
A DISSERTATION
Swbr .d to pa lS fvlSnwt of ft

r.qufrumnhv for tM — of ti egn.
Of

MASTER OF TECHNOLOGY
in

COMPUTER SCIENCE AND ENGINEERING

By
EMIT OUUIN

As

DEPARTMENT OF ELECTRONICS AND COMPUTER LNG
INDIAN INSTITUTE OF TECHNOLOGY ROORKEE

ROORKEE 447157 (INDIA)
JUNE. 200e

F 	y

CANDIDATE'S DECLARATION

I hereby declare that the work, which is being presented in this dissenation report, entitled "A
Novel Approach to Information Extraction and Sentence Ordering In h1w Dommaent
3 	tioa", is being submitted in partial fulfillment of the requirements for the award of
the degree of Master of Technology in Computer Science & Fes, in the Department
of Electronics and Computes Engineering, Indian Institute of TecMwlogy, Roo&ee and is an
authentic record of my own work, carried out from July 2007 to JiS 2OO8 rnder guidance and
supervision of Dr. R. C. Jorhi, Professor, Department of Electronics and Computer
Engineering, Indian Institute of Technology, Roorkee.

The results embodied in this dissertation have not been submitted for the award of any other,Degn
or Diploma.

Date:

Place: Reorkee 	 (AMIT GUSAIN)

CERTIFICATE

This is to certify that the statement made by the candidate is correct to the beg of my knowledge
and belief.

t C'
Protaser, MC 	,
Indian tamo[bed eloVt
Roorkee — 24? b 7, (INDIA)

i

ACKNOWLEDGEMENT

At the outset, I express my heartfelt gratitude to Dr. R. C. Joshi, Professor, Department of

Electronics and Computer Engineering at Indian Institute of Technology Roorkee, for his

valuable guidance, support, encouragement and immense help. I consider myself extremely

fortunate for getting the opportunity to learn and work under his able supervision. I have deep

sense of admiration for his innate goodness and. inexhaustible enthusiasm. It helped me to work

in right direction to attain desired objectives. Working under his guidance will always remain a

cherished experience in my memory and I will adore it throughout my life.

I also extend my sincere thanks to Dr. D. K. Mehra,; Professor and Head of the Department of

Electronics and Computer Engineering, and Mr. Raj, Lab Assistant, Information security Lab,

Department of Electronics and Computer Engineering, for providing facilities for the work.

My sincere thanks are also due to rest of the faculty in the Department of Electronics and

Computer Engineering at Indian Institute of Technology Roorkee, for the technical know how

and analytical abilities they have imbibed in us which have helped me in dealing with the

problems I encountered during the project.

I am greatly indebted to all my friends, who have graciously applied themselves to the task of

helping me with ample morale support and valuable suggestions. Finally, I would like to extend

my gratitude to all those persons who directly or indirectly helped me in the process and

contributed towards this work.

I dedicate this work to my family for their support and encouragement throughout my life.

Amit Gusain

M. Tech. (CSE)

ABSTRACT

With the rapid growth of the World Wide Web and electronic information

services, the amount of information is growing at an incredible rate. One problem that

arises due to this exponential growth is the problem of information overload. No one

has time to read everything, yet we often have to make critical decisions based on

what we are able to assimilate. With summaries, we can make effective decisions in

less time. Thus the technology of automatic text summarization is becoming essential

to deal with the problem of information overload.

Text summarization is the process of extracting the most important

information from a single document or from a set of documents to produce a short and

information rich summary for a particular user or task. Multi-document

summarization is an automatic procedure for extraction of information from multiple

texts written about the same topic. Most of the MDS systems have been based on an

extraction method, which identifies key textual segments (eg sentences or paragraphs)

in source documents and selects them for the summary. It is important for such MDS

systems to determine a coherent arrangement (ordering) of the textual segments

extracted from the source documents in order to reconstruct the text structure for

summarization.

In this dissertation work we have focused on the two key tasks of the

summarization, information extraction and sentence ordering. A multi document

summarization method based on frequency of bi-grams (window of size 2 words) is

used for the information extraction task. As the sentences are selected based on their

importance from the documents they lose the cohesion and the ordering of the

information in the summary thus loosing the readability of the summary. To deal with

this problem, we propose a new method for sentence ordering based on the types of

the sentences. Our results show that the proposed multi document summarizer

approach works significantly well in extracting important content units and improving

the readability of the summary.

tt

CONTENTS

Candidate's declaration and certificate i

Acknowledgement ii

Abstract iii

Table of Contents iv

List of Figures vii

List of Tables viii

Chapter 1: Introduction

1.1 Introduction

1.2 Problem Statement 	 5

1.3 Organization of Dissertation 	 5

Chapter 2: Background and Literature Survey 7

2.1 A Generic Framework for Multi Document Summarization (MDS) 7

2.2 Information Extraction Approaches 8

2.3 Desired Features of MDS 9

2.4 Types of Multi Document Summarization System 10

2.4.1 	Clustering Based MDS 11

2.4.2 	Centroid Based MDS 11

2.4.3 	Graph Based MDS 12

2.5 Related work in Information Extraction 13

2.6 Significance of Sentence Ordering 15

2.7 Sentence Ordering Techniques 16

2.8 Research Gaps 19
2.8.1. 	Information Extraction 19

2.8.2 	Sentence Ordering 20

iv

Chapter 3: Proposed Design for Information Extraction Module in MDS

3.1 Framework for Information Extraction Module

3.2 Implementation of Information Extraction Module

3.2.1. Input and Preprocessing

3.2.2. Computing Bi-gram matrix

3.2.3. Scoring and Summary Extraction Block

Chapter 4: Proposed Design for the Sentence Ordering Module in MDS

4.1 A Study of Sentence Types

4.1.1 Introduction

4.1.2 Methods

4.1.3 Results

4.1.4 Conclusion and Scope

4.2 	Sentence Type Dictionaries

4.3 	The Framework of Sentence Ordering Module

4.3.1 Sentence Type Discovery

4.3.2 Ordering

Chapter 5: Results and Discussion

5.1 ROUGE: Evaluation Method for Automatic Summarization

5.2 Dataset Used for Validation

5.3 Results for Information Extraction

5.4 Results for Sentence Ordering Module

Chapter 6: Conclusion and Future Scope

6.1 Conclusion

6.2 Future Scope

References 	 56

22

22

24

24

25

29

31

31

33

33

33

34

34

35

35

37

k3:

39

40

41

47

54

54

55

v

List of Figures

Fig No Description Page No
2.1 Framework for Multi Document Summarization System 7

3.1 Headlines from different newspapers for same event 22

3.2 Proposed Framework for Information Extraction 23

3.3 The Algorithm for the Information Extraction Module 24

3.4 Computing bi-gram Matrix 25

4.1 Text organization of published articles in the British Medical Journal 32

4.2 Sentence Ordering Module 35
4.3 Framework for Sentence Type Discovery 36
4.4 Algorithm for identification of Sentence Type 36

4.5 Framework for Sentence Ordering phase 38

5.1 Recall Values for NIE-dataset at Compression Ratio 0.1 42

5.2 Precision Value for NIE-dataset at compression ratio 0.1 43
5.3 F-Measure Value for NIE dataset at compression ratio 0.1 43
5.4 Recall Comparison for Proposed System with Unigram System 44
5.5 Precision Comparison for Proposed System with Unigram System 45
5.6 F-Measure Comparison for Proposed System with Unigram System 45
5.7 F-Measure Comparison for Proposed system and MEAD System 46
5.8 Kendall's tau (r) coefficient Value for Ordered NIE Summaries 48
5.9 (a) No of Sentences Not Identified 49
5.9 (b) No of Sentences Identified as Introduction Sentences 49
5.9 (c) No of Sentences Identified as Method Sentences 50
5.9 (d) No of Sentences Identified as Result Sentences 50
5.9 (e) No of Sentences Identified as Conclusion Sentences 51
5.9 (f) No of Sentences Identified as Scope Sentences 51
5.10 Percentage of Identified Sentence Types 52

vii

List of Tables

Table No Description Page No

2.1 Surface, entity and discourse- level features for MDS 9

2.2 Features Comparison of Commercial Summarizer Systems 14

2.3 Sentence Ordering techniques 17

2.4 Data and Evaluation for Sentence Ordering Techniques 18

3.L Penn Treebank Tagset 26

3.2 Tenn-Document Matrix for Figure 3.1 28

5.1 ROUGE Options Used for Summary Evaluation 41

5.2 Recall, precision and F-score value for R-1, R-2 and R-SU 42

5.3 Reference order and system orders for a text consisting of 10 47

items
6.1 Comparison of Features between the Traditional Systems and 54

Proposed System

viii

Chapter 1

INTRODUCTION

1.1 Introduction

In the recent years there has been a well-publicized explosion of information

available over the Internet, and a corresponding increase in its usage. Everyday we are

bombarded with reams of information in all forms (eg. e-mails, papers, books, magazine

articles, web pages etc.). The storage cost is very low and the storage capacity is

almost limitless, resulting in billions of documents available on web. A study

conducted by the University of California at Berkeley estimates that almost 800

Megabytes of stored information are produced per person, per year [1]. The production

of information has increased to the extent that we are now seen to be in the midst of an

information explosion. As a result of this explosion of information, we are experiencing a

state called "Information Overload". The growing number of electronic articles,

magazines and books that are available on-line today are putting more pressure on

people, as they struggle with information overload. No one has time to read

everything, yet we often have to make critical decisions based on what we are able to

assimilate. The technology of automatic text summarization is becoming indispensable to

deal with this problem and reduces the pressure of reading full articles. Summarization,

which is the art of abstracting key content from one or more information sources, has

become an integral part of everyday life. For example people keep them up to date of

world affairs by listening to news (summary of world affairs). They base investment

decisions on stock market updates (summary of the market). They go to movies largely

on the basis of reviews (summary of comments).

Automatic summarization [2] is the process of distilling the most important
information from a source to produce an abridged version for a particular user or task.
Human generates a summary of a text by understanding it with the deep semantic

-1-

Introduction

processing using huge domain/background knowledge. It is too difficult for the

current computer to simulate this process. Therefore, most automatic summarization

programs analyze a text statistically and linguistically, determine important

sentences, and generate a summary text from these important sentences. The goal of

the automatic text summarization is to provide a user with a presentation of the

substance of a body of material in a coherent and concise form to save time and

effort. Ideally, a summary should contain only the "right" amount of the interesting

information and it should omit all the redundant and "uninteresting" material. The

summary produced by automatic summarization can be of two types - generic or

user specific [3]. The generic summaries contain the overall . most salient

information from the original documents while the user specific summaries contain

the most relevant information depending upon the choice and interests of the user.

Automatic text summarization can be broadly categorized in two types based on

the number of source documents: Single Document Summarization and Multi

Document Summarization (MDS) [4]. As the name suggests in single document

summarization there is only one large source document, while in case of multi

document summarization the information is distributed over multiple source

documents. Single document summarization is easy as compared to multi document

summarization task. As in single document summarization there is no issue of

multiple languages, multiple input format, writing style, redundancy of information

etc [5]

The multi-document summarization [6] task has turned out to be much more

complex than summarizing a single document, even a very large one. This difficulty

arises from inevitable thematic diversity within a large set of documents. These

documents can be in different languages, written by different authors having

different background knowledge and different document formats. A good

summarization technology aims to combine the main themes with completeness,

readability, and conciseness [7]. An ideal multi-document summarization system

does not simply shorten the source texts but presents information organized around

-2-

Introduction

the key aspects to represent a wider diversity of views on the topic. When such

quality is achieved, an automatic multi-document summary is perceived more like

an overview of a given topic.

There are two types of situations in which multi-document summarization would

be useful: (1) the user is faced with a collection of dissimilar documents and wishes

to assess the information landscape contained in the collection, or (2) there is a

collection of topically-related documents, extracted from a larger more diverse

collection as the result of a query, or a topically-cohesive cluster. In the first case, if

the collection is large enough, it only makes sense to first cluster and categorize the

documents, and then summarize each cohesive cluster. Hence, a "summary" would

constitute of a visualization of the information landscape, where features could be

clusters or summaries thereof. In the second case, it is possible to build a synthetic

textual summary containing the main point(s) of the topic, augmented with non-

redundant background information and/or query-relevant elaborations. This is the

focus of dissertation work reported here, including the necessity to represent the

information in readable ordering the selected from the multiple related documents.

Multi-document summarization creates information reports that are both concise

and comprehensive. With different opinions being put together & outlined, every

topic is described from multiple perspectives within a single document. While the

goal of a brief summary is to simplify information search and cut the time by

pointing to the most relevant source documents [8], comprehensive multi-document

summary should itself contain the required information, hence limiting the need for

accessing original files to cases when refinement is required. Automatic summaries

present information extracted from multiple sources algorithmically, without any

editorial touch or subjective human intervention, thus making it completely
unbiased.

The multi document summarization can be categorized along two different

dimensions: abstract-based [3, 9, 10] and extract-based [11, 12, 13, 14]. An extract-

-3-

Introduction

summary consists of sentences extracted from the document while an abstract-

summary may employ words and phrases that do not appear in the original

document. The extractive summarization tries to select a number of indicative

sentences, passages or paragraphs from the original document according to a target

summarization ratio, and then sequence them together to form a summary. The

abstractive summarization, on the other hand, tries to produce a concise abstract of

desired length that can reflect the key concepts of the document. The latter seems to

be more difficult, and most of the recent approaches have focused more on the

extraction . based summarization. In this dissertation we have focused on the

information extraction based generic multi document summarization. Information

extraction is a shallow approach in which, statistical heuristics are used to identify the

most salient sentences of a text. Information extraction [14] is a low-cost approach

compared to more knowledge-intensive deeper approaches which require additional

knowledge bases such as linguistic knowledge. In short, information extraction works as

a filter which allows only important sentences to pass. Sentence abstraction is the

natural language processing task of automatically generating natural language

sentences from a set of source documents [16]. The sentences generated by this

technique contain the over-all information of all the source documents. But it is very

difficult to achieve a high degree.of accuracy in sentence abstraction tasks as the

computer systems do not have deep semantic knowledge and ability to understand like

humans have.

Most MDS systems are based on the information extraction method, which extracts

the most important sentences in source documents and include them into the summary

document [15]. So for such system it is very much important to provide a coherent

ordering of the sentences extracted from different source documents in order to make the

summary meaningful. Sentence ordering, which affects coherence and readability, is of

particular concern for multi-document summarization, where different source articles

contribute sentences to a summary.

-4-

Introduction

In this dissertation work techniques for the above two key tasks (Information

Extraction and Sentence Ordering) of the generic multi document summarization

has been proposed. Information extraction based on bi-gram frequency (discussed in

chapter 3) has been selected as a method to extract the important content out of the

multiple source documents. A sentence ordering technique which is based on the

sentence types. (discussed in chapter 4) and the chronological information of the

documents has also been proposed in this dissertation.

1.2 Statement of the Problem

The dissertation work can be divided in to solving two problems of the multi

document summarization processes: first, identifying the most important

information that ought to be included in the summary, and second, ordering the

information that has been identified in the first process to increase the readability of

the summary. The first process is referred to as the Information extraction process

and the second is referred as the sentence ordering process.

1.3 Organization of the Dissertation

This report comprises of six chapters including this chapter that gives the

overview of the automatic summarization systems and discuss about the need

motivation for such systems. It also summarizes the problem statement for the

dissertation work. Rest of the dissertation report is organized as follows.

Chapter 2 gives the background and literature survey of the various MDS systems

in the field of information extraction. It also presents the existing methods for

sentence ordering. It also describes the framework of generic multi document

summarization system and the research gaps in information extraction and sentence
ordering techniques.

-5-

Introduction

Chapter 3 gives the description of proposed framework for the information

extraction module. It also describes the tools used for preprocessing of the input text

and creating and reducing the term-term matrix.

Chapter 4 describes the proposed framework for the sentence ordering module for
the MDS system with detailed description of the sentence types and dictionaries

used.

Chapter 5 discusses the evaluation metrics, the data set used for the testing

purpose, the performance of the system, the tables and graphs depicting the

performance. It also presents summaries produced by our system along with the

human generated summaries for the same set of documents.

Chapter 6 concludes the findings of the dissertation work and gives suggestion for

future work.

-6-

Chapter 2

Background and Literature Survey

2.1 A Generic Framework for Multi Document Summarization (MDS)

The process of multi document summarization is not a single shot process rather it is
divided in to a series of sub processes, which includes extraction of information,
information representation, sentence ordering, and summary generation. The main

problems an MDS need to solve are information extraction (i.e. deciding and extracting

from the input documents that are important enough to be included in a summary) and

sentence ordering (i.e., deciding the order in which the extracted sentences from the input

documents should appear in the summary). Systems that go beyond sentence extraction

and use generation techniques to reformulate or simplify the text of the original articles

also need to decide which simplified sentences should be chosen. So information

extraction is an essential component for all multi document summarizers. When

sentences are taken out of context and placed one after another in automatic summaries,

they may convey meaning that are not at all intended in the original text, presenting

misleading or false information. So sentence ordering is also the important component of
the MDS systems.

Multiple 	 Extracted Input 	Information 	 Sentence
Sources 	Extraction 	Sentences 	Ordering 	v~

Figure 2.1: Framework for Multi Document Summarization System

-7-

Background and Literature Survey

The generic framework for the Multi Document summarization system is shown in

Figure 2.1. It consists of two processes: Information extraction module and Sentence

ordering module. Information Extraction process, takes a cluster of documents with the

same theme as input and extracts the important sentences (or information) to be included

in the summary. Sentence ordering process coherently orders the sentences which the

information extraction process selects.

2.2 Information Extraction Approaches

There are several ways in which one can characterize different approaches to

information extraction based summarization. One useful way is to examine the level of

processing. Based on this, summarization can be characterized as approaching the

problem at the surface, entity, or discourse levels [2].

Surface-level approaches [11, 12, 13, 17, 18] tend to represent information in terms of

shallow features which are then selectively combined together to yield a salience function

used to extract information. These features include frequency, location, background, cue

words and phrases. Entity-level approaches [20, 21] build an internal representation for

text, modeling text entities and their relationships. These approaches tend to represent

connectivity in the text to help determine what is salient. Relationships between entities

include similarity, proximity, co-occurrence, thesaural relationships among words

(synonymy, antonymy, parts-of relations), logical relations (agreement, contradiction, and

consistency) syntactic relations. Discourse-level approaches [16, 22] model the global

structure of the text, and its relation to communicative goals. This structure can include

format of the document, threads of topics as they are revealed in the text, and rhetorical

structure of the text, such as argumentation 6r narrative structure. These are the primary

examples of the approaches, and many systems adopt a hybrid approach (e.g., taking a

discourse level approach where the smallest segments are surface strings or entities).

Table 2.1 shows the list of features and their description for all three approaches in brief

[2].

-8-

Background and Literature Survey

Approach Feature Descrjptton

Surface Level

Frequency Statistically salient terms

Location Sentence position in paragraph, paragraph

position in text

Title Headline, topic

Query User interest

Cue words/ phrases Bonus terms, stigma terms

Entity level

Similarity Vocabulary overlap

Proximity Distance between text units

Thesaural relationship Synonymy, parts-of relationship

Syntactic relationship Based on parse trees

Discourse level

Format of document Topic classification

Threads of topics Topic segmentation

Document 	discourse

structure

Rhetorical structure

Table 2.1: Surface, entity and discourse-level features.

2.3 Desired Features of a MDS System

The task of a multi document summarization system is to generate a short paragraph

that presents the important information present in the given clusters of input documents

on same topic in a coherent (properly ordered) form. Besides keeping the summary short,

the summarization process must also preserve the information contained in the original

document [8]. The most desired features of a multi document summarization system are

text compression, information preservation, text cohesion and redundancy removal.

Text Compression: The main feature that a multi-document summarization system is

required to do is shortening of the original text as per the interest of the user. This would

naturally mean the system should ideally be able to adjust the length of the output

according to the compression rate given by the user. For example, if the compression rate

-9-

i 	Background and Literature Survey

given is 20%, then the system must compress a 1000 sentences document to 200

sentences document.

Information Preservation: While keeping the output text short, the system should be

able to preserve as much salient information as possible. Hence the system needs to make

decisions to choose from the document cluster, competing sentences to be included in the

summary. The sentences with better salience scores than a given threshold value (lower

threshold value for information extraction phase) are selected for summary. The threshold

value depends on the size and structure of the source documents.

Summary Cohesion: An ideal multi-document summarization system must produce a

syntactically correct and coherent summary. Thexe should not be abrupt shifts of topics in

the summary and the flow and order of the summary sentences must be cohesive. This

requires the summary should not contain grammatically incorrect sentences and must be

ordered in a readable form. Unless the system is pure sentence picker, it should take care

of the syntax of the sentences included in the resulting summary.

Redundancy Removal: The multi-document summarization system should have the

ability to eliminate the redundancy among the sentences in the summary. There should

not be more than one sentence depicting the same information. So a sentence, that is to be

included in the summary, must be first cross checked with the sentences already included

in the summary for any kind of redundancy.

2.4 Types of Multi Document Summarization Systems

Different MDS systems use different measures in assigning the salience score to the

sentences. Based on the methods the MDS systems employ in assigning salience score to

the sentences, they can broadly be classified into three categories as centroid based,

clustering based and graph based summarization. Here we briefly describe the general

methods employed in assigning salience scores for the sentences in each of these three

categories.

-10-

Background and Literature Survey

2.4.1 Clustering Based MDS

One of the first and very popular approaches to MDS was cluster topically related

sentences from the input and select one sentence from the cluster as a representative of

the topic in the summary [31]. These summarizers obviously try to exploit frequency on

the sentence level, clusters with more sentences considered more important. Again, a

hidden parameter can change the results considerably since if lower similarity between

sentences in the cluster is required, bigger clusters can be formed, but the sentences in

them will not be tightly related on the same topic. Such an approach assigning

importance to sentences also deals directly with the problem of duplication removal:

since only one sentence per cluster is chosen, the summary would not include repetition.

Interestingly the size of the cluster (equivalent to sentence frequency), did not lead to

good information extraction performance. The problem was addressed by adding in the

weighting of term frequency (tf) and inverse document frequency (idf). The addition of

such information, which incorporates in the cluster score, the frequency also of the words

in the sentences, leads to much better results in information extraction.

2.4.2 Centroid Based MDS

Radev et al. [17] described an extractive multi document summarizer (MEAD) which

chooses a subset of sentences from the original documents based on the centroid of the

input documents. For each sentence in a cluster of related documents, MEAD computes

three features and uses a linear combination of the three to determine the most important

sentences. The three features used are centroid score, position, and overlap with first
sentence (or the title).

The centroid score Ci is a measure of the centrality of a sentence to the overall topic

of a cluster. The position score Pi which decreases linearly as sentence gets farther from

the beginning of the document, and the overlap with first sentence score Fi which is the

inner product of the tf-idf weighted vector representations of a given sentence and the

Background and Literature Survey

first sentence (or title) of the document. All three features are normalized (0-1) and the

overall score for a sentence Si is calculated as

W(Si)= We*Ci + Wp*Pi + Wf*Fi

Where W., Wp, and Wf are the individual weightage given to each type of features

respectively. MEAD discards sentences that are too similar to other sentences. Any

sentence that is not discarded due to high similarity and which gets a high score is

included in the summary

2.4.3 Graph Based MDS

Some of the most newly developed summarizers are those that reduce the problem of

summarization to graph problems, notably using the Page-Rank algorithm. Of these, the

most successful application to multi document summarization was that of Erkan and

Radev [22]. In their LexRank algorithm, each sentence defines a node in the text graph.

To define edges in the graph, the cosine similarity between two sentences is computed

and an edge is added between the nodes representing the two sentences if the similarity

exceeds a predetermined threshold. Thus the edges are defined for sentences that share

the same words. The Page-Rank algorithm is then used iteratively to compute the rank of

each sentence as a function of the number of neighbors and the importance of the

neighbors of each node. The iterations distribute the weight across the graph, and quickly

explain that the iterative spreading of importance in the graph is similar to voting process:

sentences from the entire graph vote for the sentences with which they share word

overlap. Of course, such a voting procedure can be achieved by a direct frequency count,

rather than distributing information little by little through the nodes. So the Page-Rank

algorithm can be seen as a complex (unobservable) function that assigns weights to

sentences based on the frequency of words that appear in the text. In order to avoid

repetition, sentences that are assigned high importance, but are similar to more important

sentences are not included in the summary.

-12-

Background and Literature Survey

All the above systems select sentences based on importance derived from some

complex formulas which directly or indirectly uses the frequency of the words for the

computation of importance. But no system has studied the contribution of the frequency

of the hi-gram units in the multi document summarization.

2.5 Related work in Information Extraction

There have been a number of researches and development budgets [2] devoted to

automatic text summarization. The United States (e.g., DARPA), the European

Community and Pacific Rim countries have identified text summarization as a critical

research area, and are investing in it. Text summarization is also increasingly being

exploit in the commercial sector, in telecommunication industry (e.g., BT's ProSum), in

filters for web based information retrieval (e.g. Inxight's summarizer used in AltaVista

Discovery), and in word processing tools (e.g.., Microsoft's AutoSumarize). In addition to

the traditional focus of automatic abstracting (of scientific and technical text) to support

information retrieval, researchers are investigating the application of this technology to a

variety of new and challenging problems, including multilingual summarization,

multimedia news broadcasts, and providing physicians with summaries of on-line

medical literature related to patient's medical record. As the information overload

problem has grown, and people become increasingly mobile and information-hungry,

new applications for text summarization can be expected.

The early systems for text summarization were developed in late 1950's [11]

characterized by surface-level approaches. First entity-level approach based on syntactic

analysis and the use of the location feature was introduced later by Edmundson [12]. In

1970s, there was renewed interest in the field with extensions being developed to the

surface-level approach to include the use of cue phrases (bonus versus stigma items). The

late 1970s saw the emergence of more extensive entity-level approaches as well as the

first discourse-based approaches on story grammars. The 1980s enjoyed an explosion of a

variety of different work, especially entity-level approaches based on artificial

intelligence such as the use of scripts, logic and production rules, semantic networks, as

- 13 -

Background and Literature Survey

well as hybrid approaches. The period of late 1990s represents a renaissance of the field,

with three types of approaches being explored very aggressively, heightened by

government and commercial interest. The work done during this period [3, 13, 14, 16]

has almost exclusively focused on extracts rather than abstracts, along with a renewed

interest in earlier surface-level approaches.

~ L

O O ti .~ td7 W O O O

Summarizer System

AutoSummarizer (MS Y y
Word' 97)
Context Y Y Y Y

Data Hammer Y Y Y Y
DimSum Y Y Y Y Y
Extractor Y Y Y Y Y

GESummarizer Y Y Y Y
Intelligent Miner Y Y Y Y Y

IntelliScope Y Y Y Y Y Y Y Y
InText Y Y

InXight Summarizer plus Y Y Y Y Y Y Y Y Y Y
ProSum Y Y Y Y

Search 97 Developer's Kit Y Y Y Y Y Y Y
SMART Y Y

SUMMARIST Y Y Y Y
TextNet 32 Y Y Y Y

TextAnalyst 2.0 Y

Table 2.2: Features Comparison of Commercial Summarizer Systems

In the 2000s the focus of the interest of the researches shifted towards Multi

document summarization. A variety of multi-document summarization methods have

been developed recently. The centroid-based method [17] is one of the most popular

-14-

Background and Literature Survey

extractive summarization methods. MEAD is an implementation of the centroid-based

method [19]. NeATS [23] uses sentence position, term frequency, topic signature and

term clustering to select important content, and use MMR [13] to remove redundancy.

Recently graph based have been proposed to rank sentences or passages. LexPageRank

[22] and Mihalcea and Tarau [21] are three such systems using algorithms similar to

Page-Rank to compute sentence importance. Table 2.2 shows the comparison among the

different commercial summarizers based on various summary features [2]. Where Y
represents that the system implements the feature

2.6 Significance of Sentence Ordering

Most often, the extractive summaries produced from multiple source documents

suffer from an array of problems with respect to text coherence and readability, like

dangling references, irrelevant context cue information, etc. Many approaches [25, 26,

27, 28, 29] have been proposed to deal with problems, including co-reference resolution,

temporal information recovery and removal of contextual phrases by sentence

compression. But after these post processing steps, even if each individual sentence might

be interpretable in isolation, it still does not mean that sentences gathered from different

sources as a whole will be easy to understand. Interdependence between sentences greatly

affects reader's understanding. Therefore, it is important to consider sentence ordering of

extracted sentences in order to reconstruct discourse structure in a summary. Sentence

ordering, which determines the sequence in which to represent a set of pre-selected

sentences, is a critical task both for text summarization and natural language generation.

The problem of how to structure the selected information to form a fluent summary has

received very little attention until recently. In single document summarization, summary

sentences are typically arranged in the same order as they were in the original full

document, although it was found that human summarizers do sometimes change the

original order [24]. In multi-document summarization, sentences are selected from

multiple documents and no complete ordering from a single document is available, so

most common approaches involve ordering by the original article publishing time or

ordering sentences based on their content importance score from the extraction stage

-15-

Background and Literature Survey

[30]. Several approaches have been taken in solving the information ordering task in

multiple document summarization, all of which follow the assumption that the summary

structure also follows the structure of the original document set, since multi-document

summary captures the main contents among the document clusters.

2.7 Sentence Ordering Techniques

The first systematic research on sentence ordering was done by Barzilay, et al [24].

They provided a corpus based methodology to study ordering and conducted experiments

which show that sentence ordering significantly affects the reader's comprehension. They

also evaluated two ordering strategies: Majority Ordering which orders sentences by their

most frequent orders across input documents and Chronological Ordering which orders

sentences by their original article's publishing time. They then introduced an augmented

chronological ordering with topical relatedness information that achieves the best results.

The augmented strategy used majority and chronological constraints to define the pair

wise relations between sentences. Barzilay then identified the final order of sentences by

finding a maximal weighted path in a precedence graph [24]. Table 2.3 [31] shows four

sentence ordering techniques with the features and scoring method they used. Table 2.4

[31], gives brief description about the data and evaluation method of each of the four

sentence ordering techniques. An unsupervised probabilistic model has been suggested by

Lapata [25] for text structuring that learns ordering constraints from sentences

represented by a set of lexical and structural features. It assumes the probability of any

given sentence is determined by its previous sentence and learns the transition probability

from one sentence to the next from the BLLIP corpus based on the Cartesian product

between two sentences defined using the following features: verbs and their precedent

relationships; nouns (entity-based coherence by keeping track of the nouns); and

dependencies (structure of sentences). The, overall ordering of the sentences in the

summary is learned by greedily searching for a maximal weighted path through the

graph. Based on the experimental results, she finds that entity-based coherence and the

verb-noun structure features are significantly better than any other features.

-16-

Background and Literature Survey

Brazilay 2002 Lapata 2003 Brazilay & Lee Okazaki, et al
[24] [25] 2004 [29] 2004, 2006 [26,

27]
Hypothesis 1. Sentence Local coherence Word Use the machine

order do impact can be captured distributional learning
the user through the patterns framework to
comprehension probability of characterize incorporate the
2. Multiple lexical and various types of four ordering
acceptable syntactic discourse criteria to
ordering for one features of (content capture the
document sentence based structure) which contingency
3. Topical on the previous can be captured between two
related sentence, learn using HMM sentences
sentences share text structure
adjacency for a specific
relation. domain

Rank/ Search through Simple greedy Ranking by Agglomerative
Search weighted search through. HMM hierarchical

precedence weighted graph clustering with
graph the ordering

information
retained

Features Majority Verbs, nouns, State: topic Chronological
ordering, structure clustering, sequence,
chronological dependencies Transitional Pr: topical
ordering, topical sentence relatedness,
relatedness position in the precedence and
augmented original article succession
chronological
ordering

Table 2.3: Sentence Ordering Techniques

Barzilay and Lee [29] have proposed domain-specific content models to represent

topics and topic transitions for sentence ordering. They learn the content structure directly

from un-annotated texts via analysis of word distribution patterns based on the idea that

"various types of [word] recurrence patterns seem to characterize various types of

discourse". The content models are Hidden Markov Models (HMMs) wherein states

-17-

Background and Literature Survey

correspond to types of information characteristic to the domain of interest, and state

transitions capture possible information-presentation orderings within that domain.

Brazilay 2002 Lapata 2003 Brazilay & Lee Okazaki, et al
2004 2004, 2006

25 	sets 	of BLLIP 	corpus 5 	domains TSC-3 	corpus
topics, each has (30 M words) + (earth-quake, (Japanese),
2-3 	news Brazilay 2002 finance, 	etc) containing 	30
articles corpus Each 	domain sets of human
reporting 	the has 	100 ordered

Corpus same event training/ 	100 extracts 	for
testing/ 	20 multiple
development document
set summarization

relevant 	to
questions

Manually Human. written Human written Automated
selected articles articles extracted Input sentences 	as sentences 	for
extract summary

Length 8.8 sentences 15.3 sentences 12 sentences 15 sentences
3 level grading: Human No 4-scales:
poor, fair, good produce perfect,

Human summary 	for acceptable,
upper bound of poor,
Kendall's tau unacceptable

No Kendall's 	tau OSO prediction Spearmen's
(Distance rate, 	pair-wise and 	Kendall's

Automatic between model comparison Tau correlation
and 	original + 	continuity
article) metrics

Table 2.4: Data and Evaluation for Sentence Ordering Techniques

Bollegala, Okazaki and Ishizuka [26] provide a novel supervised learning framework

to integrate different criteria. They also propose two new criteria precedence and

succession developed from their previous work [27]. A fundamental assumption for the

precedence criteria is that each sentence in newspaper articles is written on the basis that

-18-

Background and Literature Survey

pre-suppositional information should be transferred to the reader before the sentence is

interpreted. The opposite assumption holds, for the succession criteria. They define a

precedence function between two segments (a sequence of ordered sentences) on

different criteria and formulate the criteria integration task as a binary classification

problem and employ a Support Vector Machine (SVM) as the classifier. After the

relations between two textual segments are learned, they then repeatedly concatenate

them into one segment until the overall segment with all sentences is arranged.

Barzilay and Lapata [28] introduce an entity-based representation of discourse and

treat coherence assessment as a ranking problem based on different discourse

representations. A discourse entity is a class of co referent noun phrases. They use a grid

to represent a set of entity transition sequences that reflect distributional, syntactic, and

referential information about discourse entities. A fundamental assumption for this

method is that the coherence on the level of local entity transitions is essential for

generating globally coherent texts. They then take as input a set of alternative renderings

of the same article and rank them based on the local coherence. The ranking problem is

solved using the search techniques on a Support Vector Machine constraint optimization

problem.

2.8 Research Gaps

2.8.1 Information Extraction

Most of the extraction based multi-document summarization systems take advantage

of the frequency of individual words. The more number of times a word occur in the

source documents increase the chances of it to be included in the summary. The term

frequency [33] is the prime feature in summarization for the tf-idf based multi-document

summarization systems. Here TF represents the term frequency that is the frequency of a

word in a document, and IDF represents the inverted document frequency that is the

distribution of a term in the whole corpus of data and is equal to the number of

-19-

Background and Literature Survey

documents which contains the term divided by total number of documents in the corpus.

The content that appears frequently in the input has a higher likelihood of being selected

a human summarizer for inclusion in a summary. It is observed that high frequency words

from input are very likely to appear in the human summary. This confirms that unigram

(individual word) frequency is one of most important the feature that impact a human's

decision to include specific content in a summary. But the co-occurrence of the

individual words in the inputs and the human summaries does not necessarily entail that

the same facts have been covered. A better granularity for such investigation is the

sequence of such individual words, such as the summary sentences. Thus the overlapping

of a sequence of words (or a sentence) from inputs with the human generated summary

confirms that both the documents contain same information. Almost all of the systems

have used the unigram frequency for assigning salience scores none has selected the

frequency of more than single words which conveys more meaning for the assignment of

salience score.

2.8.2 Sentence Ordering

When producing a summary, any multi-document summarization system has to

choose in which order to present the output sentences. The first algorithm, Majority

Ordering (MO), relies only on the original orders of sentences in the input documents.

This algorithm can be used to order sentences accurately if we are certain that the input

texts follow similar organizations. This assumption may hold in limited domains where

documents have a fixed organization of the information. Looking at the daily statistics of

scientific texts, we notice that there are several clusters which contain more than 20 and

up to 70 articles to be summarized into single summaries. With such a big number of

input articles, we cannot assume that they will all have similar ordering of the

information. MO's performance critically depends on the agreement of orderings in the

input texts, hence it can not fit all types of input data. The second one, Chronological

Ordering (CO), uses time-related features to. order sentences and places the sentence in

the temporal order of their occurrence. Assigning a date to a reaction, or more generally

to any sentence conveying background information, and placing it into the chronological

-20-

Background and Literature Survey

stream of the main events does not produce a logical ordering. The ordering of these

themes is, therefore, not covered by the CO algorithm. Furthermore, some sentences

cannot be assigned any time stamp. For instance, the sentence, "The vast, sparsely
inhabited Xinjiang region, largely desert, has many Chinese military and nuclear

installations and civilian mining." describes a state rather than an event and, therefore,

trying to describe it in temporal terms is invalid. Thus the ordering cannot be improved at

the temporal level. Another drawback with chronological ordering is that summaries

generated by this algorithm contains abrupt switches of topics and are generally

incoherent. With these shortcomings of the traditional ordering algorithms in mind we

propose a new ordering algorithm based on the various types of sentences found in

scientific texts, these sentence types are described in detail in chapter 4.

SIe

Chapter 3

Proposed Design for Information Extraction Module in MDS

3.1 Framework for Information Extraction Module

Information Extraction module is the first phase of the proposed multi document

summarization system. Information extraction (IE) is a type of information retrieval

whose goal is to automatically extract structured information, i.e. categorized and

contextually and semantically well-defined sentences from a certain domain, from

unstructured machine-readable documents. Information extraction is an important

component for all the multi document summarizers. In past different systems for MDS

used different techniques to calculate the importance of the sentences in the document but

all these techniques are based on the features that are related to the individual word

tokens. So in past all the systems have focused on very low level granularities (individual

words) as discussed in previous chapter for the information extraction module. In this

dissertation high level of granularities (sequence of important words) for the information

extraction module have been used. We consider the pair of important words (feature

terms) as a hi-gram unit.

1. More than 100ep ople were killed when a Sudanese Airbus burst into fire after

airport in poor weather on Tuesday,
2. Around 100ep ople were killed when a Sudanese Airbus burst into fire after

landing at Khartoum aim
3. A Sudanese Airbus burst into flames after landing in Khartoum airport

overnight in bad weather, killing 100.
4. The Sudanese Airbus carrying 214 people veered off the Khartoum airport in a

thunderstorm and burst into flames late Tuesday.

Figure 3.1: Headlines from different newspapers for same event

Proposed Design for Information Extraction Module in MDS

The sequence of content words conveys more precise meaning than a single content

word. Figure 3.1 shows the importance of the bi-gram units over the unigram words. It

includes sentences taken from various new. papers headlines for the same event. The

actual summary (headline) for the above set of sentences is 100 people killed in Sudanese

Airbus crash. But this is assigned by human experts and is not obtained automatically.

Our automatically generated bi-gram units for this are 100 people, people killed,

Sudanese Airbus Airbus burst, Khartoum airport etc, Each bi-gram unit convey more

precise meaning than each content word. For example Khartoum Airport together gives a

meaning that we are talking about the Khartoum: Airport. While the individual words like

airbus and burst do not automatically suggest the same, it can be deduced from individual

words that we are talking about either Khartoum city or Airports or both. This makes the

bi-gram units better choice for the information extraction task. So if bi-gram units are

chosen for assigning the salience scores to the sentences the MDS system will produce

better summaries.

The proposed framework for the information extraction module is shown in Figure

3.2. The framework consists of three basic stages: Input, Processing and Scoring

-------------------- ,

	

Multiple 	 Compute term- 	 Score Sentences
source 	 frequencies for

Documents 	 Important Terms

- 	Extract High

	

Feature 	 Compute bi-gram 	scoring sentences
Terms Matrix 	 for summary

	

Input 	 Processing 	 Scoring

Figure 3.2: Proposed Framework for Information Extraction

The first stage inputs the set of source documents that are clustered around the same

topic or subject or event and a list that consist the most common and important words

-23-

Proposed Design for Information Extraction Module in MDS

related to the topic or the event known as Feature Terms. The next stage computes the

frequency of bi-gram unit (window of size two feature terms). The final stage ranks the

sentences based on the terms they contained and their term-term score, and finally the

high ranking sentences are selected for inclusion in the summary.

3.2 Implementation of Information Extraction Module

The algorithm for the information extraction module is shown in stepwise fashion in

Figure 3.3. The next subsections discuss about each block of the proposed framework.

Begin:

Step 1: Input the set of source documents and the feature term list

Step 2: Compute the term frequencies for the feature terms and other

important words (candidates for feature terms) in the input documents

Step 3: Prepare a term-document matrix consisting the frequency value of

individual term against each document

Step 4: Compute the frequency score for each bi-gram (pair of important

words)

Step 5: Assign the salience score to the sentences based on the bi-gram

frequency score for the bi-gram units present in the sentences.

Step 6: Select the sentences with high scores for the inclusion in summary.

End

Fig 3.3: The Algorithm for the Information. Extraction Module

3.2.1 Input and Preprocessing

The first stage inputs the set of documents that are clustered around the same topic or
subject or event and a list that consist the most common and important words related to

-24-

Proposed Design for Information Extraction Module in MDS

the topic or the event known as list feature terms. The feature terms can be given by the

authors of the documents or it can be generated on the basis of the background

knowledge in that particular topic, the feature terms list can be blank too in this stage as

more feature terms are computed in the later stages by selecting the frequent terms in the

documents on that topic.

3.2.2 Computing Bi-Gram Matrix .

The next stage (Figure 3.4) computes the frequency of co-occurring of each pair of terms

which in our case forms the bi-gram units. This stage is divided into the following

subtasks.

INPUT

---- 	'
,--- ----------------------------- ------

Preprocessing
(Sentence

identification, Term- Matrix Compute J
POS tagging,:

a
Document 	uk Decomposition bi gram

. yFeatura .>Matrx Matrix
Extraction) ,_

PROCESSING

--'
SCORING

Figure 3.4: Computing bi-gram Matrix

Preprocessing: The documents obtained from the input stage are first preprocessed to

convert them to simple machine readable format (plain text format). This is required to

identify each sentence unit easily for the extraction and scoring tasks. The preprocessing

-25-

Proposed Design for Information Extraction Module in MDS

also includes the POS tagging of the documents and the extraction of feature terms.

POS Tagging: A Part-Of-Speech Tagger (POS Tagger) is a piece of software that reads

text in some language and assigns parts of speech to each word (and other token), such as

noun, verb, adjective, etc. Parts of speech tags are assigned to the text using Stanford

POS tagger, an open source natural language processing library tool [45]. This software

is a Java implementation of the log-linear part-of-speech (POS) taggers described in [34]

and demonstrates following ideas: (i) explicit use of both preceding and following tag

context via a dependency network representation, (ii) broad use of lexical features,

including jointly conditioning on multiple consecutive words, (iii) effective use of priors

in conditional log linear models and (iv) fine grained modeling of unknown word

features. Using these ideas together the resulting tagger gives 97.24 % accuracy on the

Penn Treebank corpus. Table 3.1 shows the Penn Treebank Tagset with description and

example of each tag. The POS tagged text is then used for the theme (Peature term)

extraction. We consider only (Nouns, Verbs, and Adjectives) as the feature terms for their

richness of information.

POS Tag![Description r 	 Example
CC 	j coordinating conjunction land
CD 	Icardinal number 1, third
DT 	Idetermer the
FW 	foreign word d'hoevre

Ipreposition/subordinating conjunction in, of, like
JJ 	adjective green

JJR 	adjective, comparative Igeener
JJS 	adjective, superlative eenest
LS 	list marker [1)
MD 	Imodal could, will
NN 	noun, singular or mass table

NNS 	noun plural tables
NNP 	proper noun, singular John

NNPS 	proper noun, plural Vikings

-26-

Proposed Design for Information Extraction Module in MDS

PDT 	predetermines both the boys
PUS 	possessive ending friend's
PRP 	personal pronoun I he it

PRP$ 	possessive pronoun my, his
R adverb however, usually, naturally, here, good
i~RBR Ikdverb,cornparative better

_ S_ adverb, superlative best
- RP 	particle article J P 	— 	- give u g 	P 	 --

110 	to to 	o, to him
VB 	? verb, base form take

VBD 	verb past tense took
VBG 	verb, gerund/present participle taking
VBNverb, past participle taken
VBP 	verb, sing. present, non-3d take
VBZ 	verb 3rd person sing present takes
WDT 	wh-determiner which

jwh pronoun who, what
WRB : wh-abverb where, when

Table 3.1: Penn Treebank Tagset

We extracted all the feature terms (excluding stop words) with their frequency from

the PUS tagged text, and calculated the importance of each of feature terms based on

their probability distributions. Probability of the word W appearing in the input is

calculated as p(w)=n/N, where n is the number of times the word appeared in the input,

and N is the total number of feature terms in the input. Words having probability

distribution of more than 0.0025 have been selected as feature terms and added to the

previously available list of feature terms.

Term-Document Matrix: We computed term (Feature term) by document matrix from

the input cluster of document. Table 3.2 shows the term document matrix for the example

given in Figure 3.1 considering each sentence as a document. We treated each set of 2 to

3 sentences as a separate document while computing matrix so that we can compute the

-27-

Proposed Design for Information Extraction Module in MDS

bi-gram score based on their occurrences at the sentence level.

100 People Sudanese airbus burst Khartoum airport

Si 1 1 1 1 1 0 0

S2 1 1 1 1 1 1 1

S3 1 0 1 1 1 1 1

S4 0 0 1 1 0 1 1

Table 3.2: Term-Document matrix for Figure 3.1

Matrix Decomposition: We computed the bi-gram scores for the pair of feature terms.

We considered the feature terms with probabilities more than 0.0025 (lower threshold)

for this phase. This removes the less important term thus drastically reducing the bi-gram

matrix size and its computational time. Here bi-gram score means the occurrence of the

hi-gram (two terms together) in the sentences. We computed bi-gram scores using

Singular Value Decomposition (SVD) [35, 36].

The Singular Value Decomposition (SVD) of the term by document matrix X, If X is
an m x n matrix then is

X=USVT

Where U is m x n with orthonormal columns, V is n X n with orthonormal Columns,

and S is diagonal with the main diagonal entries sorted in decreasing order. A unique

SVD feature is that it is capable of capturing and modeling interrelationships among

terms so that it can semantically cluster terms and sentences. Furthermore, if a word

combination pattern is salient and recurring in document, this pattern will be captured and

represented by one of the singular vectors. The magnitude of the corresponding singular

value indicates the importance degree of this pattern within the document. Any sentences

containing this word combination pattern will be projected along this singular vector, and

the sentence that best represents this pattern will have the largest index value with this

vector. As each particular word combination pattern describes a certain topic/concept in

the document, the facts described above naturally lead to the hypothesis that each

-28-

Proposed Design for Information Extraction Module in MDS

singular vector represents a salient topic/concept of the document, and the magnitude of

its corresponding singular value represents the degree of importance of the salient

topic/concept.

Compute bi-gram Matrix: We compute the hi-gram matrix based on how often two

terms co-occur. The term-document matrix X for a collection with n documents

(paragraphs) and m terms is an m x n matrix with each column of the matrix representing

a document. X can be viewed as a matrix with each row representing a term vector, i.e. a

vector contacting the frequency of a term in each document. Thus similarity scores

between terms can be calculated. A value representing the similarity tybetween two terms

I and j (with i ,j e { 1........m}) is the dot product of the i-th and the j-th row of the term-
document matrix, t is nonzero if and only if a document exists, in which both terms I and

j occur.

Let T be the square matrix containing all those similarity scores. T is called the bi-

gram matrix and is:

T = XXT

= US VT (US VT) T

= USVTVSUT

= USZUT

_ (US) (US) T

We computed T matrix and set all the diagonal elements to zero's and then we

normalized the matrix so that the sum of all the term-term scores is equal to 1. We call

this normalized matrix as bi-gram score matrix. Table 3.3 shows the bi-gram matrix after

decomposition for the term-document matrix shown in table 3.2.

3.2.3 Scoring & Summary Extraction

The final stage ranks the sentences based on the terms they contained and their bi-

gram score, and finally the high ranking sentences are selected for inclusion in the

-29-

Proposed Design for Information Extraction Module in MDS

summary. We assigned an importance weight to, each sentence S; in the input as a function

of the importance of its hi-gram units BG~

Weight (S) = F (p (B G)) for all BG1 eS+

Different Summarizers can be obtained by making different choices for the

composition function F. We considered Product of bigram scores as an appropriate

candidate for assigning salience score to the sentences.

for (F=Product) , Weight (Si) = it HGj eSi P (BG)

Summary extraction is a three step procedure as discussed below.

1. Sentence Score Computation: We assigned an importance weight to each sentence

Si in the input as a function of the importance of its bi-gram units BG~

Weight (Se) = F (P (BG)) for all BG1 eS,

2. Most salient Sentence: Pick the best scoring sentences under the scoring function F

from the above step.

3. Repeat: If desired summary length has not been reached, go back to step 1.

This chapter describes the proposed framework of the information extraction module

and describe in details the process for extracting most salient sentences from the input set

of source documents. The outcome of this module (an intermediate summary) consists of

improperly ordered sentences which are given to the sentence ordering module as

discussed in next chapter.

-30-

Chapter 4

Proposed Design for the Sentence Ordering Module in MDS

The problem of organizing information for multi document summarization so that the

generated summary is coherent has received relatively little attention. While sentence

ordering for single document summarization can be determined from the ordering of

sentences in the input article, this is not the case for multi document summarization

where summary sentences may be drawn from different input articles. The experiments [30]

show that ordering significantly affects the reader's comprehension of a text. It shows

that although there is no single ideal ordering of information, ordering is not an

unconstrained problem; the number of good orderings for a given text is limited. In this

chapter, a methodology for ordering the sentences based on sentence types is proposed.

Even though the problem of ordering information for multi document summarization has

received relatively little attention, we hypothesize that good ordering is crucial to produce

good quality summaries.

4.1 A Study of Sentence Types

For the study of the sentence types we have chosen of the domain of scientific

literatures. The scientific literatures generally follow a well defined structure, which

makes it easy to identify sentence types. A scientific paper is a written report describing

original research results [40]. The format of a scientific paper has been defined by

centuries of developing tradition, editorial practice, scientific ethics and the interplay

with printing and publishing services. The IMRaD [41] format has developed within the

past 110 years and is the best choice for papers reporting laboratory studies. Figure 4.1

[40] shows the text organization of published articles in the British Medical Journal from

1935 to 1985 which shows that IMRad has become a common format for all the scientific

documents. In the IMRaD format the text is structured in the following sequence:
Introduction: What question was studied and why?

-31-;

Proposed Design for the Sentence Ordering Module in MDS

Methods: How was the problem studied?

Results: What were the findings?

and

Discussion: What do these findings mean?

The IMRaD structure is a linear-analytic structure. The sequence of subtopics begins

with an introduction to the issue or problem being studied and a review of what has been

done so far. Then the method..with which to approach the problem, the findings, and

finally the conclusions and implications which are drawn from the findings are presented.

A typical report structured according to the IMRaD-format would consist of the

following parts: Title, Introduction, Method, Results, Discussion, Conclusions,

Recommendations (optional), References, and Appendices (optional). In this dissertation

five types of sentences; introduction, method, results, conclusions and scope or

recommendation have been used for the ordering task. The information represented by

each of these types of sentences is discussed below.

-100

90

80

7O
S

t 60 '3
60

40
U

.30

20

10

tContnuous text
+Non-IMRAD headings.
-l-Partially IMRAD
-f-IMRAD

Case report

0 ! + —r,
1930 1935 1940 1945 1950 1955 1960 1965 1970 1975 1980 1985 1990

Year

Figure 4.1: Text organization of published articles in the British Medical Journal

-32-

Proposed Design for the Sentence Ordering Module in MDS

4.1.1 Introduction

The Introduction section begins by introducing the reader to the pertinent literature.

An important function of the introduction is to establish the significance of the current

work. The introduction sentences also describe the region in which the study was

conducted. The introduction generally finishes with the statement of objectives or, with a

brief statement of the principal findings. Either way, the reader must have an idea of

where the paper is heading in order to follow the development of the evidence. The

Introduction normally contains following types of sentences which tells about:

1. Nature and scope of the problem: What is the problem and why is it important to

study?

2. Literature review: What has already been done? Review of the pertinent literature.

4.1.2 Methods

The main purpose of the Methods section is to provide enough detail for a competent

worker to repeat current study and reproduce the results. The scientific method requires

that results be reproducible. Usually these types of sentences describe the study site and

climate in detail. Equipment and materials available off the shelf, sources of materials,

measurements and errors of measurement are also described in this section. The Methods

section gives full details of data collection, experimental design, sampling techniques,

and so on. In a case study it is important to elaborate on the rationale for selection of the

case to study. In the natural sciences this section is often called Materials and Methods.

In the social sciences it is common to introduce a section called Theory and Methods,

sometimes divided in two sections: Theoretical Framework (Design) and Methods
(Implementation).

4.1.3 Results

In the results section findings are presented. These sentences combine the use of text,

tables and figures to condense data and highlight trends. In the discussion the results

-33-

Proposed Design for the Sentence Ordering Module in MDS

obtained from the application of proposed methods are discussed. Comparative studies

between the findings to the findings of others or to expectations based on previous work

are done in this section of sentences. The objectives of the study and to significance of

the results in fulfilling them are also discussed.

4.1.4 Conclusion and Scope

The Conclusion section should discuss the overall study and the results and are found

in the end of the document. These sentences discuss the principles, relationships, and

generalizations shown by the result. The scope and recommendation section discuss the

applications of the proposed methods and obtained results to the other domains. It also

recommends certain set of guidelines for the people who wish to work in the same

domain.

The above categorization of sentences is specifically designed for scientific

documents. For other generic documents these types can be replaced by new types

depending on the domain. For example in event based documents the method section is

replaced by the event section, which describes about the whole event. The results section

is replaced by the cause and effect section which tells about the cause and the aftereffects

of the event.

4.2 Sentence Type Dictionaries

To identify the various different types of sentences we have generated separate

dictionaries for each of the five types of sentences. The dictionary for any sentence type

includes the most common and specific words, combination of words or phrases

occurring in that particular type of sentences. For example the dictionary for results

section's sentences includes graphs, figures, performs 20% better etc. words and the

conclusion section's dictionary includes we have described, the conclusion is, we find

that etc. words in it and likewise. These dictionaries are generated by extracting the most

-34-

Proposed Design for the Sentence Ordering Module in MDS

frequent words and phrases from a training set of scientific documents. In this

dissertation three types of contents are added to the dictionaries: single words, pair of

words and a maximum combination of three words. The single word dictionary is not

enough to identify the difference among different types of sentences as the same word

may be found in more than one type of sentences, for example the word researches can

be found in introduction sentences as well as in methods, and results sentences. Therefore

to make the difference more precise we have used combination of words and phrases.

4.3 The Framework of Sentence Ordering Module

The frame work for Sentence Ordering module is shown in Figure 4.2. This module is

divided into two phases. First phase (Sentence Type Discovery) is to identify the types of

the summary sentences and labeling them. The second phase (Ordering) deals with

arranging the sentences in the correct order so as to get a coherent summary.

Intermediate I I Dictionarie Summary s

Sentence Type Discovery

Ordering

Figure 4.2: Sentence Ordering Module

4.3.1 Sentence Type Discovery

The first phase also known as the sentence type discovery phase is used to discover

the types of the summary sentences. Figure 4.3 shows the block diagram for the sentence

type discovery phase. The process of discovering the sentence type is completed in three

Sys

Proposed Design for the Sentence Ordering Module in MDS

steps. First step is preprocessing of the input summary, second step is identifying the

sentence type and the third step is labeling the sentences with their types.

Preprocessing

Parsing the document

Type identification Sentence Labeling

Identifying the type of Labeling the
& adding topic specific the sentences sentences with their

words in dictionaries type
(optional)

Figure 4.3: Framework for Sentence Type Discovery

The preprocessing includes identifying the sentences and words in the summary

document. The preprocessing also adds the topic related words or combination of words

into the dictionaries to make the ordering domain specific.

Begin:

for Sentence Sf! =1 to ic] {

initialize S[011 to Nd] =

for Word WW'{7=JtoJW[I J{

for Dictionary D/7c=1 to 2i17 {

iftheD/,c] corsai-(Wju] 61 R'f11+ 'f1=11 W(i1+ 'L7+11
+ aril+2])

5(11/k] ++;

}

ST[t] = mar (S/2]/7e 1 to Nd1):

I

Figure 4.4: Algorithm for Identification of Sentence Type

-36-

Proposed Design for the Sentence Ordering Module in MDS

Once the dictionaries are ready and the summary document is parsed into the

sentences the next task is to identify the types of the sentences. To identify sentence types

we have used the algorithm shown in Figure 4.4. In this algorithm S[i] represent i s̀

sentence in the summary, W[j] represents jth word in the sentence and D[k] represents

the k h̀ dictionary. Ns, Nw[i], and Nd represents the total no of sentences in the summary,

total no of words in sentence S[i] and total no of dictionaries respectively. S[i][k]

represents the probability (score) that the sentence S[i] falls under the category of the

sentence type k. "W[j] +W[j+l]" represents the combination of the jth and (j+1) h̀ word.

The sentence labeling step labels each sentence to its type based on the words in it.

This is done by comparing the type scores (S[i][k]) of a sentence S[i]. We label each

sentence S[i] to its type ST[i] based on Where ST[i] is the maximum value out of all

type scores (S[i][k]).

4.3.2 Ordering

The steps of the second phase of the sentence ordering module, known as Ordering

phase are shown in Figure 4.5. This phase is divided in to two steps. First step is to

determine the generic ordering for the type of the sentences present in the summary and

the second task is to arrange the sentences in the summary according to this standard

ordering.

Determining a generic ordering scheme" can either be done manually or it can be

derived from a set of training documents. In manual mode the human decides the generic

order for the types of the sentences based on his knowledge and past experience. In the

second case a set of sample documents are chosen and a set of ordering schemes are

generated based on the sentences in these documents. Then the scheme which is found in

majority of documents is selected as the standard ordering scheme. In this dissertation we

have used the standard ordering scheme of the IMRaD format, which arranges the

sentences in following sequence Introduction, Method, Results, Conclusion and Scope.

-37-

Proposed Design for the Sentence Ordering Module in MDS

The first step of this phase is useful if we are ordering the sentences of other domains

than the scientific documents.

Generic Ordering 	 Sentence Ordering

Determining a generic order for the 	Arranging the sentences in the
type of the sentences in the 	 summary according to the standard

summary (Manual or Derived 	order, to produce coherent summary
Mode)

Figure 4.5: Framework for Sentence Ordering phase

After the generic ordering scheme is selected the second task is to arrange the

summary sentences in proper order. As we have already labeled the summary sentences

with their respective types so it becomes easy to arrange them according to the standard

order. The sentences which have the same sentence type are ordered according to

following scheme. If the sentences are from the same source documents then the order in

the source document is maintained. If the sentences are from different source documents

then the sentences are arranged using chronological ordering algorithm. This whole

process can be used in reverse manner also. In that case first the summary sentences are

ordered as per the chronological ordering scheme and then the sentences from the same

chronology can be reordered using the sentence type information.

This chapter discusses the second module of the proposed multi document

summarization system which is used to order the summary sentences. The next chapter

describes the summary evaluation methods used to evaluate the proposed summarization

model and the results obtained from it.

-38-

Chapter 5

Results and Discussion

5.1 ROUGE: Evaluation Method for Automatic Summarization

Estimating the informativeness has been the focus of automatic summarization

evaluation research. Various methods have been proposed to evaluate the summaries

generated by multi document summarization systems. In this dissertation ROUGE [37]

which stands for Recall-Oriented Understudy for Gisting Evaluation is used as the

evaluation metric to determine the MDS performance. ROUGE is based on n-gram

(window of size n words) co-occurrence between machine summaries and "ideal" human

summaries. It includes measures to automatically determine the quality of a summary by

comparing it to other (ideal) summaries created by humans. The measures count the

number of overlapping units such as n-gram, word sequences, and word pairs between

the computer-generated summary to be evaluated and the ideal summaries created by

humans. ROUGE is currently the standard objective evaluation measure for the

Document Understanding Conference [42]. ROUGE does not assume that there is a

single "gold standard" summary. Instead it operates by matching the target summary

against a set of reference summaries. ROUGE-1 through Rouge-4 are simple n-gram co-

occurrence measures, which checks whether the n-gram (sequence of n words) in the

reference summary is contained in the machine summary. ROUGE-L computes the

longest common subsequence for the evaluation purpose. ROUGE-S uses the concept of

skip-bigram. Skip-bigram is any pair of words in their sentence order, allowing for

arbitrary gaps. Skip-bigram co-occurrence statistics measure the overlap of skip-bigrams

between a candidate translation and a set of reference translations. ROUGE-SU is an

extention of ROUGE-S which uses unigram as counting unit and computes the skip-

bigram value for each pair of counting units. Lin (Lin and Hovy, 2003) has found that

ROUGE-1 and ROUGE-2 correlate well with human judges.

-39-

Results and Discussion

ROUGE generates three scores (recall, precision and F-measure) for each evaluation.

Recall is fraction of expert summary which is present in the summary generated by the

system and is given as.

Recall = no of (sentences in system summary 1lsentences in export summary)
total no of sentences in expert summary

Precision is the fraction of the sentences extracted in the system summary that are

present in the expert summary and is given as below.

no of (sentences in sustsm summary rissftteecss in expert summary)
Precision = total no of sentences in system summary

F-measure is the weighted harmonic mean of precision and recall. The general

formula for F-measure is given as
= (.-3-(32). precision . recall

~R 	(~2=precision +recall)

We have used the traditional ((3=1) F-measure for our evaluation. This is also known

as the Fi measure, because recall and precision are evenly weighted. Previously, only one

score is generated (recall). Precision and F-measure scores are useful when the target

summary length is not enforced. We used ROUGE 1.5.5 to compute ROUGE-1,

ROUGE-2 and ROUGE-SU automatic evaluation scores for the evaluation of our system.

5.2 Dataset Used for Validation

The performance of the proposed MDS summarizer has been validated using two

publicly available datasets NIE and MDS [38]. Both the data sets consist of clusters of

related news articles from. The NIE dataset consists of 48 clusters of news articles with

an average of 8 articles per cluster. The MDS dataset consist of 6 clusters of news articles

with an average of 2 documents each. The NIE dataset provide automatically clustered

documents while the MDS dataset is clustered manually.

Results and Discussion

5.3 Results for Information Extraction Module

We used ROUGE 1.5.5 [44] for the evaluation of Information Extraction module.

ROUGE provides a number of options to evaluate the summary obtained from the system

against the expert summary. We have used following parameters of ROUGE 1.5.5,

description of each parameter is given in table 5.1.

ROUGE-1.5.5.pl —n 4 -2 1 —u —c 95 —r 1000 -p 0.5 —f A —d

Option Description

-2 Compute skip bi-gram co-occurrence, also specify the maximum gap length

between two words (skip-bi-gram)

-u Compute skip bi-gram as -2 but include unigram

-c Specify CF% (0 <= CF <= 100) confidence interval to compute. The default

is 95% (i.e. CF=95).

-d Print per evaluation average score for each system.

-f Select scoring formula: 'A' _> model average (good for summarization

task); 'B' => best model (good for machine translation)

-n Compute ROUGE-N up to max-ngram length will be computed.

-p Relative importance of recall and precision ROUGE scores. Alpha -> 1

favors precision, Alpha -> 0 favors recall.

-r Specify the number of sampling point in bootstrap re-sampling (default is

1000).

Smaller number will speed up the evaluation but less reliable confidence

interval.

Table 5.1: ROUGE Options Used for Summary Evaluation

We present the results of our systems using different summary evaluation metrics of

ROUGE method on the NIE dataset in Table 5.2. Figure 5.1 shows the graph for the

recall values for ROUGE-1 (R-1), ROUGE-2 (R-2) and ROUGE-SU (R-SU). Figure 5.2

-41-

Results and Discussion

shows the graph for the precision values for R-1, R-2 and R-SU. Figure 5.3 shows the

graph for the F-measure values for R-1, R-2 and R-SU.

Clusters 	8 	16 	24 	32 	36 	40 	48
ROUGE-1

Recall 0.63327 0.61448 0.62452 0.62121 0.60638 1 0.6059 0.60541
Precision 0.46537 0.42667 0.42574 0.42192 0.41005 0.41002 0.41376
F-Measure 0.52803 0.49772 0.50022 0.4964 0.48357 0.48353 0.48664

ROUGE-2
Recall 0.3908 0.3596 0.35913 0.35891 0.33458 0.33279 0.32666
Precision 0.28157 0.24822 0.24298 0.24136 0.22429 0.22287 0.22101
F-Measure 0.322 0.29024 0.28614 0.28485 0.26522 0.26369 0.26079

ROUGE-SU
Recall 0.40619 0.38123 0.39312 0.38705 0.36727 0.36623 0.36544
Precision 0.22482 0.18909 0.18766 0.18272 0.17167 0.17136 0.17361
F-Measure 0.27354 0.24233 0.24357 0.23771 0.22448 0.22425 0.22722

Table 5.2: Recall, precision and F-score value for R-1, R-2 and R-SU

Figure 5.1: Recall Values for NIE-dataset at compression ratio 0.1

-42-

Results and Discussion

0.7 — 	 —

0.5

0 0.4

—R-1 a 0.3 	 k
®R-2

0.2 	 —R-SU

0.1

0 	10 	20 	30 	40 	50

Document Clusters

Figure 5.2: Precision Value for NIE-dataset at compression ratio 0.1

Figure 5.3: F-Measure Value for NIE dataset at compression ratio 0.1

-43 -

Results and Discussion

0.7 —

0.5 —

■ unigram-frequency

r: bigram-frequency

0.1 *_
s

R-1 R-2 R-SU

ROUGE -Metric

Figure 5.4: Recall Comparison for Proposed System with Unigram System

Figure 5.4, Figure 5.5 Figure 5.6 shows the comparison of recall, precision and f-

measure between our system (bi-gram frequency) and the unigram system which uses the

unigram (individual word) frequency for the information extraction task. Figure 5.4 show

minimal improvement (R-1: 0.19%, R-2: 10.27% and R-SU: 0.85%) in the recall value

from the unigram frequency system to bigram frequency system. The reason behind this

is that ROUGE-1 uses single word co-occurrence for performance evaluation, still our

system performs better (10% in case of R-2) which shows that more number of salient

sentences present in expert summary are also present in the system summary than the

unigram system. Figure 5.5 shows the comparison of precision values between both the

systems. Here the proposed system (bigram system) significantly out-performs the

unigram system (R-1: 28.93 %, R-2: 42.57%, R-SU: 64.62%). Here the high

improvement in R-2 and R-SU shows that the sentences selected by the proposed system

are the most salient sentences as they have high number of the bigram and skip-bigram

co-occurrences with the expert summary. And the chances are high that same facts have

been covered in both the summaries if we get high values for the bi-gram and skip bi-

grams co-occurrences as discussed in chapter 3.

-44=

Results and Discussion

0.6

	

0.5

0.4 -

0
0.3

0 unigram-frequency

	

0.2 	 =' 	 ■ bigram-frequency

r5

-

0 y 	~

R-1 R-2 R-SU

ROUGE-Metric

Figure 5.5: Precision Comparison for Proposed System with Unigram System.

0.7

3 	0.4 	
it

M

0.3 3 unigram-frequency

LL

0.2
■ bigram-frequency

-

0.1

0 ei

R-1 R-2 R-SU

ROUGE-Metric

Figure 5.6: F-Measure Comparison for Proposed System with Unigram System

-45-

Results and Discussion

Figure 5.6 shows the overall comparison of the proposed system to the unigram

system in terms of F-measure. The improvements gained are R-1: 14.44%, R-2: 26.48%

and R-SU: 31.86%. These improvements show that our system works better than the

unigram system and therefore co-relates well with the expert summaries.

Figure 5.7 shows the f-measure comparison of the proposed Information Extraction

system with the previously existing centroid based summarizer MEAD [43] at the

compression rate of 0.2 on the MDS dataset. MEAD uses three measures to score the

sentences the unigram frequency, the position of the sentences and the overlapping with

the first sentence (or the title). It is very clear from these figures that our system performs

better than MEAD for the information extraction task (R-1: 27.14%, R-2: 10.12% and R-

SU: 59.44%). It shows that the bi-gram feature is more important than the unigram

feature as well as the location feature and title feature too.

Figure 5.7: F-Measure Comparison for Proposed System and MEAD System

-46-

Results and Discussion

5.4 Results for Sentence Ordering Module

To evaluate the performance of the sentence ordering module we have used Kendall's

tau (T) coefficient [39] as the performance measure. Kendall's i for the ordering task is

evaluated as follows. Let Y = yl ... yn be a set of items to be ranked. Let x and a denote

two distinct orderings of Y, and S (7c, a) the minimum number of adjacent transpositions

needed to bring n to o. Kendall's t is defined as:

r = 1— {2S (ir a)}/ {N (N - 1)/2}
where N is the number of objects (i.e., items) being ranked. As can be seen, Kendall's

i is based on the number transpositions, that is, interchanges of consecutive elements,

necessary to rearrange n into o. In Table 5.3 the number of transpositions can be

calculated by counting the number of intersections of the lines. The ti between the

Reference and System 1 is 0.82, between the Reference and System 2 is 0.24, and

between the two systems is 0.15. The metrics ranges from between -1 (inverse ranks) to 1

(identical ranks).

Kendall's 2 seems particularly appropriate for the sentence-ordering tasks considered

[39]. The metric is sensitive to the fact that some items may be always ordered next to

each other even though their absolute orders might differ. It also penalizes inverse

rankings. Comparison between the Reference and System 2 gives a 2 of 0.24 even though

the orders between the two models are identical modulo the beginning and the end. This

seems appropriate given that flipping the introduction in a document with the conclusions

seriously disrupts coherence.

AB C D E F G HI J

Reference
NV
12 3 4 5 6 7 819 10

System 1 2 1 5 3 4 6 7 9 10

System 2 10 2 3 4 5 6 7 8 9 1

Table 5.3: Reference order and system orders for a text consisting of 10 items

-47-

Results and Discussion

Figure 5.8 shows the results of the proposed sentence ordering module based on the

sentence types. We have validated the proposed sentence ordering technique on the

summaries obtained from the NIE clusters and calculated the Kendall's tau (r) coefficient

for the ordering of each of these summaries against the ordering of the expert summaries

for the same. We get an average Kendall's tau (r) score of 0.76351, which is close to I

and verifies that our system's sentence ordering 70 to 80 % identical as of the expert's

sentence ordering.

Figure 5.8: Kendall's tau (c) coefficient Value for Ordered NIE Summaries

Next we show the result of the sentence type discovery module used in the proposed

sentence ordering technique to identify the IMRaD structure discussed in chapter 4 of the

scientific texts. Figure 5.9 (a) shows the no of sentences that has not been identified by

the system. Figure 5.9 (b) shows the no of sentences identified as introductory sentences.

Figure 5.9 (c) shows the no of sentences identified as method sentences. Figure 5.9 (d)

shows the no of sentences identified as result sentences. Figure 5.9 (e) shows the no of

-48-

Results and Discussion

sentences identified as conclusion sentences. Figure 5.9 (f) shows the no of sentences

identified as scope and recommendation sentences.

35 ,

30

	

25 	 --

C 20
C

6 15
o 	 —Not-identified
z

10 -- 	 — 	—

	

0 	 —
16 11 16 21 26 31 36 41 46

Document no

Figure 5.9 (a): No of Sentences Not Identified

35

25

o 	

--
a v

	

a 20 	 - c

Introduction z

	

10 	 —

1 6 11 16 21 26 31 36 41 	

--

46

Document no

Figure 5.9 (b): No of Sentences Identified as Introduction Sentences

-49-

Results and Discussion

35.

30

5

1 6 11 16 21 26 31 36 41 46

Doeui.ntno

£9 (c): No of Sentences Identified as Method Sentences

25

20

15
Results

10

5

0
1 6 11 16 21 26. 31 36 41 46

ooarnuntno

Figure 5.9 (d): No of Sentences Identified as Result Sentences

- 50-

Results and Discussion

35

30

25
C
C

20
C
41

0 15

Z 10

1 6 11 16 21 26 31 36 41 46 -Conclusion

Document no

Figure 5.9 (e): No of Sentences Identified as Conclusion Sentences

Figure 5.9 (f): No of Sentences Identified as Scope Sentences

-51-

Results and Discussion

Figure 5.10: Percentage of Identified Sentence Types

Figure 5.10 shows the percentage of each type of identified sentences as well as the

not identified sentences for the sentence type discovery module. The figure shows that

our system identifies 90% of the sentences while 10% sentences are remained

unidentified. This is due to the length and language of the sentences. Some sentences are

very short and contain a language that is very s~ecifrc to the domain. These types of the

sentences are not identified by the system until we add these specific words to the

sentence type dictionaries. Next we observe that the introduction type sentences have the

most no of shares in the summary (-36%). This shows that these type of sentences are

very important to be included in a summary they introduce the reader about the topic,

which is very important from the user point of view. The next highest percentage of

identified sentence type is the conclusion sentences (-2 1 %). This shows that they are the

second choice for the inclusion in summary. This is because they contain sentences which

summarize the overall event or document and tell about the findings which are the

common focus of the user after reading the introduction. Next is the method type (-17 %)

which tells about the overall event or process and which the user reads after he finds the

introduction and conclusion interesting to him. The results (-7%) and the scope (-7%)

-52-i

Results and Discussion

are generally the sentences which the user likes to reads in the full articles rather than in

summary as the main results are included in conclusion part, so these types of sentences

are found less in summaries. These observations are quite useful from the summary

extraction point of view and conform to the normal behavior of the user.

With this chapter, the effectiveness of the proposed techniques information extraction

and sentence ordering has been demonstrated. The results of both the phases of the

proposed model have been illustrated. The comparison of the proposed bigram system

with the existing unigram system, MEAD system and a Kendall's tau value of 0.76 shows

that the proposed system works significantly better in extracting information and ordering

the sentences to give a coherent summary.

- 53 -

Chapter 6

Conclusion and Future Scope

6.1 Conclusion

In this dissertation we have proposed techniques for the information extraction and

sentence ordering tasks in multi document summarization. Information extraction task

deals with extracting the most salient sentences from the source documents for the

inclusion in summary while the sentence ordering task deals with the representation of

these sentences to form a coherent summary. The comparison of the proposed system to

the traditional system is given in table 6.1 for both the tasks.

Summarization Task Traditional Systems Proposed System

Unigram 	(Individual word) Bi-gram (window of size 2
Information Extraction

frequency words) frequency

Chronological 	ordering, Chronological 	ordering

Sentence Ordering dependency network (graph) augmented 	with 	sentence

based ordering type based ordering

Table 6.1: Comparison of Features between the Traditional Systems and Proposed

System

The proposed idea for the information extraction is based on the hi-gram (window of

size two important words) frequency rather than the traditional unigram frequency. We

observed that the sequence of important words conveys more meaning than the individual

words. If a sequence of important words in the system extracted summary co-occurs with

a sequence in the expert summary than it is more probable that both the sequences

contains same information, while if individual words co-occur there are less chances that

same facts have been covered in system generated summary and the expert summary. The

high precision value gained by our system over the unigram frequency system confirms

Conclusion and Future Scope

this observation. Overall the proposed information extraction module performs 14%

better (F-Measure with equal weightage to recall and precision) than the information

extraction systems that make use of unigram frequency.

The idea behind the sentence ordering is based on the types of sentences that are

generally found in scientific texts. We have used IMRaD structure for the study of such

types of sentences in this dissertation. The proposed system gives sentence orderings

which are 70 to 80% identical as the sentence orderings given by the experts. We

observed an important fact during this step about the nature of the summary sentences.

We find that the first choice for the summary sentences is the sentences which introduce

the event, process or document topic to the user. The next choice for summary sentences

is the conclusion sentences then follows the method sentences. The result and the scope

sentences are not that much important from summary point of view. These observations

can be used in the information extraction task.

6.2 Future Scope

The work can be extended in following ways:

• Discovering new ideas or methods to generate semantically rich n-grams units which

are more meaningful than the bi-gram unit. The problem with this can be that such n-

grams units (n>2) are not so frequent. This makes the extraction task more difficult.

• The sentence ordering task,is limited to only scientific documents, it can be extended

in other domains. To extend it to other domains we only need to find the types of

sentences that frequent in the documents of that particular domain.

-55-

REFERENCES

[1]. P. Lyman, H. R. Varian, K. Swearingen, P. Charles, N. Good, L.L. Jordan, J. Pal.

"How Much Information 2003?'. School of Information Management and Systems,

University of California at Berkeley, 2003. Available at
http://www.sims,berkeley.edu!how-much-info-2003.

[2]. Mani, I. 2001. "Automatic Summarization". John Benjamin's Publishing Co.,

limited edition available at http://books.google.co.in/books?id=WVUfllJsKVQC

&printsec=frontcover&dq=automatic+summarization&sig=MBOJj4C4nU75yHQu
A52mrmlrMKs

[3]. Udo Hahn, Inderjeet Mani. "The Challenges of Automatic Summarization".

Computer, vol. 33, no. 11, pp. 29-36, Nov., 2000

[4]. Salton, G., Singhal, A., Mitra, M., and Buckley, C. 1997. "Automatic text

structuring and summarization". Information Processing and Management: an
International Journal. 33, 2 (Mar. 1997), 193-207.

[5]. Lin, C. and Hovy, E. 2001. "From single to multi-document summarization: a

prototype system and its evaluation". In Proceedings of the 40th Annual Meeting on

Association for Computational Linguistics (Philadelphia, Pennsylvania, July 07-
12, 2002). Annual Meeting of the ACL. Association for Computational Linguistics,
Morristown, NJ, 457-464.

[6]. G. C. Stein, A. Bagga, and G. B. Wise. "Multi-document summarization:
Methodologies and evaluations". In Proceedings of the 7th Conference on
Automatic Natural Language Processing (TALN '00), pages 337--346, October
2000

[7]. Moens M.-F., Angheluta R., Dumortier J. "Generic technologies for single- And
multi-document 	summarization," 	Information 	Processing 	and
Management, 41 (3), pp. 569-586, 2005

[8]. Radev, D. R., Hovy, E., and McKeown, K. 2002. "Introduction to the special issue
on summarization". Comput. Linguist. 28, 4 (Dec. 2002), 399-408

-56-

References

[9]. Barzilay, R., McKeown, K. R., and Elhadad, M. 1999. "Information fusion in the

context of multi-document summarization". In Proceedings of the 37th Annual

Meeting of the Association for Computational Linguistics on Computational

Linguistics (College Park, Maryland, June 20 - 26, 1999). Annual Meeting of the

ACL. Association for Computational Linguistics, Morristown, NJ, 550-557

[10]. Radev, D. R. and McKeown, K. R. 1998. "Generating natural language summaries

from multiple on-line sources". Comput. Linguist. 24, 3 (Sep. 1998)

[11]. Luhn, H. P. 1969. "The Automatic Creation of Literature Abstracts". IBM Journal

of Research and Development 2(2), 1969

[12]. H. P. Edmundson. "New Methods in Automatic Extracting". Journal of the ACM

(JACM), v.16 n. 2, p.264-285, April 1969

[13]. Goldstein, J., Mittal, V., Carbonell, J., and Kantrowitz, M. 2000. "Multi-document

summarization by sentence extraction". In NAACL-ANLP 2000 Workshop on

Automatic Summarization - Volume 4 (Seattle, Washington, April 30 - 30, 2000).

ANLP/NAACL Workshops. Association for Computational Linguistics,

Morristown, NJ, 40-48

[14]. Goldstein, J., Mittal, V., Carbonell, J., and Callan, J. 2000. "Creating and

evaluating multi-document sentence extract summaries". In Proceedings of the

Ninth international Conference on information and Knowledge Management

(McLean, Virginia, United States, November 06- 11, 2000). CIKM'00. ACM, New

York, NY, 165-172.

[15]. Schiffman, B., Nenkova, A., and McKeown, K. 2002. "Experiments in multi

document summarization". In Proceedings of the Second international Conference

on Human Language Technology Research (San Diego, California, March 24 - 27,

2002). Human Language Technology Conference. Morgan Kaufmann Publishers,

San Francisco, CA, 52-58.

[16]. Knight, K. and Marcu, D. 2002. "Summarization beyond sentence extraction: a

probabilistic approach to sentence compression". Artificial Intelligence 139, 1 (Jul.

2002), 91-107.

-57-

References

[17]. D. Radev, T. Allison, S. Blair-Goldensohn, J. Blitzer, A. Celebi, E. Drabek, W.

Lam, D. Liu, J. Otterbacher, H. Qi, H. Saggion, S. Teufel, M. Topper, A. Winkel

and Z. Zhang, "MEAD - a platform for multidocument multilingual text

summarization," in LREC 2004, 2004.

[18]. Kupiec, J., Pedersen, J., and Chen, F. 1995. "A trainable document summarizer".

In Proceedings of the 18th Annual international ACM SIGIR Conference on

Research and Development in information Retrieval (Seattle, Washington, United
States, July 09 - 13, 1995). E. A. Fox, P. Ingwersen, and R. Fidel, Eds. SIGIR '95.

ACM, New York, NY, 68-73 	 1

[19]. Radev, D. R., Jing, H., Sty, M., and Tam, D. 2004. "Centroid-based

summarization of multiple documents". Information Processing and Management.
40, 6 (Nov. 2004), 919-938.

[20]. Yeh, J., Ke, H., Yang, W., and Meng, I. 2005. "Text summarization using a

trainable summarizer and latent semantic analysis". Information Processing and
Management. 41, 1 (Jan. 2005), 75-95.

[21]. Mihalcea, R. 2004. "Graph-based ranking algorithms for sentence extraction,

applied to text summarization". In Proceedings of the ACL 2004 on interactive
Poster and Demonstration Sessions (Barcelona, Spain, July 21 - 26, 2004). Annual
Meeting of the ACL. Association for Computational Linguistics, Morristown, NJ,
20.

[22]. G Erkan, DR Radev, "LexRank: Graph-based Lexical Centrality as Salience in
Text Summarization", Journal ofArtificial Intelligence Research, 2004

[23]. C. Lin and E. Hovy. 2002. "NeATS in DUC 2002". In Proceedings of the DUC
2002 Workshop on Multi-Document Summarization Evaluation, Philadelphia, PA,
July.

[24]. R Barzilay, N Elhadad, KR McKeown, "Inferring Strategies for Sentence Ordering
in Multidocument News Summarization", Journal of Artificial Intelligence
Research, 2002

[25]. Lapata, M. 2003. "Probabilistic text structuring: experiments with sentence

-58-

References

ordering". In Proceedings of the 41st Annual Meeting on Association For

Computational Linguistics - Volume' I (Sapporo, Japan, July 07 - 12, 2003).

Annual Meeting of the ACL. Association for Computational Linguistics,

Morristown, NJ, 545-552.

[26]. Bollegala, D., Okazaki, N., and Ishizuka, M. 2006. "A bottom-up approach to

sentence ordering for multi-document summarization". In Proceedings of the 21st

international Conference on Computational Linguistics and the 44th Annual

Meeting of the ACL (Sydney, Australia, July 17 - 18, 2006). Annual Meeting of the

ACL. Association for Computational Linguistics, Morristown, NJ, 385-392.

[27]. Okazaki, N., Matsuo, Y., and Ishizuka, M. 2004. Improving chronological sentence

ordering by precedence relation. In Proceedings of the 20th international

Conference on Computational Linguistics (Geneva, Switzerland, August 23 - 27,

2004). International Conference On Computational Linguistics. Association for

Computational Linguistics, Morristown, NJ, 750.

[28]. Barzilay, R. and Lapata, M. 2008. "Modeling local coherence: An entity-based

approach". Comput. Linguist. 34, 1 (Mar. 2008), 1-34.

[29]. R. Barzilay and L. Lee. "Catching the Drift: Probabilistic Content Models, with

Applications to Generation and Summarization". In HLT-NAACL 2004.

Proceedings of the Main Conference, pages 113--120, 2004.

[30]. Barzilay, R., Elhadad, N., and McKeown, K. R. 2001. "Sentence ordering in multi

document summarization". In Proceedings of the First international Conference on

Human Language Technology Research (San Diego, March 18 - 21, 2001). Human

Language Technology Conference. Association for Computational Linguistics,

Morristown, NJ, 1-7.

[31]. Yang-Wendy Wang, "Sentence Ordering for Multi Document Summarization in

Response to Multiple Queries". A thesis submitted in partial fulfillment of the

requirements for the degree of Master of Science in the School of Computing

Science, Simon Fraser University, 2006.

[32]. Radev, D., Otterbacher, J., Winkel, A., and Blair-Goldensohn, S. 2005.

References

"NewsInEssence: summarizing online news topics". Commun. ACM 48, 10 (Oct.

2005), 95-98.

[33]. A. Nenkova and L. Vanderwende, "The impact of frequency on summarization,"

Microsoft Research, Redmond, Washington, Tech. Rep. MSR-TR-2005-101, 2005.

[34]. Toutanova, K., Klein, D., Manning, C. D., and Singer, Y. 2003." Feature-rich part-

of-speech tagging with a cyclic dependency network". In Proceedings of the 2003

Conference of the North American Chapter of the Association for Computational

Linguistics on Human Language Technology - Volume 1 (Edmonton, Canada, May

27 — June 01, 2003). North American Chapter Of The Association For

Computational Linguistics. Association for Computational Linguistics,

Morristown, NJ, 173-180.

[35]. J Steinberger, K Jezek, "Text Summarization and Singular Value Decomposition",

Advances In Information Systems: Third International conference, ADVIS, 2004

[36]. Qin Bing, Liu Ting, Zhang Yu, Li Sheng, "Research on multi-document

summarization based on latent semantic indexing " Journal of Harbin Institute of
Technology (New Series). Vol. 12, no. 1, pp. 91-94. Feb. 2005

[37]. Lin, C. Y. 2004. "ROUGE: A Package for Automatic Evaluation of Summaries". In
Proceedings of the Workshop on Text Summarization Branches Out, post-

conference workshop ofACL 2004, Barcelona, Spain.

[38]. MDS 	and 	NIE 	(clusters 	of 	related 	news 	article) 	datasets,
www.tangra.si.umich.edu/clair/CSTBank

[39]. Lapata, M. 2006. "Automatic Evaluation of Information Ordering: Kendall's" Tau.
Comput. Linguist. 32, 4 (Dec. 2006), 471-484.

[40]. Szklo, Moyses. "Quality of scientific articles. Rev. Saftde Publica [online]". 2006,

vol. 40, no. spe [cited 2008-06-21], pp. 30-35.Scientific Literature structure

[41]. Sollaci LB, Pereira MG. "The introduction, methods, results, and discussion
(IMRAD) structure: a fifty-year survey". J Med Libr Assoc. 2004;92:364-7

[42]. Document Understanding Conference (DUC) publication list, http://www-

- 60 -

References

nlpir. nist.gov/projects/duc/pubs.html

[43]. The online MEAD demo, http.://tangra.si.umich.edu/clair/md/demo.cgi

[44]. Download link for ROUGE http://www. isi. edullicensed-sw/see/rouge/ index. html

[45]. Download link for Stanford POS-tagger http://nlp.stanford.edulsoftware/

tagger.shtml

-61-

LIST OF PUBLICATIONS

[1] Amit Gusain, R. C. Joshi "Multi Document Summarization: Information

Extraction and Sentence Ordering," Journal of Advances in Computational

Sciences and Technology (ACST), (paper under review).

[2] Amit Gusain, Surbhi Bhasin, "A Novel Approach for Sentence Ordering in Multi

document Summarization based on Sentence Types," 4 h̀ International Conference

on Challenges and Development in IT (ICCDIT-2008) organized by Punjab

College of Technical Education, May 2008. (in press)

-62-

APPENDIX A:

SUMMARY GENERATED BY PROPOSED SYSTEM,

TRADITIONAL SYSTEM AND HUMAN EXPERT

1. Summary generated by Proposed (bi-gram) System

Moscow Mayor Yuri Luzhkov visited the blast site and said a terrorist act" appeared

to be the most likely cause of the explosion on the southeast fringes of the capital, near

the Moscow River. Other officials said the blast was caused by a gas leak or explosives

possibly stored in the building -- which could bring the mayor under fire for negligence

in enforcing building regulations. Sergei Bogdanov, press officer of the Moscow branch

of the security service, said the blast may have been caused by explosives stored in the

building. An anonymous caller told the Interfax news agency that the Moscow explosion

and a Saturday night bomb blast in southern Russia were in response to Russia's military

campaign against Islamic rebels in the southern territory of Dagestan. MOSCOW,

Sept(AFP) - Russia's Federal Security Service (FSB) said a massive bomb had destroyed

a Moscow apartment block in which at least people died and scores were wounded on

Thursday, the third such attack to terrorize Russia in days. An anonymous caller to

Interfax said the blast and a car-bomb earlier this week at a military apartment building in

Dagestan were "our response to the bombing of villages in Chechnya and Dagestan."

Emergency officials expressed hope that more survivors would be found even hours after

the blast, while investigators said they would work through the night in the hunt for clues,

news reports said.

2. Summary generated by Traditional (unigram) System

MOSCOW (AP) -- Authorities searched for survivors and clues after a massive

explosion tore apart a nine-story apartment building today, killing at leastpeople and

leaving dozens more feared dead. Moscow Mayor Yuri Luzhkov visited the blast site and

Summary Generated by Proposed system, Traditional system and Human Expert

said a terrorist act" appeared to be the most likely cause of the explosion on the southeast

fringes of the capital, near the Moscow River. It was almost like something flew

overhead and then exploded. Moscow has experienced natural gas explosions in the past

because of the city's crumbling infrastructure, including a blast in Julythat killed six

people. MOSCOW, Sept(AFP) - Russia's Federal Security Service (FSB) said a massive

bomb had destroyed a Moscow apartment block in which at leastpeople died and scores

were wounded on Thursday, the third such attack to terrorise Russia indays. "If it is

confirmed that this is a terrorist act, and everything is leading that way, we shall have to

acknowledge that the echo of war in Dagestan is sounding in Moscow," said Yury

Luzhkov, Moscow's mayor. "Every minute counts. The federal authorities together with

the Moscow city authorities, are already doing and will do all that is necessary to help the

victims," Yeltsin said. They are all dead," she said.

3. Summary generated by Human Expert

MOSCOW (AP) -- Authorities searched for survivors and clues after a massive

explosion tore apart a nine-story apartment building today, killing at least 23 people and

leaving dozens more feared dead. Moscow Mayor Yuri Luzhkov visited the blast site and

said a terrorist act" appeared to be the most likely cause of the explosion on the southeast

fringes of the capital, near the Moscow River. Other officials said the blast was caused by

a gas leak or explosives possibly stored in the building -- which could bring the mayor

under fire for negligence in enforcing building regulations. An anonymous caller told the

Interfax news agency that the Moscow explosion and a Saturday night bomb blast in

southern Russia were in response to Russia's military campaign against Islamic rebels in

the southern territory of Dagestan. MOSCOW, Sept 9 (AFP) - Russia's Federal Security

Service (FSB) said a massive bomb had destroyed a Moscow apartment block in which at

least 34 people died and scores were wounded on Thursday, the third such attack to

terrorise Russia in 10 days. 2 Itar-Tass news agency, quoting an official of the

emergencies ministry, said at least 34 people were killed and that there was no hope of

finding survivors. 3 senior officials surmised that the blast was connected to the month-

long Islamic rebellion in the Caucasus republic of Dagestan.

31

APPENDIX B:
SOURCE CODE

FeatureTermExtraction. i ava

import java.io.*;
import java.io.File;
import java.util.StringTokenizer;
import java.util.*;
class FeatureTermExtraction{
public static void main(String args[]){
try{
int lines=0,no_of words=0;
Hashtable FeatureTerms = new Hashtable();
Hashtable Stop Words= new Hashtable();
Object frequency;
int i=0;
String str, strl, tmp, pos_tag;
StringTokenizer s_tokenizer;
FileReader f_name= new FileReader("../Data/input/KeyFeatures/featureterms_file.txt");
BufferedReader b_reader= new BufferedReader(f name);
while((str=breader. readLineO) ! =null)
{
i++;
s_tokenizer=new StringTokenizer(str.trimO,"\n");
tmp=s tokenizer.nextTokenO;
FeatureTerms.put(tmp, new Integer(0));
}
b_reader.closeo;
i=0;
FileReader f namel= new FileReader("../Data/input/StopWords/english.stop");
BufferedReader b_reader1= new BufferedReader(f namel);
while((str=b_reader l .readLine())!=null)
{
i++;
s_tokenizer=new StringTokenizer(str.trimO,"1n");
tmp=s tokenizer.nextTokenO;
System.out.println(tmp); .
Stop Words.put(tmp, new Integer(0));
}
System.out.println("Total Stop Words " + i);
b_readerl .closer;
i=0;
String dirname="../Data/intermediate/postagged";
File dir = new File(dirname);

till

Source Code

if(dir.isDirectoryO)
{
String s[]=dir.list();
for(int file_iter=0; file_iter<s.length; file_iter++)

File file = new File(dirname+"/"+s[file_iter]);
File Writer fout = new FileWriter("../Data/input/KeyFeatures/"+s[file_iter]);
if(! frle.isDirectoryO)
{
FileReader f reader— new FileReader(file.getAbsolutePathO);
BufferedReader b_Reader— new BufferedReader(f reader);
while((str—b_Reader.readLineO)!=null) 	.

str--str.toLowerCaseO;
s_tokenizer= new StringTokenizer(str,
while(s tokenizer.hasMoreTokensO)
{
str 1=s_tokenizer. nextTokenO.trimO;
no of words++;
i=strl .indexOf("/");
if(i> -1){
str=str l . sub string(O,i);
pos_tag=str l . substring(i+1);
if(!StopWords.contains(str) && (postag.startsWith("vb")Ilpos_tag.startsWith("nn"))).
{
if((frequency=FeatureTerms.get(str))!=null)
FeatureTerms.put(str,new Integer(((Integer)frequency).intValueO+1));
else
FeatureTerms.put(str,new Integer(0));
}
}
}
}
Vector key_set= new Vector(FeatureTerms.keySeto);
Object array[]= new Object[key_set.sizeO];
key_set.copylnto(array);
Arrays.sort(array);
for(i=0;i<array.length; i++)

str=(String)array[i];
if((((Integer)(frequency=FeatureTerms.get(str))).intValueo)<(no_of words*.0025))
{
FeatureTerms.remove(str);

else
{

Source Code

fout.write(str+"1n");
FeatureTerms.put(str, new Integer(0));

no of words=0;
b_Reader. closeO;
}
fout.closeO;

}
}catch(Exception e) {System.out.println(e); }
}
}

BieramMatrix.iava

import java.io.*;
import java.io.File;
import java.util.StringTokenizer;
import java.util.*;
class BigramMatrix

public static void main(String args[])
{
try

int lines=0;
Hashtable words = new HashtableO;
int columns=O;
Object frequency;
int i=0;
String str,strl, tmp,pos_tag;
StringTokenizer s tokenizer;
i=0;
String dirname="../Data/intermediate/postagged";
String outdir="../Data/intermediate/TermDocumetMatrix"
File dir = new File(dirname);
if(dir.isDirectoryQ)

String s[]=dir.listO;
for(int file_iter=O; file_iter<s.length; file_iter++)
{
File file = new File(dimame+"/"+s [file iter]);
File Writer fout = new FileWriter(outdir+"/"+s [file iter]);
FileReader f name= new FileReader("../Data/input/KeyFeatures/"+s[file iter]);

Source Code

BufferedReader b_reader= new BufferedReader(f name);
while((str b_reader.readLineO)! null)
{
s_tokenizer=new StringTokenizer(str.trimO,"1t");
tmp=s tokenizer.nextToken();
words.put(tmp, new Integer(0));
}
b_reader.closeO;,
if(! file.isDirectoryO)

FileReader f_reader— new FileReader(file.getAbsolutePath());
BufferedReader b_Reader-- new BufferedReader(f reader);
while((str=b_Reader.readLineO)! null)
{
str=str.toLowerCaseO;
s_tokenizer= new StringTokenizer(str,
while(s_tokenizer.hasMoreTokensO)
{
strl=s tokenizer.nextTokenO.trimO;
i=strl .indexOf("/');
if(i > -1) {
str=str l . substring(O,i);
pos_tag=strl .substring(i+1);
if(str.lengtho<3)
continue;
else if(pos_tag.startsWith("vb")IIpos_tag.startsWith("jj")Ilpos_tag.startsWith("nn"))
{
if((frequency=words.get(str))!=null)
words.put(str,new Integer(((Integer)frequency).intValueO+1));
else
words.put(str,new Integer(0));
}
}
}
Vector key_set= new Vector(words.keySetO);
Object array[]= new Object[key_set.sizeO];
key_set.copylnto(array);
Arrays.sort(array);
for(i=0;i<array.length; i++)
{
str=(String)array[i];
if(lines==0)

columns=ar ay.length;
}
if((((Integer)(frequency=words.get(str))).intV alueO)>O)

vi

Source Code

{
words.put(str, new Integer(0));
}
fout.write((Integer)frequency+",");

fout.write("\n");
lines++;
}
b_Reader.closeO;
System.out.println("file "+ file.getAbsolutePath() + " lines "+lines);

fout.closeo;
mat_decomposition(lines, columns, s[file_iter]);
words.clearO;lines = 0; columns= 0;

) catch(Exception e) { System.out.println(e); }

static void mat_decomposition(int row, int col, String fname)

try
{
FileReader fname= new
FileReader("../Data/intermediate/TermDocumetMatrix/"+frame);
BufferedReader b_Reader= new BufferedReader(f name);
String str;
double[] []mat= new double[row] [col];
StringTokenizer s tokenizer;
int i=0, j=0;
while((str=bReader.readLineO)! =null)
{
s_tokenizer=new StringTokenizer(str.trimo ,",");
for(j=0;j<col;j++)
{
mat[i] [j]=Integer.parselnt(s_tokenizer.nextToken().trimo);
}
i++;

b Reader.closeO;
System.out.println("shoulld be"+row+" "+col);
System.out.println("present be"+i+" "+col);
FileOutputStream fs= new
FileOutputStream("../Data/intermediateBigramMatrix/"+fname);
PrintWriter pw= new PrintWriter(fs, true);

Matrix A= new Matrix(mat);

vii

Source Code

SingularValueDecomposition svd= A.svd();
Matrix U=svd.getUO;
Matrix V=svd.getVQ;
Matrix S= svd.getS();
Matrix X= U.times(S);
Matrix T= X.times(X.transpose());
pw.println(T.getRowDimensionO);
T.print(pw,2,1);
pw.closeO;
}catch(Exception e){System.out.println("in function mat_decomposition " + e);}

SummaryExtraction.iava

import java.io.*;
import java.io.File;
import java.util.StringTokenizer;
import java.util.*;
class BigramFrequencyComparator implements Comparator{
Hashtable word_tokens;
Hashtable word_index;
double[] [jbigram matrix;
BigramFrequencyComparator(Hashtable wrds, Hashtable wrdindex, double[]
bg_matrix) {
word_tokens= wrds;
word index=wrdindex;
bigram_matrix=bg_matrix;

public int compare(Object a, Object b){
double val= value(a)-value(b);
if(val>O)
return 1;
if(val=0)
return 1;
return (-1);
}
double value(Object a){
String str=(String) a;
str= str.toLowerCaseO;
Object tokvalue;
int[] indices= new int[150];
double sum=0, product=l, value,avg;
int no_of_tokens=0, vi=0;
StringTokenizer stokenizes= new StringTokenizer(str,"_ @$%!#&*+,U[]'1'=;:/\n");

viii

Source Code

while(s tokenizer.hasMoreTokensO){
str= s_tokenizer.nextTokenO.trimO;
if((tokvalue=word_tokens. get(str))!=null) {
no of tokens++;
value=((Double)tokvalue). double V alueO;
sum-1-=value;
if(value!=O)
product*=value;

if((tokvalue=word_index. get(str))! =null) {
indices [vi++]=((Integer)tokvalue). intV alueo;
}
}
if(product==l)
product=0;
avg=sum/no_of tokens;
double relative sum=0, relative_product=l, relative_value, relative_avg;
int row_no, col no, relative_no_of_tokens=0;
for(int i=0; i<vi;i++){
for(int j=0; j <vi; j++){
row_no=indices[i];
col_no=indices[j;
relative_no_oftokens++;
relative_sum+=bigram_matrix[row_no] [col_no]/(j-i);
if(bigram_matrix[rowno] [colno] !=0)
relative_product*=bigram_matrix [row_no] [col_no]/(j -i);
}
}
if(relative_product==1.0)
relative_product=0;
relative avg=relative sum/relative—no—of tokens;
double alpha=.3, beta=.7;
return (alpha*product + beta* relative-Product);
}
}
class OrderComparator implements Comparator{
Hashtable Sent_list;
OrderComparator(Hashtable s_list){
Sent list =s_list;
}
public int compare(Object a, Object b){
System.out.println((Integer)Sent_list.get(a) + " "+ (Integer)Sent_list.get(b));
if(((Integer)Sentlist.get(a)).intValueo > ((Integer)Sent_list.get(b)).intValueo)
return 1;
return -1;
}

ix

Source Code

class SummaryExtraction{
String directory;
Hashtable word tokens;
Hashtable Sents;
Hashtable word_index;
double [][]bigram_matrix;
Hashtable Stop Word_ tokens;
HashSet allsentences;
int total sentences, abs_Summary_Size;
intsent no;

SummaryExtractionO {
word tokens= new HashtableO;
Sents= new HashtableO;
word_index = new Hashtable();
Stop Word_ tokens = new HashtableO;
directory="../Data/input/RawTextl"; //directory for source data set
allsentences = new HashSet();
total_sentences=0;
sent no=0;

public void InitializeO{
try{
Object frequency;
int i=0, freq=0, totalwords=0;
double p_writer;
String str,strl,pos tag, dimame;
StringTokenizer s_tokenizer;
FileReader f_name = new FileReader("../Data/input/StopWords/english.stop"); //stop
word list
BufferedReader b_reader = new BufferedReader(f name);
while((str=b_reader.readLineO)!null) {
str.trimO;
StopWords.put(str,new Integer(0));
}
b_reader.closeO;

dirname="../Data/intermediate/postagged";// postagged files
File Writer fout= new FileWriter("../Data/intermediate/noun_vb_jj.txt");
File dir= new File(dirname);
String s[]=dir.listO;
for(int file_iter=0; fi<s.length;fi++){
File file = new File(dirname+"/"+s[fi]);
if(! file. i sDirectoryO) {
FileReader f_reader= new FileReader(file.getAbsolutePathO);
BufferedReader b Reader— new BufferedReader(f reader);

Source Code

while((str=bReader.readLineO)!=null) {
total_ sentences++;
str=str.toLowerCaseO;
s tokenizer=new StringTokenizer(str," ");
while(s_tokenizer.hasMoreTokenso) {
str 1=s_tokenizer. nextToken().trimO;
i=str l . l astlnd ex O f("/");
if(i!=-1){
str = strl.substring(O,i);
pos_tag=str l . substring(i+l);
if(str.lengthO<31I StopWords.get(str)!=null)
continue;
else if(pos_tag.startsWith("vb")Ilpostag.startsWith("nn")Ilpos_tag.startsWith("jj"))

totalwords++;
if((frequency=word tokens.get(str)) =null)
word_tokens.put(str, new Integer(0));
else
word_tokens.put(str, new Integer(((Integer)frequency).intValueo +1));
}

b Reader.closeO;

Enumeration keys_set= word_tokens.keys();
while(keys_set.hasMoreElements()) {
str=(String)keys_set.nextElement();
frequency= word_ tokens.get(str);
freq=((Integer)frequency). int V alue();
p_writer=((double)freq)/totalwords;
word tokens.put(str, new Double(p_writer));
if((int)(p_writer* 1000)!=0)
fout.write(str+"\t"+freq+"\n");
}
initializeword _index(s [file_iter]);
initialize_bigram_matrix(s[file_iter]);
storeSentences(s[file_iter]);
File Writer foutl= new File Writer("../Data/output/Summary-pro/nie-"+s [file _iter]);
BigramFrequencyComparator cmp= new
BigramFrequencyComparator(this.wordtokens,this.word index,this.bigram_matrix);

Vector Sentences = new VectorO;
Vector sortedSentences = new VectorO;

Sentences.addAll(O, this.allsentences);

Source Code

Collections.sort(Sentences, cmp);
Collections.reverse(Sentences);

abs_Summary_Size = (10 * total_sentences)/l00;
System.out.println(s[file_iter] +"\t" + total_sentences +"\t "+ abs_Summary_Size);

Iterator sortiter = Sentences.iteratorO;
while (sortiter.hasNextO) {
if (abs_Summary_Size = 0) sortiter.nextO;
else {
sortedSentences. add(sortiter.next());
abs_Summary_Size--;

OrderComparator cmpr = new OrderComparator(Sents);
Collections.sort(sortedSentences, cmpr);
Iterator iter = sortedSentences.iteratorO;
while (iter.hasNextQ) foutl .write(iter.next(+ "\n");
foutl .closeO;
word _tokens.clearQ;wordindex.clearO; allsentences.clearO;Sents.clear();
total _sentences=0;abs_Summary_Size=O; sent_no=0;
}
}catch(Exception e){e.printStackTraceO;}
}
public void initialize_bigram_matrix(String fname)throws Exception{
String str;
StringTokenizer s tokenizer;
FileReader f name = new FileReader('../Data/intermediateBigramMatrix/"+fname);
BufferedReader b Reader= new BufferedReader(f name);
int i=0, j=0;
int sz= Integer.parseInt(b_Reader.readLineO.trimO);
b_Reader.readLine();
bigrammatrix= new double[sz][sz];
double tot=0;
while((str=b_Reader. readLineO)! =null) {
s_tokenizer=new StringTokenizer(str.trim(),"\t");
if(! s_tokenizer.hasMoreElementsO)
break;
for(j=0zj<sz; j++){
bigram_matrix[i] [j]=Double.parseDouble(s_tokenizer.nextTokenO.trimO);
ifgi! j)
tot+= bigram_matrix[i][j];
else
bigram_matrix [i] [j]=0;
}
i++;

xii

Source Code

}
b_Reader.closeO;
for(i=0;i<sz;i++)
for(j=0;j<sz;j++)
bigram_matrix [i] [j]/=tot;
}
public void initialize_word_index(String fname)throws Exception{
String str, tmp;
StringTokenizer s tokenizer;
FileReader fname= new FileReader("../Data/input/KeyFeatures/"+fname);//imp features
BufferedReader b_reader=new BufferedReader(f name);
int i=0;
while((str=breader.readLineO)! =null) {
s_tokenizer=new StringTokenizer(str.trimO, "\n");
tmp= s_tokenizer.nextTokenO.trimO;
tmp=tmp.toLowerCaseo;
word_index.put(tmp, new Integer(i++));
}
b_reader.closeo;
}
public void storeSentences(String frame)
{
try{
String str, dirname=directory;
File file = new File(dirname+"/"+frame);
if(! file. isDirectoryQ)
{
FileReader f_reader= new FileReader(file.getAbsolutePathQ);
BufferedReader b Reader= new BufferedReader(f reader);
while((str=bReader.readLineO)!=null)
{
storeSnt(str);
}
b_Reader.closeO;
}
}catch(Exception e){e.printStackTraceQ;}
}
public void storeSntl(String str){
allsentences.add(str);
Sents.put(str, new Integer(sent_no++));
}
public void storeSnt(String str){
intindex=0;
while(str!=null) {
index=O;
do{

Source Code

index=str.indexOf(". ",index+l);
if(index<50 && index>0)
index = str.indexOf(".",index+l);
if(index<0 11 index>(str.lengthO-10))
break;
}while(!(Character.isUpperCase(str.charAt(index+3))I Character.isUpperCase(str.charAt(
index+2))));
if(index>0){
allsentences. add(str. substring(O,index));
Sents.put(str.substring(0,index), new Integer(sent_no++));
str= str.substring(index+l);

else if(str!=null){
allsentences.add(str);
Sents.put(str, new Integer(sent_no++));
str=null;
}
}
}
public static void main(String args[]){
try{
Summary does= new SummaryO;
docs.InitializeO;
System.out.println("store Sentences over");
BigramFrequencyComparator cmp= new
BigramFrequencyComparator(docs.word_tokens,does.word_index,docs.bigram_matrix);
Vector Sentences = new Vector();
Vector sortedSentences = new Vector();
Sentences. addAll(docs. allsentences);
Collections.sort(Sentences, emp);
Collections.reverse(Sentences);
Iterator sortiter = Sentences.iteratorO;
abs_Summary_Size = (10 * total_sentences)/100;
System.out.println(total_sentences +"\t "+ abs_Summary_Size);
while (sortiter.hasNextO) {
if (abs Summary_Size = 0) sortiter.nextQ;
else {
sortedSentences.add(sortiter.nextO);
absSummary_Size--;
}

Iterator iter = sortedSentences.iteratorO;
while (iter.hasNext()) fout.write(iter.next() + "\n");
fout.close();
System.out.println("Summary Sentences Extracted");
}catch(Exception e){System.out.println("3rd "+e);}

xiv

Source Code

Dictionary.iava

import java.io.*;
import java.io.File;
import java.util.*;
public class Dictionary
private final int nrWords = 1000;
private Hashtable dict[];
public Dictionary() {
dict =new Hashtable[10];
dict[0] = new Hashtable(nrWords);
dict[1] = new Hashtable(nrWords);
dict[2] = new Hashtable(nrWords);
dict[3] = new Hashtable(nrWords);
dict[4] = new Hashtable(nrWords);
dict[5] = new Hashtable(nrWords);
dict[6] = new Hashtable(nrWords);
dict[7] = new Hashtable(nrWords);
dict[8] = new Hashtable(nrWords);
dict[9] = new Hashtable(nrWords);
addO;

public boolean contains(String phrase, int dictNo) {
if(dict[dictNo].containsKey((phrase.toLowerCaseO).trimO)) {
return true;

return false;

public void addO{
try{
String dimame="Dictionaries";
File dir= new File(dirname);
String s[]=dir.listO;
for(int file_iter=0; file_iter<s.length;file_iter++){
File file = new File(dirname+"/"+s[fileiter]);
if(!file.isDirectoryO){
FileReader f_reader-- new FileReader(file.getAbsolutePatho);
BufferedReader b_Reader= new BufferedReader(f reader);
String str;
while((str=bReader. readLineO)! =null) {
String commentstart = new String("//");
String emptystring = new String("");

xv

Source Code

if(!str.startsWith(commentstart) && !str.equals(emptystring))
dict[file_iter].put((str.toLowerCaseo).trim(), new Integer(1));
}
}
b_Reader.closeo;
}
}
}catch(Exception e){ System.out.println(e+" Dictionary");};
}
}

GetDictionarvWords.iava

import java.io.*;
import java.io.File;
import java.util.StringTokenizer;
import java.util.*;
class GetDictionaryWords
{
public static void main(String args[j)
{
try
{
int lines=0,no_of_words=0;
Hashtable FeatureTerms = new Hashtable();
Hashtable Stop Words= new HashtableO;
int columns=0;
Object frequency;
int i=0;
String str,strl, tmp,pos_tag,first,second,third;
first—""; second=' ;third"
StringTokenizer s_tokenizer;
FileReader f_namel= new FileReader("../Data/input/StopWords/english.stop");
BufferedReader b_readerl= new BufferedReader(f namel);
while((str=b_reader 1.readLineO)! mull)
{
s_tokenizer=new StringTokenizer(str.trimo,"fin");
tmp=s_tokenizer.nextToken();
Stop Words.put(tmp.trimO, new Integer(0));
}
b_reader 1 .closeO;
String dirname="../Data/intermediate/Dictionary/Training";
File dir = new File(dirname);
if(dir.isDirectoryO)

xvi

Source Code

String s[]=dir.listO;
for(int file_iter=0; file_iter<s.length; file_iter++)
{
File file = new File(dirname+"/"+s [file iter]);
File Writer fout = new File Writer("../Data/intermediate/Dictionary/"+s [file _iter]);
if(! file. i sDirectory())
{
FileReader f reader= new FileReader(file.getAbsolutePatho);
BufferedReader b_Reader= new BufferedReader(f reader);
while((str=b_Reader.readLineO)!=null)
{
str=str.toLowerCaseO;
s_tokenizer= new StringTokenizer(str, " %!&+,()[]\'= ;:An");
if(no_of words=0){
first=s tokenizer.nextTokenO.trimO;
second=s_tokenizer.nextTokenO.trimQ;
}
while(s_tokenizer.hasMoreTokensQ)
{
third=s_tokenizer.nextTokenO.trimO;
strl=first;
if(str l .trimO!=". ") {
no of words++;
if(strl.lengthO>2 && StopWords.get(strl)=null){
if((frequency=FeatureTerms.get(str 1))!=null)
FeatureTerms.put(strl,new Integer(((Integer)frequency).intValue()+1));
else
FeatureTenns.put(strl,new Integer(0));
}
strl=first+" " +second;
if((frequency=FeatureTerms.get(strl))! =null)
FeatureTerms.put(strl,new Integer(((Integer)frequency).intValueo +l));
else
FeatureTerms.put(strl,new Integer(0));
strl=first+" "+second+" "+third;
if((frequency=FeatureTerms.get(str l))!=null)
FeatureTerms.put(strl,new Integer(((Integer)frequency).intValueo +1));
else
FeatureTerms.put(strl,new Integer(0));
}
first= second;
second third;
}
}
Vector key_set= new Vector(FeatureTerms.keySetQ);
Object array0= new Object[key_set.sizeQ];

xvu

Source Code

key_set.copylnto(array);
Arrays.sort(array);
for(i=0;i<array.length; i++)
{
str=(String)array[i];
if((((Integer)(frequency=FeatureTerms.get(str))).intValueo)>no_of words*.0001)
fout.write(str+"fin");
}
b_Reader.closeO;
}

FeatureTerms.clearQ;no_of words=0;
fout.closeO;
}
}
}catch(Exception e){e.printStackTraceO;}
}
}

Ordercomuarator. i ava

import java.util.*;
public class OrderComparator implements Comparator
public OrderComparator(){

public int compare(Object ol, Object o2) {
double ol SentWgt = ((Sentence)o 1). getSentenceType();
double o2SentWgt = ((Sentence)o2).getSentenceType();

if (01 SentWgt > o2SentWgt) return 1;
else if (olSentWgt < o2SentWgt) return -1;
else return 0;
}
}

Sentence.lava

import java.util.*;
public class Sentence{
private VectortheSentence;
private Stringsent;
private int sentenceType;
public int typeScore[];
public Sentence(String sentence) {

xviii

Source Code

typeScore= new int[10];
theSentence = new VectorO;
String[] words = sentence.split("\\sl,J;I:I\\t");
for (int i = 0; i < words.length; i++)
if (words[i].length() != 0) {
theSentence.add(new Word(words[i].trimO));
}
}
sent = sentence;
calcTypeo;
}
public void calcTypeO
{
Word curword, hi _word, tri word;
String first, second, third=,
int max= -1;
ListIterator listiter = theSentence.listlteratorO;
first = ((Word)listiter.nextO).getWordO;
second = ((Word)listiter.next()).getWordO;
while (listiter.hasNextO) {
third =((Word)listiter.next()).getWord();
curword = new Word(first);
bi_word = new Word(first +' "+ second);
tri_word = new Word(first +" "+second + " "+ third);
for(int i=0; i<10; i++){
if(curword.isType(i) 11 bi_word.isType(i) tri_word.isType(i))
{
typeScore[i]++;
if(typeScore[i]>=max) {
max=typeScore[i];
sentenceType=i;
}
}
}
first = second;
second = third;
}
for(int i=0; i<10; i++){
if((new Word(first)).isType(i) (new Word(second)).isType(i) I (new Word(first+ " " +
second)).isType(i))
{
typeScore[i]++;
if(typeScore[i]>=max) {
max=typeScore[i];
sentenceType=i;
}

xix

Source Code

public int getSentenceType() {
return sentenceType;
}
public String getSentenceString()
return sent;

public Vector getWords()
return theSentence;

SentenceOrdering.i ava

import java.io.*;
import java.util.*;
class SentenceOrdering

static Vector sentences;
public static void orderSentencesO{
try{
FileWriter fout= new FileWriter("../Data/output/test/single-word/Final-A.spl");
Listlterator listiter = sentences.listlteratorO;
Collections.sort(sentences, new OrderComparatorO);
while (listiter.hasNextO) {
Sentence s1= (Sentence)listiter.nextO;
fout.write(sl.getSentenceStringQ + "." + sl.getSentenceType() + "\n");
}
fout.closeO;
}catch(Exception e){System.out.println(e+"SentenceOrdering 2");}
}
public static void main(String args[])
String sent;
try

sentences = new VectorO;
String dirname="../Data/output/test/single-word/A.sent";
File file= new File(dirname);
FileReader f_reader-- new FileReader(file.getAbsolutePathO);
BufferedReader b_Reader= new BufferedReader(f reader);int i=0;
while((sent=b_Reader.readLineO)!=null) {
sentences.add(new Sentence(sent));

xx

Source Code

}catch(Exception e){System.out.println(e +" SentenceOrdering:main ");}
orderSentencesO;

Word.iava

public class Word {
private String the Word;
private boolean type[];
static Dictionary diets = new Dictionary();;
public Word(String word)
type = new boolean[1 O];
the Word = word;
calcTypeO;
}
public void calcTypeO
for(int i=0; i<10; i++)'{
type[i]=false;
if(dicts.contains(theWord,i)){
type[i]=true;
}
}
}
boolean isType(int i){.
return type[i];
}
public String getWord()
return the Word;

xxi

	Title
	Abstract
	Chapter 1
	Chapter 2
	Chapter 3
	Chapter 4
	Chapter 5
	Conclusion
	References
	Untitled

