
MINlMiZATIO OR DHA (DIRECTORY HARVEST
ATTACK) AND LOAD OF MAIL SERVER

A DISSERTATiON
irbmwad Li paid llSwnt of Us.

n ms s 110► Ms — oI Si *pni
of

M 4$TIR OF TECHNOLOGY
irI

INFORMATION TECHNOLOGY

By
saMax aas

0
lw1S''r 	y

n ~ J

CANDIDATE'S DECLARATION

I hereby declare that the work, which is being presented in the dissertation entitled
"Minimization of DHA (Directory Harvest Attack) and load of mail server" towards

the partial fulfillment of the requirement for the award of the degree of Master of
Technology in Information Technology submitted in the Department of Electronics
and Computer Engineering, Indian Institute of Technology Roorkee, Roorkee (India)
is an authentic record of my own work carried out during the period from June 2007
to June 2008, under the guidance of Dr. K. C. Joshi, Professor and Dr. Durga
Toshniwal, Asst. Professor, Department of Electronics and Computer
Engineering, IIT Roorkee.

I have not submitted the matter embodied in this dissertation for the award of any
other degree or diploma.

Date: 3-66- 68
Place: Roorkee

£aa4y ba.,
(SUMAN DAS)

CERTIFICATE
This is to certify that the above statement made by the candidate is correct to the best
of my knowledge and belief.

Date: q.(~.0 	i~ut3a Tc~ VawAt 9 6 0~ 	 ~✓
Place: Roorkee 	(Dr. DURGA TOSHNIW 	(Dr. R. C. J HI) t\

Asst. Professor 	 Professor
Department of Electronics and Computer Engineering

IIT Roorkee — 247 667

i

ACKNOWLEDGEMENTS

I would like to take this opportunity to extend my heartfelt gratitude to my guide and

mentor Dr. R. C. Joshi, Professor and Dr. Durga Toshniwal, Asst. Professor,

Department of Electronics and Computer Engineering, Indian Institute of Technology

Roorkee, for their trust in my work, their esteemed guidance, regular source of

encouragement and assistance throughout this dissertation work. I would state that the

dissertation work would not have been in the present shape without their inspirational

support and I consider myself fortunate to have done my dissertation underth€rn.

I also extend my sincere thanks to Dr. D. K. Mehra, Professor, and Head of the

Department of Electronics and Computer Engineering, and Mr. Raju, lab assistant in

Information Security Lab for providing facilities for the work.

I also wish to thank Mr. Rajeev Singh, Ms Anjali Sardana and Mr. T P Sharma for

their valuable suggestions and timely help.

Finally, I would like to say that I am indebted to my parents for everything that they

have done for me. All of this would have been impossible without their constant

support.

SUMAN DAS

11

Abstract

Directory Harvest Attackers (DHA) attack the mail server to get the valid email

addresses and sell these addresses to the spammer(s). The attacker's not only collect

the valid user addresses but also slow down the server. The attackers send many

blank mails to the mail server to get the valid user address which exists in that

domain. Spammers buy the user email addresses and send the SPAM to these

addresses. There are many techniques to detect and filter the SPAM, but few

techniques are there to reduce DHA. Some protection techniques of mail server are

there against centralized DHA, but they fail to protect distributed DHA.

In this work "Minimization of DHA (Directory Harvest Attack) and Load of Mail
Server", a distributed framework has been proposed, which minimizes the effect of

DHA and distributes the load of SMTP server. Blocking criteria to protect distributed

attack is totally novel in the proposed framework.

The framework consists of following module 1) front-end-filter, which comprises two

databases 2) Reply generator and 3) Distributed servers, which also comprise two

databases. The front-end-filter checks whether the source is in black list or not, if the

source is not in the blacklist then sends ping to every SMTP server. It then forwards

the mail to the SMTP server that responds first, thereby distributing the load. Each

SMTP server has its own database. All the distributed SMTP servers store the email

addresses and IP addresses to their own databases and in that corresponding entry

store the number of mails coming from respective source. All the updates are shared

between the distributed SMTP servers. If the count of number of mails is beyond the

threshold, then corresponding source is blacklisted and this information is sent back

to the front-end-filter. Front-end-filter checks the source address. If it is already black

listed then send a packet to the reply generator along with source address. The reply

generator generates `invalid recipient' reply and send it back to the source. Use of

Front-end filter minimizes the effect of DHA and load on SMTP server. The

effectiveness of the approach is validated with simulation in NS-2 on a Linux
platform.

iii

CONTENTS

CANDIDATE'S DECLARATION......... .. 	i
ACKNOWLEDGEMENTS ... 	ii

ABSTRACT:. 	 ...

TABLEOF CONTENTS ... 	iv

CHAPTER 1: INTRODUCTION AND STATEMENT OF THE PROBLEM...... 1
1.1 Introduction ... 1
1.2 Statement of the Problem .. 2
1.3 Organization of the Dissertation ... 2

CHAPTER 2: BACKGROUND AND LITERATURE REVIEW 4
2.1 SPAM Detection:.. 4

2.1.1 	Distributed Method .. 5
2.1.2 	Blacklist Method ... 8
2.1.3 	Bayesian Approach .. 11

2.2 Load balancing Technique .. 12
2.3 Related Work and Research Gaps; ... 14

2.3.1 	Attack 	Method .. 14
2.3.2 	Protection 	Method .. 14
2.3.3 	Centralized RBL Method ... 16
2.3.4 	Research Gaps .. 19

CHAPTER 3: REDUCING DIRECTORY HARVEST ATTACKS 21
3.1 Framework for reducing DHA ... 21
3.2 Response Method .. 22
3.3 Maintaining Database ... 24
3.4 Blocking Criteria .. 25

iv

CHAPTER 4: MINIMIZING LOAD OF SMTP SERVER 31
4.1 	Distributed Method ... 31
4.2 	Introducing front-end filter .. 3 3

CHAPTER 5: SYSTEM DESIGN AND IMPLEMENTATION 36
5.1 	System 	Design .. 36

5.1.1 	System Components ... 36
5.1.2 	Simulation Model ... 37

5.2 	Implementation ... 3 8
5.2.1 	Simulation Topology .. 3 8
5.2.2 	Procedures ... 3 9
5.2.3 	Simulation Parameters .. 40

CHAPTER 6: RESULTS AND DISCUSSION .. 41

6.1 	Effects of DHA .. 41
6.2 	Effects of Load of SMTP Server .. 47

CHAPTER 7: CONCLUSIONS AND FUTURE WORK 50

7.1 	Conclusions .. 50
7.2 	Suggestions for Future Work .. 51

REFERENCES... 	52
APPENDIX: SOURCE CODE LISTING .. 	i

V

Introduction And Statement Of The Problem

CHAPTER 1

INTRODUCTION AND STATEMENT OF THE PROBLEM

1.1 Introduction

Now a day's spammers are increasing rapidly. They are doing their advertisement free

of cost by sending SPAM. SPAM causes a big problem for users who use mail to

communicate with each other. The spammers get the valid mail-id from Directory

Harvest Attackers. The mail server should be protected from Directory Harvest Attack

(DHA) to minimize SPAM. The attackers attack the mail server by sending blank

message or simple with "hello" statement to randomly generated mail addresses.

Attackers send the blank massage to a huge number of randomly generated mail

addresses (in a particular domain) in a short time from normal user's machine by

making this machine as a zombie[l] or by using open relay [2]. Attackers sell these

valid email addresses to the spammers. SMTP server also becomes slow for processing

the request from attacker.

Directory harvest attacks mainly use either of two methods for harvesting valid e-mail

addresses. The first method uses a brute force approach to send a message to all

possible alphanumeric combinations that could be used for the username part of an e-

mail. These attacks are more effective for finding e-mail addresses of companies since

they are likely to have a standard format for official e-mail aliases (i.e.

jdoe@example.domain, johnd@example.domain, or johndoe@example.domain). The

second and more selective method involves sending a message to the most likely

usernames - for example, for all possible combinations of first initials followed by

common surnames. In either case, the e-mail server generally returns a Not found"

reply message for all messages sent to a nonexistent address, but does not return a

message for those sent to valid addresses. The DHA program creates a database of all

the e-mail addresses at the server that were not returned during the attack.

Introduction And Statement Of The Problem

The result of the DHA is not just more spam (as if that were not bad enough). An

aggressive DHA can place such intense demands on a server that it mimics a denial-of-

service attack and slows legitimate e-mail delivery.

The DHA approach explains how a new e-mail address can start receiving spam within

days or hours after its creation. Various solutions have been developed toward repelling

these attacks. Some of the most effective involve slowing down the rate at which the

attack can take place, rather than attempting to filter out the entire attack. This can be

done by limiting the number of e-mail messages per minute or per hour at which a

server can receive messages, legitimate or otherwise. So-called spam filters,

programmed to identify character and word combinations typical of spam, can also be

effective, although they occasionally reject legitimate messages.

1.2 Statement of the Problem
The main objective of the thesis is to propose an efficient defense mechanisms against

DHA also to minimize the load of server. This main problem is subdivided into two sub

problems.

1. To analyze the various types of Directory Harvest Attacks (DHA) and to

propose an effective and efficient defense mechanism against them.

2. Minimize the load of SMTP server against DHA

1.3 Organization of the Dissertation

This report comprises of seven chapters including this chapter that introduces the topic

and statements of the problem. The rest of the dissertation report is organized as

follows.

2

Introduction And Statement Of The Problem

Chapter 2 gives different SPAM detection technique and overview of the Directory

Harvest Attack (DHA). In addition, taxonomy of the existing defense mechanism is

discussed in brief. It describes the method to minimize the load of SMTP server. This

chapter discusses the research gaps in the phases of the defense against DHA attacks.

Chapter 3 gives an overview of the proposed framework. It gives a big picture of the

solution to protect the mail server from DHA and how to block the source address and

how to maintain the database.

Chapter 4 explains in detail how to minimize the load of SMTP server using distributed

approach and using front-end-filter.

Chapter 5 describes the system design that includes the system components and the

simulation model. The implementation details are also charted out in terms of the

topology used for simulation purposes, procedures, and simulation parameters.

Chapter 6 discusses the simulation results and displays the effectiveness of the

proposed mechanism for defense against DHA.

Chapter 7 concludes the work and gives the directions for future work.

3

Background And Literature Review

CHAPTER 2

BACKGROUND AND LITERATURE REVIEW

Spam creates a lot of problem in our daily life. Spammers are sending lot of junk

mails to the user for their advertisement. They take the email address from Directory

Harvest Attacker. The Directory Harvest attackers send blank mail to the mail server

and collect the valid user addresses. There are many techniques to protect mail server

from SPAM. However, if DMA is minimized then SPAM will be minimized more.

Directory Harvest Attackers increase the load of the mail server also. There are

different techniques to minimize the load of server, which is described below.

Different SPAM detection techniques are also discussed. Lastly, the existing method

of Directory Harvest Attack and their counter measures are described.

2.1 SPAM detection

Unsolicited communications sent in bulk over an electronic media such as email,

mobile (SMS, MMS) and instant messaging services, usually with the objective of

marketing products or services, called SPAM. These are not requested mail. This

definition of SPAM is restricted to situations where the receiver is not especially

selected to receive the email. This would exclude emails looking for employment or

positions as research students for instance. This difficulty in definition demonstrates

that the definition depends on the receiver and strengthens the case for personalized

spam filtering.

First, spammers get email address through many means. Some companies sell their

mailing lists to third parties, spammers included. Spammers also use "robots" to scour

the Internet and harvest any email addresses that they find. If the email addresses are

posted in some business organization then the spammers pick up the email addresses

and send junk email. To get adequate spam protection and get rid of Spam, more than

4

Background And Literature Review

one email address should be used. This is an essential element of proper Spam
control.

2.1.1 Distributed Method

The assumption which has been taken to make the system is that a large class of

spam-bots send large amounts of e-mail over short periods. Since it is believed that

a large fraction of hots send very few spam each day, there must exist a significant

fraction of bots that send hundreds of spam per day. Given that the average user

only keeps their computer on for a few hours each day, such a bot must therefore

send more spam per hour to meet its requirement [3]. A host that has recently sent

large amounts of a-mails may be a spam-bot. Consequently, any e-mail coming

from such hosts is potentially SPAM. If the source has a dynamically allocated IP

address and the sender is not in the recipient's address book, then it is almost certain

that the e-mail is spam. A spam-bot does not necessarily target multiple recipients

within a single domain. It determines whether a bot is sending spam is inherently a

collaborative effort. This distributed spam detection system identifies the source of

each e-mail and then stores this information in a distributed database that is used

and updated by all peers. This system depends on the collaboration of peers: as the

number of peers increases, spam-bot identification improves because the sample

size increases. This system classifies mails by several distinct parts: identifying the

source of e-mails, keeping track of how many a-mails were recently sent by a

source, and using this information for the purposes of classifying future emails.

When an e-mail arrives at mail transfer agent (MTA), the message is passed to a

general spam classification framework, which classifies the mail, as spam or not,

using different rule. The message is passed to a variety of plug-ins including a

system plug-in, which is responsible for coordinating the source identification and

source tracking tasks, and embedding the resulting classification in the e-mail.

5

Background And Literature Review

The plug-in first passes the message envelope to the source identification server that

is a locally running process. This server then determines whether the source of the

e-mail has a static or dynamic IP address. If the source has a static IP address,

existing blacklist mechanisms can be used. In that mechanism, if the source is listed

in one of the blacklists, it can immediately be classified as spam. In this case, no

further processing is necessary. Otherwise, if the source has a dynamic IP address,

the address is returned to the plug-in for the next stage. The plug-in updates the

distributed database used to track e-mail sources.

(a)

Source Ident.

System 	SVS[Cm olue.]n

peer
SnamAssacin

MTA

(b)
Figure 2.1: System (a) and module (b)

A local server, which is part of the distributed database, is assumed to run on the

same host as the MTA or on a nearby host, propagates the update to the distributed

6

Background And Literature Review

database, stores chunks of the distributed database, and caches updates and queries

for the local MTA.

The plug-in queries the distributed database, via the local server, about the number

of e-mails that were recently sent, typically within an hour, from the same source as

the current e-mail—this is the sender score. This query may occur as part of the

database update. If the sender score is high, i.e., many a-mails were sent, then the

score is appended to the e-mail's envelope and returned to the spam framework

(which identify the mail as a spam or not) itself. If the score is low, this indicates

that either the source has not sent many e-mails recently, or that the e-mail may be

one of the first of many e-mails that were sent. To distinguish these two cases, the

plug-in can store the message for a short period, and then perform the query again.

The score from the second query is then appended to the e-mail's envelope and

returned to the framework. In our system, the quarantine has minimal impact

because it is only used for emails arriving from senders with dynamic IP

addresses.The technical challenges of the system is

-to correctly identify the source of an e-mail,

-to quickly and efficiently update the distributed database,

-to ensure that the database is not susceptible to poisoning from malevolent

peers or to denial-of-service attacks,

-to ensure that the system scales well, is easy to install and maintain, and does

not require excessive resources.

Determining the true source of an e-mail is difficult because the sender or any

malicious mail relay can add false `received lines' to the e-mail's envelope. Each

relay through which an e-mail travels must prepend a `received line' to the e-mail's

envelope, indicating the host from which the relay received the email. The `received

line' prepended by the first trusted relay that received the e-mail contains the IP

address of the host from which it received the e-mail. This host is considered the

source of the e-mail. However, determining the first trusted relay is challenging.

7

Background And Literature Review

Spammers would try to develop countermeasures against this system. The three

main approaches would be

- to fool the source identifier,

- to poison the distributed database via false updates and malevolent peers in

the distributed database,

- to launch denial of-service attacks against the distributed database with the

very same botnets. The source identifier must deal with the first

countermeasure. The latter two countermeasures must be considered in next

section.

2.1.2 Black list Method

SPAM can be blocked by address-based filtering, using which one can refuse to

accept mail from hosts that are believed to send spam. Once the host is identified,

the IP address of a that host is registered in centrally maintained databases. This

database is made available via the Internet DNS. Mail recipients can know that host

by making query this database using standard DNS lookups and deny any mails

from that host [4]. DNSBLs maintain various lists of IP addresses based on some

criteria — for example, each IP address may be an open relay (spammers started

relaying mail through hosts that would accept responsibility for delivering anyone's

mail—these hosts are called open relays.), a virus source, or an actual spam source

caught by a spam trap [5].

8

Background And Literature Review

MX request dest.com
DNS

	

Outgoing 	 server
mail server

MX answer mail.dest.com

	

SMTP mail 	 SMTP mail deliver
submission

Incoming
mail server

Figure 2.2: The Mail Delivery Process

How mails are transferred through internet to the destination are described as

follows. After composing the mail, the sender hands off the mail to a local mail

transfer agent (MTA) that delivers the mail to the final destination. This MTA is

known as the injection point. If the sender is part of a large network, the local MTA

may transfer the mail to additional hosts within the same administrative domain.

Each host is said to relay the mail. One of the MTA's in the sender's organization

will identify a host responsible for receiving mail for the recipient's domain, and

relay the mail to that host. This host is known as the domain's mail exchanger, and

is specified via a DNS MX record. At this point, the MTA on the recipient's mail

exchanger may relay the message internally within the organization, ultimately

arriving at an MTA that performs delivery, storing the message in a local mailbox

for the recipient. MTAs relay mail between each other using the Simple Mail

Transfer Protocol. We classify black lists based on two axes. First, we identify the

Background And Literature Review

focus of the list second; we consider how addresses are added to the Iists. Addresses

can be added by downloading locally and using tools such as OpenBSD's spam and

most people access these lists via the Domain Name System (DNS).

After getting the mail, MTAs check DNS black lists to determine whether the party

relaying the mail is listed. Multiple lists may be checked. Then MTA can choose

among the following

- to refuse the acceptence the mail

- end the transaction with an appropriate error code

- terminate the connection.

This activity happens before the mail is accepted locally.

Header Name 	Description
To: Address of intended receiver

Cc: Address of other receivers
Bec: Address of other receivers

	

From: 	Address of sender
Address of recipient, usually the same as the

Reply-To: senders address.

	

Received: 	Line added by each transfer agent along the path
that the email traveled.

	

Return-Path: 	Can be used to trace sender.

content-Length: I Length of email message

Figure 2.3: E-mail header

The blacklists either are static lists that are periodically updated by downloading

new ones, or are stored in remote databases, which are themselves updated on a

regular basis. A common technique, DNS Blacklists uses the DNS system to store

10

Background And Literature Review

the blacklists and serve the queries. Blacklists are effective against hosts with static

IP addresses but their response time is much too slow to counter botnets.

2.1.3 Bayesian Approach

Once the SMTP server has decided to accept a message, the sender transfers the

entire set of message headers and the message body. Many filtering schemes work

on the header and body (content filtering approach). It looks words or phrases which

appear often in spam. Systems that require users to hand-build a rule set to detect

junk assume that their users are perceptive enough to be able to construct robust

rules. Early filters used fixed sets of strings, but spammers rapidly learned to avoid

them by rewording their messages or using odd spellings. To overcome the problem,

a junk mail filtering system should be able to automatically adapt to the changes in

the characteristics of junk mail over time. Moreover, by having a system that can

learn directly from data in a user's mail repository, such a junk filter can be

personalized to the particular characteristics of a user's mail.

Let us see the classification scheme that provides a probability for its classification

Decision. It helps to classify junk E-mail within a Decision Theoretic framework.

To build probabilistic classifiers to detect junk E-mail, the formalism of Bayesian

networks are employed. A Bayesian network is a directed, acyclic graph that

compactly represents a probability distribution. In such a graph, each random

variable Xi is denoted by a node [6]. A directed edge between two nodes indicates a

probabilistic dependency from the variable denoted by the parent node to that of the

child. To describe a probability distribution satisfying these assumptions, each node

X; in the network is associated with a conditional probability table, which specifies

the distribution over X, given any possible assignment of values to its parents. A

Bayesian classifier is simply a Bayesian network applied to a classification task [6].

It contains a node C representing the class variable and a node X; for each of the

features. Given a specific instance x (an assignment of values x1, x2 ...xn to the

fil

Background And Literature Review

feature variables), the Bayesian network allows us to compute the probability P(C=
ck I X= x) for each possible class ck. This is done via Bayes theorem, giving us

P(C= Ck I X= X) = P(X= Xj C= CO P(C= Ck) / P(X= X) [6] (i)

In the context of text classification, specifically junk E-mail filtering, it becomes

necessary to represent mail messages as feature vectors to make such Bayesian.

classification methods directly applicable. Each individual message can be

represented as a binary vector denoting which words are present and absent in the

message. With this representation, it becomes straightforward to learn a

probabilistic classifier to detect junk mail given a pre-classified set of training

messages.

Content-based classification analyzes the contents and envelope of an e-mail using

Bayesian networks. Such methods work well against known spam, i.e., spam that

has been seen in the past and contains known strings or patterns. Some examples

include using embedded pictures, clever use of different font sizes, and foreground

and background colors. Content-based filters require never-ending tuning and

adjustment in order to keep up with the spammers' latest tricks.

2.2 Load balancing Technique

Load Balancing is the dynamic sharing of load between servers, possibly on a per

session basis. Usually using 'sticky' paths, where traffic will continue to flow via a

particular route for the duration of a session. There are a number of ways to load

balance traffic. The most common methods are [7]:

Round-robin scheme

Load balancing Switches and Routers

12

Background And Literature Review

Round-robin scheme

Suppose, for a domain's MAIL servers to give a different IP address (actually, a

different ordering of the set of possible IP addresses—A/B/C, B/C/A, C/A/B, A/B/C .

..) each time it is queried. Each of the IP addresses points to a logically identical

server that is equally capable of handling the request. In addition, different clients are

routed to different machines (with different IP addresses), this gives us a primitive

form of load balancing.

The main advantage of round-robin scheme is that it requires no additional hardware.

However, there are several disadvantages, which prevent many sites from using

round-robin scheme for load balancing. The, caching feature of mail server prevents

complete load balancing because not every request that comes in will get its address

directly from mail server.

It can be solved by disabling caching, but doing so means that every resolution will

have to be resolved by servers, which is expensive and potentially slower for users.

The mail server has no way of knowing if one or more of the servers in cluster is

overloaded or out of service. Therefore, the round-robin scheme will send traffic to

all servers in turn, even if some are overburdened or offline.

Load Balancing Switches

Load balancing switches are hardware Internet scalability solutions that distribute

TCP requests across multiple servers. These switches sit between the connection to

the Internet and the server cluster. All requests come to the switch using the same IP

address, and then the switch forwards each request to a different server based on

various algorithms implemented in the switch. Switches will frequently be able to

ping the servers in the cluster to make sure they are still up, and to get an estimate of

how busy they are so they can be relatively intelligent about load balancing.

13

Background And Literature Review

Another common algorithm for load balancing is based on the content of the request.

Perhaps the IP address of the requestor, or some other information in the request.

Using the IP address alone does not work well since some ISPs, such as AOL, and

companies use proxy servers that change the IP address of all of the requestors that go

through the proxy to the same address. Using a load-balancing switch is much better

and more scalable than using round-robin scheme, but switches can be quite

expensive—and multiple switches are needed to avoid making the switch the single

point of failure for entire server cluster.

2.3 Related Work and Research Gaps

2.3.1 Attack Method

Directory Harvest Attackers generate the email-id based on dictionary. They generate

randomly a lot of email-id by different ways, which may or may not be valid. Some

combination using user name or by combining of username with date-of-birth or with

company name etc are being made. Attackers are also trying a different approach to

get the valid user-id. They attack a particular domain mail server, which is responding

well by sending blank message to many recipients, addresses of which are randomly

generated [8]. After getting the valid email-id, they sell them to the spammer.

Spammers then send a SPAM to these valid user-id and hence normal user get

affected.

2.3.2 Protection Method

Many mechanisms are discussed to protect the server against DHA [9,10]. Attackers

randomly generate an email-id and send them. A Captcha [9] is an automated Turing

test which will differentiate a normal user and robot by asking a question, which can

be answered only by human.

14

Background And Literature Review

Introducing delay after unsuccessful trials is one of the solutions to protect DHA but

it causes a DOS attack. Modifying the SMTP error message [10] is another technique

to confuse the attacker. However, this creates problem for legitimate user. Another

solution is to block the source sending a large volume of mails. This solution fails due

to distributed attack.

Postini's white paper [11] has described the kind of attacks and way of stealing email-

id from SMTP server by attackers. However, how to protect server against DHA is

not described.

Other possible protection is to insert some delay into the authentication process after

a number of unsuccessful trials. Although this can deny the attack from a single host,

it cannot solve the problem with a distributed attack. If the whole system slows down

then a DoS attack is possible.

Many commercial solutions also provide countermeasures against harvest attacks.

The Kerio Mail Server [12] detects emails to unknown addresses and above a

threshold; the server begins to filter out possible attackers. This method can be

inefficient against a distributed attack.

Existing open source projects, like Project Honeypot [13] have not yet integrated

protection against DHA. The ProjectHoneypot system tries to identify spammers by

trap e-mail addresses. This can be extended by the identification of mass e-mail

senders with many messages to unknown recipients. That was the initial idea

described in this paper.

There are two types of protection

1. Host based protection: An autonomous system has its own protection method,

without relying on other parties.

15

Background And Literature Review

2. Network based protection: The system is cooperating with other parties to protect

itself from the DHA. This method can be centralized: a server coordinates the

protection.

The host-based filtering algorithm is ~ not resistant against distributed attacks.

Normally DHA attacks are highly distributed, the maximum of trials coming from an

IP address can be as low as 1-2 [14]. Although the filtering algorithm can filter out

attacking hosts, the attacker can utilize thousands of hosts, which are not yet known

by the target. From a global aspect, the attacking computers should be detected all

targeted SMTP server and should be filtered out by every individual filter routine to

stop the attack.

Another important technique, which is published recently, is centralized RBL method

[14]. It comes into Network based protection method. This technique is discussed

below.

2.3.3 Centralized RBL method '

A centralized protection method is implemented, where a real-time blacklisting server

(DHA RBL server) gets information about every host that sends e-mails to unknown

addresses. An e-mail SMTP server can query the DHA RBL server at the beginning

of each incoming SMTP (e- mail) connection whether the DHA RBL server

previously enlisted the sender as an attacker. If a sender is enlisted as a possible DHA

attacker, the SMTP server rejects receiving a-mails from the sender. They proposed a

method of centralized real black list server (RBL-server). Which store the information

about source id and no. of emails coming from that user-id and marked which one is

blacklisted. In this method, thay did not consider the load of server against DHA.

This solution is also not sifficent for distributed attack.

16

Background And Literature Review

Working Procedure of proposed model when attackers are not blacklisted is shown in

the Figure 2.4.

Attacking Fast (zombie) 	 MTA with antiDHA engine
(i) Mal tb'W

C:
] 	(2) W is Lriv ruun

() report nldent
 DNSwey

13b) forwarding the Dort
~=e

DI-ARBLServer 	 L)N server

Figure 2.4: Reporting an incident to the anti DHA system [14]

r

Step 1. The attacker sends an e-mail to an internet mail server (MTA).

Step 2. The SMTP server answers with valid information: the user is unknown in the

system.

Step 3a. The SMTP server sends an incident report to the server. This is done by a

DNS query with a special format. The queried DNS name contains the information
about the offending host.

Step 3b. The DNS server of the MTA forwards the query to another DNS server or

directly to the DHA RBL server. The. RBL server decodes the query and processes it

17

Background And Literature Review

If an attacker sends an email to an unknown address on the attacked server, the

attacked server will send an error report to the central DHA RBL server. The error

report contains the offending IP address, the recipient address tried, and the time of

the attack. The centralized server collects the reports from the protected servers. If the

number of trials (reports) exceeds a limit, the server inserts the address of the attacker

into the blacklist. The server also stores the timestamp when the last e-mail was

observed from the given attacker with an unknown recipient. As usual, the RBL list

can be queried by sending an address as a request to the server questioning if an

address exists in the list. The server does not publish addresses on the list, instead it

simply answers with yes or no.

Working procedure when enlisted attacker sends mail to the server is shown in the

following Figure 2.5.

Mari hcst (=fue) 	 MTA wIUi antiDHA wgine
{1)MaJIto'W'

' 	 {6) C'onnetan rejected'

(3) forwattlir 310 query

(4 on 	LsInftRBL

DE1d FtBILServer

+(2) query + (5) forwarding
kf P8L 	anstr

o
c .

DfVS server

Figure 2.5: Filtering the attacker using the data from the DHA RBL [14]

18

Background And Literature Review

Step 1. The attacker tries to send an e-mail to an internet mail server (MTA).

Step 2. The SMTP server sends a DNS query with the address of the client (the

attacker) embedded in the query.

Step 3. The DNS server of the MTA forwards the query to the DNA RBL server.

Step 4. The RBL server answers the queries with a special form of IP address,

meaning, "Yes, the computer is in the RBL list". The DNS server can cache the

answer for a given address, the caching time (TTL- time to live) can be controlled by

the RBL server.

Step 5. The DNS server sends back the answer to the SMTP server (protected host).

Step 6. The SMTP server denies the connection with the attacker. This can be done at

TCP level, or the attacker can be denied= with a proper SMTP error code and

explanation.

2.3.4 Research Gaps

SPAM, sending by spammer, is increasing day by day. SMTP server has to respond

with every request and has to process all the SPAM (i.e. sending to appropriate

recipient). There are many techniques to filter the SPAM. Filtering the SPAM is not

actually reduced the load of SMTP server. The reason is that SMTP server has to

check to determine that, the mail is SPAM. Spammers send the SPAM to valid email

recipient. They get the email address from the Directory Harvest Attacker. These

attackers get the email address from the SMTP server. Therefore, it is better to protect

DHA. Then automatically number of SPAM will be reduced. One paper [14]

described, how efficiently DHA could be done. They also mentioned architecture to

protect the SMTP server against DHA. However, this method is not suitable for

distributed attack. Therefore, there is a gap to modify the architecture or implement

another technique to prevent the attacker from getting the addresses. Even they did

not describe how to minimize the load of SMTP server from processing the entire

request coming from Directory Harvest Attacker. Directory Harvest Attackers send

19

Background And Literature Review

blank message to multiple email addresses. These addresses may be valid or not. The

SMTP server processes the request and sends the response as a positive or negative

reply. Analyzing the response from the server, attacker determins the address is valid

or not. Therefore, server has to processes the entire request. It is really a burden for

server if lot of request comes in a short period. Then server cant processed the actual

user's request. There should be some technique to overcome this problem. If central

server is used then also there is problem, if it crashes. The approach, which is

described to reduce the DHA, used central server. So server implementation is also a

main concern to prevent this type of problem. Therefore, the area where research can

be done is

• How to design the model so that attacker cannot get more valid user-id.

• How to design the model so that server can give good response to the normal user.

• How to design the model so that user request can be processed even server

crashes.

• How to design the model so that server cannot accept more request from attacker.

• How efficiently server can block the attacker.

• How to maintain the black list for attacker.

20

Reducing Directory Harvest Attacks

CHAPTER 3

REDUCING DIRECTORY HARVEST ATTACKS

3.1 Framework for reducing DHA

Our model is based on the assumption that Directory Harvest Attackers send the blank

mail to a large number of randomly generated recipients in a short time. Attackers use

the normal user's machine by making them as zombie or they can use normal user's

mail—id by hacking them. Mail server would be busy to process all the mail coming

from attackers and due to this; normal user cannot get the good service from the

server. SMTP Server gives the positive reply if the recipient's address is valid else

give negative reply as invalid recipient. According to this reply, attackers store the

email addresses to its own database for selling purpose. To minimize the effect of the

attacker, a reply generator is introduced which will give the negative reply to the

source after deciding the source as an •attacker. There is a threshold value that will

decide how many mails will be allowed to come from a specific source in a domain.

The attacker can send a mail to a huge number of recipient's addresses, which are

randomly generated using dictionary. Their main motto is to get a lot of valid email-id

in a short time. Therefore, the source is blacklisted for a certain time. Else valid user

cannot use their mail-id or their machine to send mail if the source is blacklisted

forever. Front-end-filter is introduced to distinguish the mails and handles them in

proper way without concerning mail server. Hence, reduce the workload of mail

server. Again, to minimize the load we use a distributed mail server. The mail server

that is less busy among the distributed servers will receive the mail. Front-end-filter

will decide which one is less busy, by sending the ping request to all servers. Filter

passes the mail to the server that responds first. All the mail servers are having their

own database, which is used to decide blacklisted source. This information is passed

to the front-end filter. Front-end filter distinguish the mail, which are from blacklisted

source by comparing the source address with its own database.

21

Reducing Directory Harvest Attacks

The model is shown in the following Figure 3.1.

SMTP Server

Dat atase

Figure 3.1: The structure of proposed model.

Now, the working principal of the framework in terms of response method,

maintaining database, blocking criteria and distributed technique are discussed below.

3.2 Response Method

According to the response method of mail server Directory Harvest Attackers collect

the valid user id. Attackers send the blank mail to the server. For invalid recipient,

server sends back negative reply and for valid user sends back positive reply.

Therefore, response method should be such a way so that attacker cannot get the valid

user id. All the mails from user go to front-end-filter. This filter checks whether the

source address of the mail is blacklisted or not. If mails are coming from blacklisted

source, they are transferred to the reply generator through front-end-filter. Front-end

filter sends not the whole mail instead; it sends the packet with source address only.

Reply generator generates a negative reply to that source. Normally whenever mail

22

Reducing Directory Harvest Attacks

server gets the mail to unknown recipient, it gives a reply as invalid recipient address.

Attackers observe the reply from the server. If the reply is invalid then they do not

Mails from user
to front-end

filter

Yes No
Is source

blacklisted?

Send to reply Send to mail
generator server

Negative reply 	 Yes
to source Is

recipient
valid?

No

Deliver to user 	Store source add.
To database

Check the threshold

Beyond
threshold

Yes

Send information to
front-end-filter

Fig 3.2: Flowchart of the working principle of the model

23

Reducing Directory Harvest Attacks

store this address to their database. Reply generator gives only reply as an `invalid

recipient address' to the source so that attacker will become confused. Attacker will

think that the recipient's address is invalid, though there is chance to be valid.

Therefore, once source becomes blacklisted, they get always this negative reply.

Reply generator is used to help the server to be free from processing the mails coming

from blacklisted source. Thus, reply generator reduces the load of SMTP server also
from attacker.

3.3 	Maintaining Database

Front-end filter and distributed SMTP server maintains the databases. SMTP server

stores the source IP address and source email address and number of mails coming

from that source. All the information is stored in its own database. Database contains

two tables. One table contains the entry based on source IP address and other table

contains entry based on source email address. Whenever server gets the mail from

front-end-filter, it checks that this source address is already in its database entry or

not. If this source address is already there then increment the count on corresponding

source mail-id and source IP address. If the entry is not present then creates a new

entry corresponding to that source. After updating their database, server shares this

information with other servers in that domain. Each server communicates with others

when they get any mail through update packet(s). This update packet(s) consists of

source IP address and source mail address with a special flag. This flag is used to

identify from where the packet came i.e. a packet may come from front-end filter in

case of mail or it may come from server in case of update information. Therefore, flag

distinguish the actual mail and a packet contains updating information. Servers

increment the count entry corresponding to the source after getting packet from other

server. Two threshold values are maintained, one is IP threshold and another one is

user-is threshold. If the count is beyond that threshold value then this source is

marked as blacklisted. Blacklisted information is passed to the front-end-filter, so that

next time the server will not process any mail coming from the source.

24

Reducing Directory Harvest Attacks

The structure of the database maintained in the SMTP server and front-end-filter are

shown in the Figure 3.3 and Figure 3.4 respectively.

	

Source IP address 	Counter 	timer

	

Source user address 	Counter 	timer

Figure 3.3 Database maintained by SMTP server

	

Source IP 	address 	timer

	

Source user address 	timer

Figure 3.4 Database Maintained by front-end filter

Mail server sends the update information to the other servers, which are distributed.

over there. It also sends the blacklist information to the front-end filter. A special

packet carries out update information.

3.4 	Blocking Criteria

For blocking purpose, source IP address and source mail-id are considered due to the

reason that an attacker can use either same mail-id from different machines or can use

different mail-id from same machine. A threshold is kept individually on both of this.

The threshold can be decided depending upon individual policy of the domain users.

The source with count above threshold is blacklisted and this information is conveyed

to front-end-filter. Aging factor is also used, so that valid source for a certain time is

not blocked for a long time. If no mails are coming from the blacklisted source for a

25

Reducing Directory Harvest Attacks

certain time then remove the entry corresponding to the source from the database.

This will also keep a check on growing size of database.

Now let us see with example that how this model works.

Suppose, for simplicity in the mail server the existing user addresses are

abc@domain.com, mno(aidomain.com and xyzndomain.com. The attacker sends a

blank message from its own address. Lets the attackers email addresses are

atkl@domain.com , atk2(aidomain.com. They use the different PC with IP address

192.168.1.2 and 192.168.1.3 and assume that the IP threshold is two and user-id

threshold is one.

Now let's see what happens if the attacker starts to send the mail 1st time from

atklgdomain.com address and from the PC whose IP address is 192.168.1.2 to

unknown recipients address (cde(n,domain.com) i.e. which is not in the mail server's

user list.

Front-end filter will pass this mail to the mail server since there is no entry in its own

database corresponding to the source address of the mail. Mail server then checks the

'to' field of the mail which is cdekdomain.com with its existing user list. This address

is not listed in its existing user list. Mail server will now store the source address both

(IP address and user-id) to its own database and set the count of the corresponding

entry. Since the count is equal to the user-id threshold, mail server passes this

information to the front-end filter. Front-end filter then store the user-id to its own

database.

26

Reducing Directory Harvest Attacks

Therefore, after sending the mail from attacker the status of the database of the mail

server and database status of the front-end filter are shown in the Figure 3.5 and

Figure 3.6 respectively.

Source IP address Counter Timer

192.168.1.2 1 Starting time

Entry corresponding to source IP address

Source user address Counter timer

atkl@domain.com 1 Starting time

Entry corresponding to source user-id

Figure 3.5: Database status of SMTP server

Source user address timer

atkl@domain.com Starting time

Figure 3.6: Database status of front-end filter

Now, from the other PC (IP address 192.168.1.3) the attacker sends the mail from the

same user-id (atkl c(idomain.com) to unknown recipients (aaaa,domain.com). Front-

end filter checks the source address with its own database. It will find that the source

address is in the database, and passes this to the reply generator not to the mail server.

Reply generator gives a negative reply to the source address. The attacker will block

for the 15 minutes, if the blocking time is 15 minutes. Therefore, after blocking

27

Reducing Directory Harvest Attacks

attacker will not get the valid user id since reply generator will give negative reply

always. The concept of blocking user address reduces the distributed attack. In the

distributed attack the attacker, use the different IP address but same user-id.

The following Figure 3.7 shows the procedure when attacker is not blacklisted.

Existing
user list

d 	Recipient 	Check is invalid 	recipient is valid
or not

Mail goes to 	- server
• i ~" Mail

server
Send blacklist source address to store

Store source
Not in 	Counter is 	address to
atabase 	beyond 	database

threshold 	and ask for
black-list

Front-end

Mail to 	 Mail

unlmown 	 coming to

recipient 	 front-end
4 	 filter

--►

Attacker 	
Router

Check
source

address in
database

Database 	 Database

Figure 3.7: Procedure when attacker is not blacklisted

28

Reducing Directory Harvest Attacks

Now, let us see what happens, if the attacker sends the mail to the unknown recipient

(kkk(cdomain.com) from IP address 192.168.1.2 and user-id atk2p_domain.com.

The front-end filter will pass the mail to the server due to not found the source

address of the mail in its own database. The server checks the to field of the packet

with its existing user list. The recipient address is invalid and server searches the

source address in its own database. Now server increments the count corresponding to

the source IP addresses and stores the source user-id in its source user-id database.

Server also passes the IP address to the front-end filter since count is beyond the IP

threshold.

So after this case the status of the mail server database and front-end filter are shown

in the Figure 3.8 and 3.9 respectively.

Source IP address Counter Timer

192.168.1.2 2 Starting time

Source user address Counter timer

atkl (l idomain.com 1 Starting time

atic@),domain.com 1 Starting time

Figure 3.8: Database status of SMTP server

Source IP address 	timer

192.168.1.2 	 Starting time

Figure 3.9: Database status of front-end filter

29

Reducing Directory Harvest Attacks

The following diagram (Figure 3.10) shows the procedure when attacker is

blacklisted.

Reply
generator

Send/egafive
reply Send source
addre address

Sends maii 	 Front-end
to unknown 	 filter " "

Y~ reci~ien[the filter 	 ~,

Router
Attacker 	 t I Check source 	 Server

	

Source is in 	jl address in

	

database 	database

Database

Figure 3.10: Procedure when attacker is blacklisted

This chapter describes the details of the proposed framework to reduce DHA.

Distributed attack can also be minimized by blacklisting the user address. Normally

in the distributed attack, system attacker use the different IP addresses i.e. different

PC to send the mail using same user address. By blocking the user address, the

attacker cannot send the mail to unknown recipient beyond a certain limit.

Introducing front-end filter filters the mail coming from blacklisted source and

transfers all the mails to reply generator, hence minimizing the load of SMTP server.

This model is validated through network simulator (NS2). Next chapter describes the

load minimization of SMTP server due to Directory Harvest Attack.

30

Minimizing Load Of SMTP Server

CHAPTER 4
MINIMIZING LOAD OF SMTP SERVER

Attackers send a lot of blank mail to the server to collect the valid user addresses.

Due to this server takes a lot of time to process all the mails coming from attackers.

Therefore, normal user will get slow response from mail server. So, it is necessary to

reduce the load of mail server for giving better response to the user. Load can be

distributed by using multiple servers. Blocking of all the mails coming from attackers

reduces the load more. Front-end filter is used to block the attacker and distributed

method is used to minimize the load. These two techniques, which are used to

minimize the load of server, are discussed below.

4.1 	Distributed Method

There are a number of SMTP servers, ,which are distributed along with their own

database. These servers store the source IP address and source email address and

number of mails coming from that source. All the information is stored in its own

database. Database contains two tables. One table contains the entry based on source

IP address and other table contains entry based on source email address. Whenever

server gets the mail from front-end-filter, it checks that this source address is already

in its database entry or not. If this source address is already there then increment the

count of corresponding source user-id and source IP address. If the entry is not

present then creates a new entry corresponding to that source. After updating their

database, server shares this information with other servers in that domain. Each server

communicates with others when they get any mail through update packet(s). This

update packet(s) consists of source IP address and source mail address with a special

flag. This flag is used to identify from where the packet came i.e. a packet may come

from front-end-filter in case of mail or it.can come from other server in case of update

information. Therefore, flag distinguish the actual mail and a packet contains

updating information. Servers increment the count entry corresponding to the source

31

Mail server computing node

O

0

0
0 I

Minimizing Load Of SMTP Server

after getting packet from other server. Two threshold values are maintained one is IP

address and another one is for user-id. If the count is beyond that threshold value then

this source is marked as blacklisted. Blacklisted information is passed to the front-end

filter, so that next time the server will not process any mail coming from the source.

There is some factor to decide the number of server. If number of server is increased

then load will be minimized more whereas cost will be increased. (Cost includes

server establishment cost and time requires updating or sharing their own database.)

Distributed model is shown in the Figure 4.1.

Figure 4.1: Structure of distributed mail server

32

Minimizing Load Of SMTP Server

Let T be the random variable denoting the client response time in the model, from the

law of total probability we have,

E [T] JE [TI request is served on node i]*P [request is served on node i]

=FE [Ti] P [request is served on node i]

Where E [Ti] is the expected response time of client requests served on

computing node i.

4.2 	Introducing front-end filter

Mails from attacker are not directly going to the SMTP server. Front-end-filter

handles these mails and takes decision where to forward these mails. Front-end-filter

can pass the mail either to the reply generator or to the distributed SMTP server,

associated with filter. The filter maintains a list of source IP addresses and source

email addresses, which are suspected as attacker. Based on this list filter forwards the

mail. This suspicion is made by distributed SMTP server(s). Every mail, which is

coming to the server, goes through front-end filter. After getting mail, filter checks

the source address with its blacklist. If this is not in the blacklist then sends this mail

to the server. There are more than one SMTP servers arranged in distributed fashion.

Filter sends the mail to the server that is less busy than others. Filter 15` sends the ping

request to every server. The server that is less busy gives response first. Front-end-

filter then sends the mail to that first responded server. Thus, load is distributed

among the distributed servers. After sending the mail, filter waits for the response. If

server finds that, the source might be attacker then passes this information to the

front-end filter. Filter then stores this source address in its blacklist. If next time any

mail coming from this blacklisted source, filter forwards these mails to the reply

generator. Hence, mail servers are free from processing the mails coming from

suspected attacker. Front-end-filter maintains the blacklist for a certain time. If no

mails are coming from a particular blacklisted source for last 30 min [16] then it

removes this source address from blacklist. This information is passed to the

distributed mail server. Then all the mail servers remove the whole entry

corresponding to that source. If the blacklist is not modified after a certain time then a

33

Minimizing Load Of SMTP Server

normal user may be affected. The reason is that the attacker may use the normal

user's address by hacking the email addresses or by making the machine as a zombie.

Here, front-end-filter is also working as a load distributor. Therefore, it not only

blocks the attacker's mail but also distribute the load. Working principle of front-end

filter is shown in the following diagram.

Mails from user

Check source address
with its own database

Yes 	 No
Dces Address

exist in
dazabase?

Send source address 	Send ping Into all
to reply generator 	 distributed server

Send mail from where it
gets response first

Store information to its
database coming from
server (if server sends)

Figure 4.2 Flowchart of working principle of front-end filter

34

Minimizing Load Of SMTP Server

Microsoft exchange server can be used as a mail server. According to the survey [18]

report, it is better than other server. This server is tested in two server configurations:

a departmental server and a corporate server under various loads (medium and high).

This server can be installed in distributed machine. This server also communicates

with database. The response time of the server for different domain is different. For a

departmental server configuration, average response would be 2 sec and for corporate

server configuration, average response time would be 1.1 sec. So according to the

organization number of server will be decided. The decision depends upon cost of the

server and average response time of the server. The cost of Microsoft exchange server

and hardware cost is the total cost to setup a server machine. If the number of

distributed server increases then total cost will be increase whereas the overall

response time of the server will be minimized. The graph shown in the results section

(chapter 6), describes the effect of cost and response time by increasing number of

server.

In this chapter, we have seen that how distributed technique is used to distribute the

load of SMTP server and how front-end filter filters the mail coming from attackers.

Another advantage of the distributed technique is that, if any server crashes then user

would not be affected since other mail server will handle the request.

System Design And Implementation

CHAPTER 5

SYSTEM DESIGN AND IMPLEMENTATION

5.1 System Design

To investigate the effectiveness of the proposed framework in defending against

Directory Harvest Attack and minimize the load of SMTP server, the simulation on a

simplified topology has been carried out on Network Simulator (ns-2) [15]. A large

number of scenarios are explored.

5.1.1 System Components

The system consists of the following components:

Clients: Clients are considered as a Directory Harvest Attackers. The attacker sends a

blank mail to the user address (randomly selected from the file) from its own email

address. The file contains valid and invalid recipients' address.

Server: The service provided by the server is to deliver the mail to the valid recipient.

There are number of servers, which are distributed over there. If the recipient is

invalid then reply, "recipient address is invalid" to the source address and store the

information about source to its own database. Attacker sends a lot of blank mail to the

server to get the valid user-id.

Front-end filter: This is the main gateway to the domain. Any mails coming to the

server will come to that filter first. This filter filters the mails, which are coming from

blacklisted source.

36

System Design And Implementation

Reply generator: It only gives the negative reply to the source. It gets the source

address from front-end filter.

Agents: Filter agent and SMTP agents are created in order to provide for the

functionality of the proposed framework. They are deployed at front-end filter and

SMTP server accordingly. They are discussed in detail next.

5.1.2 Simulation Model

Clients: Mail agents are deployed into client machine i.e. attacker machine. This

agent maintains two files. When attacker sends the mail, agent fills `to' and `from'

field of the mail by randomly choosing the data from two file. Among these files, one

contains source address and another contains recipient address. In the recipients'

address file, some are valid and some are invalid.

Server: The server is modeled by a simple destination of UDP packet. Here SMTP

agents are deployed.

Filter agent: Filter agents are deployed in the front-end filter. Front-end filter

maintains two databases to store the blacklisted source. Filter agent checks the source

address with its own database. If the address is in the database then it sends the

address to the reply generator, else sends this mail to SMTP server. After sending,

filter agent stores the information returning from mail server (if any). Before sending,

filter agent sends a ping request to all the servers. The server, which responds first,

will receive the mail.

SMTP agent: This agent is deployed into mail server. After getting mail, it checks the

source address with its existing user address. If the address is valid then do nothing

else store the source address with count. If the count is greater than threshold then

pass this information (containing source address) to the front-end filer.

37

System Design And Implementation

5.2 Implementation

5.2.1 Simulation Topology

Figure 5.1 illustrates the simulated network topology. The topology, which is

introduced here, is different from the existing one. Here mail servers are distributed.

Front end filter and reply generator are also new in the proposed framework.

The simulation is carried out in Network Simulator ns-2 [48] in which the

functionality of filter agent, mail agent and SMTP agent are coded. Attacker sends

mails from different IP address using different user-id to the recipient address, which

may be valid or invalid. The implementation model is shown in the following

Figure 5.1.

Attacker node

Front-end filter node

• Server node

Figure 5.1 Simulation topology

38

System Design And Implementation

5.2.2 Procedures

The procedures used to implement the various features are described next.

The database maintained by the front-end filter and SMTP server is implemented as a

link list. Whenever new data arrives in the list, is added into the front. Attackers send

the mail using UDP connection.

There are two input files. One is 'to.txt' file, which contains the recipients' address to

which attacker will send the mail. This file contains valid and invalid both address.

Here invalid addresses are those, which are not in the existing user list. Another file is

`from.txt' file. This file contains source user address. Mail agent takes the random

address from these files and put into the `to' and `from' field of the packet (mail). The

IP address will be node address from where mail is sent.

Front-end filter extracts the source address from the coming packet and matches with

the database. If the source address is already in the database then do nothing else

sends this packet to the server. SMTP agent then checks the `to' field of the packet

with the existing user address list. If it is not in the list, then stores the source address

to its own database and increments the count field corresponding to that source

address. If the count is beyond the threshold value then passes the source address to

the front-end filter. Then filter adds the source address to its database. Front-end filter

checks periodically if there is any address from where no mails are coming for last 30

min. If this type of address is there then delete this address from the database.

39

System Design And Implementation

Simulation Parameters

The main purpose for simulation is to study the effect of DHA, load of mail server,

cost and benefit of the proposed framework. The effect of the DHA is examined. The

cost is incurred by the overhead of the server setup cost and mail server software cost.

The benefit is measured in terms of number of mails going to the server and amount

of load reduced in the mail server due to front-end filter and distributed server in the

framework. IP threshold and user address threshold are varied to analyze the result.

Other parameters, which are used, are listed below.

Parameter Value Description

Simulator ns-2 Simulation tool

Number of attacker 5,15 Network nodes

Number of mail from one

node

20,15 Mails coming from one IP

address

Total recipient address 10,15 Destination email address

Table 5.1: Simulation Parameters.

40

Results and Discussion

CHAPTER 6
RESULTS AND DISCUSSION

Results of the simulated model (implemented in NS2) are analyzed and discussed by

varying the parameter used in the model. Some parameters are taken as a fixed and

some parameters are varied to analyze the effect of the Directory Harvest Attack and

load of mail server. Two things are analyzed and discussed the results below

i) Effect of DHA

ii) Effect of Load of SMTP server

Effect of DHA

In the proposed model DHA can be minimized more by blocking user-id. If only IP

address is blocked then DHA will be minimized but blocking user-id will minimize

the effect of DHA more. Reply generator generates only negative reply. So that after

blocking no attacker will get valid user-id, hence minimizing the attack. For

simulation purpose existing user-ids are there which is in mail-server. There is two

list of user-id of which each denote the `from' field and to field of the mail from

sender. List of recipient address contains 10 user ids where 6 are valid user id and

others are invalid user-id. In another case recipient address contains 15 user ids where

6 are valid user id and others are invalid user-id. Sender sends the mail by randomly

choosing the `to' and from filed. The result is observed by varying the number of

attackers' node, IP threshold and user-id threshold.

In the first graph we have shown the filtering by taking total number of attacker's

node as five and from one node, 20 mails are sent to the mail server i.e. total 100

mails are coming to the server from attacker. Attackers use different user id, which is

chosen randomly from input file. The input file contains 6 valid user-ids and 4 invalid

user-ids. The source address is also filled randomly from an input file. Server

maintains a file containing existing user address. Two parameters are varied to

analyze the result, one is IP threshold and another one is user-id threshold.

41

Results and Discussion

User-id threshold denotes how many mails are allowed to unknown recipient from

sender email-id and IP threshold denotes how many mails are allowed to unknown

recipient from an IP address. IP threshold is represented along with x-axis. It varies

from 1 to 20. Y axis represents no. of mails going to the mail server after filtering.

Here total 100 mails are sent from attacker, 20 mails from each node. In the

centralized RBL method, only IP address is blocked. In our model, user-id is also

blocked. In the centralized RBL method, IP threshold value is taken as 10. The

following graph (fig 4) shows how much filtering is there by varying IP threshold and

user-id threshold.

node=S valid=6
total mails=100 invalid=4

100 -e-id 1
ao c r----~- -e-id 3

--e-id 5

11 123456789W

a-id7
-°-°--e-id8 c-id9

IP threshold

Figure 6.1: Filtering graph where attacker node is 5 and total recipient address is 10

mails after filterin
ThrshldlP a-id=1 e-id=2 a-1d3 e-id=4 a-id=5 a-id=6 a-id=7 a-i=8 a-id=9 a-id=10

1 7 9 9 9 9 9 9 9 9 9
2 12 15 17 19 19 19 19 19 19 19
3 21 24 27 29 31 33 33 33 33 33
4 29 32 35 38 41 44 45 45 45 45
5 35 39 42 45 48 51 53 54 56 57
6 47 51 55 58 61 64 67 69 71 72
7 51 55 59 63 67 70 73 76 78 79
8 55 59 63 67 72 75 79 82 85 87
9 60 64 68 72 77 80 84 87 90 93
10 60 64 68 72 77 80 84 87 90 93
11 61. 65 69 73 78 81 85 88 91 94
20 61 65 69 73 78 81 85 88 91 94

42

Results and Discussion

If we decrease the IP threshold, then filtering is more. The reason is that, if we take IP

threshold as 10, then after attempting 10 wrong invalid addresses from one PC, the

rest of all mails will be filtered. If this value is five, then after attempting five wrong

invalid addresses from one PC, the rest of all mails will be filtered. So more mails

will be sent if IP threshold value is larger. We can see also the effect of DHA due to

user-id threshold in the graph (Figure 6.1). If the value of user–id threshold is less,

more mails will be filtered. Only IP threshold is not sufficient to reduce DHA effect.

In distributed attack, the attackers send 1-2 mails from one IP address and use many

IP address. Hence, user-id threshold is more important to protect distributed attack in

some extent. Now, let us see the effect of DHA by taking attackers node as 15 and

from each node 15 mails are sent i.e. total 225 mails are sent to the server. Here IP

threshold and user-id threshold are also varied to observe the effect of DHA. The

following graph (Figure 6.2) shows the filtering.

valid=6
node=15 d=9
total mails=225 	

invali

	

80 	 —e-id 1

	

E 0 20 	 aid 7
o e-id 8
o ? 10 	 a-id 9

	

0 	i —r—T– – ,— 	 —e-id 10
1 2 3 4 5 6 7 8 9 10 11 20

IP threshold

Figure 6.2: Filtering graph where attacker node is 15 and total recipient address id is 15.

43

Results and Discussion

Mails after filterin
thrshldlP a-id 1 e-id 2 e-id 3 e-id 4 e-id 5 e-id 6 e-id 7 e-id 8 e-id 9 e-id 10

1 32 36 40 42 45 45 45 45 45 45
2 48 52 56 61 63 66 69 72 74 77
3 61 65 69 74 77 80 83 86 89 92
4 76 80 84 89 92 95 98 101 108 111
5 94 98 102 107 110 113 116 122 126 130
6 106 110 114 119 122 125 128 134 138 142
7 118 122 126 131 134 137 140 146 150 154
8 124 128 132 137 140 143 146 152 156 160
9 129 133 137 142 145 148 151 157 167 171

10 129 133 137 142 145 148 151 157 167 171
11 129 133 137 142 145 148 151 157 167 171
20 129 133 137 142 145 148 151 157 167 171

We also observed the filtering in the following graph (Figure 6.3) by taking attackers

node as 5, number of mails from one node as 20 i.e. total 100 mails are sent to the

server, number of valid user-id as 6 and invalid user-id as 9.

valid=6 node=5
invalid=9 total mails=100

120 --e -id 1

100 —
Y

+=

y

in0

N

E

0

1 	2 	3 4 	5 	6 	7 	9 	9 10 11 12 13 14 20

IP threshold

Figure 6.3: Filtering graph where attacker node is 5 and total recipient address id is 15.

44

Results and Discussion

mails after filtering

thrshldlP a-id 1 e-id 2 e-id 3 e-id 4 e-id 5 e-id 6 e-id 7 e-id 8 e-id 9 e-id 10
1 6 7 7 7 7 7 7. 7 7 7
2 12 14 16 16 16 16 16 16 16 16
3 18 21 23 24 25 25 25 25 25 25
4 22 30 32 33 34 35 35 35 35 35
5 28 36 41 42 43 44 45 45 45 45
6 32 41 47 50 ,51 52 53 53 53 53
7 34 43 53 57 61 64 64 64 64 64
8 35 44 54 58 62 66 67 67 67 67
9 38 47 57 62 67 72 73 74 74 74
10 44 53 63 69 74 79 82 84 85 86
11 45 54 64 71 76 81 85 87 88 89
12 49 58 68 75 80 85 89 93 94 95
13 49 58 68 75 80 85 89 93 94 95
14 51 60 70 77 82 87 91 96 99 100
20 51 60 70 77 82 87 91 96 99 100

In all the cases, the graph is almost same. No matter how many attackers are there.

Filtering depends upon IP threshold and user-id threshold both. If attackers are more

then filtering will be there but more mails will be coming.

Value of user-id threshold depends upon IP threshold and normal user's service time.

Let us assume IP threshold is 6. In this case, user-id threshold should not be more

than 6. If from one IP address, 6 mails are sent from one user-id to unknown recipient

then after that all mail will be blocked from that source. Since IP threshold is 6. The

user-id threshold should not be so less. If the value of user-id threshold is so less, then

normal user may be affected. Suppose blocking time is 30 min, which is normally

used in other mail server [16]. In this case, if user-id threshold is one, then after

sending one mail to unknown recipient, user will be blocked for 30 min. That means

in 30 min. they can send one mail (if this mail goes to unknown recipient address).

Now let us see the number of attacker's mail coming to the server. If the user-id

threshold is one then 47 attackers mail will be sent. Therefore, the user-id threshold

depends upon IP threshold, number of attacker's mail and waiting time of a normal

user. The following graph (Figure 6.4) shows the effect of waiting time and number

of attacker's mail by varying user-id threshold. If the user-id threshold is greater,

45

Results and Discussion

waiting time will be reduced and number of mails from attacker will be increased. In

X-axis, one unit is 10 sec for waiting time.

graph for waiting time and no. of attacker mails by
varying E-id(threshold)

E

Y $o lIP threshold=6

ro 60 `
0 50 no. Of

40 s mails
30

ate+ 20 ----waiting
E time
m

10
0 	TT

3 0 5 	10 15
E-ld threshold

Figure 6.4 Effect of waiting time and no. of attacker's mail by varying the user-id

e-id=1 a-id=2 a-id=3 a-id=4 a-id=5 e-id=6 a-id=7 a-i=8 a-id=9 a-id=10

attacker
mails after
filter 47 51 55 58 61 64 67 69 71 72

waiting
time ms 63.82 58.82 54.54 51.72 49.18 46.87 44.77 43.47 42.25 41.66

Say, IP threshold is 6. Now in the graph it can be seen that if user-id threshold is

increased then waiting time will be minimized but attacking mail will be increased.

Say blocking time is 30 min [16]. Then for user-id threshold=l no of mails will be 47

hence in 30 sec 47 mails can go. Therefore, for one mail (30000/47=63.82*10) msec

is needed for user-id threshold=l and for user-id threshold= 2 (30000/51=58.82*10)

msec is needed.. So, if no of user-id threshold is increased, time is decreased to send

one mail and no of attackers mail is increased. For user-id threshold=l, no. Of

attacker mail is 47 and for user-id threshold=2, it is 51. So convergence factor should

be 2to 4 which is shown in the graph to decide user-id threshold for IP threshold=6.

46

Results and Discussion

6.2 	Effects of Load of SMTP Server

Load of SMTP server for front-end-filter

If the attacker's mails reduce, load of the server will be minimized. Front-end filter

blocks the mails coming from attacker and thus it reduces the load of SMTP server. In

the following graph it can be seen that if IP threshold value is decreased then no. of

mails from attacker to server is minimized, hence load of server is also minimized.

For a particular value of IP threshold, if user-id threshold is varied then load is also

varied. If the user-id threshold is decreased then no. of mails from attacker will be

minimized hence load will also be minimized. The reason is that from blocking

source no mails will go to the server. All the mails from that source will go to the

reply generator. In the following graph (Figure 6.5) x-axis denotes the IP threshold,

and y axis denotes number of mails which are going to the mail server i.e load of

server. IP threshold is varied from I to 12 and beyond that all are same. User-id is

varied from 1 to 10. It can be seen that if IP threshold value is increased then no. of

mails, which are going to mail server are increased hence load is increased. For a

particular IP threshold, if user-id is increased then also load is increased so user-id

threshold should be less than IP threshold and not so less. If user-id threshold is so

less then waiting time of normal user will be increased that is seen before.

node=5 	valid=6
total mail=100 	invalid=4

120 N e-Id 1
100 — .._ 	 _ R e-id 2

c-id 3
80 • c-id4

5 60 n a-id 5
ca e-id 6
0 40 a-id 7

a-id 8
20 ate-id9

O e-id lO

1 	2 	3 	4 	5 	6 	7 	8 	9 10 11 12 13 14 20

IP threshold

Figure 6.5: Graph for Load of SMTP server for front end filter

47

Results and Discussion

The result has been taken by changing the number of attackers' node and number of

recipient address. The following graph shows the load of server when attacker node is

15 and number of recipient address is 15. Load is shown here as percentage.

node=15 valid=6
total mails=225 invalid=9

80
M e-id 1 70 -.--l------. t oe-id2 0 60 -- — _._. 	_ e id 3

} 50 - e-id 4
40 ru a-id 5

e-id 6
30 eid7

'J1kii

ic_

ie-id
e-id9

10 O

1 2 	3 	4 	5 	6 	7 	8 	9 	10 11 20
1P threshold

Figure 6.6: Graph for Load of server for front end filter where attacker node is 15

Both graphs are mostly same. In the second graph (Figure 6.6) number of attackers'

mail are slightly greater than 15e graph (Figure 6.5) for a particular IP and user-id

threshold due to more attacker nodes. But load is minimized for frnt-end filter which

are not in the centralized RBL method.

Load of SMTP server for distributed method

If there are no. of server then load will be distributed, hence load will be minimized

for each server. No of server depends upon some fact. If the no of server is increased

then cost of server will be maximized. This cost includes server establishment cost,

delay to send request to other servers. Other side if no of server is increased then

response time of the server will be minimized.

48

Results and Discussion

If there is n number of server then response time will be

E [T] =E (T request is served on node i)* P [request is served on node i]

Y E [Ti]*P [request is served on node i]
For all i

Where, P[request is served on node i]= probability to send mail to ith server.

E [Ti] = expected response time of client requests served on computing node i.

T is the random variable denoting the client request response time and E[t] is the total

probability.

In the following graph 6.6 X-axis denotes no. of server and Y axis denotes the cost

and load. Say, for simplicity cost of each server is constant k=$2000(setup cost)

+$800(s/w cost) [17] and response time for each server is 2 sec [18]. Probability of

choosing one server among n server is 1/n. In the following graph, no. of server is

taken from 1 to 10. In Y-axis for cost, per unit is $1000 and for response time, one

unit is I sec. From this graph, the optimum value of the no. of server is 4 to 6.

3

y 	2.5
E

	

2 	— —

I — — response time

p Cost

~
o

0 5 10 15

no. of server

Fig 6.6: Graph for cost and response time varying the number of server

No. Of server 1 2 3 4 5 6 7 8 9 10
response time 2 1 0.66667 0.5 0.4 0.33333 0.28571 0.25 0.22222 0.2
cost 0.28 0.56 0.84 1.12 1.4 1.68 1.96 2.24 2.52 2.8

49

I=- . -.r,_ n-t ITIi-1TT.

CHAPTER 7
CONCLUSIONS AND FUTURE WORK

7.1 Conclusions

The framework proposed as part of the dissertation provides an end-to-end solution
for defense against Directory Harvest Attack (DHA). Currently, no framework exists
that would minimize both DHA and load of server like the proposed framework. The
effectiveness of the framework has been illustrated by appropriate simulation test bed.

Attackers send many mails to the SMTP server. The server processes all these mails
and wastes its lot of time in processing and replying though attacker might be
blacklisted. The normal users' requests are affected due to this. In our model, the
mails, from blacklisted attackers are sent to the reply generator. The front-end-filter
sends ping to all the SMTP servers to check which one is free. The relatively free
server will respond first and hence reduces load from the busy servers. In the previous
paper [14] the load of server is 100% because all the mails are processed by mail
server. In our model load is minimized due to front-end filter a
and user-id threshold. This is shown in the graph (Figure 6.5) a

The reply generator will then process such requests instead of
saving the time of SMTP server. This reply generator gives the attackernegati Me &V

w4 W W
reply, hence make the attacker's task of selecting the valid mail-id moret'icult.

The blocking criterion depends upon the domain administrator. The domain
administrator decides the value of lP-threshold i.e. how many mails to unknown
recipient address are allowed from one PC. The threshold of user address should be
less than threshold of IP address. Because from one machine no user cannot send the
number of mails to invalid recipient which is more than the value of IP-threshold. The

50

Conclusions And Future Work

value of user-id threshold will not be so less. If it is then the user will be blocked for a

long time due to single mistake. Therefore, front-end filter minimizes the server load

by filtering the attacker's mail and distributing the load.

7.2 Suggestions for Future Work

Policies for the threshold value can be decided after analyzing the real case. Some

heuristics may be used to do that. Data sharing between distributed SMTP servers and

its maintenance can be made more efficient and secure way. The actual number of

SMTP server, which is sufficient to distribute the load, may be further analyzed.

Reducing the effect of DHA can be more optimized by analyzing the existing user's

friend list. This observation will protect the server from false positive. Attackers can

send mail to the valid user address but may not be in recipient's friend list. Therefore,

some threshold value can be set to decide how many mails of this type i.e. mail to

valid user but not his friend will be allowed.

51

REFERENCES

[1] Spam Assassin. (httn://spamassassin. apache. ore)

[2] Vicomsoft connect and protect,spam. (http://www.vicomsoft.com)

[3] A.Brodsky,D.Brodsky. A distributed content independent method for spam detection. In

First Workshop on HOT topics in Understanding Botnets (2007).

[4] J. Jung, and E. Sit. An empirical study of spam traffic and the use of dns black lists. In

Proc. of the 4th ACMSIGCOMM Conference on Internet Measurement (2004).

[5] A.Iverson. Dnsbl resource. http:// www.dnsbl.com/, 2007.

[6] M. Sahami, S. Dumais., HECKERMAN, D., AND HORVITZ, E. A bayesian approach to

filtering junk e-mail. In AAAI-98 Workshop on Learning for Text Categorization (1998).

[7] Load Balancing VisNetic MailServer (www.deerfield.com/support/VisNetic-MailServer)

[8] Postini Enterprise Spam Filtering. The Silent Killer: How Spammers are Stealing Your

Email Directory. http://www.postini.com/whitepapers/,2006.

[9] L. V. Ahn, M. Blum, N. Hopper, and J. Langford, "CAPTCHA: Using hard AI problems

for security," in Proceedings of Eurocrypt, pp. 294-311, 2003.

[10] J. Klensin, Simple Mail Transfer Protocol, RFC 2821, Apr. 2001.

52

[11] Postini Enterprise Spam Filtering. The Silent Killer: How Spammers are Stealing Your

Email Directory. http://www.postini.com/whitepapers/,2006

[12] Kerio MailServer - State-of-the-art Secure Email Server. (http://www.kerio.com/kms/

home.html)

[13] Project Honeypot - Distributed System for Identifying Sparnmers.

(http://www.projecthoneypot.org)

[14] B. Bencsath, I. Vajda, "Efficient directory harvest attacks". In Proceedings of the 2005

International Symposium on Collaborative Technologies and Systems, pp. 62- 68, IEEE

Computer Society, 2005.

[15] NS-2 Network Simulator, available at, http://www.isi.edu/nsnam/ns/

[16] Blocking time: httn://www.pemag.com/article2/0, 1759,1543581100.asp

[17] Cost of server: http://www.microsoft.com/exchange/howtobuy/default.mspx#EIC

[18] Response time of the server: http://www.microsoft.com/presspass/press/1997/ jun97/

msexc5pr.mspx

53

Publication

Suman Das, Rajeev Singh and Dr. Durga Toshniwal. "Distributed Method to
Minimize the Effect of Directory Harvest Attack and Load of SMTP Server".
In 1st International Conference on Advances in Computing, Chikhli, India, 21-
22 February 2008.

2. 	Suman Das, Rajeev Singh , Dr. Ramesh C. Joshi and Dr. Durga Toshniwal.
"Minimize the Effect of Distributed Directory Harvest Attack and Load of
mail Server". In 3rd IEEE International Conference on Industrial and
Information Systems (ICIIS 2008), IIT Kharagpur, India. (paper submitted).

#mail-agent.h

#ifndef _MAIL AGENT _H
#define MAIL—AGENT H

#include <stdi.o.h>

#include "agent.h"
#include "packet.h"

#include "dmail.h"

class MAILAgent : public Agent
public:

MAILAgent();
int command(int, const char * const *);
void recv(Packet *, Handler *);

protected:

Agent *upper agent;
void send_up(Packet *, Handler *);
void send_down(Packet *, Handler *);

#endif

#mail-agent.cc

#include <stdio.h>
#include <stdlib.h>
#include <math.h>
#include <string.h>
#include <fstream.h>
#include "ip.h"
#include "tcp.h"
#include "mail-agent.h"
#include "dmail.h"
static class MAILHeaderClass : public PacketHeaderClass

public:
MAILHeaderClass() : PacketHeaderClass("PacketFIeader/MAIL",

sizeof(mail))
{ bind offset(&mail:: offset_);

} class_mailhdr;

static class MAILAgentClass : public TclClass
public:

MAILAgentClass() : TclClass("Agent/MAIL") {}
TclObject* create(int, const char * const *)

return (new MAILAgentO);
}

} class_mailagent;

MAILAgent::MAILAgent() :Agent(PT_DMAIL)
{

//bind("from smtp_", &from_smtp_);
//bind("bl list', &bl list);

int MAILAgent::command(int argc, const char*const* argv)
{

static int y=0;
if (argc == 2)
{ if (strcmp(argv[l], "send") _= Of
y++;
int j,k;
j=(randO 	10)+1;
k=j;
ifstream Eilefrom ("frommail.txt", ios::in);
ifstream iileto ("tomail.txt", ios::in);
char from [10],to[10];
while(k){

filefrom.getline (from,l0);
fileto.getline (to,10);_
k--;

}
filefrom.close();
fileto.close();

Packet* p = allocpkt();
mail *amail=mail::access(p);
hdr_ip* hip = hdrip::access(p);
ofstream fileopl("mailagent.txt", ios::out 	ios::ate

ios::app);
fileopl<<from«" \t"«to<<y<<"\t"<<hip->saddr () <<"\n" ;
fileopl.close).);

strcpy(amail->to, to);

strcpy(amail->from, from);
amail->from_smtp=0;
amail->ipbllist_=0;
email- >bllist_=0;
send (p,0);

return (TCL_OK);
}

return (Agent::command(argc, argv));

#Filtering-agent.h

#ifndef FILTERING AGENT H
#define _FILTERING AGENT -H

#include <stdio.h>

#include "agent.h"
#include "packet. h'

#include "dmail.h'

struct DATABASE {
char from[20];
int count;
struct DATABASE *next;

struct IPDATAEASE
int from;
int count;
struct IPDATABASE *next;

class FILTERINGAgent : public Agent
public:

FILTERINGAgentC);
int command(int, const char * const *);
void recv(Packet *, Handler *);

void showO;
DATABASE *db;
IPDATABASE *ipdb;

protected:
int offset_,bl list_,nodeid_;

private:

void delete dbase(Packet *);

void •delete IPdbase(Packet *);
void recv mail(Packet *);

IPDATABASE* lookup(Packet *,IPDATABASE *);
void insert dbase(Packet *);
void insert_IPdbase(Packet *);
void recv_update(Packet *);
DATABASE* lookup(Packet *,DATABASE *);
bool lookupdb(Packet *);
bool lookupipdb(Packet *);

#endif /* FILTERING AGENT H */

#Filtering-agent.cc

#include <iostream.h>
#include <fstream.h>
#include <stdio.h>
#include <string.h>
#include "ip.h"
#include "tcp.h"
#include "filtering-agent.h"
#define THRESHOLDIP 9
#define THRESHOLD 10
int mail: :offset=-l;
static int countmail=0,m;
static class MAILHeaderClass : public PacketHeaderClass

public:

MAILHeaderClass() : PacketHeaderClass("PacketHeader/MAIL",
sizeof(mail))

{
bind _offset(&mail: :offset _);

}
} classmailhdr;
static class FILTERINGAgentClass : public TclClass

public:
FILTERINGAgentClass() : TclClass("Agent/FILTER") {}
TclObject* create(int, const char * const *)

return (new FILTERINGAgent());
}

} class_filteringagent;

FILTERINGAgent::FILTERINGAgent() : Agent(PT_DMAIL)
{

bind("bl_list_", &bl_list_);
bind("nodeid_ &nodeid_);

//test=new DATABASE;
db = new DATABASE;
db->next=NULL;
db->count=0;
ipdb = new IPDATABASE;
ipdb->next=NULL;
ipdb->count=0;

}
void FILTERINGAgent::show()
{ 	DATABASE *tmp=db;

while(tmp!=NULL){
tmp=tmp->next;
//printf("°ss",tmp->from);

}
int FILTERINGAgent::command(int argc, const char*const* argv)
{

Tcl &tcl=Tcl::instance();
return Agent::command(argc, argv);

}
void FILTERINGAgent::recv(Packet *p, Handler *)
{

mail *amail=mail::access(p);
hdr_ip* hip = hdr_ip::access(p);
//printf("fromsmtp= od\tad",amail->fromsmtp,hip->saddr());
//printf("dest. addr = °sd",hip->daddr());
//printf("source. saddr = %d",hip->saddr());

if(amail==NULL)

printf("PANIC: mail is NULL\n");
abort();

}
if(amail->fromsmtp==1)

//printf("receive update');
recv_ update (p);

else
recv_ mail (p);

void FILTERINGAgent::recv_mail(Packet *p)
{

int flag=0;
m++;
mail *amail=mail::access(p);
hdr_ip* hip = hdr_ip::access(p);
ofstream fileop("filter.txt", ios::out 	ios::ate Jios::app);
IPDATABASE *tmpipdb ;

if (lookupdb(p))
{

tmpipdb=lookup(p,ipdb);
flag=l;
if(tmpipdb->next!=NULL)
{

(tmpipdb->next)->count++;

}
else

insert_IPdbase(p);
}
if(lookupipdb(p))

flag=l;
if (! flag)
{ 	//printf("filter to mail: %s \n",amail->from);

countmail++;
printf("count : %d\n",countmail);
fileop<<countmail;

fileop<<amail->from<<"\t"<<amail->to<<" --- °«hip-
>saddr()«"\n";

Tcl& tcl = Tcl::instance();
tcl.evalc("getnodeid");
hip- >daddr () =nodeid_;
send (p,0);

}
fileop.close();
//show();

}
IPDATABASE* FILTERINGAgent::lookup(Packet *p,IPDATABASE *ipdb)
{

hdr_ip* hip = hdr_ip::access(p);
IPDATABASE *tmpl=ipdb;
while(tmpl->next)
{

if(tmpl->next->from==hip->saddr())//same
return tmpl;

else
tmpl=tmpl->next;

}
return tmpl;

void FILTERINGAgent::insert_IPdbase(Packet *p)
{

IPDATABASE *tmpl = new IPDATABASE;
hdr_ip* hip = hdr_ip::access(p);
tmpl->count=l;
tmpl->from=hip->saddr();
tmpl->next=ipdb->next;
ipdb->next=tmpl;

void FILTERINGAgent::insert_dbase(Packet *p)
{

DATABASE *tmp = new DATABASE;
mail *amail=mail::access(p);
tmp->count=l;
tmp->next=db->next;
strcpy(tmp->from,amail->from);
db->next=tmp;

void FILTERINGAgent::recv_update(Packet *p)
{

mail *amail=mail::access(p);
DATABASE *tmpdb ;
IPDATABASE *tmpipdb
//if(amail->bllist_==l)

tmpdb=lookup(p,db);
if(tmpdb->next!=NULL)

(tmpdb->next)->count++;
else

insert_dbase(p);

tmpipdb=lookup(p,ipdb);
if(tmpipdb->next!=NULL)

(tmpipdb->next)->count++;
else

insert_I Pdbase (p);

DATABASE* FILTERINGAgent::lookup(Packet *p, DATABASE *db)
{

mail *amail=mail::access(p);
DATABASE *tmp=db;
while(tmp->next)
{

if(!strcmp((tmp->next)->from,amail->from))//same
return tmp;

else tmp=tmp->next;
}
return tmp;

bool FILTERINGAgent::lookupdb(Packet *p)
{

mail *amail=mail::access(p);
DATABASE *tmp=db;

while(tmp->next)
{ 	tmp=tmp->next;

if(!strcmp(tmp->from,amail->from))//same
{ 	if(tmp->count>=THRESHOLD)

return TRUE;
else

return FALSE;

}
return FALSE;

}
bool FILTERINGAgent::lookupipdb(Packet *p)
{

IPDATABASE *tmp=ipdb;
hdr_ip* hip = hdr_ip::access(p);
while(tmp->next)
{ 	tmp=tmp->next;

if(tmp->from==hip->saddr())//same
{ 	i£(tmp->count>=THRESHOLDIP)

return TRUE;
else

return FALSE;

}
return FALSE;

#smtp-agent.h

#ifndef _SMTP AGENT _H
#define SMTP̂ AGENT H

#include <stdio.h>

#include agent .h'
#define THRESHOLD 3
#include "dmail.h"

struct DATABASE {
//uint8_t count;
int count;
char from[20];
//int bl_list;
DATABASE *next;

struct IPDATABASE
int from;
int count;
//int ip_bl_list;
IPDATABASE *next;

struct MAILDATABASE
char to[20];
MAILDATABASE *next;

class SMTPAgent : public Agent

public:
SMTPAgent();
int command(int, const char * const *);
void recv(Packet *, Handler *);
DATABASE *db;
IPDATABASE *ipdb;
MAILDATABASE *mdb; 	-

//protected:
int bl list

private:
void insertdbase(Packet *);
void delete dbase(Packet *);
void insert_IPdbase(Packet *);
void delete IPdbase(Packet *);
DATABASE *lookup(Packet *,DATABASE *);
IPDATABASE *lookup(Packet *,IPDATABASE *);
bool lookup(Packet *);
void recv_filter(Packet *);
void recv_smtp(Packet *);

void show();

#endif /* _SMTP,AGENT_H */

#smtp-agent.cc

#include <stdio.h>
#include <string.h>
#include <fstream.h>
#include "ip.h--
#include "tcp.h"
#include "smtp-agent.h"
static int k,n;
static class MAILHeaderClass : public PacketHeaderClass

public:
MAILHeaderClass() : PacketHeaderClass("PacketHeader/MAIL",

sizeof(mail))
{ 	bind_offset(&mail::offset_);

} class_mailhdr;

static class SMTPAgentClass : public TclClass
public:

SMTPAgentClass() : TclClass("Agent/SMTP") {}
.TclObject* create(int, const char * const *)

return (new SMTPAgent());
}

} class_smtpagent;

SMTPAgent::SMTPAgent(): Agent(PT_DMAIL)
{

//bind(" hi list 	, &bl_list_);
db=.new DATABASE;

ipdb= new IPDATABASE;
mdb = new MAILDATABASE;
db->next=NULL;
mdb->next=NULL;
ipdb->next=NULL;
db->count=0;
ipdb->count=0;

int SMTPAgent::command(int argc, const char*const* argv)
{

Tcl &tcl=Tcl::instance();
return Agent::command(argc, argv);

void SMTPAgent::recv(Packet *p, Handler *)
{ 	n++;

mail *amail=mail::access(p);
hdr_ip* hip = hdr_ip::access(p);
ofstream fileop("smtpl.txt", ios::out 	ios::ate 	ios::app);
£ileop<<amail->to<< "«amail->from<<n<<" ---. "<<hip-

>saddr () a<\n" ;
fileop.close();

if(amail==NULL)
{

printf("PANIC: mail is NULL\n");
abort();

}
if(amail->from_smtp==l)

recv_smtp(p);

else
{recvfilter(p);

}
}
void SMTPAgent::recv_filter(Packet *p)
{ 	static int a;

mail *amail=mail::access(p);
DATABASE *tmpdb ;
IPDATABASE *tmpipdb
bl list =o;
hdr_ip* hip = hdr_ip::access(p);

//hip->daddr()=hip->saddr();
//printf("smtp dest = %d",hip->daddr());
//printf("smtp source = °sd",hip->saddr());

if(!lookup(p))
{ 	a++;

ofstream fileop("smtp.txt", ios::out I ios::ate
ios::app);

fileop<<amail->from«" 	"<<amail->toe< --- "<<hip-
>saddr () «" \n"

fileop.close();

amail->from_smtp=l;
hdr_ip* hip = hdr_ip::access(p);

hip->daddrO=1;
send(p,O);

}

//show();
}
void SMTPAgent:: show()
{ 	IPDATABASE *tmp = ipdb;

ofstream fileop("smtplist.txt", ios::outl ios::ate 	ios::app);
while(tmp->next){

tmp-tmp->next;

fileop<<tmp->from<<" "<<tmp->count<<\t";

//printf('-%s ",tmp->from);
//printf(d \n",tmp->count);

}
fileop<<\n"
fileop.closeO;

}
void SMTPAgent::insert_dbase(Packet *p)
{

DATABASE *tmp = new DATABASE;
mail *amail=mail::access(p);
strcpy(tmp->from,amail->from);
tmp->count=l;
tmp->next=db->next;
db->next=tmp;

}
void SMTPAgent::insert_IPdbase(Packet *p)
{

IPDATABASE *tmpl = new IPDATABASE;
hdr_ip* hip = hdr_ip::access(p);
tmpl->count=l;
tmpl->from=hip->saddr();
tmpl->next=ipdb->next;
ipdb- >next=tmpl;

}
DATABASE* SMTPAgent::lookup(Packet *p,DATABASE *db)
{

mail *amail=mail::access(p);
DATABASE *tmp=db;
while(tmp->next)
{

if(!strcmp((tmp->next)->from,amail->from))//same
return tmp;

else tmp=tmp->next;
}
return tmp;

}
IPDATABASE* SMTPAgent:: lookup(Packet *p, IPDATABASE *ipdb)
{

hdr_ip* hip = hdr_ip::access(p);
IPDATABASE *tmpl=ipdb;
while(tmpl->next)
{

if(tmpl->next->from==hip->saddr())//same
return tmpl;

else
tmpl=tmpl->next;

}
return tmpl;

void SMTPAgent::recv_smtp(Packet *p)
{

mail *mail=mail:.access(p);
DATABASE *tmpdb;
IPDATABASE *tmpipdb;
tmpdb=lookup(p,db);
if(tmpdb->next!=NULL)

tmpdb->count++;
else

insert_dbase(p);
tmpipdb-lookup(p,ipdb);
if(tmpipdb->next!=NULL)

tmpipdb->count++;
else

insert _1Pdbase(p);

bool SMTPAgent::lookup(Packet *p)
{

mail *amail=mail::access(p);
char b[lo];
int k=6;
ifstream fileop ("user.txt", ios::in);
fileop.getline(b,10);
while(k)
{ 	fileop.getline(b,10);

k--;
if(!strcmp(b,amail->to))//same

return TRUE;
}
return FALSE;

#dmail.tcl

#Create a simulator object
set ns [new Simulator]
$ns color 1 Red
$ns color 2 Blue

#Open the nam trace file
set of [open ne.nam w]
$ns namtrace-all $nf

#Define a 'finish procedure
proc finish {} {

global ns of
$ns flush-trace

#Close the trace file
close $x-if

#Execute nam on the trace file
exec nam ne.nam &
exit 0

#create 7 nodes
for {set i 0} {$i<4} {incr i}

set m($i) [$ns node]

#normal nodes
for {set i 100} {$i<105}. {incr i}

set m($i) [$ns node]

#attacker nodes
for (set i 200} {$i<203} {incr i} {

set m($i) [$ns node]

#Create links between the nodes
$ns duplex-link $m(200) $m(0) 5Mb lOms DropTail
$ns duplex-link $m(201) $m(0) 5Mb lOms DropTail
$ns duplex-link $m(202) -$m(0) 5Mb lOms DropTail
$ns duplex-link $m(100) $m(0) 5Mb 10ms DropTail
$ns duplex-link $m(l01) $m(0) 5Mb lOms DropTail
$ns duplex-link $m(102) $m(0) 5Mb 10ms DropTail
$ns duplex-link $m(103) $m(0) 5Mb lOms DropTail
$ns duplex-link $m(104) $m(0) 5Mb lOms DropTail
$ns duplex-link $m(0) $m(l) 5Mb 10ms DropTail

#$ns duplex-link $m(l) $m(2) 5Mb lOms DropTail
#$ns duplex-link $m(2) $m(0) 5Mb lOms DropTail
$ns duplex-link $m(l) $m(3) 5Mb 10ms DropTail
#$ns duplex-link $m(1.) $m(4) 5Mb 10ms DropTail
#$ns duplex-link $m(l) $m(5) 5Mb lOms DropTail
#$ns duplex-link $m(l) $m(6) 5Mb 10ms DropTail
#$ns duplex-link $m(3) $m(4) 5Mb lOms DropTail
#$ns duplex-link $m(3) $m(5) 5Mb lOms DropTail
#$ns duplex-link $m(3) $m(6) 5Mb lOms DropTail
#$ns duplex-link $m(4) $m(5) 5Mb lOms DropTail
#$ns duplex-link $m(4) $m(6) 5Mb 10ms DropTail
#$ns duplex-link $m(5) $m(6) 5Mb lOms DropTail

#Class Application/TVAUser -superclass Application

Set mg [new RNG]
set filter [new Agent/FILTER

$ns attach-agent $m(1) $filter
#set tcp [new Agent/TCP]
#$ns attach-agent $m(2) $tcp

set smtp3 [new Agent/SMTP]
$ns attach-agent $m(3) $smtp3
#set smtp4 [new Agent/SMTP]

#$ns attach-agent $m(4) 	$smtp4
#set smtp5 	[new Agent/SMTP]
#$ns attach-agent $m(5) 	$smtp5
#set smtp6 [new Agent/SMTP I
#$ns attach-agent $m(6) 	$emtp6

for { 	set j 	1} 	{ 	$j 	<= 20 	} 	{ 	incr j 	} 	{
for { 	set 1 100 	} 	{ 	$i < 105 	} 	{ 	incr i

#global rng ns
#$ns instvar rug
set magent [new Agent/MAIL]
$ns attach-agent $m($i) $magent
#set appi [new Application/Traffic/CSR]
#$appl set packetSize_ 500
#$appl set interval 	0.005
#$appl attach-agent $magent
$ns connect $magent $filter
$ns connect $filter $smtp3
#$ns connect $magent $smtp3
#$ns at 	[expr 0.1 + 	[$rng uniform 0 1]] "$appl start"

#set a($i) 	[expr $i-100 + 	[$rng uniform 0 1]
puts $i
#$ns at 1.0 "$magent send"
$ns at 	[expr 2.0 + 	[$rng uniform .0 1]]
}

"$magent send"

}
proc getnodeid {}
global ns m filter
$filter set nodeid_ [$m(3) node-addr]
}
#for { set i 	LOU 	} 	{ 	$i <= 102 	} 	{ 	incr i
#$ns at $a($i) 	'"$magent send"
#for { 	set 1 200 	} 	{ 	$i <= 202 	} 	{ 	incr i 	} 	{

set magent [new Agent/MAIL]
$ns attach-agent $m($i) $magent

#set appi 	[new Application/Traffic/CBR]
#$appl set packetSize_ 500
#$appl set interval_ 0.005
#$appl attach-agent $magent

$ns connect $magent $filter
#$ns connect $filter $smtp3

#$ns connect $magent $smtp3
#$ns at 	[expr 0.1 + 	[$rng uniform 0 1]] "$appl start"

$ns at 3.0 "$magent send"
#$ns at 	C expr 0.2 + 	[$rng uniform 0 1]] "$magent send"

# 	}

$ns run
#}

#Call the finish procedure after 5 seconds of simulation time
$ns at 5.0 "finish"

#Run the simulation
#flow-create

	Title
	Abstract
	Chapter1
	Chapter 2
	Chapter 3
	Chapter 4
	Chapter 5
	Chapter 6
	Chapter 7
	References

