nb-I 

dw[i] = w[i] 

end for 

for round = 1 step I to Nr- I 

InvMixColumns(dw[round*Nb, (round+l)*Nb-1 ]) 

end for 

Figure 3.12: Pseudo Code for the Equivalent Inverse Cipher. 
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CHAPTER 4 

IMPLEMENTATION 

I am going use the name XMODE for this new variant of the CBC mode for our 

convenience. It takes only one key, K (k bits) of a block cipher E. The key length, k 

bits, is the minimum because the underlying block cipher must have a k-bit key K 

anyway. 

XMODE is a simple variant of the CBC MAC (Cipher Block Chaining Message 

Authentication Code). It allows and is secure for messages of any bit length (while 

the CBC MAC is only secure on messages of one fixed length, and the length must be 

a multiple of the block length). Also, the efficiency of XMODE is highly optimized. 

It is almost as efficient as the CBC MAC. 

4.1 Pre-processing 

The following steps can be done without the message. 

L 
MSB 	 LSB 

L<<1 

Fig. 4.1 Left shifting by one bit 
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1. First, encrypt n-bit 0 (denoted by 0 " ) to compute L . That is, let L be E (K, 0 "). 

2. Check if the most significant bit of L is 0. 

➢ If it is, let L.0 be L«1 , where L<<1 denotes a shift in which bits 

increase in significance with the most significant bit being lost and a 

zero coming into the least significant bit. See the figure. 

➢ Otherwise, let L.0 be (L<<1) xor Constant , where Constant is the n- 

bit 	constant. 	if 	n=128 	, 	then 	Constant 	is 

0x00000000000000000000000000000087, and if n=64 , then 

Constant is Ox000000000000001b, where bits are presented as 

hexadecimal values with their most significant bits to the left. 

3. Check if the most significant bit of L.0 is 0. 

➢ If it is, let L.0 2  be (L.0 <<1 . 

Otherwise, let L.0 2  be ((L. u) < < 1) xor Constant , where Constant is 

the same as above. 

4. Save L. a and L. a 2 . 

4.2 Tag-generation 

Let M be the message. Break M into blocks M[1J, M[2],..., Mimi , where each M[iJ 

(i = 1 ,..., m-1) is n bits. The last message block Mimi may have fewer than n bits 

(but it has 0 bits only if the message M is empty) 

1. Let Y[O] be0". 

2. For i = 1 to m-1 do : let Y[iJ be E(K, M[i] xor Y[i-1J) . 

3. Check if the bit length of the last message block Mimi is n bits. 

If it is, let X[m] be Mimi  xor Y[m-1] xor L. u. 

Otherwise, 

let Mimi  be M[m] 1 0 (n-1-(b" length  of Mimi)) That is, append a 1 and then 

append the minimum number of Os. so that the total length 

becomes n bits. Let X[mJ be M[mJ xor Y[m-1J xor L. u 2 
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4. Let T be E(K, X[mJ) . 

5. Let Tag be the t-bit truncation of T 

6. Return Tag. 

Note that if the message length is a positive multiple of n , then L.0 is used. 

Otherwise 10' padding and L. u 2  are used. If the message is an empty string, then 

you have to append 10 "-' and use L. u 2  

Here is the algorithmical description in pseudocode. 

Algorithm XMODE(K, M) 

1. L ( E(K, On) 

2. if msb(L) = 0 then L • u — L << 1 

else L - u E- (L << 1) ex-or Constant 

if msb(L - u) = 0 then L • U2 •--- (L - u) << 1 

else L - U2 	((L . u) << 1) ex-or Constant 

3. Y [0] 4— On 

Break M into blocks M[1],M[2], ... , M[m] 

/* IM[i]I=n for i=1,...,m- 1, and IM[m]I<-n/ 

4. for I - Itom -1do 

Y [i] 	E(K,M[i] ex-or Y [i - 1]) 

5. if IM[m]I = n then X[m] — M[m] ex-or Y [m - 1] ex-or L • u 

else X[m] — (M[m]IOn-1-IM[m]l) ex-or Y [m - 1] ex-or L - U2 

6. T •- E(K,X[m]) 

7. Tag — t-bit truncation of T 

return Tag 
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4.3 Tag-verification 

Suppose that you have received a message-tag pair (M, Tag ) . To check if (M, Tag 

is authentic, first, compute the tag Tag for the message M using the above Tag-

generation and your own secret key. If Tag '= Tag then M is authentic. Otherwise, M 

is unauthentic. 

Case MI = mn for some m >_ 1. In this case, M = M[1 J, M[2], ... , M[m] and IM[m]I = n. 
Fig 

Tag 

Fig. 4.2 Tag generation 
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CHAPTER 5 

RESULTS AND DISCUSSION 

5.1 Results 

➢ "K len." denotes the key length. 

"#K sche." denotes the number of block cipher key schedulings. For RMAC, 

it requires one block cipher key scheduling each time generating a tag. 

"#M" denotes the number messages which the sender has MACed. 

"#E invo." denotes the number of block cipher invocations to generate a tag 

for a message M, assuming IMI > 0. 

r "#E pre." denotes the number of block cipher invocations during the pre-

processing time. These block cipher invocations can be done without the 

message. 

"+kst" means that the key separation technique is used. OMAC does not need 

the key separation technique since its key length is optimal in its own form. 

For RMAC2, we assume that AES 128 is used to compute the CBC MAC tag, 

and AES256 is used to encrypt it. 
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Table 5.1 Efficiency Comparison with AES128. 

Name K len. #K sche. #E invo. #E pre. 
RMAC 1 [AES 128] 256 1 + #M 1 +(M±1)/128  0 
RMAC2[AES 128] 384 1+ #M 1 + (M/128) 0 
EMAC[AES128] 256 2 1 + (M+1)/128 0 
XCBC[AES128] 384 1 M/128 0 
TMAC[AES128] 256 1 M/128 0 

XMODE[AES128] 128 1 M/128 1 

450 
400 
350 

300 
250 
200 
150 
100 

50 
0 

RMAC1 	EMAC 	TMAC 

■ Key Length ■ Key schedule ❑  Invocations 

Figure 5.1: Efficiency Comparison with AES128 
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Table 5.2 Efficiency Comparison with AES192. 

Name K len. #K sche. #E invo. #E pre. 
RMAC1[AES192] 384 1 + #M 1+(M+1)/128 0 
EMAC[AES192] 384 2 1 +(M+1)/128 0 
XCBC[AES192] 448 1 M/128 0 
TMAC[AES192] 320 1 M/128 0 

XMODE[AES192] 192 1 M/128 1 

450 

400 

350 

300 

250 

200 

150 

100 

50 

0 
RMAC1 	EMAC 	XCBC 	TMAC 	XMODE 

■ Key Length ■ Key schedule ❑  Invocations 

Figure 5.2: Efficiency Comparison with AES192 
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Table 5.3 Efficiency Comparison with AES256 

Name K len. #K sche. #E invo. #E pre. 
RMAC1 [AES256] 512 1+ #M 1+(M+1)/128 0 
EMAC[AES256] 512 2 1 +(M+1)/128 0 
XCBC[AES256J 512 1 M/128 0 
TMAC[AES256] 384 1 M/128 0 

XMODE[AES256] 256 1 M/128 1 

600 

500 

400 

300 

200 

100 

0 
RMAC1 EMAC XCBC TMAC XMODE 

■ Key Length ■ Key schedule ❑  Invocations 

Figure 5.3: Efficiency Comparison with AES256 
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Table 5.4 Efficiency Comparison with AES128 and Key Separation Technique. 

Name K len. #K sche. #E invo. #E pre. 
RMAC 1 [AES 128] 128 2+ #M 1+(M+1)/128  0 
RMAC2[AES128] 128 2 + #M I + (M/128) 0 
EMAC[AES128] 128 3 1 +(M+1)/128 0 
XCBC[AES128] 128 2 M/128 0 
TMAC[AES128] 128 2 M/128 0 

XMODE[AES128] 128 1 M/128 1 

300 

250 

200 

150 

100 

50 

0 
RMAC1 RMAC2 EMAC XCBC TMAC XMODE 

® Key Length ■ Key schedule ❑  Invocations 

Figure 5.4: Efficiency Comparison with AES128 and Key Separation Technique 
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Table 5.5 Efficiency Comparison with AES192 and Key Separation Technique.. 

Name K len. #K sche. #E invo. #E pre. 
RMACI[AES192] 192 2 + #M 1+ (M+1)/128 3 
EMAC[AES192] 192 3 1 +(M+1)/128 3 
XCBC[AES192] 192 2 M/128 4 
TMAC[AES192] 192 2 M/128 3 

XMODE[AES192] 192 1 M/128 1 

RMAC1 	EMAC 	XCBC 	TMAC 	XMODE 

■ Key Length ■ Key schedule D Invocations 

Figure 5.5: Efficiency Comparison with AES192 and Key Separation Technique 
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Table 5.6 Efficiency Comparison with AES256 and Key Separation Technique. 

Name K len. #K sche. #E invo. #E pre. 
RMAC 1 [AES256J 256 2 + #M 1+ (M+1)/128 4 
EMAC[AES256] 256 3 1 +(M+1)/128 4 
XCBC[AES256] 256 2 M/128 4 
TMAC[AES256] 256 2 M/128 3 

XMODE[AES256] 256 1 M/128 1 

300 

250 

200 

150 

100 

50 

0 
RMAC1 EMAC XCBC TMAC XMODE 

■ Key Length ■ Key schedule ❑  Invocations 

Figure 5.6: Efficiency Comparison with AES256 and Key Separation Technique 
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5.2 Discussions 

None of RMAC. EMAC, XCBC, TMAC and OMAC is optimal in all efficiency 

measures: "K len.", "#K sche.", "#E invo." and "#E pre." There is a tradeoff among 

the above four measures. 

Key length: In Tables 5.1-5.3, XMODE gives the best performance. It shows that 

XMODE is as secure as EMAC. XCBC, and TMAC despite of its optimal key length. 

In Tables 5.4-5.6, the key lengths of RMAC, EMAC, XCBC and TMAC can be 

reduced to the optimal length. But the cost appears in the number of key schedulings 

and the number of block cipher invocations during the pre-processing time. 

Number of key schedulings: RMAC requires one block cipher key scheduling each 

time generating a tag. In Tables 5.1-5.3, XCBC, TMAC and XMODE give the best 

performance, while EMAC requires two block cipher key schedulings. In Tables 5.4-

5.6. it is obvious that XMODE gives the best performance. 

Number of block cipher invocations: In Tables 5.1-5.6, RMAC and EMAC 

requires one or two extra block cipher invocations compared to XCBC, TMAC and 

XMODE. 

This overhead is significant for short messages. 

Number of block cipher invocations during the pre-processing time: In Tables 

5.1-5.3, only XMODE requires one block cipher invocation. But this is not very 

significant since: 

:- It can be done in an idle time, and 

It is performed infrequently compared to MAC generation. Thus one or two 

block cipher invocations to generate a tag in RMAC and EMAC is much 

more significant since it is performed on each message. 

In XMODE, the gain for this cost is its optimal key length, which completely 

eliminates the need for the key separation technique. We believe this is a very 

reasonable and desirable tradeoff since: 
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key separation technique is a very error-prone process in practice, and 

key separation technique is used in many environment, but if it is used, then 

other MACs have a significant key setup cost compared to XMODE. 

In fact, the performance of XMODE is far better than RMAC, EMAC, XCBC and 

TMAC in Tables 5.4-5.6. 
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CHAPTER 6 

CONCLUSION 

Conclusion 

The proposed mode allows and is secure for messages of any bit length (while the 

CBC MAC is only secure on messages of one fixed length, and the length must be a 

multiple of the block length). Also, the efficiency of this mode is highly optimized. It 

is almost as efficient as the CBC MAC. 

Proposed mode gives the best performance with AES 128, AES 192 and AES 256. It 

is as secure as EMAC, XCBC, and TMAC despite of its optimal key length. RMAC 

and EMAC require one or two extra block cipher invocations compared to XCBC, 

TMAC and proposed mode. It saves the key length, which makes the security proof 

of proposed mode substantially harder than those of XCBC. 
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