
AN ENERGY EFFICIENT APPROACH
FOR DATA COLLECTION IN WIRELESS SENSOR NETWORK

A DISSERTATION
Submitted in partial fulfillment of the

requirements for the award of the degree

of

MASTER OF TECHNOLOGY
in

INFORMATION TECHNOLOGY

By

MRUDANG MEHTA

$9 ~

VA

DEPARTMENT OF ELECTRONICS AND COMPUTER ENGINEERING

INDIAN INSTITUTE OF TECHNOLOGY ROORKEE

ROORKEE - 247 667 (INDIA)

JUNE, 2008

CANDIDATE'S DECLARATION

I hereby declare that the work, which is being presented in the dissertation entitled "AN

ENERGY EFFICIENT APPROACH FOR DATA COLLECTION IN WIRELESS

SENSOR NETWORK" towards the partial fulfillment of the requirement for the award

of the degree of Master of Technology in Information Technology submitted in the

Department of Electronics and Computer Engineering, Indian Institute of Technology

Roorkee, Roorkee (India) is an authentic record of my own work carried out during the

period from July 2007 to June 2008, under the guidance of Dr. Manoj Misra, Professor,

Department of Electronics and Computer Engineering, IIT Roorkee.

I have not submitted the matter embodied in this dissertation for the award of any other

degree or diploma.

Date: 3010 6~D
Place: Roorkee
	 (MRUDANG MEHTA)

CERTIFICATE

This is to certify that the above statement made by the candidate is correct to the best of

my knowledge and belief.

Date:®/D6/O
Place: Roorkee 	 (Dr. MANOJ MISRA)

Professor

Department of Electronics and Computer Engineering

IIT Roorkee — 247 667

ACKNOWLEDGEMENTS

I would like to take this opportunity to extend my heartfelt gratitude to my guide, Dr.

Manoj Misra, Professor, Department of Electronics and Computer Engineering, Indian

Institute of Technology Roorkee, for providing me guidance throughout my graduate

program at IIT Roorkee. His knowledge and enthusiasm in my work has been of great

benefit to me. He has been extremely patient and critical all through my work.

I extend my sincere thanks to Dr. D. K. Mehra, Professor and Head of the Department of

Electronics and Computer Engineering, Indian Institute of Technology, Roorkee for

providing facilities for the work..

I am indebted to my parents, my sister and my friends for being a source of constant

support and motivation. I am thankful to my friends and relatives who took care of my

family in my absence.

I would like to thank AICTE for running Quality Improvement Program. I thank QIP

center at IIT, Roorkee for their cooperation. I also thank Dharmsinh Desai University,

Nadiad, Gujarat, for sponsoring me for pursuing master degree program.

MRUDANG MEHTA.

ABSTRACT

Wireless Sensor Network (WSN) has a large number of sensor nodes with the ability to

communicate among themselves and also to an external sink or a base-station. The sensor

nodes could be scattered randomly in harsh environments such as a battlefield or

deterministically placed at specified locations. The sensors coordinate among themselves

to form a communication network.

Flexible data collection in wireless sensor networks is a significant research challenge

since it must support dynamic reconfiguration of collection tasks while accommodating

constraints of the sensor network infrastructure. These constraints come from the sensor

node (due to energy limitations), from the network (typically large, faulty and bandwidth-

limited) and from the application (which poses timeliness needs). In this work, we

address energy efficient approach for data collection in wireless sensor network.

In this report, we present an energy efficient data collection approach for wireless sensor

network. There are many approaches available using client/server computing model. In

client/server computing model, different source nodes send data periodically to the sink

node. This increases congestion and energy consumption of node increases. Our approach

uses mobile agent based computing model. By using mobile agent, we developed a

technique through which we reduce the energy consumption of the sensor nodes. Instead

of many source nodes transmit data individually to sink node, here, mobile agent visits

each sensor node for data collection. This reduces energy consumption of sensor nodes

and increases network lifetime.

Performance of our approach has been evaluated and compared by changing different

parameters such as task duration, mobile agent access delay and sensed data size. The

results have shown that our approach shows better performance than directed diffusion.

lit

CONTENTS

CANDIDATE'S DECLARATION 	 i

ACKNOWLEDGEMENTS

ABSTRACT

CONTENTS 	iv

LIST OF FIGURES 	vii

LIST OF TABLES 	viii

LIST OF PUBLICATIONS 	 ix

1. Introduction 	1

1.1 Overview 	1

1.2 Data Collection in Wireless Sensor Network 	2

1.3 Statement of the Problem 	3

1.4 Organization of the Report 	4

2. Background and Related Work 	5

2.1 Wireless Sensor Networks 	5

2.1.1 Applications of Wireless Sensor Network 	6

2.1.2 Wireless Sensor Node Hardware 	7

2.1.3 Sensor Node Requirements for Applications 	8

2.1.4 Research Issues in Wireless Sensor Network 	9

2.2 Mobile Agent Technology 	 ... • • . •• 10

2.2.1 Mobile Agent vs. Stationary Agent 	 11

2.2.2 Mobile Agents and Mobile Agent Environment 	12

2.2.3 Comparison of Mobile Agent Paradigm with Client 	12

Server Paradigm

2.2.4 Advantages of Mobile Agent Paradigm 	14

iv

2.2.5 Migration Types of Mobile Agent 	 15
2.3 Related Work 	16

3. Proposed Approach for Data Collection 	20

3.1 Motivation 	20

3.2 Mobile Agent Based Computing Model 	20

3.3 Structure of Mobile Agent 	22

3.4 Mobile Agent Route Planning 	23

3.4.1 Assumptions 	23

3.4.2 Basic Design 	24

3.4.3 Data Aggregation 	25

3.4.4 Data Redundancy Reduction 	25

3.5 Detailed Design 	26

3.5.1 Design of Mobile Agent Packet Format 	26

3.5.2 Working of Proposed Approach 	27

4. Implementation Detail34

4.1 NS-2 Simulator34

4.1.1 	Software Architecture34

4.1.2 C++ -OTcI Linkage35

4.1.3 Why NS-235

4.2 Functionalities Implemented36

4.3 Simulation Settings38

4.3.1 Sensor Network Model38

4.3.2 Simulation Parameters39

4.4 Performance Metrics41

5. Simulation Results and Discussions 	43

5.1 Effect on Energy Consumption by Changing Task Duration 	43

5.2 Effect on Average End to End Delay by Changing MA Access Delay 45
5.3 Effect on Packet Delivery Ratio by Changing Size of Sensed Data 46

v

5.4 Effect on Energy Consumption by Changing Size of Sensed Data 47
5.5 Effect on Average End to End Delay by Changing Size of Sensed Data48

5.6 Effect on Energy, Delay and Reliability by Changing Size of Sensed 49
Data

6. Conclusion and Future Work
6.1 Conclusion

6.2 Scope for Future Work

References

Appendix: Source Code Listing

........52

..........I

vi

LIST OF FIGURES

Figure 2.1 A Typical WSN5

Figure 2.2 Sensor Node Components8

Figure 2.3 (a) MicaZ Mote (Crossbow)8

(b) Coin sized Intel Mote

Figure 2.4 Communication Using Client-Server Paradigm ...13

Figure 2.5 Communication Using Mobile Agent Paradigm ...13

Figure 2.6 Query to Monitor the Occupancy of The Conference Rooms on a ...18

Particular Floor of a Building

Figure 3.1 Mobile Agent Based Computing Model ...22

Figure 3.2 Structure of Mobile Agent ...23

Figure 3.3 Basic Design ...24

Figure 3.4 Design of Mobile Agent Packet Format26

Figure 3.5 Initial Operations of Sink Node and Source Nodes ...27

Figure 3.6 MA Creation and Dispatch ...29

Figure 3.7 Data Collection Process30

Figure 3.8 MA Migrates to Sink Node ...31

Figure 3.9 Second Part of Proposed Approach ...32

Figure 4.1 C++--OTcl Linkage ...35

Figure 5.1 Effect of Task Duration on Energy Consumption ...44

Figure 5.2 Effect of MA Delay on End to End Delay ...45

Figure 5.3 Effect of Sensed Data Size on Packet Delivery Ratio ...46
Figure 5.4 Effect of Sensed Data Size on Energy Consumption ...47
Figure 5.5 Effect of Sensed Data Size on Average End to End Delay ...48
Figure 5.6 Effect of Sensed Data Size on Energy*Delay/ Reliability ...49

vii

LIST OF TABLES

Table I 	' Energy Consumption Parameters Configuration of 	40

Lucent IEEE 802.11 WaveLAN Card

Table 2 	 Simulation Parameters 	40

viii

LIST OF PUBLICATION

1. 	M. Mehta, M. Misra, "Mobile Agent Based Data Collection Techniques For
Wireless Sensor Network," in IEEE Madras sponsored National Conference in
Mobile and Pervasive Computing C ACc'Q.fkd,

CHAPTER 1

INTRODUCTION

1.1 Overview

A wireless sensor network (WSN) is a wireless network consisting of spatially distributed

autonomous devices using sensors to cooperatively monitor physical or environmental

conditions, such as temperature, sound, vibration, pressure, or motion at different

locations. [1] Development of Micro-Electro-Mechanical System (MEMS) and

semiconductor technology have given sound base for the development of low cost,

battery operated and small sized devices which does sensing, processing and

communicating wirelessly. Such devices are called "motes". A mote generally consists of

radio front end, microcontroller, power supply and the actual sensor. The desirable size of

a mote is few cubic millimeters and the desirable target price range less than one US

dollar. A "mote" is single wireless sensor node in the wireless sensor network. Although,

motes are autonomous they can form a network and co-operate with each other under

various architectures. [2]

WSNs promise several advantages over traditional sensing methods in many ways: better

coverage, fault tolerance and robustness. The ad hoc nature and deploy-and-leave vision

make them even more attractive in real-world applications. Several real-world

applications are being designed and developed that are taking advantage of this new

technology. For example, approximately 300 sensors are distributed throughout the

structure of the new Rion-Antirion Bridge in the Athens; strain gauges keep track of

framework fatigue, displacement transducer monitor how the bridge blows in the wind,

and three-dimensional accelerometers measure the impact of earthquake [3]. Sensors are

also found in the nests at the Great Duke Island for monitoring one of the largest breeding

colonies of Leach's storm petrels [2], in building for fire crew assistance [4], in trees for

fire detection [5], in wine grape vineyards for improving the quality of the crop and the

Introduction

performance of the land, and in many other applications such as military applications,

monitoring toxic zones, agriculture, industrial automation, healthcare and volcano

monitoring [6].

Although WSNs can be made pervasive due to their low cost and small nodes, they are

also faulty and energy-constrained. Wireless links are prone to interference, collision,

fading, and congestion. Nodes are powered by limited battery capability that cannot

feasibly be recharged because WSN are large and sometimes scattered in unreachable

places. Therefore, data is prone to loss, and energy is a valuable resource that must be

used wisely.

1.2 Data Collection in Wireless Sensor Networks

Different approaches have been proposed for collecting data being sensed in the WSN in

a flexible, reliable, and efficient manner.

Multipath approaches achieve a high degree of reliability by making use of multiple paths

to send information from every sensor node to the collection point. Query propagation

approaches tend to propagate an SQL-like query along a spanning tree that is rooted at

the collection point and covers all sensor nodes. Query propagation approaches treat the

WSN as a large distributed database -a feature that provides a high degree of flexibility.

This thesis focuses on an approach based on mobile agents. The mobile agents approach

is a programming paradigm in which tasks are carried out by autonomous and self-aware

programs known as mobile agents. A mobile agent is formed by its code and state (data,

stack, and registers), and it can clone and migrate to other locations (copying and moving

its own code and state). While pursuing the goal of collecting the sensed data in a WSN,

instead of transmitting the raw data from the sources to the application in the collection

point, the application (or a subset, of it) is sent to where the data is. Thus, mobile agents

carry and aggregate the data being sensed. Moreover, mobile agents can be aware of

network failures.

2

Introduction

This capability enables them to dynamically decide where to move or clone in the event

of an unexpected failure or topology change. Therefore, mobile agents allow a great

degree of flexibility regarding which data is collected and in what manner.

In terms of reliability, mobile agents provide a greater degree of fault-tolerance than

query propagation and single-path approaches, comparable to multipath approaches.

However, the time it takes the mobile agents to collect all the information (i.e. latency)

tends to be larger than in other approaches such as multipath and single path approaches.

1.3 Statement of the Problem

The aim of this research is to develop energy efficient data collection mechanism for

wireless sensor network using mobile agent based approach. The following are the

objectives of our work:

1. To design and implement an efficient mechanism for mobile agent routing for

data collection from sink to source (sink request for data and receives data from

source).

2. To design and implement an efficient mechanism for mobile agent routing for

data collection from source to sink (source receives request and sends data to

sink).

3. To evaluate the performance of the approach.

1.4 Organization of the Report

This report comprises of six chapters including this chapter that introduces the topic and

states the problem. The rest of the dissertation report is organized as follows.

Chapter 2 gives an overview of wireless sensor network. It introduces the topic, discusses

issues in WSN. This chapter also provides overview of general mobile agent approach-

3

Introduction

its issues and applications. It discusses the related work and research gaps for the data

collection in wireless sensor network.

Chapter 3 discusses the proposed energy efficient mobile agent based approach for data

collection in wireless sensor network. It discusses basic idea and design of the approach.

Chapter 4 discusses implementation. It gives an overview of ns-2 Simulator and it

discusses implementation detail of proposed approach.

Chapter 5 discusses the simulation results and displays the effectiveness of the proposed

mechanism for data collection in wireless sensor network.

Chapter 6 concludes the work and gives the directions for future work.

0

CHAPTER 2

BACKGROUND AND RELATED WORK

2.1 Wireless Sensor Networks

Wireless sensor networks are recognized as a new frontier in communications. Today,

due to availability of cutting edge MEMS (Micro Electro Mechanical Systems)

Technology; low-powered, low-cost, tiny sensors can be made which can be used for

monitoring physical world. These tiny sensors (also called as "motes") are self-

organizing and can form multi-hop distributed wireless network called wireless sensor

network.

Internet and 	 x
S atellite 	 Sensor Node

4j7
Task Itanager

USER
Sensor Field

Figure.2.1 A Typical WSN

Figure 2.1 shows Typical WSN. It shows data pertaining to event monitoring can be

gathered and transmitted to end user through Internet. Here, Sensor Nodes are wireless

communication device which are small, inexpensive and low power devices capable of

sensing and local processing. Sensor Network is a collection of sensor nodes which

E

Background and Related Work

coordinate to perform some specific action for example detecting fire in the trees. Unlike

traditional networks, these rely on dense deployment and coordination. Sensor Field is a

target area where the sensor nodes have been deployed to acquire data. Depending on the

nature of tasking and manner of being deployed, the sensor field may get partitioned at

times. The information flow is through a sink node - which may dynamically change due

to design or operational requirements. The sink connects to the user's network through

internet or satellite.

2.1.1 Applications of Wireless Sensor Network

We can classify applications of WSN as per deployment of WSN. WSN can be deployed

over ground, underground, underwater and outside earth.

Wireless Underground Sensor Network Applications (WUgSNA): In wireless

underground sensor network (WUgSN), majority of the devices are placed completely

below the ground. Each device contains sensors, processor, memory, antenna and power

source. This makes it easy deployment than the existing underground solutions in which

sensors are connected to surface through wired infrastructure. This area (WUgSN)

possesses many interesting research challenges. Typical applications are to monitor a

variety of conditions, such as soil properties for agricultural applications, toxic

substances for environmental monitoring, infrastructure (mainly underground, e.g. pipes,

electrical wiring, liquid storage tanks, etc.) monitoring, location determination of objects

and military applications such as mine field monitoring and border patrol. [7]

Wireless Underwater Sensor Network Applications (WUwSNA): The enabling

technology for applications of Wireless Underwater Sensor Networks (WUwSN) is

wireless underwater acoustic networking. Under-Water Acoustic Sensor Networks (UW-

ASNs) consist of a variable number of sensors and vehicles that are deployed to perform

collaborative monitoring tasks over a given area. Sensors and vehicles are self-organizing

and self-adaptive to the oceanic environment. Typical applications are oceanographic

data collection, pollution monitoring, oil and gas exploration, disaster prevention, tactical

surveillance and exploration of natural undersea resources. [8]

Cn

Background and Related Work

Outer Earth Wireless Sensor Network Application (OEWSNA): WSN has potential

application in space exploration. WSN may be helpful in monitoring of planet other than

earth, too. This is also very important as continuous manned monitoring may not be

feasible for other planets. A research in this field is ongoing mainly by NASA. A

proposed application of WSN is that a robot embedded with many sensors may be placed

on MARS to collect data, which it could transmit to base station on MARS for real time

data analysis. Base station can do analysis and direct future action to robot. [9][10]

Ground Based Wireless Sensor Network Applications (GBWSNA): This is the most

general area where many applications of WSN are existing or being developed. The

typical application areas are agriculture, industrial automation, earthquake monitoring,

building structure monitoring, volcano monitoring, healthcare, security-civilian and
military, robotics, and internet enabled applications and gaming applications. [1] [2]

2.1.2 Wireless Sensor Node Hardware

A typical sensor node has the sensing, computation, communication and power as its

main components as shown in Figure 2.2. Mobiliser and GPS based location components

may also be present. Sensing Unit comprises of a sensor and their associated ADC

(Analog to Digital Converter). Processing Unit comprises of a Processor with memory

storage. Transceiver may have an inbuilt antenna or a mount for an external whip.

Batteries are generally used to satisfy energy requirements. [1]

There are some commercial vendors like Crossbow and Intel provides different types of

sensor nodes also called motes. Figure 2.3 shows some sensor nodes from Crossbow and

Intel. [11] [12]

7

Background and Related Work

Location Finding System 	 Mobilizer

Processing
Sensing Unit 	 Unit

Sensor ADC • Processor 	Transceiver
Storage

Power
Generator

Power Unit

Figure 2.2 Sensor Node Components

Figure 2.3 (a) MicaZ Mote (Crossbow) 	(b) Coin sized Intel Mote

Background and Related Work

2.1.3 Sensor Node Requirements for Applications

It has to be noted that different applications call for different characteristics having varied

inter-se importance. Environmental requirements warrant nodes to be characteristically

strong in the areas viz, energy efficiency (long battery life) to include intermittent

connectivity and schedule sleep mode for redundant sensors, inexpensive nodes (large

quantity needed), reduced size of nodes (small, microscopic), auto-configuration of

sensors, scalable network, robust nodes to handle harsh environments of the operating

conditions (heat, water, snow, humidity, wind).

In the medical scenario key characteristics required are energy efficiency (long battery

life, heat/kinetic/bio battery), hidden device (not visually detectable), biologically safe,

fault-tolerant, reliable, encrypted bio information (for privacy) and be interference-safe

(RF noise, 900 MHz range, should not malfunction due to ambient RF conditions). In

military applications, in addition to the above, key characteristics required are ubiquitous

and undetectable, auto-deployment (motorised, robotised, missile warhead launched),

fault-tolerant, reliable, strong encryption (low overhead), and they should also be made

rugged to withstand shocks, vibrations several cyclic changes of extreme weather

conditions. They should allow in-filtration of query at a point and ex-filtration of the

output at a distant given point in given almost real time frame.

Similarly, urban requirements are diverse range of sensor types, interoperability, highly

customisable, (for the diverse user base), scalable network (wide area of coverage and

increasing the collaboration within the environment).

2.1.4 Research Issues in Wireless Sensor Network

Design issues: One of the major research challenges is design of wireless sensor network.

Design of sensor network is majorly influenced by the following factors:

• Fault tolerance

• Scalability, Mobility and dynamic network topology

• Production cost

0

Background and Related Work

• Operating environment

• Hardware constraints

• Transmission media

• Power Consumption

The above factors deal with the developing efficient hardware, reliable transmission

techniques and resolving communication issues of MAC and Network layer.

Routing issues: One major research issue is developing a routing protocol which

consumes least energy as devices (motes) are generally battery operated. Protocols should

be scalable and robust with topological changes of the network. Mobility is another issue

which shall be taken care while developing routing algorithm as in many applications

either sensors or source are mobile. Design and development of efficient protocol or

techniques for data abstraction, data filtering and data aggregation is an important

research issue to save energy consumption of overall network.

Middleware issues: In recent year, a novel approach of middleware is developed to

bridge the gap between applications and low-level constructs. This approach resolves

many WSN issues and enhances application development. We can view WSN

middleware as a software infrastructure that glues together the network hardware,

operating systems, network stacks and applications. A complete middleware solution

should contain a runtime environment that supports multiple (homogeneous or

heterogeneous) applications. It should standardize system services like data aggregation,

control and management policies adapting to target applications, and mechanism to

achieve adaptive and efficient system resources use to extend the network lifetime.

Examples of middleware are Mate by University of California, Berkeley and Imapala by

Princeton University.

2.2 Mobile Agent Technology

Mobile agents are a novel way of building distributed software systems. Traditional

distributed systems are built out of stationary programs that pass data back and forth

10

Background and Related Work

across a network. Mobile agents, by contrast, are programs that they themselves move

from node to node: the computation moves, not just the attendant data. Mobile agents in

[13] are defined by following important properties:

Agents encapsulate a thread of execution along with a bundle of code and data. Each

agent runs independently of all others, is self-contained from a programmatic perspective,

and preserves all of its state when it moves from one network node to another.

Any agent can move easily across the network. The underlying infrastructure provides a

language-level primitive that an agent can call to move itself to a neighboring node.

Agents must be small in size. Because there is some cost associated with hosting and

transporting an agent, agents are designed to be as minimal as possible. Simple agents

serve as building blocks for complex aggregate behaviour.

An agent is able to cooperate with other agents in order to perform complex or dynamic

tasks. Agents may read from and write to a shared block of memory on each node, and

can use this facility both to coordinate with other agents executing on that node and to

leave information behind for subsequent visitors.

An agent is able to identify and use resources specific to any node on which it finds itself.

In the simulation presented in this chapter, the nodes are differentiated only by who their

neighbours are (and agents do make use of this information). In a more heterogeneous

network, certain nodes might have access to particular kinds of information — such as

absolute location derived from a global positioning system receiver — which agents could

leverage.

2.2.1 Mobile Agent vs. Stationary Agent

Mobility is an orthogonal property of agents. That is, all agents are not necessarily

required to be mobile. An agent can remain stationary and communicate with the

surroundings by conventional means like remote procedure calls (RPC) and remote

Background and Related Work

object invocation (RMI) etc. The agents that do not or cannot move are called stationary

agents. On the other side, a mobile agent is not bound to the system where it begins

execution. The mobile agent is free to travel among the hosts in the network. Once

created in one execution environment, it can transport its state and code with it to another

execution environment in the network, where it resumes execution.

2.2.2 Mobile Agents and Mobile Agent Environment

A mobile agent must contain all of the following models: an agent model, a life-cycle

model, a computational model, a security model, a configuration model and finally a

navigation model. In [141, a working definition of a mobile agent is given as "A mobile

agent consists of a self-contained piece of software that can migrate and execute on

different machines in a dynamic networked environment, and that senses and (re) acts

autonomously and proactively in this environment to realize a set of goals or tasks."

The software environment in which the mobile agents exist is called mobile agent

environment. The definition of mobile agent environment as per [15] is given as "A

mobile agent environment is a software system distributed over a network of

heterogeneous computers. Its primary task is to provide an environment in which mobile

agents can execute. It implements the majority of the models possessed by a mobile

agent."

The above definitions state the essence of a mobile agent and the environment in which it

exists. The mobile agent environment is built on top of a host system. Mobile agents

travel between mobile agent environments. They can communicate with each other either

locally or remotely. Finally, a communication can also take place between a mobile agent

and a host service.

2.2.3 Comparison of Mobile Agent Paradigm with Traditional Client Server
Paradigm
Today, client-server paradigm enjoys various techniques like remote procedure calling

(RPC), remote object-method invocation (like Java RMI or CORBA) etc. The RPC

12

Background and Related Work

paradigm, for example, is the prominent technique of the client-server paradigm. It views

computer-to-computer communication as enabling one computer to call procedures in

another. Each message that the network transports either requests or acknowledges a

procedure's performance. Two computers whose communication follows the RPC

paradigm have to agree upon the effects of each remotely accessible procedure and the

types of its arguments and results. This agreement constitutes a protocol. For an example,

as shown in Figure 2.4 a client computer initiates a series of remote procedure calls with

a server in order to accomplish a task. Each call involves a request sent from client to

server and a response sent from server to client. Thus the salient feature of client-server

paradigm is that each interaction between the client and the server requires two acts of

communication. That is, ongoing interaction requires ongoing communication.

Figure 2.4 Communication Using Client-Server Paradigm

Local Interactions

Mobile 	 Mobile 	 Server
Agent 	 Agent 	Application

er Us 	 Remote Server

Figure 2.5 Communication Using Mobile Agent Paradigm

13

In contrast to client-server paradigm, the mobile agent paradigm views computer-to-

computer communication as enabling one computer not only to call procedures in

another, but also to supply the procedures to be performed. Each message that the

network transports consists of a procedure whose performance the sending computer

either began or continued and the receiving computer is to continue and the data which

are the procedure's current state. Two computers whose communication follows the

mobile agent paradigm have to agree upon the instructions that are allowed in a

procedure and the types of data that are allowed in its state. This agreement constitutes a

language.. This language provides -instructions that allow the procedure to examine and to

modify its state, making certain decisions and call procedures provided by the receiving

computer. But here the procedure calls will be local to the receiving computer, which is

an important advantage of the mobile agent paradigm. Figure 2.5 represents the same

example scenario as before but using mobile agent paradigm. Here the client computer

sends an agent to the server whose procedure there makes the required requests to the

server. The dotted line in Figure 2.5 shows the previous movement of the agent. All the

request and responses in this case are local to the server and no network is required to

complete a task. Thus the salient feature of mobile agent paradigm is that each a client

computer and a server can interact without using the network once the network has

transported an agent between them. That is, ongoing interaction does not require ongoing

communication.

2.2.4 Advantages of Mobile Agent Paradigm

The mobile agents have several strengths. The following is the brief discussion of seven

good reasons for using mobile agents [16]:

1. They reduce network load: The main motivation behind using mobile agents is to move

the communication to the data rather than the data to the computations. Distributed

systems often required multiple interactions to complete a task. But using mobile agent

allows us to package a conversation and send it to a destination host. Thus all the

interactions can now take place locally. The result is enormous reduction of network

14

Background and Related Work

traffic. Similarly instead of transferring large amount of data from the remote host and

then processing it at the receiving host, an agent send to the remote host can processed

the data in its locality.

2. They overcome network latency: Certain real-time systems require immediate action in

response to the changes in their environment. But a central controller cannot respond

immediately due to the network latency. Here mobile agents can be a good solution as

they can be dispatched from a central controller to act locally in the system and thus can

respond immediately.

3. They encapsulate protocols: Due to the continuous evolution of existing protocols in a

distributed system, it is very cumbersome to upgrade protocol code property in each host.

Result may be that protocols become a legacy problem. Mobile agents are able to move

to remote hosts in order to establish "channels" based on proprietary protocols.

4. They execute asynchronously and autonomously: This is the reason why mobile agents

are so promising in wireless networks. Due to the fragile and expensive wireless network

connections, a continuous open connection between a mobile device and a fixed network

will not be always feasible. In this case the task of the mobile user can be embedded into

mobile agents, which can then be dispatched into the fixed network and can operate

asynchronously and autonomously to accomplish the task. At a later stage the mobile user

can reconnect and collect the agent with the results.

5. They adapt dynamically: Mobile agents are capable of sensing their execution

environment and take decisions based on that dynamically.

6. They are naturally heterogeneous: Mobile agents are generally independent of the

computer and the transport layer and depend only on their execution environment. Hence

they can perform efficiently in any type of heterogeneous networks.

15

Background and Related Work

7. They are robust and fault-tolerant: The dynamic reactivity of mobile agents to

unfavourable situations makes it easier to build robust and fault-tolerant distributed

systems.

2.2.5 Migration Types of Mobile Agent

All the mobile agents systems have the same general architecture. A system server on

each machine accepts incoming agents, and for each agent, starts up an appropriate

environment, loads the agent's state information into the environment, and resumes agent

execution. However, some differences are quite notable. Some systems, like Java-based

systems (e.g. Aglets, Concordia and MOA) have multi-threaded servers and run each

agent in a thread of the server process itself while some other systems have multi-process

servers and run each agent in a separate interpreter process and the rest uses some

combination of these two extremes.

Mobile agent systems generally provide one of the two types of migration:

1. Strong migration that captures an agent's object state, code and control state, allowing

it to continue execution from the exact point at which it left off.. The strong migration

is more convenient for the end programmer, but ore work for the system developer

since routines to capture control state must be added to the existing interpreters.

2. Weak migration that captures only the agent's objects state and code, and then calls a

known entry point inside its code to restart the agent on the new machine. All the

java-based systems do not capture an agent's thread (or control) state during

migration and thus use weak migration. This is because thread' capture requires

modifications to the standard Java virtual machine. In other words, thread capture

means that the systems could be used with one specific virtual machine, significantly

reducing market acceptance.

2.3 Related Work

There have been several efforts for achieving data collection in wireless sensor network

(WSN). To our knowledge, none of the approaches addresses completely all the goals of

reliability, flexibility, and efficiency. These approaches can be called as multipath

16

Background and Related Work

approaches and query propagation approaches. Multipath approaches focus on reliability.

Query propagation approaches provide flexibility but lack reliability.

Multipath approaches provide higher reliability than single-path data routing approaches

with similar latency (i.e. time to get all the information at the collection point) [17, 18,

29]. They achieve a higher degree of reliability by having multiple paths for the same

source-destination pair. The main difference between multipath approaches is whether

packets are redundantly forwarded through all multiple paths simultaneously or only

forwarded along non-primary paths if the primary path fails. Another main difference is

whether the multiple paths are completely disjoint.

By forwarding the information through multiple paths, it is possible to achieve a high

degree of reliability as well as the same low latency as single path approaches. However,

less energy is spent when using a single path, since multiple paths do not need to be

maintained. More importantly, single path approaches do not transmit multiple copies of

the same packet. In [19], the authors describe a protocol to deliver packets at a desired

reliability by sending copies of each packet along multiple paths from source to, sink.

Upon reception of a packet, every node decides how many replicas it needs to make and

where to forward them. This decision is based on some minimal state information carried

by the packet and the node's local information.

Every node decides how many paths it needs to span based on the desired degree of

reliability. Load-balancing is achieved by selecting these paths randomly. In Figure 2.6,

we can see how the data is being forwarded through multiple paths. The authors also

study and compare end-to-end unreliable (with no ACKs) multipaths with end-to-end

reliable multipaths (with end-to-end ACKs). End-to-end unreliable multipaths are

preferred to end-to-end reliable multipaths. The latter adds more complexity; yet it has a

similar number of retransmissions. In particular, when the number of hops or the error

rate is high, the likelihood of the acknowledgements being lost is also high, which

triggers retransmissions. When the number of hops or the error rate is low, the extra

overhead due to the use of end-to-end acknowledgements is not justified. In [18], the

authors present and compare two approaches for multipath routing in WSNs: node-

17

Background and Related Work

disjoint multipath and braided paths. The first of the two approaches is based on a

classical node-disjoint multipath.

Several studies propose to propagate SQL-like queries on WSNs [19, 20]. Here, the

sensor network becomes a large distributed database able to answer queries. Query can be

generated as described in Figure 2.6. This brings more flexibility in terms of re-using the

already deployed WSN for different purposes. SQL queries are generated at a collection

point which acts as a root in a routing tree.

In these query-based approaches, queries are always propagated following a tree rooted at

the collection point. This becomes a fundamental flaw in terms of failure resilience. If an

internal node fails, its whole subtree becomes isolated. To overcome this inherent

drawback, several enhancements have been proposed to the basic query-propagation

approach.

SELECT AVG(volume),room FROM sensors
WHERE floor =6
GROUP BY room
HAVING AVG(volume) > threshold
EPOCH DURATION 30s

Figure 2.6 Query to Monitor the Occupancy of the Conference Rooms on a

Particular Floor of a Building

All of the approaches described above are basically based on traditional client/server

computing model, where each sensor node sends its sensory data to a backend processing

center. Because the communication bandwidth of a wireless sensor network is typically

much lower than that of a wired network, a sensor network's data traffic may exceed the

network capacity. We can use advantages of mobile agent technology for data collection

process in WSN [21], [22].

Regarding mobile agent route planning, related work appears in the robotic community

regarding robot navigation. For instance, [23] proposes a series of algorithms to decide

18

Background and Related Work

the safest path a mobile robot must take to reach its destination. Obstacles are sensed by a

sensor network and the safest path is computed at the sensor network as well. The mobile

robot is then safely guided by the sensor network to its destination. In particular, they

propose to use a combination of artificial potential fields and dynamic programming.

Artificial potential fields compute the risk level at every node.

To efficiently deploy mobile agents in a WSN, the appropriate runtime support has to be

present in the WSN. One of the first attempts to provide mobile code and reprogramming

capabilities on a WSN is presented in [24]. In this approach (Mate), a byte-code

interpreter virtual machine is installed on every node. This virtual machine hides the

intrinsic of the underlying architecture and provides a finite set of common WSN-related•

instructions. In addition, through viral infection, the Mate applications being executed at

the WSN are remotely updated.

In this thesis we have focused on the problem of energy efficient data collection in

wireless sensor network. In [24], authors have proposed mobile agent based approach to

solve the problem of overwhelming data traffic. In that they have assumed clustering in

WSN. The assumption of clustering poses limitation on several applications of WSN. The

limitation of clustering can be addressed by a flat sensor network. We have used mobile

agent based approach for data collection in WSN for flat sensor network. We have

designed and implemented a novel approach for energy efficient data collection in WSN.

19

CHAPTER 3

PROPOSED APPROACH FOR DATA COLLECTION

3.1 Motivation

For proposed approach for data collection in wireless sensor network we used mobile

agent based computing model instead of client/server based computing model. MA based

computing model is introduced in [25] and its advantages over the traditional

client/server computing model are discussed.

The main contribution in our work is as following.

1. Here, we develop energy efficient data collection approach for wireless sensor

network.

2. We use mobile agent based computing model rather than traditional client/server

based computing model to reduce energy consumption.

3. The entire approach is broadly divided in two parts. First part is path

establishment. We flood interest message to get information about available

source nodes in sensor network. At the same time source nodes sends exploratory

data to provide information about their presence to sink node. Second part is data

collection procedure.

4. Data collection procedure involves mobile agent route planning. We have divided

this process into mobile agent migration from sink node to first source node, first

source node to last source node and last source node to sink node.

3.2 Mobile Agent Based Computing Model

As described in Chapter 2, WSNs have presented unique challenges to many aspects of

network design and information processing. In order to respond to these challenges the

20

Proposed Approach for Data Collection

underlying data collection techniques need to be scalable, adaptive, energy-aware and

capable of delivering reliable information in real time. Furthermore, data collection

techniques should provide progressive accuracy as the collaboration process could be

terminated upon achieving desired accuracy to conserve energy.

In data collection process the most commonly used computing model is client-server

model. Here, individual sensors act as clients. Processing center acts as the server.

Individual sensors (clients) send raw data or preprocessed data to processing center

(server). So, data collection is carried out at center (server). There are few drawbacks of

this client/server based computing model. It requires many round trips over the network

in order to complete one transaction. Each transaction consumes network bandwidth and

communication energy. Also, there are some head nodes in WSN with higher computing

capabilities, bigger storage and more energy. These head nodes acts as processing center.

But in some automatic and homogenous sensor networks, this is not always be the case.

Given the unreliability and low bandwidth of the wireless link used in sensor networks,

the client/server based computing is not appropriate to carry out the data collection

between multiple sensor nodes. So, we introduce Mobile Agent (MA) based computing

model.

In MA based computing model, instead of each sensor node sending raw data or pre-

processed data to processing center, the processing code is moved to the data locations

through mobile agents. Figure 3.1 presents MA based computing model.

This model has following features.

• The performance of the network is not affected when the number of sensor nodes

is increased. This addresses scalability issue.

• Mobile agents can be sent when the network connection is alive and return results

when the connection is re-established. Therefore, the performance of the MA-

based computing is not affected much by the reliability of the network.

• Mobile agents can be programmed to carry different task-specific integration

processes which extend the functionality of the network.

21

Proposed Approach for Data Collection

• The itinerary of the mobile agent is dynamically determined based on both the

information gain and energy constraints. It is tightly integrated into the

application and is energy-efficient.

Sensor Nodes

Mobile Agent

Processing Element

- - -► Agent Migration

Figure 3.1 Mobile agent based computing model

• A mobile agent always carries a partially integrated result generated by nodes it

already visited. As the mobile agent migrates from node to node, the accuracy of

the integrated result is constantly improved assuming the agent follows the path

determined based on the information gain. Therefore, the agent can return results

and terminate its itinerary any time the integration accuracy satisfies the

requirement. This feature, on the other hand, also saves both network bandwidth

and computation time since unnecessary node visits and agent migrations are

avoided.

22

Proposed Approach for Data Collection

3.3 Structure of Mobile Agent
Mobile Agent is a special kind of software. Once dispatched, it can migrate from node to

node, performing data processing autonomously. Figure 3.2 shows the structure of mobile

agent. It shows MA has attributes namely identification, itinerary, processing code, host,

status and other detail.

Itinerary

Code 	 Status

static void main(..)
{

int a=10;
agent x;

Host
	 Other Detail

Figure 3.2 Structure of Mobile Agent

A mobile agent generally consists of the following components, as illustrated in Figure

3.2: Itinerary records the route and current position of the agent; Code stores fragments of

the program; State records agent status and Host stores the server position; Other

necessary details store other information related to the agent, so that operators will know

what the agent does and who the owner is.

3.4 Mobile Agent Route Planning
3.4.1 Assumptions

• Here we assume sensor network architecture to be flat. Flat sensor network

architectures are suitable for wide range of applications.

• We consider mobile agent (MA) in multihop environments with the absence of

cluster head.

23

Proposed Approach for Data Collection

• The target sensor nodes are geographically close to each other when compared

with the distance to the sink node.

• Only those source nodes whose interest packets match will store the processing

code carried by an MA. The sink does not flood processing code to the whole

network, since the associated communication overhead may be too high.

• Processing code is stored in the source node when the MA visits it at the first

time. The processing code will be operating until the task is scheduled to finish. It

may be discarded when the task is finished.

• The locally processed data in each source node will be aggregated into the

accumulated data result of the MA by a certain aggregation ratio.

3.4.2 Basic Design

We propose gradient based solution to decide in which order source nodes to be visited.

Figure 3.3 describes how data collection is carried out at-source nodes and then collected

data sent finally to sink node. As shown in figure, sink node diffuses an interest for

exploratory events which are intended for path setup.

Data Collection is finished at last source

o
10 	o

00

.----------
\ 	 ,1000 0 0

o 0 0 00

• Source Node Target Region

0 Intermediate Node 	- `

Sink Node 	 Mobile Agent

Figure 3.3 Basic design

24

Proposed Approach for Data Collection

Once target sources receive the corresponding interest, they send exploratory data,

possibly along multiple paths, toward the sink. The gradients set up for exploratory

events are called exploratory gradients. Once gradients are set up, sink sends MA for data

collection to target source nodes matching sink's interest. Sink selects first and last

source node. The sink also reinforces the path to the last source node. When MA reaches

first source node, it is stored in the source node. MA travels from first source to last

source. Multiple rounds are carried out for this process for collecting desired data.

Finally, Reinforced path from last source node to sink node will be used by MA to

traverse sink node.

3.4.3 Data Aggregation

Mobile Agent aggregates individual sensed data when it visits each target source.

A sequence of data result can be fused with an aggregation ratio µ (0 <= gi

Let D'ma be the amount of accumulated data result after the MA leaves source i.

Let d; is the amount of data that will be aggregated by g.

Di ma = D'-'ma + (1 - 	d1. 	or
k=i

D'ma = dl + Y- (1 - µ) ' dk.
k=2

In equation, at first source node no data aggregation takes place. The value of µ is

dependent on type of application. For example in image processing application, when we

fuse two Region of Interest (ROI) images, effective data fusion can be attained only if

statistical characteristics of the image are known (for example, Slepian-Wolf coding

schemes).

3.4.4 Data Redundancy Reduction
MA based approach provides efficient way of dynamically deploying new application. It

also allows a source node to perform local processing on the raw data as requested by the

application. This capability enables a reduction in the amount of data to be transmitted.

25

Proposed Approach for Data Collection

Let a (0 <a < 1) be the reduction ratio. Let D'data be the size of raw data at source i. Let di

be the size of reduced data. Then, d; = D'dath (1 — a)

3.5 Detailed Design

3.5.1 Design of Mobile Agent Packet Format

SID SeqNo FS LS ICount IFlag

NS NH SFlag List

Figure 3.4 Design of mobile agent packet format

MA packet's identification is represented by pair (SID, SeqNo). SID is Sink Identifier.

When sink sends new MA packet,. SeqNo is incremented. FS represents first source node

and LS represents last source node. MA first visits node represented by FS and visits

eventually to the last node represented by LS. So, data collection by MA begins with FS

and ends at LS. ICount value is associated with the current value of the data collection

round. Initially, sink sets this value to 1. FS increments value of ICount for each new

round. IFlag value is set by FS. IFlag value indicates that current round is last round of

data collection. When MA with IFlag set arrives at a source node, it can make the system

unmount the corresponding processing code after its execution.

NS indicates next source node to be visited by MA. NH indicates immediate next hop

node (it can be intermediate sensor node or destination source node). If NH equals NS

then the next hop node is destination node. List contains the identifiers (IDs) of target

sensor nodes that remain to be visited in current round. When MA is created List

contains all source node IDs. After MA visits particular source node that ID is deleted

from the list. When all target source nodes have been visited, SFlag is set which indicates

that destination of MA is sink node.

26

Proposed Approach for Data Collection

3.5.2 Working of Proposed Approach

(a) Sink node floods interests and Source node floods exploratory data

Figure 3.5 Initial Operations of Sink node and Source nodes

27

Proposed Approach for Data Collection

As per shown in Figure 3.5, Application requests a new task to sink node. Sink node then

floods interest packet to find out source nodes which will perform the task. On the other

side, if source nodes receive interest, they send exploratory data to the sink node

individually. Now, sink node receives these exploratory data and prepares a list of source

nodes that will be visited by MA.

MA related operations begin when sink create MA and dispatches it. MA operation ends

when MA returns to the sink after data collection. These operations are shown in Figure

3.6, 3.7 and 3.8. Figure 3.6 shows mobile agent creation and dispatch procedure. Figure

3.7 shows steps carried out during data collection process. Figure 3.8 shows procedure

about mobile agent finishing task and returns to sink node.

The MA route can be divided into three parts; from sink to FS, FS to LS, and LS to the

sink. Each source node is expected to generate the sensory data periodically with some

interval, which means same code (MA) needs to be stored for multiple running.

Therefore, when MA arrives at FS, it will be stored.

Then FS sets Timer. Timer is used to trigger the next round to dispatch the MA to collect

data from the relevant source again. The time period between two successive rounds of

data collection will be equal to sensory data generating rate which is set to the value of

the Timer. This round will be repeated until the task is finished. At the end of last round

the task is finished. When Timer expires, FS starts a new round by dispatching the MA

along all the sensors. After MA visits last source, it discards the processing code and

carries aggregated result to the sink.

Proposed Approach for Data Collection

(b) MA creation and dispatch by Sink node

Sink Node Receives

Exploratory Data Sent By Source

Nodes

Create MA

Set FS And List To The MA

Dispatch MA

Figure 3.6 MA Creation and Dispatch

29

Proposed Approach for Data Collection

(c) Data collection process

MA Visits Node Represented by

FS

Store The MA

Start Timer

Timer Expires

At FS

III,

Create MA By

Copying Stored MA
MA Collects Data

And Migrates To Next Node
In List

Yes 	Is It Last 	No

Round?

Figure 3.7 Data Collection Process

30

Proposed Approach for Data Collection

(d) Migration of mobile agent to sink node

Figure 3.8 MA Migrates to Sink Node

31

Proposed Approach for Data Collection

Among these target source nodes, sink node choose first source node and last source

node. It then dispatches MA with the packet structure described in 3.5.1 and sends to MA

to first source node. At the same time sink node reinforces path to last source node. When

MA arrives at the first source node, it is stored in the node. The whole task is divided into

rounds, where each round requires the MA to visit all the chosen target sensors and to

return the data result to the sink node. Figure shows, S 1, S2, S3 and S4 are source nodes

to be visited by MA. SI is first source node and S4 is last source node. Reinforced path

from S4 to S is shown. Nodes with number represent intermediate nodes. Node S is sink

node.

33

Proposed Approach for Data Collection

(d) Migration of mobile agent to sink node

Figure 3.8 MA Migrates to Sink Node

31

Proposed Approach for Data Collection

So, we can summarize that MA based data collection process is divided .into two part.
First part deals with the path (gradient) setup between sink node and source nodes.
Second part deals with the data collectionprocess by creating and dispatching MA.

Figure 3.9 explains second part of the process by means of example. At the end of the
first part, the target sensor nodes generate multiple exploratory message flows to the sink
node. Since ultimate goal in sensor network is detection of event, sink node may stop
handling any exploratory message flows if it considers that the number of source nodes is
large enough to meet the requirement of reliable event detection. Thus, sink node may
choose all source nodes or subset of source nodes for MA visit.

Si S2 53

OO OO O
O O /-0OO

O O 14~ OO
Q S4

~2

	

C - O 	16 O 	r 	0 O

	

O C ~- 	O 7
O 1 	 5

0 	0
S

0 00

0 Intermediate . - - - 	MA migration towards source
Node

First Source Node MA migration among source ---0
Intermediate
Source Node Positive Reinforcement
Last Source Node

MA migrates along reinforced
Sink Node P 	paw

Figure 3.9 Second part of proposed approach

32

Proposed Approach for Data Collection

Among these target source nodes, sink node choose first source node and last source

node. It then dispatches MA with the packet structure described in 3.5.1 and sends to MA

to first source node. At the same time sink node reinforces path to last source node. When

MA arrives at the first source node, it is stored in the node. The whole task is divided into

rounds, where each round requires the MA to visit all the chosen target sensors and to

return the data result to the sink node. Figure shows, S 1, S2, S3 and S4 are source nodes

to be visited by MA. Si is first source node and S4 is last source node. Reinforced path

from S4 to S is shown. Nodes with number represent intermediate nodes. Node S is sink

node.

33

CHAPTER 4

IMPLEMENTATION DETAIL

4:1 NS-2 Simulator

-NS2 is an object-oriented, discrete event-driven network simulator developed at UC

Berkeley written: in C++ and OTcl [26]. NS2 is very useful for developing and

investigating variety of protocols. These mainly include protocols regarding TCP

behavior, router queuing policies, multicasting, multimedia, wireless networking and

application-level protocols.

4.1.1 Software Architecture

NS2 software promotes extensions by users. It provides a rich infrastructure for

developing new protocols. Also, instead of using a single programming language that

defines a monoIithic si nulation, NS uses the split-programming model in which the

implementation of the model is distributed between two languages. The goal is to provide

adequate flexibility without losing performance. In particular, tasks such as low-level

event processing or packet forwarding through simulated router require high performance

and are not modified frequently once put into place. Hence, they can be best implemented

in compiled language like C++. On the other hand, tasks such as the dynamic

configuration of protocol objects and exploring a number of different scenarios undergo

frequent changes as the simulation proceeds. Hence, they can be best implemented in a

flexible and interactive scripting languagejlike OTcl. Thus, C++ implements the core set

of high performance primitives and the OTcl scripting language express the definition,

configuration and control of the simulation.~'

11Y

34

Implementation Detail

4.1.2 C++ - OTci Linkage

NS supports a compiled class hierarchy in C++ and also similar interpreted class

hierarchy in OTcl. From the user's perspective, there is a one-to-one correspondence

(Figure 4.1) between a class in the interpreted hierarchy and a class in the compiled

hierarchy. The root of this class hierarchy, is the class TclObject. Users create new

simulator objects through the interpreter. These objects are instantiated within the

interpreter and are closely mirrored by a corresponding object in the compiled hierarchy.

The interpreted class hierarchy is automatically established through methods defined in

class TclClass while user instantiated objects are mirrored through methods defined in

class TclObject.

OTcl

C++

Figure 4.1.0++ --OTcl linkage.

4.1.3 Why NS2

NS2 is a publicly available common simulator with support for simulations of large

number of protocols. It provides a very rich infrastructure for developing new protocols.

It also provides the opportunity to study large-scale protocol interaction in a controlled

environment. Moreover, NS software really promotes extension by users. The

fundamental abstraction the software architecture provides is "programmable

Implementation Detail

composition". This model expresses simulation configuration as a program rather than as

a static configuration.

In addition, in our work, we needed to implement our data collection approach for

wireless sensor network. To simulator wireless sensor network we have used WSN

framework for NS2 [27]. We also needed to extend some functionality for mobile agent

support, which we find is suitable to be done in NS2.

4.2 Functionalities Implemented

We have implemented the following functionalities for mobile agent.

Context class provides the execution environment required for agent's execution

including creating any number of agents, retracting agents from a remote site, disposing

agent, registering agent and actual transferring of agent to another context. By registering

agents, it maintains the list of currently executing agents in a hash table mapped with the

agent's ID. In order to transfer an agent's reference, as discussed before, it needs to

define an ADU (Application Data Unit) that derives from the class AppData. AppData is

the base class for all ADUs. The class thus defined to carry agent's reference is named as

MobileAgentData.

Methods provided by Context class are as follows:

void process_data(int, AppData*): It over-rides the behaviour of TcpApp and is the

principle method for processing the incoming agent. It retrieves the agent's reference

stored in the MobileAgentData and loads and starts the agent by calling agent's

startArrivedAgent() method.

void retractAgent(const char*): It is used to draw back the agent from a remote site.

void registerAgent(MAgent*, int): It is used to initialize the agent and register in the

agent's table.

void disposeAgent (int): It just erases the agent from the table.

36

Implementation Detail

bool is active(): Checks if the agent is currently in ACTIVE state or not.

As MAgent class contains some abstract methods, it cannot be instantiated. To instantiate

an agent object, one must extend from the MAgent class. To facilitate this extension in

both C++ and OTcl, a new class named MAgentlnst is created by inheriting from

MAgent class. It is actually this class's object that shadows with the OTc] class MAgent.

It is used to create a default implementation of all the abstract methods in MAgent class

to call the corresponding method in OTci and thus allowing extending the MAgent class

directly in OTci.

4.3 Simulation Settings

4.3.1 Sensor network model

Some of the components of sensor network model are following:

Sensor Node: Sensor node is any sensor node in the wireless sensor network. Sensor

nodes perform sensing, communication and processing. There are three types of sensor

nodes we have in simulation of sensor network model: sink node, source node and

intermediate node.

Sink Node: Sink node is sensor node; responsible for getting request for data collection

from application. It then creates mobile agent and sends it to source nodes for data

collection.

Source Node: Source node is sensor node which is detecting event and sending data to

sink node periodically. There are many source nodes which are deployed near the event.

Intermediate Node: Intermediate node is sensor node which comes in the path between

sink node and source node. Mobile agent travels through intermediate nodes to source

nodes and return back through intermediate nodes to sink node.

38

Implementation Detail

Sensor Field: Sensor nodes are deployed in an area which is close to the event. This area

is sensor field. Nodes deployed in sensor field can detect the event and transmit data to

the processing center or sink node.

Here, periodic transmission of data packets takes places for each task with a constant bit

rate 1 packet/second. Here, we assume that sink node has sufficient energy supply which

is equal to infinite energy when compared with source nodes. Source nodes are battery

operated with limited energy. We also assume that source and sink nodes are stationary.

Source nodes are located at one corner of the area, while the sink node is located on the

other corner of the area. Every node starts with same initial energy.

4.3.2 Simulation Parameters

Energy Calculation:

Energy consumption is calculated as per following equation:

Energy = m x Size + b+ Pidle X t X 1000 (µW• s)

in is incremental cost compared to power consumption in idle state, b represents

the fixed cost independent of packet size, t represents the duration of state. Size

represents packet size.

The energy model we used here is as per [28].

Parameter Values:

Parameter Values are tabled in Table 4.1 and Table 4.2

39

Implementation Detail

Table 4.1 Energy Consumption parameters configuration of lucent IEEE 802.11

WaveLAN card

Normalized Initial Energy of Sensor Node

(W - s)

4500

Incremental Cost (µW• s / bytes) mtX 1.9

mrecv 0.5

Fixed Cost (µ W • s) b,, 454

brecv 356

Pidie (m W) 843

Table 4.2 Simulation Parameters

Network Size 300m x 300 m

Topology Configuration Mode Randomized

Total Sensor Nodes 600

Data Rate I Mbps

Transmission Range of Sensor Node 30m

Source Nodes 5

Sensed Data Size 1 KB

Sensed Data Packet Interval I s

Duration 300s

Implementation Detail

4.4 Performance Metrics

We have considered following performance metrics to evaluate performance of our

approach.

Energy Consumption

Energy consumption which is denoted by e, is the ratio of network energy consumption

to the number of data packets delivered successfully to the sink. The network energy

consumption includes all the energy consumption by transmitting and receiving during

simulation.

We do not account energy consumption for idle state, since this part is approximately the

same for the both schemes simulated. Let Etotat be the energy consumption by

transmitting, receiving and overhearing during simulation and data denotes number of

data packets delivered to the sink.

Therefore, Energy consumption,

e = Etotal / data

Packet Delivery Ratio (Reliability)

Packet delivery ratio which is denoted by P. is the ratio of the number of data packets

delivered

to the sink to the number of packets generated by the source nodes.

Average end-to-end packet delay

Average end-to-end packet delay which is denoted by Tete, includes all possible delays

during data dissemination, caused by queuing, retransmission due to collision, and

transmission time.

:Il

Implementation Detail

Energy * delay / Reliability

In wireless sensor network, it is important to consider both energy and delay.

Here, energy * delay metric can reflect both the energy usage and the end-to-end delay.

Furthermore, in unreliable environment, the reliability is also important metric.

Ti = e. Tete / P

42

CHAPTER 5

SIMULATION RESULTS AND DISCUSSION

Results and Discussion

We compare results carried out by our approach with the directed diffusion approach

presented in [29]. Some of important parameters chosen for comparison are duration of

task, reduction ratio (a), aggregation ratio (g), size of sensed data of each sensor (Ddata).

When our approach is applied to wide range of applications, the consideration of varying

both reduction ratio and aggregation ratio is necessary. In the image processing

application, if target camera sensors are sparsely distributed, the redundancy between two

R01 images is low which means that the value of µ would be small. In the following

subsections we present comparisons under different conditions for both approaches:

proposed approach and directed diffusion.

5.lEffect on energy consumption by changing task duration

In this experiment, we change Ttask, from 10 seconds to 600 seconds. As shown in Figure

5.1 as Trask increases energy consumption e decreases in both approaches. When the Ttask

is small (< 60 seconds) our approach consumes more energy compared with directed

diffusion.

43

Simulation Results and Discussion

x105

10 •
E

0 8
n CM 7

6

	

J 5 f-Proposed Approach

=~ 4
directed diffusion

2 +

b'~ 	1

~ 0

0 200 400 600 800

Duration (s)

Figure 5.1 Effect of Task duration on energy consumption

This is due to some fixed additional energy consumption for processing code. If Tt k

is small, ndata is small and energy consumption, e is large. However, when Ttask is

more than 90 seconds with a,=0.8 and µ = 0.2, our approach has lower energy

consumption than directed diffusion. Thus our approach performs better in

applications where source nodes process enough long streams of data.

44

Simulation Results and Discussion

5.2 Effect on average end to end delay by changing mobile agent
accessing delay

Mobile agent accessing delay represented by i, is the time for an MA to amount

processing code in target source node. Here, we change delay T from 0 to 0.05 seconds.

As shown in Figure 5.2, Average end-to-end delay for directed diffusion approach (Tdd)

is constant since changing i has no effect on directed diffusion. As i is introduced in

proposed approach, it causes average end-to-end delay (Tma) increase fast. In Figure 5.2

when it is beyond 0.042 seconds with a=0.8 and g = 0.2, our approach has larger end-to-

end delay than directed diffusion.

0.7

0.6

a 0.5

• 0.4

~. 	 -~--proposed approach

0
	0.3 	 —*—directed diffusion

0.2

ti
0.1

0

0 	0.01 	0.02 	0.03 	0.04 	0.05 	0.06

Mobile agent access delay(s)

Figure 5.2 Effect of MA delay on end-to-end delay

Simulation Results and Discussion

5.3 Effect on packet delivery ratio by changing size of sensed data

Here, we change the size of sensed data of each sensor (Ddata) from 0.5 KB to 2KB by
increasing 0.25 KB each time and keep the other parameters unchanged. As shown in

Figure 5.3, proposed approach always outperforms directed diffusion in terms of P. to our

approach, only single data flow is sent for each round. In contrast, multiple data flows

from individual source nodes are sent in directed diffusion. Thus, Congestion is more

likely in directed diffusion. When Ddata increases, the congestion is more serious and P of

directed diffusion will decrease more.

1.2

1

IIIII
0.8

f-proposed approch
0.6 	 :directed diffusion

0.4
ti

0.2

0 	0.5 	1 	1.5 	2 	2.5

Sensed data size (KB)

Figure 5.3 Effect of sensed data size on packet delivery ratio

Simulation Results and Discussion

5.4 Effect on energy consumption by changing size of sensed data
As shown in Figure 5.4, the energy consumption of directed diffusion is larger than that

of our Mobile agent based approach in most cases. The larger the value of a or µ, the

smaller is e in our approach. When a=0.9 (RR) and µ= 1 (AR), e is lowest among all

cases. If g=1, all the sensory data will be fused into a data with fixed size. To take best

advantage of our approach the value of µ should be higher. To take conservative

approach in evaluation, we take small g. By taking t = 0.2 fixed, when a is more than.

0.6, e of our approach is always less than that of directed diffusion. Performance gain

increases as a increase. When a is less than 0.4, our approach tends to have larger e. This

is because the smaller is a, the larger is the size of accumulated data result.

x105
2.5

2

•

ti 	

proposed approach
-,' 	1.5 	 with RR=0.9 AR=1

—f-proposed approach
with RR=0.8 AR=0.2

	

1 	 -proposed approach
with RR=0.5 AR=0.2

>~directed diffusion
0.5

W E 0

0 	0.5 	1 	1.5 	2 	2.5

Sensed data size (KB)

Figure 5.4 Effect of sensed data size on energy consumption

47

Simulation Results and Discussion

5.5 Effect on average end-to-end delay by changing size of sensed data

As shown in Figure 5.5, average end-to-end packet delay (Tma) exhibits similar trend as
energy consumption of our approach. Average end-to-end packet delay (Tma) is more
sensitive to the size of sensed data of each sensor (Dda) than energy consumption. When
a (RR) is less than 0.6 and t (RR) is equal to 0.2, our approach tends to have larger end-

to-end packet delay than that of directed diffusion.

1

	

0.9 	 ,
" 0.8

proposed approach

	

0.7 	 with RR=0.9 AR=1

	

0.6 	 --E—proposed approach
ti 	 with RR=0.8 AR=0.2

0.S
—?1 —proposed approach

	

0.4 	 with RR=0.5 AR=0.2

	

0.3 	 —*—directed diffusion

on 0.2
ti

0.1

Q 0

0 	0.5 	1 	1.5 	2 	2.5

Sensed data size(KB)

Figure 5.5 Effect of sensed data size on average end-to-end delay

48

Simulation Results and Discussion

5.6 Effect on energy, delay and reliability by changing size of sensed
data

Figure 5.6 is result of a in terms of (energy * delay / reliability) rl obtained after fixing t.

Here, we observe that our approach does not show advantage if the value of a is less than

0.4 and g is equal to 0.2. The value of reduction ratio and aggregation ratio is dependent

on type of application. Therefore, before adopting proposed approach for data collection,
the features of the application should be investigated.

x 105

2.5

2

ti
-*—proposed approach with

	

1.5 	 RR=0.9 AR=1

--proposed approach with
RR=0.8 AR=0.2

1
—fir—proposed approach

RR=0.5 AR=0.2

	

0.5 	 directed diffusion

—~lE—proposed approach with

	

0 	 1 	 RR=0,4, AR=0.2
0 	0.5 	1 	1.5 	2 	2.5

Sensed data size(KB)

Figure 5.6 Effect of sensed data size on energy*delay/ reliability

CHAPTER 6

CONCLUSIONS AND FUTURE WORK

6.1 Conclusions

In this thesis we proposed an energy efficient approach for data collection in wireless sensor

network. We have applied mobile agent based approach for efficient and reliable data

collection. Our objectives were to design and implement mobile agent migration plan among

sink nodes and source nodes to perform data collection such that energy consumption of WSN

nodes decreases.

We designed and implemented gradient based route planning for mobile agent for data

collection in WSN. We investigated efficiency of our approach by comparing it with another

data collection method for WSN, directed diffusion. We have evaluated our approach based on

performance metrics defined in chapter 5. Results of comparison are shown and discussed in
chapter 5.

We can conclude from results shown in Figure 5.1 that our approach performs better for

applications of WSN where source nodes process enough long streams of data. From Figure 5.2

we can say that if mobile agent access delay increase beyond some value along with large

reduction ratio and small aggregation ration than average end-to-end packet delay is more

compared with directed diffusion. Based on Figure 5.3 we can conclude that our approach

achieves higher reliability than directed diffusion. Figure 5.4 and Figure 5.5 shows that our

approach has lower energy consumption than that of directed diffusion.

Thus, in applications where energy consumption is of primary concern, mobile agent based

approach for data collection exhibits substantially 	 than directed
diffusion.

is

50

Conclusions and Future Work

6.2 Suggestions for Future Work

In our approach, we have assumed that source nodes are deployed near event and are close to

each other. Here, we send one mobile agent for data collection towards source nodes from sink

node. Considering an application with more number of source nodes and distance between

source nodes is also 'large, we can send more than one mobile agents -from sink node for data

collection. This will further reduce energy consumption of network nodes. This approach may

be considered for future work.

51

REFERENCES

[1] Akyildiz, I., Su, W., Sankarasubramaniam, Y., and Cayirci, E,"A Survey on Sensor

Networks", IEEE Communications Magazine, August 2002.

[2] Arampatzis,Th., Lygeros, J., Manesis,S., "A Survey of Applications of Wireless

Sensors And Wireless Sensor Networks", Proceedings of the 13th Mediterranean

Conference on Control and Automation Limassol, Cyprus, June 27-29, 2005.

[3] Lcpc geotechnical centrifuge the rion-antirion bridge. [Online].

Available:http:// ww.lcpe.fr/en/presentation/movers/centrifu euse/index 1.dm I

(2008, June)

[4] Fire information and rescue equipment. [Online].

Available: http://fire.me.berkeley.edu (June 2008)

[5] G. Boone, "Reality mining: Browsing reality with sensor networks," Sensors Online,

vol. 21, no. 9, Sept. 2004.

Available: http://archives.sensorsmag.com/articles/0904/14/ .(June 2008)

[6] Deb, B., Bhatnagar, S., and Nath, B., "Reinform: Reliable information forwarding

using multiple paths in sensor networks," in IEEE International Conference on Local

Computer Networks (LCN'03), 2003.

[7] Akyildiz, I.F., and Stuntebeck, E, "Underground wireless sensor networks: research

Challenges", Ad Hoc Networks (Elsevier), in press, June 2006

[8] Akyildiz, I.F., Pompili, D., Melodia, T., "Underwater Acoustic Sensor Networks:

Research Challenges," Ad Hoc Networks Journal, (Elsevier), March 2005

[9] Available Online: http://aisrp.nasa.gov/protects nonav/be9f74be.html .(June 2008)

[10] NASA-AISRP Year 2 Annual Report Document [Online]

Available: http://aisrp.nasa. ;ov/projects . nonav/reports/ l Odc6797c 15.pdf (June 2008)

[11] Crossbow mote datasheet [Online] Available:
http://wwNv.xbow.coni/Products/Product pdffiles/Wireless pdf, WSN PRO SeriesDataslie
e 	(June, 2008)

[12] Intel Mote [Online]

Available: www.intel.com/research/ex.ploratory/motes.htm (June, 2008)

[13] Minar, N., Hultman Kramer, K., and Maes, P., "Cooperating Mobile Agents for

52

Dynamic Network Routing", Proceedings of the I St Hungarian National Conference

on Agent Based Computation, 1999.

[14] Jain, R., Anjum, F., and Umar, A., "A comparison of mobile agent and Client-Server

paradigms for information retrieval tasks in virtual enterprises", AiWoRC Workshop,

Buffalo, New York (April), 2000.

[15] Mahmoud, Q., "MobiAgent: A mobile agent-based approach to wireless information

systems." In Proceedings of the 3rd International Bi-Conference Workshop on Agent

Oriented Information Systems (AOIS-2001), Montreal, 2001.

[16] Lange, D., and Oshima, M., "Mobile agents with Java: The Aglet API.", World

Wide Web, vol. 1, no. 3:n.pag., 1998.

[17] Deb, B., Bhatnagar, S., and Nath, B., "Reinform: Reliable information forwarding

using multiple paths in sensor networks", in IEEE International" Conference on Local

Computer Networks (LCN'03), 2003.

[18] Ganesan, D., Govindan, R., Shenker, S., and Estrin, D., "Highly-resilient, energy-

efficient multipath routing in wireless sensor networks", ACM Mobile Computing

and Communications Review, 2003.

[19] Madden, S., Franklin, M. J., Hellerstein, J. M. and W. Hong, "Tag: a tiny

aggregation service for ad-hoc sensor networks," in USENIX OSDI, 2002.

[20] S. R. Madden, M. J. Franklin, J. M. Hellerstein, and W. Hong, "The design of an

acquisitional query processor for sensor networks," in SIGMOD, 2003.

[21] H. Qi, S. Iyengar, and K. Chakrabarty, "Multi-resolution data integration using

mobile agents in distributed sensor networks", IEEE Trans. Syst., Man, Cybern. C,

vol. 31, no. 3, pp. 383-391, Aug. 2001.

[22] Q. Wu, N. S. V. Rao, J. Barhen, S. S. Iyengar, V. K. Vaishnavi, H. Qi, and K.

Chakrabarty, "On computing mobile agent routes for data fusion in distributed sensor

networks," IEEE Trans. Knowledge Data Eng., vol. 16, no. 6, June, 2004.

[23] Q. Li, M. D. Rosa, and D. Rus, "Distributed algorithms for guiding navigation

across a Sensor network," in ACM MobiCom, 2003.

[24] P. Levis and D. Culler, "Mate: A tiny virtual machine for sensor networks," in

ASPLOSX, 2002.

53

[25] H. Qi, Y. Xu, and X. Wang, "Mobile agent based collaborative signal and

information processing in sensor networks," Proceedings of the IEEE, vol. 91, no. 8,

pp.1172-1183, 2003.

[26] Network Simulator 2 [Online]

Available: http://www.isi.edu/nsnam/ns (June 2008)

[27] NRL Extension to NS2 [Online]

Available: http://cs.itd.n.rl.navy.mil/products/ (June 2008)

[28] L. Feeney and M. Nilsson; "Investigating the energy consumption of a wireless

network interface in an ad hoc networking environment," INFOCOM 2001.

[29] C. Intanagonwiwat, R. Govindan, D. Estrin, J. Heidemann, F. Silva; "Directed

diffusion for wireless sensor networking," IEEE/ACM Transactions on Networking,

vol.11, no.1, pp. 2-16, Feb 2003

54

Appendix: Source Code Listing

MAgent.h

#ifndef MAgent_h
#define MAgent h

#include <stdio.h>
#include <g++-3/list.h>
#include <g++-3/map.h>
#include <g++-3/multimap.h>

#include "config.h"
#include "scheduler.h"
#include "timer-handler.h"
#include "Context.h"

#define DEFAULT COLOR "blue"

enum agent_state {MOBILE, ACTIVE, DEACTIVATING, IDLE, TERMINATING,
DISPATCHING,ARRIVAL, REVERTING, CLONE, CLONED, CLONING);

class MobilityListener;
class PersistencyListener;

class MAgent : public TclObject, public TimerHandler {

public:
MAgent{);
MAgent(const MAgent* agent);
MAgent(Context* context);
-MAgent();
void create_bindings();
void initialize();

int command(int argc, const char*const* argv);
virtual void run(Context*){};
virtual void run(const char*){};
virtual void onCreation () { };
virtual void onDisposing(){};
int getId() { return id_; };
double getAgeO;
void dispatch();
void dispatch(const char* context);

void deactivate(long duration);
void dispose(};
bool isactive();
void addMobilityListener(MobilityListener* listener);

void addPersistencyListener(PersistencyListener* listener);

void removeMobilityListener();
void removePersistencyListener();

Context* getContext () { return context_; };

int get_size () {
size =code size _+ data size + status size + (int)((1-

selectivity_) *rep _size—); V 	

_ 	 _ 	 _

return size_;
}
void startCreatedAgent(Context*);
void startArrivedAgent(Context*);
void startRetractedAgent(Context*);
virtual void expire(Event*);
void sendMessage(const char*, int size);

private:
MobilityListener* m_listener_;
PersistencyListener* p_listener_;
void configure(Context*);

protected:
inline double now() {
return Scheduler::instance().clock();

}

int id_;
int size_;
int code size
int data size_;
int status _size _;
int rep_size_;
double mfactor ;
double selectivity_;
double process_ delay_;
double launch delay_;
agent state state_;
char* _ lastnode;
char* homenode;
list<char*>* tablelist ;
list<char*>* visitlist;
Context* context_;
char* dst_context_;
char* node_;
static int idCount;

#endif

MAgent.cc

#include <stdio.h>
#include <unistd.h>
#include <iostream.h>

#include "tcl.h"
#include "MAgent:h"
#include "config.h"
#include "MobilityListener.h"
#include "PersistencyListener.h"

int MAgent::idCount=0;

MAgent::MAgentO . TimerHandlerO
{
create_ bindings(};
context = NULL;
initialize()

MAgent::MAgent(Context* context) : TimerHandler()
{
create_ bindings 0;
context = context;
initialize()

void MAgent::create bindings()

bind (" id" , &id)
bind ("size_" , &size)
bind ("code size" , &code size)
bind("datasize_",&data_size_);
bind(" status _size_",&status_ size_);
bind(" rep size", &rep size_) ;
bind("selectivity_",&selectivity_);
bind ("mfactor", &mfactor);
bind ("process delay_", &process_delay_);
bind ("launch delay_", &launch_ delay_);

void MAgent::initialize()
{
id_ = idCount++;
node_ = NULL;
homenode = NULL;
dst_context = NULL;
lastnode = NULL;
state = IDLE;
tablelist = NULL;

0

visitlist = NULL;
m_listener_ = NULL;
p_listener_ = NULL;

// COPY Constructor for cloning an agent
MAgent::MAgent(const MAgent* agent) . TimerHandlerO
{
Id_ = idCount++;
state_ = agent->state_;
size_ = agent->size_;
tablelist = agent->tablelist_;
visitlist = agent->visitlist_;
context_ = agent->context_;
node_= agent->node_;
m_listener_ = agent->m_listener_;
p_listener_ = agent->p_listener_;
homenode_, agent ->homenode_;
lastnode_, agent->lastnode_;
status_ = agent->status_;

MAgent: :-MAgent()
{

if(tablelist) delete tablelist;
if(visitlist) delete visitlist ;

int MAgent::command(int argc, char const *const *argv)
{
Tcl& tcl = Tcl::instance();
if (argc==2) {

if (strcmp (argv [1] , "context") ==O) {
tcl . resultf (" %s" , getContext () - >name ())
return TCL_OK;

}
if (strcmp (argv [1] , "node") ==O) {

tcl .result (node);
return TCL_OK;

}
if (strcmp (argv [1] , "is active") ==O) {

tcl . resultf ("%d" , is_active ())
return TCL_OK;

J.
if (strcmp (argv [l] , "dispose") ==O) {
dispose();
return TCL_OK;

}
if (strcmp (argv [1] , "dispatch") ==O)

dispatch () ;
return TCL_OK;

}
if (strcmp (argv [l] , "removeMobilityListener") == 0)

removeMobilityListenerO;
return (TCL_OK);

}
if (strcmp(argv[l], "removePersistencyListener")

removePersistencyListener(};
return (TCL_OK);

}

== 0) {

if (argc >= 3)
if (strcmp (argv [1] , "dispatch") == 0) {

dst_context_ = (char*) argv[2];
dispatch (argv [2]) ;
return (TCL_OK);

}
if (strcmp (argv [1] , "resched") ==0) {

resched (atof (argv [2]))
return TCL_OK;

}
if (strcmp(argv[1]

	
"deactivate") _= 0)

deactivate((long) atoi (argv [2])) ;
return (TCL OK);

}
if (strcmp (argv [1] , "addMListener") == 0)
addMobilityListener((MobilityAdapter*)TclObject::lookup(.argv[2]));
return (TCL_OK);

}
if (strcmp (argv [1] , "addPListener") == 0)

addPersistencyListener((PersistencyListener*)TclObject::lookup(argv[2]));
return (TCL_OK);

}

if (strcmp(argv[1], "sendMessage") == 0)
sendMessage (argv [2] , atoi (argv [3])) ;
return (TCL_OK);

}

return (TclObject::command(argc, argv));

bool MAgent::is active()
{
return(state_== ACTIVE);

}

void MAgent::dispose()
{

state _= TERMINATING;
onDisposing();
context _->disposeAgent(id_);
delete this;

void MAgent::startCreatedAgent(Context* context)
{

context_ = context;
node = context->node();

homenode =context->node();

tablelist = new list<char*>O;
tablelist_->push_back(node_);
size_ = get size()
onCreationO;

void MAgent::startArrivedAgent(Context* context)
{
// May do initializations here...
if (m listener,) {

mlistener_->state_= ARRIVAL;
Event e;
m_listener_->expire(&e);

configure (context) ;
if (process_ delay ==0)

process _delay ~= 0.000005 * code_size_;
resched(process_delay_);
cout << "Process Delay "<<process_delay_<<endl;

void MAgent::startRetractedAgent(Context* context)
{
// May do initializations here...
if((state _==MOBILE)&&(m_listener_)) {
m_listener ->state_= REVERTING;
m_listener—_->resched(Q);

}
configure (context)
resched(process_delay_);

void MAgent::configure(Context* context)
{

state_ =. ACTIVE;

size = get size();

context = context;

node 	context->node();
table]ist_->push_back(node_);

void MAgent::addMobilityListener(MobilityListener* listener)
{
if(listener)

m_listener = listener;
else

printf("MAgent::addMobilityListener: Cant' add listener nil');
}

void MAgent::addPersistencyListener(PersistencyListener* listener)
{

if (listener)
p_listener_ = listener;

else
printf("MAgent::addPersistencyListener: Cant' add listener nil');

}

void MAgent::removeMobilityListener()
{
delete mlistener ;
m listener = NULL;

void MAgent::removePersistencyListenerO
{
delete p_listener.;
p_listener_ = NULL;

void MAgent::dispatch()
{
if(!visitlist_ 	visitlist_->emptyO) {

dispatch (MULL)
return;

} else {
char* context_nm = visitlist_->front();
visitlist_->pop_frontO;
dispatch(context_nm);

}

void MAgent::dispatch(const char* context_nm)

{
lastnode = node_;
state_ = MOBILE;
if(m_listener_) {
m_listener_->state = DISPATCHING;
m listener ->resched(0);

}
if (launch _delay _ == 0)
launch delay_ = 2*m_factor_*get_size();

cout << "Launch Delay "<<launch_ delay _<<endl;
cout << "DST context "<<dst_context_ <<endl;

resched (launch _delay_);

void MAgent::deactivate(long duration)
{
state_= DEACTIVATING;
if(p_listener_) {

p_ listener- >state_ = DEACTIVATING;

}
p_listener_->resched(0);

resched(duration);

void MAgent::sendMessage(const char* agent_nm, int size)
{
MAgent* agent = (MAgent*) TclObject::lookup(agent_nm);
Tcl& tcl = Tcl::instance();
tcl.evalf("%s connect-to %s ", context _->name(), (agent->getContext())-
>nameO);
tcl.evalf("%s send %d \"%s handleMessage %s %d\" ", context_->nameO,

size, agent_nm, nameO, size);
}

void MAgent::expire(Event* e)
// Timeout handler

{
switch (state)

{
case MOBILE:
cout << "DST context "<< dst_context <<endl;

if(dst_context_)
context _->move(id_,dst_ context _,get_sizeO);

else
context_->move(id_, get size());

break;
case ACTIVE:

run(context_);
break;

case IDLE:
state_ = ACTIVE;
run(context);

break;
case DEACTIVATING:

// as the agent wake's up now..
state = ACTIVE;
if (p_ listener _) {
p_listener_->state = ACTIVE;
p_listener_->resched(0);

default:
printf("\nMAgent::Illegal mobile agent's state\n");

Context.h

#ifndef Context_h
#define Context _h

#include <map.h>
#include <g++-3/list.h>
#include <g++-3/vector.h>
#include <g++-3/map.h>
#include "tcicl.h"
#include "ns-process.h"
#include "webcache/tcpapp.h"

class MAgent;
class MobileAgentData;

class Context: public TcpApp {
public:

Context(Agent* recv—tcp, Agent* send_tcp, const char*);
-Context 0;
int command(int argc, const char*const* argv);
void recv(Packet* p, Handler* h);
void process_data(int size, AppData* data);

void retractAgent(const char*);

void registerAgent(MAgent*, int, int);

void disposeAgent(int);
void startAgent(const char*);
const char* getAgent(int);
void move(int id, int size);
void move(int id,const char*, int size);
void registerAgent(MAgent*, int);
char* node() { return node_;}

private:
int init();
int disable();
inline double now() {
return Scheduler: :instanceO.clockO;

}
char* node_;
map<int, MobileAgentData*> agentList̂ ;
bool enable_;

class MobileAgentData : public AppData {

private:
char* reference_;

public:
MobileAgentData() : AppData(MOBILE_AGENT)

reference =NULL;
}
MobileAgentData(const char* ref) : AppData(MOBILE_AGENT)
{

reference = new char[strlen(ref)+1];
strcpy(reference_, ref);

}
MobileAgentData(MobileAgentData& d) : AppData(d)
{

reference = new char[strlen(d.reference_)+1];
strcpy(reference_, d.reference_);

}
-MobileAgentData()

if(reference)
delete []-reference;

}
char* strO {return reference;}
void set_agent(const char* s)
{

if (s)
reference = new char [strlen (s) +1] ;
strcpy(reference_, s);
}

// abstract methods of AppData required to be over-ridden
virtual int size() const {return sizeof(MobileAgentData); }
AppData* copy() { return (new MobileAgentData(*this)); }

};

##endif

Context cc

#include <stdio.h>
#include <iostream.h>
#include <math.h>
#include <values.h>

#include "ip.h"
#include "tcicl.h"
#include "Context.h"
#include "MAgent.h"

#define DEBUG(a) ;
#define FLOAT PRECISION 10

static class ContextClass : public TclClass {
public:

ContextClass() : TclClass("Application/TcpApp/Context")
}
TclObject* create(int argc, const char*const* argv) {

if(argc!=7)
return NULL;

Agent *recv_tcp = (Agent*) TclObject::lookup(argv[4]);
• if(recv_tcp ==NULL)

return NULL;
Agent *send_tcp = (Agent*) TclObject::lookup(argv[5]);
if (send _tcp ==NULL)

return NULL;
return (new Context(recv_tcp,send_tcp, argv[6]))

}
}class_context;

Context::Context(Agent* recv_tcp, Agent* send_tcp, const char* node)
TcpApp(recv—tcp, send_tcp)

{
enable_ = false;
node_ = new char [strlen(node)+1];
strcpy(node ,node);

Context: :- Context ()
{
}

int Context::command(int argc, const char*const* argv)
{
Tcl& tcl = Tcl:: instance O;
if (strcmp(argv[1] , "start") == 0) {
initO;
return TCL OK;

}
if (strcmp (argv [1]

disable();
return TCL OK;

"shutdown") == 0) {

}
if (strcmp (argv [l] , "node") == 0)

tcl.result(node);
return TCL OK;

if (strcmp (argv [1] , "retractAgent") == 0)
re tractAgent (argv [21) ;
return TCL OK;

if (strcmp (argv [l] , "getAgent") == 0)
const char* agent= getAgent(atoi(argv[21));
if(agent) {
tcl.result(agent);

return TCL_OK;
}
else
return TCL_ERROR;

}
if (strcmp (argv [1] , "startAgent") == 0)

	
7/ argv[2] -> agent name

startAgent (argv [2]) ;
return TCL_OK;

}
return TcpApp::command(argc,argv);

void Context::process_data(int size, AppData* data)
{
if (enable_)
{

if(data->typeO== MOBILE AGENT)
{

MobileAgentData* agent_data = (MobileAgentData*) data;
char* agent ref= NULL;
MAgent* agent= NULL;
if (agent_data)

agent_ref = agent data->strO;
if (agent_ref != NULL) {
agent = (MAgent*)TclObject::lookup(agent_ref);

}
else {

printf("Context.cc:recv():AGLET with no agent reference
received.");

return;
}

}
else {

printf("Context:AppData recevied from agent is NULL\n");
return;

}
if (agent != NULL)

int agentId = agent->getIdO;
agent_data = new MobileAgentData((char*)agent ref);
agentList_[agentId] = agent_data;

agent->startArrivedAgent(this);

}
else {

Tcl& tcl = Tcl::instance{);
tcl.evalf("os get id ", agent_ref);
int agentId = atoi(tcl.result());
agent_data = new MobileAgentData(agent_ref);
agentList_[agentld] = agent_data;
tcl.evalf("%s run os", agent_ref, nameO);

}

}
else if(data->typeO== TCPAPP_STRING) {
TcpAppString *tmp = (TcpAppString*)data;
Tcl:: instance ().eval(tmp->str());

}

} else
printf("\nContext you are trying to reach is not enabled.");

int Context::init()
{
enable_ = true;
return TCL_OK;

}

int Context: :disable()
{

enable_ = false;
return TCL OK;

}

void Context::move(int agentId, int size) {

MobileAgentData* data = (MobileAgentData*)agentList_[agentld];
agentList. erase (agent Id),
send(size, data);

void Context::move(int agentId,const char* context_nm, int size) {

MobileAgentData* data = agentList_[agentId];
agentList. erase (agentId);
Tcl& tcl = Tcl::instance();
tcl.evalf(u%s connect-to %s", name 0, context_nm);
send(size, data);

void Context::startAgent(const char* agent nm)

MAgent* agent= (MAgent*) TclObject::lookup(agent_nm);
if (agent)
{

int agentId = agent->getIdO;

MobileAgentData* data = new MobileAgentData(agent_nm);

agentList_[agentId] = data;

agent->startCreatedAgent(this);
agent->run(this);

}
else {

printf("\n Context: startAgent(): Agent with name os not found in the
TclObject Table", agent_nm);

}
}

void Context::retractAgent(const char* rem_agent)
{
MAgent* agent= (MAgent*) TclObject: :lookup (rem_agent);
if(agent!=NULL)

agent->dispatch(name());
}
else

printf ("\nAgentContext: :retractAgent() : mentioned agent not found");
}
void Context::registerAgent(MAgent* agent, int agentId, int size)
{

MobileAgentData* data = new MobileAgentData(agent->name());
agentList_[agentId] = data;

void Context::disposeAgent(int agentId) {

unsigned int size= agentList_.erase(agentld);

const char* Context::getAgent(int agentId) {
MobileAgentData* data = agentList_[agentId];
const char* agent_ref = data->str();
if (agent_ref != NULL) {
return agent_ref;

}
else {

printf("AgentContext.cc: getAgent(1: No agent found in the acket\n");
return NULL;

}

Context. cc

#include <stdio.h>
#include <iostream.h>
#include <math.h>
#include <values.h>

#include "ip.h"
#include "tcicl.h"
#include "Context.h"
#include "MAgent.h"

#define DEBUG(a) ;
#define FLOAT PRECISION 10

static class ContextClass : public TclClass {
public:

ContextClass() : TclClass("Application/TcpApp/Context")
}
TclObject* create(int argc, const char*const* argv)

if(argc!=7)
return NULL;

Agent *recv_tcp = (Agent*) TclObject::lookup(argv[4]);
if(recv_tcp ==NULL)

return NULL;
Agent *send_tcp = (Agent*) TclObject::lookup(argv[5]);
if (send _tcp ==NULL)

return NULL;
return (new Context(recv_tcp,send_tcp, argv[6])),

}
}class_context;

Context::Context(Agent* recv_tcp, Agent* send_tcp, const char* node)
TcpApp(recv_tcp, send_tcp)

{
enable = false;
node_ = new char [strlen(node) +1];
strcpy(node ,node);

Context: : -Context ()
{
}

int Context::command(int argc, const char*const* argv)
{
Tcl& tcl = Tcl::instance();
if (strcmp (argv [1] , "start") == 0) {

init();
return TCL OK;

}
• if (strcmp (argv [l] , "shutdown") == 0)

disable();
return TCL_OK;

}
if (strcmp (argv [1] , "node") == 0)

tcl. result (node—)
return TCL_OK;

}
if (strcmp (argv [l] , "retractAgent") _= 0)

retractAgent (argv [2]) ;
return TCL_OK;

}
if (strcmp (argv [l] , "getAgent") == 0)

const char* agent= getAgent(atoi(argv[2]));
if(agent) {
tcl.result(agent);

return TCL_OK;
}
else
return TCL_ERROR;

}
if (strcmp (argv [l] , "startAgent") _= 0) { 	// argv[21 -> agent name

startAgent (argv [2]) ;
return TCL_OK;

}
return TcpApp::command(argc,argv);

}

void Context: :process _data(int size, AppData* data)
{

if (enable
{

if(data->typeO== MOBILE AGENT)
{

MobileAgentData* agent_data = (MobileAgentData*) data;
char* agent ref= NULL;
MAgent* agent= NULL;
if (agent data) {

agent ref = agent data->str();
if (agent_ref != NULL) (
agent = • (MAgent*)TclObject::lookup(agent_ref);

}
else {

printf("Context.cc:recvO:AGLET with no agent reference
received.");

return;
}

}
else {

printf("Context:AppData recevied from agent is NULL\n");
return;

}
if (agent != NULL)

int agentld = agent->getId(,);
agent_data = new MobileAgentData((char*) agent _ref);
agentList_[agentId] = agent_data;

agent->startArrivedAgent(this);

}
else {

Tcl& tcl = Tcl::instance();
tcl . evalf ("%s get_id '1 , agent ref) ;
int agentId = atoi(tcl.resultO);
agent_data = new MobileAgentData(agent_ref);
agentList_[agentld] = agent_data;
tcl.evalf("%s run %s", agent_ref, name 0)

}

}
else if (data->type () == TCPAPP_STRING) {
TcpAppString *tmp = (TcpAppString*)data;
Tcl::instance().eval(tmp->str());

}

) else
printf("\nContext you are trying to reach is not enabled.");

int Context: :initO
{
enable = true;
return TCL_OK;

}

int Context: :disable()
{

enable_ = false;
return TCL OK;

}

void Context::move(int agentId, int size) {

MobileAgentData* data = (MobileAgentData*)agentList_[agentId];
agentList_. erase (agentId);
send(size, data)

void Context::move(int agentId,const char* context_nm, int size) {

MobileAgentData* data = agentList_[agentld];
agentList. erase (agentld);
Tcl& tcl = Tcl::instance{);
tcl.evalf("os connect-to os", nameO, context_nm);
send(size, data);

void Context::startAgent(const char* agent_nm)
{
MAgent* agent= (MAgent*) TclObject: :lookup (agent_nm);
if(agent)
{

int agentId = agent->getid();

MobileAgentData* data = new MobileAgentData(agent_nm);

agentList_[agentid] = data;

agent->startCreatedAgent(this);

}
agent->run(this);

else{
printf("\n Context: startAgentO: Agent with name %s not found in the

TclObject Table", agent_nm);
}

}

void Context:: retractAgent(const char* rem_agent)
{
MAgent* agent= (MAgent*) TclObject::lookup(rem_agent);
if(agent!=NULL) {

agent- >dispatch (name O);
}
else

printf("\nAgentContext::retractAgent(}: mentioned agent not found");
}
void Context::registerAgent(MAgent* agent, int agentId, int size)
{

MobileAgentData* data = new MobileAgentData(agent->name());
agentList_ [agentld] = data;

void Context::disposeAgent(int agentld) {

unsigned int size= agentList_. erase (agentId);

const char* Context::getAgent(int agentld) {
MobileAgentData* data = agentList_[agentId];
const char* agent_ref = data->str{);
if (agent_ref != NULL) {

return agent_ref;
}
else {

printf("AgentContext.cc: getAgent(): No agent found in the acket\n");
return NULL;

}

	Title
	Abstract
	Chapter 1
	Chapter 2
	Chapter 3
	Chapter 4
	Chapter 5
	Chapter 6
	References
	Appendix

