
DESIGN AND IMPLEMENTATION OF
RECONFIGURABLE FLOATING POINT

ARITHMETIC UNIT

A DISSERTATION

Submitted in partial fulfillment of the
requirements for the award of the degree

of
MASTER OF TECHNOLOGY

in
ELECTRONICS AND COMPUTER ENGINEERING

(With Specialization in Semiconductor Devices & VLSI Technology)

P. S. SUREI A

Aft

I

DEPARTMENT OF ELECTRONICS AND COMPUTER ENGINEERING
INDIAN INSTITUTE OF TECHNOLOGY ROORKEE

ROORKEE -247 667 (INDIA)
JUNE, 2008

Student Declaration

I hereby declare that the work being presented in the dissertation report titled " Design

and Implementation of Reconfigurable Floating Point Arithmetic Unit" in partial

fulfillment of the requirement for the award of the degree of Master of Technology in

Semiconductor Devices and VLSI technology, submitted in the Department of

Electronics and Computer Engineering, Indian Institute of Technology Roorkee, is an

authenticate record of my own work carried out under the guidance of Dr. R.C.Joshi,

Professor, and Dr.A.K.Saxena, Professor ,Department of Electronics and Computer

Engineering, Indian Institute of Technology Roorkee.

I have not submitted the matter embodied in this dissertation report for the award of

any other degree.

Dated: 3ofo /o5Z
	 (P. S.Surekha)

Place: IIT Roorkee.

CERTIFICATE
This is to certify that above statements made by the candidate are correct to the best of

my knowledge and belief.

Dr. R.C.Joshi 	'
	

Dr.A.K.Saxena
Professor 	 Professor

Department of Electronics and Computer Engineering,

IIT Roorkee, Roorkee -247667 (India).

Dated:

Place: IIT Roorkee.

i

Acknowledgements

I am thankful to Indian Institute of Technology Roorkee for giving me this

opportunity. It is my privilege to express thanks and my profound gratitude to my

supervisor Dr.R.C.Joshi, Professor and Dr.A.K.Saxena for their invaluable guidance

and constant encouragement throughout the dissertation. I was able to complete this

dissertation in this time due to constant motivation and support obtained from Dr.

R.C.Joshi.

I am also grateful to the staff of Sponsored Research Laboratory and VLSI Laboratory

for their kind cooperation extended by them in the execution of this dissertation. I am

also thankful to all my friends who helped me directly and indirectly in completing

this dissertation.

I am thankful to Mr. Solomon Raju, scientist CEERI, Pilani for his constant

encouragement in my work. I am grateful to Mr. Hari Krishna Boyapati and Mr. Babuji

for being excellent peers and creating a congenial environment for work.

Most importantly, I would like to extend my deepest appreciation to my parents and

brother for their love, encouragement and moral support. Finally I thank God for

being kind to me and driving me through this journey.

(P.S.SUREKHA)

ii

0

Abstract

In recent years computer applications have increased in their computational
complexity. The industry wide usage of performance benchmarks such as SPECmarks

forces processor designers to pay particular attention to implementation of the

floating point unit or FPU. Special purpose applications such as digital signal

processing, audio processing and many real time applications placed further

demands on processors with floating point unit. Unfortunately, the huge hardware
resources occupied by these floating-point arithmetic units make it difficult to house a

large number of units in a single FPGA. In this work we present the partial
reconfiguration technique for the implementation of floating point arithmetic unit

(FP-A U) which makes FP-A U with less resource utilization and flexible to operate in
a rapidly changing environment. The hardware resources occupied by this unit have

been reduced through time-sharing them between modules. Partial reconfiguration is

the ability of certain devices (FPGAs) to reconfigure only selected portions of their

programmable hardware while other portions continue to operate undisturbed. A
FPGA can be partially reconfigured using a partial bitstream. We can use such a

partial bitstream to change the structure of one part of an FPGA design as the rest of
the device continues to operate and this reduces the reconfiguration time also.

iii

Table of Contents

Studentdeclaration ..i

Acknowledgements.. ii

Abstract..iii

Tableof Contents ..::.iv

Listof Figures ...vii

Listof Tables ..viii

Abbreviations.. ix

Chapter1 Introduction ...1

	

1 .1 	Introduction1

	

1.2 	Motivation ..2

	

1.3 	Statement of problem ...2

	

1 .4 	Outline of thesis ..3

Chapter 2 A Brief Review of Floating point number system,

FPGA and Reconfigurable Systems ..4

	

2.1 	Floating point number system ..4

	

2.2 	FPGA ..7

	

2.3 	Reconfigurable systems 9

Iv

Contents

	

2.3.1 	Reconfiguration ...9

	

2.3.2 	Types of reconfiguration ..11

2.3.2.1 	Compile Time Reconfiguration11

2.3.2.2 Run-time Reconfiguration ...11

Chapter 3 Partial Reconfiguration techniques ..14
3.1 Partial Reconfiguration Design Flow ...15
3.2 Types of Partial Reconfiguration ..17

3.2.1 Module Based Partial reconfiguration17

Chapter 4 Implementation of FPGA based FP-AU22

	

4.1 	Simulation of FP-AU ..23

	

4.1.1 	Floating point Addition and Subtraction23

	

4.1.2 	Floating Point Multiplication ..24

	

4.1.3 	Floating Point Division ...26

	

4.2 	Synthesis of FP-AU ...27

	

4.3 	Implementation of FP-AU:.......:............................... 29

Chapter 5 Design of Partially Reconfigurable FP-AU32

5.1 Partial Reconfiguration of Simple Integer Adder-Subtractor

andLEDs Shifting ... 32

5.1.1 Partial Reconfiguration Implementation flow in

command line using ISE 9.2.4i..34

v

Contents

5.2

	

	Design of Partially Reconfigurable FP-AU36

5.2.1. Partial Reconfiguration Methodology37

Chapter6 Results ...39

Chapter7 Conclusions and future work ...45

	

7.1 	Conclusions ..45

	

7.2 	Future work ...46

REFERENCES...............:...47

APPENDIXA ..49

LIST OF PUBLICATIONS ...52

vi

LIST OF FIGURES

Figure 2.1 	FPGA Structure...........7

Figure 2.2 Compile Time Reconfiguration .. I 1

Figure 2.3 Run Time Reconfiguration.. ...12

Figure 2.4 Global Run-Time Reconfiguration.. .. 12

Figure 2.5 Local Run-Time Reconfiguration ...13

Figure 3.1 Partially Reconfiguration process ..14

Figure 3.2 EA PR DesignFlow ..1 5

Figure 4.1 FPGA Design Flow ...22

Figure 4.2 FP-AU Design Flow ...27

Figure 4.3 Xilinx ISE 9.2i Window ..29

Figure 4.4 Front View of Virtex-2 Pro Board with PCI Interface30

Figure 5.1 Complete System............. ..33

Figure 5.2 PR Directory Structure ..34

Figure 5.3 PlanAhead window showing two Partially Reconfigurable Regions... 36

Figure 5.4 Run-time and Partial reconfigurations of Floating point modules...... 37

Figure 6.1 	Simulation Result of Floating Point Adder/Subtractor39

Figure 6.2 	Simulation Result of Floating Point Multiplier40

Figure 6.3 	Simulation Result of Floating Point Divider41

Figure 6.4 Implementation of Floating point adder on Virtex-2 Pro XC2VP50

FPGA..43

Figure A. 1 	RTL diagram of floating point adder/subtractor49

Figure A.2 	RTL diagram of floating point multiplier50

Figure A.3 	RTL diagram of floating point divider51

vii

LIST OF TABLES

Table 2.1 	Special values in IEEE 754 format ..5

Table 6.1 	Synthesis Results of Floating Point Arithmetic Unit42

Table 6.2 	Results obtained by Implementing FP-AU on FPGA42

Table 6.3 	Implementation details of partially reconfigurable floating

point arithmetic unit ...44

viii

ABBREVATIONS

CTR Compile Time reconfiguration

DSP Digital Signal Processing

DR Dynamic reconfiguration

EA Early Access

FPGA Field Programmable Gate Array

FP-AU Floating Point Arithmetic Unit

FPU Floating Point Unit

HDL Hardware Descriptive Language

IEEE Institute of Electical and Electonics Engineers

IOB Input Output Blocks

ISE Integrated Software Environment

ISDR Ideal Software Defined Radio

JTAG Joint Test Action Group

NCD Native Circuit Description

NGD Native Generic Database

PC Personal Computer

PCI Peripheral Component Interconnect

PR Partial Reconfiguration

PRR Partial reconfiguration Region

RTL Register Transfer Logic

RTR Run Time Reconfiguration

UCF User Constraints File

1X

Abbreviations

VHSIC 	Very High Speed Integrated Circuit

VHDL 	VHSIC Hardware Description Language

XST 	Xilinx Synthesis Technology

XUP 	Xilinx University Programme

CHAPTER 1

INTRODUCTION

1.1 Introduction

Floating point numbers are used to represent very small to very large numbers with

varying levels of precision. The mathematical operations such as addition,

subtraction, multiplication and division are defined, but are slightly more complex

than those for standard integer numbers. Floating point operations with high precision

ranges requires more hardware resources. This requirement has to be reduced because

of FP-AU real-time applications. Hence, the main objective of this thesis is to design

a partially reconfigurable FP-AU, to decrease the hardware resources occupied by it

and also to make it flexible to adapt to changing environment.

These partially reconfigurable modules are implemented on FPGA. The FPGAs can

be configured to implement complex hardware flexible systems. FPGA

reconfiguration [1] typically requires the whole chip to be reprogrammed even for the

slightest circuit change and also some systems reconfiguration time adds delay to the

application. Reconfiguration time of FPGA can be reduced by using partial dynamic

reconfiguration. In partial reconfiguration only part of the circuit is reconfigured by

time sharing. the hardware resources at run-time, thus saving reconfiguration time and

hardware resources.

The IEEE-754 standard defines floating-point number formats, operations, exceptions

and their handling. A system conforming to IEEE-754 standard can be realized in

software, hardware or combination of these. This standard has been chosen for

representing floating-point numbers because of its use in wide range of real time

applications. The IEEE floating point standard makes floating point unit

implementation [2] portable and the precision of the results predictable. A variety of

different circuit structures can be applied to the same number representations, offering

flexibility. The floating point unit algorithm, architecture, and bit-width adaptation

E&C Department, IIT Roorkee 	 1

Introduction and Statement of the Problem

offer significant potential for optimization. In this work Virtex-2pro (XC2VP50)

FPGA device has been used to implement partially reconfigurable FP-AU.

1.2 Motivation

Embedded DSP applications demand more dynamic range and higher precision to

prevent overflow and improve the quality respectively. The most straightforward way

to satisfy both is to use the floating-point arithmetic, where the data samples are

represented in the exponent and the mantissa parts and the data are normalized for

every operation. Floating point arithmetic operations require huge hardware resources

so it is difficult to embed them as a FPU Co-processor for DSP applications. This

motivates to use partial reconfiguration techniques to implement FP-AU through

which we can reduce the hardware resources needed for FP-AU without any loss of

precision and accuracy. FPGAs, the research tool, for building custom circuits now

has the feature of Run Time Reconfiguration supported, which allows to use the

silicon in novel ways and also the tremendous increase in capacity of field-

programmable gate-arrays (FPGAs) has enabled these devices for the implementation

of hardware designs for basic arithmetic operations such as addition, multiplication

and division in both single and double-precision IEEE-754 formats.

1.3 Statement of the problem

The analysis presented in this thesis has many attractive features and several

contributions to the current state of knowledge. The general and specific contributions

of this research include the following:

1. Modeling of floating point arithmetic modules in VHDL and simulating them using

ModelSim6.0d.

2. Synthesizing and Optimizing the area and performance of modules using Xilinx

ISE tools.

3. Implementation of FP-AU on FPGA.

E&C Department, IIT Roorkee 	 2

Introduction and Statement of the Problem

4. Design and Implementation of Partial Reconfigurable FP-AU modules.

1.4 Outline of Thesis

This dissertation proposes a model for partial reconfiguration of FP-AU. The

organization of the dissertation is as follows:

Chapter 2 discusses a briefly review of IEEE 754 single precision FP-AU, FPGA

basics and types of reconfigurations on FPGA.

Chapter 3 describes the design flow of module based partial reconfiguration

technique. This design flow has been followed in this work to do partial

reconfiguration.

Chapter 4 describes algorithms used for floating point addition/subtraction,

multiplication and division to write vhdl code, synthesis of the modules using Xilinx

ISE 9.1 i and implementation on Xilinx Virtex-2 Pro XC2VP50 kit.

Chapter 5 describes command line partial reconfiguration implementation flow and

partial reconfiguration of FP-AU.

Chapter 6 shows the simulation, synthesis and implementation results of this work.

Chapter 7 concludes the dissertation work and gives suggestions for future work.

E&C Department, IIT Roorkee 	 3

CHAPTER 2

A BRIEF REVIEW OF FLOATING POINT NUMBER SYSTEM,
FPGA AND RECONFIGURABLE SYSTEMS

2.1 Floating Point Number System

Floating point number system is used to represent real numbers. The floating-point

format needs slightly more storage, so when stored in the same space, floating-point
numbers achieve their greater range at the expense of slightly less precision. The

IEEE 754 Standard for Binary Floating-Point Arithmetic which is most widely-used

standard for floating-point computation, and is followed by many CPU and FPU

implementations. The standard defines formats for representing floating-point

numbers and special values together with a set of floating-point operations that

operate on these values.

General layout

IEEE 754 floating-point represents the number of bits using three fields. This

representation is

V= (-1) S'g"xFx2E 	 (2.1)

Sign bit: This bit is used to indicate whether the number is positive or negative. 0'

denotes a positive number, `1' denotes a negative number. Flipping the value of this

bit flips the sign of the number.

Exponent (E): The exponent is that part of the binary floating-point number that

normally signifies the integer power to which two is raised in determining the value of

the represented number. And the biased-exponent is the sum of the exponent and a
constant (bias) chosen to make the biased-exponent range non-negative. Bias is the

value added to avoid storing of negative exponents. The exponent is biased by (2e -')

-- 1, where e is the number of bits used for the exponent field. In the case of single

precision it is 127.

E&C Department, IIT Roorkee 	 4

Review

Biased-Exponent, e=E + bias 	(2.2)

Significand (F): It represents the fractional part of the number It is the normalized

because the exponent is adjusted so that the leading bit is always a 1. So, it does not

have to be stored, and gives one more bit of precision. The length of the significand

determines the precision to which numbers can be represented.

Special values

The IEEE 754 standard supports some special values like positive zero, negative zero,

positive infinity, negative infinity and Not a Number (NaN) as given in Table 2.1

Table 2.1: Special values in IEEE 754 format

Name Exponent Fraction Sign Exp bits Fractional bits

+0 Min — 1 =0 + All zeros All zeros

-0 Min — 1 =0 - All zeros All zeros

Number Min < e <-Max Any Any Any Any

+co Max+1 =0 + All ones All zeros

-co Max+1 =0 - All ones All zeros

NaN Max+1 ~0 Any All ones Any

Exceptions

There are five types of exceptions that shall be signaled when detected. For each type

of exception the implementation will provide a bit in the status register that will be set

on any occurrence of the corresponding exception.

E&C Department, IIT Roorkee 	 5

Review

Invalid operation

The invalid operation exception is signaled if an operand is invalid for the operation

to be performed. The invalid operations are:

Any operation on a NaN

Addition or Subtraction: c + (-oo)

Multiplication: ± 0 x ± o0

Division: ± 0/ ± 0 or ± co/± co

Division by zero

When a nonzero number is divided by zero (the divisor must be exactly zero), a

"zerodivide" event occurs, and the result is set to infinity of the appropriate sign.

Overflow

The overflow exception is signaled whenever the result exceeds the maximum value

that can be represented due to restricted exponent range. It is not signaled when one of

the operands is infinity, because infinity arithmetic is always exact. Division by zero

also doesn't trigger this exception. An overflow occurs as described previously,

producing infinity.

Underflow

When the result of an operation has an exponent too small to represent properly, an

"underflow" event occurs. The hardware responds to this by changing to a format in

which the significand is not normalized, and there is no "hidden" bit i.e., all

significand bits are represented. An underflow occurs as described previously,

producing denormalized value or zero.

Inexact

This exception will be signaled whenever the result of an arithmetic operation is not

exact due to the restricted exponent and/or precision range.

E&C Department, IIT Roorkee 	 6

Review

2.2 FPGA

It is known that every application would be best served by custom circuitry targeted

specifically for it; and, in fact, application-specific integrated circuits (ASICs) are

often made in response to special needs. However custom chips are not affordable for

every application. FPGAs are able to meet the above requirements by their ability to

be reconfigured any number of times and also the growth in digital technology made

FPGAs capable for implementing complex applications[3]. The word Field in the

name FPGA refers to the ability of the gate array to be programmed for a particular

function by the user instead of by the manufacturer of the device. The word array is

used to denote a series of columns and rows of gates that can be configured by the end

user. All FPGAs contain a regular structure of programmable basic logic cells

surrounded by programmable interconnects and all these resources are configurable

resources and its structure is shown in Fig 2.1

Confieurablc

Configurable
Logic block

Figure 2.1: FPGA Structure

FPGAs are usually slower than their application-specific integrated circuit (ASIC)

counterparts, cannot handle as complex a design, and draw more power for any given

semiconductor process. But their advantages include a shorter time to market, ability

to re-program in the field to fix bugs, and lower non-recurring engineering costs.

E&C Department, IIT Roorkee 	 7

Review

FPGA design and programming

To define the behavior of the FPGA the user provides a hardware description

language (HDL) or a schematic design. Common HDLs are VHDL and Verilog.

Then, using an electronic design automation tool, a technology-mapped netlist is

generated. The netlist can then be fitted to the actual FPGA architecture using a

process called place-and-route, usually performed by the FPGA company's

proprietary place-and-route software. The designed hardware will be validated

through map, place and route results and timing analysis, simulation, and other

verification methodologies. Once the design and validation process is complete, the

binary file generated is used to (re)configure the FPGA.

FPGA for FP-A U

With gate counts approaching ten million gates, FPGAs are quickly becoming suitable

for major floating point computations. Despite their clock rate overhead with respect

to contemporary general-purpose processors, these devices can be field-
programmable to meet the precision requirements and operator-level parallelism of a

specific computation. The balance between FPGA floating point unit resources and

performance is influenced by subtle context and design requirements. Generally,

implementation requirements are characterized by throughput, latency and area [4]:

• FPGAs are often used in place of software to take advantage of inherent

parallelism and specialization.

• If floating point computation is in a dependent loop, computation latency

could be an overall performance drawback.

• In typical FPGA designs, only a few floating point units will be on the critical

path. For non-critical path units, it may be possible to trade off unit

performance for reduced resource area.

E&C Department, IIT Roorkee 	 8

Review

FPGA for PR

PR can be implemented on devices whose behavior can be changed after fabrication

i.e., on the devices which can be programmed any number of times. All user-

programmable features inside a Virtex FPGA are controlled by memory cells that are

volatile and must be configured on power-up. These memory cells are known as the

configuration memory, and define the look-up table (LUT) equations, signal routing,

input/output block (IOB) voltage standards, and all other aspects of the design. To

program configuration memory, instructions for the configuration control logic and

data for the configuration memory are provided in the form of a bitstream, which is

delivered to the device through the JTAG, SelectMAP, serial, or ICAP configuration

interface.

A programmed Virtex FPGA can be partially reconfigured using a partial bitstream.

You can use partial reconfiguration to change the structure of one part of an FPGA

design as the rest of the device continues to operate. Partial reconfiguration is a

process of device configuration that allows a limited, predefined portion of an FPGA

to be reconfigured while the remainder of the device continues to operate. This is

especially valuable where devices operate in a mission-critical environment that can't

be disrupted while some subsystems are being redefined.

2.3 Reconfigurable systems

2.3.1 Reconfiguration

Reconfiguration is a post-fabrication process in which processing elements are

programmed spatially and temporally i.e., computation in space and time, using

hardware that can adapt at the logic level to solve specific problems.

The term "reconfiguration" refers to reprogramming an FPGA after its configuration

is complete. Reconfiguration can be initiated by pulsing the full chip reset pin (this

method is identical to configuration), or by resynchronizing the device and sending

configuration data. The latter method is only available in SelectMAP and JTAG

configuration modes. To reconfigure a device in SelectMAP mode without pulsing

E&C Department, IIT Roorkee 	 9

Review

full chip reset pin, the BitGen persist option must be set otherwise, the Data pins

becomes user I/O after configuration. Reconfiguration must be enabled in BitGen.

Reconfiguration begins when the synchronization word is clocked into the SelectMAP

port.

Terms used in Reconfiguration

a) Granularity: The granularity of the reconfigurable logic is defined as the size of

the smallest functional unit that is addressed by the mapping tools.

Fine Grained: Fine-gained reconfigurable devices are bit-level programmable.

Because of the configurability at bit-level, the configuration overhead is large.

Flexibility of these devices is high. Fine-grained reconfigurable devices are perfectly

suited for prototyping and implementing encryption algorithms. Example of fine

grained architecture is FPGA.

Coarse Grained: Coarse-grained reconfigurable devices are flexible at word-level.

Multipliers, adders, etc., are hardwired in these devices. Because only coarse

functional blocks have to be configured, the configuration overhead is small.

Flexibility of these devices is less compared to fine grained architectures. These

coarse-grained devices achieve high performance for DSP [5] as each cell performs

16-bit or 32-bit operations.

Medium Grained: Medium-grained reconfigurable devices works at 4-bit or 8-bit

data, so word-length modules require a group of cells. These devices attempts to

balance performance and flexibility.

b) Rate of reconfiguration

In a typical reconfigurable system, a bit stream is used to program the device at

deployment time (i.e., between execution phases or during execution). A fine grained

system by their own nature requires greater configuration time than more coarse-

grained architectures due to more elements needing to be addressed and programmed.

Therefore more coarse-grained architectures gain from potential lower energy

requirements, as less information is transferred and utilized. Intuitively, the slower the

E&C Department, IIT Roorkee 	 10

Review

rate of reconfiguration the smaller the energy consumption as the associated energy

cost of reconfiguration are amortized over a longer period of time. Partial

reconfiguration aims to allow part of the device to be reprogrammed while another

part is still performing active computation.. Partial reconfiguration allows smaller

reconfigurable bit streams thus not wasting energy on transmitting redundant

information in the bit stream.

2.3.2 Types of Reconfiguration

There are two types of reconfiguration mechanisms, depending on the way they make

use of dynamic nature of the reconfigurable device.

2.3.2.1 Compile-Time Reconfiguration

CTR [6] is the simplest and most commonly used approach for implementing

applications with reconfigurable logic. The most important feature of CTR

applications is that they consist of a single system-wide configuration for all the

system (Fig 2.2). The FPGAs are loaded with their respective configurations before

the execution of the operation, and once execution of the application starts, they

remain in this configuration till the end of execution.

Configuration 	Execution

Figure 2.2: Compile Time Reconfiguration

This approach is similar to using an ASIC because the hardware does not change

during the execution of the application.

2.3.2.2 Run-Time Reconfiguration

Run-Time reconfigurable applications consist of a set of time-exclusive tasks that can

be downloaded into the FPGA (one at each time, or several simultaneously) using a

dynamic allocation scheme. In contrast to CTR, the FPGA will probably be

reconfigured more than once during the execution of an application (Fig 2.3).

E&C Department, IIT Roorkee 	 11

Review

Developing dynamic reconfiguration [6] is difficult because of the need for both

software and hardware expertise to determine how best to partition a computation into

sections to implement in hardware, how to sequence these circuit sections, and how to

tie them together to produce an efficient computation. This overhead can be reduced

to some extent by using dynamic partial reconfiguration which is described below.

Configuration 	Execution

Figure 2.3: Run Time Reconfiguration.

The main advantage of RTR in front of CTR is that it allows reusing the

reconfigurable device several times for the same application. To be able to do that it is

necessary to partition the application into a set of configurations, but instead of using

spatial exclusiveness as a criterion, this method uses time exclusiveness.

We can distinguish two classes of run-time reconfiguration schemes Global

reconfiguration and Local reconfiguration which are described below.

a) Global Run-Time Reconfiguration

Here application is divided into distinct temporal phases where each phase is

implemented as a single system wide configuration that occupies all system FPGA

resources. In this case, reconfiguration time is more critical than in a CTR application.

In this the reconfiguration of the FPGA is not only performed during the set-up of the

system, but several times during the execution of the application.

.............................
A 	Execution 	 B 	 Execution

Figure 2.4: Global Run-Time Reconfiguration

E&C Department, IIT Roorkee 	 12

Review

Fig 2.4 shows the execution of a Global RTR application which is mapped into 2

configurations.

b) Local Run-Time Reconfiguration

It is also possible to reconfigure only subsets of the reconfigurable circuit. This

approach is called partial reconfiguration or Local RTR. In this case important time-

savings are made compared with a complete reconfiguration of the components, as

reconfiguration is quite a time-consuming operation and with Local RTR not all the

circuitry must be reconfigured to carry out changes.

----------------------------, 	 ----------- A 	~ 	- 	A .--- -- -- ----- .

Execution
B 	D 	

Execution

Figure 2.5: Local Run-Time Reconfiguration

Fig 2.5 shows an example of Local RTR where the application to implement consists

of 4 partitions A, B, C and D. In a first step, partitions "A", "B" and "C" are loaded

into the FPGA and then executed. In a second step, partitions "B" and "C" are

removed and partition "D" is loaded into the FPGA, which is followed by the

execution of the application.

E&C Department, IIT Roorkee 	 13

CHAPTER 3

PARTIAL RECONFIGURATION TECHNIQUES

Reconfiguring the whole system is complicated costly in terms of overhead and may

also be redundant in cases when desired functionality can be implemented by

changing only a part of the circuit. The solution is to use partial reconfiguration which

proves to be more efficient. Partial reconfiguration involves partitioning the hardware

[7] within the platform to reduce the reconfiguration overhead.

Base and Partially Reconfigurable Regions (PRR)

Partial Reconfiguration is the ability to reconfigure a portion of an FPGA while the

remainder of the design is still operational. Certain areas of a device can be

reconfigured while other areas remain operational and unaffected by reprogramming.

The base region is the portion of the design that does not change during partial

reconfiguration and may include logic that controls the partial reconfiguration

process. PRRs contain logic that can be reconfigured independently of the base region

and other PRRs. The shape and size of each PRR is defined by the user through a

range constraint. Each PRR has at least one, and usually multiple, partially

reconfigurable modules (PRM) that can be loaded into the PRR. Fig 3.1 illustrates a

design with a single partial reconfiguration region PRR A. PRR A can be loaded with

PRMs Al, A2, or A3. Each of the PRMs contains different logic for processing data

passed from the static logic in the base region to the dynamic logic programmed in

PRR A.

PRR A PRM Al 	Partial Bitstream Al bit

PRM A2 	Partial Bitstream A2.bit
BASE REGION

PRM A3 	Partial Bitstream A3.bit

FPGA

Figure 3.1 Partially Reconfiguration process

E&C Department, IIT Roorkee 	 14

Partial Reconfiguration techniques

Partial Reconfiguration can be carried out in two different ways. It is possible to

reconfigure part of the circuit while the operation of the other parts is interrupted.

This kind of - reconfiguration is called Passive Partial Reconfiguration. It is also

possible in some cases, when partial reconfiguration is applied, to leave the non-

reconfigured parts of the circuit in operation while other parts are being reconfigured.

This method is called Active Partial Reconfiguration. By using Active Partial

Reconfiguration time savings are made by lowering the reconfiguration time

compared with a complete reconfiguration of the components.

Partial reconfiguration can be carried out by using Early Access (EA) Partial

Reconfiguration design flow. The EA PR design flow requires several steps that are

not found in the normal FPGA design flow. The normal FPGA flow involves a single

pass through the implementation tools, while the PR design flow involves

implementing the base design and each PRM separately, followed by a final merge

step to generate the full and partial configuration bitstreams.

3.1 Partial Reconfiguration Design Flow

Fig 3.2 describes the Early Access Partial Reconfiguration Design Flow. First four

Steps are similar to the non-PR design flow and remaining steps are unique to the PR

design flow [8].

1 ILL
Design Description

2 	Constrain
AGs, Tbr&tg, Tlos

3 Lnpleinent
Non-PR Design

4 Tuning/ Placement
Analysis

{ Implement
Base Design 	 + Merge

Baser PRModnles
6 Implement PR Modules

Figure 3.2 EA PR DesignFlow
E&C Department, IIT Roorkee 	 15

Partial Reconfiguration techniques

• HDL design description and synthesis: The first step of the EA PR design

flow is defining the HDL description of the design and then synthesizing that

description. The EA PR design flow supports design descriptions in either

VHDL or Verilog, and synthesis with any tool currently supported by ISE

software designed by Xilinx.

• Set Design Constraints: After the HDL design description is synthesized, the

next step is to place constraints on the design for place and route.

• Implement the Non-PR Design: While not a required step, implementing the

design using the non-PR ISE implementation flow before moving to PR

design implementation is recommended. This step is crucial for design debug

and this gives an idea about initial timing and placement analysis, and helps in

determining the best bus macro locations.

• Timing/Placement Analysis: The next step is to analyse both the timing and

placement of the design. Timing and placement analysis is critical in

establishing the best PR region shape, size, and location. During this step,

designers determine whether the bus macros are placed effectively, and

whether the PR region shape and location allow the tools to meet timing

requirements.

•- Implement the Base Design: After timing and placement analysis is

complete, the base design must be implemented.

• Implement PR Modules: After the base design is implemented, each PRM

must also be implemented.

• Merge: The final step in the PR design flow is to merge the top, base, and PR

modules. During the merge step, a complete design is built from each PRM

and the base design. As many complete bitstreams and partial bitstreams are

created as there are PRMs (i.e. one partial bitstream for each PRM and one full

bitstream for the PRM merged with the base design).

E&C Department, IIT Roorkee 	 16

Partial Reconfiguration techniques

3.2 Types of Partial Reconfiguration

Partial reconfiguration is divided into two types [9]

1) Module-Based Partial Reconfiguration

2) Difference-Based Partial Reconfiguration.

1. Module-Based Partial Reconfiguration: In this method entire reconfigurable

module is modified while leaving base region unaffected. Modular Design is best

used for large designs that can easily be partitioned into self-contained modules. It is

also used when communication is needed between modules.

2. Difference-Based Partial Reconfiguration: This method of Partial Reconfiguration

is accomplished by making a small change to a design (normally done in

FPGA_Editor), and then by generating a bitstream based on only the differences in

the two designs. Switching the configuration of a module from one implementation to

another is very quick, as the bitstream differences can be extremely smaller than the•

entire device bitstream. This method is very useful for implementing modules which

differ by only little changes in their coding.

In this work we have followed module based partial reconfiguration and it is

described in the following section.

3.2.1 Module Based Partial reconfiguration

In this the modules which are to be reconfigured are called reconfigurable modules

while rest of the device remains in active operation. Implementation Using Modular

Design: The partial reconfiguration implementation process is broken down into three

main phases:

• Initial Budgeting Phase - Creating the floor-plan and constraints for the

overall design.

• Active Module Phase - Implementing each module through the place and route

process.
E&C Department, IIT Roorkee 	 17

Partial Reconfiguration techniques

• Final Assembly Phase - Assembling individual modules together into a

complete design.

Initial Budgeting Phase Details

Initial budgeting operations should be done in the top or initial folder of the

recommended project directory structure. The initial budgeting phase has the

following main steps:

a) The floor-planning of module areas:

• Have a set width that is always a multiple of four slices .

• Is always the full height of the device.

• Are always placed on an even four-slice boundary.

• Attach partial reconfiguration flow-specific properties to the area groups in the

.ucf file

b) The floor-planning of all IOBs:

• Shall be wholly contained within the "columnar space" of their associated

reconfigurable module. No intermixing between columnar regions is allowed.

• All IOBs must be locked down to exact sites.

c) The floor-planning of f all global logic:

• Logic that is not part of a lower level module must be constrained to specific

sites in the device via LOC constraints. Typically the Floor-planner tool can be

used to create these constraints.

• There must be no unconstrained top-level logic.

E&C Department, IIT Roorkee 	 i 8

Partial Reconfiguration techniques

d) LOC constraints are manually inserted for each bus macro into the .ucf file:

Locate the bus macro to exactly straddle the boundary between the modules

forming the communication bridge.

e) Global-level timing constraints: These are created for the overall design, using

the Constraints Editor, if desired.

The output of the initial budgeting phase is a .ucf file containing all placement and

timing constraints. Each module is implemented using this .ucf file, in addition to any
module-specific constraint requirements.

In partial reconfiguration designs, all reconfigurable module inputs and outputs

connect either to primary I/Os, global logic, or bus macros. No signals going to or

from a reconfigurable module will load or source any element in another module

without first passing through a bus macro. Unlike a standard modular design, a partial

reconfiguration design does not have intermodule ports. In fact, if pseudo-drivers or

pseudo-loads are found when viewing the design in the floorplanner, the design

violates the criteria that all intermodule signals must utilize a bus macro channel. If

this occurs, re-examine the HDL source and correct the problem. This .ucf file
generated in this step is used during the active implementation of each module.

Active Module Phase Details

Up to this point, the design has been synthesized, floorplanned, and constrained. Now

implementation (place and route) of all modules (both fixed and partially

reconfigurable) can be carried out. Each module will be implemented separately, but

always in the context of the top-level logic and constraints. Bitstreams will be

generated for all reconfigurable modules. This section describes the overview of how

to independently implement each module. Copy the .ucf file created during the initial

budgeting phase (top or initial folder) to the active implementation directories for

each module.

E&C Department, IIT Roorkee 	 19

Partial Reconfiguration techniques

• In each active module working directory, augment the local copy of the .ucf file

with any module level timing constraints required to specify the performance

requirements for that module.

• The Constraints Editor can be used to create module-level timing constraints. Run

NGDBUILD, MAP, PAR BITGEN, and PimCreate for each module. This will

result in a placed and routed module as well as a module-specific bitstream.

• The PimCreate process "publishes" the routed design (and associated files) to the

Pims folder. This will be used during the final assembly phase later in the
implementation process.

• Optionally, run ngdanno, and ngd2veringd2vhdl if module-level simulation is to
be done.

• Using FPGA_Editor, visually inspect the routed design to verify that routing does

not expand beyond the module boundary except, of course, for signals traversing

to other modules via the bus macro structures.

Final Assembly Overview

The final assembly phase is the process of combining each of the individual modules

back into a complete FPGA design. The placement and routing achieved during the

active implementation phase for each module will be preserved, thereby, maintaining
the performance of each module.

The following section gives brief explanation of Bus macros which are used for

communication between partially reconfigurable modules or between base module
and partially reconfigurable modules.

Bus Macros

Bus macros provide a means of locking the routing between PRMs and the base

design making the PRMs pin compatible with the base design. As a result, all

E&C Department, IIT Roorkee 	 20

Partial Reconfiguration techniques

connections between the PRMs and the base design must pass through a bus macro,

with the exception of the clock signal (global signals, GND and VCC).

The bus macro naming convention is as follows:

busmacro_device_direction_synchronicity width.nmc

Where:

device = xc2vp - Virtex-II Pro

xc2v - V irtex-II

xc4v - Virtex-4

direction = r2l - right-to-left

12r - left-to-right

b2t - bottom-to-top (Virtex-4 only)

t2b - top-to-bottom (Virtex-4 only)

synchronicity = sync - synchronous

async - asynchronous

width = wide - wide bus macro

narrow - narrow bus macro
G'

E&C Department, IIT Roorkee 	 21

CHAPTER 4

IMPLEMENTATION OF FPGA BASED FP-AU

The tremendous increase in capacity of field-programmable gate-arrays (FPGAs) has

enabled them to implement hardware designs for basic arithmetic operations such as

addition, multiplication and division in both single and double-precision IEEE-754

compliant formats. The design flow of FPGA based FP-AU will be as shown in Fig

4.1

Entering Your design and
selecting Hierarchy

Functional Simulation of
design Written in VHDL

Adding Design Constraints
Evaluating design's coding
style and systems features

esizing and Optimizing
the desi n

eating your design size 	Timing Simulation 	Static Timing

and erformance 	 of the design 	analysis

I racing ana rcouting the
design

Generating a bit stream of
Confiauration Data

Downloading to the device

Figure 4.1: FPGA Design Flow

E&C Department, IIT Roorkee 	 22

Implementation of FPGA based FP-AU

Design of floating point arithmetic [10] modules has been carried out using VHDL.

The modules require two 32-bit inputs and give a 32-bit output. All the operations are

carried out in IEEE 754 single precision format.

Tools used

The following softwares and hardwares were used in this implementation

• Modelsim 6.Od (Simulation Tool)

• Turbo C++

• Xilinx ISE 9.1i and 9.2i with SP4 (Synthesis Tool)

• XUP Virtex-2 Pro FPGA kit.

• XUP Virtex-4 FPGA kit.

4.1 Simulation of FP-AU

4.1.1 Floating point Addition and Subtraction

For the implementation of this module, B's compliment addition and subtraction

algorithm has been used. Addition of binary floating point numbers is given as

follows.

• Align radix points

• Add

• Normalize the result.

• Rounding the result.

The above terms can be described as follows

1. Alignment: If given inputs differ in their exponent values then alignment is done to

make exponents equal. The primary component in alignment is shifter. This can be

described as follows: If mantissa is shifted left by one bit then decrease the exponent

E&C Department, lIT Roorkee 	 23

Implementation of FPGA based FP-AU

by one. If mantissa is shifted right by one bit then increase the exponent by one. It de-

normalizes the significand of the smaller operand such that both operand exponents

are identical.

2. Addition: Depending on the respective signs of the aligned operands, one of the

following operations must be executed:

• If they have the same sign, the sum aligned-sl +aligned-s2 must be computed;

• If they have different signs, the difference aligned-sl-aligned-s2 is computed,
and if the difference is negative, the alternative difference aligned-s2-aligned-
sl is computed.

result = (aligned - Si) J (aligned - s2) 	(3.1)

3. Normalization: It means having a non-zero MSB. In the case of binary floating

point numbers the MSB is one. By normalizing the floating point values an extra bit

of precision can be used in IEEE-754 format.

4. Rounding: In order to take care of the rounding precision, the round to the nearest,

tie to even method is used.

4.1.2 Floating Point Multiplication

Basically, multiplication is a very simple operation as it most often reduces to multi-

operand addition.

Floating point multiplication for binary numbers:

• Multiplication of operands

• Add exponents: Always add true exponents (otherwise the bias gets added in
twice)

• Normalize the result: Moving the radix point one place to the left increases the

exponent by 1.

E&C Department, IIT Roorkee 	 24

Implementation of FPGA based FP-AU

In floating point Base-B numbers, a simple parallel multiplier is used [11]. Given two

floating-point numbers

()signl. sl. Bel 	 (3.4)

and 	 (-1) 2 . s2 .Be2 	 (3.5)

The floating point multiplication algorithm below corresponds to a (p+l)-by-(p+l)

multiplier, an adder, and a XOR gate and generates an exact value of the product. Any

type of multiplier can be used.

Algorithm: 	 sign: =signl xor sign2;

s: =s1 *s2;

e: =el +e2,

ifs>=B then e: =e+1;

s:

end

s: =round(s);

if s> =B then

s:

end if;

In multiplication, rounding and normalization components are present which are to

minimize the errors and to get accurate result. Arithmetic operations on floating point

values compute results that cannot be represented in the given amount of precision.

So, we must round results. There are many ways of rounding. They each have correct

E&C Department, IIT Roorkee 	 25

Implementation of FPGA based FP-AU

uses, and exist for different reasons. The goal in a computation is to have the

computer round such that the end result is as correct as possible.

4.1.3 Floating Point Division

Division is the most complex of the four basic arithmetic operations. In this work a

restoring algorithm is used. In the restoring division, we compare the remainder with

B. If the remainder is greater than B, we set the quotient bit to 1 and subtract B from

the remainder. Otherwise, we simply shift the remainder to the left. It is called

restoring, because to compare the remainder with B, we have to do a subtraction, and

we restore the value to that before the subtraction if the result of the subtraction is

negative.

q(i)=1 if 	2r-1> B 	 (3.6)

	

=0 if 2r-l< B 	 (3.7)

	

r(i) = 2.r(i-1) — q(i).B 	 (3.8)

Advantage of restoring algorithm is that we never have to deal with negative numbers.

We always only add 1 to the LSB of the quotient bit which is always 0, which means

we only need an OR gate and there will not be any carry.

Algorithm: 	 sign: = sign] xor sign2;

s: =s]/s2;

e: =e12 e2;

ifs<1 then e: =e21;

s. =s *B; end if;

The floating point division algorithm is almost similar to the floating point

multiplication. The whole functionality of FP-AU has been described in the Fig 4.2.

From the Fig 4.2 we can also say operations on any floating point numbers involve

normalization and rounding. VHDL code [12] for floating point adder/subtractor,

E&C Department, IIT Roorkee 	 26

Implementation of FPGA based FP-AU

multiplier and divider is written using algorithms described above and verified their

functionality by simulating them using ModelSim 6.0d.

Floating value in IEEE-754 32-bit binary format

Sign Significant exponent

data 1 	
4, data2

FP-AU

Addition / 	Multiplication /
Subtraction 	Division

Exponent
Difference

Allignment

* (or)

Normalization

Rounding

Normalization

Rounding

Figure 4.2: FP-AU Design Flow

42 Synthesis of FP-AU:

Synthesis

Using Synthesis abstract design descriptions are reduced into a lower level circuit

representation, such as netlists or equations. HDLs provide the input and output of

hardware synthesizers. Floating point arithmetic modules are synthesized and their

netlists has been generated.

Implementation

Using Implementation logical design is converted into a physical file format that can

be downloaded to the selected target device. Floating point arithmetic modules are

implemented. Implementation involves following steps:

E&C Department, IIT Roorkee 	 27

Implementation of FPGA based FP-AU

1. Translate

The Translate process merges all of the input netlists and design constraints and

outputs to a Xilinx native generic database (NGD) file, which describes the logical

design reduced to Xilinx primitives.

2. Map

The Map process maps the logic defined by an NGD file into FPGA elements, such as

CLBs and IOBs. The output design is a native circuit description (NCD) file that

physically represents the design mapped to the components in the Xilinx FPGA.

3. Place and Route

The Place and Route process takes a mapped NCD file, places and routes the design,

and produces an NCD file that is used as input for bitstream generation.

Programming File Generation

This step will generate a bitstream of configuration data and it is in .bit format which

can be loaded onto FPGA using IMPACT too]. The .bit file configures the FPGA to

our desired functionality. Fig 4.3 shows the Xilinx ISE 9.1i [13] Project Navigator

Window on which synthesis process has been carried out.

E&C Department, IIT Roorkee 	 28

Implementation of FPGA based FP-AU

Yhw Propel Sows Pro can Wndow H 	,

Soucea 	,: 	 %:. 	iPGA Dear SuIm~Y •;!) } 	 FLDAT„YIULT~PEOI 	lade:
Mat_mll 	 ~SurmarY 	I
~y (m~ Bduvnrd

is 	~- [~ -ur ,7 Corist _>a

S— 	lar.; SYMMaiaAnroke—Aation 	 .• y~• 	._ ,••. 	 ..._ Fopct Ftle 	: Iba1 mA.ae 	Cunm1 Slab 	. SyMhes¢ed
E ~rc2vp3UT1896 	 [IJOP pct 	i 	NodWe Name' 	ImI 	•Foots .. 	No Eno 	_

c _... 	 I. Ter0e1 Dewcr 		><c140WIliS 	• WeamnOr 	_ 2522 Wn 	I~ new O IAeredl
[j 	 r p Aenv 	Raducf V ..on 	ISE S2 	• Updde3 	' Sd Jrn 281257.10 X008

' Q do k FteGml

Racessx 	 %; 	rersyE nn Mrt

..... 	r _ 	.._. ,, 	_. 	E3 E as erd Wen'rgs 	 PLOAT_M~"ULPeilrlionSuEwery ' 	Q SYeD+esu Meu... 	No pertiUm nlarmelion was I—d
Raeaee` 	d pa~ea.ea _ 	 .----
0 	Creek New Souce 	 o f m 9 idesse n 	I Loyae Uiizalwn 	Used 	A eiahb 	UEdaal

.._1L 	View DanOt Srmrrw 	 'Q SdDe•+Messe:arr 	t 	~NunberdSkes 	 1275: 	13696 	 _..._9X
 miadron s

..... _._. 	.. 	__._ 	. _ 	..__ 	 `~
6R°'* 	Dmipt Ulnas
3E° 3' 	U.. C=Mr 	.
E rt~.. 	SYMI>es¢e •XST ~.' 	CelegotY

-•l~Yew SYOlhemR 	-SY~lnsA ~Dtfnn.
View RTLS 	-HDL Opli— 	 YEitf18S1 SAP. Qn5.

- ® 	Yew T 	` Xiw SPeo~i. Options

!"-ej 	Check Syttan
Generde Poll 5

Ropery Neese 	Vdue

C: t~ 	InOkme*t Des4r 	 ., . Od 	elion God . 	_. Speed

 GePogn 	 OpbthonEIbo.7

UPdele BSN 	 j We She sa C..*airt 	Fie _ 	_..
......a:::a., :.. 	 SY^thn 	CwUeeb Fb

Rocesses~ 	 } 	Lr& 	S—h do

6o6Opm2acn God 	AClockNes
Stncted 	Laun 	. 	I, €GemdeATLSdmod¢ 	Yes_,._._.,_.,~_

~ 	 9

Wmrrq Y^ ®Td Shel f Frd Fiea J 	.

Figure 4.3: Xilinx ISE 9.2i Window

Floating point arithmetic module has been Synthesized successfully and the required

files .ngo, .ncd, .ngd, .bit etc files are generated.

4.3 Implementation of FP-AU

The floating point arithmetic modules require two 32-bit inputs and one 32-output. To

give 32-bit input to the floating point module,- pci interface has been used. For

implementing the floating point arithmetic modules on FPGA Virtex-2 Pro XC2VP50

kit [14] is used. Fig 4.4 gives the Front View of Virtex-2 Pro Board with PCI

Interface.

The PCI bus uses either 32 or 64 bits of parallel data. With each clock rising edge, 32

data is transferred over the bus. Transferring 32 bits at a time translates to a very large

parallel bus, using a minimum of 32 lines in addition to all the required control and

E&C Department, IIT Roorkee 	 29

Implementation of FPGA based FP-AU

signal lines. The application FPGA communicates with the PCI controller using

Rocket IO connections that support full data rate to the PCI bus.

Analog Component 	 External
Input 	Video 	 Rower

A ♦ • S 1 	S

r s ($ 	& 	if~~~ir~D,f

t 1 	'

N L~ 	f 	rqp= 	IF YMbV..tl 	75t 	 ¼V

altmg s,~•j ^ 	, 	̀ 	1 	mi°'mrmn` t➢~ 	 M` 	 fi De 	• we

S as 	! 	• 	6 	o 4 e 	C! +q, Ii ~•.. ..
~

 .i..-....
mo

,., 	s 	 a 	lei 	^~1 	
kY^ 	 ,d' 	

l I, i t J L

' 7 	Y. 	R 	p'; 	 YHd 	% 	 -:; 	,, ES•. 	Aft 	~ 	,Fe 	.,mow; $• 	-,

`~.- 	s~ 	 -— -' 	o4s 	̀ ~ +s.F

3.

1 S

f 	 i

E

1 	 1 	1

In this work we have used two coding parts. One is software coding part which is

done in C++ and other is hardware coding part which is written in VHDL. These two

programs combined together transfers 32-bit or 64-bit data between pci interface of

FPGA and pci bus of FPGA. For doing pci interfacing with a Personal Computer, it

should be loaded with drivers. These are again available from the vendor from whom

the FPGA development kit is procured. Software code gives 32-bit input from PC to

FPGA and giving 32-bit output from FPGA to PC. The inputs are read from files and

outputs are written into files. In the hardware coding part we have combined the

adder/subtractor, multiplier and divider coding part to implement them on FPGA.

Bit file has been generated, which when downloaded to the FPGA determines the

FPGA's behavior. The software code transfers all the operand data for the application

to the card's SRAM banks through PCI bus, Once the data transfer is complete the

FPGA design is ready to start. After execution of the program we can see 32-bit

output stored in the specified location in pc and it is written in text file. In this

E&C Department, IIT Roorkee 	 30

Implementation of FPGA based FP-AU

application 32-bit binary data has been given in hex format and output is also obtained

in hex format. The simulation, synthesis and implementation results of this section are

shown in chapter 6.

E&C Department, IIT Roorkee 	 31

CHAPTER 5

DESIGN OF PARTIALLY RECONFIGURABLE FP-AU

Partial reconfiguration is defined as procedure of configuring the part of the device or

one of the partitioned blocks without disturbing other part operation or rest of the

partitioned blocks. Partial reconfiguration is useful for systems with multiple

functions that can time-share the same FPGA device resources. In such systems, one

section of the FPGA continues to operate, while other sections of the FPGA are

disabled and partially reconfigured to provide new functionality. Partial

Reconfiguration is supported by the devices which are programmable like FPGA. So

we implement partial reconfiguration on FPGA. Further the large gate count of

FPGAs made them suitable for design of floating point arithmetic unit. Before

designing the partially reconfigurable FP-AU, a simple design of integer

adder/subtractor and LEDs right/left shift operations has been partially reconfigured,

this has been extended to implement the FP-AU with partial reconfiguration

techniques.

5.1 Partial Reconfiguration of Simple Integer Addition-Subtraction and LEDs

shifting

In this design process first of all an integer adder/subtractor operation and LEDs

right/left operations have been partially reconfigured using command line PR flow

[15]. The design shown in figure below consists of two PRR, each having two RMs.

The two PRR are math and led. The math processor consists of two functions addition
and subtraction where as the led PRR consists of right shifting and left shifting LEDs.

Interaction of math PRR has been done through HyperTerminal whereas interaction

of LED PRR is achieved using push—buttons. The dynamic modules are downloaded

using IMPACT software. The complete design along with bus macros for

communication is shown in Fig 5.1.

E&C Department, IIT Roorkee 	 32

Design of Partially Reconfigurable FP-AU

Bus
Macro

Command PRRI
Parser Operation

Bus
Macro

Rx, Tx

r_->i
Uart Rx, Tx

Button_Start
Button_Stop
Button_Reset

~~ Led control Bus PRR2 	Bus
— Macro LED Pattern 	Macro

RM1 — Shift Right
RM2 — Shift Left

Figure 5.1: Complete System

LED[3:01

Creating a partial reconfiguration design requires the creation and implementation of

the design within a set of specific guidelines. The partial reconfiguration flow utilizes

a modified form of the Xilinx Modular Design process.

Coding Part has been divided as:

1. Writing the synthesizable VHDL code for top level module. This coding

should include global logic, clock buffers, black box instantiations of all"

reconfigurable modules(in this case adder/subtractor, left shift/right shift), bus

macros (if communication is there between modules) etc.

2. VHDL code for static logic that runs on FPGA continuously and may or may

not control PR modules.

3. Partially Reconfigurable modules which are to be partially reconfigured.

4. top.ucf file which contains area group constraints, mode constraints and slice

allocation of PR regions etc.

All the logic that should be partially reconfigured should be arranged in folders.

Recommended directory structure is as shown in figure below. Fig 5.2 shows the

E&C Department, IIT Roorkee 	 33

Design of Partially Reconfigurable FP-AU

folders that should be present in PR design and also the files that should be included

in them.

base
.f3 pr_design Implementation directory for the static portion of the

{3 base base design (i_e, everything except the PRMs).
Ii--1 	merges merges

prm_at PRMs are merged with the base design in the merges
t 	prm_a2 directories. A separate subdirectory is required for

17 	non-pr each merge.
{ 	al non_pr
{ 	a2 Non-pr versions of the design are fully implemented

C 	{ 	reconfigmodules for initial system design and test.
t 	prmal reconfigrrrodules

' { 	prm_a2
Q { 	synth Each PRM is implemented in a separate directory.

synth f# 	base
{ 	prm_a HDL for the top level, the base design, and each PRM
Iii prm_b is synthesized in the appropriate directory.

top
top The top level nettist is translated in a separate direc-

tory The UCF file goes here.
LV= _i- I-iO 6A NMI]

Figure 5.2: PR Directory Structure

5.1.1 Partial Reconfiguration Implementation flow in command line using ISE

9.2.41

1. Build Flat Design: In this step we have verified the functionality of the design.

2. Synthesize all modules including RM: In this step all lower-level modules are 	-

synthesized with I/O buffers insertion OFF and the top-level with I/O buffers

insertion selected.

3. Build Top-Level Design: In this step top.ngd file which will be used in next

step is generated.

4. Build Static Design: In this step top_routed.ncd, static.used files are generated.

The top_routed.ncd file contains the implemented static design. The

static.used file contains routes used by static logic in PRR, the information

needed during the RM implementation step.

E&C Department, IIT Roorkee 	 34

Design of Partially Reconfigurable FP-AU

5. Build RM Design: In this step top_routed.ncd file has been generated for

reconfigurable modules.

6. Assemble Static Design: This step is used to assemble the static modules as

well as desired one RM for each PRR into a design that will be loaded when

the FPGA is configured. Static_full.bit file is generated which contains adder

and 	right 	shift 	operations. 	Ag reconfig_LEDs_blank.bit 	and

ag_reconfig_addsub_blank.bit files which can replace the LEDs and addsub

PRR with blank logic is also generated in this step.

7. Generate Partial Bitstreams: In this step partial bitstreams are generated and

the PRR has been reconfigured instead of the entire FPGA with bit-streams of

individual reconfigurable modules one at a time i.e dataadder_partial.bit,

subtractor_partial.bit, rightshift_partial.bit and leftshift_partial.bit files.

8. Testing: In this step use static_full.bit file to program FPGA and then verify

the functionality using partial bitstreams. We can notice that programming is

very quick reducing the reconfiguration time.

Fig 5.3 shows how partially reconfigurable regions are described on FPGA using

planahead tool [16]. It also shows the bus macro placement over right corners of

partially reconfigurable regions.

E&C Department, IIT Roorkee 	 35

Design of Partially Reconfigurable FP-AU

Figure 5.3: Plan Ahead window showing two Partially Reconfigurable Regions

5.2 Design of Partially Reconfigurable FP-AU

Using the example case described in previous section we have designed a partially

reconfigurable system which includes one partial reconfigurable region. In this partial

reconfigurable region hardware resources are time-shared between floating point

arithmetic modules like adder/subtractor, multiplier and divider thus saving the area

occupied by FP-AU.

E&C Department, IIT Roorkee 	 36

Design of Partially Reconfigurable FP-AU

Swap in

Adder

[Subtracto]

Multiplier

Devider

g Swap out

WE

0

—► Adder

Subtractor

Multiplier
Devider

Control unit

Figure 5.4: Run-time and Partial reconfigurations of Floating point modules

Partial reconfiguration design has been divided into 2 parts as shown in the Fig 5.4

above. One is Static Region or Base Region which contains the common logic which

will not change between the PR modules and another is Partially Reconfigurable

Region which will time-share the hardware 'resources among the partial

reconfigurable modules.

5.2.1 Partial Reconfiguration Methodology

Design of floating point arithmetic modules is done using Command Line. In this we

have used module based partial reconfiguration approach i.e., if we need to change

functionality of a PR module then we have to replace the entire running module

bitstream with another module bitstream. In our approach we have divided entire

design into three parts Top level Design, Base design and Partially Reconfigurable

modules.

1. Top level design includes:

E&C Department, IIT Roorkee 	 37

Design of Partially Reconfigurable FP-AU

• Black box instation of PCI interface program as static part.

• Buffers to delay the clock

• Black box instation of partially reconfigurable modules which are

implemented in previous section. Give same entity name to all PR

modules.

• Bus macros for communication between static logic and PR logic.

2. Base design includes:

PCI program because it is the one required to give 32-bit input and get 32-bit output.

from PR modules. So, this logic will run continuously on the FPGA.

3. Partial reconfigurable modules design includes:

Floating point adder/subtractor, multiplier and divider. These modules are swapped in

or swapped out depending on application into the partial reconfigurable region

without stopping the functionality of base region i.e., pci interface. The modules

which are implemented in the previous section serve as the partially reconfigurable

modules in this section.

Along with this it is important to note that we have to mention area group ranges with

- area constraints and modes with reconfigurable regions are assigned with proper

values in the UCF file. After designing these files and putting them in appropriate

folders we can follow the same procedure as that of example case to partially

reconfigure FP-AU.

Partial Reconfiguration of FP-AU is partially implemented due to the unavailability of

area constraints file and bus macro files for Virtex-2 Pro XC2VP50. This

implementation is not possible in Virtex-4 also as it do not have external Pci-Interface

to give 32-bit input and get 32- bit or LEDs to show 32-bit output. But approximately

we can say that Partial Reconfiguration has reduced the number of slices required to 	i

implement floating point arithmetic unit on FPGA from 2400 slices to 1600 slices

thus reducing the hardware overhead.

E&C Department, IIT Roorkee 	 38

CHAPTER 6

RESULTS

Simulation, synthesis and implementation details of floating point adder/subtractor,

multiplier and divider are presented in this section.

Simulation results:

Figure 6.1: Simulation Result of Floating Point Adder/Subtractor

E&C Department, IIT Roorkee 	 39

Results

Simulation is done for the verifying the functionality of the modules. Firstly, the

compilation is done. Then the simulation task is performed. The compilation and the

simulation are done using ModelSim SE 6.0d. After the simulation is completed, we

analyzed the output data of the simulation to determine if the design is correct or not.

If not, we had fixed the errors and made changes in VHDL code and repeat the above

steps. This process continues till all the errors are removed. The simulation results for

the floating point arithmetic operations are given in the following Figs 6.1, 6.2 and

6.3.

Figure 6.2 Simulation Result of Floating Point Multiplier

E&C - Department, IIT Roorkee 	 40

Results

Table 6.1 Synthesis Results of Floating Point Arithmetic Unit

Name of the Module Adder/Subtractor Multiplier Divider

Number of Slices (23616) 350 975 1119

Number of Slice Flip Flops (47232) 160 496 1273

Number of 4 input LUTs (47232) 610 610 1815

Number of bonded IOBs (692) 50 150 52

Number of GCLKs (16) 16 2 2

Implementation results:

Some of the results obtained by implementing floating point modules on Virtex-2 Pro

XC2VP50 FPGA are given in Table 6.2. Inputs are given in Hex format and outputs

are in Hex format.

Table 6.2 Results obtained from implementing on FPGA

Name of the Inputl Input2 	- Output
Module

Addition- 12121231 31310016 3158800b
Subtraction 98571234 02091a04 986b8919

09laO470 abcdeflO abe6f787
Multiplication 12121231 31310016 03c9fd40

98571234 02091a04 ffe65d32
091a0470 abcdeflO fff7cac2

Division 12121231 31310016 6c534426
98571234 02091a04 e980000
091aO470 abcdeflO0 e8bf7630

Fig 6.4 shows a model through which we have given input to FPGA and read output

from FPGA. As shown in the figure datal = 0x45129200 and data2 = 0x3 f400000 are

the inputs given to FPGA through software program which acts as a interface between

E&C Department, IIT Roorkee 	 42

Results

pci bus of FPGA and local bus of pc. We can also observe that output files are stored

in the specified location as given by the software program. The two .txt files shown in

the Fig 6.4 are the outputs of 32-bit single precision floating point addition.

unsigned long datal,data2,data3,data4,data_out,dataS,data_out_ex
unsigned long i;

FILE *data_Outl = fopen("D:/Float_Out.txt","wb");
FILE %data_Out2 = fopen("D:/floatl_Out.txt","wb");
datal =0x45123200;
data2 =0x3f400000;

k1<1000000;kl++);
U32*)(Va.Va2+Ox00001028);

Outl,"%x\n",data_out);
k2<100;k2++);
•(U32*)(Va.Va2+0x00001038);
Out2,"%x\n",data_out_ex);

Figure 6.4 Implementation of Floating point adder on Virtex-2 Pro XC2VP50 FPGA

Partial reconfiguration Implementation results of pci-interface (static module) and

partially reconfigurable modules of floating point arithmetic unit are shown in table

6.4.Total number of slices required to implement floating point arithmetic unit is

approximately 2400 slices and partial reconfiguration reduced it to 1600 slices.

r &C Department, IIT Roorkee 	 43

Results

Table 6.4 Implementation details of partially reconfigurable FP-AU

Name of Adder/ Multiplier Divider Pci-Interface

the Module Subtractor (static
Module)

Number of Slices 350 975 1119 237
(23616)

Number of Slice Flip 160 496 1273 126
Flops (47232)

Number of 4 input 610 610 1815 133
LUTs (47232)

Number of bonded 50 150 52 34
IOBs (692)

Number of GCLKs (16) 16 2 2 1

E&C Department, IIT Roorkee 	 44

CHAPTER7

CONCLUSIONS AND FUTURE SCOPE

Conclusions:

Partial Reconfiguration of floating point arithmetic unit has been done. The

contribution in this thesis is as follows:

1. Floating point arithmetic modules are implemented on Xilinx Virtex-2 Pro

XC2VP50 device using PCI interface and results are shown in Table 6.2. It

can be observed that the modules are working satisfactory.

2. Partial reconfiguration of integer adder and subtractor in one partially

reconfigurable region and LEDs left shift and right shift in another

partially reconfigurable region has been implemented on Virtex-4 ML401

device.

3. Technique developed in 2 has been extended for floating point arithmetic

unit which is implemented on Virtex-2 Pro XC2VP50 and results are

shown in Table 6.4.

Partial Reconfiguration has reduced the number of slices required to implement

floating point arithmetic unit on FPGA from 2400 slices (approx) to 1600 slices thus

reducing the hardware overhead.

However there are some limitations in the implementation. Due to the unavailability

of area constraints file and bus macro files for Virtex-2 Pro XC2VP50 - partial

reconfiguration of floating point arithmetic unit is partially implemented. This

implementation is not possible in Virtex-4 also as it do not have external PCI-

Interface to give 32-bit input or to get 32- bit output or 32 LEDs to show 32-bit

output. There is a small delay produced due to reconfiguration time during the

computations of floating point arithmetic modules because of partial reconfiguration.

E&C Department, lIT Roorkee 	 45

Conclusions and Future Scope

But this can be neglected when compared to area reduction achieved due to partial

reconfiguration.

Future Scope:

Further area reduction can be achieved if more redundancy is followed in the coding

part of floating point arithmetic modules. This redundancy based coding approach can

also be used to follow difference based partial reconfiguration which almost

completely reduces the reconfiguration delay and enhances the performance.

E&C . Department, IIT Roorkee 	 46

REFERENCES

[1] Yusuf. S, Luk. W, Sloman. M, Dulay. N, Lupu. E.C, Brown. G,

"Reconfigurable Architecture for Network Flow Analysis," IEEE

Transactions on Very Large Scale Integration (VLSI) Systems ,Volume 16,

Issue 1, PP. 57-65, Jan. 2008.

[2] Gerardo Leyva, Gabriel Caffarena, Carlos Carreras, Octavio Nieto-Taladriz,

"A Generator of High-speed Floating-point Modules," IEEE Symposium on

Field-Programmable Custom Computing Machines PP. 306-307, 2004.

[3] Pedro C. Diniz, Gokul Govindu, " Design of a field-programmable dual-

precision floating point arithmetic unit," International Conference in Field

Programmable Logic and Applications, On PP.1-4,Aug.2006.

[4] Jian Liang, Tessier R, Mencer. 0, "Floating point unit generation and

evaluation for FPGAs ," in Proceedings of 11th Annual IEEE Symposium

on Field-Programmable Custom Computing Machines,9-11 April 2003, PP.

185— 194.

[5] Hung-Yueh Lin, Tay-Jyi Lin, Chie-Min Chao, Yen-Chin Liao, Chih-Wei Liu,

Chein-Wei Jen, "Static floating-point unit with implicit exponent tracking

for embedded DSP," in the Proceedings of the 2004 International

Symposium • on Circuits and Systems, ISCAS '04, Volume 2, PP.821-4

Vol.2, 23-26 May 2004.

[6] Antoni.L, Leveugle.R, Feher.M, "Using run-time reconfiguration for fault

injection in hardware prototypes," in proceedings of 17th IEEE International

Symposium, PP. 245 — 256, November 2002.

47

References

[7] Xiaoyao Liang, Athalye.A, Sangjin Hong, "Dynamic coarse grain dataflow

reconfiguration technique for real-time systems design", in proceedings of

IEEE International Symposium, Vol. 4, PP. 3511 - 3514, May 2005.

[8] Xilinx Early Access Partial Reconfiguration User Guide [online]

http://www.xilinx.com/supDort/documentation/user_guides/ug208 .pdf.

[9] Two Flows for Partial Reconfiguration: Module Based or Difference Based,

Xilinx website [online] http://china.xilinx.com/support/documentation/

application notes/xapp290.pdf.

[10] Jean-Pierre, Deschamps, Gery, Jean Antoine Bioul, Gustavo D.Sutter,

"Synthesis of arithmetic circuits FPGA ASIC and Embedded Systems," John

Wiley and Sons publishers 2006.

[11] Israel Koren "Computer Arithmetic Algorithms" second edition, A K

Peters, Ltd publication, Natick, Massachusetts, 2001.

[12] Douglas L. Perry "VHDL Programming by Example" Fourth Edition, Tata

McGraw- Hill Publication, New York, 2002.

[13] Xilinx Corporation. ISE Logic Design Tools, 2007 http://www.xilinx.com/.

[14] Virtex II Pro Complete data sheet Xilinx website [online]

http://www.xilinx.com/support/documentation/ data sheets/ds083.pdf.

[15] Xilinx Development System Reference Guide Xilinxwebsite [online]

www.xilinx.com/docsan/xilinx8/books/docs/dev/dev.pdf.

[16] Xilinx PlanAhead Methadology Guide Xilinxwebsite [online]

www.xilinx.com/ise/optional prod/planahead.htm.

48

I

APPENDIX —A

RTL diagrams

Figure A. 1 RTL diagram of floating point adder/subtractor.

E&C Department, IIT Roorkee 	 49

Appendix-A

Figure A.2 RTL diagram of floating point multiplier

(.'I•

E&C Department, IIT Roorkee 	 50

Appendix-A

Figure A.3 RTL diagram of floating point divider

E&C Department, IIT Roorkee 	 51

LIST OF PUBLICATIONS

• P.S.Surekha, R.C.Joshi, A.K.Saxena, "Design and Implementation of

Reconfigurable FP-AU" 3 d̀International conference on Advanced Computing and

Communication Technologies, Panipat, Haryana, November-2008

(Communicated).

• P.S.Surekha, B.Harikrishna, A.K.Saxena, "Design and Analysis of Dynamic

Reconfigurable Systems" 4t1 	Conference on Machine Intelligence,

Jagadhri, Haryana, August-2008 (Accepted).

E&C Department, IIT Roorkee 	 52

	Title
	Abstract
	Chapter 1
	Chapter 2
	Chapter 3
	Chapter 4
	Chapter 5
	Chapter 6
	Chapter 7
	References
	Untitled

