
CYBER FORENSICS: APPLICATION OF
NORMALISED COMPRESSION DISTANCE FOR

CROSS DRIVE CORRELATION

A DISSERTATION

Submitted in partial fulfillment of the
requirements for the award of the degree

of
MASTER OF TECHNOLOGY

in
INFORMATION TECHNOLOGY

By

GUBBA RAMESH
4 U*S44)\

DEPARTMENT OF ELECTRONICS AND COMPUTER ENGINEERING
INDIAN INSTITUTE OF TECHNOLOGY ROORKEE

ROORKEE - 247 667 (INDIA)
JUNE, 2008

CANDIDATE'S DECLARATION

I hereby declare that the work, which is being presented in the dissertation entitled

"CYBER FORENSICS: APPLICATION OF NORMALISED COMPRESSION

DISTANCE FOR CROSS DRIVE CORRELATION" towards the partial fulfillment of

the requirement for the award of the degree of Master of Technology in Information
Technology submitted in the Department of Electronics and Computer Engineering,

Indian Institute of Technology Roorkee, Roorkee (India) is an authentic record of my

own work carried out during the period from June 2007 to June 2008, under the guidance

of Dr. R. C. Joshi, Professor, Department of Electronics and Computer

Engineering, IIT Roorkee.

I have not submitted the matter embodied in this dissertation for the award of any other

degree or diploma.

Date: 17 Tv y j ©8
Place: Roorkee (GUBBA RAMESH)

CERTIFICATE

This is to certify that the above statement made by the candidate is correct to the best of

my knowledge and belief.

Date: Is.(Q•Og
Place: Roorkee 	 (]

Professor

Department of Electronics and Computer Engineering

IIT Roorkee — 247 667

i

ACKNOWLEDGEMENTS

I would like to take this opportunity to extend my heartfelt gratitude to my guide and

mentor Dr. R. C. Joshi, Professor, Department of Electronics and Computer

Engineering, Indian Institute of Technology Roorkee, for his trust in my work, his able

guidance, regular source of encouragement and assistance throughout this dissertation

work. I would state that the dissertation work would not have been in the present shape

without his inspirational support and I consider myself fortunate to have done my

dissertation under him.

I also extend my sincere thanks to Mr Raj, `Information Security' Lab in-charge, for

providing facilities for the work. I also wish to thank Ms. Anjali Sardana and my co-

students for their valuable suggestions and timely help whenever asked for.

I would also like to express my gratitude to my parents for everything that they have done

for me, to my wife for putting upto my tantrums but still supporting and encouraging me

and finally to my son Abhishek who soarified his quota of playtime with me. All of this

would have been impossible without their constant support.

GUBBA RAMESH

ii

Abstract

In this work a new approach of automated Cross-Drive correlation, in computer forensics, is

presented. This approach uses the concept of Normalized Information Distance(NID) that

helps to derive drive similarity correlation between a pair of disk images. The algorithm uses

the Normalized Compression Distance (NCD) which is the implementation approximation of

NID. The method proposed is a parameter free correlation unlike the previous work which is

based on generation of common features as parameters of comparison and correlation. The

ever increasing capacities of digital storage devices and their rapid proliferation makes

parameter based systems more time consuming as the generation of features or parameters

would take a considerable amount of time. However, parameter free algorithm would provide

quick and more complete leads and clues to the investigator so that he can focus only on the

highlighted subset of input datasets for further detailed investigation. The main advantages of

NCD based cross drive correlation are: examination of data for generating forensic features

as parameters is not required, savings on time and resources that otherwise would be required

for forensic features extraction, deep knowledge of the underlying data is not required, it

would detect all similarities simultaneously, it would automatically select dominant shared

features in all pairwise comparisons and can be used effectively for heterogeneous data. The

algorithm works in three main stages: conversion of the acquired image to a reduced

signature, NCD correlation and finally calculation of pairwise correlation score with

graphical representation. Experiments on disk images of 200MB were conducted and the

programs developed, without many modifications, can be easily scaled to inputs of sizes in

Giga Bytes.

iii

CONTENTS

Candidate's Declaration and Certificate ..i

Acknowledgements............................ 	..ii

Abstract..iii

Tableof Contents ...iv

CHAPTER 1 	Introduction and Statement of the Problem1

	

1.1 	Introduction ...1

	

1.2 	Motivation ..2

	

1.3 	Problem Statement ...3

	

1.4 	Organization of the Report ...4

CHAPTER 2 	Background and Literature Review6

	

2.1 	Cyber Forensic Components ...6

	

2.2 	Investigating Evidence Spanning Multiple Disks7

	

2.3 	Existing Tools and Research Gaps7

	

2.4 	Cross Drive Correlation ...9

CHAPTER 3 	Framework for NCD Similarity based Correlation............12

	

3.1 	Framework Overview and Sub-Tasks12

	

3.1.1 	Disk Image Preprocessing14

	

3.1.2 	NCD Similarity Correlation14

	

3.1.3 	Reports and Graphical Output15

	

3.1.4 	Data Blocks Extraction15

iv

CHAPTER 4 	Techniques Used in Framework16

	

4.1 	Normalised Compression Distance16

	

4.2 	Byte based File Statistics ...19

CHAPTER 5 	Framework Implementation20

	

5.1 	System Requirements ..20

	

5.2 	Implementation of Disk Image Preprocessing Module20

	

5.3 	Implementation of NCD Correlation Module 21

	

5.4 	Outputs and Data Blocks Extraction24

	

5.5 	Generation of Test Images ...26

CHAPTER 6 	Results and Discussion ...27

	

6.1 	Accuracy and Speed of Similarity Detection27

	

6.1.1 	Window Size of Data Reduction27

	

6.1.2 	Window Size for Similarity Comparison28

	

6.1.3 	Compression Algorithm28

	

6.1.4 	Random Noise Resistance of NCD29

	

6.1.5 	Effect of Relative Offsets of Data30

	

6.2 	Optimization of Graphical Display31

	

6.2.1 	Threshold Values of NCD32

	

6.2.2 	Noise Elimination during Data Reduction............34
j .

	

6.3 	Limitations ..36

	

6.4 	Validation of Test Results ...37

v

CHAPTER 7 	Conclusion and Future Work ..39

	

7.1 	Conclusion ..39

	

7.2 	Scope for Future Work ...39

REFERENCES...41

PUBLICATIONS..43

APPENDICES

ASource Code ...I

	

B 	Program GUI Screenshot ...XXIX

vi

Introduction and Statement of the Problem 	CHAPTER 1

11 Introduction

In this era every aspect of our life is touched by computers and other digital devices.

We use them for shopping, business, communication etc. Any computer/digital

device can be used for multiple purposes. The pervasiveness of these devices has

increasingly linked them to crimes and incidents. As a consequence almost all

criminal activities might leave behind some sort of digital trace. Many crimes

normally not thought of as cyber crimes are requiring cyber forensics. Therefore,

to initiate a criminal or civil prosecution we need to use scientifically derived and

proven strategies of, `Digital Forensic Investigations' or 'Cyber Forensics' that

depend on sound forensic principles. The strategies for proving or disproving the

crime scene hypothesis must be time-bound, efficient and accurate [1 and 2].

The methods and tools available to a digital forensic investigator today are

basically single disk drive or disk image analyzers and perform the tasks of data

carving, hash generation and analysis, e-mail header analysis etc. A typical crime

scene today may consist of many digital storage devices of various shapes, capacity

and functionality including those which are not present at the crime scene itself. A

world wide terrorist network is a very good example to understand. The evidence

needs to be culled out or interpreted by analyzing together all the seized potential

digital evidence sources like, personal computers, email and chat accounts, ISP

records, mobile phones, answering machines etc. These evidence sources might be

many and from different geographical locations. The primary effort would be to see

if all the digital devices seized have some underlying relations that can throw light

on the investigations. Towards this, Cross-Drive Analysis (CDA) [3] is a concept

of cross drive correlation proposed for investigating evidence spanning multiple

drives by generating pseudo-unique forensic features like credit card numbers.

1

In this dissertation another approach of cross drive correlation is, presented.

In this new approach the similarity metric `Normalized Compression Distance'

(NCD) [4] has been, applied to get a correlation between a pair of disk drives by

using the raw data. This method would greatly reduce the load of an investigator as

quick and accurate leads can be gathered without actually parsing and understanding

the data to generate forensic features. This new method will not be a total substitute

but an alternate approach for faster results.. Detailed investigations and the CDA of

[3] can be used subsequently on minimized input datasets.

1.2 	Motivation

Finding evidence on a hard disk is like finding a needle in a haystack. Laptops and

desktops with 1TB of storage, mobile phones with.tens of GB of storage are already

in market. This large volume of data makes the task of investigation more complex

and slow. In case of large number of drive images pertaining to a single case, the

investigator would want to identify hot drives and the relations between the drives

with reasonable accuracy and in minimum time. The present practice. is to carve

valid file objects and manually assess them for information for each drive image.

The individual results are then correlated - by manual assessments. This practice may

not account for all underlying relations or correlations unless the investigator has a

keen eye for details.

The enhancement to this manual practice is the use of Forensic Feature

Extraction (FEE) and Cross-Drive Analysis (CDA) proposed in [3] which helps in

analyzing large data sets of disk 'images for highlighting correlations in an

automated manner. FFE-CDA uses statistical techniques for analyzing information

within a single disk image and across multiple disk images based on extracted

pseudo-unique identifier as features like social security numbers and credit card

numbers. However, the problems with this approach are:

2

• Low level examination of each individual drive is required to generate forensic

features.

• Either the drives need to be mountable i.e the meta data has to be intact or file

carving techniques need to be used which can be time consuming with many

false positives.

• Information from deleted and slack space has to be retrieved to generate forensic

features.

• Some relevant features may be missed out.

• Detailed and deep domain knowledge of data in disk images is required. For

example[3] in case of credit card number feature extractor the following needs

to be ensured:

o String of 14-16 digits, no spaces or other characters

o No single digit is repeated more than 7 times

o Pairs repeated not more than 5 times

o Format validity; first 4 digits denotes the card issuer and length of string

is consistent with the issuer

o Sequence of digits as per validation algorithm

These observations emphasize the need for a more completely automatic tool that

provides cross drive correlation at the bottommost physical data level(sectors on a

hard disk) by just using the raw data on the disk, without bothering about the

specific type and nature of the data which is otherwise essential for feature

extraction.

1.3 	Problem Statement

The requirement is to provide Cross Drive Correlation of the drive images without

actually understanding or parsing the raw bytes and just by using the data signatures

of the raw data. The problem can be divided into following:

91

• Devise a method to compare the raw data of one image with another,

irrespective of the type of file system, irrespective of operating

system, irrespective of data pertaining to existing or deleted file;

while taking into account the data residing in hidden partitions,

volume slack, file slack and masquerading file types.

• Achieve computational efficiency and reasonable accuracy of results.

• Devise graphical display representation and correlation score

formulation.

• Extract data that satisfies the similarity threshold.

• Achieve a preliminary analysis of evidence spanning multiple disks,

by avoiding the cumbersome and time consuming Examination phase

of the Forensic process.

1.4 	Organization of the Report

The complete work on use of Normalized Compression Distance (NCD) for cross

drive correlation is presented in this report in the following format:

Chapter 2 contains the background and literature review. In this chapter the Digital

Forensic Framework or process is stated and the existing techniques and the

proposed technique are discussed in terms of the forensic process for investigating

multiple drives. The existing research gaps are also highlighted.

Chapter 3 explains the NCD similarity correlation algorithm and the functions of

various sub-tasks in it.

Chapter 4 explains the mathematical foundations of the techniques of Normalized

Compression Distance as a similarity measure and Byte statistics for data reduction.

These techniques are the foundation of the algorithm devised in this work.

4

Chapter 5 explains the implementation details and issues of the proposed strategy.

The generation of test input data sets is also discussed.

Chapter 6 discusses the results. The various optimization issues and limitations are

spelt out.

Chapter 7 concludes by summarizing the work and discussing its applicability.

Areas where further work needs to be done are also listed out in this chapter.

5

Background and Literature Review 	 CHAPTER 2

2.1 	Cyber Forensic Components

The Cyber or Digital Forensic Process as defined by Digital Forensic Research

Workshop (DFRWS) in [5] and [6] has the following components:

(i) Collection. 	Data related to ;a specific event is identified, labeled,

recorded, and collected, and its integrity is preserved. Here media is

transformed into data.

(ii) Examination. Identification and extraction of relevant information

from the collected data while protecting its integrity using a

combination of automated tools and manual processes. Here data is

transformed into information.,

(iii) Analysis. 	This involves analyzing the results of the examination

to derive useful information that helps the investigation. Here

information is transformed into evidence.

(iv) Reporting. 	Reporting the results of the analysis, describing the

actions performed, determining what other actions need to be

performed, and recommending improvements to policies, guidelines,

procedures, tools, and other aspects. Generated evidence is used to

formulate reports, prepare charts and support decisions.

Fig 2.1 depicts the framework in terms of activities and the inputs and outputs

associated with each of the activity.

R

COLLECT ~{ EXAMINE 	ANALYSE 	
(REPORT) Activities

MEDIA 	 DATA 	 INFO 	 EVIDENCE and
Inputs

Outputs

Fig 2.1: Components of DFRWS Digital Forensic Process

	

2.2 	Investigating Evidence Spanning Multiple Disks

The requirement can best be explained by an example., In a case of investigating a

terrorist network, digital storage media of many individuals, many organizations

separated geographically may be seized as potential source of evidence and

intelligence. Here the investigation, as per the existing norms, would iteratively

focus on `examination' and `analysis's . of each piece of digital media. The

examination would typically consist of data carving, key word search, hash

verification etc. The correlation between the various data sources would be

established, if any, by manually perusing the individual reports.

	

2.3 	Existing Tools and Research Gaps

The existing open and commercial tools do not provide any support for automated

analysis for correlation between two or more disk images, in case of evidence

spanning multiple devices. The tools primarily perform data carving and
examination on a single disk image. Some of these are discussed below.

1

EnCase is the most popular [7] computer investigation software. It supports

many types of file systems. It lists files, directories and recovers deleted and slack

files. It performs keyword searches, hash analysis of known files and duplicates and

generates timelines of file activity, etc. The software has its own scripting language

support for additional customization.

Forensic Tool Kit(FTK) by AccessD'ata which is the next most popular tool

is revered for its searching capabilities and application level analysis like analysis of

e-mail headers. It also performs other single disk activities as in case of Encase. The

hash based comparison feature tells if the two files are same or different.

WinHex, by X-Ways software technologies AG, which basically is a

advanced hex editor, provides a feature of position based byte by byte comparison

and reports the total number of differences or similarities. This information though

would indicate how different the two images are but would not show any other

details.

Other some what less popular tools are ProDiscover, SleuthKit, Autopsy

etc. All these perform more or less the same type of functions and there is no

evidence of any feature specifically catered for analyzing multiple drives. Hence,

there is a need to carry out research for accurate and fast correlation between

multiple disk images so that quick preliminary clues and leads can be gathered in

any investigation. The research gaps in this respect can be summarized as:

• Techniques for correlating many disks each of capacity in Giga

Bytes or Tera Bytes.

• Tools to automate the correlation techniques efficiently.

• Visualization and reporting of such analysis for faster

interpretation.

8

2.4 	Cross Drive Correlation

Traditionally each piece of evidence is subjected to the various phases of the

forensic process as shown in Fig 2.1. The sub-tasks in the `Examination' and

`Analysis' phase (Examination: Traceabiiity, Pattern match, Hidden data discovery,

etc; Analysis: Timelining, Link analysis, Spatial analysis, Traceability etc) would

need to be applied to each individual item in the evidence bag. At the end the results

would require comparison and manual inspection so that correlations are

highlighted. This is a time consuming process and may not always lead to the

desired results.

Simson L. Garfinkel has spelled out an architecture which uses the

techniques of Forensic Feature Extraction (FFE) and Cross-Drive Analysis (CDA)

in [3]. This architecture can be used to analyse large data sets of forensic disk

images. It contains the following five tasks as shown in the Fig 2.2.

Disk 1
E I 	STEP 2 I 	I 	STEP 3' I STEP; 4 I I 	STEP 5

Disk 2 I 	 I
,~,

1st ORDER' I I 	CROSS

IMAG G FFE CDA ° DRIVE REPORT 	`
CORRE,LA`I7 GENERATIO-

Disk N ON 	",°' ^ N

Collection Examination Analysis Reporting

Fig 2.2: Forensic Feature Extraction (FFE) based Cross-Drive Analysis

(CDA) Architecture-as Mapped to Digital Forensic Process.

E

Garfinkel used this technique to analyse 750 images of drives obtained on secondary

market. He was able to identify those drives which had high concentration of

confidential financial data. Clusters of drives from same organization were also

highlighted. The following uses of CDA were; identified:

• Hot drive identification

• Better single drive analysis

• Identification of social network membership

• Unsupervised social network discovery

Pseudo-unique identifiers like email message-IDs and credit card numbers were

extracted and used as forensic features for single drive analysis and for CDA. For

example in case of single drive, an histogram of email addresses generated using

email message-IDs as features, can lead to the primary owner of the disk. For multi

drive correlation the following weighting functions for scoring the correlation

between each pair of drives were used.

Let: 	D = set of drives; 	 F = set of extracted features;

dO...dD = Drives in corpus; . 	fO...fF = Extracted features;

FP(fn; dn)= 0 In not present on dn / 1 fn present on dn;

(a) A simple scoring function, Si, is to add up the number of common

features on dl and d2.

F

S 1(d l ; d2) = Y_ FP(fn; d l)FP(fn; d2) 	(2.4.1)

n=0

(b) Weighting scoring function, S2, makes correlations resulting from

pseudo-unique features more .important than correlations based on

ubiquitous features by discounting features by the number of drives

on which they appear.

10

D

DC(f) _ 	. 	FP(f ; dn) = set of drives with feature f (2.4.2)

n=0

F

S2(dl; d2) = Y FP(fn; dl)FP(fn; d2)/ DC (fn) (2.4.3)

n=O

(c) 	If features that are present in high concentrates on drives dl and/or

d2 should increase the weight so as to increase the score between a

computer user who had exchanged emails with a known terrorist

when compared with an individual who has only exchanged one or

two emails with the terrorist then a scoring function,S3, can be

defined as:

FC(f ; d) = count of feature f on drive d; then

F

S3(dl; d2) = Z FC(fn; dl)FC(fn; d2)/ DC (fn) (2.4.4)

n=O

Using these scoring functions several examples of single drive analysis, hot drive

identification and social network discovery were presented in [3].

Framework for NCD Similarity based Correlation CHAPTER 3

3.1 	Framework Overview and Sub-Tasks

Unlike the FFE based CDA the NCD similarity based correlation process does not

require the `Examination' phase of the Forensic process as there is no requirement

to parse and interpret the raw data beforehand. This would save precious amount of

time as we can straight away zero-in on the suspected drives just by correlating the

drives by using NCD similarity. However, if required, the extracted data blocks that

meet the similarity constraints can be further subjected to FFE based CDA or some

other method for a more thorough investigation. In the normal case the similarity

based analysis would be the first pass and the FFE-CDA would be the optional

second pass.

We assume that the similarities of our interest are not very minuscule, thereby

having a good chance of being detected. It is also assumed that the operating system

files and other common files have been removed during imaging in the `Collection'

phase and the data has been converted ` into a common format from various

representation formats like ASCII, Unicode, big-endian, small-endian etc.

Figure 3.1 shows the Normalised Compression Distance based similarity

correlation scheme in relation to the DFRWS forensic framework. The examination

block is SKIPPED because features need not be generated.

Disk 1 	STEP 1 	 STEP 2 	STEP 3

NCD
IMAGING 	SKIPPED 	SIMILARITY 	REPORT FFE-CDA .I 	 ~*► 	 —► CORRELATION 	 (Optional)

Disk N ►

Collection 	Exam nation 	Analysis 	Reporting

Fig 3.1: NCD Similarity Based Correlation Analysis

12

The proposed algorithm and the steps therein are explained below. The main blocks

of the algorithm are: `Disk Image Preprocessing', 'NCD similarity Correlation',

`Reports and Visualization' and 'Data Block Extraction'. The algorithm is depicted

in Fig 3.2

4 4 	 Disk Image Preprocessing
(Reduction)

Disk Images

NCD Correlation between
Pairs of Disk Images Reports

(Similarity values &
Correlation Scores)

Graphical Display Output

Extraction of Correlated
Data Blocks
	 Further analysis

Fig 3.2: Algorithm of NCD Based Disk Images Correlation

The general functionality of each sub-task in the architecture is discussed in

subsequent paragraphs. The actual implementation details are mentioned in

chapter 5 and chapter 6.

13

	

3.1.1 	Disk Image Preprocessing

The capacities of digital media can be in Giga Bytes or Tera Bytes. Correlating

raw data of such large capacity disks; if possible, would consume tremendous

amount of computational efforts and would defeat the aim of a quick

investigation. It was seen that without preprocessing the activity of correlating

two 200MB disk images took a minimum of 8 hours of computation on a normal

desktop computer using 350KB NCD comparison window. Therefore a

preprocessing block was introduced so that the image is reduced using file byte

statistics [8] to produce a data signature. The same reduction if applied to all

images does not alter the characteristics of the image in relation to each other

and hence the reduced images can be correlated. This brings down the

computational effort and the memory requirements. Images of size 200MB were

reduced to about 400KB(99.8 % reduction) and the computational effort came

down within the range of 3 to 4 minutes.

	

3.1.2 	NCD Similarity Correlation

This module is the heart of the framework. Here information distance based

similarity metric, Normalised Compression Distance, is used to detect all

possible pairwise dominant similarities between the input disk images.

Normalised Compression Distance is applied on the reduced input disk images.

The correlation is block per block i.e the block size is the comparison window

size. The comparison window is a sliding window which moves one window

size at a time. The correlation score is calculated and reported. based on certain

fixed thresholds. The correlation information is depicted as a graph in

accordance to the thresholds. This module needs to be optimized for fast and

accurate results.

14

	

3.1.3 	Reports and Graphical Output

After completion of correlation between the pair of disk images, the results are

reported in a file. The similarity correlation denoting the similarity values

against the data block numbers is difficult to understand. Hence a graphical

output provides a simple and effective visualization of the similarities between

the two correlated images.

	

3.1.3 	Data Blocks Extraction

This is the final task wherein the similarity correlated data blocks, as per the

threshold values, of the disk images being compared are extracted and saved as

separate files. Further detailed investigation can be performed on these extracted

files and these additional activities can be data carving, FFE based CDA or

another iteration of NCD similarity correlation with smaller comparison window

size for more accurate results.

15

Techniques Used in Framework 	 CHAPTER 4

4.1 	Normalised Compression Distance

Similarity [9] is a degree of likeness between two objects. So a similarity measure is

a distance between the two objects being compared. There are many metrics

available to express similarities like Cosine distance, Euclidean distance etc. These

metrics require additional details as dimensions for arriving at the calculations.

Moreover, some of these metrics provide absolute results meaning that the

comparisons are not normalized.

The other class of similarity metric is Normalised Compression

Distance(NCD) based on Normalised Information Distance (NID) which in turn is

based on kolmogorov complexity. The mathematical definitions and explanations as

in [4] and [9] are given below.

Metric: First of all let us consider when a distance can be termed a metric. A

distance is a function D with nonnegative real values, defined on the Cartesian

product X x X of a set X. It is called a metric on X if for every x, y, z in X:

• D(x, y) = 0 iff x = y (the identity axiom).

• D(x, y) + D(y, z) > D(x, z) (the triangle inequality).

• D(x, y) = D(y, x) (the symmetry axiom).

A set X provided with a metric is called a metric space. For example, every set X

has the trivial discrete metric D(x, y) = 0 if x = y and D(x, y) = 1 otherwise.

Kolmogorov Complexity: If x is a string then K(x) is the kolmogorov complexity of

x and essentially is the shortest program which can generate x. Therefore the upper

16

bound is K(x)=Ixl. As kolmogorov complexity is noncomputable, it is approximated

using compression. If C* and D* are complimentary compression and

decompression program lengths and C(x) is compressed length of x then

K(x) = C(x) + D* ..(4.1.1)

The conditional kolmogorov complexity K(xly) of x relative to y defines the length

of shortest program to generate x if y is given. K(x,y) is the length of shortest

binary program to produce x and y and distinguish between them. It has been shown

that there exists a constant c >=0 and independent of x,y such that

K(x,y) = K(x) + K(yIK(x)) = K(y) + K(xIK(y)).........(4.1.2)

where the equalities hold up to `c' additive precision [9].

Normalised Information Distance: Information distance is the length E(x,y) of a

smallest program that can generate x from y and vice-versa. It has been stated as

E(x,y) = max { K(ylx),K(xiy)) (4.1.3)

upto an additive logarithmic term. Therefore, E(x,y) is a metric upto an additive

logarithmic term. Further, E(x,y) is absolute and not relative or normalized. The

normalized E(x,y) is termed Normalised Information Distance and defined as

NID(x,y) = max { K(ylx),K(xly)) / max { K(x),K(y)) (4.1.4)

NID(x,y) is also noncomputable as it depends on kolmogorov complexity.

Therefore, NID is approximated using a real world compressor that is normal and

the metric is termed Normalised Compression Distance (NCD). A normal

compressor has the following properties upto a logarithmic additive term.

• Idempotency: C(xx)=C(x) and C(y)=O if y=0

• . Monotonicity: C(xy) > C(x)

17

• Symmetry: C(xy) = C(yx)

• Distributivity: C(xy) + C(z) < C(xz) + C(yz)

Therefore, NCD is also a metric upto an logarithmic additive term. Normalised

Compression Distance has been stated in [4] and [9] as

(C(xy)-min { C(x),C(y) })
NCD(x,y)= 	

Max { C(x),C(y))
..........(4.1.5)

The essential features of NCD similarity metric are:

• It is parameter free which means detailed domain knowledge and

subject specific features are not essential.

• It is universal in the sense that it approximates the abstract similarity

parameter 	based 	on 	the 	dominant 	features 	in 	all 	pairwise

comparisons.

• The objects being compared can be from different realms.

• It is a general metric by the virtue of its applicability for varied data

like text, music, sourcecode, executables, genomes etc.

• It 	captures 	every 	effective 	distance 	between 	the 	objects 	of

comparison.

• The results are normalized and usually take values in the range 	of

[0,1.0] . This means that the results are relative and not in absolute

terms, making interpretation of the results very easy.

• As 	real 	compressors 	are 	space 	and 	time 	efficient, 	in 	certain

applications they can more efficient than parameter based methods

by an order of magnitude of 3 to 4 as stated in [10].

• NCD is random noise resistant to a large extent as shown in [11].

• Data to be compared need not be in a particular format.

• The objects being compared need not be of same dimensionality.

18

In the scheme of NCD similarity disk image correlation all data whether visible,

hidden, fragmented or as part of file/partition/volume slack are automatically taken

care of in the process of comparison.

4.2 	Byte based File Statistics

Byte value file statistics have been used very effectively for identification and

localization of data types within large scale file systems mainly as part of

steganalysis in [8]. Thirteen statistics were assessed to determine the signature of a

file type and of these average, kurtosis, distribution of averages, standard deviation

and distribution of standard deviation were found to be adept at differentiating the

data types.

However, the statistic selected has to be used in conjunction with a sliding

window of appropriate size. In [8] window sizes in the range [256,1024] bytes were

found to be optimum for the purpose of localization of files in a data set.

In this framework of NCD similarity correlation byte average statistic has

been chosen to preprocess the data and reduce size while maintaining the individual

characteristics of the objects being compared. Reduction window size of 512 bytes

was used to achieve a fair amount of originality while attaining a good percentage of

reduction.

w

Framework Implementation 	 CHAPTER 5

5.1 	System Requirements

The hardware used was a standard desktop with a Pentium dual core and 1 GB

RAM. The operating system on the desktop was Windows XP. The programs were

developed in Delphi 7. There were no special resource or tweaking used because

more than the performance aspect it was the validation of the concept that was the

primary focus of the experiments as part of this work. The choice of . the

programming language was influenced by my previous familiarity and need for GUI

for depicting results as charts for better visualization.

5.2 Implementation of Disk Image Preprocessing Module

Disk image preprocessing is necessary to reduce the size of input dataset so as to

reduce the computational effort. As already mentioned, the technique used is the

representation of the original image as byte average is based on a window size. The

byte average varies from a value of 0 to 255. In [8] the optimum window size has

been discovered in the range 256 to .•1024 bytes. After few trials the default

reduction window size implemented in this module was of 512 bytes as it gave the

best results for the generated test data sets. This size can be varied by the user if

required. The options which were explored to represent the byte average in the

reduced disk image were:

➢ As integer value which is in the range 0-255; requires a maximum of

three characters for representation.

> Normalization of integer byte value to the range 0-50; requires a

maximum of two characters for representation.

> Hex values in precision 2; requires two characters for representation.

20

> ANSI character encoding; requires one character for representation.

Integer values including normalized ones did not result in optimum reduction sizes

and the reverse mapping for extraction of data blocks was also a problem. The byte

representation in hex of precision 2 helped in reverse mapping for data block

extraction without affecting the reduction in size. The ANSI character set encoding

leads to the most optimal reduction size as it outputs one character for each byte and

also enables reverse mapping on to the original disk image from the graphical

output so that data blocks of interest can be extracted. The reduced files are created

in the same directory as those of input images and are not deleted as the same can be

used as inputs for second iteration of similarity correlation. If one of the disk image

inputs of the program is '200MBimgl.dd' then its reduced file is created as

'200MBimgl.ddRN'. This reduced file is used for the NCD calculations.

5.3 	Implementation of NCD Correlation Module

This module gives a choice of bzip2 or zlib compression for calculating the

Normalized Compression Distance similarities between the disk images. The NCD

is calculated block per block where the block size is the comparison window size.

The window slides by one full size each time. A correlation scoring function SNCD

was devised to identify pairs of disk images with maximum similarities. The

correlation score is calculated pair ' wise and reported based on certain fixed

detection thresholds of NCD values. Based on these thresholds the scoring function

SNCD of disk image 1 and disk image 2 would be

j=N 1 	j=N2 	j=Nn
1 (1-X 1~) +1 (1-X2i) ++ (1-X 3)

SNCD (Img1,Img2)
Min {Imgl.Blocks, Img2.Blocks}

...............................(5.3.1)

21

SNCD is a positive value if N1=N2....=Nn # 0 else SNCD (Imgl,lmg2)=0. Here

Imgl.blocks = (Imgl.size) / (Comparison window size). Ni, N2 etc are the total

instances of NCD values within the corresponding thresholds. X1, X2 etc are the

NCD values within the corresponding thresholds. The individual values are

subtracted from 1 to negate the effects of summation terms of large threshold values

(low similarity) over small threshold values (high similarity) which may lead to

incorrect inferences. The term in denominator Min {Imgl.Blocks, Img2.Blocks)

normalizes and bounds the SNCD values.

The reason why this value in the denominator is sufficient is clear from

Table 5.1. In case of similarity correlation of file x with itself, the maximum

correlation ideally would be for total number of blocks in file x depending on the

comparison window size. In some cases the similarities may be little more than the

total number of blocks for a number of reasons. For example, in a text file the

`Introduction' at the start may be quite similar to the `Conclusion' at the end. We

may also come across a situation where one of disk image has multiple copies of

files or data and hence the number of blocks similar would be more if these are

found in the other drive image. In essence we are computing the percentage of

blocks of the smaller drive image which are similar to the blocks in the other drive

image.

rnUD

•

mm,

Block rr

File }

Block 0
Block 0 	 File X 	 j 	Block m

Table 5.1: NCD values of File X with itself

22

The value NCD (BlockX, BlockX) actually depends on the comparison

window or block size. Greater the value of SNCD greater is the correlation. Normally

SNCD would takes values from 0 to 1. We will get a value of 1 when the smaller

object of comparison is fully contained in the other object and .the NCD values are

zero meaning that the blocks are perfectly similar. In this case we need to consider

that there are no repetitions or duplicate file. objects.

To illustrate the detection thresholds, we can use the following three

detection thresholds of NCD values for a comparison window size of 2k ; Threshold

1: TI-I! = [0, 0.3] , Threshold 2: TH2 = (0.3, 0.35] and Threshold 3: TH3 = (0.35,

0.41. If there are m images then the results can be computed as a m x m distance

matrix. Correct selection of thresholds would lead to better interpretable graphical

results.

As the NCD calculation process is comparison iteration of each block of file

1 with each block of file 2, the following simple structure was used to avoid

repeated calculations.

for 	each block of file 1 do
{

calculate and store file 1_block_compression_size ;

for 	each block of file 2 do
{

if first iteration then
{
calculate and store all file2_block_compression_size; ,.
concatenate blocks and calculate compression_size;
calculate NCD;
}

else
{
concatenate blocks and calculate compression_size;
calculate NCD using stored values;
}

}
}

23

5.4 	Outputs and Data Blocks Extraction

The report of the pairwise NCD similarity comparison in form of correlation score

SNCD, input disk images, time of start, time of completion, NCD comparison

window size, Reduction window, Thresholds and the compression algorithm used

are part of a `stats.txt' output file. The time taken also includes the disk image

preprocessing time. The total count of points designated as similar is also mentioned

as `Count'. A sample `stats.txt' file is shown below. Additional details of NCD

values and the corresponding block number were also printed initially but were later

removed as the details were felt unnecessary.

H:\Documents and Settings\Administrator\Desktop\files\200MBimg2.ddRN
H:\Documents and Settings\Administrator\Desktop\files\240offsetl.ddRN
6/8/2008 7:45:09 PM
NCD BLOCK SIZE 100
'BZip2

BLOCK_ SIZE

 window 50
Thresholds 0.35 0405 0.55 0.6

6/8/2008 7:45:16 PM Completed Sncd 6.68286035161975E+0000. Count : 1197

The graphical output is a 2 dimensional plot with left and bottom axes

representing two disk images in terms of total blocks based on the comparison

window size. Proper thresholds are selected based on the comparison window to get

a clear picture of the similarities. A sample graph output is shown in Figure 5.1

24

Fig 5.1: Correlation Graph: Plot of NCD values of two Disk images

For the purpose of extraction of data blocks matching similarity criteria, a simple

mapping formula was used. For extracting the data of disk image of x-axis, the

following equations were used to decide extraction positions:

Start byte offset = x1 * R/C * W..................................(5.4.1)

End byte offset = x2 * R/C * W..................................(5.4.2)

Where

xl - X-coordinate of starting block

X2 - X-coordinate of ending block

R - Reduction window size in bytes

W - NCD comparison window size in bytes

C - Number of encoding characters per byte used during reduction

25

5.5 	Generation of Test Images

Raw test images were generated using the Unix `dd' utility. For example the

following sequence of commands using a Windows version of `dd' , a raw image

200MBimg3.dd of 200MB with one known jpg file was generated. This file was

also included as known similarity in one of the other images created.

C:\Users\ramesh\Desktop\dd-0.5>dd if=\\?\Device\HarddiskVolume5

bs=1M count=35 > 200MBimg3.dd

rawwrite ddfor windows version 0.5.

Written by John Newbigin <jn@it.swin.edu.au>

This program is covered by the GPL. See copying.txt for details

35+0 records in

35+0 records out

C:\Users\ramesh\Desktop\dd-0.5>dd if=IMG_0313.JPG >>

200MBimg3.dd

rawwrite ddfor windows version 0.5.

Written by John Newbigin <jn@it.swin.edu.au>

This program is covered by the GPL. See copying.txt for details

2698+1 records in

2698+1 records out

C:\Users\ramesh\Desktop\dd-0.5>dd if=\\?\Device\HarddiskVolume5

bs=1M count=175 skip=35 >> 200MBimg3.dd

rawwrite ddfor windows version 0.5.

Written by John Newbigin <jn@it.swin.edu.au>

This program is covered by the GPL. See copying.txt for details

175+0 records in

175+0 records out

26

Results and Discussion 	 CHAPTER 6

6.1 	Accuracy and Speed of Similarity Detection

As we are dealing with large number of varying high capacity digital storage

devices, it becomes imperative to produce accurate and quick results. Results which

are not in-time will have very less value for the investigator and would also hamper

the other aspects of the investigations and criminal proceedings. Similarly, accuracy

of results is very important to avoid inconsistent conclusions and false implications.

Below we discuss how both these requirements are satisfied in the NCD-cross drive

correlation strategy.

6.1.1 Window Size of Data Reduction

In [8] the optimum window size has been discovered in the range 256-to 1024 bytes

for file localization in steganalysis. This was so because a size greater than 1024

would miss out the original features and in some cases a size smaller than 256 may

introduce unnecessary finer details. For NCD similarity correlation, reduction

window greater than 1024 is bound to smoothen out certain features and therefore

would miss out certain similarities of smaller size. It is also clear that a data object

of size 1024 bytes may not be detected as the data object is just a character after

reduction. Window sizes less than 256 would lead to more similarities but may not

be useful always. For example header information of two pdf files would lead to a

good similarity but the file contents can be very different. The accuracy of the NCD

correlation would depend on the extent to which the characteristics of the raw data

are captured in the reduced image.

27

Trials with 256k, 512k and 1024k reduction window sizes were conducted.

However, most of the work was validated using 512k window size as this produced

quick and reliable result for the test drive images generated as part of this work.

6.1.2 Window Size for Similarity Comparison

Selection of the optimum window sizes for both reduction in preprocessing phase

and computation of NCD are vital. The window sizes of 1k, 2k and 4k for NCD

calculations between reduced disk images were tried out. It is obvious that short

span similarities would be missed out as the window size increases. However, the

effort increases exponentially as the size is halved. It was found that 2k window size

for NCD calculations is optimum in the experiments. With more computational

resources the NCD window can be decreased to Ik or below for better results. In

one case of testing, a similarity of 400K was not detected when reduction window

was 512k and the NCD comparison window was 4k.

6.1.3 Compression Algorithm

Better the compression better is the accuracy. The real world lossless compression

algorithms bzip2 and zlib(gzip implementation) were used for calculating NCD in

the experiments. These algorithms satisfy the properties of Idempotency,

Monotonicity, Symmetry and Distributivity to a large extent. As bzip2 is block

based, it is symmetrical. The Complearn[4] NCD toolkit has bzip2 and gzip as built-

in choices and this was an indication that bzip2 can be used. Bzip2, because of its

better compression ratio, gives better results especially when the comparison

window is large. For comparison block sizes ranging from 750KB to IMB and

above, the result of comparison of `x' with `x' were inconsistent as shown in figure

6.1. The exact comparison block size where the results become inconsistent were

seen to be dependent on the type of data (binary code, ASCII. text etc). All these

observations were made initially when the input images were not reduced. After the

preprocessing block was introduced in the algorithm, the size of NCD window was

brought down to 2KB-4KB range from 70OKB-1MB range, due to reduction and

hence any real world compression would have worked, however, bzip2 was used in

the final trials. Bzip2 has also been tested successfully for heterogeneous data of

different file types in [9].

COMPARISON ACCURACY OF X WITH X

CoinparisonWndow Size

Fig 6.1: Comparison of Bzip2 and zlib Compression

6.1.4 Random Noise Resistance of NCD

The Normalised Compression Distance is resistant to random noise to a large extent

depending on the data type as shown in [11]. To be more precise, if some bits in

one of the objects being compared are either replaced by random bits or the length is

shifted few places, then the NCD value would not be affected much. What this

means to our strategy is that even if two exactly similar data fragments on the disk

images being compared, do not fit into same positions with respect to the NCD

comparison window, as shown in figure 6.2, we will still detect a healthy degree of

similarity. In figure 6.2 detection of 'aaaaaa' is not an issue. The data 'bbbbbb' of

first image file would be similar to third and fourth block of image 2 to varying

degrees of similarity and hence detected despite the offset position.

Disk
Image I

Disk
Image 2

aaaa bbbbbb

NCD Window —p

bbbbbb'!
aRRIaaaxxxxbbb bbbyyy

Fig: 6.2 : Sliding NCD Window's Resistance to Noise

Because of this property the comparison window need not move byte-per-byte. As

long as the window size is small enough for the similarity sizes of interest, the

iterations will lead to inevitable overlaps.

6.1.5 Effect of Relative Offsets of Data

The problem of detection misses due to induced relative data offset in one of

the disk images, was also encountered. Normally this situation would not occur in

reality. This is because of the way the reduction process works. During reduction in

the preprocessing phase, the data in each reduction window size is converted to byte

average which in turn is converted into an ANSI character. The situation is depicted

in figure 6.3. Assume `bbbbbb' is translated to `B'. The block 'bbbbbb' which is

aligned to window boundary in disk image I is converted to `B'. Though `bbbbbb'

is present in disk image 2 but because it is not aligned to reduction window

boundary, the encoding of the windows of image 2 would lose the required data

signature. There is no `B' in reduced disk image 2. The reduction process sees

`xxxxbbb' and 'bbbyyyy' as the window aligned data chunks in disk image 2.

30

Disk
Image 1 aaaa~ ccccccc 'bbbbbb ` dddddd

Reduction
Window l~

r B D Reduced
 File

Disk
Image 2

Fig 6.3: Problem of Offset in Reduction

If we consider a similar data fragment of one reduction window size then the

maximum offset is half the size. In case the offset is exactly half we can decrease

the reduction window size by half to preserve the data signatures. However, as the

size of reduced file will double, the computational effort would increase many folds.

It is also obvious similarities less than one reduction window would not have any

unique signature. In the event of offset other than half window size, the reduction

window size needs to be selected by trial and error so that its multiple is the amount

of offset and hence neutralizes the effect. The other strategy might be addition of

successively increasing filler bytes to one of the inputs and then selecting the

iteration with maximum SNCD or maximum `diagonal lengths summation'. Such

situations of offset may also exist due to certain file systems like 'ReiserFS' which

does NOT follow sector based boundaries for allocating space to file objects and so

offsets would be there at random positions. The mentioned strategies probably

would not work here. This issue of offset neutralization has not been dealt with in

this dissertation though experiments were made to assess the effects of induced

initial offsets.

6.2 	Optimization of Graphical Display

The NCD output is a jumble of cryptic numbers denoting varying degree of

similarity between the data blocks. Understanding this output to find the correlation

is very difficult. Hence a graphical output provides a simple and effective

31

visualization of the similarities between the two correlated images. Incorrect or out

of band values may clutter the graph or miss out the similarities altogether. In case

of optimized output consecutively correlated blocks appear as diagonals and give a

clear picture to the investigator. The graphical display also forms the basis for

extracting the correlated data blocks for further detailed analysis. Hence well

optimized output will produce a better picture of comparison. The following two

strategies of optimization were employed:

• NCD Thresholds

• Elimination of noise due to runs of zeros.

6.2.1 Threshold Values of NCD

Selection of Threshold values of NCD depends on the output Chart display

requirements. The thresholds have no effect on the max SNCD value selection as all

SNCD values would be equally affected. This optimization is different for different

selection of comparison window size and has to be determined by trial and error.

The thresholds used during testing, for 2k comparison window are:

if (ncd<=0.35)then show similarity as red

else if (ncd<=0.4) then show similarity as black

else if (ncd<=0.55) then show similarity as blue

else if ncd<=0.69 then show similarity as yellow

else if ncd<=0.75 then show similarity as lime ;

Figure 6.4(a) shows output with improper thresholds and figure 6.4(b) shows the

optimized output.

32

C

• NCD values
21

1

IC

TChart

■ ❑

1 	 G■ ■ ■ r ■.l 	o ff■ 	
bIF

0

• o 	 ■IIQo ■ 	o 	• • o.e 	 a

■>t.~ ■■ 9 	
0

	 1 	_ 	■
0 10 20 30 40 50 60 70 80 90 100 110 120 130 140 150 160 170 180 190 200 210 220 230 240

Disk image 1

Fig6.4(a):NCD Values of two Disk Images with Incorrect Thresholds

33

W

TChan

Disk image 1

Fig 6.4(b): Values of two Disk Images with Optimized Thresholds

6.2.2 Noise Elimination during Data Reduction

Problems were encountered during NCD calculations when there were runs of zeros

in the original images. Runs of zeros can also be attributed to some secure file

wiping software and low level formatting of media. This resulted in false positives

and clutter on the charts. This noise is different from the random noise mentioned

in paragraph 6.1.4. This was overcome by allowing only runs of 4 consecutives

zeros as byte averages and substituting the rest with random values, for the

34

reduction window size of 512 bytes. This optimization was also achieved by trial

and error. However, it was noticed that the effect varies as the comparison window

and reduction window sizes change. This noise can also be due to consecutive runs

of some other byte average value in both the comparison objects but such likelihood

is very small. Figure 6.5(a) shows the effect of noise and figure 6.5(b) shows the

output after noise elimination.

NOIS

t___ _ _

T ~

NOISE

a, m of aw nu , ni m W ao iw iw i ni 1u lei iv 14) is wu 1~ 1xl lab ttzl tm 170115 1x)115 19D tai 2A 25 210 215?

Fig 6.5(a): NCD Correlation with Noise

35

o 5 10152)153)15 40 45 5)8)8)8)10758)8)9) 95 100 19) 110 115 13112513D 135140145 150 155 19) 165 170 175 18D 18) 190 195 ST) Zb 210 215

Fig 6.5(b): NCD Correlation after Noise Reduction

6.3 Limitations

The advantages have been enumerated in sufficient details. However, it is essential

to understand the weaknesses. The limitations which became apparent during this

dissertation are:

• Limitation of minimum size of similarity that can be detected. The

comparison and the reduction windows play a role here as already

discussed. However, decreasing the windows to detect small similarities

would make increase the computational efforts many folds.

• Limitation due to different data storage formats. There are various

formats for data storage. The most common of these are ASCII and

36

Unicode[7]. ASCII uses one byte to store characters whereas Unicode

would use 4 bytes(UTF-32) or 2 bytes(UTF-16) or a variable number of

1, 2 or 4 bytes(UTF-8). Therefore the same file in two different formats,

if not taken care of in the `Collection' phase of forensic process, would

not be detected in the raw format. The issue is further compounded

because multiple byte representations can be of big-endian or small-

endian order.

6.4 Validation of Test Results

Disk images of size 200MB were created and used for validation of the algorithm.

Deliberate similarities were introduced, deleted and then overwritten with other files

so as to simulate deleted and slack space. A subset of the trials is produced below.

DISK
IMAGE

IMG 1 IMG 2 1MG~3 ..~-

IMG 2 0.1919251 - -
2

IMG 3 0 0.0024886 -

IMG 4 0 0.0019140 0.0024253

Table 6.1: SNCD Correlation Scores of 4 Test Images

37

Table 6.1 shows the results of NCD-cross drive correlation of four disk images. The

comparison window used was 2KB size and the reduction window was of 512 bytes.

Compression used was bzip2. The results were verified by subjecting the extracted

data blocks to further analysis using WinHex(hex editor) and Scalpel(file carving)

tools. The SNCD values were as expected and the max value of 0.1919251 was due to

large similarities introduced in Img1 and Img2. A jpg file of 900 KB was injected

in Img3 and Img 4. The value of SNCD(Img2,Img3) as 0.0024886 was not due to

introduced similarities but was due to residual file fragments. The other values are

indication of insignificant or no correlation. Different color schemes were used to

indicate the various threshold ranges in the output chart. Similarities greater than I

window were indicated as diagonals.

38

Conclusion and Future Work 	 CHAPTER 7

7.1 Conclusion

Cross drive analysis by correlation of evidence spanning multiple digital devices

with ever increasing capacities would be an important factor of digital investigations

in future. Techniques such as these would address some of the many challenges that

are faced in digitals investigations [12, 13]. In this work it was shown that NCD can

be used in such scenarios for parameter free correlation of the disk images, which

inherently has many advantages as already elaborated. It would be possible to

quickly highlight all hot drives or devices and the strongest relations amongst the

drive images. This information would provide the necessary impetus to the

investigation. The algorithm was validated in lab conditions and owing to time and

other constraints the sizes of the drive images were restricted to 200MB. However,

the program developed can be easily used for drive images of larger size.

Correlation time of about 3 - 4 min was achieved with NCD window size of 2k for

200MB drive images reduced with reduction block size of 512 bytes. Considering

these statistics, for correlating two 1GB drive images the time required on a normal

present day desktop would be 3 x (5x5) = 75 minutes. This time is quite reasonable

even without optimization and other enhancements. Individual analysis of the drives

using data carving, key word search etc would take many hours. The calculation of

NCD correlation scores of pairwise images would take insignificant fraction of time

and hence can be disregarded.

7.2 	Scope for Future Work

Before using the technique in field, further extensive experiments with real data sets

is essential. The system can be enhanced using cluster computing, grid computing,

multi-threading etc to deal with the large capacities and large numbers of digital

devices. Another important area of work is the preprocessing of disk images. It is

important to devise more effective reduction methods so that greater reduction is

achieved while maintaining original data signature of the digital storage devices.

The present reduction uses mapping of I byte to ANSI character set. By using 4

byte Unicode UTF-32 the reduction can be further enhanced by an order of four.

These two enhancements would work hand-in-hand for a fruitful application

of this approach in digital forensics. Study of recursive NCD-cross drive correlation

for obtaining faster results within the acceptable accuracy limits can also be

undertaken.

40

References

[1] Eoghan Casey, "Digital Evidence and Computer Crime" second edition,

Elsevier Academic Press, 2004,

[2] Prosise and Mandia, " Incident Response and Computer. Forensics" ,second

edition, McGraw Hill/Osborne, 2003.

[3] Simson L. Garfinkel, "Forensic feature extraction and cross-drive analysis",

Digital Investigation — Elsevier, DFRWS, 3S(2006)S71 — S81, 2006.

[4] M. Li, X. Chen, X. Li, B. Ma, and P. Vitanyi, "The similarity metric," IEEE

Trans. Inf. Theory, vol. 50, no. 12, pp. 3250-3264, Dec. 2004.

[5] Report From the First Digital Forensic Research Workshop (DFRWS), "A

Road Map for Digital Forensic Research", DTR - T001-01 FINAL DFRWS

TECHNICAL REPORT, November 6th, 2001.

[6] NIST-Special Publication 800-86, "Guide to Integrating Forensic

Techniques into Incident Response", National Institute of Standards and

Technology, U.S. Department of Commerce, 2006.

[7] Brian Carrier, "File System Forensic Analysis", Addison-wesley, 2005.

[8] Robert F.Erbacher, John Mulholland, "Identification and localization of Data

Types within Large-Scale File Systems", Proceedings of the Second International

Workshop on Systematic Approaches to Digital Forensic Engineering (SADFE'07),

IEEE, ISBN:0-7695-2808-2, pp. 55-70, 2007.

[9] Rudi Cilibrasi and Paul M.B. Vit'anyi, "Clustering by Compression", IEEE

transactions on Information Theory 51(4), pp 1523-1545, 2005.

[10] Eamonn, Stelo and Ratana, "Towards Parameter-Free Data Mining", KDD-

proceedings 04, Aug 22-25, ACM, 2004.

[11] Cebrian, Alfonseca and Ortega, "The Normalized Compression Distance is

Resistant,, to Noise", Digital Object Identifier 10.1109/TIT.2007.894669, 	IEEE,

Revised Manuscript, 2007.

[12] Golden G. Richard III and Vassil Roussev, "Next-Generation DIGITAL

FORENSICS", Communications of the ACM, Vol. 49: No. 2, pp 76-80, February

2006.

[13] Panda and Giordano, "Next-Generation CYBER FORENSICS",

Communications of the ACM, Vol. 49: No. 2, pp 44-47, February, 2006.

42

Publications

1. 	A paper "Application of Normalized ;Compression Distance for Cross Drive

Analysis by Correlation" has been submitted to the Journal DIGITAL

INVESTIGATION, ELSEVIER on 29 May 08. Manuscript Number: DIIN-D-08-

00013.

43

APPENDICES

Source code 	 Appendix — A

{Delphi 7 code}

unit Unit 1; 	 //This is the GUI form unit

interface

uses 	 //Include files

Windows, Messages, SysUtils, Variants, Classes, Graphics, Controls,

Forms, Dialogs, StdCtrls, zlib, Grids, ExtCtrls, Series, Chart,

Menus, math;

{/* ---

The NCD comparison window and the preprocessing reduction window size are

taken as inputs from the user. The max values which are also default values are

declared as constants. These values can be changed to suit our requirements.

Const

MAX SECTOR SIZE=2000;

MAX RBLOCK SIZE=512;

//Max NCD window

//Max reduction window

{ /* ---

The following are the GUI components on the GUI Form

type

TForml = class(TForm)

OpenDialogl: TOpenDialog;

ListBoxl: TListBox;

I

Correlate: TButton;

Memo 1: TMemo;

RadioGroupl: TRadioGroup;

LZW: TRadioButton;

Bzip2: TRadioButton;

MainMenul: TMainMenu;

Add2: TMenultem;

clear2: TMenuItem;

StartX: TEdit;

StartY: TEdit;

EndX: TEdit;

EndY: TEdit;

NCDWindow: TEdit;

ReductionWindow: TEdit;

GroupBoxl: TGroupBox;

GroupBox2: TGroupBox;

Labell : TLabel;

Label2: TLabel;

Extract: TButton;

Panell: TPanel;

Chartl: TChart;

Series1: TPointSeries;

Label3: TLabel;

Label4: TLabel;

Labels: TLabel;

Label6: TLabel;

Label7: TLabel;

Label8: TLabel;

Editl: TEdit;

Edit2: TEdit;

Edit3: TEdit;

II

Edit4: TEdit;

Edits: TEdit;

All l: TMenultem;

Chart2: TMenuItem;

Defaults1: TMenultem;

GroupBox3: TGroupBox;

Label9: TLabel;

ZeroLimit: TEdit;

{ /*------------------------- 	------------------------------- ------ 	 -------------------------------------

The following are the form component event procedure declarations.

---*/ }

procedure CorrelateClick(Sender: TObject);

procedure Add2Click(Sender: TObject);

procedure ExtractClick(Sender: TObject);

procedure Chart2Click(Sender: TObject);

procedure All lClick(Sender: TObject);

procedure Defaults 1 Click(Sender: TObject);

private

{ Private declarations }

{/*--- 	---------------

The following are the public(global) variable declarations

__*/]

Public

{ Public declarations }

NCDCompWin: Integer; 	 //NCD Comparison window size input

III

ReductionWin: Integer; .. 	//Reduction widow size input

//Variable declarations for bytes read during file reads
Bytes_read: Integer;

B ytes_read2: Integer;

// file read loop variables
sc2: Integer;

sc2Copy: Integer;

ImgFileHandle: file of byte; 	//File handle for first input object
ImgFileTwoHandle: file of byte; 	//File handle for first input object

sizel: int64;

size2: int64;

size3: int64;

ThSecCount: int64;

CompleteCount: int64;

//Compression size of block of first file

//Compression size of block of first file

{//Compression size of block of first file

concatenated with block of second file)

//NCD Bocks within thresholds

//Total NCD blocks

//Variables for threshold instances
Ni: int64;

N2: int64;

N3: int64;

N4: int64;

N5: int64;

N6: int64;

NN: int64;

IV

size2Store : array[0.. 100000] of integer;

firstiteration: boolean:

innerLoopRunComplete : boolean:

TempFileHdl: textfile:

FirstFile: TMemoryStream;

SecFile:TMemoryStream;

{//array to store second file

compression values)

//report file handle

NCD: extended;

ThresholdSc: extended;

WThresholdSc : extended;

//Temp variables to store summation of (1-NCDvalue) within each Threshold

X1 : extended;

X2: extended;

X3: extended;

X4: extended;

X5: ~~ extended:

X6: extended:

1► 	 ,,

3

X7:

Aw No—

extended;

X8 : extended:

{/Buffers to store bytes read and the concatenated blocks}

BufX : Array[O.. MAX_SECTOR_SIZE]of Byte;

BufX2 : Airay[0.. MAX_SECTOR_SIZE] of Byte:

BufXCarve : Array[0.. MAX_SECTOR_SIZE *MAX_RBLOCK_SIZEJ of

byte;

//MemoryStreams used for compression

ms 1: TMemoryStream;

ms11: TMemoryStream;

V

ms2: TMemoryStream;
ms22: TMemoryStream;
ms3: TMemoryStream;
ms33: TMemoryStream;
msE: TMemoryStream;

mstemp: TMemoryStream;

//Procedure declarations
procedure CompressStream(inpStream, outStream: TStream);
procedure Reduce;

//Function Declarations
Function NCDvalue : extended;

end;

var

Form 1: TForm 1;

implementation
uses bzip2;

{$R *.dfm}

{/*---

The following is the main procedure which performs correlation on the two
input disk images. The sequence of tasks performed is:

1. call preprocessing procedure `Reduce' to reduce input files

2. Loop through the reduced image files based on comparison
window size and calculate NCD using function 'NCDvalue'

3. Assign values to graph based on threshold

4. calculate correlation score SNCD

VI

5. 	Output details in report 'stats.txt'

--- */ j

procedure TForrri 1. CorrelateClick(S en der: TObject);

var

Sc: integer;

minCount: integer;

MinBlocks: integer;

Buf2total: integer;

is integer;

j: integer;

k: integer;

TempFile: file of byte;

begin

Memo 1 .Lines .Add(datetimetostr(now)); 	 //Record date-time of start

ReductionWin:=strtoint(ReductionWindow.text); 	{//Read reduction window

input}

NCDCompWin:=strtoint(NCD Window, text); 	//Read NCD window input

//Set chart axes as "disk image filel" and "disk image file 2"

chart 1.BottomAxis.Title.Caption := ListBox1.Items.Strings[0];

chart 1 .LeftAxis .Title.Caption := ListBox1.Items .Strings [1];

Call to preprocessing procedure

...'~/}
Reduce;

C`M1

{f*

Assign input disk image file names to graph axes

chartl.BottomAxis.Title.Caption := ListBox 1 .Items. Strings [0];
chart 1.LeftAxis.Title.Caption := ListBox L Items. Strings[I];

{/*--
Initializations

--*1)
sc:=0;
Buf2total:=0;
ThSecCount:=0;
CompleteCount:=0;
Bytes_read := 1;
X1:=0;
X2:=0;
x3:=0;
x4:=0;
x5:=0;
x6:=0;
x7:=0;
x8:=0;
N1:=0;
N2:=0;
N3:=0;
N4:=0;
N5:=0;
N6:=0;
NN:=O;
ThresholdSc:=O;

VIII

{ The firstIteration Boolean variable is used to store the values of all Size2 so

as to 	avoid repeat computations. This saves time}

firstlteration:=true;

Opens reduced files for reading

AssignFile(ImgFileHandle, ListBox 1. Items. Strings[0]+'RN');
AssignFile(ImgFileTwoHandle, ListBox 1. Items. Strings[1] +'RN');
//Filemode:=0;
//showmessage(ListBox 1.Items.Strings[0]);

position file pointer at the start

Reset(ImgFileHandle);
Reset(ImgFileTwoHandle);

Creates a file `stats.txt' and opens it for writing in append mode.

The input disk image file names are written to this file.

---*/}
assignfile(TempFileHdl, 'stats.txt');
Rewrite (TempFileHdl) ;
//reset(TempFileHdl);
append (TempFileHdl) ;
writeln(TempFileHdl, ListBox 1.Items.Strings[0]);
writeln(TempFileHdl, ListBox1.Items.Strings[1ID;

{/*--
Either zlib or bzip2 compression algorithm is selected based on users choice.

Default selection is bzip2.

These are noted in the `stats.txt' file along with date and time.

The threshold values are also written to 'stats.txt'

-----------------------------------*/}
if 	LZW.Checked 	 //Chk selection of compression algo

then
writeln(TempFileHdl,DatetimeToStr(now),' NCD
BLOCK_SIZE ',NCDCompWin,' LZW',' reduction window
',ReductionWin)

else 	writeln(TempFileHdl,DatetimeToStr(now),' NCD
BLOCK_SIZE ',NCDCompWin,' BZip2',' reduction window
',ReductionWin);

writeln(TempFileHdl,' Thresholds ',editl.text,' ',edit2.text,' ',edit3.text,' ',edit4.text,'

',edit5.text); 	 //Thresholds

writeln(TempFileHdl,");

{/*--
Bytes equal comparison window size are read into buffer from first reduced disk

image file in the outer while loop. The inner while loop reads bytes as per

window size into buffer from the second reduced file.

---*/)

while (Bytes_Read >0) do 	 // Outer while loop

begin
Bytes_read2:=.1; sc2:=0;//I:=O
firstiteration:=true;

X

(Set file position}

Seek(ImgFileHandle, (Sc * NCDCompWin));

{read bytes of size comparison window into BufX}

B1ockRead(ImgFileHandle, BufX, NCDCompWin, Bytes_Read);

while (Bytes_Read2 >0) do 	 //Inner while loop
begin

{Set file position}

seek(ImgFileTwoHandle,(sc2* NCDCompWin));

{read bytes of size comparison window into BufX2}

BlockRead(ImgFileTwoHandle, BufX2, NCDCompWin,

Bytes_Read2);

//SecFile.Seek(sc2 * SECTOR_SIZE, soFromBeginning);

//secFile.ReadBuffer(bufx2,bytes_read2);

(call function to calculate Normalized Compression Distance and

store the value in var ncd and perform the necessary calculations}

ncd=NCDvalue;

writeln(TempFileHdl, NCD ',floattostr(ncd),' #',sc,' &',sc2, 'size 1 2

3:',sizel,' : ',size2,' : ',size3);

if ncd<2 then

begin

CompleteScore:=Complete Score+ncd;

inc(CompleteCount);

end;

if(ncd<StrToFloat(Threshold.Text)) then

begin

writeln(TempFileHdl,' NCD ',floattostr(ncd),' #',sc,' &',sc2);

XI

threshold!!!!!!!!! !! ');

buf2total:=0;
for j:=0 to Bytes_Read2 do
begin

buf2total: =buf2total+BufX2 [j]
end;

{/*--
For a comparison window size of 2000k, five default threshold levels ned <= 0.35,

0.4, 0.55, 0.69 and 0.8 are used to generate graph and for the correlation score

SNCD.
The variables used in the score calculation are updated. Other wise the

calculations are on user inputs.

---*/1

if SECTOR SIZE=2000 then

if (ncd<= (StrToFloat(Editl.Text))) then
begin

with forml.Seriesl do AddXY(sc, sc2, ", clred);
//Add point to graph

x l :=x l+(1-ncd); 	//Sum all NCD values in this Th

inc(NI); 	//Update number of instances

end
else if (ncd<= (S trToFloat(Edit2.Text))) then
begin

with forml.Seriesl do AddXY(sc, sc2, ",clblack);
//Add point to graph

x2:=x2+(I-ncd); 	//Sum all NCD values in thisTh

inc(N2); 	//Update number of instances

XII

end

else if (ncd<=(StrToFloat(Edit3.Text))) then

begin

with formi.Seriesl do AddXY(sc, sc2, ",clblue);

//Add point to graph

x3:=x3+(1-ncd); //Sum all NCD values in this Th

inc(N3); 	 //Update number of instances

end

else if ncd<= (StrToFloat(Edit4.Text))then

begin

with fonnl.Seriesl do AddXY(sc, sc2, ", clyellow);

//Add point to graph

x4:=x4+(1-ncd); //Sum all NCD values in this Th

inc(N4); 	 //Update number of instances

end

else if ncd<= (StrToFloat(Edit5.Text))then

begin 	 `

with foiml.Seriesl do AddXY(sc, sc2, ", chime);

//Add point to graph

x5:=x5+(1-ncd); //Sum all NCD values in this Th

inc(N5); 	 //Update number of instances

end;

{/= --
For a comparison window size of 1000k, five threshold levels are used to

generate graph and for the correlation score SNCD. The variables used in the

score calculation are updated.

if SECTOR SIZE=1000;then

XIII

if (ncd<=0.2)then

begin

with forml.Seriesl do AddXY(sc, sc2, ", clred);

//Add point to graph

xl:=x1+(1-ncd); //Sum all NCD values in this Th

inc(N1); 	 //Update number of instances

end

else if (ncd<=0.25) then

begin

with forml.Seriesl do AddXY(sc, sc2, ",clblack);

//Add point to graph

x2:=x2+(1-ncd); //Sum all NCD values in this Th

inc(N2); 	 //Update number of instances

end

else if (ncd<=0.3) then

begin

with forml.Seriesl do AddXY(sc, sc2, ",clblue);

//Add point to graph

x3:=x3+(1-ncd); //Sum all NCD values in this Th

inc(N3); 	 //Update number of instances

end

else if ncd<=0.4 then

begin

with forml.Seriesl do AddXY(Sc, sc2, ", clyellow);

//Add point to graph

x4:=x4+(1-ncd); //Sum all NCD values in this Th

inc(N4); 	 //Update number of instances

end

else if ncd<=0.65 then

begin

with forml.Seriesl do AddXY(sc, sc2, ", chime);

XIV

//Add point to graph

x5:=x5+(1-ncd);//Sum all NCD values in this Th

inc(N5); 	 //Update number of instances

end;

//ThresholdSc:=ThresholdSc+ncd; inc(ThSecCount);

end;

inc(sc2);

firstiteration: =false;

end;

inc(sc);

innerLoopRunComplete: =true;

end;

if sc>sc2 then MinBlocks:=sc2

else MinBlocks:=sc;

f/*-- - ----
NN is the total of instances within the various thresholds

--

NN:=(N1+N2+N3+N4+N5) ;

{/*-- ---------------------------------
The reduced files file handles are freed and files closed

closefile(ImgFileHandle);

closefile(ImgFileTwoHandle);

xv

Memo 1.Lines.Add('COMPLETE'+inttostr(n 1)+' '+inttostr(n2)+' '+inttostr(n3)+'
'+inttostr(n4)+' '+inttostr(n5)+'xx'+inttostr(nn));
Memo 1.Lines.Add('DONE-'+datetimetostr(now));

{/*--
The correlation score SNCD is calculated

---*/}
//if ThSecCount>O then ThresholdSc:=ThresholdSc/ThSecCount;
if NN>O then WThresholdSc:=(xl + x2 + x3 + x4 + x5)/(MinBlocks);

(1*

Write the score and other details to 'stats.txt'

writeln(TempFileHdl,DatetimeToStr(now),' Completed ',' Sncd ',WThresholdSc,'
Count:',NN);
Closefile(TempFileHdl);

Save output graph as a file

Chart 1.SaveToMetafile('chart.wmf);

end; 	 // End of procedure correlate.click

/*--=--------------
This procedure `Reduce' performs the preprocessing on the input disk image

files.

All the file items in the Listbox are reduced one by one.

---*/
procedure TForml.Reduce;
var

XVI

TotalFiles: integer;

ii: integer;

i,j:integer;

Val_total: integer;

Sc:integer;

Bytes_Read: integer;

ZeroCount:integer;

Reducedfile :textfile;

name 1 ,name2:string;

average: double;

twoByte: array[0..1] of byte;

DoNow : boolean;

begin

TotalFiles: =ListB ox 1. Items. Count;

ii:=0;

randomize;

while ii< (TotalFiles) do

begin

DoNow:=true;

{Open input file for reading)

AssignFile(ImgFileHandle, Li'stBox1 .Items .Strings[ii]);

Reset(ImgFileHandle);

{Create and open file for writing reduced data}

AssignFile(Compres sfile,ListBox 1 .Items. Strings [ii] +'RN')

rewrite(Reducedfile);

{Initializations}

sc:=O;

XVII

Bytes_Read:=1;

ZeroCount:=0;

while (Bytes_Read >0) do

begin

Seek(ImgFileHandle, (sc * ReductionWin));

B1ockRead(ImgFileHandle, BufX, ReductionWin,

Bytes_Read);

Val_total:=0;

if Bytes_Read>0 then

begin

{Calculate Byte average for the reduction window}

for i := 0 to Bytes_Read do

begin 	 ,

V al_total : =V al_total+BufX [i] ;

//Average:= Val_total div (i+l);

end;

//DoNow:=Not(doNow);

//Wbuf[0]:= Val_total div (i+l);

Average:= Val_total / (i+l);

//Average: =(((Average-MIN)/(MAX-

M IN)) * (NEW_MAX-NEW_MIN))+NEW_MIN;

//showmessage(inttostr(Bytes_Read)+'--'+

inttohex(round(Average),2));

//write(Compressfile1,inttohex(round(Average),2));

if round(Average)=0 then inc(ZeroCount)

else ZeroCount:=0;

{Encode byte rounded average as ANSI character

only if there are no 4 consecutive runs of zero byte

XVIII

average else write a random ANSI character}

if ZeroCount<4 then write (Reducedfile,

char(round(Average)))

else write(Reducedfile,

char(randomrange(0,255)));

end;

inc(sc);

end;

Bytes_Read:=1;sc:=0;

{close file handles}

closefile(ImgFileHandle);

closefile(Reducedfile);

inc(ii);

end;

//Increment loop variable

Memo 1.Lines.Add('Reduced');

end; 	 /% End of procedure `Reduce'

Compression procedure using either zlib or bzip2 units.

Data is compressed using memory streams.'

procedure TForm 1 .CompressStream(inpStream, outStream: TStream);

var

ZStream: TCustomZLibStream;

BZStream: TCustomBZip2Stream;

begin

try

if LZW.Checked then

begin

//showmessage('LZW');

{For zlib we use the max compression to get better results)

ZStream := TCompressionStream.Create(clMax, OutStream);

ZStream.CopyFrom(inpStream, 0);

end;

if Bzip2.Checked then

begin

{For bzip2 compression a block size of 900k is used)

B ZS tream: =TB ZCompre s sionS tream. Create(b s9, OutS tream) ;

BZStream. CopyFrom(inpStream,0);

end;

finally

if LZW.Checked then ZStream.Free;

if Bzip2.Checked then BZStream.Free;

end;

end;

F

{/--
Function to calculate Normalised Compression Distance

Function TForml .NCDvalue: extended;
begin
if firstiteration then
try

msl := TMemoryStream.Create;
ms 1.Clear;
ms 1. WriteBuffer(bufx,B ytes_read);
ms 11 := TMemoryStream.Create;
CompressStream(ms 1, ms 11);
//size1:=O;

{/*

The compressed block size of block of first file is saved in variable `Sizel' so that

need not be computed again, until all the blocks of second file have been

compared. Boolean variable `firstiteration' used to check the status.

size l :=ms 11.Size;
rns3 := TMemoryStream.Create;
ms3. WriteBuffer(bufx,Bytes_read);
// writeln(TempFileHdl,'--------------calculated ');

finally
ms l .Free;ms 11.Free;
firstiteration :=false;

end
else

begin
ms3 := TMemoryStream.Create;

XXI

ms3. WriteBuffer(bufx,B ytes_read);
end;

{/*--
Compressed block sizes of blocks of the second file are calculated only once and

stored in array size2Store by using the Boolean variable

`innerLoopRunComplete'. This method saves time and effort.

-------------- . ---*/I
if innerLoopRunComplete=false
then
try

ms2 := TMemoryStream.Create;
ms2.Clear;
ms2. WriteBuffer(bufx2,B ytes_read2);
ms22 := TMemoryStream.Create;
ms22.Clear;
CompressStream(ms2, ms22);
//size2:=0;
size2:=ms22.Size;
size2Store[sc2]:=ms22.Size;
//writeln(TempFileHdl,'inner loop compress');

finally
ms2.Free;ms22.Free;
ms 3. WriteBuffer(bufx2,B ytes_read2);

end
else

begin
size2:=size2Store[sc2];
//writeln(TempFileHdl,size2);
ms3.WriteBuffer(bufx2, Bytes_read2);

end;

XXII

{/ --- -; --
The blocks of filel and file 2 are concatenated and their compressed lengths are

calculated using streams m3 and m33

--- --*/}
try

ms33 := TMemoryStream.Create;
ms33.Clear;

CompressStream(ms3, rns33);
size3 :=ms33 .Size;

//writeln(TempFileHdl, si ze3);

Finally
ms3.Free;
ms33.Free;

end;

{calculation of Normalised Compression Distance}

if 	(sizel>size2)
then NCDvalue:=(size3-size2)/size 1

else NCDvalue:=(size3-sizel)/size2

end;

{/*-- ---------------------------------
Input file `add' click event for taking disk image inputs

-- ---------------------------------*/}

procedure TForml.Add2Click(Sender: TObjept);

XXIII

begin
OpenDialog 1.Execute;
.ListBox 1. Items.Add(OpenDialog 1.FileName);
innerLoopRunComplete:=false;
sc2copy:=O;

end;

{/*--
Procedure to clear input selections and display graph

---*/}
procedure TForm1. AllIClick(Sender: TObject);
begin

ListBox 1.Clear;
Series 1.Clear;

end;

{/*--
Procedure to display graph

A

procedure TForml.Chart2Click(Sender: TObject);
begin

Series 1.Clear;
end;

{/*--- 	--------------------------------
Procedure to default values

---*/}

procedure TForml.DefaultslClick(Sender: TObject);

XXIV

begin

NCDWindow.Text:='2000'; 	//2000k NCD window

ReductionWindow.Text:='512'; 	//512k Reduction window

//Threshold for NCD window 2000k

Edit 1.Text:= '0.35';

Edit2.Text:= '0.4';

Edit3.Text:= '0.5';

Edit4.Text:= '0.69';

Edit5.Text:= '0.8';

//For zero run noise elimination; max zero average values default setting

ZeroLimit. Text: =4';

end;-

Procedure to extract blocks matching similarity criteria.

The co-ordinates of points on graph are used to calculate the file positions

procedure TForm I .ExtractClick(Sender: TObj ect);

var

ExtractFileHandle: file of byte;

ExtractFileTwoHandle: file of byte;

XXV

CarveOffset: Longint;

OutputFileHandle : Integer;

i: Integer;

Bytes—Written: Integer;

BytesRead,count : Integer;

begin

(open input raw files)

AssignFile(ExtractFileHandle, ListBox 1 .Items.Strings [0]);

AssignFile(ExtractFileTwoHandle, ListBox1.Items. Strings [1]);

(Position pointers at the start of file)

Reset(ExtractFileHandle);

Reset(ExtractFileTwoHandle);

{ Create and open files to store data blocks of first file}

OutputFileHandle := FileCreate(StartX.Text +'-'+StartY.Text+'FIRST'+

EndX.Text + '-'+EndY.Text);

{Position the file pointer for carving the data}

FileSeek(OutputFileHandle,0,2);

count:= NCDCompWin*ReductionWin;

{carve data from the start point to end point on the x-axis of graph}

for i:=strtoint(StartX.Text) to strtoint(EndX.Text) do

begin

// Set file position

//CarveOffset := ((i) * (SECTOR_SIZE div 2)*512);

CarveOffset :_ ((i) * count;

XXVI

Seek (Ex tractFi leHandle,);

// Read data

BlockRead(ExtractFileH
	BufXcarve, count, BytesRead);

//write carved data to ou

Fi leW rite(OutputFileHanc

t file

BufXcarve, BytesRead);

end;

//Close output file handle

FileClose(OutputFileHandle);

{ Create and open files to store data blocks of second file)

OutputFileHandle := FileCreate(StartX.Text +'-'+StartY.Text+ 'SECOND'

+EndX.Text+'-'+EndY. Text);

{Position the file pointer for carving the data}

FileSeek(OutputFileHandle,0,2);

{carve data from the start point

for i:=strtoint(StartY.Text) to strto.

begin

// Set file position

//CarveOffset :_ ((i) * (SEC

CarveOffset := ((i) * count;

Seek(ExtractFileTwoHandle,

end point on the y-axis of graph)

EndY.Text) do

SIZE div 2)*512);

It Read data

XXVII

BlockRead(ExtractFileTwoHandle, BufXcarve, count, BytesRead);

//write carved data to output file

FileWrite(OutputFileHandle, BufXcarve, BytesRead);

end;

//Close output file handle

FileClose(OutputFileHandle);

//Close input files

closefile(ExtractFileHandle);

closefile(ExtractFileTwoHandle);

end;

end.

XXVIII

THRESHOLDS

Program GUI Screenshot 	 Appendix —B

A

CUJsas~anedt~Dal~aPlddQ5FZ00hIBMewVmagcNcwi.dd 	 S'eenBy~es _ _ _ - _,- 	~ga~ticnCod~nal 	-- -- -NioseEbrutorr_.___
CUlttrs~areshlDe~stavlddD512017M84ewVmngeNew2dd 	

NCDCOMPARISONWINOCAVf 	
Sta+X 	Erb 	Est 	

ZvoRourT Cme~te
DO NE &/T(c 14207AM 	 F

f IZW 	W 	 HEOUCTIONWUSI~ 512 	 Endt 	 4 __

mmvwa

0 	10 	20 	30 	40 	50 	60 	70 	80 	90 	100 	110 	120 	130 	110 	150 	160 	170 	100

C W~ddA.9429dIB aew 1Mgdkwl.d0

ID

	Title
	Abstract
	Chapter 1
	Chapter 2
	Chapter 3
	Chapter 4
	Chapter 5
	Chapter 6
	Chapter 7
	References
	Untitled

