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SYNOPSIS

Artificial Neural Networks (ANNs) are new computing
architectures in thé area of artificial intelligence. The recent
resurgence of interest in Artificial Neural Networks has its
roots in the recognition that the brain performs computations in
a different manner than do conventional digital computers. A
human information processing system is composed of neurons
switching at speeds about a million times slower than the
computer gates. Yet humans are more efficient than computers at
computationally complex tasks. Artificial Neural Network is the
result of long standing effort for mimicking the computational
capability of brain system.This derives its inspiration from two
distinct yet related fields - Associationist psychology and

Neuroscience.

Quite contrast to the conventional digital computers, these
ANN based systems can acquire, store and utilize experiential
knowledge. For this reason, the scope of its applicability is
being explored in many disciplines including Hydrology. The
present study aims at application of this Neural Network based
computational paradigm in reservoir operation and inflow

prediction.

Upper Indravati hydro-electric project, which is a large
multi purpose Water Resources Project in the Nowrangpur and
Kalahandi districts of OEiSsa has been selected as the problem
area for this study. On completion, the project shall comprise of
four dams and a combined reservoir of 119 km’ area. The project
has primarily two objectives: to provide irrigation to 1,28000
ha. of agricultural land and to provide 600 MW of electric power
through four numbers of Francis turbines of 150 MW each.

The present study capitalises on 32 years of monthly inflow
record of the project. Specifically the objecti:e is to maximise
total project benefits from hydro  power generation,
simultaneously aiming to minimise the irrigation deficit and
water losses through spilling. This objective was aimed to be
attained through the following steps.

(1ii)



1. The primary objective of maximising benefit from power
generation was achieved through a DP model basedv_on DDDP
approach taking the entire period of 32 years as the
optimisation horizon. The secondary objective of minimising
irrigation deficit was taken care of by searching an
appropriate loss function through trial and error procedure.

2. Reservoir operation policies are formulated through the
conventional DPR models and through the DPN model by
segregating the DP model output into two parts : one part was
used for calibrating/training the models and the other Was'used
for validation. These models along with a formulated SOP model
were compared by adopting customised system simulation

techniques.

3. An appropriate time-series model in the categcry of Box-
Jenkins ARIMA family of multiplicative seasonal models is
fitted to the monthly inflow data series and a forecast model
is developed for river flow prediction. Another forecast:model
based on Neural Nets is formulated for the same purpose. Both
the models were compared during the validation period.-

4. In the final step better alternatives from among the’
competing models were selected and a tentative framework for
how the above models can be integrated to serve as a at-site
reservoir operation model, waé furnished and monitoring

modalities for the same were briefly outlined.

In this study, an exclusive chapter has been devoted to
introduce the ANN, and discuss briefly the history, background,
theory, learning algorithm and its applications in surface
water hydrology. A new technique of shuffling has been
introduced in this study to desensitize the input pattern
sensitivity of Error-Back-Propagation Neural Networks.

Key words : DDDP Discrete Differential Dynamic Programming, DPR
Dynamic Programming with regression, DPN Dynamic Programming
with Neural Nets, ARIMA Auto Regressive Integrated Moving

Average.
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CHAPTER - 1

INTRODUCTION

1.1.0 GENERAL

Water not only serves as a vital substance for human
existence but also plays an important role in advancing the
civilization. Owing to the rapid growth in the world economy
and civilization, the need £for the development of water
resources has become more urgent than ever before.Water is
becoming a scarce resource as a result of growing demand
in its wuse for wvarious purposes such as hydro-power,
irrigation, water supply etc. Judicious and econcmic use of
water is now a matter of great importance. With this in view
there has been tremendous increase and expansion in the
scientific and technological knowledge about water and since
water is related to so many things in nature as well as in
human society, this knowledge is extremely broad and inter-

disciplinary.

The process by which rainfall is transformed into
runoff is complex, nonlinear, time varying and spatially
distributed and quite often the availability of water is at
variance with those required for certain economic activities.
This makes the construction of water resource projects, an
inevitable proposition with the objective of development,
harnessing, storage, control, allocation and utilisation of
water in an optimised manner. The analysis and solution of the
issues along with the allied problems form .the scope of
Water Resources System Engineering. This does not restrict
itself into finding of an optimised solution based design of
various system components only but also puts emphasis on
continuous monitoring of the water resources system, ie.,
striking a balance between reservoir operation and the

inventory problem.



The inventory problem hés still been complex and
addresses greatef interest and research effofts as it is still
“an important controversy in the literature of river flow
modelling regarding what constitutes the basis for appropriate
statistical assumptions in river flow predictions - on a
sustained basis. The scheduling of the stored water in a
resérvoir for optimised benefit is inherently linked to the
inflow sequence thus adding to the fuzziness to the task of

" At site Reservoir Operation ".

The earliest reservoir operation studies in the
english language appears to be a work of Little[l955], who also
addressed to this inter twinned problem as, "The scheduling of
the use of this stored water makes an unconventional inventory
problém."While comparing the reservoir operations and inventory

problems, he wrote,

" The hydroelectric problem differs from the usual
business inventory problem in that the input, not the output
is the random variable. The power demand 1is considered fairly
well known in advance, but the river flow is not. ‘Further
more, reservoirs, unlike most ware houses have the property.
that the more nearly they are filled, ’the more valuable 1is
each unit of water, because head'is higher." | |

During the last two decades significant advénces have
.been madé. in the systems engineering techniques and
forecasting methodologies and preséntly these techniques are '
extensively used = for planning and operation of water.
resources projects. The main motivation behind the search for
better techniques for analyéis of water resources systems
has been the realisation of the fact that even a small
impro?ement 'in the solution of the related problems has high
economic value attached to it. Further more the advent of

(2)



modern computers has made it very easy and time saving to use

these tools.

Mathematical optimization algorithms such as linear
and dynamic programming and various customised simulation
techniques are the most widely used tools of systems
engineering. These have been successfully applied in the study
of the planning and operation of single and multi purpose

reservoir systems.

In the planning models the locations and sizes of
engineering structures, to meet the identified demands are
analyzed taking due care of physical and budgetary constraints
for the system. In the operation model the possibilities of
maximising the benefits are examined keeping the preset targets

intact.

But whether it be planning or operation, collection,
analysis, dissemination and function approximation of a large
data set, which may be composed of raw and
computed/derived data and which consists of some input and
output pattern 1is a foremcst and vital aspect of systems
engineering. This necessitates the adoption of proper
mapping tools/ pattern recognition algorithms which can map
a long historical data set for a given input pattern to that
of a desired output pattern, with error minimisation and
should have capability to adapt to newer environments, ie., the

function so approximated is valid for future events also.

Regression techniques with least squares estimates.
namely multiple linear regression models and multiple non
linear regression models are still the well recognised and
widely applied mapping tools in the fields of systems
engineering. Artificial Neural Network (ANN) is a recent tool
in the fields of function mapping, which off late has

(3)



attracted a lot of research in this field for its
validation, application and for exploring the possibilities
of ANN as a substitution for conventional mapping techniques

like regression.

The development of Artificial Neural Network methods
has been motivated by attempts to mimic the exceptional
pattern recognition and adaptive learning abilities of
biological ﬁeural networks.ANN models have been successfully
used to model complex non linear input-output time series
relationships in a wide variety of fields, [Vermury and Rogers,
1994] .

-

1.2.0 OBJECTIVES OF THE STUDY

The present study attempts to address an important
aspect of Water resources systems engineering, ie., reservoir
management as discussed in the above paragraphs and is aimed at
developing a model of at-site reservoir dperation to study the
applicability of Artificial Neural Network in river . flow
predictions and reservoir water release policy. For this
purpose Upper Indravati Hydroelectric project which is a
multi purpose water resources project in the Nowrangpur and
Kalahandi districts of Orissa has been chosen as the focal
system, '

Specifically, the objective 1is to maximise total
benefits from hydro power generation, simultaneously aiming to
minimise the irrigation deficit and water losses througﬁ
spilling. The aforesald obje ctive is aimed to be attained
through the following steps. '

1. To develop a reservoir operation policy
through the conventional DPR (Dynamic Programming with

(4)



Regression) model and another operation policy through DPN
model (Dynamic Programming with a Neural net) and compare the

performance of the models during the validation period.

2. To fit an appropriate time series model to the
historical inflow data set of Indravati river and develop a
' forecast model for river‘fléw predictions and emulate the same
to develop a neural net based model and test the performance

during the validation period.

3. With the better alternatives chosen after comparison
of various models, to work out an impleme ntation schedule for
the Reservoir Operation model and furnish the monitoring

modalities of the same.
1.3.0 METHODOLOGY

For finding out the optimal water releases under the
objectives of maximising the benefits from power generation and
minimising the irrigation.deficit, the discrete, differential,
dynamic programming approach has been applied. As for the
monthly demand pattern,man existing demand pattern which has
earlier been worked out by adopting linear programming approach
by other scholars, is being taken into consideration as input

to the DP model and for other computations.

The results obtained from DP - simulation = are
. processed through the SYSTAT package for multiple linear
regression and multiple non linear regression models, keeping
the optimal releases as the output pattern and initial
storage at the start of the time period, inflow and the demand
as the three input patterns. MSE (Mean Square Erfof )
computation and parameter estimations have been made for both
the models. Further the same data set 1s divided into two
parts (ie., training data set and testing data set) and an

(5)



ANN architecture 1is  obtained after  a rigorous training

course. . The same is validated after comparison with the DPR

- models

A simulation model . is developed for four viable
options namely, o ' '
A, Multiple 1linear regression based wmodel
B. Multiple non linear regression based model
C. ANN based model
D. SOP (Standard Operating based) model
to study the performances of various alternatives.

' For obtaining the river flow predictions, two
approaches have been adopted, namely Box and Jenkins ARIMA
multiplicative seasonal modelling and the ANN model. For ARIMA
forecasting two models have been formulated in  FORTRAN
language, one for explicitly estimating the parameters and the
other for forecasting future time series values at various
lead times. For ANN based forecasting a suitable,aréhitecture
is searched through trial and -error by employing the MSE
criteria, keeping the validation period of four years, ie.,
~ employing the last four | years inflow record for

’ testing.The predicted time series sequence from both the

alternatives are compared with actual inflow sequence, in order -

to arrive at a decision as to which one is giving more accurate
and reliable predictions. ’ '



CHAPTER - 2

LITERATURE REVIEW

2.1.0 GENERAL

Significant advances have been made over last few decades
in the field of Water Resources Engineering and especially the
rapid growth of computing power in the last few decennia has
enabled the development -of more effective, reliable and
exciting system engineering modelling tools and techniques.

Mathematical optimization algorithms such as linear and
dynamic programming, with nuﬁerous state variables, constraints
and decision variables and with exponential growth in
computational burden, have been successfully employed with the
aid of high speed computers, to arrive 2t near optimal level

solutions.

One of the most exciting ideas emefging from this vast
pool of computer based research, is the thought of emulating
the low level mechanisms of the brain. Although the biological
unit still out—perfofms any man-made tool in terms of
recognition, analysis, prediction and especially learning, the
alluring output from the brain simulated models have provided
enough motivation to researchers to conduct extensive research

into this area of artificial intelligence.

Based on the highly inter connected structure of the brain
cells, the artificial neural networks, in which a new
breakthrough has started since late 1980’s, has by now
characteristically demonstrated that this approach is faster
compared to 1its conventional compatriots 1in the resbective
" fields, robust in noisy environments, very flexible in the
range of problems it can solve and highly adaptive to the

(7)



newer environments.

For these'already established advantages, ANN has got by
now numerous real world applications such as image prdcessing;
speech.pfocessing, robotics and stock market predictions, to
~name a few. There has been extensive ongoing research into its
implementation in the system engineering related fields such as
enhanced time series prediction, rule based control and
optimization, parameter identification for system simulation,
runoff prediction etc. and many promising and interesting
results are being published from time to time thus encouraging

further research.

As the present study is aimed at studying the
applicability of ANN as discussed in the previous chapter, an
extensive literature review of the subject has been made within
the constraints of time and availability of study materials. A
separate chapter in this report has been devoted for the
discussion of the theoretical aspects, computational algorithm

and the literature review.

The llterature survey in thlS chapter is divided into

three sub sections namely,

1. Dynamlc programmlng modelling

2. Simulation mo@els A ‘

3. Time series hbdeilihg :Box and Jenkins ARIMA forecast
approach ' ' '

2.2.0 DYNAMIC PROGRAMMING MODELLING

Water resources problems have provided an exeellent
impetus and have served as a stimulus as well as a laboratory
for the development and further advances in theoretical and
numerical aspects of dynamic programming since 1957,‘ when
Bellman, in his celebrated book "DYNAMIC PROGRAMMING"

(8)



explicitly defined it to be ‘ The theory of multi stage

decision processes’. Since then many inventive numerical
techniques, notably DDP (Discrete dynamic programming), DDDP
(Discrete differential dynamic programming), SIDP (State

incremental dynamic programming) and Howard’s policy iteration
methods have been applied for implementing the dynamic

programming.

In spite of severe limitations imposed on the scale of
dynamic programming from the computational considerations, the
popularity and increasing utilisation of this technique can be
attributed to the fact that this enumeration technique can be
used for objective functions, which are linear, non linear and
even discontinuous. In -~addition, it has the advantage of
effectively decomposing highly complex problems with a large
number of variables into a series of sub problems which are

solved recursively.

Another notable advantage in using the DP algorithm is
that whereas in other optimisation techniques, the constraints
lead to additional computations, in dynamic programming the
constraints can Dbe utilised for increased computational

efficiency, since these constraints limit the feasible region.
2.2.1 Theory of Dynamic Programming

In the problem formulation, the dynamic behaviour of the
system is expressed by using three types of variables, namely
stage variables, state variables and control or decision
variables. With each state transformation. a return is
associated which may either represent benefits or costs. The
crux of the problem lies in identifying the appropriate control

variables which optimize the returns.

Keeping up with the Bellman’s principle of optimality that

(9)



"The optimal decision made at a particular stage is independent
- of decisions made at previous stages given the current state of
the system", a set of decisions, for each time period corres-
ponding to the finite number of states is obtained.The
particular decision in the entire set, which optimises the

objective function is called the optimal policy.

A system equation can be written in a discrete form for an

optimal control problem (OCP) as follows.

X = E(x,u) lstsN

Where

{u} represents the control variables at time t;

{x} represents the state of the system at time t;

£, _determines the relation between {u} and {x};

t) represents the decision stages in the domain for the

index t between 1 and N (first N positive integers or
the set of all positive integers for an infinite

horizon process) and quite often refers to time.

Assuming a minimisation problem, the objective function

can be defined by,

J(u) = L, (x,u)
where
L (x,u) is a single stage loss function.
J(u) is the objective function.

The goal with respect to an optimal control problem is to
construct a policy u* which minimizes the objective function
J(u). Typically the feasible controls are those which satisfy
a vector valued state-stage dependent constraint of the form,

g, (x,u) s O l1stsN

(10)



The main problem with this DDP approach is in generation
of impossibly large number of discretized state nodes, which
limit the usefulness of this algorithm to at most four or five

state and control variables.

Amongst the various potent methods developed during the
last three decades, which have overcome the 'curse of
dimensionality’ of exponentially increasing computational
burden with increase in state dimension in case o©of DDP, the
ones particularly suited for water resoﬁrces systems are DDDP,
SIDP and differential dynamic programming.

The discrete differential DP which has been employed for
the present study, is an iterative procedure, in which the
recursive equation of DP is solved within a restricted set of
state variables. The optimal solution is obtained by gradually
iﬁproving upon the initial solution. The prototypical DDDP is
most simply described as DDP with the added constraint that for

each time period t and for some specifiedAe > 0,

” X, - xl’” < €
Heidari et al.[1971]> to whom the designation DDDP is due,
described the above constraint, by saying that the successor
trajectory must lie in a ‘corridor’ of width and centred about
the nominal trajectory. Figure (2.1) shows a typical corridor
boundary and the state variable (storage) discretization into

-a number of feasible stages.
2.2.2 DP Application in Reservoir Operations
It is interesting to note that application of stochastic
DP algorithms [Masse 1946; Little 1955) in reservoir operations

precede applications of deterministic dynamic programming by
over a decade, although it is more subtle and computationally

(11)
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‘troublesome [Yakowitz - 1982].. The first _ application of
determlnlstlc D P. ‘in reserv01r appllcatlons was ;made,'by
Young[l967]. He studled.,a vflnlte horizon single reservoir
rvoperation problem, with a. vieprint'to support the critical
assumptlon that he. made that the inflows are. known by the
,hypothe51s that  some’ rlvers are- regular enough so that thelr_‘

flows are well represented.by their expectatlons.'

Hall et al [1968] presented spec1f1c 1deas for determlnlng
“the 51ng1e stage loss functlon in ‘their computatlonal study‘
‘assoc1ated with Shasta dam in Callfornla This was - further.
extended to- the multl reserv01r cases Dby authors Roefs &

v‘ Bod1n[l970}

A four- reserv01r problem served as ‘the- bench mark for

testlng the DDDP developed by Heldarl et al. [1971] ThlS same-

problem was- studled by . Iarsen[1968] w1th the’ procedure of

"1ncrementa1 Dynamlc programmlng" Chow[1975J used the -same .

problem with the Discrete leferentialvDynamiclProgrammlngf

_'Studiesirelated to thé multi objective DP for:reservolr
 operations were initiated by'ZeuXe-et al'[1979]t“They have
reduced the mult1 objective problem to one in which a certain
»objectlve is mlnlmlzed ‘while the others are belng malntalned

below certaln threshold levels

Banerjee &.Harlkrlshna[l975] presented a state 1ncremental-

~-DP model to determlne the optlmal operatlng policy for the

Damodar Valley Corporatlon system using- the critical perlod of
the observed- flows The - objectlve was to maximise thef
hydropower output from thlS multi pulpose ‘multi-reservoir

system. serv1ng for 1rr1gatlon and flood Fontrol

' Harlkrlshna et al [1981] studled the 1ntegrated operatlon7
of Bhakra Beas system ‘'using the 1ncremental DP" technlque The

(13)



_annual' power generation. was maximised"subjeCt - to physical-f;
constralnts ensuring that the - power’ releases should.»equal.w

’ 1rr1gat lOI'l requ1rement S
2.2.2.1 DPR Models:

This determiniStic model (DPR) consists of an algorithm
:that cyclés through three components a. dynamic'program‘ a
'regre551on analysrs and a. srmulatlon model (Karmouz and Houck
1987). . Young[1967] flrst proposed the use ~ of a. llnear'
' regression procedure to find general operatlng rules from
‘determlnlstrc optimization. He derlved regressron equatlons

,us1ng 1nflows and storages to find optlmal releases.

o The authors(Karmoué_and.Houck 1987) have shown DPR model.
" tobea. significant‘extension of ‘other deterministic models, by
lder1v1ng régression equatlons from determlnlstlc DP results.
_Thelr DPR model 1ncorporates a’ multlple linear regressron .
'procedure ' suggested by Bhaskar and Whltlach[1980] and a
hypothetlcal loss function was used in that study '

Optimised'releaSe:poliCies:obtained from DP—regresslon:
| methOdology, were compared by Bhaskar and Whitlach'[l987], with
the release pollc1es obtained from chance constralned llnear
‘programmlng for a 81ngle multl purpose reservoir system and

system performance was derived from s1mulatlon techniques.

Raman ‘and Chandramauli(1996] adopted a DPR model along'"

’Wlth DPN and SDP models to derive reservoir operatlng pollc1es

“and expressed the optlmal release as a linear function of

1n1t1al storage, 1nflow,and demand, which is of thevform
R(L as, + bI, + cD, +d - A ‘ C(2.1)

They used the DP- results for regre351on u51nq he least squares\
method. ’ ’

(14)



2.3.0 SIMULATION MODELS

A s1mulatlon model 1s meant to provrde the response of the
system for certain inputs, which enable the decision makers to
examine the consegqguences of varlous.scenarlos 'of .an existing
system or a new system without actually building it.It tries to
approximate the behaviour of a system, representing all the
| System characteristics largely by a mathematlcal or algebraic
_description. A typical simulation model for a water resources_-
system 1is 81mply a model that s1mulates the interval-by-
1nterval operatlon of the system w1th spe01f1ed 1nflows at all -
locations - during each 1nterval for - spec1f1ed system
characterlstlcs and spec1f1ed operaC1on rules '

A Development of a 51mulatlon model 1is governed, by the
:system operatlng pollc1es, such as the standard . operatlng
"policy, rule curve based operatlon mulclple-zonlng,Atarget
_storage level based operation or. else regression‘carameter

based operatlon policy.
' 2.3.1 Application

. Now a-daYs- with the advent of high prccessingAcomputers
standard simulation packages have become avallable w1th a wide
~range .of flex1b111ty to_.accommodate ‘a varied range of
customised Vconventlonal ‘problems. However the earliest -
simulation model associated ~with . a System' of reservoirs'
- appearing in the literature seems to Be the study performed: by
the U.S. Army'Corps of Engineers in 1953 for an operational
- study for six reservoirs -on the Missouri river with the

) ob]ectlve of max1m1s1ng power generatlon subject to constralnts

of nav1gat10n, flood control and 1rr1gatlon

The 81mulatlon model applled by Maass et al. [1962] to
the economic analysis. of water resources system de81gn,

(15)



| reproduced the behav1our of the system for power generatlon,y
irrigation and flood control Using synthetlc stream- flow

-sequences: Hufschmldt and Fuerlng[1966] used 81mu1at10n in -
‘plannlng the multi- reservoir, mult1 purpose Lehigh rlver system
and worked out de81gns w1th hlgher beneflts than the ex1st1ng

- system.

The HEC-3 model (Reservoir ~ system analysis for-

fconservatlon) developed by thelHydrologic’Engineering Centre =

has been applled to the- operat10na1 studles on the ArkansaSw_
,Whlte Red river system in-the Southern Unlted States[Frederlcbﬁ
-and Beard, -1972} The . HEC 5. model - ( Slmulatlon of flood and
conservation systems), developed by the Hydrologlc Engg Centre
has been applled ‘to the reserV01r system expan51on study for'd
flood ‘control on the. Susquehanna river system [Eichert - andA
Davis, 1976]. =

The DELTA model was developed for Mekong commlttee by
SOGREAH a French consultlng flrm “as a tool to simulate w1th}
reasonable accuracy, the hydraullc regime of the Mekong delta
in Thalland The model has been used for delta reclamatlon*
1nvestlgatlon ‘optlmal 5121ng of a dam. and plannlng of rlood

control schemes

Srivastava“ er al;[1980],'.studiedlythe BargifA Tawa,
'7Narmadasagar and Navagam reservoirs by simulation for Narmada
bas1n in Indla In another study"by' Ramaseshan[l9811' the
SIMYLD II 81mulatlon programme of. the Texas. Department of Water
'Resources ‘was used to get the modlfled rule curves, - for the.
Bhakra and Pong reservoirs’ and these were compared w1th the'
rule curves derived by Beas Design Organlsatlon A Hydrodynamlci'
Model . (SYSTEM 11F) for river routlng and reservoir simulation
- has been establlshed for real time f£lood forecasting in Damodar~
. Basin by the: Central Water- Commlss1on in. co- operatlon with

Danish Hydraullc Instltute



- Raman and Chandramaull[1996j in their’ effort to 1mprove
'_the operation and eff1c1ent management of available water for
the Aliyar dam in Tamllnadu ~India, used. DP, _SOP & DPN
‘models and ‘'studied ctheir relatlve performances 'by uSing
resexrvoir 51mulatlon model. For testlng the SDP scheme, theyv
used a simulation model where releases are made based on SDP

results and: the balance demand is met through a SOP norm

2. 4 0 TIME SERIES MODELLING 'BOX AND JENKINS APPROACH TO
FORECASTING

The  Box- Jenklns approach to time series analysis,

‘forecastlng and control is a powerful but rather compllcated
procedure The methods are potentlally useful in many types of
jSltuatlons whlch involve the models: for dlscrete tlme series
and dynamlc systems They . have also been adopted to the problem-d
. of fOrecasting seasonal’’ tlme series [Chatfield and Prothero
1973] . | - - I

Box- Jenklns approach prov1des a partlcular class of time-
series models, which ‘require: the ~1tt1ng of 'a' sultable”
stochastlc model and constructlon ‘'of recursive formulae for
calculating the llnear least square predlctors corresponding to
fthe 1dent1f1ed model ThlS famlly of linear stochastlc models, -
that are’ now referred to. as Box- Jenklns or Auto Regre551ve
Integrated Mov1ng Average (ARIMA) models, is in fact a
culmlnatlon -of _research of many promlnrlt statlst1c1ans
startlng w1th the ploneerlng work of Yule[l927]- The - ARIMA'
" models have been extens1vely used for modelllng of river flow

l.sequences [Dellur ‘and Kavas, 1978] .

For appIYing the ﬁoxadenkins'model to any time-series
data, - three  stages’ of-;»model'evdevelopment,._ namely,
identification; estimation and diagnostic checking, are to be
adhered to, [Box and Jenkins, 1976]. fThe,Ifirst',step is. to

(17)



'fldentlfy the form of model that may fit to the glven data The
‘series may ‘need to be dlfferenced at thlS stage At~ the
estimation stage, ‘the model parameters are calculated by '
employlng the method of maxlmum llkellhOOd Finally the model'
is checked for p0551b1e 1nadequac1es If the dlagnostlc checks
_reveal serious anomalles, while analy21ng the. res1duals

approprlate model modlflcatlons are made by repeatlng the'

,1dent1flcat10n and estlmatlon stage

These models rely heav1ly on the appropriate- use of three
famlllar ’ tlme . series’ Atools ~ namely, - dlfferenc1ng,
autocorrelation fhnctidn (ACF) and. partlal auto correlatlon‘
function - (PACF). Differencing - is used to ‘reduce AnOn{

“statlonarlty to statlonarlty ACF and PACF are used to 1dent1fy‘
~an . appropriate ARIMA model and _the,‘requlred number of

parameters.

A brlef theoretlcal description of ARIMA - dlfference_

equatlons “and three stages of ARIMA ‘model building are

furnished below. -
2.4.1 ARIMA Model
Let z”zgfzﬁl;...tyzu, 2o Zikge e e - zZy b= a discrete time'

series_ measured at equal time intervals. ‘A multipiicative
seasonal ARIMA model is written as [Box and Jenkins 1976]

'd)'(vB-)(I)(Bv's»).[(-l—B)d(l'—Bs‘).ch] -k =0(B)O(B%. . (2.2)

where
z, ~ Some appropriate.tranSformatiqn of the time series

- (18)



data, such as a log transformation.( No

transformation is also a posSible'option)} o

‘t'. dlscrete time;
S 'seasonal length equal to 12 for monthly rlver flows,'7~
B backward 'shift. operator deflned by Bz, = z;, ;-
n " mean level- of - the process, usually taken as the
averagevof the w,serles (1f D+d >0 often p- 0)
a, normally indepehdently -dastributed white noise
‘residual with mean zero and variance o,’ '
wc=V"VSch' where o - (2.3)
w, becomes the statlonary serles formed by dlfferenc1ng Z,
' serles.(n = N‘—~d_-sD is the number of terms in the w,
series) ;. '
(1-B)4=Vd  ;(1-B%)P=V22 (2.4
~ (1-B)Y = becomes non seasonal dlfferenc1ng operator of order

d to produce non seasonal statlonarlty of the. dth

'dlfferences, usually d 0,1 or 2

(1-B)? = Seasonal d1fferenc1ng operator of order D to produce'

¢ (B)

seasonal stationarity of the Dth dlfferenced data usually
D= 0,1 or 2Z; '

=1 <¢B - ¢g¥:¥q.;h..;..._—¢g¥ nonseasonal autoregressive
(AR) parameter'orfpolynomial of order p such that the
roots of the characteristic~¢ (B) = 0 lie oﬁtside the unit
circle for nonseasonal statlonarlty and the ¢” i=1,2,3,

P are the nonseasonal AR parameters,

=1 -¢B - GB® -~ .. -¢,B" seasonal (AR) operator



of order p such that‘the-roots'of ¢Bs='0fliefoutside the
unit c1rcle .for . seasonal _statlonarlty and' the;‘¢“

i=1,2,...,P are the seasonal AR parameters

6(B) = 1 -8 B - 82}32 . -8,BY nonseasonal '-mo{ring average’
{MA) parameter ‘or polynomial of order g such that - the(
roots of the characteristic 6(B) = O lie outside the un1t
circle for invertibility and the e, i =1,2,3, ...,q are

the nonseasonal MA parameters;

O@EH=1 —E)B’é‘G%B” e —()Bm seasonal (MA) operator
of order: Q such that the roots of 68‘: O'lie outside the .
unit ‘c1rcle for seasonal statlonarlty and the O,

i=1,2,...,Q are the seasonal MA parameters

The notation (p, 4, q) X (p, D, Q), is used to represent
the multlpllcatlve seasonal ARIMA model of eqn.(2 1) . THe first
brace with small alphabets contalns the nonseasonal " AR,

dlfferenc1ng order and MA operators and the se~ond set of"

brackeéts contains’ ‘the correspondlng seasonal operators As an

example, a stochastlc multlpllcatlve seasonal noise model of-

the form (0,0, 2)X(0 1 1)u, with no data transformation, whlch-g

~has been identified for the present study and shall be

dlscussed in detail elsewhere can be written as

{(1 - B,z -;L}-'=r(l - 8B - GB GBP

2.4.2 Stages of ARIMA Model Building
'2.4.2;1 Identifjcation

- The purpose of the identification stage,is to determine’

(20)



the differencing requlred to produce statlonarlty and also the
order of both the seasonal and the nonseasonal AR and MA
operators for the w, series with the help of ACF, PACF plots and
the plot of original time series. '
Autocofrélation function (ACF) :

The autocorrelation function measures the amount of linear
dependence between observatiohs in a time-series, that are
separated by lag k. Box and Jenkins([1976,pp.32-36], recommend
a,specific estimation procedure to determine an estimate r, for
[ and also give approximate standard errors for the ACF
estimates. It is shown by Box and Jenkins [1976,pp.174-175], -
that the estimated ACF at lags that are linear multiples of
the seascnal length S doesn’t die out rapidly, which indicates

that seasonal differenéing is needed to produce stationarity.
Partial autocorrelation function (PACF) :

Whenever the model fitting involves ‘an AR process, the
approprlate number of 1ags to use (ie. order P of the. model)
can be determined by analysis of the PACF (¢y), Wthh_SatleleS
the Yule Walker conditions. [Box and Jenklns,chap-J];pThis is a’
measure of correlation between z, and-z,,, after adjusting for
the presence of all the z,’s of shorter lag, ie, i“, Zigs -y Z,
w+1- This adjustment is donevte see if there is an additional _
correlation between z, and z,, above and beYond that induced byh‘.

.the correlation, which z, has with z,, z,, ..., 24
2.4.2.2  ESTIMATION

~ 'Box & Jenk1ns[1976 chap 7] suggest that the approximate
likelihood estimate for the ARIMA model parameters be obtained
by employing the uncondltlonal sum of squares method, wherein
the unconditional sum of squares:function is'minimised to’get"
least squares . parameters estimate. - Various 'optimiiation
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techniques are available to minimize functions such. as' the
unconditional SSF. Some of them, which have been extensively

applied include

1. Gauss linearization ..
- 2.- The steepest descent
3. Marquardt algorithm (combination of above two.this method .

has been addpted for the presentfstndyi;
Akaike information criterion (AIC)

Box & Jenk1ns[1976], stress the need to construct a model
whlch should be parsimonious( ie. to use as few parameters as
possible) so that the model passes all diagnostic checks. The
AIC [Akalke 19741 1is a° mathematical formulation ofA.the

parsimony criterion of model building.

For comparing among competlng ARIMA famlly models AIC can .

be written mathematlcally as |

AIC(p,q) =N.1n(8,)2+2(p+q). - (2.6)
where
N Sample size;
-0, Maximum llkellhOOd estlmate of the residual varlance,

p,q- The order of AR and MA operators;
The model which gives the minimum AIC should be considered.

2.4.2.3 Diagnostic checks

In Box & Jenkins modeiling, the residual a, are assumed to
be independent 'hemoscedastic (ié. variance ' is constant) and
usually, are normally dlstrlbuted Most diagnostic tests deal
with the residuals to determine the aforesaid assumptlons‘
Homoscedasticity and normality are considered- to be less

(22)



important.viclatidns'as these can often be _corrected,by'a Box—i
Cox transformation of the data. But the lack of independence of

the_residuals indicates that present model is inadequate and
‘the entire process of identificaticn‘andAestimation stages_are

repeated in order to determine a suitable model.

Various dlagnostlc checks and tests: include, amongst
others, overfitting, RACF ‘analysis and Porte -Manteau lack of
fit test to know whether re51duals constitute an independent
.series -or not and whether the Homoscedast1c1ty check 1is-

satisfled or not.
I. Overfitting :

When an ARIMA(p,d,q) mddel,has‘been.tentatively accepted;
overfitting involves fitting a more elaborate model than the -
‘one estimated to see if inclusion of one or two parameters
greatly improves the fit, ie, one can snccessfully add and test
additional.AR or MA terﬁs'(but'not both‘simultaneouSIY) to the:

model until the last term added is not significant.
‘II. RACF analysis :

Residual autocorrelatlon.functlon is analyzed to determlne
whether the .residual a, 'is white noise or’ not. many new
sensitive techniques are now available for checking the
independence assumption of a,. However examining and plotting
of the ACF and PACF of the residuals gives sufflclent idea

- regarding the randomness of the residuals.
. Porte Manteau lack of fit test:
Porte manteau lack of fit test_:originally proposed by

Box and Pierce[1974] and later on modified to validate the same
for a general seasonal Box-Jenkins model has been adopted for
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the ‘present study. the test statistic and hypothe51s testlng

are furnlshed below.

X, .  be a time séries of size N repfesented by ARIMA (p,4,q)

model. So after d differences, the ARMA(p,q) series, z, t =-
1,......,N-d is obtained. '
€, be the residual series.

The test is applied to know whether.e(is an independent series

or not.
0= (-d) ¥ (r)%(e) o 2T
~ (k=1) : - -
L is the maximum lag considered

r}(e) is the correlogram of the r881duals.

Q is approx1mately X distributed with' L- p- q degrees of
. freedom. . S A
If Q < (L - p - qQ, g is considered to be an indeperdent

series, so.the model is considered to be adequate.
2.4.3 Applications

Box-JenKins analysis provides a systematic approach‘to
model selection, utilising all the information contained in the
sample autocorrelation function (ACF) and partial ‘auto
_ correlation function (PACF). With the advances made in the Box-
Jenkins model construction, such as,.inSpection-of inﬁersé
autocorrelation function  (IACF), inverse pértial auto
correlation function. (IPACF) at the identification stage and
sensitive- dlagnostlc checks - for residual 1ndependence through
~est1ma;10n of ‘residual autocorrelation function (RACF)- and
other dlagnostlc tests tof ~ determine whether the
homoscedastlclty and normality assumptlons are fulfilled or

not, the'ARIMA models have been shown to be optlmal, since for
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a given model, no other forecasting method can on average, give

forecasts, with smaller MSEs [Pankratz,1983].

Chatfield.and Prothero>[1973] made a critical'appraisal of
'Box & Jenkins seasonal ARIMA model in their paper, wherein they
have given.a step by step account of the analysis and'problems
encountered en route, while applying the model to a forecast of
sales problem with a lead time up to 12 months. | A

_ Mclleod et al. ([1977] oonsidered:three different problems,
to determine both seasonal and nonseasonal models for actual
time—eeries, by employing Box-Jenkins techniques'and carefully -
demonstrated the utility of the procedure. Apart from the.
classic Air line passenger data problem of Box-Jenkins, where
better parameter estimates have been obtained by the authors,
than:thoee calculated by using the unconditional sum of squares.
' technique, the two other problems considered by ‘the authors
are, annual river flows of Saint Lawrence River, and the Yearly
Wolfer Sunspot Number series. In these cases also they could
derlve better models than that originally derlved ’

‘Delleur and Kavvas [1978) applied.the ARIMA model to the
average monthly'rainfall time-series over 15 basins located in
'Indiana, Illinois and Kentucky and haﬁe‘found that the seasonal
differencing is effective in removing -the periodicities but
distorts the spectral structure of the orlglnal rainfall
series whereas cyclic standardization. introduces negllglble

distortion in the random. component

Hipel [1985] in his review paper, have analyzed the recent
developments in time-series analysis and capabilities of
various time series models by employing a set of criteria, and

outlined therein, some of the advantages and limitations of"

" ARIMA model.



0’ Connell and R.T. Clarke([1986] have dérivéd the relative
merits- of the associated parameter estimation algorithms, from
an inter comparison of a number of real time forecasting
models, iﬁcluding Box-Jenkins models and state-space/Kalman
filtering models and have assessed criticaily'the validity of
thé underlying . assﬁmptions of ~each, in the hydrological

forecasting context.:
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' CHAPTER - 3
ARTIFICIAL NEURAL NETWORK : AN OVERVIEW

3.1.0 GENERAL

The term neural network refers to the circuitry of real
brains or to technologioal devices for a mode of parallel
computation. Neural networks constitute an important discipliﬁe
in Artificial‘lntelligehce"'(AI), as historically AI grew out
of the work in neural networks, way‘back in 1956. This mode of
computation‘is commonly known as neural computing or study of
artificial neural networks.' It is._also referred tc as

connectivism or parallel distributed processing.

Neural . nétworks«proVide a unique computing arohitecture 
whose potentlal has only begun to be tapped Used to address
problems that are 1ntractable or cumbersome with traditional
methods, these new computing archltectures,.lnsplred by the
structure of brain{ are radically different from the computers

that are widely used today.

As the sub]ect grew out of a noble attempt for low level
imitation of the real brain, before describing the theoretlcal‘
'approaches and_computatlonal algorlthms, the relevant structure
and functioning of an actual biological~neuron,fwhich has been’
“imitated by the neural'network'computing paradigm is desofibed

below.

Schematized properties of a basic neuron are. given in
Fig(3.1l). The -dendrites ‘comprise the input surface, axon
provides the output channel. Tips of axon branches become end
bulbs, forming a synapse on the cell, on which they impinge.
“Through synapse ‘the transfer  of signal occurs by potential
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Fig - 3.1 ‘Schematic view of a neuron. Activity from receptors or

other neurons modifies membrane potentials on the dendntes and -
cell body L '
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dlfference mechanlsm - If the change in potential difference
across the synaptic end bulb exceeds a threshold, an action
potential actively propagates to the ne;ghbourlng neuron.
without decrement. The transmittance depends upon the strength
of the signal generated by the neuron after processing the
information. This has only- two .options: »either _excitory
response . or an inhibitory response. The unique'intelligence,
exhibited by numan brain 4is imparted by the large
interconnecﬁion of - billions of neurons in a human body;

»Figurej(3.2) shows the abstract equiﬁalent of the nerve.
cell: the artificial neuron. This is based on the following
‘features. First there are weighted input connections to the
neuron (déndrices). Then these input signals are added up and
fed into an activation function, which determines whether the
neuron will react at all, (cell body)._If this is the case then
the signal will pass through a transfer function, Which
determines the strength of the output signal (hillock) .
Finally the output 81gna1 will be sent through all the" output
connections, (synapse) to the other neurons.

Therefore, the' neural networks utilize a parallel
processing strocture that has large number of'processors, in
line with the biological neurons described above and provide
many inter-connections between them. The. power of neural
network lies in the tremendous number of interconnections. The
major aspects of a parallel distributéd processing model, and
so for an ANN model are |

A set of processing units, called neurons;.

‘A ‘state of activation; ' |

An output function for each unit;

A -pattern of connectivity among Various‘units;

A propagation‘ Tule . for propagating patterns of

activities through the network of connect1v1t1es,
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° An activation rule for combining'the inputs impinging on
a unlt with the current state of that unit to produce a

new level of actlvatlon for the unit;

X ) A learning rule whereby patterns of connectivity (weights)
are modified by  experience; , '

° An environment'within which the system must operate.

Depending upon the interconnections of the neurons, which are
érranged in maﬁy layersf'néhely, one input 1ayer,»dne output-
layer and one Or more hidden layers, and by manipulation of
network parameters based on above aspects (e.g., network
structures or learning ‘algorithm), numerousv types of ANNs
exist, all with their specific application purposes. An ANN
classification tree is furnished in Annexure(II) to get a
better overview of various ANN types. However the subsequent
discussion is constrained only to the feed forward‘BP neural
networks. For an overall picﬁure of the ANN ¢ chitecture,
various layers, arrangement of neurons in the layers, neural
connectivities etc., a three layer feed forward artificial
network along with a typlcal processxng element, w1th an
activation function and a threshold function embedded to its

body, is shown in Figure(3.3).
3.2.0 DATA PROCESSING _TfﬂzouGH ANN

The first step in starting the data proce551ng is to
construct an architecture, by adopting appropriate model
attributes as discussed above, clearly delineating the links
and interconnections. The input neurons receive the user given
signals, process the same and send the corresponding output to
other neurons, where the process of action dand reaction is

continued.

The data passing through the connections from one neuron
to another, are manipulated by weights, which indicate the
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strength of a passing signal. Consequently, when these weights
~are modified, the data transferred through 'the network, will

change and the overall network performance will alter.

These new manipulating parameters, can all bé adjusted and
optimized, in order to get'a specific response from an ANN. The
process of adjuétment and optimization is called learning and
is defined by the learning algorithm of an ANN. Learning
algorithm is a set of optimization functions which adjust the
weights in such a manner, that an input signal is correctly
associated with a desired output signal. Several learning
examples are presented to the network each one éttributing to
the optimization of the wéight distribution. Finally, when ANN

has learned enough example, it is considered to be trained.

After the learning cycles, the léarhing algorithm 1is
(often) deactivated and the weights are frozen. Then test data
is presented to the ANN, which it has never encountered before,
enabling a validation of its performance. This is referred to
as testing of -an ANN. Depending on the outcome, either the ANN
has to relearn the examples with some modlflcatlons, or it can

be 1mplemented for its de81gnated use.
3.3.0 LEARNING ALGORITHM : THE DELTA RULE

The learning algorithm, adopted in the prcgram for the
present study is based upon the "generalised delta rule"
proposed by Rumelhart [1986]. The learning procedure involves
the presentation of a sef of pairs of input and output
patterns. The system first uses the input vector to produce its
own output vector and then compares with the desired output. In

case ‘there is difference, learning takes place.

In its simplest form, the delta rule for changing weights
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following-preeentation of input/output pair P is giuen by,

where
6,; = (£,;70,;) (n is the learningparameter) - . (3.2)
Ly = target input for Jth component of the output pattern for
pattern p. _
0, = j® element of the actual output pattern produced by the

presentation of lnput pattern p.
i, = is the value of the ith element of the 1nput pattern.

pi
There are many ways of determining this rule. A brief
'outline'of the derivation/algorithm for the delta rule for.
semilinear actlvatlon functlons, such as, the Slngld function,
.in feed forward networks is given below A Semlllnear activation
function is. one, in which the output of a unit is a non

decreasing and differentiable function of the net total output.

In case of batch processing of long sets of input/output
patterns with anti'layer feed forward networks, which is
usually the case and which is adoptedvfor the present study
also, let E represent the sum square error function, i.e., the
overall measure of error. ‘ '
Let, '

E==§:§; where

- 1 (e SO , |
EE“"E;;(tMﬁC%ﬂ : - (3.3)

E, be the measure of error on one set of input/output pattern
P. - . ' ,

A negﬁ-ggugrc%i | (3.4)
where O, = i;, if unit i is an input unit. Thus a semilinear
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. activation function is one in which,

0,.,=f

pok] j(necpj) (3'5),
- " OE - -
A w,,oc——P (3.6)
p"ii% &Gi ,
9B, _ OE, . dnet,; (3.7
awji on Ep; aw].i A

The first part of equation (3.7) reflects the chahge in
error function of the change'in the het inbut to the unit, and
the second part represeﬁts the effect of changing a particular
weight on the net input. The second factor is in fact,

onect, 3 ‘ , ‘ .
by =_ w;,. .0 .=0 . (3.8)
Idwy;  IWyy skt TRk TRl ' : »
Let,
- OE
Opi =" Spor— (3.9)

»" Gnet,,

So equation (3.7) becomes,

-—2=5_ .0 (3.10)

The above equation implies that , to implement gradient descent
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in sum square error function E, the weight changes should be

-according to the rule,

AW =85 Op; B

1}.is a learning pafameter for the layers connected by the i"
and j® neurons. ’

To compute,

. 3E ‘
m—— ’ 3.12

a chain rule is applied, to write this partial derivative as
the'product of two factors, one factor reflecting the change in
error as a function of the output of the unit and the other
reflecting the change in the. output as a function of changes in
the input. so, ’ ‘

OE; OF 00, :

= D —_ P . pJ 3.13
P7 dnet,; 00,; dnet,; ( )

The second factor is obtained by differentiating equation
(3.5) with respect to net,. So that,

30, : ' _
—-PI_=f. _(net,. ' (3.14
anetbj j(net,;) | ,( )

-

This is simply the derivative of the squashing function f for
the j® unit. '

The first factor is computed under two considerations - one,
when unit U; is an output unit of the network and the other when

it is not an output unit of the network. In case one,

Substituting this and equations (3.14) and (3.13), we obtain,
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9 (¢ -0 ~ (3.15)

aopj‘ pJ pJ
0,;= (Lp;70p;) £ 5(nELL) . (3.16)

In case two, for U, not an output unit, the chain rule is used,’

i.e.,
OE, . onet,, _ dE, . Z (0,
' dnet,, 00, onet,, - 00, 1 :
D L A (3.17)
onet,, pk* k3 |

In this case substituting for the two factors. in equation
(3.13), we obtain, '

Bpy=E 0186, 2 8 © (3.18)

PJ

Equatiohs (3.16) and (3.18) give a recursive procedure for
computing the 6’s for all uni_t:s in the network. These are then .
used to compare the weight chandges in the network accordirig to
equaition (3.11) . This procedure constitutes the generalizéd

delta rule for a feed forward network of semilinear units.

3.4.0 APPLICATIONS

~ The general application areas for ANNs can be divided into
prediction, simulation, classification, optimization and
identification problems. Translated to possible hydrology
applications, ANNs have élre’ady been used for runoff/flow
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predictions, flow/pollution simulation, control strategy
definition or system parameter identification. Out of the many
ANN structureslproposed and explored since 1950s, namely multi
layer feed forward 'networks[Rumelhart et al., 1986), self
organising feature maps [Kohonen, 1982), Hopfield networks
‘[Hopfield, 19821, and counter propagation networks[Hecht
Nielsen, 1987], the multi layer, feed forward networks have
been found to have the best performance with regard to input
'output function approximation, and are mostly used to address .

the hydrology related problems.

Krajewski and Cuykendall'[l9921, developed a three léyer‘
feed forward neural network, to forecast a rainfall intensity
in.the fields of space and time, and compared the result with
two other methods ‘of “short term forecasting, persistencé and

nowcasting.

Smith and E1i[1996] used neural network model for
generating = runoff using a synthetic-->watershéd from
stochéstically generated rainfall patterns. They trained a back
propagation network to predict the péak diséharge and.the time

" to peak resulting. from a single rainfall pattern.

‘Minns and Hall[1996] used artificial neural networks to
generate flow data from'synthetic storm sequences and routed
the flow data through a conéeptual hydrologic modél, consisting
of a single nonlinear reservoir. important findings of the
paper include the importance of various stahdardisation schemes
and redundancy and lack of justification for opting to have

more than one hidden layer in the neural net.

Raman and Sunilkumar [1995] investigated the use of
artificial neural networks in the field of synthetic inflow
' generation and compared the model performance with that of a
multi variate auto regressive (ARMA) model, proposed by Box &
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Jenkins [1976] in case of two reservoir sites at Mangalam and

Pothundy.

Lorrai and Sechi[1995] examined the éépabiiity ofvneurai,
nets to pro§ide a suitable forecast of river runoff, for the
Araxisi watershed in Sardinia. They divided the observed data
into three training sets of ten year periods each, built a
neurél network with two hidden layers, adopted BP learning rule
and Sigmoid as the response function and corresponding'to each
training set, simulated the other two decades for appraisailof

model performance.

Hammerstorm [1993] in his paper, has demonstrated the fact
that developing a neural network, is unlike developing a
software, because the network is trained, not programmed. It is

a prisoner of the instances by which it is trained.

" Hsu et al. [1995 - 1997], have worked extensively in
artificial neural network modelling of rainfall runoff process,
watershed modelling, runoff forecésting and in. the field of
developing better learning algorithms for ANN structure. They
advocated the use of a three layer feed forward network with
Linear Least Square SIMplex (LLSSIM) algorithm, for simulating

the nonlinear hydrdlogic behaviour of the watersheds.

Carrieré st'al.[1996j desigﬁed a virtual runoff hydrogréph_'
system (VROHS), based on. ANN téchnolggy, by training a
recurrent back propagation neural network. They got very good
correlation between the observed and predicted data, while
validating the network for testing data set. Chang and Noguéhi
[199¢6] demonstrated the fact that by adopting NN based partial

“intelligent model to rainfall runoff modelling, psrametérs
relating to catchment can be avoided in the input and
'virtually; no parameter inside the model need to be calibrated
manually.
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Published works, in the field of resérvoir,operation'using
neural network approach, are véry scanty. The only paper,
published so far, in standard literatures, is 6f Raman.and
Chandramauli[1996] . They derived reservoir operating policies,
for the Aiiyar dam in Tamilnadu, India, by ﬁsing a neural
network procédure'(DPN model) and by using a multiple linear
regressidn procedure (DPR model) from the DP algorithm. They
also adopted a- SDP model and a standard operating policy (SOP)
and compared the performance of each during the validation
.period taking last three years -of historic data. they
demonstrated the fact that DP algorithm based DPN model
provided better performance than other modéls. this papér has
been taken up as the prime guiding literature, for the present

study.



CHAPTER - 4
UIHE Project : The Problem Area

4.1.0 THE PROJECT

 Upper IndreVati-Hydrofelectric.Project,‘which is a large
multi purpose project, situated in the‘N0wrangpur and Kalahandi
districts of Orlssa, env1sages construction of four dams across
the four rlvers viz: Indravati, Podagada, Kapoor and Muran, and
elght.number of dykes.

4.1.1 Indravati River System

The river. Indravatl across 'whlch the ~main ‘dam is -
constructed and after Wthh the progect is named, orlglnates in
Kalahandi district, Thuamalrampu:_plateau, at an altitude of
more than 915m, on the western slope of the'EasternQGhats and'
traverses in the south westefly direction ,'through the hilly
ranges, until emerging into planes at Khatiguda village in the
district of Ndwrangpur..On its way through a number of rapids,
it is joined by a number of tributaries namely, Podagada,
Kapoor and Muranvrivers. Thereafter the river flows through the
Nowrangpur district and enters Bastar district of M.P. state,
near Jegdalpqr. After flowing for a total run of-530 kmvfrom
its :origih, ultimatelyr the river Indravati' joins river

Godavari.
4.1.2 The Combined Reservoir

The reservoir,'draining'an area of 2630 km’ and haﬁing.a
gross reservoir capacity of 2300 million cubic meters and water
spread at FRL, of 110 km’, is formed by four sub basins,
created by above four rivers. These four sub basing ‘are inter
connected by link canals, so that the reservoir does not get
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disconnected during the operation. A project map is shoWn'in
Figure(4.1). Water for the power generation w111 be fed by the
reservoir at the ‘upstream, at about 6.6 km from the edge of the
water spread at FRL of 642.00m, on Indravati river. The entire
reservoir is 43 km long and 9 km wide at the widest section.
The power intake location is at 37 km from the southern edge of
'the'reservoir and approximately, 13 km upstream of Indravat1
dam, which is an uncommon and spec1al feature of this prOJect

'4.1.3 Power Generation and Irrigation

Water for power generation will flow through a 7m diameter
head.race tunnel, de81gned for a capac1ty of 210 m’/s. The
power house would contain four numbers of Francis turbines
coupled to 150 MW generators each, thus producing 600 MW of
effective power. After power generation_, flow from tail race
channel will be fed to the Hati 'river and diverted into
irrigation canals by a barrage structure near Mangalpur
village. The canal sections would irrigate 1, 28,000 ha-'(CCA)
of agrlcultural land in the watershed of Hati river adjacent to
Mahanadi river bas1n

_ The distinct - feature of the project‘-isi trans-basin
diversron of water of river Indravati (Godavari basin) into._
river Hati '(Mahanadi~ basin) for power generatlon and
subsequent irrigation. The: pr1nc1pa1 data pertalnlng tO'varlous
pro;ect features is shown in Annexure - I. ' |

4.2.0 PROBLEM FORMULATION

- The present study attempts to optimize_the,water release
from the reservoir and device a reservoir operation model
accordlngly, in order to explore the optlmlzatlon potential of
the Upper Indravati Hydro electric Pro;ect "As the progect is
at the verge of completlon, all the reservoir parameters,
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namely, gross reservoir capacity, dead storage capacity etc.
and the installed generation-capacity are kept unchanged in the

present study.
4.2.1 Monthly Irrigation Demand

The primary objective of this study is to maximize the
energy generation, through 'various models. However aé the
project is a multi purpose one, i.e., irrigation demand also
needs to be fulfilled, the same has been accounted for by
adding suitable constraints into the DP model and will be
discussed in subsequent chapters.:Monthly irrigation demand
information is an essential input for all such models, which
take irrigation planning into - consideration. A water demand
pattern, determined by maximising the net returns of crops,
subject to constraints as appropriate for the project system,
which has earlier been studied through LP model formulation

[Mohanty, 19941, has been considered for the present study.
4.2.2 Inflow Data

For the purpose of data requirement, the present study
capitalises upon the river inflow record, which was available
for 32 years [Sedimentation assessment study, 1995].

4.2.3 Reservoir Operation Policy

To start with, a DP model, based on DDDP algbfithm is used
to study the operation of reservoir for optimum power genera-
tion, during the entire period of 32 years. A suitable loss
function is identified for simultaneously minimising the irri-
gation deficit.. Dividing the DP result into calibration and
 validation phases, DPR and DPN models are fitted to the cali-
bration series and finally the system is simulated, during the
validation period, to study the performance.
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4.2.4 Time Series Modelling

A tiﬁé_series model, through Box & Jenkihs'approaéh is
identified for the calibration period, (which has been kept
different from the previous study), parameters are estimated
and- a forecast model is prepared. Simultaneously an ANN model
is 1identified and trained .for forecast. One-month- ahead
forecast fesults, obtained from both the models, during the
validation period, are tested through.a customised time series
simulator, developed for this study. '
4.2.5 Summa:y: B f

In the final step, 'a synthesis of abové- two sets of
models, viz: reservoir operation policy and simulation and one-
month-ahead river inflow forecast, has been attempted, to
obtain a one month ahead predicted inflow based reservoir

cperation.



' CHAPTER - 5

Dynamic Pro'gr_ammi’ng Model Formulation and Computation '
5.1.0 gsNEkAL

| The discrete differential dynamic'programming, which is an
iterative enumeration technique, is considered for the present.
study. The_recursive equatien cf dynamic programming is solved
Within a 'restricted "set of ‘quantised values bf the state
- variables by prov1d1ng initial state of the reservoir. The
opt1ma1 solutlon is obtalned by gradually 1mprov1ng upon the7
initial solutlon This technique is partlcularly sultable for
;nvertlble systems A system is called invertible if" for that"
syétém, the order of the state vector is equal to the order of.

' the control vector
5.2.0 MODEL FRAMEWORK

~ The primary objectlve of the DP nmdel, herein, is to
maximise total energy production of Upper Indravati PrOJect
system, subject to typical system constralnts. Hydro -electric
power, 'durihg a certain period of time is proportional to the"
product of total release, and the average operatlng head durlng 8
that perlod It is apparent that keeping the release constant, |
a marglnal increase 1n the operating head can also result in an
increased power productlon 'This can be accommodated in the
objectlve functlon by 1ntroduc1ng a bias term for hlgher
reservoir pool durlng any time period. But This might increase
the llkellhOOd of 1ncreas1ng the spillage; thus there may be .a
trade off between the two aspects of operatlon

The secondary objective of the model is to minimize'the
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irrigation deficit, which, unlike the powef generation, 1is
dependent only upon the release amount and not on the average
operating head. Therefore the optimum operation should balance
the losses due to spill and deficit in wmeeting irrigation
demands-on one hand; and on the other, the gain of'maintaining
the reservoir pool at the highest possible level, during the

entire optimization horizon.

' The dynamic programming is not basically tailored in such
a fashion that generalized programs can be written using it.
Thus a new computer program has to be developed or an existing
program has to be significantly modified and tested for each
new application of the technique. The discussion made in the
above paragraphs offered a tricky problem to be resolved; The
problem is of adopting the appropriate objective function and
in identifying a suitable loss functioh, which can accommodate
both the objectives, viz: maximisation of power and minimi-
sation of irrigation deficit. This was finalised after a trial
and error procedure by first choosing a set of functions, then
running the DP model and finally evaluating the model perfor-
mance as-per certain criteria and by repeating the entire
procedure after altering the functions. Detailed discussion on

this aspect is made in subsequent sections.
5.3.0 FORMULATION OF INITIAL OBJECTIVE FUNCTION AND CONSTRAINTS
5.3.1 Objective Function

A DP model having power generation as the primary
objective, may sometimes perform better optimisation by
introducing a bias term for maintaining higher reéervoir
elevation, during any time period ‘t’. Keeping this in view,
the objective function of the proposed optimization model has’
been kept initially as ' '



Y AVyq(£) *REI(E) AV,

Maxz 106 104 (5-1)

Where, .

AViq(t) Average head during time period t, i.e., (average
pool elevation - TWL) after accounting for head
losses. ) |

Rel (t) Release in Mcm during period t.

N. Number of time periods within the optimization

} horizon. ‘

Av, Average storage, obtained from the initial and

final storage during the period t.
The second term in this objective function represents the
preference to keep higher elevation level las discussed

previously.
5.3.2 Constraints

The constraints, that are needed to properly define the
system environment and functioning, can be divided into two
groups, namely, those which represent the inherent system
characteristics and will not change during the optimisation and
the others, which are hypothetical loss functions or penalty
functions, and may need modification during_the sensitivity
analysis, while simultaneously optimising more than one

objective. The constraints are discussed below.
i. Water mass-balance equation.
S(t+1)=S(t)+ Inf(t)- Elos(t)- Rel(t) - Spil(t) (5.2)

Where

S(t) -the state variable at the beglnnlng of the time pericd t.
Inf (t) Reservomr inflow durlng period t.

Elos(t)-the tth period reservoir evaporation loss .
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Spil (t) =the splllage from the reserv01r after the MWL has

reached and power generatlon is at the peak

The state variable s(t) can fluctuate only between the

ii.
gross capacity of the reservoir and the dead-storage.of"
the reservoir. , B '
Sum s S(t) s Sp, L (5.3)
£ 1,2, ... N o
iii. Generation of hydro-electric poWer is proportional to
release and the operating head and is. governed by power‘
"equatlon '
Gen(t) =c#9.8*Rel (t) *Av,,,4(t) *n . (5.4)
Where, ,
Gen(t)= Energy generated in time t.
c =A constant for convertlng release in Mcm to cumecs.
n =Efficiency of power plant (i.e., turblne eff1c1ency, and- 
generator efficiency etc. )

- iv. The hydro power generatibn should be limited to the
installed capacity for the said period. For the present
study, load factor has been taken as 100% throughout the
thlmlzatlon horizon, because of non availability of the
project load curve. the constraint is,’ '

Gen(t) s Installed capacity (600 MW).
£t =1,2, ... ,N
V. The penaltyafunction.’

If release is less than the demand, then

kRel(t)—Dem(t))z'

ben(t) =- {5.5)
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Where, '

ben(t) benefit during time period t.

Dem(t) demand during time period t.

(-)ve symbol converts the benefit into a loss.

5.3.3 Identification of Appropriate Objeotive function and

Penalty Function Through Trial

- The trial run was made with the above set of objecti#e
" function and constraints for the entire period of 32 years of
historic inflow record available. But as the release from'the
reservoir,* is first wutilized for power ‘'generation and
subSequently routed through the barrage structure and.canal
system, it could not be conclusively decided, whether»both‘the
. system objecti&es are complimentary or competing - with each
other. So, a number of objective functions and correspondlng
penalty functions are formulated and those ,have been
'incorporated into the computer prograh,_written in FORTRAN-77,

by Su1tably modlfy1ng them. After runnlng the model in each
case, the results are compared for ch0031ng the best set of

functions.

The strategy adopted for altering the objeotiVe functions
was to either include or exclude the bias term for higher.
storage (i.e., higher, pool elevation) in the reservoir.
Corresponding to each such case, the strategy adopted for
formuleting the penalty function was to vary the amount of
penalty, in case there is a deficit. Conditional penalties have
also been 1mposed into the objective function by segregatlng
the des1red objectlve, to test the model performance.

The .criterions adopted for tﬁe performance appraisal. of
various DP models are, spillage, total generatlon during the
optimization- period, irrigation deficit and mean square
deficit. A eummary table of the results obtained from some
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competing model runs is gi?en'in_Table (5.1) .

Table :5.1 , , 5 v |
- DP performance appraisral for alternative objectives and penalty
functions ' _ : : - o ‘ -

lter [Spill |Generat| Deficit -Mean "Objecpive Pehélty
ativ MCM ion (MCM) ‘Square Function Function.
e No. 1 (MW) -~ | Deficit :
(MCM)
1 3524 [ 100376 2590 4737.1 (Av_st + [rekdem)’
‘ o h_av*rel) |
- 10%
2 2512 | 100969 5253 9081 (Av st If water is available &
. . - rel < dem
o Fbea-
h_av*rel) |[m asrel-demy)
e e
. else
‘ L(rle-dem)i
| | el
3 | 3795 | 99641 | 2326.4 | 2362.8 Av st | -(rel -
- | =-s=-- dem)?
10* N
+ -10°8
(h_av*rel)
. 10° ,
3607 (99914 | 2326.3 | 2361.9 | (h_av*rel) ~do-
4 ' : S Tolie
10°
5 | 2265 | 101217 | 2309.3 | 2484 Av_st - beoetl -
v - —1-(;6_ - . b_av*(rel-dem)!
+ 10¢
(h_av*rel)
10°.
: 2242 | 101248 | 2309.3 2484 | (h_av*rel) -do-
6 ' : : e,
10°

The model selected for furthér_computations of present
studies shown in bold. Two typical inferences pertaining to the
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Indravati Project System , can be drawn, by observing at the

table above.

1. Adding the bias term for higher storage into the benefit
in the objective function, has resulted in higher amount of
.spillage and corresponding reduction in power generation,
whereas the deficit remains unaffected.

2. By adopting stringent penalty nofms for model not meeting
the irrigation demand, not only the deficit is reduced, but
also it has resulted in further reduction of spillage and
increase in power generation.

The finally adopted objective function is

N
L AV, .q*Rel (t)
i 3, aead (5.6)
t=1
and the hypothetical lo$s function is
If Release < Demahd, then
Av,_  *(Rel(t —bem 2
ben(t)=-ben(t)--—head ( (c) (£)) (5.7)

108

5.4.0 BASIC INPUT DATA

‘Monthly inflows into the reservoir, for a period of 32
years, obtained from [Sedimentation assessment study, 1995],
constitutes the basic data, upon which the entire study is
based. The same is furnished in Table (5.2). The inflows into
the reservoir, given in cumecs, are to be converted to Million
cubic meters per month. a source code written in C language,
was used for the conversion. Monthly evaporation losses from
the reservoir have been taken from the (Project report-1976)
and the monthly irrigation demands for different crop plans,
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Table -5.2 : Inflows into the Indravati reservoir during the period 1951 to 1 982 in cumecs

-024 012 1502 054 2.05 0.01 l1.77 14.22 3.26 2.34

Year Jan Feb Mar Apr May June July Aug Sep Oct Nov Dec jAnnual
] - : _|Average .
1951 26 21 17 18 17 120 242 328 133 45 45 36 87.33
1952 28 22 18 18 18 10 248 393 184 77 48 38 91.83
1953 34 28 23 23 23 1 2 259 365 357 149 59 47 114.92
1954 30 - 24 20 20 28 173 146 479 117 81 52 41 100.25
1955 26 21 17 17 17 55 141 222 359 91 45 36 87.25
1956 27 22 18 18 18 54 198 253 246 152 47 37 90.83 -
1957 24 19 16 16 16 54 143 262 242 92 41 33 | 7983
1958 31 25 20 21 20 70 . 278 419 144 108 53 42 102.58
. 1959 29 24 19 20 19 55 236 276 228 173 S50 40 97.42
1960 27 29 17 18 17 77 136 318 261 92 46 36 88.83
1961 28 23 19, 19 19 169 229 267 200 83 49 39 95.33.
1962 30 24 20 20 20. 89 225 275 284 128 52 41 | 10067
1963 24 18 17 20 20 42 264 372 183 66 40 31 88.92
1964 24 20 13 11 10 82 102 290 267 184 50 49 91.83
- 1965 29 24 23 21 24 50 161 302 139 113 48 34 80.67
1966 29 20 16 20 13 28 181 109 120 48 34 29 53.92
1967 16 10 10 12 22 80 209 218 332 37 24 19 82.42
1968 11 8 8 10 9 201 179 335 132 50 20 13 81.33
1969 17 20 14 12 18 25 75 128 150 150 42 26 56.42
1970 26 21 17 15 13 65 432 273 156 59 48 40 97.08
1971 27 20 15 17 23 .57 180 25 180 94 42 35 78.83
. 1972 21 19 14 1 7 87 126 237 233 74 39 31 75.75
1973 25 21 17 17 17 27 234 167 336 82 44 35 85.17
1974 300 51 26 18 45 59 120 167 159 78 - 30 23 67.17
1975 20 15 14 20 18 142 215 314 115 76 31 22 83.50
1976 23 - 27 25 19 22 54 149 230 135 49 27 22 65.17.
1977 22 26 20 19 23 61 160 277 97 68 39 19 69.25
1978 17 13 13 14 23 23 124 104 137 56 . 45 29 49.83
1979 25 24 14 17 14 28 79 130 106 S8 32 16 4525
1980 20 25 12 8 8 129 116 277 246 47 34 26| 79.00
1981 19 30 25 25 76 116 306 270 317 159 84 - 38 122.08
1982 25 31 24 20 19 12 237 461 525 440 87 69 [ 16250
Mean [24.69 22.41 17.53 17.31 20.25 72.38 191.56 274.19 212.19 101.84 44.59 33.50| 86.04
Sdv 5.06 723 438 3.91 1213 4912 7435 9376 97.82° 73.75 14.02 10.99| 22.28
Skewness|-0.73 1.68 0.10 -0.67 348 1.02 097 015 124 331 128 073 1.04
Kurtosis | 045 7.52 3.60
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taken from [Mohanty, 1994], are furnished in Table (5.3).

Reservdir' elevation vs. area vs. capacity curves, in
discretized form, at an elevational interval of 5m is furnished
in Table (5.4). Reservoir dead storage and gross storage
capacity have been taken as 814.5 and 2300 Mcm respectively. An
initial reservoir elevation of 1500 Mcm has been considered for
the study. For non availability of the load-c¢urve, a uniform
load factor of 100% has been assumed for all the time periods
of optimization horizon. ' '

For computing the operating head of the generator, a
constant tail water elevation of 265.00m, with an average head
loss of 12m has been taken for the présentqanalysis; A uniform
turbine efficienicy of 92.0 % and generator efficiency of 97.5
% have been used. The above assumptions related to the power
generation are based upon the computations made Aby HARZA
Consultants [Project report, 1994].-. | | '

5.5.0 COMPUTATIONS

The computation is carried out by a FORTRAN program,
cdnsisting of a main program and two sub-routines namely, DDP,
which carries out the discrete dynamic programming computations
and a sub-routine BENEF, which is a user supplied sub-routine,
meant for evaluating the objective function. A function FINT is
also used for linear interpolation, to find the value of the
dependent variable (y) corresponding to the independent
variable (x), from a table of pairé of (x) and (y) values. |

‘For the purpose of computations, the entire active storage
region is divided into a number of divisions. The optimal state
trajectory is searched from among the feasible states so that

the objective function is maximised.



Table 5.3 : Showing the elevation-area-capacity
relationship for the Indravati reservoir

Serial Elevation |Area Capacity
No. in M in sq. km [in cub. met.
1 580 240000 - 0
2 585 450000 1700000
3 590 2740000 11280000
4 595 5600000 40000000
5 600 10700000 | 74160000
6 605 - 16800000 | 140000000
7 610 23950000 | 237690000
8 615 33290000 |- 380280984
9 620 44330000 | 570540032
10 625 | 59160000 |- 827150016
11 630 . 74590000 | 1152960000
12 635 89970000 | 1562599936
13 ~| 640 104870000 2052120064
14 B 645.5 - {122800000 2710000128J

Table 5.4: Monthly irrigation demand and
\ monthly average evaporation

(54)

Serial . Month. - [lrrigation [Evaporation
No. ~ |Demand (MM)
1 January 2319 75
2 . |February 276 © 150
3 March 2473 175
4 April 163.2 - - 200
5 May 115.1 . 200
-6 June 86.4 - 175
7 July 284.9 75
8 August 40.8 75
9 |September 317.9 . 75
10 October 283.4 100
11 November 106.8 100
12 December - 88.9 75




5.6.0 DISCUSSION

Reservoir releases after optimisation through the finally
accepted DP mcodel are furnished in Table (5.5) along with the

monthly demands, during the entire period of 32'years. By =

altering the objective or the hypothetical functions, it was
seen that total deficit 1is not varying significantly. It was
further observed that by increasing number of iterations in
succcessively reducing the corridor widtﬁ, total deficit is
distributed among larger number of time periods with smaller
deficits. Corresponding power generations and reservoir
storages are shown in Tables (5.6) and (5.7), for comparisdn
with wvarious model performances, to be discussed in subsequent
chapters.
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CHAPTER - 6

DPR and DPN Models

6.1.0 GENERAL

The assumption behind adoption of a dynamic programming
with regression (DPR) model or dynamic programming with neural
net (DPN) is that the deterministic dynamic programming result,
spanning across the historical flow record of optimization
horizon, encapsulates a definite pattern between the release
and some or all .of the independent variables like, initial
storage, inflow and demand. This underlying pattern is unique
to the system considered and can be filtered through some
pattern recognition tool. The multiple regression models have
been widely used in water resources system engineering for
generating the operating rules. The regression models smoothen
the values of the release function. A brief outline of the

multiple regression is furnished in the next section.
6.2.0 THE MULTIPLE REGRESSION

When more than one independent variable is being used to
predict the value of the dependent variable, the analysis is
termed as multiple regression analysis. In case of regressioh,
the best fit line is identified by the least squares method.
The four basic assumptions 'underlying a multiple linear

regression analysis are as follows,

Assumption 1.There exists some hypothesised underlying
relationship among y and x,, X, xy'...., X, in the

form

E(y)'=po+ﬁ.1x14+p2x2+_. A | | (6.1)

where E(y) is the regression function.

(59)



In essence b,, b,, b, in eguation (6.2) are estimates

for &,, B,, B, respectively.

Assumption 2.The distribution of y, X,, X, follows a normal

distribution.

Assumption 3.The variability of y about the regression function
| is the same for any choice of values of x; and x,,
i.e., variance is the same for each Set of y values.
This is called equal variance condition or homosced-
astic condition and is indicated by o¢/}.

Assumption 4.The observed Y values are based on a random sample
from the assumed normal probability distribution and
that each observation is independent of all other

observations.

Mathematically the multiple linear regression analysis can be
expressed as follows: . '

Total data length be N ‘and Number of parameters be P.

Then degree of freedom (regression) =p.

Then degree of freedom (error) =N-p-1

The estimated regression function is

© P=bybx, +hyXy b s +b X, - (6.2)
by, by, b, .... , b, are choosen by least square methods, with
the objective of

Miny (y;=9;)? . (6.3)

The following parameters are used to judge how good is the

regression line.
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S’SE’=Z (y;-9,)? (6.4)

SST=Y (y;-¥)? (6.5)

SSR=Y (9;-¥)°? (6.6)
SST = SSE +SSR and for best fit SSE ~ 0;SSR/SST =~ 1 = r2;
MSE =

SSE/ Error DF ; MSR = SSR/ regression DF.

SSR measures the amount of variability in y explained by
the regression model. The sampling distribution of MSR/MSE

follows a F-distribution.

F = MSR/MSE ; when computed F > F,(p,n-p-1), a linear rela--

tionship is said to exist.

Multiple non-linear regression is also carried out along
the same steps, with some modifications. Interested readers can
refer to any standard text book on.multi variate regression

analysis for this.
6.2.1 Computation

Undér_the DPR model category, two regression procedures
have been attempted, namely, multiplé linear regression and
‘multiple non-linear regression. Although authors on this
subject have all along suggested a simple linear form to
‘express the optimal release [refer Chapter-2], the non-linear
regression equation was tried in this study, to assess its

relative performance in comparison to other models.

Before deriving general operating rules using regression
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from deterministic DP results, the DP output was divided into
two sets. The result for fdrst 27 'years, consisting of 324
patterns was considered for calibration and last 5 years result -
consisting of'60 patterns was kept aside for validation. The
calibration data set was processed through a WINDOWS based
statistical package called SYSTAT, for obtaining the multiple

linear and non-linear equations. -

The expression adopted for linear regression equation is

Rel (t) =a,+b,*S(t) +b,*Infl(t) +b,+Dem(t) . (6.7)

and the expression adopted for non-linear regression equation

is

Rel(t) =p,* (S(t))P+p,* (Infl(t) YP+p x (Dem(t))?  (6.8)

The summary result of the output is tabulated below;
Table (6.1) : Regression Analysis

Multiple linear regression

Variable value Standard-error T
Storage .022 .006 3.76
Inflow .086 - .009 : 9.43
Demand .95 027 35,097
Constant -23.464 10.189 T -2.303

Analysgsig of variance

Source : SS DF "MS F-ratio
Regression 3415177.5 3 1138392.5 514.395
Residual 708179.52 321 2213.061
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Multiple Non-linear Regression

Convergence attained after 200 iterations;

Precision 0.01
Raw R-squared (l-residual/total)s= : 0.958
Corrected R-squared (l-residual/corrected)= 0.794

Analvsisgs of variance

Source SS DF MS
Regression .203894X10% 6 3398234.383
Residual 738740.08 318 2323.082"

, Hence the regression equations obtained for linear and
non-linear cases are as follows
Rel(t) = -23.464 +.022*S(t)+.086*Inf(t)+.95*Dem(t) (6.9)
and ,
Rel (t)=1.875 S(t)%*'+ 011 Inf(t)"*+.105 Dem(t)'* (6.10)

These equations have been built into the simulation model
and detailed discussion on these results will be made in
Chapter-8. For evaluating the relative performance of these
eduations, on the validation data, these are compared with the
output of the DPN model, which will be discussed subsequently.

6.3.0 DPN MODEL

In the context of previous discussions, the'problem of
deriving an optimal release - policy has been reduced to
searching for an appropriate function approximatioh for optimal
release, by socme suitable pattern recognition tool. This has
been tried with an artificial neural network architecture.

6.3.1 Identification of N.N. Architecture
Proper identification of the neural network architecture

and topology 1is of prime importance to neural network
modelling. Before the training process begins, the architecture
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needs to be identified, with the following design

considerations:

The structure of the system 1.e., numbers of layers

The synchrony of the system i.e., the mode of control and
synchronisation of the pProcessors.

Symmetry of inter connections.

Feed forward/feed'back"structure employed.

Transfer or activation function relating input to output.

Learning strategy.

However, all .of the above cannot be finalised at the
beginning. The learning strategy especially may need modi-
fication, through the process of training and testing, when
the model as well as the modeller, both gain experience by
successively running the model. This is in fact a trial and-

error procedure.

For the present étudy, a feed forwérd . errdr back
propagation network has been adopted under supervised learhing
mode, as it 1is, so far the most popular of the ANN
architectures available. The structure of the ANN consisted of
three layers - the input layer having 3 neurons, the output
layer with one neuron and a hidden layer with four neurons. The
number of neurons in the hidden layef was decided after a
rigorcus course of training and testing the data during the
calibration and validation period. Neurons in the input laYer

acted simply as buffers through which input data was sent.

Regarding connectivity, every neuron in the hidden layer
is connected to all the neurons in the preceding layer and with
the output layer neuron. A BP simulator, coded in C++, 1is
implemented for identification, training and testing of the
neural network, under an UNIX environment.
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6.3.1.1 Activation function

The sigmoid function is used for the activation function.
This function is the most commonly used nqnlinear activation
function. The basic characteristics of the sigmoid function is
that it is continuous, differentiable everywhere, it is
monotonically increasing. The output y; is alwaYs bounded
between 0 and 1 and the input to the function can vary between

+00. Under this threshold function, the output y; from a neuron

in the hidden layer bécomes‘

l =
Y.=f(Y w..x.) = . : (6.11)
7 E e 1+e—(2wjlxl) A
here A B A
W = Weight of the éonnection[ connecting jth neuron in the

hidden layer with ith neuron in the input layer.
Value of the i” neuron in the preceding layer.

>
I

Output from the j” neuron in the present layer under

=
I

consideration.
6.3.2 Learning Algorithm

The learning algorithm adopted for thé network 1is of’
supervisory mode, batch processing type, following the
generalized delta rule, [Rumelhart, 1986]. Learning in_fact, in
the neural network parlance , refers to gradual adjustment of
the inter connection weights within the network, to minimize
the error between the ANN output and the output pattefn used
for training. This process is repeated many times with many
different input/output tuples until a sufficient accuracy for

all data sets has been obtained.

This adjustment of the inter connection weights during
training, employs a method known as error back propagation. In
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this the weight associated with each neuron is adjusted by an
amount prdportional to the strength of the signal in the
connection and the total measure of the error.. The total error
at the output layer is then reduced by redistributing this
exrror value backwards, through the hidden layers until the
input layer is reached. this process continues for the number
of sweeps prescribed by the modeller or until reaching a
prescribed error tolerance level. In this way the 'back.
propagation algorithm can be seen to be a form of gradient
descent for finding the minimum value of the multi dimensional
error function. A détailed step by step account of the
practical problems encountered during training and testing of

the ANN is discussed in the subsequent sections.

6.3.3 Momentum, Noise and Shuffling

ANN objectivé function surface is typically non-convex,
which contains multi local optima. It has extensive regions
that are insensitive to the variations in the network weights,
imposed by the generalised delta rule, discussed in Chapter-3.
This results in some major limitations of the BP algorithm,

such as,

These are easily trapped by local optima.
The convergence. is an extremely slow process.
The architecture is often ineffective, when searching
weight spaces of high dimension.
4. - Performance of BP-ANN simulator is quite sensitive to the

initial starting point.

Many new algorithms have come up to improve upon the BP-
ANN performance and to counteract above limitations. In the
present study, the first and second limitations ‘are managed by .

adding momentum and noise features.



6.3.3.1 Momentum |
' Adding a momentum term to the earlier described training

law, sometimes results in much faster training. This term’
determines the effect of previous weight changes on the present
'change in the weight space. Therefore, in addition to improving
the convergende speed, this sometimes enables in dragging a
solution trapped by local obtima, as this keeps the weight
change process mbving. The weight change with inclusion of a

momentum term is expressed as,

iji‘(s) =n.8,;x,+aAW;; (s-1) (6.12)

Where ,

T} - = learning rate; which provides the step size durinj the
gradient descent.

o = a momentum rate term (for this study values between .5
‘and .9 have been taken.) ‘

s A_SQEep; one cycle of training using the complete batch of

input pattern set.
6.3.3.2 Noise

This'is'anothef approach to breaking out of local minima,
whereby. a noise or ‘a random number‘is added to each input .
-component of the input vector as it -is applied to the network. .
Provision was kept in the simulator to send the noise to input

pattefns, within a range wished by the user.
6.3.3.3 Shuffling

In order to counter the last limitation,'authors adopﬁ
mostly, an initial randomized weight space to start with. This
helps in breaking the symmetry. In case the convergence is slow
“or found to be locked up, usually the weight matrix is broken
and a new initial weight matrix randomized between -1 and +1 is
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given. This process continues until convergence 1is visible
during running of the simulator. When this also dqesn’t‘work/_
the input patterns'are changed, another set, is presented to.the

simulator.

In the present study, in place of presenting a new'setvof
input pattern, a shuffling strategy is adopted whereby, an
algorithm is generated which simply shuffles the existing input
pattern and re-sends the same to the simulator. This has been
found to be very effective to desensitise the input pattern
sensitivity of the BP algorithm. | |

6.3.4 Preparation of Input and Output Data Patterns .

In this study, input to the network are initial storages,
inflows, and demands while optimal release is the output. These
values during the calibration period of 27 years, are to be
filtered from the DP output file, which has a [384 X 11] data
.maﬁrix struéture. Further these'data cannot be sent, as such, -
to the BP simulator, because the sigmoid function bounds the
output between 0 and 1. Usually the strategies adopted for this
are scaling, normalising and standardising, scaling being the
simplest. Since the sigmoid function does not impbse any
restriction on input patterns, it is a trial and érror
procedure to select proper scaling factors for input patterns
and output response in such a way that the BP will result in

speedier and better convergence.
6.3.4.1 Data Manipulator Program

All above requirements on frequent data manipulation
warrant the development of a customised data manipulator

program. The same is developed, coding through C++ with the
following features.
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Usage data manip <input.filename> <output.filename>
Accept a 2-dimensional data matrix through input file.
Obtain user options for seasonalisation and the data
columns where manipulation is desired.

° Show the max. value of each desired data column. ‘

K Scale down the selected columns interactively and
réarrange them as desired.

® - Optionally shuffle the created data set keeping the

| sequence of shuffling in a file <ref.outs. -

TheAprogram is a generalized one and can be used for
similar purposes. The code is given in Annexure-III. "

6.3.4.2 Scaling

In this case the ultimate scaling factors adopted for the
input pétterns and output responses are 2500 and 500
respectively. These values are determined after studying
‘different combinations. These scaling factors provided faster
convergence compared to others including the one, where the
factors were calculated‘ to restrain the patterns. exactly

between 0 and 1.
6.3.5 Training Strategy

It was observed during training that, the rate of
convergence 1is very fast during'ihitial sweeps, but after some
sweeps, it is either static or very slowly converging..Keeping -
this fact in mind a phased training schedule is adopted. Under
this schedule the training process was carried out with a
higher learning rate and noise term and (depending upon model
acceptance), a momentum term, for approximately 500 cycles with
randomization of initial weight matrix. The weight matrix
obtained after initial training is considered as initial
solution, in the next phase of training. As a lower learning
rate has the ability to skip the hurdles of local optima,
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although the convergence is slow, gradually reduced 1earning

parameters and smaller noise terms were taken during successive

training.

The number of neurons in the hidden layer of the
architecture is finalised after trial and error procedure. -If
the architeeture 'is too small, .the network .may not have
sufficient degrees of freedom to learn the prqdess correctly.
on the other hand, if ‘the network is too large, it may not
converge during training or it may overfit the data [Raman and

chandramauli, 1996].

For obtaining the optimum number of neurons in the hidden
layer, 10 different struetures‘were prepared, startihg‘from 3- -
1-1 up to 3-10-1. Every structure is made to learn till
saturation the system characteristics, by the phased training
strategy, described in the~previ6us paragraph. The performance
of each, was finally tested through a 'COmparison model,
developed in FORTRAN-77 for comparing the RMS error of the ANN
structures with those of‘multiple linear and multiple_nen~
iinear regression. It was found that the number of neurons in
addition to four, although attain higher minimisaﬁien level
during training, fail to map properly the unseen testing data
durlng the validation perlod Therefore the architecture of 3-
4-1 was flnallsed The chosen network along with the weight
matrix is glven in Figure (6.1).

6.3.6 Validation , _

The BP simulator used for thisﬂstudy has two options 1
for training, 0 for testing. By-aétivating the testing module
the input patterns during the validation periodzis simulated.
The output scaled between 0 and 1 was filtered through another
program written in C++ and the output is routed through the
comparison program COMPARE.F. This entire job was entered into -
a batching program, for ease in successive trials.
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'|Fig 6.1 : The ANN architecture selected for modelling the reservoir release

The Weights Matrix ( Network Architecture 3 - 4 -'1)

1 0.211632 -3.35254 -0.45647 -1.24797
1 -2.73996 0.267676 -0.77974 4.374992
1 -22.1786 11.01551 -53.6145 3.429683
2 3457111

2 -2.99356

2 -10.0251

2 3.667947
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6.3.7 Discussion Of Results

The releases from multiple linear, multiple non—iinear
regression and the ANN models are tabulated in Table (6.2)
along with the DP model during validation period of 60 months.
The model releases are plotted along with demand in Figure
(6.2) and along with release in Figure (6.3). From the
plottings it can be seen that the ANN mapping of optimal
release is better, compared to other two models. For better
comparison of the estimated releases, statistical properties
along with RMS Error, evaluated through the comparison model,
are tabulated in Table (6.3). ’ '

The RMS Error for various models during the validation

period is computed by the expression

E =_Y (pp —Model (6.13)

) 2
ms 60 release release

It can be inferred from the tabulated information, that the
ANN model release has least RMS error; it is better correlated
with DP release, whereas the regression model releases are more
correlated with the demand. Regarding the other statistical
properties like mean, SD, skewness etc., all the models have

more or less equal performance.



\

~

. Table - 6.2 Comparison of models during the validation period
of 5 years, from 197 Sto 1982 (values are in Mcm)

MODEL RELEASES

ACTUAL “D.P.

DEMAND RELEASE LINEAR NON-LINEAR ANN
231.9 196.3 247.548 244.2607 267.6945
276 239.1 284.7412 289.4685 276.3455
2473 209.9 252.8736 254.6849 261.6215
163.2 125.4 168.899 167.1575 203.9365
115.1 76.8 123.0324 124.4151 140.059
86.4 47.8 94.887 101.525 85.8345
284.9 246 —~ 306.8332 307.2799 306.529
40.8 1.8 72.0906 . 85.05382 35,2335
317.9 278.4 347.8502 352.7576 329.3845
283.4 243.4 298.9634 301.2706 284.9605
.106.8 66.6 126.055 124.8781 143.7365
88.9 483 106.5956 109.9094 - 100.7125
231.9 189.4 2420116 240.2641 264.3125
276 231.7 280.29 - 285.8531 268.0475
2473 202.2 247.1372 250.3979 249.4615
163.2 1175 163.8652 162.9733 194,993
115.1 68.5 115.6424 119.1183 126.2575
86.4 39.5 80.38181 97.4225 80.7715
284.9 237.5 291.3486 295,464 268.9715
40.8 0 70.5082 83.41406 36.342
317.9 268.2 334.967 343.1243 300.745
283.4 233.3 291.915 296.1315 279.076
106.8 54.6 116.0134 117.9264 128.399
88.9 36.5 96.0062 102.8386 87.86
231.9 175.5 232.7764 233.7511 245.494
276 219 272.4466 279.7533 247.893
247.3 189.3 238.9992 243.8647 226.462
163.2 104.3 154.3992 - 155.4878 170.883
115.1 © 553 106.6502 111.4401 107.3275
86.4 86.4 105.2934 105.1635 113.6125
284.9 285 297.0376 299.1015 277.2565
40.8 416 102.6746 111.695 84.519
317.9 355.8 372.2178 373.6947 369.6425
283.4 4745 301.4712 303.0509 297.404
106.8 156.2 122.5656 122.7582 136.5835
88.9 93.2 102.2712 106.9518 96.48
231.9 246.7 235.8464 236.1624 252.4695
276 276.1 275.1614 281.6361 255.27
247.3 2473 . 242.6804 245.8517 235.6455
163.2 163.2 158.3656 157.331 181.068
115.1 115.1 122172 120.1104 144,053
86.4 ‘86.5. 104.9362 105.5456 113.093
284.9 293.2 342.5894 339.5134 354515
40.8 96.6 113.8484 120.4908 101.9595
317.9 469.4 399.1824 396.0761 405.1555
283.4 4147 332.9934 325.4214 353512
106.8 '206.6 147.3182 138.6545 170.56
88.9 93.4 1203458 118.6117 108.6935
231.9 472.2 253.203 247.5011 273.5825
276 306.1 286.7 290.0377 281.806
247.3 247.3 253.127 254.2267 263.1915
163.2 163.3 167.8076 165.8061 " 203.39
115.1 115.1 119.2412 121.6849 133.348
86.4 86.4 88.5376 97.24042 76.5845
284.9 284.9 - 327.5414 325.082 336.153
40.8 298.8 154.808 163.6641 209.5435
317.9 469.2 446.1698 445.7554 439.9845
283.4 469.2 397.717 388.4221 432.2005
106.8 214.3 147.989 139.1199 172.424
88.9 4738 127.4838 123.0045 125.093
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CHAPTER -7

Time Series Aﬁalysis For River Flow Prediction

7.1.0 GENERAL

- In time series analysis, stochastic or time series models
are fitted to one or more of the time series describing the
system for such purposes, as forecasting, generating synthetic
sequences for use in simulation studies and investigating and
modelling the underlying characteristics of the system under
study. One particular area, where time series has played a

crucial role is the field of water resources.

In most of the water resources problems, after fitting
stochastic models to pertinent hydrological time series, such
as, sequences of river flows,'the fitted models are employed
for simulating possible hydrological inputs to the system.
Subsequent to the construction.of the system, stochastic models
are employed for forecasting the input flows to the system, in
order to ascertain an optimal operating policy which maximizes
the project output, subject to physical, environmental, econo-

mical and system constraints.

The present study herein is aimed at obtaining a suitable
river flow forecast model for at least one time period 1in
advance. For this purpose, the Box and Jenkins ARIMA modelling
approach and an artificial neural network based approach have

been considered.
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7.2.0 BOX AND JENKINS ARIMA MODELLING

The Box—Jenkins procedure is one of the most popular
procedures for short term forecasting. The basic assumption
behind this procedure is that a stationary process can often be
parsimoniously represented by a mixture of auto-regressive and
moving average models and a non-stationary process can be
integrated to yield a stationary meodel, by adopting

differencing technique in the appropriate way.
7.2.1 Stages in ARIMA Modelling

The practical steps involved in the Box & Jenkins analysis
and the main stages in setting up the forecasting model, in

this study, are described herein.

® Model Identification : The data are examined to see which
model in the class of ARIMA processeg appears to be the

most appropriate.

®  Estimation : The parameters of the chosen model are

estimated by least squares approach.

° Diagnostic Checking : The estimated residual from the

fitted model is examined to see if it is adequate.

° Alternative Models : In order to obtain Asatisfactory
model, the above procedure (e.q. steps above), is repeated
with alternative models. '

7.2.2 The Data

Historical monthly inflow records into the reservoir for
a period of 32 years, constituted the basic data. Before model

identification, the entire flow record has been examined for
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important statistical parameters, and tests for randomness,

trend and seasonality are conducted.
7.2.2.1 Test for randomness and trend

For checking the randomness of the series , turning Point
Test has been adopted. The annual average data series having a
data length of 32, showed randomness and the monthly inflow
data series having 384 data points showed non-random behaviour.
Both the time series were tested for trend through kendal’s
rank correlation test and linear regression test. The annual
data series showed a félling trend. For details of the
algorithms for these tests see Goel [1997]. The results can be
briefed as below, in Table (7.1).

TABLE - 7.1

Turning Point Test

Particulars No of No of Turning Value of
’ Peaks Troughs Points Z
i.Monthly data

series 53 41 - 94 -19.49
ii.Average annual

Flow Series 9 9 18 -0.86

Remark: Monthly data series: not random at 5% significance
level.

- Annual data series: random at 5% significance level.

-

Kendal’s rank correlation test

Particulars Value of P "Test Statistic
Monthly data series ‘ 35485 . -1.02103

Average annual

- (79)



Flow Series 159 . -2.88653

Remark: Monthly data series: There is no trend in data at 5%
.significance level.
Annual data series: There is falling trend in data at 5%

gsignificance level.
7.2.3 Plotting of Time Series

The inflow data has been tabulated along with the
statisticai parameters, such as, mean, standard deviétion,
skewness, kurtosis etc., in Table (5.2). The ‘time ‘series plot,
for the calibration period of first 28 years, is given in
Figure (7.1). The model idemtification was based only upon the
auto-correlation and partial auto-correlation functions. A;plot
of the ACF and PACF for the original data series before
adopting any standardisation or differencing schemes, is given
in figure (7.3 agb) . For the computation of ACF and PACF, 20

lags have been considered.

Strong seasonality 1is shown by the time series plot and by
the sinusoidal behaviour of the ACF plot. This seasonality
albng with a falling trend is indicative of the fact that
instead of an additive model, a multiplicative model can
represent properly the seasonal effect. The stability of the
seasonal effect was examined by plotting the time series, after
adopting various combinations of standardisation, differencing
‘and transformation, and will be discussed later in this
chapter. Finally a simple standardisation of the original time
series has been selected, which is of the form, .

. X, =X —
Z,= CN : (X, representsmean) (7.1)

Where

Z, = variate of the standardised series at time t;
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ACF plot of the calibration Inflow serles

Au correlation function value

0 + 4 -+
- o~
0.2 1
04 .

06 -

Lags of auto correlations 1 to 20

Fig -7.3 ,a: Plot of the auto-correlation function of the calibration data series before
standardisation and differencing . ( Period of 28 years has been kept as the calibration period)

PACF plot of the calibration inflow series

0.6 T
05 I
04 ¢

4 _ +Itlk.'?*l+l‘l TI
1 : I

0.4 4

-0.1
-0.2

0.3

Lags 1 to 20

RN |

—!‘:_iug‘-Tl._é',-B‘:“P_lEt of the partial auto~correlation function of the the calibration data series
before standardisation and differencing . { Period of 28 years has been kept as the calibration period)
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variate of the original time series at time t;

»
[

total data length.

2
1

7.2.4 Differencing to Attain Statiomarity

The first stage in Box-Jenkins procedure is to difference
the series {z/}, until a stationary series, say {w}, is
'obtained. As the series has a falling trend and a seasonal
pattern completing one cycle every 12 observations, the sample
auto-correlation function of the series, was examined for
various integer values of 4 and D [Box-Jenkins, 1976], where

for example,

12
V z,=2,-Z,.,, (7.2)

It has been found that a 12-lag differencing operator
removed the annual cycle in the monthly time series but
introduced periodicities in the continuocus spectral density.
Figure (7.2), showing the time series plot after
standardisation and differencing and Figure (7.4 a&b), showing
the corresponding ACF plot confirm this statement. This
limitation of ARIMA family of mddels,has earlier been pointed
out by many authors [Chatfield et al., 1973], [Delleur et al.,
1978], that whenever the original data are'differenced'to
attain, stationarity, spurious auto correlations may sometimes
be introduced, particularly at lag-12 or in its neighbourhood,
for monthly data.

7.2.5 ACF and PACF Computation

The ACF and PACF up to 20 lags, before and after the
standardisation and differencing are shown in Table (7.4 a&b),
along with their confidence limits. The mathematical expression
adopted for computing the same are given below.

1. w, series is C@mpﬁted by w, =V 2z, ﬂ (7.3)

Where,



ACF plot atter standardisation and differencing

0.2

16
17
18
19
2 |

ACF value

Lags from 1 to 20

~ Fig-74,a: Plotof the au‘lo-correlation function of the calibration data series after standardisation
and differencing :

PACF plot after standardisation and differencing

02
. 01

o ©0 ~ [+] o ~ w© [=]
-— - N

-

N e D T
B R, T —
- - - -

PACF
[~
N

Lags from 1 to 20
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Table- 7.4,a : ACF and PACF values along with
95% probability limits for the original inflow data .
during calibration period \ ‘ , E
Lag ACV “AC 95% LIMITS PACF 95%Lle

Lower Higher
1 0.61 0.6149 -0.11 0.104 0.6149 0.107)|
2 0.19  0.1901 -0.11 . 0.104 -0.3022 0.107
3 -0.19  -0.1881 -0.11 0.104 -0.2733 0.107
4 -0.35 -0.3509 -0.11 0.104 -0.061 0.107} .
5 -0.41  -0.4087 - “-011 . 0105 -0.1883 0.107
6 -0.42 -0.421 -0.11 0.105 * -0.2573 0.107
7 -0.4  -0.4043 -0.11 0.105 - -0.2597 0.107
8 -0.34  -0.3378 -0.11 0.105 -0.2804 0.107
9 - -016 -0.1555 - -011 0105 |, -0.18 0.107
10 0.16  0.1643 -0.11 - 0105 0.0483 : 0.107
11 0.58 0.5796 -0.112 0.105- 0.3934 0.107
12 0.76  0.7632 -0.112 0.106 - 0.3 0.107
13 0.61 0.6076 -0.112 0106  0.1397  0.107
14 0.18 0.1828 -0.112 0.106 «0.103 0.107
15 -0.16  -0.1596 -0.112 0.106. 0.0095 = 0.107
16 -0.34 -0.3396 -0.113 0.106  0.0347 0.107
17 -0.4 -0.3971 -0.113 0.106 -0.0164  0.107
18 -0.41  -0.4113 -0.113 0.107 -0.0296 0.107
19 -0.39  -0.3949 -0.113 0.107 -0.0194 0.107
20 -0.33  -0.3302 -0.113 0.107  -0.0622 0.107

No. of data = 336, Mean =83.726, Variance =,952E+02

Table 7.4,b : ACF and PACF values along with 95%
. probability limits for the inflow data after standardisation
and differencing, during calibration period -

Lag .ACV AC 85% LL/HL PACF. 95%Lim
1 0.01 00251 - -0.112 0.106  0.0251 0.109
2 0.03  0.0596 -0.112 0.106 - 0.059 0.109
3 -0.05 -0.1167 = -0.112 0.106  -0.1201 0.109
4 -0.01  -0.0234 -0.113 0.106  -0.0209 0.109
5 0 -0.0009 -0.113 0.106 - 0.0151 0.109
6 0  0.0004 -0.113 0.107 -0.0115  '0.109
7 0 0.0012 -0.113 0.107 . -0.0048 0.109
8 0.01  0.0165 0113 0.107 - 0.0189 0.109
9 0.05 '0.1037 -0.113.  0.107 0.104 0.109
10 0.01 0018 -0.114 0.107 = 0.0096 0.109
11 -0.01  -0.033 -0.114 0.107 -0.0445 0.109
12 -0.23  -0.5258  -0.114 0.108 -0.5169 0.109

13-, -0.03 -0.0764 -0.114 0.108  -0.0679 0.109
14 -0.01 -0.0314 -0.114 0.108  0.0454 0.109
15 0.03  0.0717 -0.115 0.108 -0.0184 0.109
16 -0 .0.0068 -0.115 0.108 -0.0343 0.108
17 0  0.0055 -0.115 0.108  0.0072 0.109
18 .0 -0.0005 -0.115 0.109  0.0031 0.109
19 0 -0.0087 0115  0.109 -0.0208 0.109
20 -0.01  -0.0131 -0.116 0.108 -0.0048 0.109
No. of data = 324, Mean=  -.015, Variance =.4394E+00
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£=1,2,3, ...... ,n; d = 0; D =1; 8 = 12;
Vw =w,-w,_, (7.4)
VW, =W, ~W,_ ? - (7.5)
n=N~N-d- 8D _ (7.6)
2. Mean and variance of the differenced series is obtained by
1 n : _
W= = W (7.7)
Ly v
t=1
let variance S2=¢c, (7.8)
3. Auto-covariance function
: 1n—k
Ck=_ E (Wr_-_w) . (Wt*k_;/) (7°9)
n & : » -
. E=1 :
Where, k = 0,1,2,... , K (ie., maximum 20 lags)
4. Auto-correlation Function
C .
r,=—= - E (7.10)
Cy ,
Where, kK = 0,1,2, ....... , K
5. - Partial Auto-correlation Function
1-1
;- ¢1—1 gL
b, = J=1 7.11
(pll 1-1 (7. )
1— ¢1—llj.rj
J=0

Where, L.H.S. of the equatidn represents PACF and 1 = 2,3,..,L
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7.2.6 Identifying the Staticnary Process .

After differencing and examining the ACF and PACF plots,
the problem remains to find a model in the ARIMA class, with as
few parameters as possible, using parsimony considerations and
which adequately should describe the series {w}. The general
class of mixed autoregressive moving average seasonal model can

be written as
b, (B) ®,(B?) w,=B,(B)©,(B™) a, (3.12)

Where, .
B = backward shift operator

¢%,¢p,eqi3o= polynomials of order p,P,q,Q respéctively.

{a} = independent random variable series with mean zero

and variance o.’.

The first problem encountered is to select reasonable
values of p,P,q,Q. This is done by mainly examining the sample
auto-correlation functions, keeping parsimony, overfitting, and
good diagnostics as the guidelines for selection. Regarding the
identification of AR and MA parameters from ACF and PACF plot,
the tips offered by many authors including Box and Jenkins, has
been adhered to. The criterions adopted and some of the
observations during the trials, are summarised below. |
Table 7.2 Tips for model identification through ACF and PACF

Model ACF PACF

AR (P) Dies out. Cuts off after lag p

MA (qQ) cuts off after lag q. Dies out

ARMA Dies out after lag | Pies out after lag

(P, q) q-p. p-q.

ifg=0p ACf should decay after PACF should decay from
lag g-p |beginning.

If g <p It should drop off from |PACF should decay after
beginning . lag p-gq ‘
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-

During identification it was observed that, amongst the
competing models, by exémining oniy the ACF/PACF values, the
properties of the time series could not be detected. Therefere,
before the final identification, all such competing models are’
tested for residual analysis & diagnostics. During this job, it
was seen, whether the identified model succeeds in,retaining
the stationarity and invertibility criteria or not. . few
selected trials, along with the residual analysis and other
pertinent details are tabulated in Table(7.3). On the basis of
minimum AIC and Q-statistic, a (0,0,2) X '(0,1,1) mixed ARIMA -
model is selected. ’

7.2.7 Initial Parameter Estimation

The initial estimates of the parameters are obtained from
the equations, governing their auto-covariance structure.
Program-2, titled as " Univariate Stochastic Model Preliminary
Estimation (USPE)", given by Box-Jenkins, in form of an
algorithm is implemented in FORTRAN-77, to obtain the initial
estimates. Moving average models present more problem, since
their (,s are nonlinearly related to the'Qs. During running
this module, many alternatives were eliminated for not
satisfying the invertibility condition.The initial estimates
for non-seasonal MA parameters obtained are |
MAl = -0.0237 MA2 = -0.0598

7.2.8 Final Parameter Esgstimation

Box-Jenkins [1976], suggest that the approximate maximum
likelihood estimate(MLE) for the ARIMA model parameéers be
obtained by employing the unconditional sum of squares method.
The modified sum of squares function is minimised, through a
recursive procedure, in order to obtain the improved parameter
estimates. A FORTRAN code employing the program-3, titled as
"Univariate Stochastic Model Identification" and "The Marquardt
Algorithm for Nonlinear Least Squares", given by Box-Jenkins,
is implemented to obtain the least squares estimates of the
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parameters as,

Seasonal MA parameter = -0.951
MA parameter (1) = -0.123, Confidence limit = 0.0551
MA parameter (2) = -0.125, Confidence limit = 0.0552

. 7.2.9 Diagnostic Checks .

In the context of previous discussions, the diagnostic
tests deal with the residual assumptions, in order to
determine, whether the ags are independent, homoscedastic and
nérmally distributed. However, these estimates, along with the
residual auto-correlation function, Pofte—Manteau test
statistic and AIC, are calculated , during the implementation
of the program for final parameter estimation. The RACF values,
mean and variance of the a, series and Q-value are shown in

Table (7.4 c).

It was found during diégnostic testing‘that, a mere data
transformation couldn’t correct dependence of residuals. So, in
order to attain independence, many times the identification and
estimation stages have been repeated for determining a suitable

model. Selected trials are summarized in Table (7.3}.

' During diagnostic.checks, model adequacy is usually tested
by overfitting also. This involves fitting a more elaborate
model, than the one estimated, to see if including one or more
parameters, greatly improves the fit. The same Table (7.3) on
diagnostic checks may be referred, to observe the changes in Q-
statistic, AIC or in the residual variance, when the order of
the AR or MA parameters is increased, one at a time. As it can
be seen from that table that, any further increase over and
aboye those selectéd,‘ i.e., (0,0,2)X(0,1,1) model, doesn’'t
significantly improve the model characteristic, it 1is
considered to be final. The RACF values for the identified
model are furnished in Table(7.4c) and the corresponding plot

is given in Figure (7.5).
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Table 7.4,c : Auto-correlation function of the residuals,
The Q_statistic and the AIC value for the TS model

_Lag ACV AC RESIDUAL ANALYSIS

1 -0.003 -0.012

2 0.001 0.002

3 -0.005 -0.025

4 0.002 0.01 | Statistics of Residuals

5 0.004 0.018 Mean: -.0001, Var: 66.1771
6 0.002 0.008

7 -0.001 -0.004

8 0.002 0.01

9 0.021 0.098 . | Portmanteau Test Result
10 0.009 0.041 Q-Statistic= 11.890,

1 0.007 0.032 | Degrees of Freedom = 17
12 -0.02 -0.091.

13 0.022 0.099

14 0.009 0.04

15 0.011 0.052 |AIC =-481.139

16 0.003 0.015 :

17 0.003 0.012

18 © 0.001 0.004

19 -0.001 -0.004

20 0.003 0.014 .

Fig - 7.5 : The Racf plot for the identified ARIMA (002 X 011) model

—

RACF plot for the identified model
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7.2.10 Summing The Model Selection

The above computations, sﬁarting from obtaining data
statistics up to RACF analysis, were carried out by computer
programs, developed in FORTRAN-77. For better identification,
provision was kept in the programs for instantanéous display of
the time series plots, in original and after user suggested
transformations, standardisation and differencing. For a
detailed and step by step algorithm of the computations
described above, readers are requested to refer program-1,2,3
of Box and Jenkins [1976].

7.3.0 FORECASTING

After selection of the multiplicative, seasonal ARIMA
model and computing the model parameters, the task remaining is
to use the model to forecast future values of the observed
inflow time series. It may be borne in mind before forecasting .
that estimation errors in the parameters will not seriously
affect the forecasts unless the number of data points, used to
fit the model, is small. Before forecasting, the model 1is
expressed mathematically as per Box-Jenkins notations.

L

7.3.1 The Identified Model

One of the most general form of multiplicative seasonal
ARIMA (p,d,q) X (P,D,Q), model is written as.

(1-®,BY-®, B~ . ..... -®,.8%¥)
(1-¢,B-¢p,B*~. ... .... -¢,BP) ,

- (1-B"*®.(1-B) 9z, = (7.13).
(1-8,B"-8,B%"-. ... .... -8,8 %) ‘
(1-8,B-6,B*-....... -8,89 a,

Which in a short form can be written as
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®(BY).d(B). (A1—B”) P(1-B)9.x,=8(B%¥) .0(B) .a, (7.14)

In the present case
p =P =0; q = 2; Q = 1; D = 1; d = 0;
So along similar lines, the identified model can be expressed

as

(1-B*?)Zz,=(1-06,B-0,B%) (1-8,B*?) a,
= Z.~2.4,=(1-6,8-0,B%) (a,-0,a,,,) (7.15)
= a,6,a,,-6,a,,-8,a,,,+6,8,a,_,,+0,8,a,_,,

or the final expression can be written as,

Zy=Z, . ,%a, 0a,,-0,a,,-0,a,.,,+6,(6,a,_,,+0,a,_,,) (7.16)

Where Z, is the standardised series.

Equation (7.16) represents the elaborate form, which has
been used recursivély in the forecast algorithm, provided by
Box-Jenkins in program-4, titled "Univariate Stochustic Model

Forecasting" with scope for some generalisation.
7.3.2 Input Parameters for Forecast

The following information was provided to the program in
the form of an input file: the {x,} series during the
calibration period, total data length, order of differencing
operators d & D, seasonality S, order and least squares
estimates of corresponding nonseasonal and seasonal AR and MA
parameters, maximum lead time of forecast, maximum value of
backward origin, and least squares estimate of the residual
variance. Apart from these, the other information, such as,
data manipulation options like standardisation, differencing
orders and lags, transformation etc., and the options reléting
to updating the forecast are accepted from the user, during the

program execution.
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7.3.3 Difference Equation Approach

Box and Jenkins approach to forecasting provides three
different ways to view at an eventual forecast function and its

updating. These are

° Forecasts from difference equation approach;
Forecasts in integrated form; '
Forecasts as a weighted average of previous observations
and forecasts made at previous lead times from the same
origin.
In the present study, for generating the forecasts at varipus
lead times, the difference equation approach is used.}However,
for computing the probability 1limits of forecast and for
updating the higher lead time forecasts. the psi weightAis
considered. This is a linear filter, that is supposed to
transform a white noise into the 2z, series. An infinite series

of as can be represented as,

®(B)z,=a, | (7.17)
This is equivalent to Z,=y (B) . a, - >(7.18)
with $(B) = ¢ 1(B) (7.19)

Under the difference equation apprdach, eqﬁation (7.16) 1is
rewritten for forecast in the following form: '

ZAt(l) = [Zt+_1] =

' 7.20
Zyey-12%apy "e1ac*1-1 _ezac*l—z _81a501—12 +61 (elat:*l-lB +0, a c«l-u)

Where, [Z,] 1is the conditional expectation of 2., taken at

origin t.

In the program, the maximum lead value of 14 has been
kept. The white noise a, is computed by using the concept of
back-casting, proposed by Box-Jenkins. This concept is useful
in estimating values of the series, which have occurred before
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the first observation was made.
7.3.4 Updating and Forecasting Error Variance

In order to determine the updating formulae and to obtain
the variance of the forecast error a,(l), the ‘psi weights’ are
computed for a finite length. The recursive equation used for

updating the forecasts, is
., = Z.(1+1)+y,.a,, (7.21)

where a,,, is computed after providing the actual value of Z,,.
This provision was kept in the program in an user interface
mode. The forecast error variance at any lead time 1 is

calculated by the formula
V(I) =[1+¢,%2+..... +y %l oa? S (7.22)

7.3.5 Discussion of Results

The last four year data, kept aside for wvalidation, - was
used for testing the forecast results. Although a maximum lead
time up to 14 has been kept in the forecasting program,Aonly
lead-~1 forecast values are filtered for 48 months flow data.
This is done by successively calling the updating provision of
the program. As the purpose of theestudy was to compare the
" relative prediction performance of an ANN based forecast model
with that of the Box and Jenkins multiplicative seasonal model,
the discussions on the results is shifted to subsequent

sections in this chapter.
7.4.0 FORECAST THROUGH ANN MODELLING

The same error back propagation algorithm and the BP
simulator used earlier for mapping optimal releases, is used in
this case also. Hence all the discussions on ANN, training
strategy, shuffling technique etc. hold good here. However the
data manipulator program and the comparison models do not hold
good in this case. Therefore, only the special features and the
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problems encountered during ANN forecasting of inflow time

series are discussed below.
7.4.1 Application of Neural Network Model

The neural network approach was executed with the historic
inflow series of indravati river for 32 years. For training
purpose, the data set is divided into two parts,'i.e., one part
consisting of first 28 years is used for training the’netwgrk,'
and last 4 years data was kept aside for validation. The mean °
square error over the training samples was used as the
objective function. The MSE is given mathematic..lly for all

input patterns as,

N m , ' o
E=21Y Y (T,-0,,)° (7.23)

Where,

Ton = target value T, for the pth pattern;
O = neural network output value O, for the p" pattern;
N = total number of patterns;

m = Total number of output neurons;

7.4.2 Preparafion of Input and Output Data Pattermns

- The basic data which was to be appropriately manipulated
into a number of input and output patterns, was the continuous
flow record in the form of an one dimensional data matrix. In
case of an univariate time series, searching for the
appropfiate lags and their algebraic manipulations posed a
typical problem. In addition to above, the sigmoidal function
limitation which requires the patterns to be in the range of 0
and 1, opened many options. Again, Because the identified Box-

Jenkins model is of purely MA nature, a 12-lag differencing
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option became a possible alternative to be included into the

input pattern.

So, a customised data mahipulation program was written
[data _manipl.c] in C language with the following provisions.
° Accept an one dimensional data matrix of any size.

Obtain the options for standardisation and differencing.

Under differencing option interactively obtain the lag

order. | '
° Accept the data length in each pattern and their corres-

ponding lags. 4 B | '

'Show the maximum and minimum value of the entire sample.

Scale down the patterns obtained, between 0 and 1.

Basically this program maps an one dimensional vector
space into a multi dimensional one and gives the maximum and
minimum values. The source code for the same is given in

Annexure- IV.
7.4.3 Deciding On Size Of Input and Hidden Layers

Before deciding about the size of the hidden layer, it is
necessary to decide on which values should constitute the input
pattern. A number of trials had to be made to decide this. As
‘an initial guess, three consecutive inflow values and two
consecutive seasonal values have been tried. Gradually number

of parameters are reduced on parsimony considerations.

The final input pattern consisted of an output pattern X,
and the input pattern consisted of ({ Xyrrr Xy X¢m,}, where 7=
number of months, 1 to 12 and v = number of years of testing.If
7-1 < 1 then X,,, was replaced by X,, ;;:,, and if (7-2) < 1 then
X,., was replaced by'mezﬁa. This indicated that every piece of
data was dependent on two previous data values and upon the

same season of previous year.
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The number of intermediate units was‘obtained through a
trial and error procedure, adopting a similar strategy as
discussed 1in Chapter-6. Out of many trial nets where
intermediate layer neurons varied between 1 to 10, it was
observed that the 3-8-1 network performed well on the minimum
MSE criterion during training, testing and during comparison

with other models.
7.4.4 Training

During initial phases of training, it was observed that
adopting a momentum term blows up the initial weight matrix and
brings the simulation process to a halt. However adding a noise
term up to 0.1, helped in speedier convergence. Under the
phased training programme, for successive improvement of the
system error, the noise was reduced and gradually momentum was
introduced incrementally. The entire process of ‘training
consisted of 14 phases and total 4000 cycles. A learning rate
below 0.4 was found to extremely slow down the process.
Therefore in all the training process learning rate was made to
vary between 0.4 to 0.8. The finally chosen architecture is

given in Figure (7.6).
7.4.5 Testing and Comparison of Results

When training was considered to be finalised, the weights
were collected from the training module of the BP simulator to
test the network and monitor its performance on test samples in
terms of MSE criterion. In addition to the MSE criterion, two
other criterions, namely, average'percentage error and average
monthly deviation are kept for monitoring the performance of
the forecast models. For computing these values on individual
years of testing and on the entire validation period, another
time series simulator program 1is written in FORTRAN—77'and
included into a batching program, similar to that described in
Chapter-6.
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Criterions for performance monitoring

Average monthly deviation was computed by following
expression.
12 b
=5 ¥ (Actual e, (1) -Model e, (1)) (7.24)

Average percentage deviation and the RMS Error were computed by

the following expressions.

. _
“l‘z: ACtualhﬁkw—MbdeJMLMW)'*100 (7.25)
Ly .

Actualp ¢,

12
—12— Z Actual ~Model ;.. 7 (7.26)

inflow

The RMS Error has a bias for higher deviations while the
average percentage deviation has a bias towards low observed
flows. Quite contrast to above two, the average monthly
deviation parameter as expressed in equation (7.24) is an
unbiased interpreter of the forecast performance. Therefore
above three criterions have been considered to suffice the
performance monitoring.

Finally an one-month-ahead forecast of inflow time series
was generated from 1979 to 1982 and plotted in Figure (7.7).
The monthly forecasts by ANN and Box-Jenkins model for

individual years of testing along with the criterions defined
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YEAR OF TESTING : 1979
Actual | Fiow by % Vol Flow by % Vol
Flow ANN Deviation | Box model | Deviation
25 17.92° 28.34 25.4 1.6
24 17.01 29.11 21.86 8.92
14 18.21 30.06 17.85 275
17 14.44 - 15.07 17.01 0.06
14 30.65 118.92 18.96 35.43
28 23.09 17.55 67.91 142.54
79 107.73 36.37 185.45 134,75
130 155.68 19.76 253.03 94.64
106 199.2 -87.92 181.75 71.46
58 66.7 15 80.4 38.62
32 39.36 23 31.46 1.69
16 22.26 39.14 30.65 91.56
CRITERIA ANN BOX
RMS ERROR 897.01 | 2879.97
AVERAGE PERCENTAGE ERROR 38.35 54.06
AVERAGE MONTHLY DEVIATION 17.69 32.84
YEAR OF TESTING : 1981
Actual | Flow by % Vol Flow by % Vol
Flow ANN Deviation | Box model | Deviation
19 241 26.86 23,59 2415 b
30 20.31 32.29 22.2 26
25 21.43 14.29 17.58 29.68
25 14.32 4273 18.64 25.44
76 14.8 80.53 20.33 73.25
146] 150.97 30.15 77.24 33.41
306 175.48 42.65 ' 193.81 36.66
270 257.87 449 283.5 5
317 249.3 21.36 219.45 30.77
159f 149.63 5.9 110.9 30.25
84 55.51 33.92 60 84 27.57°
38 37.1 2.37 4113 8.24
CRITERIA ANN BOX
RMS ERROR 232336 | 2493 63
AVERAGE PERCENTAGE ERROR 2813 29.2
AVERAGE MONTHLY DEVIATION 3119 34.85

YEAR OF TESTING : 1980

Actual Flow by % Vol | Flow by'| % Vol
Flow ANN Deviation Box mode| Daviation
20 18 9.99 2271 13.55
25 31.57 26.3 20.18 19.28
12 18.21 51.73 . 17.71 47.58
8 17 112.56 171 113.76
8 14.34 79.23 17.34 116.75
129 32.63 74.7 64.25 50.19
116 103.28 10,97 192.28 65.76
277 187.69 32.24 262.92 5.08
246 222.48 9.56 197.28 19.8
47 87.43 86.02 11111 136.4
34 35.76 5.17 41.39 21.74
26 19.11 26.5 23.67 8.96
CRITERIA ANN “BOX
RMS ERROR 1655.83 | 1415 55
AVéRAGE PERCENTAGE ERROR 43.75 51.57
AVERAGE MONTHLY DEVIATION 25.09 25.78
YEAR OF TESTING : 1982
Actual Flow by % Vol | Flowby | % Vol
Flow ANN Deviation Box mode|Deviation
2_5‘ 20.85 16.59 26.48 5.92
31 21.08 32 2227 28.16
24 36.16 50.68 18.46 23.08
20 20.88 441 18.93 5§.35
18 68.17 258.77 22.26 17.16
12 75.84 531.97 71.61 496.75
237 199.62 16.77 180.42 2387
461 346.26 24.89 264.59 42.61
525 262.51 50 243.7 - 53.58
440 . 251.53 42.84 162.6 63.05
87 106.07 21.92 114 31.03
69 49.31 28.54 63.9 7.38
CRITERIA ANN BOX
RMS ERROR 10541.2 | 16857 3
AVERAGE PERCENTAGE ERROR 89.87 665
AVERAGE MONTHLY DEVIATION ' 65.16 76.96

Table -7.5: showing the comparision of ANN model performance and the Box & Jenkins model performance
during the validation period of four years along with RMS error, Average percentage errors and Average

monthly deviations
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Simulation of river inflow :year - 1979
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Fig - 7.8 : Figure showing the predictién of actual river inflow by the ANN miodel and the Box-je'nkins‘
model for the year 1979

Simulation of river inflow : year - 1980
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Fig - 7.9 : Figure showing the'preTiiction of actual river inflow by the ANN model and the Box-jenkins
model for the year 1980
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Discharge in cumecs

Simulation of River inflow :year - 1981
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Fig -7.10 : Figure showing the prediction of actual river inflow by the ANN model and the Boxjenkins

model for the year 1981

J

Simulation of river inflow : year - 1982
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Fig -7.11: Figure showing the prediction of actual river lnflow by the ANN model and the Box-enkins

model for the year 1982
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above are furnished in Table(7.5). The corresponding river
inflow predictions are given in Figure (7.8) through Figure
(7.11) . The bar graph for RMS error, average monthly deviation
and average percentage error for individual years of testing.
and for entire validation period, have been plotted in Figure
(7.12), from where a comparison can be made between the ANN and

Box-Jenkins forecast models.

7.5.0 DISCUSSION

A summary table is prepared from the various tables and
figures to have a quick grasp over the prediction ability of
the competing forecast models. The same is furnished in Table
(7.6) . The statistical parameters for various medel outputs are
computed in order to see, whether the predictions have been
able to retain the parent distribution and statistical
properties or not. The same is furnished in Table (7.7). From
observing the graphs and the summary Tables (7.6) and (7.7) the

following. inferences are drawn:

1. The ANN prediction is better correlated with the observed
inflow for years 1980, 1982 and during entire validation
period, whereas Box and Jenkins model shows better

performance for years i979 and 1981.

2. Average monthly deviation for all the individual years as
well as for the entire period is less for the ANN model.

3. For the year 1982, during which the monsoon flows are
relatively higher ANN prediction is much better than the
ARIMA model . |

4. Invariably, very high flows are mapped better through the

ANN forecast model, whereas, extremely low values are
predicted better through the ARIMA model.
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Fig -7.12 : Comparision of ANN and Box & Jenkins models taking RMS error, Annual average
of monthly percentage deviation and Annual average of monthly deviations

RMS error plot for ANN and Box models
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Table -7.6 : Showing the comparision of ANN forecast and Box-Jenkins

forecast as per the criterias used in the time- series simulator

Period of - RMS ERROR . Monthly % vol. Deviation Avg. Monthly Deviation-
Testing |ANN Box-Jenkins ANN Box~Jenkins - |ANN Box-Jenkins
1979 897.01 2879.97 38.35 54.06 17.69 32.84
1980 1655.83 1415.55 43.75 51.57 :25.09 25.78
1981 2323.36 2493.63 28.13 29.2 31.19 . 34.85
1082 |10541.24| 1685732 | 89.87 66.5 65.16 76.96

1979-1982] 3854.36 ."591-1.62 50.02 50.33 34.79 42.61

Table -7.7: Showing the comparision of ANN forecast and Box-Jenkins
forecast as per the statistical parameters

Period of Mean and Standard Deviation Skewness and Kurtosis Coeff. of Correlation
Testing Observed ANN Box-jenkin Observed ANN Box-jenkin Observed & Observed &
flow Estimation Estimation flow '} Estimation Estimation ANN Box-jenkin
1 -2 3 4 5 - 6 7 8 9
1979 45.250 | 59.354 77.644 1.314 1.508 "1.303 0.949 0.973
39.446 62.058 82.131 0.542- 1.189 0.342
1980 79.000 65.625 82.328 1.424 1.515 1.174 0.918 0.910
| 94.286- | . 71.485 87.521 0.807 1.168 -0.057 ’
1981 “ 122.083 97.568 90.768 0.910 0.746 -1.193 0.932 . 0.945
- 114.295 93.770 91.951 . -0.813 -1.073 0.147
1982 ' 162.500 -121.623 100.768 1.076 0.937 0.796 ‘ 0.949 0.930
. 199.189 113.383 g1.022 . -0.665 -0.536 -0.837 o
1979-198% 102.208 86.018 87.877 1.841 1.234 1.000 0.914 0.824‘
129.549 88.361 §5.840 2.725 0.464 70.467 .
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CHAPTER -8

Reservoir Simulation Analysis

8.1.0 GENERAL

A modern water resources system may be created, through
almost infinite combinations of a large number of system
variables. Conventional methods of analysis including the
optimization techniques like LP, NLP or DP are practically
unable to study the behaviour of complex systems in a.
continuous fashion. These can consider ocnly selected parts of
the system, generally using historic hydrologic data of a
limited period of record. However, it is possible to simulate
by simplified systems, the behaviour of relatively complex
water resources systems for periods of any desired length, to
perform numerous and repetitive computations needed for many
combinations of the system variables, and finally evolve an

optimal or near-optimal design of the system.

A simulation model provides a rapid means for evaluating
the anticipated performance of the system, for the given set of
design and operating policy parameters. Thus simulation is
essentially a search technique, which resembles trial and error
approach, used in traditional operation studies, using which a

near-optimal solution can be achieved.

In the present study, the simulation technique has been
adopted to reproduce the behaviour of the Indravati river basin
system. The system was~operated according to various models
considered, such as, linear regression based model, non-linear
regression based model, conventional standard operating policy
and the ANN based model. After obtaining the inherent
characteristics and probable responses of the system for. each
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option separately, the best model has been selected.
8.2.0 PROCEDURE

_ For the above purpose, a customised, menu driven, user
friendly computer program is prepared in FORTRAN language under
UNIX environment. The following procedure has been adopted for

conducting the simulation analysis.

1. Assembling and arranging‘the basic data in the system in
“a form, easily handled by the computer.

2. 'Formulating various- operating procedures to serve as

fundamental control for the simulation.

3. Code the basic system data and the operation procedu:e in

FORTRAN language to serve as the fundamental control for

the simulation.
8.3.0 ASSEMBLING THE BASIC DATA '

With reference to the discussions made in the earlier
chapters, the period of five years ( from 1978 to 1982) was the
validation period for testing the relativé performance of the
various models under consideration. Hence the monthly river
inflow record in Mcm, during this validation peribd constituted
the basic hydrologic-data inpdt‘for the simulation”modelu

Mohthly irrigation demands and evaporation. values, as
earlier used in the case of DP optimization, have been used in
this case also. Regarding the system parameters, such as, size
of the storage reservoir, its upper and lower bounds, MDDL,
MWL, TWL values, efficiencies relating to power generation,
power plant capécity, and the discretized values of elevation-
area-Capacity curve, the séme data) as was used earlier in
case of DP, has been retained.
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The parameters obtained from regression by least squares
approach, have been built into the customised program, for
formulating the regression based operation policies. As the
prime objective of this study is to validate the applicability
of ANN, the ANN based model parameters have been suitably
accommodated. into the data input structure. For reasoﬁs, to be
described later in subsequent paragraphs, the weight matrix
Qenerated by the neural network simulator, which represents the
ultimate certificate of learning on part of a neural network,
has been kept as an altogether séparate input file with its
original name intact, i.e;, < weights.dat > )

Apart from all above data, the input of prime importancé
that remains, is to define the initial state and initial period
for starting the simulation process. The starting period has
been kept as January, 1978, as it is the starting month of the
validation phase. The initial reservoir capacity has been kept
the same as the dynamic programming optimization scheme,
i.e., 2127 Mcm. The reason behind selecting this value is that,
keeping all other system constraints and parameters unchanged,
this aids in observing the relative performance imitation by
various models as compared to the initial DP.

8.4.0 FORMULATION OF OPERATION POLICIES

The operation policies for multiple regression based

models| have been formulated by framing the corresponding
release equations.

|

l

|
A. Linear Regression:

Compute release by using the following equation,
Cal_rel(t) = -23.464 + 0.022 * S(t) + 0.086 * Inf(t) +
0.95*Dem(t}) (8.1)
t =1 to 60,
If Dem(t) > cal_rel(t) and reservoir elevation > MDDL .
then Act rel(t) = Dem(t) K (8.2a)
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else Act rel(t) = cal_rel{t) . ’ | (8.2b)
B. Non-linear Regression:

Compute release by using the following equatidn;'

Cal_rel(t) = 1.875% (S(t) )0 +.  0.011¥(Inf(t))™™®  +

0.105* (Dem(t)) ¥ . L ’ (8.3)
 t = 1 to 60, . ' S

If Dem(t) > cal_rel(t) and féservo;r'elevation > MDDL

then Act_rel(t) = Dem(t) ' ~ . (8.4a)
else Act_rel(t) = cal_rel(t) (8.4b)
Where,> A

cal_rel(t) = Release computed from the corresponding regression

equatlon during the period t;
aét_rel(t) = Actual release to be made - durlng the time
‘ period(t) ;

C. ANN based Model:

It is apparent by now, that the neural network does not
yield any parameters after training, rather the intélligence
acquired after learning, is distributed within the network in
form of connective weights, which cannot be interpreted to have
any physical significance. S6 the model formulation in. this
case required the embedding of a part of the testing algorithm
of the ANN simulator, into thlS module of the program. The
weight matrix, freezed after the completion of rralnlng, is
given as an input for this module.

The algorithm adopted for obtaining release through the
ANN net is, - '

3
(1+e" Z W(l,i,7)) (8.5)
=1

Jd =1 to 4
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Where,

Output of j* hidden layer neuron;

Y; =

X; = Scaled down/normalised value of the i® neuron input
in the input layer; ,

W(l,i,j) = Weight connecting i” neuron in the 1" layer with j

neuron in the (1+1)" layer;

-

The above recursive equation connects the input layer

neurons with those of the hidden layer.

and
Z,= 1
4 . (8.6)
(1+re (3 y,;W(1,7.K))
J=1
where,
Zy = Output of the kth output layer neuron Release during

time . period t is obtained from z,(t) scaling it wup
appropriately. _
The equations 8.2a,b or 8.4a,b have also been implemented in
this case. These additional constraints are built into the
model keeping in view the fact that if water is available, it
will not be a prudent decision to cause irrigation deficit by

sticking to the model releases.
D. Standard Operating Policy:

A monthly simulation model based on the SOP is also
constructed for the system considered. The SOP is formulated as
follows. If the available water, during time period t, is less
than or equal to the demand, then the available water 1is
released. In the second case, when the water availability is
higher than the demand, the quantity equal to the demand only
is released and the remaining gquantity is stored if possible,
otherwise it is spilled.
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- 8.5.0 CODING THE SYSTEM DATA AND OPERATION PROCEDURES

. One of the major limitations of the application of
simulation analys1s to the design of water resources systems is
that, it is not flex1ble in handling ‘varlous operating
procedures of thevsystem. The computer can be instructed to
follow only one operating procedure at a time. Thus provision

lwas kept .in code, developed in FORTRAN-77, to accept the option

from user to select any one of the four operating procedures
described in the previous section and the system is simulated
for that operating procedure only. The model has to be re-run
for obtaining the results from some other procedure.

The additional model specific input data, apart from those -

"discussed in section 8.3.0, are obtained in an interactivé

mode. This is especially useful in computing-the ANN based
model simulation and in fact, this . is also helpful in
identification of proper structure of the net and for effeetive'“
training of the architecture. It isialways‘not possible to
minimise the Sum Square Error surface to attain a hypothetical
zero value or to reach a glqbal‘minima, because of the inherent
shortcoming of the feed forward BP neural networks.These-get",
locked up in local minima points. So every conceivably t:ained‘
architecture has to be routed through the simulation model:
also, after fihding its mapping ability. This was accomplishedf
by fbrmulating batch programming through UNIX-Macro
development.

-

The scheme adopted for developing this was,

Step-1 Zwaining the ANN through ANN simulator -training
| module; o | -
Step-2  Testing the ANN through ANN SJmulator - testing
module; , :
Step-3 Filtering the required output from output file or the g

BP simulator.
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Step-4 Testing the mapping ability of the trained net in
comparison to other operating models; '

Step-5 Sending the output through the reservoir simulacion
module, for final testing of‘the'performance.

As training and testing of an ANN architecture involves
various options, 1like changihg the structure parameters,
choosing proper scaling parameters and increasing or decreasing
testing data length, a number of trial and errors had to be
performed. Therefore, instead of adopting cumbersome exercise
to attain full compatibility with other programs, some
" developed in FORTRAN and some developec. in C and C++ language,

an interactive data input mode was preferred.

As the‘ program 'developed is a. customised = one, the
regression parameters have been builtV_into, the release
subroutine. However, with minor modifiéatidné, the program can
be implemented for other similar cases By assigning variables
to the regressidn parameters. The codeigenerated in FORTRAN is
given in Annexure - V.

8.6.0 DISCUSSION ON RESULTS

The simulation model was run for each of the above four
options and the reservoir working tables are obtained for a
simulation period of fiVe'years. For final cbmparison of the -
various models, a reservoir behaviour table is prepared with
the following reservoir attributes, namely, number of times the
model fails in meeting the irrigation demand,“average deficit,
number of times resefvoir goes émpty or becomes full or spills
in a season within the simulation period, average spill and
average power generation. |

The statistics of reservoif behaviour are furnished in
Table (8.1). The corresponding releases ffom each model during
the simulation period is given in Figure (8.1). It may be"
observed from the time series plot of the releases that, all
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the models are moré or leSS'On‘an equal footing and no major
deviation occurs amongst them. The reservoir behavibur also
‘remains more or less samé; For most_bf the months,.the average
deficits, spills and numberlof-tihes reservoir has gone empty
of full, are the same. For a better comprehension,'of the
performance appraisal of the-models'another summary table is
furniéhed below in Table 8.2. | -

: Table 8.2 : Summary of reservoir. behav1our by various models in

comparison to the DP optlmisatzon,

Criterion - |DP |ANN . |Linear |Non_lin |[SOP
Cumulat. 15090  |14953  [14795.8 |14822  |14590
Generat. |

Cum., : 1317 11396 {1420 1490 1274
Deficit , A 4 '
Cum: 2041 1852 1979 1957 2150
Spill : 1 | ” o
Failure 30 0 |10 izﬁ 10
Months - ' '

Spilling - 2 e Ta . |z 4
Months ’ | |

Some 1mportant 1nferences can be drawn based ‘upon the
result obtained from simulation.

1. DP being an optimization tool, is able to generate maximum

power. However all other models have been able to reach near
the DP performance, while the ANN model performancé is. the
best . ' ' B -

2.;* ‘SOP gives mlnlmunlpower generation, but irrigation def1c1t
is also the minimum, 1.e., even less than the DP performance.

3.»}'The DP model has maximum number of deficit months. But as
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the total deficit is more or less the same, it is obvious that.
while optimising, the total deficit has been divided into

larger number of smaller deficits.

4, The performance of the ANN model is better than all other
models, on all the criterions selected for comparison excepting
the irrigation deficit, where ANN performance is ﬁarginally
inferior to the standard operating policy.
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CHAPTER - 9

Summary and Conclusion

9.1.0 OBJECTIVES AND METHODOLOGY

Objectives of the multi purpose, Upper Indravati Water
resources Project are basically two fold : Irrigation and hydro
power generation. The objective of the present study herein, is
to assess the application potential of the Artificial Neural
Network (ANN), in attaining. the above project objectives,
compared to the conventional models used for the purpose.

The scope of the present study, for optimal utilisation of
Indravati Project water,resoﬁrces is two fold : Time-series
analysis and prediction and reservoir operation. The study
related to the reservoir operation consisted of optimiSation
through Discrete Differential Dynamic Programming (DDDP)
approach, framing appropriate DPR and DPN models and finally
screening through a customised simulation model. Time Series
analysis consisted of identifying an appropriate multiplicative
seasonal model from among the Box and Jenkins ARIMA family of
models and predicting one month ahead river inflow into the
Indravati reservoir. The prediction procedure is repeated
through a prediction model, developed through the ANN approach,
under more or less similar conditions. Prediction performance
is then simulated through a time series simulator. In the final
step, the best of the alternatives from among the competing
models . have been chosen, in both cases, providing suitable
justifications.

-

9.2.0 AT-SITE RESERVOIR OPERATION

In order to meet the last objective in section 1.2.0 of
the introductory chapter of this report , the study on time
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series analysis for prediction has been included. It serves in
providing a pragmatic touch to the finalised reservoir
operatibn model, i.e., with the help of one-wonth-ahead
forecast, an at-site reservoir operation module can be

monitored.

A reservoir operation monitoring scheme can consist of
obtaining the prediction from the ANN forecast model, feed it
through the DPN model for obtaining monthly optimal release.
This can be phased over 30 days in the conventional way. During
the month end, the inflow data record will be updated with
actual flow value. This process can be repeated during every
month end. For future feedback to the system, -after the arrival
of actual record, the deviation should be monitored for
performance appraisal of the models. When it is considered to
be obsolete the weight matrix has to be rebuilt by following
the entire stage of trainihg, testing and validating, as was
discussed in previous chapters. A tentative model outline for

a reservoir monitoring scheme is furnished in Figure (9.1).
9.3.0 LIMITATIONS OF THE STUDY

Major constraints for this study were mostly time,
appropriate tools and relevant literature. The present study
envisages application of DDDP, ARIMA modelling, system
simulation and ANN, in a single reservoir, multi objective,
Water Resources Project. -Various new procedures are now
available to strengthen the methodologies, procedures and
loopholes, in constructing the models in above areas. Time
acted as the major constraint in réaéhing these procedures.
Various limitations, encountered while carrying out this study

were listed below.

1. For optimising the release, DDDP concept has been used in
the present study. It is clear that a single DDDP iteration
will typically be much less expensive than a DDP solution.
However DDDP effort still grows exponeﬂtially with  state
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FIG 8.1 : A TENTATIVE MODEL FOR AT-SITE RESERVOIR OPERATION MONITORING SCHEME
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dimension n and hence not totally " free from 4curse' of "
dimensionality. As SIDP is able to sidestep the curse, that
could have been tried to reach a better optimisation.

2. The loss function, used in. the final soclution of DP
objective function, is ‘selected from among a llmlted number of
trials. Experience and avallablllty of time could,have resulted

in better search for this function.

3. For the Time-Series modelling throngh ARIMA approach, it
could be seen that the spurious autocorrelations generated at
vthe'seasonal lags could not be removed even after differencing
and standardisation, as complained by many'authdrs previously.
With the help of better diagnostics and . employing IACF and
IPACF criterion, this might have been removed In this study it
has been shown that log transformations could not yield better-
results. But by adding Box-Cox transformation algorithm into
tne»identificatiOn module of the Time-Series program,‘better
identification might have been possible. ' - |

4, ANN’appllcatlon potentlal has been tested in this study in
the areas of reservoir operation and univariate river flow
prediction. Within the purview of standard journals available,
only'one publication was available in application of ANN in )
reservoir operation having a singlelobjective {Raman et al.
1996] . Therefore, the present study attempting to accommodate
two objectives of irrigation and power generation, is 1ike1y to
contain many seen and unseen errors and omissions. |

5. The BP simulator used for the -study is a customised one,
based upon the basic fundamentals of generalized delta rule,
without having any graphic interface. An instantaneous display.
of the. error surface and lecation'_of"minima' would giﬁe
‘pOSSlbly, better insight 1nto the error minimisation ablllty of'
the model. Better alternatives in the BP algorithm like BPA,

BPX (avallable in MATLAB software) or the Linear Least Square
with SIMplex (LLSSIM) algorithm could have been tried to.
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improve the result.

6. The entire study is based upon the output of DP model. In
this.etudy, a compromise is made with the prime objective of
power generation. The maximum generation during any time period
was fixed at installed capacity of the project. In case of
availability of the actual load curve, the same could be
incorporated into the -DP constraint domain and more realistic

results could be obtained.
9.4.0 CONCLUSIONS

A study of application of ANN has been carried out in
designing a pragmatic reservoir release scheme for Upper
Indravati Project. A step-by-step account of problems
encountered during the identification, construction and imple-
mentation of various models is given across the length of this

report.

A new technique of shuffling of the training-data set has
been introduced in this study, for breaking out the input
pattern sensitivity of the BP algorithm. This has been
implemented successfully and suggested for further study and

. research.

The present study successfully demonstrates the utility of
Artificial Neural Networks to become a strong, effective and
viable compliment to the existing conventional optimization
techniques, although not as a complete substitute. The purpose
of simulation techniques in refining the optimization or

prediction results has been established.
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Reservoir :

Catchment
Catchment
Catchment
at Intake

Area of full reservoir(FRL RL. 642.00m)

Storage

Dams :

PRINCIPAL PROJECT DATA

area
area
area

site

of Indravati river

of Indravati river

- live
- dead

Indravati dam - Masonry Gravity Type.

Length overall

Non over flow sections

Spillway

Dam crest level
Width

Maximum height -of dam

Spillway crest level _
Gates, radial no. width/height

Capacity M.W.L.

EL 643.00

ANNEXURE

2630
1153

530

110

1485.
314.

EL

EL

-15.0 X
11430 @ /s

km?
km?

km?

km?

50 Mm’
50 Mm’
550 m
426 m
129 m
645 m
7.5 m
45 m
629.5m
12.5 m

Depletion sluices no - width/height 4 - 2.0 X 3.0 m
Discharge M.W.L. EL 643.00 ‘

Podagada dam - Homogeneous Earthfill

Length

Crest level
‘Width
Parapet height

Maximum height
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- 555

462

EL

m/s

646
9.0
1.0

64

3 3 3 3 3



Depletion sluices, number - 1 4
Diameter ‘ 1 - 6.2 mdia
flow, M.W.L. 643.00m 644 m /s

Kapur dam - Homogeneous Earthfill

Length ' 537

m
Crest level ) EL 646 m
width : _ . 9.0 m
Parapet height 1.0 m
Maximum height _ 71 m
Muran dam - Masonry,‘Gravity
Length overall 494 m
Non cver flow sections | 403 m
Spillway 91 m
Dam crest level EL 645 m
Width 7.5 m
Maximum height of dam , 65 m
Spillway crest level ‘ : EL 629.5 m
Gates, radial no. width/height 5 -15.0 X 12.5 m
' Capacity M.W.L. EL 643.00 - 8060 W’ /s
Dikes - Homogeneous Earthfill
Dike Number Height (m) Crest length (m)
left 1 30 553
2 20 320
3 15 680
4 20 - 160
right 1 15 463
2 20 146
3 25 | 593
4 - 15 535

(129)



Crest level EL
Width
Parapet height

Link Channels Length{(m) Bed EL{(m) Bedwidth(m)

Gunturkhal 1523 . 613.00 . 75

Kusumpadar 1550 620.00 23.5

Developed Head

Maximum Gross (FRL 642.00, TWL 263.00)
Minimum Gross (MDDL 625.00, TWL 267.00)

Water‘Ways
Head race Channel
| Length
Width , Min.

Head race Tunnel - 7.0m ID

646 m
7.0 m
1.0m

Slope

1:1
1.5:1

379 m
358 m

335 m
37.5 m

Intake, horizontal inlet type with trash racks

Gate size : no - width/height 1 -5.75/ 8.00m

Tunnel - Length 3,934 m
design flow 200 M’/sec
Lining, concrete : 0.3 m

Surge Tank - Restricted orifice type

Diameter

Height

maximum surge'levels' EL
minimumn surge levels EL

Lining, concrete

Pressure Tunnels - 2 - 5.25 m ID
Length
Lining thickness -

Steel liner ASTM A 537 class 2 with stiffners

(130)
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132 m
670.9 m
622.2 m

0.45 m

298 m
0.3 m



Liner plate thickness ‘ 16 mm

Penstocks: 4 - 3.50 m ID

length : 790 m
steel shell ASTM A 537 class 2

Shell plate thickness max. 38 mm
| ' min. 22 mm

Tail race Channel :

Length 9 km
width, bed max. 20 m
min. 18 m
Concrete lining thickness 0.15 m
Discharge, 4 units = 200 m'/s
Depth max. flow . 4 m

‘ower Generation

Installed Capacity 4 - 150 MW units
Average annual power (100 % load factor) 252 MW
Average annual generation 2.206 G.Wh.

rrigation Works

Location - River Hati near Mangalpur

Head-works : Barrage

radial Gates : ' 6 - 12 X 6 m
‘ 4 - 6 X 8m

Length EL 117.00 m

Crest level . - EL 259.00 m

Max. Pond level ‘ ' EL 265.00 m

Design discharge - 64.3 m® /s

pondagé between EL 265 to 260.4 m 604 Ham

Distribution System

. G.C.A. 1,35,700 Ha.

C.C.A. 1,28,000 Ha.

Annual Irrigation 1,85,800 ha.
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ANNEXURE - HI

#include <stdio.h>

#include <iostream.h>

# include <stdlib.h»>

# include <time.h> .

/* Programmed by : Ashutosh Dash
. Date of Last Update : 10.11.97 .

The program 1is a customised database having the scope for accepting a

two-dimensional arrayed data file of any size, scaling down any particular

column/columns as per user’s wish, showing the maximum and minimum value of

any column, seasonalising the entire data set into 12 output files, randomized

suffling of the patterns, after recording the sequnce of randomization in an

output file <ref.out>, and inter changing the columns as per user requirement

or else purging some of th& columns.*/

static int array([400] ;.
inline int guess (int n)
} return l+int((float(rand())/32768.0)*n);

void random(int n)

time_t *t = new time_t;

int seed = int (time(t)) % 10000;
srand (seed) ; ' '

inc X;

array [0} = guess(n);
short int z;

for (int i=1; i<n; i++) {

z = 1; .
while (1) {
x = guess(n); ’
for (int j=0; jei; J++) {
if (x == arrayl[jl) {
z=0; .
}
if (z==0) {
zZ=1;
continue;
else {
array [i] = Xx;
} break;

‘ )
} _

main(int ¢, char *v [])

FILE *fptl,~fpt2,*fpt3; :
int n,count=0,countl=0,m,p{12],col,i;
float data(400] [12],q(12],mm([12];

char tagl[9),tagl(9]);

void season(float (] [12],int,int);
if (c 1= 3) { .

cout << "\nERROR: Argument missing.\n\n"; :

cout << "Usage: " << v[0] << " input_file output_file\n\n";
} return(i) ;
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fpti=fopen(v (1], "r");
fpt2=fopen(v(2], "w");
fpt3=fopen("ref.out","w");

printf ("enter the length of data set :");
scanf ("%(d4", &n) ;
printf ("\nenter the width of data set :");
scanf ("%d", &m) ;

for (count=0;count<m;count++)mm[count] = -999;

for (count=0;count<n;count++) {
for(countl=0;countl<m;countl++)
{ fscanf (fptl, "$£", &data(count] [countl]) ;
if (datalcount] (countl] > mm(countl]) mm[countl] = data(count] [countl];

cout<<"\n\n Want to segregate data into 12 seasons(y/n) :";
cins>tagl;

if(tagl[0)=="y")

{ season(data,n,m) ;}

else

printf("\n Enter the total no of columns you wish to change : ");
scanf ("%d", &col) ;

printf ("\n Total %d columns to change" col) ;

for(i=0;i<col;i++){

prlntf("\nenter the %¥d column no ", (i+1))
scanf ("¥d",&p[i]);
printf ("\n maxm. value of the column %d : %f",p(i],mm{p(i]l-1]);

printf ("\n\n Now enter the transformation faccor ")
scanf ("%$f",&q(i])

for(countl=0;countl<n;countl++)
for(i=0;i<col;i++)
data(countl] [pli]l-1)/=qli};

cout<<" Want to randomize the output seguence ly/n)y :%;
cin >> tag;
if(tag{0)=="n")

{

for (count=0;count<n;count++) {
for(i=0;i<ccol;i++){
fprintf(fpt2,"%f\t",datalcount] [p(i]l-1]);

fprintf (fpt2, "\n")

fclose (fptl) ;
' fclose (fpt2) ;
}
else if(tag(0)=='y")

{

random(n-1) ;
for (count=0; count<n;count++) {
for (i=0;i<col;i++) {
fprintf (fpt2, "¥f\t",datalarray(count]] [p[i]-1])

fprintf (fpt2, "\n");
for(i=0;i<n;i++)

fprintf (fpt3, "%d\t",array(i]);
if ((i+1) % 10 == 0) fprintf(fpt3, "\n\n");
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fclose (fptl) ;
fclose (fpt2) ;
fclose (fpt3});

|

void season{ float datal400] [12], int n;int col)

éILE *fpt4, *fptS,*fpte, *fpt7,*xfpt8,*fpt9, *fpt10, *fptll, *fptil2, *fptl3

,*fptl4,*£fptil5; : _

int 1;
fpt4=fopen("jan.dat",6 "w") ;
fpts5=fopen("feb.dat",6 "w") ;
fpte=fopen("mar.dat", "w");
fpt7=fopen("apr.dat", "w");
fpt8=fopen ("may.dat", "w");
fpt9=fopen("jun.dat", "w");
fptl0=fopen("jul.dat", "w");
fptll=fopen("aug.dat", "w");
fpti2=fopen("sep.dat", "w");

fpti3=fopen{"oct.dat", "w"};
fptla=fopen("nov.dat", "w");
fptis=fopen(“dec.dat", "w");

for (int count=0;count<n;count++} {

if (datalcount) [1)==1.}

{ for(int i=0;i<col;i++) .
fprincf (£pt4, "$f\t",data(count] {i]);
fprintf (£pt4,"\n") ; }else

if {(data[count] (1]==2.) .

{ for(i=0;i<col;i++}
fprintf (fpt5,"$f\t",data[count] {i]);

‘ fprintf (fpt5, "\n"); Jelse

if (data{count] [1]==3.)

{ . for(i=0;i<col;i++)
fprintf (fpte6, "$£\t",data[count] [i]);
fprintf (fpt6,"\n"); }else

if (data{count] [1)==4.)

{ for(i=0;i<col;i++} _
fprintf (fpt7, "%¥£\t",data(count] [i]) ;
fprintf (£pt7,"\n") ; }else

if (datalcount] (1]==5.)

{ for(i=0;i<col;i++) :

fprincf (fpt8,"%¥f\t",data(count] [i]) ;

fprintf (fpt8,"\n"); }else

if (data[count] [1]==6.)

{ for(i=0;i<col;i++)
fprintf (fpt9, "%¥f\t" ,data[count] [i]) ;
fprintf (fpt9,"\n"); jelse

if (datalcount] [1]==7.)

{ for(i=0;i<col;i++)
fprintf (fpt10, "$£\t",datalcount] [i]);
fprincf (£pt10, "\n") ; Jelse

if (datalcount] [1]==8.)

{ for(i=0;i<col;i++)

fprintf (fptll, "$f\t",datalcount] [i]);

, fprintf (fpt11,"\n");}else

if (datalcount] [1]==9.)

{ for(i=0;i<col;i++)
fprintf (fpti2, "$£f\t",ddtalcount] [i]));
fprintf (fpt12,"\n");}else

if (data(count].[1])=<10.)

{ for(i=0;i<col;i++) :
fprintf (fpt13, "$f\t",data{count] [i]));
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ANNEXURE - IV

- ( SOURCE CODE FOR THE DATA_MANIP1 PROGRAM DISCUSSED IN CHAPTER-7
;- .

# include <stdio.h>
# include <math.h>
float af{400] ,mean, sdv,min=+999, max=-999.;
int n,1diff=0;
/* Programmed by : Ashutosh Dash-

Date of last update : 28.9.97
Scope: The program accepts a one dimensional array data file and
converts to multi column output after optionally standardising,
differencing, scaling the the entire data range into 0 and ‘1,
with scope for complete user interface. This program was -iseful
in preparing the data into input patterns for ANN modelling. */

main ()

FILE *fptl,*fpt2;

int count=0,1,lag{10],countl;

void standard(vozxd) ;

fpti=fopen("column.in®, "r");

fpt2=fopen("column.out", "w") ;

fscanf (fptl, "%¥d %4",&n, &1) ;

printf ("n and 1 values are %4 %d",n,1l);

for (;count<l;count++)fscanf (fptl, "$d", &lag[count]) ;

for(count=0;count<n;count++)fscanf(fptl,"%f",&a[count});
v/ )pr?ntf(“\n Wish to standardise or difference the data
yn:n;

if (toupper(getchar()) =='Y’)standard();

printf ("Wish to scale the data between 0 and 1 (y/n)");
getchar () ; '

if (toupper (getchar()) =='Y’){

for{count=1diff;count<n;count++)

if (a[count] <'min) min=a[count] ;
if (a[count] >max) max=a[count];

printf ("minimum and maximum values are %f $f",min, max) ;
for(count=1diff;count<n;count++)

afcount]=(a([count] -min) / (max-min) ;

)

for(count=(1diff+lag(0]) ;count<n;count++)
for(countl=0;countl<l;countl++)

fprintf (fpt2, "%6.2f\t", a(count-lag[countl]]) ;
fprintf (£pt2, "\n") ;

fclose(fptl);
fclose (fpt2) ;
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void standard(void)

float sum=0;

int 1i=0; ‘

printf ("\n Wish to standardise (y/n) ")
getchar () ; ,

if (toupper (getchar()) =='Y"){

for(;i<n;i++) sum+=al[i];

mean=sum/ (float)n;

for(i=0;i<n;i++) sdv+=pow((a[i]-mean),2.);

sdv = pow((sdv/(float)n),0.5);

printf (*"\n Mean and S.D. are %f %f “,mean,sdv);
for (i=0;i<n;i++) al[i] =(a[i] -mean)/sdv ;

printf("\n Wish to do differencing also (y/n) :");
getchar() ;
if (toupper (getchar()) =='Y’){
printf ("\n Enter the lag for differencing : ");
scanf ("%$d", &1diff7);
for (i=n-1;i>=1diff;i--) ali] -= af[i-1diff];

return;
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ClllllIIIIIIIIIIIIQIIIIIIIIIIIIIIIIIIIIIIIIIIII!IIIIIIIIIIIIIIIIII

SIMULATION STUDY FOR INDRAVATI RESERVOIR

DATE OF LAST UPDATE : 10.11.97

Customised program with options for simulating four different
reservoir operation policies, namely, Multiple Linear Reression,
Muitiple non-linear Regression, ANN based Model and

c Standard OPerating Policy.

CIIlIllllllIIllIIllllIllllllllllllllllllllllIIIIIIIIIIIIIIIIIIIIII

0000

common/elev/elev(20),area(20),stor(20),m,smax,smin
common/rel/dem{12),ainf{30.12)
common/ann/n_layer, amult_in,amult_out.layers(5), weights(5,10,10)
dimension evap(30,12),s_init(30,12),det(30.12}.el{30,12).

1 spil{30,12},a(30.12),relct30.12).ev{12]
2 .gen{30.12),temp1{30,12)

integer fail(30,12).fail_countm

real net_av

CHARACTER"80 TITLE
DTIM=30"24"3800
amil = 10*"6
ClIIIIIIIIII..I-IIIIIIIIIlllllllllllllll-lll.
c Elev {m), area {(sq m), cap(cu m), relclicumec), epd{cm}
OPEN{(1,FILE = {’simul.in’))
OPEN(2,FILE = (‘simul.out’)}
READ(1,1) TITLE
1 FORMAT{(A)
write{*,113)

113 format{10x, *[[1m"[[5m** SIMULATION MODEL HAS FOLLOWING OPTIONS * *~{(Om'//Hil]
4x,1 MULTIPLE LINEAR REGRESSION MODEL “/
4x,°2 MULTI VARIATE NON LINEAR REGRESSION MODEL */
4x,’3 ANN BASED MODEL */ )
4x,’4 OR ANY OTHER NUMBER FOR STANDARD OPERATING POLICY'///{2x,
"*1m*[[SmPlease enter your choi¢s :*[[Om ')
read(", '}code
READ{1,")m.ny
READ(1.*) smax,smin,init_month,s_init(1.init_month)
read(1.") capins, twl
read(1.*) (elevi{l),areafl).stor(l}.I=1.m)
read{1,"} {evi{i}, i=1,12)

read(1,"} (dem(j},j=1,12)
do j=1,12

dem(j) =dem(j}*1.e08
enddo

read(1, *}{ainf(i.,j),j=1.12).i=1.ny)
do i=1,ny
do j=1,12
ainf(i,j) = ainf(i,j}* amil
enddo
enddo

- aWwN =
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c INITIALISATION OF VARIABLES
CIIIIIIIIIIIIII'IICI!IIIIIlllllllllllllllllll
cum_gen=0
cum_def =0
cum_spil=0
fail_countm=0
tail_county =0

oL AR R LR AR R AR R ]

c WRITE INPUT DETAILS
cl'lll'l'lll'lll-.-llllllllIIlllIlllllllllllll
WRITE{2,900) TITLE
900 FORMAT({//A//20X.'*** INPUT DATA ""*'///8X
1 ‘All Data are in MKS Units’)
if{code.eq.1)then
write{2,")'OPTION  MULTIPLE LINEAR REGRESSION MODEL *
olse if(code.eq.2)then )
write(2,")'OPTION : MULTI VARIATE NON LINEAR REGRESSION MODEL *
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else if{code.eq.3]then
write(2."}"OPTION : ANN BASED MODEL *

This program accepts one input pattern from user and
sends the data through the neural net and computes

the output.lnputs are to be compatible with the neural net.
Neurons in each layer and of course a compatible weights
matrix in < weights.dat> file are to be given.

date : 11th sept. 97

programmed by Ashutosh Dash

R R LR R R R RN R R R R EF R R N RN NN NN NN R AR R R R E R RN )

0 00 00 0 0 o

open(4, file =’ weights.dat’}
write(", "} Total no. of layers in the neural net :’
read(","} n_layer
write(". *)'Enter the multiplication factor for the input patterns’
read(”, "Jamult_in
write(®, ") Enter the muttmlncanon factor for the output’
read(”.")amult_out
write(®, ") neuron architecture in the neural net
read(".")(layers(i),i= 1.n_iayer)
writa(", ')’ Weight matrix ot neural net :'
do k=1,n_layer-1
do i= 1. layers(k)
read(4, ")ilop, (weights(k,i,j),j= 1,layers(k + 1))
write(", "ilop, (weights(k.i.j}.j = 1.layers(k + 1))
enddo
enddo
endif
write{2,901) ny
901 FORMAT({/5X'The number of years for analysis :'i3/
1 5x,’The computational time interval : one month’)
write{2,902) SMAX/amil. SMIN/amil
902 FORMAT(/5x'Maximum storage capacity :'f11.3" million cumn’/
1 5x ‘Minimum storage capacity :'f11.3’ million cum’}
write{2, 907) capins, twl
907 formatl(/’ Installed Capacity :'f6.0° MW'/’ Tail Water’
1 ' Level :'{8.3 ' m’)
write(2,903) (I.LELEV(l}. AREA{},STOR().I1=1,m)

903 FORMATI{/10x, Elevation - Area - Capacity’ ,

1 ‘Table‘//

2 2%," S N Elevation  Area Capacity

3 A

4 2’ lm) {sqm) {cum)

2 1112x,i4,§14.3,2114.1))
911, FORMATI{I5.,i3,F9.1,318.1,i3.1x,16.1,1x.18.1,17.1,19.1,F9.1}
cIlllllllllllllIIIII!.III'IIllIllllllIlllllllllll.l-llllllllllll
c STARTING THE SIMULATION

c MYTAN AN ENE RN AN RN NP N AN NN KR AR N AN NN AR

do 555i=1,ny
write(2,905)

905 FORMAT(//20x,” *" ** Results of Calculations """ *’f/
1 " YYYY-MM Init-Stor Inflow Demand Release fail",
2 "spil av_H Pow G Evap Fin-Stor'/
3 (Mil Cum) {m cum) {(Mem) (m eum) (m cum)’,
4 ' (m)  (MW) (Mcm) (Mcm)'/)
if{i .eq. 1) then -
pj = init_month
else
p=1
ondif
do mj=pj,12
j=mj
flag = 0-
temp=0
" avst=s_initli,J}
10 call area_slev(avst,ali,j}.elli,j))

avapli.j) = afi,j) "ev(j}/100.

net_av = s_init(i,j} + ainf{i.j)-evapli.j)-smin
if(net_av .it. 0) then

temp =net_av

net_av =0
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flag=1
go to 19
endif .
c calculate the model release and fix objective

rel =release{code.s_initli,j), ainf(i.j), demi(j))
ifirel .gt. dem(j}) then

obj=rel

else

obj = dem(j}
endif

ifinet_av .Ie. obj) relcli.jl = net_av

ifinet_av .gt. obj) relcli,j) = obj

write(". "} dem rel obj reic’,i,j.dem(j).rel,obj,relcli.j)
net_av = net_av - relcli,J)

if(net_av .gt. (smax-smin}) then

relc(i.,j) = relcli,j) + net_av-(smax-smin)

net_av =smax-smin

endif

19 avst=(s_init(i,j) + (net_av +smin))/2.
call area_esleviavst,ali.jl.havg}

c if(abs{havg-elli.j}} .ge. .1) go to 10

def(i.j) =deml(j)-relcii.j)
if(def(i,j).It.0) def(i,j) =0
fail(i,j =0
if(def(i.jl.gt.Olfailli.ji =1

c"" Generation in kwhlenergy). kwi{power)
orel = relcli,jl/2592000 I rel in cumec, 30"86400=2682000
genii.}) = orel"{havg-twl)*8.79 19.8'0.92'0.975 = 8.79

iftgenti.j).gt.600000) then
genli,jl = 600000.0
orel =genli,j}/(havg-twi}/8.79
temp1{i,j} = relcli,j}
reic{i,j) =orel" 2592000
net_av =net_av + (temp1{i,jl-relc(i,jl} + smin
iflnet_av .gt. smaxithen

spilli,j) = (net_av-smax)
net_av = smax
endif

else ifigenii.j).le.600000)then
if(flag.eq.1)net_av =temp
net_av =net_av +smin

endif

iflj .eq. 12) then
s_init(i+1,1) = net av

else
s_init(i,J+ 1) = net_av
endif -
c L Rl S N N S N R R N ]
c COMPUTE THE CUMULATIVE QUANTITIES
c IR F NN BN NN BN EE NN SR AN AN AR A
cum_gen = cum_gen + genli,j)
cum_def = cum_dof + def(i,j}
cum_spil = cum_spil + spil(i.j}
fail_countm = fail_countm + fail(i,j)
write(*, ")'fail count details’,i,j,fail(i,j}.fail_countm
writa(2,911)i.j,s_init{t.j)/amil. ainf(i,j}/amil,
1 dem(jl/amil,relc(i,j}/amil. fail(i.j).spil(i.j)/amil, havg,
2 genli,j)/1000.,evapli.j)/amil, net_av/amil
enddo
555 continue
write{2.128)cum_gen/1000..cum_def/1.6086.
1 cum_spil/1.606,fail_countm
126 format{2x,’ cumulative generation :’,{9.2/
1 2x,”cumulative deficit : ‘', 9.2/
2 2x,’cumulative spillage : *,19.2/
3 2x,’total months model failed :*,i3/)
stop
end
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22

function releasa(code,stor,inflow,dem)
common/ann/n_layer, amuit_in.amult_out,layers(5), weights(5.10,10)
dimension transit(5,10,10)

real inflow,input{5,10,10}

iflcode .eq. 1)then

release =-23.464 + 0.95"dem/1.e06 + .086 "inflow/1.e06
+.022"stor/1.e06

release =release " 1.e06 .

return

alse if(code .eq. 2) then

release = {.011"(inflow/1.606)""1.269 +
.105"(dem/1.e06)" " 1.366
+1.875"(stor/1.e06}"*.461)*1.e06

return ‘

else if {code.eq. 3)then

Initialise the input patterns to an array

input{1,1,1) = stor/amult_in/1.e06

input(1,1,2) = inflow/amult_in/1.e06

input(1,1,3}) = demfamult_in/1.e06

write(*, "}'stor inf dem values’, (input(1,1.,J).,j=1,3)
starting matrix multiplication and sigmoid function loop
do n=1,n_layer -1

i=1

do j=1layers(n+ 1)

transit{n,i,j) =0

do k =1,layersin)

transitin.i,j) =transit{n,i.j) +input(n,i.k) " weightsin,k.j) .
enddo

input(n + 1,i,j) = 1./{1. + exp|-transitin,ij}})

enddo

snddo -
if(j.eq.2)then

inputin_layer,1,1) =inputin_layer.1,1) “amult_out*1.e06
release =input{n_layer,1.1)

write{", "}'output release is’,release

return

else

write(*, *)'value of j =".j

write(*, *)'logical error | Please check algorithm ! *
return

endif

endif

return

end

subroutine area_elev{storage1,a,el)
common/elev/elev(20},areal20),stor{20),m,smax,smin
if(storage1.gt.smax)then

storage =smax

alse

storage =storage 1
endif

do i=1m

write(", ") storage.stor{1}.stor(m)
if(storage.lt.stor(1) .or. siorage.gt.stor(m)) then
write(",22)

format(2x,’Storage goes beyond range ERROR’./
'PROGRAM TERMINATED’)

return

else it (storage.gt.stor(i) .and. storage.lt.stor(i+ 1)jthen
a=areali) + ({areali+ 1)-areali))/(stori + 1)-storli))) *
(storage-stor{i))

el =elev(i) + ({elevli+ 1}-elev{i))/(storli + 1)-stor(i))) *
(storage-stor|(i)) :

return

endif

enddo

end
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<INPUT FILE> ~ SIMUL.IN™ FOR THE SIMULATION MODEL

SIMULATION STUDIES OF INDRAVATI RESERVOIR

1456

23006 +06 814.56 +06 1 2127.0+ 06

600.0 265.0

580 0.246+ 06 0.00e + 06
685 0.45e0 + 06 1.70e + 06
590 2.746+06 11.28e+08
596 5.60e + 06 40.00e + 06
600 10.76 + 06 74.166 + 06
605 16.80e + 06 140.00e + 06
610 23.956 + 06 237.69e + 06
615 33.29e + 08 380.29e+ 06
620 44.33e+06 570.54e+ 06
625 59.16e + 06 827.15e+ 06
-830 74.59e +08 1152.96e + 06
635 89.97¢ +08 1562.60e + 06
640 104.87e+06 2062.12e+ 06
6455  122.80e+06 2710.00e + 08

761617.5620.020.01757.57.57510010075

231.86 276.01 247.30 163.19 115.05 86.43 284.85 40.85 317.86 283.35 106.75 88.88

45.532799 31.449600 34.819199 36.288002 61.603203 59.816001 332.121813 278.563589 355.104004 149.990402
116.839999 77.873599

66.959999 58.060799 37.497601°44.063999 37.497601 72.676004 211.593597 348.192017 274.752014 155.347198
82.944000 42.854401

53.568001 60.480000 32.140800 20.736000 21.427200 334.368011 310.694397 741.916809 837.632019 125.884804
88.127998 69.638397 ‘ )
50.889603 72.575996 66.959999 64.800003 203.558411 300.671997 819.590393 723.168030 821.664001 425.865601
217.727997 101.779205

66.959999 74.995201 64.281601 51.840000 50.889603 31.104000 634.780823 1234.742432 1360.800049 1178.495372
225.503998 184.809601 - ‘

THE OUTPUT FILE <SIMUL.OUT> FOR THE ANN OPTION IN A CURTAILED FORM.

SIMULATION STUDIES OF INDRAVATI RESERVOIR
"""INPUT DATA """
All Data are in MKS Units
OPTION : ANN BASED MODEL

The number of years for analysis : 5
The computational time interval : one month

Maximum storage capacity : 2300.000 million cum
Minimum storage capacity : 814.500 million cum

Installad Capacity : 600. MW
Tail Water Level : 265.000 m

Elevation - Area - CapacityTable

S N Elevation  Area Capacity
(m) (sgm) {cum)
1 580.000 240000.0 0.0

585.000 450000.0 1700000.0
590.000 2740000.0 11280000.0

[A N

INTERMEDIATE LINES DELETED..... '
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14 645.500 122800000.0‘ 2710000128.0

sxr1 Results of Calculations "% **

YYYY-MM Init-Stor lnflov& Demand Release fail spil av_H Pow_G Evap Fin-Stor
(Mil Cum) (m cum) (Mcm) (m cum) (m cum} (m) (MW) (Mcm) (Mem)

11 2127.0 455 2319 2677 0 0.0 639.6 340.0 8.0 1896.8
12 18%6.8 31.4 2760 276.0 0 0.0 637.1 3483 150 1637.3

INTERMEDIATE LINES DELETED.....

¥» 5% Results of Calculations” * * *

_YYYY-MM Init-Stor Inflow Demand Release fail spil av._H Pow G Evap Fin-Stor
(Mil Cum) {m cum) (Mcm) {m cum) (m cum) (m} (MW}  (Mcm) {Mcm)

850.3 536 2319 848 1 0.0 625.1 103.6 4.5 8145
8145 605 276.0 51.7 1 0.0 624.8 63.1 8.8 B145
8145 321 2473 "219 1 0.0 624.8 267 10.2 8145
8145 20.7 163.2 9.1 1 0.0 6248 110 11.7 814.5
8145 214 1161 9.7 1 0.0 6248 11.9 11.7 8145
8145 3344 864 113.7 0 0.0 626.4 139.3- 10.2 1025.0
1025.0 310.7 2849 28489 0 0.0 628.2 350.8 5.1 1045.7
1045.7 7419 408 835 0 0.0 632.7 104.1 5.2 1698.9

WWWWWWWwW
DN A WN D

INTERMEDIATE LINES DELETED....

510 2300.0 1178.5 283.4 469.2 0 698.1 542.1 600.0 11.2 2300.0
511 2300.0 :226.5 106.8 214.3 0 0.0 642.1 274.1 11.2 2300.0
"512 2300.0 1848 889 1764 0 0.0 6421 225.6 8.4 2300.0
cumulative generation : 14952 .63
cumulative deficit : 1395.91
cumulative spillage : 1852.08
total months model failed : 10
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