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ABSTRACT 

With the rapid growth of the World Wide Web and electronic information 

services, the amount of information is growing at an incredible rate. One problem that 

arises due to this exponential growth is the problem of information overload. No one 

has time to read everything, yet we often have to make critical decisions based on 

what we are able to assimilate. With summaries, we can make effective decisions in 

less time. Thus the technology of automatic text summarization is becoming essential 

to deal with the problem of information overload. 

Text summarization is the process of extracting the most important 

information from a single document or from a set of documents to produce a short and 

information rich summary for a particular user or task. Multi-document 

summarization is an automatic procedure for extraction of information from multiple 

texts written about the same topic. Most of the MDS systems have been based on an 

extraction method, which identifies key textual segments (eg sentences or paragraphs) 

in source documents and selects them for the summary. It is important for such MDS 

systems to determine a coherent arrangement (ordering) of the textual segments 

extracted from the source documents in order to reconstruct the text structure for 

summarization. 

In this dissertation work we have focused on the two key tasks of the 

summarization, information extraction and sentence ordering. A multi document 

summarization method based on frequency of bi-grams (window of size 2 words) is 

used for the information extraction task. As the sentences are selected based on their 

importance from the documents they lose the cohesion and the ordering of the 

information in the summary thus loosing the readability of the summary. To deal with 

this problem, we propose a new method for sentence ordering based on the types of 

the sentences. Our results show that the proposed multi document summarizer 

approach works significantly well in extracting important content units and improving 

the readability of the summary. 
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Chapter 1 

INTRODUCTION 

1.1 Introduction 

In the recent years there has been a well-publicized explosion of information 

available over the Internet, and a corresponding increase in its usage. Everyday we are 

bombarded with reams of information in all forms (eg. e-mails, papers, books, magazine 

articles, web pages etc.). The storage cost is very low and the storage capacity is 

almost limitless, resulting in billions of documents available on web. A study 

conducted by the University of California at Berkeley estimates that almost 800 

Megabytes of stored information are produced per person, per year [1]. The production 

of information has increased to the extent that we are now seen to be in the midst of an 

information explosion. As a result of this explosion of information, we are experiencing a 

state called "Information Overload". The growing number of electronic articles, 

magazines and books that are available on-line today are putting more pressure on 

people, as they struggle with information overload. No one has time to read 

everything, yet we often have to make critical decisions based on what we are able to 

assimilate. The technology of automatic text summarization is becoming indispensable to 

deal with this problem and reduces the pressure of reading full articles. Summarization, 

which is the art of abstracting key content from one or more information sources, has 

become an integral part of everyday life. For example people keep them up to date of 

world affairs by listening to news (summary of world affairs). They base investment 

decisions on stock market updates (summary of the market). They go to movies largely 

on the basis of reviews (summary of comments). 

Automatic summarization [2] is the process of distilling the most important 
information from a source to produce an abridged version for a particular user or task. 
Human generates a summary of a text by understanding it with the deep semantic 
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Introduction 

processing using huge domain/background knowledge. It is too difficult for the 

current computer to simulate this process. Therefore, most automatic summarization 

programs analyze a text statistically and linguistically, determine important 

sentences, and generate a summary text from these important sentences. The goal of 

the automatic text summarization is to provide a user with a presentation of the 

substance of a body of material in a coherent and concise form to save time and 

effort. Ideally, a summary should contain only the "right" amount of the interesting 

information and it should omit all the redundant and "uninteresting" material. The 

summary produced by automatic summarization can be of two types - generic or 

user specific [3]. The generic summaries contain the overall . most salient 

information from the original documents while the user specific summaries contain 

the most relevant information depending upon the choice and interests of the user. 

Automatic text summarization can be broadly categorized in two types based on 

the number of source documents: Single Document Summarization and Multi 

Document Summarization (MDS) [4]. As the name suggests in single document 

summarization there is only one large source document, while in case of multi 

document summarization the information is distributed over multiple source 

documents. Single document summarization is easy as compared to multi document 

summarization task. As in single document summarization there is no issue of 

multiple languages, multiple input format, writing style, redundancy of information 

etc [5] 

The multi-document summarization [6] task has turned out to be much more 

complex than summarizing a single document, even a very large one. This difficulty 

arises from inevitable thematic diversity within a large set of documents. These 

documents can be in different languages, written by different authors having 

different background knowledge and different document formats. A good 

summarization technology aims to combine the main themes with completeness, 

readability, and conciseness [7]. An ideal multi-document summarization system 

does not simply shorten the source texts but presents information organized around 
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Introduction 

the key aspects to represent a wider diversity of views on the topic. When such 

quality is achieved, an automatic multi-document summary is perceived more like 

an overview of a given topic. 

There are two types of situations in which multi-document summarization would 

be useful: (1) the user is faced with a collection of dissimilar documents and wishes 

to assess the information landscape contained in the collection, or (2) there is a 

collection of topically-related documents, extracted from a larger more diverse 

collection as the result of a query, or a topically-cohesive cluster. In the first case, if 

the collection is large enough, it only makes sense to first cluster and categorize the 

documents, and then summarize each cohesive cluster. Hence, a "summary" would 

constitute of a visualization of the information landscape, where features could be 

clusters or summaries thereof. In the second case, it is possible to build a synthetic 

textual summary containing the main point(s) of the topic, augmented with non-

redundant background information and/or query-relevant elaborations. This is the 

focus of dissertation work reported here, including the necessity to represent the 

information in readable ordering the selected from the multiple related documents. 

Multi-document summarization creates information reports that are both concise 

and comprehensive. With different opinions being put together & outlined, every 

topic is described from multiple perspectives within a single document. While the 

goal of a brief summary is to simplify information search and cut the time by 

pointing to the most relevant source documents [8], comprehensive multi-document 

summary should itself contain the required information, hence limiting the need for 

accessing original files to cases when refinement is required. Automatic summaries 

present information extracted from multiple sources algorithmically, without any 

editorial touch or subjective human intervention, thus making it completely 
unbiased. 

The multi document summarization can be categorized along two different 

dimensions: abstract-based [3, 9, 10] and extract-based [11, 12, 13, 14]. An extract- 
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summary consists of sentences extracted from the document while an abstract-

summary may employ words and phrases that do not appear in the original 

document. The extractive summarization tries to select a number of indicative 

sentences, passages or paragraphs from the original document according to a target 

summarization ratio, and then sequence them together to form a summary. The 

abstractive summarization, on the other hand, tries to produce a concise abstract of 

desired length that can reflect the key concepts of the document. The latter seems to 

be more difficult, and most of the recent approaches have focused more on the 

extraction . based summarization. In this dissertation we have focused on the 

information extraction based generic multi document summarization. Information 

extraction is a shallow approach in which, statistical heuristics are used to identify the 

most salient sentences of a text. Information extraction [14] is a low-cost approach 

compared to more knowledge-intensive deeper approaches which require additional 

knowledge bases such as linguistic knowledge. In short, information extraction works as 

a filter which allows only important sentences to pass. Sentence abstraction is the 

natural language processing task of automatically generating natural language 

sentences from a set of source documents [16]. The sentences generated by this 

technique contain the over-all information of all the source documents. But it is very 

difficult to achieve a high degree.of accuracy in sentence abstraction tasks as the 

computer systems do not have deep semantic knowledge and ability to understand like 

humans have. 

Most MDS systems are based on the information extraction method, which extracts 

the most important sentences in source documents and include them into the summary 

document [15]. So for such system it is very much important to provide a coherent 

ordering of the sentences extracted from different source documents in order to make the 

summary meaningful. Sentence ordering, which affects coherence and readability, is of 

particular concern for multi-document summarization, where different source articles 

contribute sentences to a summary. 
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Introduction 

In this dissertation work techniques for the above two key tasks (Information 

Extraction and Sentence Ordering) of the generic multi document summarization 

has been proposed. Information extraction based on bi-gram frequency (discussed in 

chapter 3) has been selected as a method to extract the important content out of the 

multiple source documents. A sentence ordering technique which is based on the 

sentence types. (discussed in chapter 4) and the chronological information of the 

documents has also been proposed in this dissertation. 

1.2 Statement of the Problem 

The dissertation work can be divided in to solving two problems of the multi 

document summarization processes: first, identifying the most important 

information that ought to be included in the summary, and second, ordering the 

information that has been identified in the first process to increase the readability of 

the summary. The first process is referred to as the Information extraction process 

and the second is referred as the sentence ordering process. 

1.3 Organization of the Dissertation 

This report comprises of six chapters including this chapter that gives the 

overview of the automatic summarization systems and discuss about the need 

motivation for such systems. It also summarizes the problem statement for the 

dissertation work. Rest of the dissertation report is organized as follows. 

Chapter 2 gives the background and literature survey of the various MDS systems 

in the field of information extraction. It also presents the existing methods for 

sentence ordering. It also describes the framework of generic multi document 

summarization system and the research gaps in information extraction and sentence 
ordering techniques. 
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Chapter 3 gives the description of proposed framework for the information 

extraction module. It also describes the tools used for preprocessing of the input text 

and creating and reducing the term-term matrix. 

Chapter 4 describes the proposed framework for the sentence ordering module for 
the MDS system with detailed description of the sentence types and dictionaries 

used. 

Chapter 5 discusses the evaluation metrics, the data set used for the testing 

purpose, the performance of the system, the tables and graphs depicting the 

performance. It also presents summaries produced by our system along with the 

human generated summaries for the same set of documents. 

Chapter 6 concludes the findings of the dissertation work and gives suggestion for 

future work. 
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Chapter 2 

Background and Literature Survey 

2.1 A Generic Framework for Multi Document Summarization (MDS) 

The process of multi document summarization is not a single shot process rather it is 
divided in to a series of sub processes, which includes extraction of information, 
information representation, sentence ordering, and summary generation. The main 

problems an MDS need to solve are information extraction (i.e. deciding and extracting 

from the input documents that are important enough to be included in a summary) and 

sentence ordering (i.e., deciding the order in which the extracted sentences from the input 

documents should appear in the summary). Systems that go beyond sentence extraction 

and use generation techniques to reformulate or simplify the text of the original articles 

also need to decide which simplified sentences should be chosen. So information 

extraction is an essential component for all multi document summarizers. When 

sentences are taken out of context and placed one after another in automatic summaries, 

they may convey meaning that are not at all intended in the original text, presenting 

misleading or false information. So sentence ordering is also the important component of 
the MDS systems. 

Multiple 	 Extracted Input 	Information 	 Sentence 
Sources 	Extraction 	Sentences 	Ordering 	v~ 

Figure 2.1: Framework for Multi Document Summarization System 
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Background and Literature Survey 

The generic framework for the Multi Document summarization system is shown in 

Figure 2.1. It consists of two processes: Information extraction module and Sentence 

ordering module. Information Extraction process, takes a cluster of documents with the 

same theme as input and extracts the important sentences (or information) to be included 

in the summary. Sentence ordering process coherently orders the sentences which the 

information extraction process selects. 

2.2 Information Extraction Approaches 

There are several ways in which one can characterize different approaches to 

information extraction based summarization. One useful way is to examine the level of 

processing. Based on this, summarization can be characterized as approaching the 

problem at the surface, entity, or discourse levels [2]. 

Surface-level approaches [11, 12, 13, 17, 18] tend to represent information in terms of 

shallow features which are then selectively combined together to yield a salience function 

used to extract information. These features include frequency, location, background, cue 

words and phrases. Entity-level approaches [20, 21] build an internal representation for 

text, modeling text entities and their relationships. These approaches tend to represent 

connectivity in the text to help determine what is salient. Relationships between entities 

include similarity, proximity, co-occurrence, thesaural relationships among words 

(synonymy, antonymy, parts-of relations), logical relations (agreement, contradiction, and 

consistency) syntactic relations. Discourse-level approaches [16, 22] model the global 

structure of the text, and its relation to communicative goals. This structure can include 

format of the document, threads of topics as they are revealed in the text, and rhetorical 

structure of the text, such as argumentation 6r narrative structure. These are the primary 

examples of the approaches, and many systems adopt a hybrid approach (e.g., taking a 

discourse level approach where the smallest segments are surface strings or entities). 

Table 2.1 shows the list of features and their description for all three approaches in brief 

[2]. 
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Approach  Feature Descrjptton 

Surface Level 

Frequency Statistically salient terms 

Location Sentence position in paragraph, paragraph 

position in text 

Title Headline, topic 

Query User interest 

Cue words/ phrases Bonus terms, stigma terms 

Entity level 

Similarity Vocabulary overlap 

Proximity Distance between text units 

Thesaural relationship Synonymy, parts-of relationship 

Syntactic relationship Based on parse trees 

Discourse level 

Format of document Topic classification 

Threads of topics Topic segmentation 

Document 	discourse 

structure 

Rhetorical structure 

Table 2.1: Surface, entity and discourse-level features. 

2.3 Desired Features of a MDS System 

The task of a multi document summarization system is to generate a short paragraph 

that presents the important information present in the given clusters of input documents 

on same topic in a coherent (properly ordered) form. Besides keeping the summary short, 

the summarization process must also preserve the information contained in the original 

document [8]. The most desired features of a multi document summarization system are 

text compression, information preservation, text cohesion and redundancy removal. 

Text Compression: The main feature that a multi-document summarization system is 

required to do is shortening of the original text as per the interest of the user. This would 

naturally mean the system should ideally be able to adjust the length of the output 

according to the compression rate given by the user. For example, if the compression rate 
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given is 20%, then the system must compress a 1000 sentences document to 200 

sentences document. 

Information Preservation: While keeping the output text short, the system should be 

able to preserve as much salient information as possible. Hence the system needs to make 

decisions to choose from the document cluster, competing sentences to be included in the 

summary. The sentences with better salience scores than a given threshold value (lower 

threshold value for information extraction phase) are selected for summary. The threshold 

value depends on the size and structure of the source documents. 

Summary Cohesion: An ideal multi-document summarization system must produce a 

syntactically correct and coherent summary. Thexe should not be abrupt shifts of topics in 

the summary and the flow and order of the summary sentences must be cohesive. This 

requires the summary should not contain grammatically incorrect sentences and must be 

ordered in a readable form. Unless the system is pure sentence picker, it should take care 

of the syntax of the sentences included in the resulting summary. 

Redundancy Removal: The multi-document summarization system should have the 

ability to eliminate the redundancy among the sentences in the summary. There should 

not be more than one sentence depicting the same information. So a sentence, that is to be 

included in the summary, must be first cross checked with the sentences already included 

in the summary for any kind of redundancy. 

2.4 Types of Multi Document Summarization Systems 

Different MDS systems use different measures in assigning the salience score to the 

sentences. Based on the methods the MDS systems employ in assigning salience score to 

the sentences, they can broadly be classified into three categories as centroid based, 

clustering based and graph based summarization. Here we briefly describe the general 

methods employed in assigning salience scores for the sentences in each of these three 

categories. 
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2.4.1 Clustering Based MDS 

One of the first and very popular approaches to MDS was cluster topically related 

sentences from the input and select one sentence from the cluster as a representative of 

the topic in the summary [31]. These summarizers obviously try to exploit frequency on 

the sentence level, clusters with more sentences considered more important. Again, a 

hidden parameter can change the results considerably since if lower similarity between 

sentences in the cluster is required, bigger clusters can be formed, but the sentences in 

them will not be tightly related on the same topic. Such an approach assigning 

importance to sentences also deals directly with the problem of duplication removal: 

since only one sentence per cluster is chosen, the summary would not include repetition. 

Interestingly the size of the cluster (equivalent to sentence frequency), did not lead to 

good information extraction performance. The problem was addressed by adding in the 

weighting of term frequency (tf) and inverse document frequency (idf). The addition of 

such information, which incorporates in the cluster score, the frequency also of the words 

in the sentences, leads to much better results in information extraction. 

2.4.2 Centroid Based MDS 

Radev et al. [17] described an extractive multi document summarizer (MEAD) which 

chooses a subset of sentences from the original documents based on the centroid of the 

input documents. For each sentence in a cluster of related documents, MEAD computes 

three features and uses a linear combination of the three to determine the most important 

sentences. The three features used are centroid score, position, and overlap with first 
sentence (or the title). 

The centroid score Ci is a measure of the centrality of a sentence to the overall topic 

of a cluster. The position score Pi which decreases linearly as sentence gets farther from 

the beginning of the document, and the overlap with first sentence score Fi which is the 

inner product of the tf-idf weighted vector representations of a given sentence and the 
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first sentence (or title) of the document. All three features are normalized (0-1) and the 

overall score for a sentence Si is calculated as 

W(Si)= We*Ci + Wp*Pi + Wf*Fi 

Where W., Wp, and Wf are the individual weightage given to each type of features 

respectively. MEAD discards sentences that are too similar to other sentences. Any 

sentence that is not discarded due to high similarity and which gets a high score is 

included in the summary 

2.4.3 Graph Based MDS 

Some of the most newly developed summarizers are those that reduce the problem of 

summarization to graph problems, notably using the Page-Rank algorithm. Of these, the 

most successful application to multi document summarization was that of Erkan and 

Radev [22]. In their LexRank algorithm, each sentence defines a node in the text graph. 

To define edges in the graph, the cosine similarity between two sentences is computed 

and an edge is added between the nodes representing the two sentences if the similarity 

exceeds a predetermined threshold. Thus the edges are defined for sentences that share 

the same words. The Page-Rank algorithm is then used iteratively to compute the rank of 

each sentence as a function of the number of neighbors and the importance of the 

neighbors of each node. The iterations distribute the weight across the graph, and quickly 

explain that the iterative spreading of importance in the graph is similar to voting process: 

sentences from the entire graph vote for the sentences with which they share word 

overlap. Of course, such a voting procedure can be achieved by a direct frequency count, 

rather than distributing information little by little through the nodes. So the Page-Rank 

algorithm can be seen as a complex (unobservable) function that assigns weights to 

sentences based on the frequency of words that appear in the text. In order to avoid 

repetition, sentences that are assigned high importance, but are similar to more important 

sentences are not included in the summary. 
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All the above systems select sentences based on importance derived from some 

complex formulas which directly or indirectly uses the frequency of the words for the 

computation of importance. But no system has studied the contribution of the frequency 

of the hi-gram units in the multi document summarization. 

2.5 Related work in Information Extraction 

There have been a number of researches and development budgets [2] devoted to 

automatic text summarization. The United States (e.g., DARPA), the European 

Community and Pacific Rim countries have identified text summarization as a critical 

research area, and are investing in it. Text summarization is also increasingly being 

exploit in the commercial sector, in telecommunication industry (e.g., BT's ProSum), in 

filters for web based information retrieval (e.g. Inxight's summarizer used in AltaVista 

Discovery), and in word processing tools (e.g.., Microsoft's AutoSumarize). In addition to 

the traditional focus of automatic abstracting (of scientific and technical text) to support 

information retrieval, researchers are investigating the application of this technology to a 

variety of new and challenging problems, including multilingual summarization, 

multimedia news broadcasts, and providing physicians with summaries  of on-line 

medical literature related to patient's medical record. As the information overload 

problem has grown, and people become increasingly mobile and information-hungry, 

new applications for text summarization can be expected. 

The early systems for text summarization were developed in late 1950's [11] 

characterized by surface-level approaches. First entity-level approach based on syntactic 

analysis and the use of the location feature was introduced later by Edmundson [12]. In 

1970s, there was renewed interest in the field with extensions being developed to the 

surface-level approach to include the use of cue phrases (bonus versus stigma items). The 

late 1970s saw the emergence of more extensive entity-level approaches as well as the 

first discourse-based approaches on story grammars. The 1980s enjoyed an explosion of a 

variety of different work, especially entity-level approaches based on artificial 

intelligence such as the use of scripts, logic and production rules, semantic networks, as 

- 13 - 



Background and Literature Survey 

well as hybrid approaches. The period of late 1990s represents a renaissance of the field, 

with three types of approaches being explored very aggressively, heightened by 

government and commercial interest. The work done during this period [3, 13, 14, 16] 

has almost exclusively focused on extracts rather than abstracts, along with a renewed 

interest in earlier surface-level approaches. 

~ L 

O O ti .~ td7 W O O O 

Summarizer System 

AutoSummarizer (MS Y y 
Word' 97) 
Context Y Y Y Y 

Data Hammer Y Y Y Y 
DimSum Y Y Y Y Y 
Extractor Y Y Y Y Y 

GESummarizer Y Y Y Y 
Intelligent Miner Y Y Y Y Y 

IntelliScope Y Y Y Y Y Y Y Y 
InText Y Y 

InXight Summarizer plus Y Y Y Y Y Y Y Y Y Y 
ProSum Y Y Y Y 

Search 97 Developer's Kit Y Y Y Y Y Y Y 
SMART Y Y 

SUMMARIST Y Y Y Y 
TextNet 32 Y Y Y Y 

TextAnalyst 2.0 Y 

Table 2.2: Features Comparison of Commercial Summarizer Systems 

In the 2000s the focus of the interest of the researches shifted towards Multi 

document summarization. A variety of multi-document summarization methods have 

been developed recently. The centroid-based method [17] is one of the most popular 
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extractive summarization methods. MEAD is an implementation of the centroid-based 

method [19]. NeATS [23] uses sentence position, term frequency, topic signature and 

term clustering to select important content, and use MMR [13] to remove redundancy. 

Recently graph based have been proposed to rank sentences or passages. LexPageRank 

[22] and Mihalcea and Tarau [21] are three such systems using algorithms similar to 

Page-Rank to compute sentence importance. Table 2.2 shows the comparison among the 

different commercial summarizers based on various summary features [2]. Where Y 
represents that the system implements the feature 

2.6 Significance of Sentence Ordering 

Most often, the extractive summaries produced from multiple source documents 

suffer from an array of problems with respect to text coherence and readability, like 

dangling references, irrelevant context cue information, etc. Many approaches [25, 26, 

27, 28, 29] have been proposed to deal with problems, including co-reference resolution, 

temporal information recovery and removal of contextual phrases by sentence 

compression. But after these post processing steps, even if each individual sentence might 

be interpretable in isolation, it still does not mean that sentences gathered from different 

sources as a whole will be easy to understand. Interdependence between sentences greatly 

affects reader's understanding. Therefore, it is important to consider sentence ordering of 

extracted sentences in order to reconstruct discourse structure in a summary. Sentence 

ordering, which determines the sequence in which to represent a set of pre-selected 

sentences, is a critical task both for text summarization and natural language generation. 

The problem of how to structure the selected information to form a fluent summary has 

received very little attention until recently. In single document summarization, summary 

sentences are typically arranged in the same order as they were in the original full 

document, although it was found that human summarizers do sometimes change the 

original order [24]. In multi-document summarization, sentences are selected from 

multiple documents and no complete ordering from a single document is available, so 

most common approaches involve ordering by the original article publishing time or 

ordering sentences based on their content importance score from the extraction stage 
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[30]. Several approaches have been taken in solving the information ordering task in 

multiple document summarization, all of which follow the assumption that the summary 

structure also follows the structure of the original document set, since multi-document 

summary captures the main contents among the document clusters. 

2.7 Sentence Ordering Techniques 

The first systematic research on sentence ordering was done by Barzilay, et al [24]. 

They provided a corpus based methodology to study ordering and conducted experiments 

which show that sentence ordering significantly affects the reader's comprehension. They 

also evaluated two ordering strategies: Majority Ordering which orders sentences by their 

most frequent orders across input documents and Chronological Ordering which orders 

sentences by their original article's publishing time. They then introduced an augmented 

chronological ordering with topical relatedness information that achieves the best results. 

The augmented strategy used majority and chronological constraints to define the pair 

wise relations between sentences. Barzilay then identified the final order of sentences by 

finding a maximal weighted path in a precedence graph [24]. Table 2.3 [31] shows four 

sentence ordering techniques with the features and scoring method they used. Table 2.4 

[31], gives brief description about the data and evaluation method of each of the four 

sentence ordering techniques. An unsupervised probabilistic model has been suggested by 

Lapata [25] for text structuring that learns ordering constraints from sentences 

represented by a set of lexical and structural features. It assumes the probability of any 

given sentence is determined by its previous sentence and learns the transition probability 

from one sentence to the next from the BLLIP corpus based on the Cartesian product 

between two sentences defined using the following features: verbs and their precedent 

relationships; nouns (entity-based coherence by keeping track of the nouns); and 

dependencies (structure of sentences). The,  overall ordering of the sentences in the 

summary is learned by greedily searching for a maximal weighted path through the 

graph. Based on the experimental results, she finds that entity-based coherence and the 

verb-noun structure features are significantly better than any other features. 
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Brazilay 2002 Lapata 2003 Brazilay & Lee Okazaki, et al 
[24] [25] 2004 [29] 2004, 2006 [26, 

27] 
Hypothesis 1. Sentence Local coherence Word Use the machine 

order do impact can be captured distributional learning 
the user through the patterns framework to 
comprehension probability of characterize incorporate the 
2. Multiple lexical and various types of four ordering 
acceptable syntactic discourse criteria to 
ordering for one features of (content capture the 
document sentence based structure) which contingency 
3. Topical on the previous can be captured between two 
related sentence, learn using HMM sentences 
sentences share text structure 
adjacency for a specific 
relation. domain 

Rank/ Search through Simple greedy Ranking by Agglomerative 
Search weighted search through. HMM hierarchical 

precedence weighted graph clustering with 
graph the ordering 

information 
retained 

Features Majority Verbs, nouns, State: topic Chronological 
ordering, structure clustering, sequence, 
chronological dependencies Transitional Pr: topical 
ordering, topical sentence relatedness, 
relatedness position in the precedence and 
augmented original article succession 
chronological 
ordering 

Table 2.3: Sentence Ordering Techniques 

Barzilay and Lee [29] have proposed domain-specific content models to represent 

topics and topic transitions for sentence ordering. They learn the content structure directly 

from un-annotated texts via analysis of word distribution patterns based on the idea that 

"various types of [word] recurrence patterns seem to characterize various types of 

discourse". The content models are Hidden Markov Models (HMMs) wherein states 
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correspond to types of information characteristic to the domain of interest, and state 

transitions capture possible information-presentation orderings within that domain. 

Brazilay 2002 Lapata 2003 Brazilay & Lee Okazaki, et al 
2004 2004, 2006 

25 	sets 	of BLLIP 	corpus 5 	domains TSC-3 	corpus 
topics, each has (30 M words) + (earth-quake, (Japanese), 
2-3 	news Brazilay 2002 finance, 	etc) containing 	30 
articles corpus Each 	domain sets of human 
reporting 	the has 	100 ordered 

Corpus same event training/ 	100 extracts 	for 
testing/ 	20 multiple 
development document 
set summarization 

relevant 	to 
questions 

Manually Human. written Human written Automated 
selected articles articles extracted Input sentences 	as sentences 	for 
extract summary 

Length 8.8 sentences 15.3 sentences 12 sentences 15 sentences 
3 level grading: Human No 4-scales: 
poor, fair, good produce perfect, 

Human summary 	for acceptable, 
upper bound of poor, 
Kendall's tau unacceptable 

No Kendall's 	tau OSO prediction Spearmen's 
(Distance rate, 	pair-wise and 	Kendall's 

Automatic between model comparison Tau correlation 
and 	original + 	continuity 
article) metrics 

Table 2.4: Data and Evaluation for Sentence Ordering Techniques 

Bollegala, Okazaki and Ishizuka [26] provide a novel supervised learning framework 

to integrate different criteria. They also propose two new criteria precedence and 

succession developed from their previous work [27]. A fundamental assumption for the 

precedence criteria is that each sentence in newspaper articles is written on the basis that 
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pre-suppositional information should be transferred to the reader before the sentence is 

interpreted. The opposite assumption holds, for the succession criteria. They define a 

precedence function between two segments (a sequence of ordered sentences) on 

different criteria and formulate the criteria integration task as a binary classification 

problem and employ a Support Vector Machine (SVM) as the classifier. After the 

relations between two textual segments are learned, they then repeatedly concatenate 

them into one segment until the overall segment with all sentences is arranged. 

Barzilay and Lapata [28] introduce an entity-based representation of discourse and 

treat coherence assessment as a ranking problem based on different discourse 

representations. A discourse entity is a class of co referent noun phrases. They use a grid 

to represent a set of entity transition sequences that reflect distributional, syntactic, and 

referential information about discourse entities. A fundamental assumption for this 

method is that the coherence on the level of local entity transitions is essential for 

generating globally coherent texts. They then take as input a set of alternative renderings 

of the same article and rank them based on the local coherence. The ranking problem is 

solved using the search techniques on a Support Vector Machine constraint optimization 

problem. 

2.8 Research Gaps 

2.8.1 Information Extraction 

Most of the extraction based multi-document summarization systems take advantage 

of the frequency of individual words. The more number of times a word occur in the 

source documents increase the chances of it to be included in the summary. The term 

frequency [33] is the prime feature in summarization for the tf-idf based multi-document 

summarization systems. Here TF represents the term frequency that is the frequency of a 

word in a document, and IDF represents the inverted document frequency that is the 

distribution of a term in the whole corpus of data and is equal to the number of 
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documents which contains the term divided by total number of documents in the corpus. 

The content that appears frequently in the input has a higher likelihood of being selected 

a human summarizer for inclusion in a summary. It is observed that high frequency words 

from input are very likely to appear in the human summary. This confirms that unigram 

(individual word) frequency is one of most important the feature that impact a human's 

decision to include specific content in a summary. But the co-occurrence of the 

individual words in the inputs and the human summaries does not necessarily entail that 

the same facts have been covered. A better granularity for such investigation is the 

sequence of such individual words, such as the summary sentences. Thus the overlapping 

of a sequence of words (or a sentence) from inputs with the human generated summary 

confirms that both the documents contain same information. Almost all of the systems 

have used the unigram frequency for assigning salience scores none has selected the 

frequency of more than single words which conveys more meaning for the assignment of 

salience score. 

2.8.2 Sentence Ordering 

When producing a summary, any multi-document summarization system has to 

choose in which order to present the output sentences. The first algorithm, Majority 

Ordering (MO), relies only on the original orders of sentences in the input documents. 

This algorithm can be used to order sentences accurately if we are certain that the input 

texts follow similar organizations. This assumption may hold in limited domains where 

documents have a fixed organization of the information. Looking at the daily statistics of 

scientific texts, we notice that there are several clusters which contain more than 20 and 

up to 70 articles to be summarized into single summaries. With such a big number of 

input articles, we cannot assume that they will all have similar ordering of the 

information. MO's performance critically depends on the agreement of orderings in the 

input texts, hence it can not fit all types of input data. The second one, Chronological 

Ordering (CO), uses time-related features to. order sentences and places the sentence in 

the temporal order of their occurrence. Assigning a date to a reaction, or more generally 

to any sentence conveying background information, and placing it into the chronological 
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stream of the main events does not produce a logical ordering. The ordering of these 

themes is, therefore, not covered by the CO algorithm. Furthermore, some sentences 

cannot be assigned any time stamp. For instance, the sentence, "The vast, sparsely 
inhabited Xinjiang region, largely desert, has many Chinese military and nuclear 

installations and civilian mining." describes a state rather than an event and, therefore, 

trying to describe it in temporal terms is invalid. Thus the ordering cannot be improved at 

the temporal level. Another drawback with chronological ordering is that summaries 

generated by this algorithm contains abrupt switches of topics and are generally 

incoherent. With these shortcomings of the traditional ordering algorithms in mind we 

propose a new ordering algorithm based on the various types of sentences found in 

scientific texts, these sentence types are described in detail in chapter 4. 

SIe 



Chapter 3 

Proposed Design for Information Extraction Module in MDS 

3.1 Framework for Information Extraction Module 

Information Extraction module is the first phase of the proposed multi document 

summarization system. Information extraction (IE) is a type of information retrieval 

whose goal is to automatically extract structured information, i.e. categorized and 

contextually and semantically well-defined sentences from a certain domain, from 

unstructured machine-readable documents. Information extraction is an important 

component for all the multi document summarizers. In past different systems for MDS 

used different techniques to calculate the importance of the sentences in the document but 

all these techniques are based on the features that are related to the individual word 

tokens. So in past all the systems have focused on very low level granularities (individual 

words) as discussed in previous chapter for the information extraction module. In this 

dissertation high level of granularities (sequence of important words) for the information 

extraction module have been used. We consider the pair of important words (feature 

terms) as a hi-gram unit. 

1. More than 100ep ople were killed when a Sudanese Airbus burst into fire after 

airport in poor weather on Tuesday, 
2. Around 100ep ople were killed when a Sudanese Airbus burst into fire after 

landing at Khartoum aim 
3. A Sudanese Airbus burst into flames after landing in Khartoum airport 

overnight in bad weather, killing 100. 
4. The Sudanese Airbus carrying 214 people veered off the Khartoum airport in a 

thunderstorm and burst into flames late Tuesday. 

Figure 3.1: Headlines from different newspapers for same event 
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The sequence of content words conveys more precise meaning than a single content 

word. Figure 3.1 shows the importance of the bi-gram units over the unigram words. It 

includes sentences taken from various new. papers headlines for the same event. The 

actual summary (headline) for the above set of sentences is 100 people killed in Sudanese 

Airbus crash. But this is assigned by human experts and is not obtained automatically. 

Our automatically generated bi-gram units for this are  100 people, people killed, 

Sudanese Airbus Airbus burst, Khartoum airport  etc, Each bi-gram unit convey more 

precise meaning than each content word. For example  Khartoum Airport  together gives a 

meaning that we are talking about the Khartoum: Airport. While the individual words like 

airbus and burst do not automatically suggest the same, it can be deduced from individual 

words that we are talking about either Khartoum city or Airports or both. This makes the 

bi-gram units better choice for the information extraction task. So if bi-gram units are 

chosen for assigning the salience scores to the sentences the MDS system will produce 

better summaries. 

The proposed framework for the information extraction module is shown in Figure 

3.2. The framework consists of three basic stages: Input, Processing and Scoring 

-------------------- , 

	

Multiple 	 Compute term- 	 Score Sentences 
source 	 frequencies for 

Documents 	 Important Terms 

- 	Extract High 

	

Feature 	 Compute bi-gram 	scoring sentences 
Terms Matrix 	 for summary 

	

Input 	 Processing 	 Scoring 

Figure 3.2: Proposed Framework for Information Extraction 

The first stage inputs the set of source documents that are clustered around the same 

topic or subject or event and a list that consist the most common and important words 
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related to the topic or the event known as Feature Terms. The next stage computes the 

frequency of bi-gram unit (window of size two feature terms). The final stage ranks the 

sentences based on the terms they contained and their term-term score, and finally the 

high ranking sentences are selected for inclusion in the summary. 

3.2 Implementation of Information Extraction Module 

The algorithm for the information extraction module is shown in stepwise fashion in 

Figure 3.3. The next subsections discuss about each block of the proposed framework. 

Begin: 

Step 1: Input the set of source documents and the feature term list 

Step 2: Compute the term frequencies for the feature terms and other 

important words (candidates for feature terms) in the input documents 

Step 3: Prepare a term-document matrix consisting the frequency value of 

individual term against each document 

Step 4: Compute the frequency score for each bi-gram (pair of important 

words) 

Step 5: Assign the salience score to the sentences based on the bi-gram 

frequency score for the bi-gram units present in the sentences. 

Step 6: Select the sentences with high scores for the inclusion in summary. 

End 

Fig 3.3: The Algorithm for the Information.  Extraction Module 

3.2.1 Input and Preprocessing 

The first stage inputs the set of documents that are clustered around the same topic or 
subject or event and a list that consist the most common and important words related to 
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the topic or the event known as list feature terms. The feature terms can be given by the 

authors of the documents or it can be generated on the basis of the background 

knowledge in that particular topic, the feature terms list can be blank too in this stage as 

more feature terms are computed in the later stages by selecting the frequent terms in the 

documents on that topic. 

3.2.2 Computing Bi-Gram Matrix . 

The next stage (Figure 3.4) computes the frequency of co-occurring of each pair of terms 

which in our case forms the bi-gram units. This stage is divided into the following 

subtasks. 

---------------------
INPUT 

---- 	' 
,--- ----------------------------- ------ 

Preprocessing 
(Sentence 

identification, Term- Matrix Compute J 
POS tagging,: 

a 
Document 	uk Decomposition bi gram 

. yFeatura .>Matrx Matrix 
Extraction) ,_ 

PROCESSING 

----------------------------------------' 
SCORING 

Figure 3.4: Computing bi-gram Matrix 

Preprocessing: The documents obtained from the input stage are first preprocessed to 

convert them to simple machine readable format (plain text format). This is required to 

identify each sentence unit easily for the extraction and scoring tasks. The preprocessing 

-25- 



Proposed Design for Information Extraction Module in MDS 

also includes the POS tagging of the documents and the extraction of feature terms. 

POS Tagging: A Part-Of-Speech Tagger (POS Tagger) is a piece of software that reads 

text in some language and assigns parts of speech to each word (and other token), such as 

noun, verb, adjective, etc. Parts of speech tags are assigned to the text using Stanford 

POS tagger, an open source natural language processing library tool [45]. This software 

is a Java implementation of the log-linear part-of-speech (POS) taggers described in [34] 

and demonstrates following ideas: (i) explicit use of both preceding and following tag 

context via a dependency network representation, (ii) broad use of lexical features, 

including jointly conditioning on multiple consecutive words, (iii) effective use of priors 

in conditional log linear models and (iv) fine grained modeling of unknown word 

features. Using these ideas together the resulting tagger gives 97.24 % accuracy on the 

Penn Treebank corpus. Table 3.1 shows the Penn Treebank Tagset with description and 

example of each tag. The POS tagged text is then used for the theme (Peature term) 

extraction. We consider only (Nouns, Verbs, and Adjectives) as the feature terms for their 

richness of information. 

POS Tag![ 	Description r 	 Example 
CC 	j coordinating conjunction land 
CD 	Icardinal  number 1, third 
DT 	Idetermer the 
FW 	foreign word d'hoevre 

Ipreposition/subordinating conjunction in, of, like 
JJ 	adjective green 

JJR 	adjective, comparative Igeener 
JJS 	adjective, superlative eenest 
LS 	list marker [1) 
MD 	Imodal could, will 
NN 	noun, singular or mass table 

NNS 	noun plural tables 
NNP 	proper noun, singular John 

NNPS 	proper noun, plural Vikings 
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PDT 	predetermines both the boys 
PUS 	possessive ending friend's 
PRP 	personal pronoun I he it 

PRP$ 	possessive pronoun my, his 
R adverb however, usually, naturally, here, good 
i~RBR Ikdverb,cornparative better 

_ S_ adverb, superlative best 
- RP 	particle  article J P 	— 	-  give u g 	P 	 -- 

110 	to to 	o, to him 
VB 	? verb, base form take 

VBD 	verb past tense took 
VBG 	verb, gerund/present participle taking 
VBNverb, past participle taken 
VBP 	verb, sing. present, non-3d take 
VBZ 	verb 3rd person sing present takes 
WDT 	wh-determiner which 

jwh pronoun who, what 
WRB : wh-abverb where, when 

Table 3.1: Penn Treebank Tagset 

We extracted all the feature terms (excluding stop words) with their frequency from 

the PUS tagged text, and calculated the importance of each of feature terms based on 

their probability distributions. Probability of the word W appearing in the input is 

calculated as p(w)=n/N, where n is the number of times the word appeared in the input, 

and N is the total number of feature terms in the input. Words having probability 

distribution of more than 0.0025 have been selected as feature terms and added to the 

previously available list of feature terms. 

Term-Document Matrix: We computed term (Feature term) by document matrix from 

the input cluster of document. Table 3.2 shows the term document matrix for the example 

given in Figure 3.1 considering each sentence as a document. We treated each set of 2 to 

3 sentences as a separate document while computing matrix so that we can compute the 
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bi-gram score based on their occurrences at the sentence level. 

100 People Sudanese airbus burst Khartoum airport 

Si 1 1 1 1 1 0 0 

S2 1 1 1 1 1 1 1 

S3 1 0 1 1 1 1 1 

S4 0 0 1 1 0 1 1 

Table 3.2: Term-Document matrix for Figure 3.1 

Matrix Decomposition: We computed the bi-gram scores for the pair of feature terms. 

We considered the feature terms with probabilities more than 0.0025 (lower threshold) 

for this phase. This removes the less important term thus drastically reducing the bi-gram 

matrix size and its computational time. Here bi-gram score means the occurrence of the 

hi-gram (two terms together) in the sentences. We computed bi-gram scores using 

Singular Value Decomposition (SVD) [35, 36]. 

The Singular Value Decomposition (SVD) of the term by document matrix X, If X is 
an m x n matrix then is 

X=USVT  

Where U is m x n with orthonormal columns, V is n X n with orthonormal Columns, 

and S is diagonal with the main diagonal entries sorted in decreasing order. A unique 

SVD feature is that it is capable of capturing and modeling interrelationships among 

terms so that it can semantically cluster terms and sentences. Furthermore, if a word 

combination pattern is salient and recurring in document, this pattern will be captured and 

represented by one of the singular vectors. The magnitude of the corresponding singular 

value indicates the importance degree of this pattern within the document. Any sentences 

containing this word combination pattern will be projected along this singular vector, and 

the sentence that best represents this pattern will have the largest index value with this 

vector. As each particular word combination pattern describes a certain topic/concept in 

the document, the facts described above naturally lead to the hypothesis that each 
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singular vector represents a salient topic/concept of the document, and the magnitude of 

its corresponding singular value represents the degree of importance of the salient 

topic/concept. 

Compute bi-gram Matrix: We compute the hi-gram matrix based on how often two 

terms co-occur. The term-document matrix X for a collection with n documents 

(paragraphs) and m terms is an m x n matrix with each column of the matrix representing 

a document. X can be viewed as a matrix with each row representing a term vector, i.e. a 

vector contacting the frequency of a term in each document. Thus similarity scores 

between terms can be calculated. A value representing the similarity tybetween two terms 

I and j (with i ,j e { 1........m}) is the dot product of the i-th and the j-th row of the term-
document matrix, t is nonzero if and only if a document exists, in which both terms I and 

j occur. 

Let T be the square matrix containing all those similarity scores. T is called the bi-

gram matrix and is: 

T = XXT  

= US VT  (US VT)  T 

= USVTVSUT  

= USZUT  

_ (US) (US) T  

We computed T matrix and set all the diagonal elements to zero's and then we 

normalized the matrix so that the sum of all the term-term scores is equal to 1. We call 

this normalized matrix as bi-gram score matrix. Table 3.3 shows the bi-gram matrix after 

decomposition for the term-document matrix shown in table 3.2. 

3.2.3 Scoring & Summary Extraction 

The final stage ranks the sentences based on the terms they contained and their bi-

gram score, and finally the high ranking sentences are selected for inclusion in the 
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summary. We assigned an importance weight to, each sentence S; in the input as a function 

of the importance of its hi-gram units BG~ 

Weight (S) = F (p (B G)) for all BG1 eS+ 

Different Summarizers can be obtained by making different choices for the 

composition function F. We considered Product of bigram scores as an appropriate 

candidate for assigning salience score to the sentences. 

for (F=Product) , Weight (Si) = it HGj eSi P (BG) 

Summary extraction is a three step procedure as discussed below. 

1. Sentence Score Computation: We assigned an importance weight to each sentence 

Si in the input as a function of the importance of its bi-gram units BG~ 

Weight (Se) = F (P (BG)) for all BG1 eS, 

2. Most salient Sentence: Pick the best scoring sentences under the scoring function F 

from the above step. 

3. Repeat: If desired summary length has not been reached, go back to step 1. 

This chapter describes the proposed framework of the information extraction module 

and describe in details the process for extracting most salient sentences from the input set 

of source documents. The outcome of this module (an intermediate summary) consists of 

improperly ordered sentences which are given to the sentence ordering module as 

discussed in next chapter. 
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Proposed Design for the Sentence Ordering Module in MDS 

The problem of organizing information for multi document summarization so that the 

generated summary is coherent has received relatively little attention. While sentence 

ordering for single document summarization can be determined from the ordering of 

sentences in the input article, this is not the case for multi document summarization 

where summary sentences may be drawn from different input articles. The experiments [30] 

show that ordering significantly affects the reader's comprehension of a text. It shows 

that although there is no single ideal ordering of information, ordering is not an 

unconstrained problem; the number of good orderings for a given text is limited. In this 

chapter, a methodology for ordering the sentences based on sentence types is proposed. 

Even though the problem of ordering information for multi document summarization has 

received relatively little attention, we hypothesize that good ordering is crucial to produce 

good quality summaries. 

4.1 A Study of Sentence Types 

For the study of the sentence types we have chosen of the domain of scientific 

literatures. The scientific literatures generally follow a well defined structure, which 

makes it easy to identify sentence types. A scientific paper is a written report describing 

original research results [40]. The format of a scientific paper has been defined by 

centuries of developing tradition, editorial practice, scientific ethics and the interplay 

with printing and publishing services. The IMRaD [41] format has developed within the 

past 110 years and is the best choice for papers reporting laboratory studies. Figure 4.1 

[40] shows the text organization of published articles in the British Medical Journal from 

1935 to 1985 which shows that IMRad has become a common format for all the scientific 

documents. In the IMRaD format the text is structured in the following sequence: 
Introduction: What question was studied and why? 
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Methods: How was the problem studied? 

Results: What were the findings? 

and 

Discussion: What do these findings mean? 

The IMRaD structure is a linear-analytic structure. The sequence of subtopics begins 

with an introduction to the issue or problem being studied and a review of what has been 

done so far. Then the method..with which to approach the problem, the findings, and 

finally the conclusions and implications which are drawn from the findings are presented. 

A typical report structured according to the IMRaD-format would consist of the 

following parts: Title, Introduction, Method, Results, Discussion, Conclusions, 

Recommendations (optional), References, and Appendices (optional). In this dissertation 

five types of sentences; introduction, method, results, conclusions and scope or 

recommendation have been used for the ordering task. The information represented by 

each of these types of sentences is discussed below. 
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Figure 4.1: Text organization of published articles in the British Medical Journal 
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4.1.1 Introduction 

The Introduction section begins by introducing the reader to the pertinent literature. 

An important function of the introduction is to establish the significance of the current 

work. The introduction sentences also describe the region in which the study was 

conducted. The introduction generally finishes with the statement of objectives or, with a 

brief statement of the principal findings. Either way, the reader must have an idea of 

where the paper is heading in order to follow the development of the evidence. The 

Introduction normally contains following types of sentences which tells about: 

1. Nature and scope of the problem: What is the problem and why is it important to 

study? 

2. Literature review: What has already been done? Review of the pertinent literature. 

4.1.2 Methods 

The main purpose of the Methods section is to provide enough detail for a competent 

worker to repeat current study and reproduce the results. The scientific method requires 

that results be reproducible. Usually these types of sentences describe the study site and 

climate in detail. Equipment and materials available off the shelf, sources of materials, 

measurements and errors of measurement are also described in this section. The Methods 

section gives full details of data collection, experimental design, sampling techniques, 

and so on. In a case study it is important to elaborate on the rationale for selection of the 

case to study. In the natural sciences this section is often called Materials and Methods. 

In the social sciences it is common to introduce a section called Theory and Methods, 

sometimes divided in two sections: Theoretical Framework (Design) and Methods 
(Implementation). 

4.1.3 Results 

In the results section findings are presented. These sentences combine the use of text, 

tables and figures to condense data and highlight trends. In the discussion the results 
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obtained from the application of proposed methods are discussed. Comparative studies 

between the findings to the findings of others or to expectations based on previous work 

are done in this section of sentences. The objectives of the study and to significance of 

the results in fulfilling them are also discussed. 

4.1.4 Conclusion and Scope 

The Conclusion section should discuss the overall study and the results and are found 

in the end of the document. These sentences discuss the principles, relationships, and 

generalizations shown by the result. The scope and recommendation section discuss the 

applications of the proposed methods and obtained results to the other domains. It also 

recommends certain set of guidelines for the people who wish to work in the same 

domain. 

The above categorization of sentences is specifically designed for scientific 

documents. For other generic documents these types can be replaced by new types 

depending on the domain. For example in event based documents the method section is 

replaced by the event section, which describes about the whole event. The results section 

is replaced by the cause and effect section which tells about the cause and the aftereffects 

of the event. 

4.2 Sentence Type Dictionaries 

To identify the various different types of sentences we have generated separate 

dictionaries for each of the five types of sentences. The dictionary for any sentence type 

includes the most common and specific words, combination of words or phrases 

occurring in that particular type of sentences. For example the dictionary for results 

section's sentences includes graphs, figures, performs 20% better etc. words and the 

conclusion section's dictionary includes we have described, the conclusion is, we find 

that etc. words in it and likewise. These dictionaries are generated by extracting the most 
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frequent words and phrases from a training set of scientific documents. In this 

dissertation three types of contents are added to the dictionaries: single words, pair of 

words and a maximum combination of three words. The single word dictionary is not 

enough to identify the difference among different types of sentences as the same word 

may be found in more than one type of sentences, for example the word researches can 

be found in introduction sentences as well as in methods, and results sentences. Therefore 

to make the difference more precise we have used combination of words and phrases. 

4.3 The Framework of Sentence Ordering Module 

The frame work for Sentence Ordering module is shown in Figure 4.2. This module is 

divided into two phases. First phase (Sentence Type Discovery) is to identify the types of 

the summary sentences and labeling them. The second phase (Ordering) deals with 

arranging the sentences in the correct order so as to get a coherent summary. 

Intermediate I I Dictionarie Summary s 

Sentence Type Discovery 

Ordering 

Figure 4.2: Sentence Ordering Module 

4.3.1 Sentence Type Discovery 

The first phase also known as the sentence type discovery phase is used to discover 

the types of the summary sentences. Figure 4.3 shows the block diagram for the sentence 

type discovery phase. The process of discovering the sentence type is completed in three 

Sys 
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steps. First step is preprocessing of the input summary, second step is identifying the 

sentence type and the third step is labeling the sentences with their types. 

Preprocessing 

Parsing the document 

Type identification Sentence Labeling 

Identifying the type of Labeling the 
& adding topic specific the sentences sentences with their 

words in dictionaries type 
(optional) 

Figure 4.3: Framework for Sentence Type Discovery 

The preprocessing includes identifying the sentences and words in the summary 

document. The preprocessing also adds the topic related words or combination of words 

into the dictionaries to make the ordering domain specific. 

Begin: 

for Sentence Sf! =1 to ic] { 

initialize S[011  to Nd] = 

for Word WW'{7=JtoJW[I J{ 

for Dictionary D/7c=1 to 2i17 { 

iftheD/,c] corsai-(Wju] 61 R'f11+ 'f1=11 W(i1+ 'L7+11 
+ aril+2]) 

5(11/k] ++; 

} 

ST[t] = mar (S/2]/7e 1 to Nd1): 

I 

Figure 4.4: Algorithm for Identification of Sentence Type 
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Once the dictionaries are ready and the summary document is parsed into the 

sentences the next task is to identify the types of the sentences. To identify sentence types 

we have used the algorithm shown in Figure 4.4. In this algorithm S[i] represent i s̀  

sentence in the summary, W[j] represents jth word in the sentence and D[k] represents 

the k h̀  dictionary. Ns, Nw[i], and Nd represents the total no of sentences in the summary, 

total no of words in sentence S[i] and total no of dictionaries respectively. S[i][k] 

represents the probability (score ) that the sentence S[i] falls under the category of the 

sentence type k. "W[j] +W[j+l]" represents the combination of the jth  and (j+1) h̀  word. 

The sentence labeling step labels each sentence to its type based on the words in it. 

This is done by comparing the type scores (S[i][k]) of a sentence S[i]. We label each 

sentence S[i] to its type ST[i] based on Where ST[i] is the maximum value out of all 

type scores ( S[i][k]). 

4.3.2 Ordering 

The steps of the second phase of the sentence ordering module, known as Ordering 

phase are shown in Figure 4.5. This phase is divided in to two steps. First step is to 

determine the generic ordering for the type of the sentences present in the summary and 

the second task is to arrange the sentences in the summary according to this standard 

ordering. 

Determining a generic ordering scheme" can either be done manually or it can be 

derived from a set of training documents. In manual mode the human decides the generic 

order for the types of the sentences based on his knowledge and past experience. In the 

second case a set of sample documents are chosen and a set of ordering schemes are 

generated based on the sentences in these documents. Then the scheme which is found in 

majority of documents is selected as the standard ordering scheme. In this dissertation we 

have used the standard ordering scheme of the IMRaD format, which arranges the 

sentences in following sequence Introduction, Method, Results, Conclusion and Scope. 
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The first step of this phase is useful if we are ordering the sentences of other domains 

than the scientific documents. 

Generic Ordering 	 Sentence Ordering 

Determining a generic order for the 	Arranging the sentences in the 
type of the sentences in the 	 summary according to the standard 

summary (Manual or Derived 	order, to produce coherent summary 
Mode) 

Figure 4.5: Framework for Sentence Ordering phase 

After the generic ordering scheme is selected the second task is to arrange the 

summary sentences in proper order. As we have already labeled the summary sentences 

with their respective types so it becomes easy to arrange them according to the standard 

order. The sentences which have the same sentence type are ordered according to 

following scheme. If the sentences are from the same source documents then the order in 

the source document is maintained. If the sentences are from different source documents 

then the sentences are arranged using chronological ordering algorithm. This whole 

process can be used in reverse manner also. In that case first the summary sentences are 

ordered as per the chronological ordering scheme and then the sentences from the same 

chronology can be reordered using the sentence type information. 

This chapter discusses the second module of the proposed multi document 

summarization system which is used to order the summary sentences. The next chapter 

describes the summary evaluation methods used to evaluate the proposed summarization 

model and the results obtained from it. 
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Results and Discussion 

5.1 ROUGE: Evaluation Method for Automatic Summarization 

Estimating the informativeness has been the focus of automatic summarization 

evaluation research. Various methods have been proposed to evaluate the summaries 

generated by multi document summarization systems. In this dissertation ROUGE [37] 

which stands for Recall-Oriented Understudy for Gisting Evaluation is used as the 

evaluation metric to determine the MDS performance. ROUGE is based on n-gram 

(window of size n words) co-occurrence between machine summaries and "ideal" human 

summaries. It includes measures to automatically determine the quality of a summary by 

comparing it to other (ideal) summaries created by humans. The measures count the 

number of overlapping units such as n-gram, word sequences, and word pairs between 

the computer-generated summary to be evaluated and the ideal summaries created by 

humans. ROUGE is currently the standard objective evaluation measure for the 

Document Understanding Conference [42]. ROUGE does not assume that there is a 

single "gold standard" summary. Instead it operates by matching the target summary 

against a set of reference summaries. ROUGE-1 through Rouge-4 are simple n-gram co-

occurrence measures, which checks whether the n-gram (sequence of n words) in the 

reference summary is contained in the machine summary. ROUGE-L computes the 

longest common subsequence for the evaluation purpose. ROUGE-S uses the concept of 

skip-bigram. Skip-bigram is any pair of words in their sentence order, allowing for 

arbitrary gaps. Skip-bigram co-occurrence statistics measure the overlap of skip-bigrams 

between a candidate translation and a set of reference translations. ROUGE-SU is an 

extention of ROUGE-S which uses unigram as counting unit and computes the skip-

bigram value for each pair of counting units. Lin (Lin and Hovy, 2003) has found that 

ROUGE-1 and ROUGE-2 correlate well with human judges. 
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ROUGE generates three scores (recall, precision and F-measure) for each evaluation. 

Recall is fraction of expert summary which is present in the summary generated by the 

system and is given as. 

Recall = no of (sentences in system summary 1lsentences in export summary) 
total no of sentences in expert summary 

Precision is the fraction of the sentences extracted in the system summary that are 

present in the expert summary and is given as below. 

no of (sentences in sustsm summary rissftteecss in expert summary) 
Precision = total no of sentences in system summary 

F-measure is the weighted harmonic mean of precision and recall. The general 

formula for F-measure is given as 
= (.-3-(32). precision . recall 

~R 	(~2=precision +recall) 

We have used the traditional ((3=1) F-measure for our evaluation. This is also known 

as the Fi measure, because recall and precision are evenly weighted. Previously, only one 

score is generated (recall). Precision and F-measure scores are useful when the target 

summary length is not enforced. We used ROUGE 1.5.5 to compute ROUGE-1, 

ROUGE-2 and ROUGE-SU automatic evaluation scores for the evaluation of our system. 

5.2 Dataset Used for Validation 

The performance of the proposed MDS summarizer has been validated using two 

publicly available datasets NIE and MDS [38]. Both the data sets consist of clusters of 

related news articles from. The NIE dataset consists of 48 clusters of news articles with 

an average of 8 articles per cluster. The MDS dataset consist of 6 clusters of news articles 

with an average of 2 documents each. The NIE dataset provide automatically clustered 

documents while the MDS dataset is clustered manually. 
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5.3 Results for Information Extraction Module 

We used ROUGE 1.5.5 [44] for the evaluation of Information Extraction module. 

ROUGE provides a number of options to evaluate the summary obtained from the system 

against the expert summary. We have used following parameters of ROUGE 1.5.5, 

description of each parameter is given in table 5.1. 

ROUGE-1.5.5.pl —n 4 -2 1 —u —c 95 —r 1000 -p 0.5 —f A —d 

Option Description 

-2 Compute skip bi-gram co-occurrence, also specify the maximum gap length 

between two words (skip-bi-gram) 

-u Compute skip bi-gram as -2 but include unigram 

-c Specify CF% (0 <= CF <= 100) confidence interval to compute. The default 

is 95% (i.e. CF=95). 

-d Print per evaluation average score for each system. 

-f Select scoring formula: 'A' _> model average (good for summarization 

task); 'B' => best model (good for machine translation) 

-n Compute ROUGE-N up to max-ngram length will be computed. 

-p Relative importance of recall and precision ROUGE scores. Alpha -> 1 

favors precision, Alpha -> 0 favors recall. 

-r Specify the number of sampling point in bootstrap re-sampling (default is 

1000). 

Smaller number will speed up the evaluation but less reliable confidence 

interval. 

Table 5.1: ROUGE Options Used for Summary Evaluation 

We present the results of our systems using different summary evaluation metrics of 

ROUGE method on the NIE dataset in Table 5.2. Figure 5.1 shows the graph for the 

recall values for ROUGE-1 (R-1), ROUGE-2 (R-2) and ROUGE-SU (R-SU). Figure 5.2 
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shows the graph for the precision values for R-1, R-2 and R-SU. Figure 5.3 shows the 

graph for the F-measure values for R-1, R-2 and R-SU. 

Clusters 	8 	16 	24 	32 	36 	40 	48 
ROUGE-1 

Recall 0.63327 0.61448 0.62452 0.62121 0.60638 1  0.6059 0.60541 
Precision 0.46537 0.42667 0.42574 0.42192 0.41005 0.41002 0.41376 
F-Measure 0.52803 0.49772 0.50022 0.4964 0.48357 0.48353 0.48664 

ROUGE-2 
Recall 0.3908 0.3596 0.35913 0.35891 0.33458 0.33279 0.32666 
Precision 0.28157 0.24822 0.24298 0.24136 0.22429 0.22287 0.22101 
F-Measure 0.322 0.29024 0.28614 0.28485 0.26522 0.26369 0.26079 

ROUGE-SU 
Recall 0.40619 0.38123 0.39312 0.38705 0.36727 0.36623 0.36544 
Precision 0.22482 0.18909 0.18766 0.18272 0.17167 0.17136 0.17361 
F-Measure 0.27354 0.24233 0.24357 0.23771 0.22448 0.22425 0.22722 

Table 5.2: Recall, precision and F-score value for R-1, R-2 and R-SU 

Figure 5.1: Recall Values for NIE-dataset at compression ratio 0.1 
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Figure 5.2: Precision Value for NIE-dataset at compression ratio 0.1 

Figure 5.3: F-Measure Value for NIE dataset at compression ratio 0.1 
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Figure 5.4: Recall Comparison for Proposed System with Unigram System 

Figure 5.4, Figure 5.5 Figure 5.6 shows the comparison of recall, precision and f-

measure between our system (bi-gram frequency) and the unigram system which uses the 

unigram (individual word) frequency for the information extraction task. Figure 5.4 show 

minimal improvement (R-1: 0.19%, R-2: 10.27% and R-SU: 0.85%) in the recall value 

from the unigram frequency system to bigram frequency system. The reason behind this 

is that ROUGE-1 uses single word co-occurrence for performance evaluation, still our 

system performs better (10% in case of R-2) which shows that more number of salient 

sentences present in expert summary are also present in the system summary than the 

unigram system. Figure 5.5 shows the comparison of precision values between both the 

systems. Here the proposed system (bigram system) significantly out-performs the 

unigram system (R-1: 28.93 %, R-2: 42.57%, R-SU: 64.62%). Here the high 

improvement in R-2 and R-SU shows that the sentences selected by the proposed system 

are the most salient sentences as they have high number of the bigram and skip-bigram 

co-occurrences with the expert summary. And the chances are high that same facts have 

been covered in both the summaries if we get high values for the bi-gram and skip bi-

grams co-occurrences as discussed in chapter 3. 
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Figure 5.5: Precision Comparison for Proposed System with Unigram System. 
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Figure 5.6: F-Measure Comparison for Proposed System with Unigram System 
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Figure 5.6 shows the overall comparison of the proposed system to the unigram 

system in terms of F-measure. The improvements gained are R-1: 14.44%, R-2: 26.48% 

and R-SU: 31.86%. These improvements show that our system works better than the 

unigram system and therefore co-relates well with the expert summaries. 

Figure 5.7 shows the f-measure comparison of the proposed Information Extraction 

system with the previously existing centroid based summarizer MEAD [43] at the 

compression rate of 0.2 on the MDS dataset. MEAD uses three measures to score the 

sentences the unigram frequency, the position of the sentences and the overlapping with 

the first sentence (or the title). It is very clear from these figures that our system performs 

better than MEAD for the information extraction task (R-1: 27.14%, R-2: 10.12% and R-

SU: 59.44%). It shows that the bi-gram feature is more important than the unigram 

feature as well as the location feature and title feature too. 

Figure 5.7: F-Measure Comparison for Proposed System and MEAD System 
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5.4 Results for Sentence Ordering Module 

To evaluate the performance of the sentence ordering module we have used Kendall's 

tau (T) coefficient [39] as the performance measure. Kendall's i for the ordering task is 

evaluated as follows. Let Y = yl ... yn be a set of items to be ranked. Let x and a denote 

two distinct orderings of Y, and S (7c, a) the minimum number of adjacent transpositions 

needed to bring n to o. Kendall's t is defined as: 

r = 1— {2S (ir a)}/ {N (N - 1)/2} 
where N is the number of objects (i.e., items) being ranked. As can be seen, Kendall's 

i is based on the number transpositions, that is, interchanges of consecutive elements, 

necessary to rearrange n into o. In Table 5.3 the number of transpositions can be 

calculated by counting the number of intersections of the lines. The ti between the 

Reference and System 1 is 0.82, between the Reference and System 2 is 0.24, and 

between the two systems is 0.15. The metrics ranges from between -1 (inverse ranks) to 1 

(identical ranks). 

Kendall's 2 seems particularly appropriate for the sentence-ordering tasks considered 

[39]. The metric is sensitive to the fact that some items may be always ordered next to 

each other even though their absolute orders might differ. It also penalizes inverse 

rankings. Comparison between the Reference and System 2 gives a 2 of 0.24 even though 

the orders between the two models are identical modulo the beginning and the end. This 

seems appropriate given that flipping the introduction in a document with the conclusions 

seriously disrupts coherence. 

AB C D E F G HI J 

Reference 
NV 
12 3 4 5 6 7 819 10 

System 1 2 1 5 3 4 6 7 9 10 

System 2 10 2 3 4 5 6 7 8 9 1 

Table 5.3: Reference order and system orders for a text consisting of 10 items 
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Figure 5.8 shows the results of the proposed sentence ordering module based on the 

sentence types. We have validated the proposed sentence ordering technique on the 

summaries obtained from the NIE clusters and calculated the Kendall's tau (r) coefficient 

for the ordering of each of these summaries against the ordering of the expert summaries 

for the same. We get an average Kendall's tau (r) score of 0.76351, which is close to I 

and verifies that our system's sentence ordering 70 to 80 % identical as of the expert's 

sentence ordering. 

Figure 5.8: Kendall's tau (c) coefficient Value for Ordered NIE Summaries 

Next we show the result of the sentence type discovery module used in the proposed 

sentence ordering technique to identify the IMRaD structure discussed in chapter 4 of the 

scientific texts. Figure 5.9 (a) shows the no of sentences that has not been identified by 

the system. Figure 5.9 (b) shows the no of sentences identified as introductory sentences. 

Figure 5.9 (c) shows the no of sentences identified as method sentences. Figure 5.9 (d) 

shows the no of sentences identified as result sentences. Figure 5.9 (e) shows the no of 
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sentences identified as conclusion sentences. Figure 5.9 (f) shows the no of sentences 

identified as scope and recommendation sentences. 
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Figure 5.9 (a): No of Sentences Not Identified 
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Figure 5.9 (b): No of Sentences Identified as Introduction Sentences 
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Figure 5.9 (d): No of Sentences Identified as Result Sentences 
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Figure 5.9 (e): No of Sentences Identified as Conclusion Sentences 

Figure 5.9 (f): No of Sentences Identified as Scope Sentences 
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Figure 5.10: Percentage of Identified Sentence Types 

Figure 5.10 shows the percentage of each type of identified sentences as well as the 

not identified sentences for the sentence type discovery module. The figure shows that 

our system identifies 90% of the sentences while 10% sentences are remained 

unidentified. This is due to the length and language of the sentences. Some sentences are 

very short and contain a language that is very s~ecifrc to the domain. These types of the 

sentences are not identified by the system until we add these specific words to the 

sentence type dictionaries. Next we observe that the introduction type sentences have the 

most no of shares in the summary (-36%). This shows that these type of sentences are 

very important to be included in a summary they introduce the reader about the topic, 

which is very important from the user point of view. The next highest percentage of 

identified sentence type is the conclusion sentences (-2 1 %). This shows that they are the 

second choice for the inclusion in summary. This is because they contain sentences which 

summarize the overall event or document and tell about the findings which are the 

common focus of the user after reading the introduction. Next is the method type (-17 %) 

which tells about the overall event or process and which the user reads after he finds the 

introduction and conclusion interesting to him. The results (-7%) and the scope (-7%) 
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are generally the sentences which the user likes to reads in the full articles rather than in 

summary as the main results are included in conclusion part, so these types of sentences 

are found less in summaries. These observations are quite useful from the summary 

extraction point of view and conform to the normal behavior of the user. 

With this chapter, the effectiveness of the proposed techniques information extraction 

and sentence ordering has been demonstrated. The results of both the phases of the 

proposed model have been illustrated. The comparison of the proposed bigram system 

with the existing unigram system, MEAD system and a Kendall's tau value of 0.76 shows 

that the proposed system works significantly better in extracting information and ordering 

the sentences to give a coherent summary. 
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Chapter 6 

Conclusion and Future Scope 

6.1 Conclusion 

In this dissertation we have proposed techniques for the information extraction and 

sentence ordering tasks in multi document summarization. Information extraction task 

deals with extracting the most salient sentences from the source documents for the 

inclusion in summary while the sentence ordering task deals with the representation of 

these sentences to form a coherent summary. The comparison of the proposed system to 

the traditional system is given in table 6.1 for both the tasks. 

Summarization Task Traditional Systems Proposed System 

Unigram 	(Individual word) Bi-gram (window of size 2 
Information Extraction 

frequency words) frequency 

Chronological 	ordering, Chronological 	ordering 

Sentence Ordering dependency network (graph) augmented 	with 	sentence 

based ordering type based ordering 

Table 6.1: Comparison of Features between the Traditional Systems and Proposed 

System 

The proposed idea for the information extraction is based on the hi-gram (window of 

size two important words) frequency rather than the traditional unigram frequency. We 

observed that the sequence of important words conveys more meaning than the individual 

words. If a sequence of important words in the system extracted summary co-occurs with 

a sequence in the expert summary than it is more probable that both the sequences 

contains same information, while if individual words co-occur there are less chances that 

same facts have been covered in system generated summary and the expert summary. The 

high precision value gained by our system over the unigram frequency system confirms 
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this observation. Overall the proposed information extraction module performs 14% 

better (F-Measure with equal weightage to recall and precision) than the information 

extraction systems that make use of unigram frequency. 

The idea behind the sentence ordering is based on the types of sentences that are 

generally found in scientific texts. We have used IMRaD structure for the study of such 

types of sentences in this dissertation. The proposed system gives sentence orderings 

which are 70 to 80% identical as the sentence orderings given by the experts. We 

observed an important fact during this step about the nature of the summary sentences. 

We find that the first choice for the summary sentences is the sentences which introduce 

the event, process or document topic to the user. The next choice for summary sentences 

is the conclusion sentences then follows the method sentences. The result and the scope 

sentences are not that much important from summary point of view. These observations 

can be used in the information extraction task. 

6.2 Future Scope 

The work can be extended in following ways: 

• Discovering new ideas or methods to generate semantically rich n-grams units which 

are more meaningful than the bi-gram unit. The problem with this can be that such n-

grams units (n>2) are not so frequent. This makes the extraction task more difficult. 

• The sentence ordering task,is limited to only scientific documents, it can be extended 

in other domains. To extend it to other domains we only need to find the types of 

sentences that frequent in the documents of that particular domain. 
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APPENDIX A: 

SUMMARY GENERATED BY PROPOSED SYSTEM, 

TRADITIONAL SYSTEM AND HUMAN EXPERT 

1. Summary generated by Proposed (bi-gram) System 

Moscow Mayor Yuri Luzhkov visited the blast site and said a terrorist act" appeared 

to be the most likely cause of the explosion on the southeast fringes of the capital, near 

the Moscow River. Other officials said the blast was caused by a gas leak or explosives 

possibly stored in the building -- which could bring the mayor under fire for negligence 

in enforcing building regulations. Sergei Bogdanov, press officer of the Moscow branch 

of the security service, said the blast may have been caused by explosives stored in the 

building. An anonymous caller told the Interfax news agency that the Moscow explosion 

and a Saturday night bomb blast in southern Russia were in response to Russia's military 

campaign against Islamic rebels in the southern territory of Dagestan. MOSCOW, 

Sept(AFP) - Russia's Federal Security Service (FSB) said a massive bomb had destroyed 

a Moscow apartment block in which at least people died and scores were wounded on 

Thursday, the third such attack to terrorize Russia in days. An anonymous caller to 

Interfax said the blast and a car-bomb earlier this week at a military apartment building in 

Dagestan were "our response to the bombing of villages in Chechnya and Dagestan." 

Emergency officials expressed hope that more survivors would be found even hours after 

the blast, while investigators said they would work through the night in the hunt for clues, 

news reports said. 

2. Summary generated by Traditional (unigram) System 

MOSCOW (AP) -- Authorities searched for survivors and clues after a massive 

explosion tore apart a nine-story apartment building today, killing at leastpeople and 

leaving dozens more feared dead. Moscow Mayor Yuri Luzhkov visited the blast site and 



Summary Generated by Proposed system, Traditional system and Human Expert 

said a terrorist act" appeared to be the most likely cause of the explosion on the southeast 

fringes of the capital, near the Moscow River. It was almost like something flew 

overhead and then exploded. Moscow has experienced natural gas explosions in the past 

because of the city's crumbling infrastructure, including a blast in Julythat killed six 

people. MOSCOW, Sept(AFP) - Russia's Federal Security Service (FSB) said a massive 

bomb had destroyed a Moscow apartment block in which at leastpeople died and scores 

were wounded on Thursday, the third such attack to terrorise Russia indays. "If it is 

confirmed that this is a terrorist act, and everything is leading that way, we shall have to 

acknowledge that the echo of war in Dagestan is sounding in Moscow," said Yury 

Luzhkov, Moscow's mayor. "Every minute counts. The federal authorities together with 

the Moscow city authorities, are already doing and will do all that is necessary to help the 

victims," Yeltsin said. They are all dead," she said. 

3. Summary generated by Human Expert 

MOSCOW (AP) -- Authorities searched for survivors and clues after a massive 

explosion tore apart a nine-story apartment building today, killing at least 23 people and 

leaving dozens more feared dead. Moscow Mayor Yuri Luzhkov visited the blast site and 

said a terrorist act" appeared to be the most likely cause of the explosion on the southeast 

fringes of the capital, near the Moscow River. Other officials said the blast was caused by 

a gas leak or explosives possibly stored in the building -- which could bring the mayor 

under fire for negligence in enforcing building regulations. An anonymous caller told the 

Interfax news agency that the Moscow explosion and a Saturday night bomb blast in 

southern Russia were in response to Russia's military campaign against Islamic rebels in 

the southern territory of Dagestan. MOSCOW, Sept 9 (AFP) - Russia's Federal Security 

Service (FSB) said a massive bomb had destroyed a Moscow apartment block in which at 

least 34 people died and scores were wounded on Thursday, the third such attack to 

terrorise Russia in 10 days. 2 Itar-Tass news agency, quoting an official of the 

emergencies ministry, said at least 34 people were killed and that there was no hope of 

finding survivors. 3 senior officials surmised that the blast was connected to the month-

long Islamic rebellion in the Caucasus republic of Dagestan. 
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APPENDIX B: 
SOURCE CODE 

FeatureTermExtraction. i ava 

import java.io.*; 
import java.io.File; 
import java.util.StringTokenizer; 
import java.util.*; 
class FeatureTermExtraction{ 
public static void main(String args[]){ 
try{ 
int lines=0,no_of words=0; 
Hashtable FeatureTerms = new Hashtable(); 
Hashtable Stop Words= new Hashtable(); 
Object frequency; 
int i=0; 
String str, strl, tmp, pos_tag; 
StringTokenizer s_tokenizer; 
FileReader f_name= new FileReader("../Data/input/KeyFeatures/featureterms_file.txt"); 
BufferedReader b_reader= new BufferedReader(f name); 
while((str=breader. readLineO) ! =null) 
{ 
i++; 
s_tokenizer=new StringTokenizer(str.trimO,"\n"); 
tmp=s tokenizer.nextTokenO; 
FeatureTerms.put(tmp, new Integer(0)); 
} 
b_reader.closeo; 
i=0; 
FileReader f namel= new FileReader("../Data/input/StopWords/english.stop"); 
BufferedReader b_reader1= new BufferedReader(f namel); 
while((str=b_reader l .readLine())!=null) 
{ 
i++; 
s_tokenizer=new StringTokenizer(str.trimO,"1n"); 
tmp=s tokenizer.nextTokenO; 
System.out.println(tmp); . 
Stop Words.put(tmp, new Integer(0)); 
} 
System.out.println("Total Stop Words " + i); 
b_readerl .closer; 
i=0; 
String dirname="../Data/intermediate/postagged"; 
File dir = new File(dirname); 

till 



Source Code 

if(dir.isDirectoryO) 
{ 
String s[]=dir.list(); 
for(int file_iter=0; file_iter<s.length; file_iter++) 

File file = new File(dirname+"/"+s[file_iter]); 
File Writer fout = new FileWriter("../Data/input/KeyFeatures/"+s[file_iter]); 
if(! frle.isDirectoryO) 
{ 
FileReader f reader— new FileReader(file.getAbsolutePathO); 
BufferedReader b_Reader— new BufferedReader(f reader); 
while((str—b_Reader.readLineO)!=null) 	. 

str--str.toLowerCaseO; 
s_tokenizer= new StringTokenizer(str, 
while(s tokenizer.hasMoreTokensO) 
{ 
str 1=s_tokenizer. nextTokenO.trimO; 
no of words++; 
i=strl .indexOf("/"); 
if(i> -1){ 
str=str l . sub string(O,i); 
pos_tag=str l . substring(i+1); 
if(!StopWords.contains(str) && (postag.startsWith("vb")Ilpos_tag.startsWith("nn"))). 
{ 
if((frequency=FeatureTerms.get(str))!=null) 
FeatureTerms.put(str,new Integer(((Integer)frequency).intValueO+1)); 
else 
FeatureTerms.put(str,new Integer(0)); 
} 
} 
} 
} 
Vector key_set= new Vector(FeatureTerms.keySeto); 
Object array[]= new Object[key_set.sizeO]; 
key_set.copylnto(array); 
Arrays.sort(array); 
for(i=0;i<array.length; i++) 

str=(String)array[i]; 
if((((Integer)(frequency=FeatureTerms.get(str))).intValueo)<(no_of words*.0025)) 
{ 
FeatureTerms.remove(str); 

else 
{ 



Source Code 

fout.write(str+"1n"); 
FeatureTerms.put(str, new Integer(0)); 

no of words=0; 
b_Reader. closeO; 
} 
fout.closeO; 

} 
}catch(Exception e) {System.out.println(e); } 
} 
} 

BieramMatrix.iava 

import java.io.*; 
import java.io.File; 
import java.util.StringTokenizer; 
import java.util.*; 
class BigramMatrix 

public static void main(String args[]) 
{ 
try 

int lines=0; 
Hashtable words = new HashtableO; 
int columns=O; 
Object frequency; 
int i=0; 
String str,strl, tmp,pos_tag; 
StringTokenizer s tokenizer; 
i=0; 
String dirname="../Data/intermediate/postagged"; 
String outdir="../Data/intermediate/TermDocumetMatrix" 
File dir = new File(dirname); 
if(dir.isDirectoryQ) 

String s[]=dir.listO; 
for(int file_iter=O; file_iter<s.length; file_iter++) 
{ 
File file = new File(dimame+"/"+s [file iter]); 
File Writer fout = new FileWriter(outdir+"/"+s [file iter]); 
FileReader f name= new FileReader("../Data/input/KeyFeatures/"+s[file iter]); 



Source Code 

BufferedReader b_reader= new BufferedReader(f name); 
while((str b_reader.readLineO)! null) 
{ 
s_tokenizer=new StringTokenizer(str.trimO,"1t"); 
tmp=s tokenizer.nextToken(); 
words.put(tmp, new Integer(0)); 
} 
b_reader.closeO;, 
if(! file.isDirectoryO) 

FileReader f_reader— new FileReader(file.getAbsolutePath()); 
BufferedReader b_Reader-- new BufferedReader(f reader); 
while((str=b_Reader.readLineO)! null) 
{ 
str=str.toLowerCaseO; 
s_tokenizer= new StringTokenizer(str, 
while(s_tokenizer.hasMoreTokensO) 
{ 
strl=s tokenizer.nextTokenO.trimO; 
i=strl .indexOf("/'); 
if(i > -1) { 
str=str l . substring(O,i); 
pos_tag=strl .substring(i+1); 
if(str.lengtho<3) 
continue; 
else if(pos_tag.startsWith("vb")IIpos_tag.startsWith("jj")Ilpos_tag.startsWith("nn")) 
{ 
if((frequency=words.get(str))!=null) 
words.put(str,new Integer(((Integer)frequency).intValueO+1)); 
else 
words.put(str,new Integer(0)); 
} 
} 
} 
Vector key_set= new Vector(words.keySetO); 
Object array[]= new Object[key_set.sizeO]; 
key_set.copylnto(array); 
Arrays.sort(array); 
for(i=0;i<array.length; i++) 
{ 
str=(String)array[i]; 
if(lines==0) 

columns=ar ay.length; 
} 
if((((Integer)(frequency=words.get(str))).intV alueO)>O) 

vi 
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{ 
words.put(str, new Integer(0)); 
} 
fout.write((Integer)frequency+","); 

fout.write("\n"); 
lines++; 
} 
b_Reader.closeO; 
System.out.println("file "+ file.getAbsolutePath() + " lines "+lines); 

fout.closeo; 
mat_decomposition(lines, columns, s[file_iter]); 
words.clearO;lines = 0; columns= 0; 

) catch(Exception e) { System.out.println(e); } 

static void mat_decomposition(int row, int col, String fname) 

try 
{ 
FileReader fname= new 
FileReader("../Data/intermediate/TermDocumetMatrix/"+frame); 
BufferedReader b_Reader= new BufferedReader(f name); 
String str; 
double[] []mat= new double[row] [col]; 
StringTokenizer s tokenizer; 
int i=0, j=0; 
while((str=bReader.readLineO)! =null) 
{ 
s_tokenizer=new StringTokenizer(str.trimo ,","); 
for(j=0;j<col;j++) 
{ 
mat[i] [j]=Integer.parselnt(s_tokenizer.nextToken().trimo); 
} 
i++; 

b Reader.closeO; 
System.out.println("shoulld be"+row+" "+col); 
System.out.println("present be"+i+" "+col); 
FileOutputStream fs= new 
FileOutputStream("../Data/intermediateBigramMatrix/"+fname); 
PrintWriter pw= new PrintWriter(fs, true); 

Matrix A= new Matrix(mat); 

vii 
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SingularValueDecomposition svd= A.svd(); 
Matrix U=svd.getUO; 
Matrix V=svd.getVQ; 
Matrix S= svd.getS(); 
Matrix X= U.times(S); 
Matrix T= X.times(X.transpose()); 
pw.println(T.getRowDimensionO); 
T.print(pw,2,1); 
pw.closeO; 
}catch(Exception e){System.out.println("in function mat_decomposition " + e);} 

SummaryExtraction.iava 

import java.io.*; 
import java.io.File; 
import java.util.StringTokenizer; 
import java.util.*; 
class BigramFrequencyComparator implements Comparator{ 
Hashtable word_tokens; 
Hashtable word_index; 
double[] [jbigram matrix; 
BigramFrequencyComparator(Hashtable wrds, Hashtable wrdindex, double[] 
bg_matrix) { 
word_tokens= wrds; 
word index=wrdindex; 
bigram_matrix=bg_matrix; 

public int compare(Object a, Object b){ 
double val= value(a)-value(b); 
if(val>O) 
return 1; 
if(val=0) 
return 1; 
return (-1); 
} 
double value(Object a){ 
String str=(String) a; 
str= str.toLowerCaseO; 
Object tokvalue; 
int[] indices= new int[150]; 
double sum=0, product=l, value,avg; 
int no_of_tokens=0, vi=0; 
StringTokenizer stokenizes= new StringTokenizer(str,"_ @$%!#&*+,U[]'1'=;:/\n"); 

viii 
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while(s tokenizer.hasMoreTokensO){ 
str= s_tokenizer.nextTokenO.trimO; 
if((tokvalue=word_tokens. get(str))!=null) { 
no of tokens++; 
value=((Double)tokvalue). double V alueO; 
sum-1-=value; 
if(value!=O) 
product*=value; 

if((tokvalue=word_index. get(str))! =null) { 
indices [vi++]=((Integer)tokvalue). intV alueo; 
} 
} 
if(product==l) 
product=0; 
avg=sum/no_of tokens; 
double relative sum=0, relative_product=l, relative_value, relative_avg; 
int row_no, col no, relative_no_of_tokens=0; 
for(int i=0; i<vi;i++){ 
for(int j=0; j <vi; j++){ 
row_no=indices[i]; 
col_no=indices[j; 
relative_no_oftokens++; 
relative_sum+=bigram_matrix[row_no] [col_no]/(j-i); 
if(bigram_matrix[rowno] [colno] !=0) 
relative_product*=bigram_matrix [row_no] [col_no]/(j -i); 
} 
} 
if(relative_product==1.0) 
relative_product=0; 
relative avg=relative sum/relative—no—of tokens; 
double alpha=.3, beta=.7; 
return (alpha*product + beta* relative-Product); 
} 
} 
class OrderComparator implements Comparator{ 
Hashtable Sent_list; 
OrderComparator(Hashtable s_list){ 
Sent list =s_list; 
} 
public int compare(Object a, Object b){ 
System.out.println( (Integer)Sent_list.get(a) + " "+ (Integer)Sent_list.get(b)); 
if(((Integer)Sentlist.get(a)).intValueo > ((Integer)Sent_list.get(b)).intValueo ) 
return 1; 
return -1; 
} 

ix 



Source Code 

class SummaryExtraction{ 
String directory; 
Hashtable word tokens; 
Hashtable Sents; 
Hashtable word_index; 
double [][]bigram_matrix; 
Hashtable Stop Word_ tokens; 
HashSet allsentences; 
int total sentences, abs_Summary_Size; 
intsent no; 

SummaryExtractionO { 
word tokens= new HashtableO; 
Sents= new HashtableO; 
word_index = new Hashtable(); 
Stop Word_ tokens = new HashtableO; 
directory="../Data/input/RawTextl"; //directory for source data set 
allsentences = new HashSet(); 
total_sentences=0; 
sent no=0; 

public void InitializeO{ 
try{ 
Object frequency; 
int i=0, freq=0, totalwords=0; 
double p_writer; 
String str,strl,pos tag, dimame; 
StringTokenizer s_tokenizer; 
FileReader f_name = new FileReader("../Data/input/StopWords/english.stop"); //stop 
word list 
BufferedReader b_reader = new BufferedReader(f name); 
while((str=b_reader.readLineO)!null) { 
str.trimO; 
StopWords.put(str,new Integer(0)); 
} 
b_reader.closeO; 

dirname="../Data/intermediate/postagged";// postagged files 
File Writer fout= new FileWriter("../Data/intermediate/noun_vb_jj.txt"); 
File dir= new File(dirname); 
String s[]=dir.listO; 
for(int file_iter=0; fi<s.length;fi++){ 
File file = new File(dirname+"/"+s[fi]); 
if(! file. i sDirectoryO) { 
FileReader f_reader= new FileReader(file.getAbsolutePathO); 
BufferedReader b Reader— new BufferedReader(f reader); 



Source Code 

while((str=bReader.readLineO)!=null) { 
total_ sentences++; 
str=str.toLowerCaseO; 
s tokenizer=new StringTokenizer(str," "); 
while(s_tokenizer.hasMoreTokenso) { 
str 1=s_tokenizer. nextToken().trimO; 
i=str l . l astlnd ex O f("/"); 
if(i!=-1){ 
str = strl.substring(O,i); 
pos_tag=str l . substring(i+l ); 
if(str.lengthO<31I StopWords.get(str)!=null) 
continue; 
else if(pos_tag.startsWith("vb")Ilpostag.startsWith("nn")Ilpos_tag.startsWith("jj")) 

totalwords++; 
if((frequency=word tokens.get(str)) =null) 
word_tokens.put(str, new Integer(0)); 
else 
word_tokens.put(str, new Integer(((Integer)frequency).intValueo +1)); 
} 

b Reader.closeO; 

Enumeration keys_set= word_tokens.keys(); 
while(keys_set.hasMoreElements()) { 
str=(String)keys_set.nextElement(); 
frequency= word_ tokens.get(str); 
freq=((Integer)frequency). int V alue(); 
p_writer=((double)freq)/totalwords; 
word tokens.put(str, new Double(p_writer)); 
if((int)(p_writer* 1000)!=0) 
fout.write(str+"\t"+freq+"\n"); 
} 
initializeword _index(s [file_iter] ); 
initialize_bigram_matrix(s[file_iter]); 
storeSentences(s[file_iter]); 
File Writer foutl= new File Writer("../Data/output/Summary-pro/nie-"+s [file _iter]); 
BigramFrequencyComparator cmp= new 
BigramFrequencyComparator(this.wordtokens,this.word index,this.bigram_matrix); 

Vector Sentences = new VectorO; 
Vector sortedSentences = new VectorO; 

Sentences.addAll(O, this.allsentences); 
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Collections.sort(Sentences, cmp); 
Collections.reverse(Sentences); 

abs_Summary_Size = (10 * total_sentences)/l00; 
System.out.println(s[file_iter] +"\t" + total_sentences +"\t "+ abs_Summary_Size); 

Iterator sortiter = Sentences.iteratorO; 
while (sortiter.hasNextO) { 
if (abs_Summary_Size = 0) sortiter.nextO; 
else { 
sortedSentences. add(sortiter.next()); 
abs_Summary_Size--; 

OrderComparator cmpr = new OrderComparator(Sents); 
Collections.sort(sortedSentences, cmpr); 
Iterator iter = sortedSentences.iteratorO; 
while (iter.hasNextQ) foutl .write(iter.next( + "\n"); 
foutl .closeO; 
word _tokens.clearQ;wordindex.clearO; allsentences.clearO;Sents.clear(); 
total _sentences=0;abs_Summary_Size=O; sent_no=0; 
} 
}catch(Exception e){e.printStackTraceO;} 
} 
public void initialize_bigram_matrix(String fname)throws Exception{ 
String str; 
StringTokenizer s tokenizer; 
FileReader f name = new FileReader('../Data/intermediateBigramMatrix/"+fname); 
BufferedReader b Reader= new BufferedReader(f name); 
int i=0, j=0; 
int sz= Integer.parseInt(b_Reader.readLineO.trimO); 
b_Reader.readLine(); 
bigrammatrix= new double[sz][sz]; 
double tot=0; 
while((str=b_Reader. readLineO)! =null) { 
s_tokenizer=new StringTokenizer(str.trim(),"\t"); 
if(! s_tokenizer.hasMoreElementsO) 
break; 
for(j=0zj<sz; j++){ 
bigram_matrix[i] [j]=Double.parseDouble(s_tokenizer.nextTokenO.trimO); 
ifgi! j) 
tot+= bigram_matrix[i][j]; 
else 
bigram_matrix [i] [j ]=0; 
} 
i++; 
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} 
b_Reader.closeO; 
for(i=0;i<sz;i++) 
for(j=0;j<sz;j++) 
bigram_matrix [i] [j ]/=tot; 
} 
public void initialize_word_index(String fname)throws Exception{ 
String str, tmp; 
StringTokenizer s tokenizer; 
FileReader fname= new FileReader("../Data/input/KeyFeatures/"+fname);//imp features 
BufferedReader b_reader=new BufferedReader(f name); 
int i=0; 
while((str=breader.readLineO)! =null) { 
s_tokenizer=new StringTokenizer(str.trimO, "\n"); 
tmp= s_tokenizer.nextTokenO.trimO; 
tmp=tmp.toLowerCaseo; 
word_index.put(tmp, new Integer(i++)); 
} 
b_reader.closeo; 
} 
public void storeSentences(String frame) 
{ 
try{ 
String str, dirname=directory; 
File file = new File(dirname+"/"+frame); 
if(! file. isDirectoryQ) 
{ 
FileReader f_reader= new FileReader(file.getAbsolutePathQ); 
BufferedReader b Reader= new BufferedReader(f reader); 
while((str=bReader.readLineO)!=null) 
{ 
storeSnt(str); 
} 
b_Reader.closeO; 
} 
}catch(Exception e){e.printStackTraceQ;} 
} 
public void storeSntl(String str){ 
allsentences.add(str); 
Sents.put(str, new Integer(sent_no++)); 
} 
public void storeSnt(String str){ 
intindex=0; 
while(str!=null) { 
index=O; 
do{ 
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index=str.indexOf(". ",index+l); 
if(index<50 && index>0) 
index = str.indexOf(".",index+l); 
if(index<0 11 index>(str.lengthO-10)) 
break; 
}while(!(Character.isUpperCase(str.charAt(index+3))I Character.isUpperCase(str.charAt( 
index+2)))); 
if(index>0){ 
allsentences. add(str. substring(O,index)); 
Sents.put(str.substring(0,index), new Integer(sent_no++)); 
str= str.substring(index+l ); 

else if(str!=null){ 
allsentences.add(str); 
Sents.put(str, new Integer(sent_no++)); 
str=null; 
} 
} 
} 
public static void main(String args[]){ 
try{ 
Summary does= new SummaryO; 
docs.InitializeO; 
System.out.println("store Sentences over"); 
BigramFrequencyComparator cmp= new 
BigramFrequencyComparator(docs.word_tokens,does.word_index,docs.bigram_matrix); 
Vector Sentences = new Vector(); 
Vector sortedSentences = new Vector(); 
Sentences. addAll(docs. allsentences); 
Collections.sort(Sentences, emp); 
Collections.reverse(Sentences); 
Iterator sortiter = Sentences.iteratorO; 
abs_Summary_Size = (10 * total_sentences)/100; 
System.out.println(total_sentences +"\t "+ abs_Summary_Size); 
while (sortiter.hasNextO) { 
if (abs Summary_Size = 0) sortiter.nextQ; 
else { 
sortedSentences.add(sortiter.nextO); 
absSummary_Size--; 
} 

Iterator iter = sortedSentences.iteratorO; 
while (iter.hasNext()) fout.write(iter.next() + "\n"); 
fout.close(); 
System.out.println("Summary Sentences Extracted"); 
}catch(Exception e){System.out.println("3rd "+e);} 

xiv 



Source Code 

Dictionary.iava 

import java.io.*; 
import java.io.File; 
import java.util.*; 
public class Dictionary 
private final int nrWords = 1000; 
private Hashtable dict[]; 
public Dictionary() { 
dict =new Hashtable[10]; 
dict[0] = new Hashtable(nrWords); 
dict[1] = new Hashtable(nrWords); 
dict[2] = new Hashtable(nrWords); 
dict[3] = new Hashtable(nrWords); 
dict[4] = new Hashtable(nrWords); 
dict[5] = new Hashtable(nrWords); 
dict[6] = new Hashtable(nrWords); 
dict[7] = new Hashtable(nrWords); 
dict[8] = new Hashtable(nrWords); 
dict[9] = new Hashtable(nrWords); 
addO; 

public boolean contains(String phrase, int dictNo) { 
if(dict[dictNo].containsKey((phrase.toLowerCaseO).trimO)) { 
return true; 

return false; 

public void addO{ 
try{ 
String dimame="Dictionaries"; 
File dir= new File(dirname); 
String s[]=dir.listO; 
for(int file_iter=0; file_iter<s.length;file_iter++){ 
File file = new File(dirname+"/"+s[fileiter]); 
if(!file.isDirectoryO ){ 
FileReader f_reader-- new FileReader(file.getAbsolutePatho); 
BufferedReader b_Reader= new BufferedReader(f reader); 
String str; 
while((str=bReader. readLineO)! =null) { 
String commentstart = new String("//"); 
String emptystring = new String(""); 
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if(!str.startsWith(commentstart) && !str.equals(emptystring)) 
dict[file_iter].put((str.toLowerCaseo).trim(), new Integer(1)); 
} 
} 
b_Reader.closeo; 
} 
} 
}catch(Exception e){ System.out.println(e+" Dictionary");}; 
} 
} 

GetDictionarvWords.iava 

import java.io.*; 
import java.io.File; 
import java.util.StringTokenizer; 
import java.util.*; 
class GetDictionaryWords 
{ 
public static void main(String args[j) 
{ 
try 
{ 
int lines=0,no_of_words=0; 
Hashtable FeatureTerms = new Hashtable(); 
Hashtable Stop Words= new HashtableO; 
int columns=0; 
Object frequency; 
int i=0; 
String str,strl, tmp,pos_tag,first,second,third; 
first—""; second=' ;third" 
StringTokenizer s_tokenizer; 
FileReader f_namel= new FileReader("../Data/input/StopWords/english.stop"); 
BufferedReader b_readerl= new BufferedReader(f namel); 
while((str=b_reader 1.readLineO)! mull) 
{ 
s_tokenizer=new StringTokenizer(str.trimo,"fin"); 
tmp=s_tokenizer.nextToken(); 
Stop Words.put(tmp.trimO, new Integer(0)); 
} 
b_reader 1 .closeO; 
String dirname="../Data/intermediate/Dictionary/Training"; 
File dir = new File(dirname); 
if(dir.isDirectoryO) 
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String s[]=dir.listO; 
for(int file_iter=0; file_iter<s.length; file_iter++) 
{ 
File file = new File(dirname+"/"+s [file iter]); 
File Writer fout = new File Writer("../Data/intermediate/Dictionary/"+s [file _iter]); 
if(! file. i sDirectory()) 
{ 
FileReader f reader= new FileReader(file.getAbsolutePatho); 
BufferedReader b_Reader= new BufferedReader(f reader); 
while((str=b_Reader.readLineO)!=null) 
{ 
str=str.toLowerCaseO; 
s_tokenizer= new StringTokenizer(str, " %!&+,()[]\'= ;:An"); 
if(no_of words=0){ 
first=s tokenizer.nextTokenO.trimO; 
second=s_tokenizer.nextTokenO.trimQ; 
} 
while(s_tokenizer.hasMoreTokensQ) 
{ 
third=s_tokenizer.nextTokenO.trimO; 
strl=first; 
if(str l .trimO!=". ") { 
no of words++; 
if(strl.lengthO>2 && StopWords.get(strl)=null){ 
if( (frequency=FeatureTerms.get(str 1))!=null) 
FeatureTerms.put(strl,new Integer(((Integer)frequency).intValue()+1)); 
else 
FeatureTenns.put(strl,new Integer(0)); 
} 
strl=first+" " +second; 
if((frequency=FeatureTerms.get(strl ))! =null) 
FeatureTerms.put(strl,new Integer(((Integer)frequency).intValueo +l )); 
else 
FeatureTerms.put(strl,new Integer(0)); 
strl=first+" "+second+" "+third; 
if((frequency=FeatureTerms.get(str l ))!=null) 
FeatureTerms.put(strl,new Integer(((Integer)frequency).intValueo +1)); 
else 
FeatureTerms.put(strl,new Integer(0)); 
} 
first= second; 
second third; 
} 
} 
Vector key_set= new Vector(FeatureTerms.keySetQ); 
Object array0= new Object[key_set.sizeQ]; 
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key_set.copylnto(array); 
Arrays.sort(array); 
for(i=0;i<array.length; i++) 
{ 
str=(String)array[i]; 
if((((Integer)(frequency=FeatureTerms.get(str))).intValueo)>no_of words*.0001) 
fout.write(str+"fin"); 
} 
b_Reader.closeO; 
} 

FeatureTerms.clearQ;no_of words=0; 
fout.closeO; 
} 
} 
}catch(Exception e){e.printStackTraceO;} 
} 
} 

Ordercomuarator. i ava 

import java.util.*; 
public class OrderComparator implements Comparator 
public OrderComparator(){ 

public int compare(Object ol, Object o2) { 
double ol SentWgt = ((Sentence)o 1). getSentenceType(); 
double o2SentWgt = ((Sentence)o2).getSentenceType(); 

if (01 SentWgt > o2SentWgt) return 1; 
else if (olSentWgt < o2SentWgt) return -1; 
else return 0; 
} 
} 

Sentence.lava 

import java.util.*; 
public class Sentence{ 
private VectortheSentence; 
private Stringsent; 
private int sentenceType; 
public int typeScore[]; 
public Sentence(String sentence) { 
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typeScore= new int[10]; 
theSentence = new VectorO; 
String[] words = sentence.split("\\sl,J;I:I\\t"); 
for (int i = 0; i < words.length; i++) 
if (words[i].length() != 0) { 
theSentence.add(new Word(words[i].trimO)); 
} 
} 
sent = sentence; 
calcTypeo; 
} 
public void calcTypeO 
{ 
Word curword, hi _word, tri word; 
String first, second, third=, 
int max= -1; 
ListIterator listiter = theSentence.listlteratorO; 
first = ((Word)listiter.nextO).getWordO; 
second = ((Word)listiter.next()).getWordO; 
while (listiter.hasNextO) { 
third =((Word)listiter.next()).getWord(); 
curword = new Word(first); 
bi_word = new Word(first +' "+ second); 
tri_word = new Word(first +" "+second + " "+ third); 
for(int i=0; i<10; i++){ 
if(curword.isType(i) 11 bi_word.isType(i) tri_word.isType(i)) 
{ 
typeScore[i]++; 
if(typeScore[i]>=max) { 
max=typeScore[i]; 
sentenceType=i; 
} 
} 
} 
first = second; 
second = third; 
} 
for(int i=0; i<10; i++){ 
if((new Word(first)).isType(i) (new Word(second)).isType(i) I (new Word(first+ " " + 
second)).isType(i)) 
{ 
typeScore[i]++; 
if(typeScore[i]>=max) { 
max=typeScore[i]; 
sentenceType=i; 
} 
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public int getSentenceType() { 
return sentenceType; 
} 
public String getSentenceString() 
return sent; 

public Vector getWords() 
return theSentence; 

SentenceOrdering.i ava 

import java.io.*; 
import java.util.*; 
class SentenceOrdering 

static Vector sentences; 
public static void orderSentencesO{ 
try{ 
FileWriter fout= new FileWriter("../Data/output/test/single-word/Final-A.spl"); 
Listlterator listiter = sentences.listlteratorO; 
Collections.sort(sentences, new OrderComparatorO); 
while (listiter.hasNextO) { 
Sentence s1= (Sentence)listiter.nextO; 
fout.write(sl.getSentenceStringQ + "." + sl.getSentenceType() + "\n"); 
} 
fout.closeO; 
}catch(Exception e){System.out.println(e+"SentenceOrdering 2");} 
} 
public static void main(String args[]) 
String sent; 
try 

sentences = new VectorO; 
String dirname="../Data/output/test/single-word/A.sent"; 
File file= new File(dirname); 
FileReader f_reader-- new FileReader(file.getAbsolutePathO); 
BufferedReader b_Reader= new BufferedReader(f reader);int i=0; 
while((sent=b_Reader.readLineO)!=null) { 
sentences.add(new Sentence(sent)); 
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}catch(Exception e){System.out.println(e +" SentenceOrdering:main ");} 
orderSentencesO; 

Word.iava 

public class Word { 
private String the Word; 
private boolean type[]; 
static Dictionary diets = new Dictionary();; 
public Word(String word) 
type = new boolean[1 O]; 
the Word = word; 
calcTypeO; 
} 
public void calcTypeO 
for(int i=0; i<10; i++)'{ 
type[i]=false; 
if(dicts.contains(theWord,i)){ 
type[i]=true; 
} 
} 
} 
boolean isType(int i){. 
return type[i]; 
} 
public String getWord() 
return the Word; 
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