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SYNOPSIS 
Artificial Neural Networks (ANNs) are new computing 

architectures in the area of artificial intelligence. The recent 

resurgence of interest in Artificial Neural Networks has its 

roots in the recognition that the brain performs computations in 

a different manner than do conventional digital computers. A 

human information processing system is composed of neurons 

switching at speeds about a million times slower than the 

computer gates. Yet humans are more efficient than computers at 

computationally complex tasks. Artificial Neural Network is the 

result of long standing effort for mimicking the computational 

capability of brain system.This derives its inspiration from two 

distinct yet related fields - Associationist psychology and 

Neuroscience. 

Quite contrast to the conventional digital computers, these 

ANN based systems can acquire, store and utilize experiential 

knowledge. For this reason, the scope of its applicability is 

being explored in many disciplines including Hydrology. The 

present study aims at application of this Neural Network baged 

computational paradigm in reservoir operation and inflow 

prediction. 

Upper Indravati hydro-electric project, which is a large 
multi purpose Water Resources Project in the Nowrangpur and 

Kalahandi districts of Orissa has been selected as the problem 

area for this study. On completion, the project shall comprise of 

four dams and a combined reservoir of 110 km2  area. The project 
has primarily two objectives: to provide irrigation to 1,28000 

ha. of agricultural land and to provide 600 MW of electric power 

through four numbers of Francis turbines of 150 MW each. 

The present study capitalises on 32 years of monthly inflow 

record of the project. Specifically the objecti-:e is to maximise 

total project benefits from hydro power generation, 

simultaneously aiming to minimise the irrigation deficit and 

water losses through spilling. This objective was aimed to be 

attained through the following steps. 



1. The primary objective of maximising benefit from power 

generation was achieved through a DP model based on DDDP 

approach taking the entire period of 32 years as the 

optimisation horizon. The secondary objective of minimising 

irrigation deficit was taken care of by searching an 

appropriate loss function through trial and error procedure. 

2. Reservoir operation policies are formulated through the 

conventional DPR models and through the DPN model by 

segregating the DP model output into two parrs : one part was 

used for calibrating/training the models and the other was used 

for validation. These models along with a formulated SOP model 

were compared by adopting customised system simulation 

techniques. 

3. An appropriate time-series model in the categrry of Box- 

Jenkins ARIMA family of multiplicative seasonal models is 

fitted to the monthly inflow data series and a forecast model 

is developed for river flow prediction. Another forecast model 

based on Neural Nets is formulated for the same purpose. Both 

the models were compared during the validation period. 

4. In the final step better alternatives from among the 

competing models were selected and a tentative framework for 

how the above models can be integrated to serve as a at-site 

reservoir operation model, was furnished and monitoring 

modalities for the same were briefly outlined. 

In this study, an exclusive chapter has been devoted to 

introduce the ANN, and discuss briefly the history, background, 

theory, learning algorithm and its applications in surface 

water hydrology. A new technique of shuffling has been 

introduced in this study to desensitize the input pattern 

sensitivity of Error-Back-Propagation Neural Networks. 

Key words : DDDP Discrete Differential Dynamic Programming, DPR 
Dynamic Programming with regression, DPN Dynamic Programming 
with Neural Nets, ARIMA Auto Regressive Integrated Moving 
Average. 
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CHAPTER -1 

INTRODUCTION 
1.1.0 GENERAL 

Water not only serves as a vital substance for human 

existence but also plays an important role in advancing the 

civilization. Owing to the rapid growth in the world economy 

and civilization, the need for the development of water 

resources has become more urgent than ever before.Water is 

becoming a scarce resource as a result of growing demand 

in its use for various purposes such as hydro-power, 

irrigation, water supply etc. Judicious and economic use of 

water is now a matter of great importance. With this in view 

there has been tremendous increase and expansion in the 

scientific and technological knowledge about water and since 

water is related to so many things in nature as well as in 

human society, this knowledge is extremely broad and inter-

disciplinary. 

The process by which rainfall is transformed into 

runoff is complex, nonlinear, time varying and spatially 

distributed and quite often the availability of water is at 

variance with those required for certain economic activities. 

This makes the construction of water resource projects, an 

inevitable proposition with the objective of development, 

harnessing, storage, control, allocation and utilisation of 

water in an optimised manner. The analysis and solution of the 

issues along with the allied problems form the scope of 

Water Resources System Engineering. This does not restrict 

itself into finding of an optimised solution based design of 

various system components only but also puts emphasis on 

continuous monitoring of the water resources system, ie., 

striking a balance between reservoir operation and the 

inventory problem. 

(1) 



The' inventory problem has still been complex and 

addresses greater interest and research efforts as it is still 

an important controversy in the literature of river flow 

modelling regarding what constitutes the basis for appropriate 

statistical assumptions in river flow predictions on a 

sustained basis. The scheduling of the stored water in a 

reservoir for optimised benefit is inherently linked to the 

inflow sequence thus adding to the fuzziness to the task of 

" At site Reservoir Operation ". 

The earliest reservoir operation studies in the 

english language appears to be a work of Little(1955], who also 

addressed to this inter twinned problem as, "The scheduling of 

the use of this stored water makes an unconventional inventory 

problem."While comparing the reservoir operations and inventory 

problems, he wrote, 

The hydroelectric problem differs from . the usual 

business inventory problem in that the input, not the output 

is the random variable. The power demand is considered fairly 

well known in advance, but the river flow is not. "Further 

more, reservoirs,, unlike most ware houses have the property. 

that the more nearly they are filled, the more valuable is 

each unit of water, because head is higher.", 

During the last two decades significant advances have 

been made 	in the systems engineering techniques and 

forecasting methodologies and presently these techniques are 

extensively used 	for planning and operation of water. 

resources projects. The main motivation behindthe search for 

better techniques for analysis of water resources systems 

has been the realisation of the fact that even a small 

improvement 'in the solution of the related problems has high 

economic value attached to it. Further more the advent of 

(2) 



modern computers has made it very easy and time saving to use 

these tools. 

Mathematical optimization algorithms such as linear 

and dynamic programming and various customised simulation 

techniques are the most widely used tools 	of systems 

engineering. These have been successfully applied in the study 

of the planning and operation of single and multi purpose 

reservoir systems. 

In the planning models the locations and sizes of 

engineering structures, to meet the identified demands are 

analyzed taking due care of physical and budgetary constraints 

for the system. In the operation model the possibilities of 

maximising the benefits are examined keeping the preset targets 

intact. 

But whether it be planning or operation, collection, 

analysis, dissemination and function approximation of a large 

data 	set, which may be composed 	of 	raw 	and 

computed/derived data and which consists of some input and 

output pattern is a foremost and vital aspect of systems 

engineering. 	This necessitates the adoption of proper 

mapping tools/ pattern recognition algorithms which can map 

a long historical data set for a given input pattern to that 

of a desired output pattern, with error minimisation and 

should have capability to adapt to newer environments, ie., the 

function so approximated is valid for future events also. 

Regression techniques with least squares estimates 

namely multiple linear regression models and multiple non 

linear regression models are still the well recognised and 

widely applied mapping tools in the fields of systems 

engineering. Artificial Neural Network (ANN) is a recent tool 

in the fields of function mapping, 	which off late has 

(3) 



attracted a lot of •research in this field for its 

validation, application and for exploring the possibilities 

of ANN as a substitution for conventional mapping techniques 

like regression. 

The development of Artificial Neural Network methods 

has been motivated by attempts to mimic the exceptional 

pattern recognition and adaptive learning abilities of 

biological neural networks.ANN models have been successfully 

used to model complex non linear input-output time series 

relationships in a wide variety of fields,[Vermury and Rogers, 
1994]. 

1.2.0 OBJECTIVES OF THE STUDY 

The present study attempts to address an important 

aspect of Water resources systems engineering, ie., reservoir 

management as discussed in the above paragraphs and is aimed at 

developing a model of at-site reservoir operation to study the 

applicability of Artificial Neural Network in river flow 

predictions and reservoir water release policy. For this 

purpose Upper Indravati Hydroelectric project which is a 

multi purpose water resources project in the Nowrangpur and 

Kalahandi districts of Orissa has been chosen as the focal 

system. 

Specifically, the objective is to maximise total 

benefits from hydro power generation, simultaneously aiming to 

minimise the irrigation deficit and water losses through 

spilling. The aforesaid obje ctive is aimed to be attained 

through the following steps. 

1. 	To develop a reservoir operation policy 

through the conventional DPR (Dynamic Programming with 

(4) 



Regression) model and another operation policy through DPN 

model (Dynamic Programming with a Neural net) and compare the 

performance of the models during the validation period. 

2. To f it an appropriate time series model to the 

historical inflow data set of Indravati river and develop a 

forecast model for river flow predictions and emulate the same 

to develop a neural net based model and test the performance 

during the validation period. 

3. With the better alternatives chosen after comparison 

of various models,to work out an impleme ntation schedule for 

the Reservoir Operation model and furnish the monitoring 

modalities of the same. 

1.3.0 METHODOLOGY 

For finding out the optimal water releases under the 

objectives of maximising the benefits from power generation and 

minimising the irrigation deficit, the discrete, differential, 

dynamic programming approach has been applied. As for the 

monthly demand pattern, an existing demand pattern which has 

earlier been worked out by adopting linear programming approach 

by other scholars, is being taken into consideration as input 

to the DP model and for other computations. 

The results obtained from DP - simulation 	are 

processed through the SYSTAT package for multiple linear 

regression and multiple non linear regression models, keeping 

the optimal releases as the output pattern and initial 

storage at the start of the time period, inflow and the demand 

as the three input patterns. MSE (Mean Square Error 

computation and parameter estimations have been made for both 

the models. Further the same data set is divided into two 

parts (ie., training data set and testing data set) and an 

(5) 



ANN architecture is obtained after- a rigorous training 

course. The same is validated after comparison with the DPR 

models 

A 'simulation model is developed for four 	viable 

options namely, 

A. Multiple linear regression based model 

B. Multiple non linear regression based model 

C. ANN based model 

D. SOP (Standard Operating based) model 

to study the performances of various alternatives. 

For obtaining the river flow predictions, 	two 

approaches have been adopted, namely Box and Jenkins ARIMA 

multiplicative seasonal modelling and the ANN model. For ARIMA 

forecasting two models have been formulated in FORTRAN 

language, one for explicitly estimating the parameters and the 

other for forecasting future time series values at various 

lead times. For ANN based forecasting a suitable architecture 

is searched through trial and error by employing the MSE 

criteria, keeping the validation period of four years, ie., 

employing the last four years 	inflow record for 

testing.The predicted time series sequence from both the 

alternatives are compared with actual inflow sequence, in order 

to arrive at a decision as to which one is giving more accurate 

and reliable predictions. 

(6). 



CHAPTER -2 

LITERATURE REVIEW 

2.1.0 GENERAL 

Significant advances have been made over last few decades 

in the field of Water Resources Engineering and especially the 

rapid growth of computing power in the last few decennia has 

enabled the development of more effective, reliable and 

exciting system engineering modelling tools and techniques. 

Mathematical optimization algorithms such as linear and 

dynamic programming, with numerous state variables, constraints 

and decision variables and with exponential growth in 
computational burden, have been successfully employed with the 

aid of high speed computers, to arrive at near optimal level 

solutions. 

One of the most exciting ideas emerging from this vast 

pool of computer based research, is the thought of emulating 

the low level mechanisms of the brain. Although the biological 

unit still out-performs any man-made tool in terms of 

recognition, analysis, prediction and especially learning, the 

alluring output from the brain simulated models have provided 

enough motivation to researchers to conduct extensive research 

into this area of artificial intelligence. 

Based on the highly inter connected structure of the brain 

cells, the artificial neural networks, in which a new 

breakthrough has started since late 1980's, has by now 

characteristically demonstrated' that this approach is faster 

compared to its conventional compatriots in the respective 

fields, robust in noisy environments, very flexible in the 

range of problems it can solve and highly adaptive to the 

(7) 



newer environments. 

For these already established advantages, ANN has got by 

now numerous real world applications such as image processing, 

speech. processing, robotics and stock market predictions, to 

name a few. There has been extensive ongoing research into its 

implementation in the system engineering related fields such as 

enhanced time series prediction, rule based control and 

optimization, parameter identification for system simulation, 

runoff prediction etc. and many promising and interesting 

results are being published from time to time thus encouraging 

further research. 

As the present study is aimed at studying the 

applicability of ANN as discussed in the previous chapter, an 

extensive literature review of the subject has been made within 

the constraints of time and availability of study materials. A 

separate chapter in this report has been devoted for the 

discussion of the theoretical aspects, computational algorithm 

and the literature review. 

The literature survey in this chapter is divided into 

three sub sections namely, 

1. Dynamic programming modelling 

2. Simulation models 

3. Time series modelling ;Box and Jenkins ARIMA forecast 

approach 

2.2.0 DYNAMIC PROGRAM ING MODELLING 

Water resources problems have provided an excellent 

impetus and have served as a stimulus as well as a laboratory 

for the development and further advances in theoretical and 

numerical aspects of dynamic programming since 1957, when 

Bellman, in his celebrated book "DYNAMIC PROGRAMMING" 

U 



explicitly defined it to be '• The theory of multi stage 

decision processes'. Since then many inventive numerical 

techniques, notably DDP (Discrete dynamic programming), DDDP 

(Discrete differential dynamic programming), SIDP (State 

incremental dynamic programming) and Howard's policy iteration 

methods have been applied for implementing the dynamic 

programming. 

In spite of severe limitations imposed on the scale of 

dynamic programming from the computational considerations, the 

popularity and increasing utilisation of this technique can be 

attributed to the fact that this enumeration technique can be 

used for objective functions, which are linear, non linear and 

even discontinuous. In-~addition, it has the advantage of 

effectively decomposing highly complex problems with a large 

number of variables into a series of sub problems which are 

solved recursively. 

Another notable advantage in using the DP algorithm is 

that whereas in other optimisation techniques, the constraints 

lead to additional computations, in dynamic programming the 

constraints can be utilised for increased computational 

efficiency, since these constraints limit the feasible region. 

2.2.1 Theory of Dynamic Programming 

In the problem formulation, the dynamic behaviour of the 

-system is expressed by using three types of variables, namely 

stage variables, state variables and control or decision 

variables. With each state transformation, a return is 

associated which may either represent benefits or costs. The 

crux of the problem lies in identifying the appropriate control 
variables which optimize the returns. 

Keeping up with the Bellman's principle of optimality that 



"The optimal decision made at a particular stage is independent 

of decisions made at previous stages given the current state of 

the system", a set of decisions, for each time period corres-

ponding to the finite number of states is obtained.The 

particular decision in the entire set, which optimises the 

objective function is called the optimal policy. 

A system equation can be written in a discrete form for an 

optimal control problem (OCP) as follows. 

X,+, = 	f, (x, , u,) 1 s t s N 

Where 

{u,} represents the control variables at time t; 

{x,} represents the state of the system at time t; 

ft  determines the relation between {u1} and (x,}; 
[t) represents the decision stages in the domain for the 

index t between 1 and N (first N positive integers or 

the 	set 	of all positive 	integers 	for an 	infinite 

horizon process) and quite often refers to time. 

Assuming a minimisation problem, the objective function 

can be defined by, 

J(u) = 	L, (x„u,) 

where 

L,(x,u) 	is a single stage loss function. 

J(u) 	is the objective function. 

The goal with respect to an optimal control problem is to 

construct a policy u* which minimizes the objective function 

J(u). Typically the feasible controls are those which satisfy 

a vector valued state-stage dependent constraint of the form, 

g, (x,, u,) s 0 	1 s t s N 

(10) 



The main problem with this DDP approach is in generation 

of impossibly large number of discretized state nodes, which 

limit the usefulness of this algorithm to at most four or five 

state and control variables. 

Amongst the various potent methods developed during the 

last three decades, which have overcome the 'curse of 

dimensionality' of exponentially increasing computational 

burden with increase in state dimension in case of DDP, tl-,e 

ones particularly suited for water resources systems are DDDP, 

SIDP and differential dynamic programming. 

The discrete differential DP which has been employed for 

the present study, is an iterative procedure,. in which the 

recursive equation of DP is solved within a restricted set of 

state variables. The optimal solution is obtained by gradually 

improving upon the initial solution. The prototypical DDDP is 

most simply described as DDP with the added constraint that for 

each time period t and for some specified E > 0, 

11 x, - x,' 11 < E 

Heidari et al. [1971] , to whom the designation DDDP is due, 

described the above constraint, by saying that the successor 

trajectory must lie in a 'corridor' of width and centred about 

the nominal trajectory. Figure (2.1) shows a typical corridor 

boundary and the state variable (storage) discretization into 

-a number of feasible stages. 

2.2.2 DP Application in Reservoir Operations 

It is interesting to note that application of stochastic 

DP algorithms [Masse ? 946; Little 1955] in reservoir operations 

precede applications of deterministic dynamic programming by 

over a decade, although it is more subtle and computationally 
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troublesome(Yakowitz 1982]... The first application of 

deterministic D.P. in reservoir applications was made.  by 

Young(1967] , He studied _ a finite horizon single reservoir 

operation problem, with a.  viewpoint to support the critical 

assumption that he made that the iil-flows are known by the 

. hypothesis that some rivers' are regular enough so that their 

flows are well represented bytheir expectations. 

Hall et al. [1968] presented specific ideas for determining 
the single stage lossfunction in their computational study 

associated with Shasta dam in California. This was• further. 

• extended. to the multi reservoir cases by authors Roefs & 

Bodin [1970] . 

A four-reservoir problem served as the bench mark for 

testing the DDDP developed by Heidari et al. (1971]; This same 

problem was studied by . Larsen [1968] with the procedure Of 

"incremental Dynamic programming". Chow(1975] used the same. 

problem-with the Discrete Differential Dynamic.Programming. 

Studies related to the multi objective DP for 'reservoir 

operations were initiated by Tauxe et ai.(1979]; They have 

reduced the.multi objective problem to one in which a certain 

objective is - minimized, while the others are being maintained 

below certain threshold levels. 

Banerj ee-  & Harikrishna [1975.] presented a state incremental -

-DP model to determine the optimal operating policy for the 

Damodar Valley Corporation system using the critical period of 

the observed flows. The objective was to maximise the.' 

hydropower 'output from this multi purpose multi-reservoir 

system serving for irrigation and flood control. 

Harikrishna et al. [1981] studied the integrated operation 
of Bhakra-Begs system using the incremental. DP technique. The 
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was maximised subject to physical 

 the a.power releases - -should .•equal - 

annual power generation 

constraints ensuring that

•  irrigation requirements-. 

2.2.2.1 DPR,  Models 

This deterministic model (DPR) consists of an algorithm 

that cycles through three components: a. dynamic program, a 

regression analysis and a simulation model (Karmouz and Houck, 

1987) . . Young(19.671 first proposed the use of a. linear 

regression procedure to find general operating rules from 

deterministic optimization. He derived regression equations 

using inflows and storages to find optimal releases. 

The authors (Karmouz.and Houck 1987) have shown .DPR model 

to be a significant extension of - other deterministic models, by 

deriving .regression equations from deterministic DP results. 

Their DPR model incorporates a .multiple linear regression 

procedure,. suggested by Bhaskar and .Whitlach[1980] and a 

hypothetical loss function was used in that study. 

• Optimised release. policies: obtained from DP-regression 

methodology, were compared by Bhaskar and Whi tlach (19871, with 
the release policies obtained from chance constrained linear 

programming, for a single multi purpose reservoir system and 

system performance was derived from simulation techniques. 

Raman and Chandramauli[1996] adopted a DPR model, along 

with DPN and SDP models to' derive reservoir operating policies 

and expressed the optimal :release as a linear function of 

initial storage,. inflow and demand, which is of the form 

R1  = aS, + bIl  + cD, +d 	 (2.1) 

They used the DP results for regression using he least squares,  

method. 
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2.3.0 SIMULATION MODELS 

A simulation model is meant to provide the response of the 

system, for certain inputs, which enable the decision makers to 

examine the consequences of various scenarios 'of an existing 

system or a new system without actually building it.It tries to 

approximate the behaviour ofa system, representing all the 

system characteristics,. largely by a.mathematical or algebraic 

description. A typical simulation model for a water resources 

system is simply a model that simulates' the interval-by-

interval operation of the system with specified: inflows at all 

'locations during each interval for specified system 

characteristics and specified -operation rules. 

Development of a simulation model is governed by the 

._system operating policies, such as the standard. operating 

policy, rule curve based operation, multiple zoning, target 

storage -level based operation, or else regression parameter 

based operation policy: 

2.3.1 Application 

Now a-days, With the advent of high processing computers, 

standard simulation packages have become available, with a wide 

range of flexibility to accommodate a varied range of 

customised conventional problems. However the earliest 

simulation model associated .with a system of reservoirs 

appearing in the literature seems' co be the study performed by 
the U.S. Army Corps of Engineers in 1953 for an operational 

study for six reservoirs on the Missouri river with the 

objective of maximising power generation subject to constraints 

of navigation, flood control and irrigation. . 

The simulation model applied by- Maass.-et al. (1962], to 

the economic analysis, of water resources system design, -  
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reproduced the behaviour of the system for power generation, 

irrigation •and flood control.Using synthetic stream flow 

sequences, Hufschmidt and Fiering.[1966]' used simulation in 

planning the multi reservoir, multi-purpose Lehigh river system 

and worked out designs with, higher benefits than the existing 

system. 

The HEC-3 model (Reservoir system analysis for 

conservation) developed by the Hydrologic Engineering, Centre 

has been applied to the'operational studies on the Arkansas-

White-Red river system in the Southern United States (Frederich 
. and Beard,  1972] . The . HEC-5. model - ( 'Simulation of flood and 
conservation systems), developed by the Hydrologic Engg. Centre 

has been applied to the reservoir system expansion study for 

flood •control on the. Susquehanna river system (Eichert and 
Davis,'19761 . 

• The DELTA model was developed for Mekong committee by 

SOGREAH,.a French consulting firm,' as a too]., to.simulate`with 

reasonable accuracy., the hydraulic regime of the Mekong delta 

in Thailand. The model has been used for delta reclamation 

investigation, optimal sizing of a dam. and planning of flood 

control schemes. 

Srivastava' et a1 . [1980] , studied the Bargi, ' Taw, 

Narmadasagar and Navagam reservoirs by simulation for Narmada 

basin in India. In another study by Ramaseshan(1981], -the 
SIMYLD II simulation programme of. the Texas. Department of Water. 

Resources, was used to get the modified rule curves, for the 

Bhakra and Pong reservoirs 'and these were compared with the 

rule curves derived by Beas Design Organisation.A.- Hydrodynamic 

Model.(SYSTEM 11F) for river routing -and reservoir simulation 

has been established for real time.flood forecasting in Damodar. 

Basin by the Central 'Water Commission In 'co-operation with 

Danish Hydraulic Institute. 
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Raman and Chandramauli [1996] , in -their-  effort to improve 

the operation and efficient, management of available water for 

the Aliyar dam in Tamilnadu,,India, used. DP, SDP, SOP & DPN 

models and 'studied their 'relative performances by using 

reservoir simulation model. For testing the SDP scheme, they 
used a simulation model 'where releases, are made based on SDP 

results and the balance demand is met through a SOP norm. 

2.4.0 TIME SERIES MODELLING: BOX AND'JENKINS APPROACH TO 

FORECASTING 

The Box=  Jenkins approach to time-series analysis, 

forecasting and control is a powerful but rather complicated 
procedure. The methods are potentially useful in many types - of 

situations. which involve •the models for discrete time series 

and dynamic systems. They have also been adopted to the problem' 

of forecasting seasonal'.-  time- series(Chatfield. and Prothero 

' 19731 . 

Box-Jenkins approach.provides a particular class of time-
series models, which -require the Fitting of a suitable 

stochastic model and construction 'of recursive formulae for 
calculating the linear least square predictors corresponding to 

the identified model.:. This family of linear stochastic models, 

that. are now referred. to, as Box-Jenkins. or Auto-Regressive 

Integrated Moving -Average '(ARIMA) models, is in fact a 
culmination of research of many promin' t, statisticians 

starting with '_the pioneering work , of Yule 01927.].. The - ARIMA 

models have been extensively used for modelling of'rive.r flow 

.. sequences ' (Dellur 'and Kavas, 1978] .: 

For applying the Box-Jenkins model to any time-series 

data, three stages of model development, namely, 

identification, estimation and diagnostic checking, are to be 

adhered to, [Box and Jenkins,1976]. The.. first .step is. to 
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identify the form of model that may fit to the given data The 

series may •need to be differenced, at this stage.. At the 

'estimation stage, the model parameters are calculated by 

employing the method of maximum likelihood'. Finally the model 

is checked for possible inadequacies. If the diagnostic checks 

reveal serious anomalies, while analyzing- the residuals, 

appropriate model modifications, are made by repeating the -  

identification.and estimation stage. 

These models rely heavily on the appropriate 'Use of three 

familiar 	time 	series 	tools, 	namely, ' differencing, 

autocorrelation function (ACF) and, partial. auto correlation'. 

function (PACF). Differencing ' is used to reduce non. 

stationarity 'to stationarity. ACF and PACF are used to identify 
an appropriate .ARIMA model and the required number of 

parameters• 

'.A brief theoretical description of ARIMA 'difference 

equations 'and three stages of ARIMA model building are 

	

furnished below. 	' 

2.4.1 ARIMA Model. 

Let z ~ 23 	. . . z 	z 	. 	z 1'~ 	~ 	l 

	

_ 	z 	z 	.... zN.h' a discrete time 1. 	 t 	t 	t+ 

series measured at equal, time intervals. A multiplicative 

seasonal ARIMA model is written as [Box and' Jenkins 1976] 

- O.(B)E)(Bfi')... 	( 2 ..2) 

where 

z1 	Some appropriate transformation of the time series 



data, such as a -log transformation.( No 

transformation is also a possible option); 

t 	discrete time; 

s 	seasonal -length, equal to 12 for monthly 'river flows; 

B 	backward shift . operator defined by Bez,- = z„ 

µ 	mean ' level- of - theprocess, usually taken as the 

average of the w, series (if 'D+d.>O often µ= 0) 

a, 	normally independently distributed white noise 

residual with mean zero and variance &a2 . 

wt  = 0d3°zC  where 	 (2 . 3 ) 

w, 	becomes the stationary series formed by differencing z,' 

series. (n = N - d. -SD is the number of terms. in the w, 
series); 

(1-B s) °=VSD 	 (2.4) 

(1 B) d  = becomes non seasonal differencing operator of order 

d to produce non-  seasonal .stationarity of the dth 

differences, usually d=0,l or 2; 

• (1-B`)° = Seasonal differencing operator of order D to produce' 

seasonal stationarity of the Dth...differenced data, usually. 

D= 0,1 or 2; 

(P (B) = 1 =0;B = 02B2  - 	 ....... - O,B nonseasonal autoregressive 

(AR) parameter or polynomial of order p such that the 

roots of the characteristic(B) = 0 lie outside the unit 

circle. for nonseasonal stationarity and the 0, i! =  1,2,3, 
,p are the nonseasonal AR parameters; 

(B) = 1 -4B - 4. ,B 2S - .......... -OPBP' seasonal (AR) operator 
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of order p such that the roots of OB' =0 lie outside the 

unit circle for seasonal stationarity and the, , 

1=1,2,... ,P are the seasonal AR parameters. 

8 (B) = 1 =e,B - 92Bz  - .......... -9gBw nonseasonal moving. average 
(MA) parameter or polynomial of order q such that the 

roots of the characteristic 6(B) 	0 lie outside the unit 

circle for invertibility and the 0, i = 1,2,3, ...,q are 

the nonseasonal MA parameters; 

0(B)=  1 -0B - 02B2" . - .......... -OPB seasonal (MA) ` operator 

of order Q such that the roots of 0B = 0 lie outside the 

unit circle for seasonal stationarity and the e., 

i=1,2,....,Q are the seasonal MA parameters. 

The notation (p, d, q) X (P, D, Q), is used to represent 

the multiplicative seasonal ARIMA model of eqn, (2.1) . THe first 

brace with small alphabets contains the nonseasonal ' AR, 

differencing order and MA operators and the se'ond set of 

brackets contains the corresponding seasonal operators. As an 

example, a stochastic multiplicative seasonal noise model of 

the form (0, 0, 2.)X(0, 1, 1) 12, with no data transformation,which 
has been identified for the present 'study and shall be. 

discussed in detail elsewhere can be written as 

{ (i - B12 ) z, -µ}. = (1 -' 0 IB - 02B2 ) (1 - 01B'2 ) a, 

2.4.2 Stages of ARIMA Model Building 

2.4.2.1  Identification 

The purpose of the identification stage is to determine 
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the differencing required to produce stationarity and also the 

order of both the seasonal and the nonseasonal AR and MA 

operators for the w, series with the help of ACF, PACF plots and 

the plot of original time series. 

Autocorrelation function (ACF) . 

The autocorrelation function measures the amount of linear 

dependence between observations in a time-series, that are 

separated by lag k. Box and Jenkins(1976,pp.32-361, recommend 

a specific estimation procedure to determine an estimate r, for 

r k  and also give approximate standard errors for the ACF 
estimates. It is shown by Box and Jenkins (1976, pp. 174 -17.5] , 

that the estimated ACF at lags that are linear multiples of 

the seasonal length S doesn't die out rapidly, which indicates 

that seasonal differencing is needed to produce stationarity. 

Partial autocorrelation function (PACF) : 

Whenever. the model fitting involves an AR process, the 

appropriate number of lags to use (ie. order P of the model) 
can be determined by analysis of the PACF (Okk ), which satisfies 
the Yule Walker conditions. [Box and Jenkins, chap-3J . This is a• 
measure of correlation between z, .and -z,.r, after adjusting for 
the presence of all the z r's of shorter lag, ie, z,.,, z,_z, ..., 

k+,• This adjustment is done to see if there is an additional 

correlation between z, and z k -above and beyond that induced by 

. the correlation, which z, has with z, zt_„ ... , zt_t+1 

2.4.2.2 ESTIMATION 

Box & Jenkins[1976,chap-7] suggest that the approximate 

likelihood estimate for the ARIMA model parameters be obtained 

by employing the unconditional sum of squares method, wherein 

the unconditional sum of squares. function is minimised to get 

least squares parameters estimate. Various 'optimization 
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techniques are available to minimize functions such. as the 

unconditional SSF. Some of them, which have been extensively 

applied. include 

1. Gauss linearization . 

2. The steepest descent 

3. Marquardt algorithm (combination of above two". this method. 
has been adopted for the present study). 

Akaike information criterion (AIC) . 

Box -& Jenkins.[ 1976], stress the.  need to construct a model 

which should be parsimonious( ie. to use as few parameters as 
possible) so that the model passes all diagnostic checks. The 

AIC [Akaike 1974] is a mathematical formulation of the 

parsimony criterion of model building. 

For -comparing among competing ARIMA family models,. AIC can. 

be written mathematically as 

AIC(p, 4) = N.'ln (8.)?+2 (P+q) , 	(2 . 6) 

where 

N 	Sample size; 

Q, 	Maximum likelihood estimate of the residual variance; 

p,q- The order of AR and MA operators;. 

The model which gives the minimum AIC should be considered. 

2.4.2.3 	Diagnostic checks : 

In"Box & Jenkins modelling, the residual a, are assumed to 

be independent,`homoscedastic (ie. variance is constant) and 
usually, are normally distributed. Most diagnostic tests deal -

with the residuals to determine the aforesaid assumptions. 

Homoscedasticity and normality are considered to be less 
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important violations as these can often be corrected. by a Box-

Cox transformation of the data. But the lack of independence of 

the residuals indicates. that present model is inadequate and 

the entire process of identification and estimation stages are 

repeated in order to determine a suitable model. 

Various diagnostic checks and tests include, amongst 

others, overfitting, RACF analysis and Porte-Manteau lack of 

fit test, to know whether residuals constitute an independent 

series or not and whether the Homoscedasticity check is 

satisfied or not. 

I. Overfitting 

When an ARIMA(p,d,q) model has been tentatively accepted, 

overfitting involves fitting a more elaborate model than the 

one estimated to see if inclusion of one or two parameters 

greatly improves the fit, ie, one can successfully add and test 

additional AR or MA terms (but not both simultaneously) to the 

model until the last term added is not significant. 

II. RACF analysis : 

Residual autocorrelation function is analyzed to deteriiiine 
whether the -residual a, is white noise or not, many new 

sensitive techniques are now available for checking the 

independence assumption of a~. However examining and plotting 

of the .ACF and PACF of the residuals gives sufficient idea 

regarding the randomness of the residuals. 

Porte Manteau lack of fit test:. 

Porte'manteau lack of fit test,, originally proposed by 

Box and Pierce (1974]. and later on modified to validate the same 
for a general seasonal Box-Jenkins model has been adopted for 
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the presentstudy. the test statistic and hypothesis testing 

are furnished below. 

X,  be a time series of size N represented by ARIMA (p,d,q) 

model- . So after d differences, the . ARMA (p, q) series, z1, t = 

1,......,N-d is obtained. 

E~  be the residual series. 

The test is applied to know whether.E, is an independent series 

or not. 

L 
Q= (N-d) •E 	(rk ) 2 (e) 	 .(.2 . 7) 

(k=l) 

L  is the maximum lag considered 

rk (E).is the correlogram of the residuals. 

Q  is approximately ,Y2 distributed with, L-p-q degrees of 

.freedom. 

If Q < Xz(L - p - q), E, is considered to be an independent 

series, so the model is considered to be adequate. 

2.4.3 Applications 

Box-Jenkins analysis provides a systematic approach to 

model selection, utilising. all the information contained in the 

sample autocorrelation function (ACF) and partial auto 

correlation function (PACF). With the advances made in the Box-

Jenkins model construction, such as, inspection of inverse 

autocorrelation function (IACF), inverse partial auto 

correlation function (IPACF) at the identification stage and 

sensitive- diagnostic checks-for residual independence through 

estimation of 'residual autocorrelation function (RACF)• and 

other diagnostic tests to determine whether the 

homoscedasticity and normality assumptions are fulfilled or 

not, the ARIMA models have been shown to be optimal, since for 
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a given model, no other forecasting method can on average, give 

forecasts, with smaller MSEs (Pankratz,1983]. 

Chatfield and Prothero (1973] made a critical appraisal of 

Box & Jenkins seasonal ARIMA model in their paper, wherein they 

have given ,a step by step account of the analysis and problems 

encountered en route, while applying the model to a forecast of 

sales problem with a lead time up to 12 months. 

Mclleod et al. (1977] considered, three different problems, 
to determine both seasonal and nonseasonal models for actual 

time-series, by employing Box--Jenkins techniques and carefully 

demonstrated the utility of the procedure. Apart from the 

classic Air line passenger data problem of.Box-Jenkins, where 

better parameter estimates have been obtained by the authors, 

than those calculated by using the unconditional sum of squares 

technique, the' two other problems considered by the authors 
are, annual river flows of Saint Lawrence River, and the Yearly 

Wolfer Sunspot Number series. In these cases also they could 

derive better models than that originally derived. 

Delleur and Kavvas [1978]. applied.the ARIMA model to the 

average monthly rainfall time-series over 15 basins located in 

Indiana, Illinois and Kentucky and have found that the seasonal 

differencing is effective in removing the periodicities but 

distorts the spectral structure of the original rainfall 

series, whereas cyclic standardization. introduces negligible 

distortion in the random component. 

Hipel (1985] in his review paper,. have analyzed the recent 

developments in time-series analysis and capabilities of 

various time series models by employing a set of criteria, and 

outlined therein, some of the advantages and limitations of' 

ARIMA model. 
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0' Connell and R.T. Clarke[1986] have derived the, relative 

merits of the associated parameter estimation algorithms, from 
an inter comparison of a number of real time forecasting 

models, including Box-Jenkins models and state-space/Kalman 

filtering models and have assessed critically the validity of 
the underlying. assumptions of each, in the hydrological 

forecasting context. 
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CHAPTER -3 

ARTIFICIAL NEURAL NETWORK: AN OVERVIEW 

3.1.0 GENERAL 

The term neural network.refers to the circuitry of real 

brains or to technological devices for a mode of parallel 

computation. Neural networks constitute an important discipline 

in Artificial Intelligence" (Al), as historically Al grew out 

of the work in neural networks, way back in 1956. This mode of 

computation is commonly known as neural computing or study of 

artificial neural networks. It is also referred tc as 

connectivism or parallel distributed, processing. 

Neural networks provide a unique computing architecture 

whose potential' has only begun to be tapped. Used to address 

problems that are intractable or cumbersome with traditional 

methods, these new computing, architectures, inspired by the 

structure of brain, are radically different from the computers 

that are widely used today. 

As the subject grew out of a noble attempt for low level 

imitation of the real brain, before describing the theoretical 

approaches and computational algorithms, the relevant structure 

and functioning of an actual biological- neuron,•which has been 

imitated by the neural network'computing paradigm is described 

below. 

Schematized properties of a basic neuron are. given.  in 

Fig(3.1) . The -- dendrites comprise the input surface, axon 

provides the output channel. Tips of axon branches become end 

bulbs, forming a synapse on the cell, on which they impinge. 

Through synapse the transfer-  of. signal occurs by potential 
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	 Synaptic endbufb 

Axon 

Axon hillock 
/ 	 Axonal arborization 

Cell body 

Fig - 3.1 Schematic view of a neuron. Activity.from receptors or 
other neurons modifies membrane potentials on the dendrites and 
cell body.
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Fig - 3.2 Neuron schema tisa tion 
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difference mechanism. If the change in potential difference 

across the synaptic end bulb exceeds a threshold, an action 

potential actively propagates to the ne-ghbouring neuron. 

without decrement.. The transmittance depends upon the strength 

of the signal generated by the neuron after processing the 

information. This has only two options: either excitory 

response or an inhibitory response. The unique intelligence, 

exhibited by human brain is imparted by the large 

interconnection of billions.of neurons in a human body. 

Figure ,(3.2). shows the abstract equivalent of the nerve. 

cell: the artificial neuron. This is based on the following 

features. First there are weighted input connections to the 

neuron (dendrites). Then these input signals are added up and 

fed into an activation function, which determines whether the 

neuron will react at. all', (cell body). If this is the case then 
the signal will pass through a transfer function, which 

determines the strength of the output signal, (hillock). 

Finally the output signal will be sent through all the output 

connections, (synapse.) to the other neurons. 

Therefore, the neural networks utilize a parallel 

processing structure that has large number of processors, in 
line with the biological neurons described .  above and provide 

many inter-connections 'between them. The power of neural 

network lies in the tremendous number of interconnections. The 

major aspects of a parallel distributed processing model, and 

so for an ANN model are 

• A set of processing units, called neurons; 

• A state of activation; 

• An output function for each unit; 

• A- pattern of connectivity among various units; 

• A propagation rule .for propagating patterns of 

activities through the network of connectivities; 
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• An activation rule for combining the inputs impinging on 

a unit with the current state of that unit to produce a 

new level of activation for the unit; 

• A learning rule whereby patterns of connectivity (weights) 

are modified by experience; 

• An environment within which the system must operate. 

Depending upon the interconnections of the neurons, which are 

arranged in many layers, namely, one input layer, one output 

layer and one or more hidden layers, and by manipulation of 

network parameters based on above aspects (e.g., network 

structures or learning algorithm), numerous types of ANNs 

exist, all with their specific application purposes. An ANN 

classification tree is furnished in Ann~xure(II) to get a 

better overview of various ANN types. However the subsequent 

discussion is constrained only to the feed forward BP neural 

networks. For an overall picture of the ANN c.•chitecture, 

various layers, arrangement of neurons in the layers, neural' 

connectivities etc., a three layer feed forward artificial 

network along with a typical processing element, with an 

activation function and a threshold function embedded to its 

body, is shown in Figure(3.3). 

3.2.0 DATA PROCESSING THROUGH ANN 

The first step in starting the data processing is to 

construct an architecture, by adopting appropriate model 

attributes as discussed above, clearly delineating the links 

and interconnections. The input neurons receive the user given. 

signals, process the same and send the corresponding output to 

other neurons, where the process of action and reaction is 

continued. 

The"data passing through the connections from one neuron 

to another, are manipulated by weights, which indicate the 

(30)- 



X.(P) 

Zk(P) 0  

Xn,(P) 

W )1  

Zd  (P)  .. 

W  kj 

input 	 hidden 	 outer 
layer 	 layer 	 layer 

a (P1 	1.0 

a '1 p1  
Y;(P) 

a.(P) 

A Processing Element 

Fig 3.3 	A typical 3-layer Neural Network along with 

a processing element 

31 



strength of a passing signal. Consequently, when these weights 

are modified, the data transferred through the network, will 

change and the overall network performance' will alter.. 

These new manipulating parameters, can all be adjusted and 

optimized, in order to get' a specific response from an ANN. The 

process of adjustment and optimization is called learning and 

is defined by the learning algorithm of an ANN. Learning 

algorithm is a set of optimization 'functions which adjust the 

weights in such a manner, that an input signal is correctly 

associated with a desired output signal.. Several learning 

examples are presented to the network each one attributing to 

the optimization of the weight distribution. Finally, when ANN 

has learned enough example, it is considered to be trained. 

After the learning cycles, the learning algorithm is 

(often) deactivated and the weights are frozen. Then test data 

is presented,. to the ANN, which it has never encountered before, 
enabling a validation of its performance. This is referred to 

as testing of an ANN. Depending on the outcome, either the ANN 

has to relearn the, examples with some modifications, or it can 

be implemented fo'r its designated use. 

3.3.0 LEARNING ALGORITHM : THE DELTA RULE 

The learning algorithm, adopted in the program for the 

present study is based upon the "generalised delta rule" 
proposed by Rumelhart(19861. The learning procedure involves 

the presentation of a set of pairs of input and output 

patterns. The system first uses the input vector to produce its 

own output vector and then compares with the desired output. In 
case there is difference, learning takes place. 

In its simplest form, the delta rule for changing weights 
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following presentation of input/output pair P is given by, 

Apw~i", (tpj-Opp) i pi -~ • $pj • ipi 	 (3 . 1) 

where 

S py = (tp~-O) ( is thelearningparameter) 	(3.2) 

tPi = target input for Jth component of the output pattern for 
pattern p. 

0j 

	

	= jth element of the actual output pattern produced by the 
presentation of input pattern p. 

ipj 	= is the value of the ith element of the input pattern. 

There are many ways of determining this rule. A brief 

outline of the derivation/algorithm for the delta rule for 

semilinear activation functions, such as, the sigmoid function, 

in feed forward networks is given below.A semilinear activation 

function is. one, in which the output of a unit is a non. 

decreasing and differentiable function of the net total output. 

In case of batch processing of long sets of input/output 

patterns with multi layer feed forward networks, which is 

usually the case and which is adopted for the present study 

also, let E represent the sum square error function, i.e., the 

overall measure of error. 

Let, 

E=EEp where 

(3.3) 

E be the measure of error on one set of input/output pattern 

p. 	 netg~=~ wjs .Opj 	 (3.4) 1 

where 0; = i;, if unit i is an input unit. Thus a semilinear 
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activation function is one in which, 

	

O~4=f~ (netp~) 	 (3.5) 

	

APWJi«- awP. 	
(3 .6) 

ji 

a; _ . aEp 	ane tpj 
aw ji ranec p~ ` aww~ 	 (3 7) .  

The first part of equation (3 . 7) reflects the change in 
error function of the change in the net input to the unit, and 

the second part represents the effect of changing a particular 

weight on the net input. The second factor is in fact, 

canes.  . a V` 
 

a 	awii
W jk .Opk=Opj 	 (3 . 8) 

wl y   

Let, 

äE p 

dp' 	an e t,~j 
(3.9) 

So equation (3.7) becomes, 

(3.10) awj1 	 . 

The above equation implies that , to implement gradient descent 
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in sum square error function E, the weight changes should be 

according to the rule, 

APW~ i -11 app - Opi 	 (3.11) 

is a learning parameter for the layers ' connected by the ith 

and j th neurons. 
To compute, 

SPJ ~ ane tp~ 	 _ 	
(3.12) 

a chain rule is applied, to write this partial derivative as, 

the product of two factors, one factor reflecting the change in 
error as a function of the output of the unit and the other 
reflecting the change in the-output as a function of changes in 

the input. so, 

_ _ aE p 	aOp; 
s p' 	anet 	aop~ " anetp; 	 (3.13} 

The second factor is obtained by differentiating equation 

(3.5) with respect to net. So that, 

a0p; =1 
 ~ (net •) 	 (3.14) 

an e tpi 

This is simply the derivative of the squashing function f, for 

the j th unit . 
The first factor is computed under two considerations - one, 

when unit Uj is an output unit of the network and the other when 

it is not an output unit of the network. In case one, 

Substituting this and equations (3.14) and (3.13),- we obtain, 
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aEP 
(tp~ 93 

p3. 

(3.15) 
aoPJ. 

S py= (tp~-Opp ) f ~ (netpj ) 	 (3.16) 

In case two, for U, not an output unit, the chain rule. is used, 

i.e., 

 an e tpk -E aEp 	{~ 

anetpk aOp~ 	k 3netpk aOp; 1 Wki091 

_ 
= 	an e t pk

Wks 	 (3.17) 

In this case substituting for the two factors: in equation 

(3.13), we obtain, 

S py=f• J netp~) ~ SDk . Wkj 	 (3.18) 

Equations (3.16) and (3.18) give a recursive procedure for 
computing the b's for all units in the network. These are then 

used to compare the weight changes in the network according to 

equation (3.11). This procedure constitutes the generalized 

delta rule for a feed forward network of semilinear units'. 

3.4.0 APPLICATIONS 

The general application areas for ANNs can be divided into 
° 

	

	prediction, simulation, classification, optimization, and 

identification problems. Translated to possible hydrology 

applications, ANNs have already been used, for runoff/flow 
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predictions, flow/pollutio.n simulation, control strategy, 

definition or system parameter identification. Out of the many 

ANN structures proposed and explored since 1950s, namely multi 

layer feed forward networks[Rumelhart et al., 1986], self 

organising feature maps[Kohonen, 1982], Hopfield networks 

[Hopfield, 1982], and counter propagation networks[Hecht 

Nielsen, 1987] , the multi layer, feed forward networks have 

been found to have the best performance with regard to input 

output function approximation, and are mostly used to address 

the hydrology related problems. 

Kraj.ewski and Cuykendall [1992], developed a three layer 

feed forward- neural network, to forecast a rainfall intensity 

in.the fields of space and time, and compared the result with 

two other methods - of -short term forecasting, persistence and 

nowcasting. 

Smith and Eli[1996] used neural network model for 

generating - runoff using a synthetic watershed from 

stochastically generated rainfall patterns. They trained a back 

propagation network to predict the peak discharge and the time 

to peak resulting. from a single rainfall pattern. 

Minns and Hall [1996] used artificial neural networks to 

generate flow data from synthetic storm sequences and routed 

the flow data through a conceptual hydrologic model, consisting 

of a single nonlinear reservoir, important findings of the 

paper include the importance of various standardisation schemes 

and redundancy and lack of justification for opting to have 

more than one hidden layer in the neural net. 

Raman and Sunilkumar [1995] investigated the use of 

artificial neural networks in the field of synthetic inflow 

generation and compared the model performance with that of a 

multi variate auto regressive (ARMA) model, proposed by Box & 
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Jenkins [1976] in case of two reservoir sites at Mangalam and 

Pothundy. 

Lorrai and Sechi[1995] examined the capability of. neural 

nets to provide a suitable forecast of river runoff, for the 

Araxisi watershed in Sardinia. They divided the observed data 

into three training sets of ten year periods each, built a 

neural network with two hidden layers, adopted BP learning rule 

and Sigmoid as the response function and corresponding to each 

training set, simulated the other two decades for appraisal of 

model performance. 

Hammerstorm [1993] in his paper, has demonstrated the fact 

that developing a neural network, is unlike developing a 

software, because the network is trained, not programmed. It is 

a prisoner of the instances by which it is trained. 

Hsu et al. [1995 - 1997] , have worked extensively in 

artificial neural network modelling of rainfall runoff process, 

watershed modelling, runoff forecasting and in the field of 

developing better learning algorithms for ANN structure. They 
advocated the use of a three layer feed forward network with 

Linear Least Square SIMplex (LLSSIM) algorithm, for simulating 

the nonlinear hydrologic behaviour of the watersheds. 

Carriere et al. [1996] designed a virtual runoff hydrograph 

system (VROHS), based on. ANN technology, by training a 

recurrent back propagation neural network. They got very good 

correlation between the observed and predicted data, while 

validating the network for testing data set. Chang and Noguchi 

[1996] demonstrated the fact that by adopting NN based partial 

intelligent model to rainfall runoff modelling, parameters 

relating to catchment can be avoided in the input and 

virtually, no parameter inside the model need to be calibrated 

manually. 
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Published works, in the field of reservoir. operation using 

neural network approach, are very scanty. The only paper, 

published so far, in standard literatures, is of Raman and 
Chandramauli[19961. They derived reservoir operating policies, 

for the Aliyar dam in Tamilnadu, India, by using a neural 

network procedure (DPN model) and by using a multiple linear 

regression procedure (DPR model) from the DP algorithm. They 

also adopted a-SDP model and a standard operating policy (SOP) 

and compared the performance of each during the validation 

period taking last three years of historic data. they 

demonstrated the fact that DP algorithm based DPN' model 

provided better performance than other models. this paper has 

been taken up as the prime -guiding literature, for the present 

study. 
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CHAPTER -4 

UIHE Project : 'The Problem Area 

4.1.0 THE PROJECT 

Upper Indravati Hydro-electric Project,'which is a large 

multi purpose project, situated in the Nowrangpur and Kalahandi 

districts of Orissa, envisages construction of four dams across 

the four rivers viz: Indravati, Podagada, Kapoor and Muran, and 

eight. number of dykes. 

4.1.1 Indravati River System 

The river, Indravati, across which the main dam is 

constructed and after which the project is named, originates in, 

Kalahandi district, Thuainalrampur plateau, at an altitude of 

more than 915m, on the western slope. of the Eastern.Ghats and 

traverses in the south westerly direction , through the hilly 

ranges, until emerging into planes at Khatiguda village in the 

district of Nowrangpur. On its way through a. number of rapids, 

it is joined by a number of tributaries namely, Podagada, 

Kapoor and Muran rivers. Thereafter the river flows through the 

Nowrangpur district and enters Bastar district of M.P. state, 

near Jagdalpur. After flowing for a total run of- 530 km.  from 

its origin, ultimately,- the river Indravati joins river 

Godavari. 

4.1.2 The Combined Reservoir 

The reservoir, draining an area of 2630 km2  and having a 
gross reservoir capacity of 2300 million cubic meters and water 

spread at FRL, of 110 km2 , is formed by four sub basins, 

created by above four rivers. These four sub basins are inter 

connected by link canals, so that the reservoir does not get 
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disconnected during the operation. A project map is shown in 

Figure (4 .1) . Water for the, power generation will be fed by the 

reservoir at the upstream, at about 6.6 km from the edge of the 

water spread at FRL of 642.00m, on Indravati river. The entire 

reservoir is 43 km long and 9 km wide at the widest section. 

The power ,intake location is at 37 km from the southern edge of 

the reservoir and approximately, 13 km upstream of Indravati 

dam, which is an uncommon and special. feature of this project. 

4.1.3 Power Generation and Irrigation 

Water for power generation will flow through a 7m'  diameter 

head.  race tunnel, designed, for a capacity of 210 m3/s. The 
power house would contain four numbers of Francis turbines 

coupled to 150 MW generators each, thus' producing 600 MW of 

effective power. After power generation , flow from tail race 

channel will be fed to the Hati river and diverted into 

irrigation canals by a barrage structure near Mangalpur 

village. The canal sections would irrigate 1,28,000 ha. (CCA) 

of agricultural land in the watershed of Hati river' adjacent to 

Mahanadi river basin. 

The distinct ' feature of the project -is* trans-basin 

diversion of water of river Indravati (Godavari basin) into 

river Hati (Mahanadi basin), for power generation and 

subsequent irrigation. The- principal data pertaining to various 
project features is shown in Annexure - I. 

4.2.0 PROBLEM FORMULATION 

The present study attempts to optimize the water release 

from the reservoir, and device a reservoir operation model 
accordingly, in order to explore the optimization potential of 
the Upper Indravati Hydro-electric Project.'As the project is 

at the verge of completion, all the reservoir parameters, 
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namely, gross reservoir capacity, dead storage capacity etc. 

and the installed generation-capacity are kept unchanged in the 

present study. 

4.2.1 Monthly Irrigation Demand 

The primary objective of this study is to maximize the 

energy generation, through various models_ However as the 

project is a multi purpose one, i.e., irrigation demand also 

needs to be fulfilled, the same has been accounted for by 

adding suitable constraints into the DP model and will be 

discussed in subsequent chapters. Monthly irrigation demand 

information is an essential input for all such models, which 

take irrigation planning into consideration. A water demand 

pattern, determined by maximising the net returns of crops, 

subject to constraints as appropriate for the project system, 

which has earlier been studied through LP model formulation 

[Mohanty, 1994], has been considered for the present study. 

4.2.2 Inflow Data 

For the purpose of data requirement, the present study 

capitalises upon the river inflow record, which was available 

for 32 years [Sedimentation assessment study, 1995]. 

4.2.3 Reservoir Operation Policy 

. To start with, a DP model, based on DDDP algorithm is used 

to study the operation of reservoir for optimum power genera-

tion, during the entire period of 32 years. A suitable loss 

function is identified for simultaneously minimising the irri-

gation deficit.. Dividing the DP result into calibration and 

validation phases, DPR and DPN models are fitted to the cali-

bration series and finally the system is simulated, during the 

validation period, to study the performance. 

(43) 



4.2.4 Time Series Modelling 

A time series model, through Box & Jenkins approach is 

identified for the calibration period, (which has been kept 

different from the previous study), parameters are estimated 

and a forecast model is prepared. Simultaneously an ANN model 

is identified and trained .for forecast. One-month- ahead 

forecast results, obtained from both the models, during the 

validation period, are tested through a customised time series. 

simulator, developed for this study. 

4.2.5 Summary 

In the final step, •a synthesis of above two sets of 

models, viz: reservoir operation policy and simulation and one-

month-ahead river inflow forecast, has been attempted, to 

obtain a one month ahead predicted .inflow based reservoir 

operation. 
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CHAPTER - S . 

Dynamic Programming Model Formulation and Computation 

5.1.0 GENERAL 

The discrete differential dynamic programming, which is an 

iterative enumeration, technique, is considered for. the present.-

study. The recursive equation of dynamic programming is solved 

within a restricted set of "quantised values of the state 

variables by providing initial state of the reservoir. The 
optimal solution is obtained by gradually improving upon the 

initial solution. This technique is particularly, suitable for 

invertible. systems. A system is called invertible if for that 

system, the order of the state vector is equal to the order of. 

the control vector. 

5.2.0 MODEL. FRAMEWORK 

The primary objective of the DP model,, herein, is to 

maximise total energy production of Upper Indravati Project 

system, subject to typical system constraints. Hydro-electric 
power, during a certain period of time is proportional to the 
product of total release, and the average operating head during 

that period. It is apparent that keeping the release constant, 

a marginal increase in the: operating head can also result in an 

increased power production. This can be accommodated in the 
objective- function by introducing a bias term for higher 

reservoir pool, during any time period:. But This might increase 

the 'likelihood of increasing the spillage; thus there may be .a 

trade off between the two aspects of operation. 

The secondary objective at the .model is to minimize • the 

(4 5-) 



irrigation deficit, which, unlike the power generation, is 

dependent only upon the release amount and not on the average 

operating head. Therefore the optimum operation should balance 

the losses due to spill and deficit in meeting irrigation 

demands on one hand, and on the other, the gain of maintaining 

the reservoir pool at the highest possible level, during the 

entire optimization horizon. 

The dynamic programming is not basically tailored in such 

a fashion that generalized programs can be written using it. 

Thus a new computer program has to be developed or an existing 

program has to be significantly modified and tested for each 

new application of the technique. The discussion made in the 

above paragraphs offered a tricky problem to be resolved: The 

problem is of adopting the appropriate objective function and 

in identifying a suitable loss function, which can accommodate 

both the objectives, viz: maximisation of power and minimi-

sation of irrigation deficit. This was finalised after a trial 

and error procedure by first choosing a set of functions, then 

running the DP model and finally evaluating the model perfor-

mance as per certain criteria and by repeating the entire 

procedure after altering the functions. Detailed discussion on 

this. aspect is made in subsequent sections. 

5.3.0 FORMULATION OF INITIAL OBJECTIVE FUNCTION AND CONSTRAINTS 

5.3.1 Objective Function 

A DP model having power generation as the primary 

objective, may sometimes perform better optimisation by 

introducing a bias term for maintaining higher reservoir 

elevation, during any time period 't'. Keeping this in view, 

the objective function of the proposed optimization model has 

been kept initially as 



Max N 
AVhead (t) *Rel(t) Av4 	 (5.1) 

t=1 106  

Where, 

Avh,d(t) 	Average head during time period t, i.e.., (average 

pool elevation - TWL) after accounting ,for head 

losses. 

Rel(t) 	Release in Mcm during period t. 

N. 	Number of time periods within the optimization 

horizon. 

Avg, 	Average storage, obtained from the initial and 

final storage during the period t. 

represents the 

as discussed 

The second term in this objective function 

preference to keep higher elevation level 

previously. 

5.3.2 Constraints 

The constraints, that are needed to properly define the 

system environment and functioning, can be divided into two 

groups, namely, those which represent the inherent system 

characteristics and will not change during the optimisation and 

the others, which are hypothetical loss functions or penalty 

functions, and may need modification during the sensitivity 

analysis, while simultaneously optimising more than one 

objective. The constraints are discussed below. 

i. 	Water mass-balance equation. 

S (t+l) =S (t) + Inf (t) - Elos (t) = Rel(t) - Spil(t) 	(5.2) 

t = 1,2, ... ,N 

Where, 

S (t) =the state variable at the beginning of the time period t. 

Inf (t) =Reservoir inflow during period t. 

Elos(t)=the tth period reservoir evaporation loss. 
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Spil(t)=the spillage from the reservoir after the MWL has 

reached and power generation is at the peak. 

ii. The state variable s (t) can fluctuate only between the 

gross capacity of the reservoir and the dead storage of 

the reservoir. 

Sorin 5 S (t) s Sniax 	 (5 . 3 ) 

t = 1,2, ... ,N 

iii. Generation of hydro-electric power is proportional to 

release and the operating head and is. governed by power 
equation. 

Gen (t) =c*9 . 8 *Rel (t) *Avhead (t) *'1 	S 
	

(5-4) 

Where, 

Gen('t)= Energy generated in time t.. 

c 	=A constant for converting release in Mcm to cumecs. 

xi 	=Efficiency of power plant (i.e., turbine efficiency., and- 

generator efficiency etc. 

iv. The hydro power generation should be limited to the 

installed capacity for the said period. For the present 

study, load factor has been taken as 100- throughout.  the 

optimization horizon, because of non availability, of the 
project load curve, the constraint is,' 

• Gen(t) s Installed capacity (600 MW) 
t = 1,2, ....,N 

v. 	The penalty function. 

If release is less than the demand, then 

ben(t)=-  (Rel(t)-Dem(t))2 	(5..5) 
. 108  
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Where, 

ben(t) benefit during time period t. 

Dem(t) demand during time period t.' 

(-)ve symbol converts the benefit into a loss'. 

5.3.3 Identification of Appropriate" Objective function and 

Penalty Function Through Trial 

The trial run was made with the above set-  of -objective 

function and constraints for the entire period of 32 years of 

historic inflow record available. But as the release from the 

reservoir, is first utilized for power 'generation and 

subsequently routed through the barrage structure and canal 

system, it could not be conclusively decided, whether both the

system objectives are complimentary or competing-with each 

other. So, a number of objective functions and corresponding 

penalty functions are formulated and those have been 

incorporated into the computer program, written in FORTRAN-77, 

by suitably modifying them. After running the model in each 

case, the results are' compared for choosing the best set of 
functions. 

The strategy adopted for altering the objective functions 

was to either include or exclude the bias term for higher. 

storage (i.e., higher pool elevation) in the reservoir. 

Corresponding to each such case, the strategy adopted for 

formulating the penalty function was to vary the amount of 

penalty, in case there is a deficit. Conditional penalties have 

also, been imposed into the objective function by segregating 

the desired obj-ective, to test the model performance. 

The -criterions adopted for the performance appraisal. of 

various DP models are, spillage, total generation during the 

optimization- period, irrigation deficit and mean square 

deficit. A summary table of the results obtained from some 
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competing model runs is given in Table (5.1). 

Table :5.1 

DP performance appraisal for alternative*  objectives and penalty 
functions 

Iter Spill Generat Deficit -Mean Objective Penalty 
ativ 4CM ion (MCM) Square Function Function: 
e No. (MW) - Deficit 

(MCM) 

1 3524 100376 2590 4737.1 (Av st + 
h_av*rel) 

106 .  

2 2512 100969 5253 9081 (Av st If water is available& 
— rel < dem 

h av* rel') 
beo- 
.v  (re1-0esn)1) 

--- 	o6---. 
10` 

Ise ; 
• (reI-0cm)2 

10" 

3 3795 99641 2326.4 2362.8 Av st -(rel 	- 
-- --- dem)2  
104  -----------  

+ -108 . 
(h av*rel) 

106  

3607 99914 2326.3 2361.-9 (h_av*rel) -do- 
4 --------_._ 

106  

5 2265 101217 2309.3 2484 Av st  
– – 	– – 106 h av'(rel-4em)j  - + 10`  

(h av*rel) 

106 . 

2242 101248 2309.3 2484 (h_av*rel) -do- 
6 ---------- 

106  

The model selected for further computations of present 

studies shown in bold. Two typical inferences pertaining to the 
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Indravati Project System , can be drawn, by observing at the 

table above. 

1. Adding the bias term for higher storage into the benefit 

in the objective function, has resulted in higher amount of 

spillage and corresponding reduction in power generation, 

whereas the deficit remains unaffected. 

2. By adopting stringent penalty norms for model not meeting 

the irrigation demand, not only the deficit is reduced, but 

also it has resulted in further reduction of spillage and 

increase in power generation. 

The finally adopted objective function is 

N  Av *Re? (t) heaa 	 (5.6)  Max 	10 6 
t=1 

and the hypothetical loss function is 

If Release < Demand, then 

ben (t) = -ben (t) -  AVheaa* (Rel (t) -Dam (t)) 2 	(5.7)  
106  

5.4.0 BASIC INPUT DATA 

'Monthly inflows into the reservoir, for a period of 32 

years, obtained from [Sedimentation assessment study, 1995], 
constitutes the basic data, upon which the entire study is 

based.. The same is furnished in Table (5.2). The inflows into 

the reservoir, given in cumecs, are to be converted to Million 

cubic meters per month, a source code written in C language, 
was used for the conversion. Monthly evaporation losses from 

the reservoir have been taken from the (Project report-1976) 

and the monthly irrigation demands for different crop plans, 
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Table -5.2 : Inflows into the Indravati reservoir during the period 1951 to 1982 in cumecs 

Year Jan Feb Mar Apr May June July Aug Sep Oct Nov Dec Annual 
Average 

1951 26 21 17 18 .17 120 242 328 133 45 45 36 87.33 
1952 28 22 18 18 18 10 248 393 184 77 48 38 91.83 
1953 34 28 23 23 23 12 259 365 357 149 59 47 114.92 
1954 30 24 20 20 20. 173 146 479 117 81 52 41 100.25 
1955 26 21 17 17 17 55 141 222 359 91 45 36 87.25 
1956 27 22 18 18 18 54 198 253 246 152 47 37 90.83 
1957 24 19 16 16 16 54 143 262 242 92 41 33 79.83 
1958 31 25 20 21 20 70 , 278 419 144. 108 53 42 102.58 
1959 29 24 19 20 19 .55 236 276 228 173 50 40 97.42 
1960 27 21 17 18 17 	'' 77 136 318 261 92 46 36 88.83 
1961 28 23 19 	, 19 19 169 229 267' '200 83 49 39 95.33 
1962 30 24 20 20 20. 89 225 275 284 128 52 41 100.67 
1963 24 18 17 20 20 42 264 372 153 66 40 31 88.92 
1964 24 20 13 11 10 82 102 290 267 184 50 '49 91.83 
1965 29 24 23 21 24 50 161 302 139 113 48 34 80.67 
1966 29 20 16 20 13 28 181 109 120 48 34 29 53.92 
1967 16 10 10 12 22 80 209 218 332 37 24 19 82.42 
1968 11 8 8 10 9 201 179 335 132 50 20 13 81.33 
1969 17 20 14 12 18 25 75 128 150 150 42 26 56.42 
1970 26 21 17 15 13 65 432 273 156 59 48 40. 97.08 
1971 27 20 15 17 23 57 180 256 180 94 42 35 78.83 
1972 21 19 14 11 .7 97 126 237 233 74 39 31 75.75 
1973 25 21 17 17 17 27 234 167 336 82 44 35 85.17 
1974 30 51 26 18 45 59 120 167 159' 78 30 23 67.17 
1975 20 15 14 20 18 142 215 314 ' 	115 76 31 22 83.50 
1976 23 27 25 19 22 54 149 230 135 49 27 .22 65.17. 
1977 22 26 20 19 23 61 160 277 97 68 39 19 69.25 
1978 17 13 13 14 23 23 124 104 137 56 . 45 29 49.83 
1979 25 . 	24 14 17 14 28 79 130 106 58 32 16 45.25 
1980 20 25 12 8 8 129 116 277 246 47 34 26 79.00 
1981 19 30 25 25 76 116 .306 270 317 159 84 38 122.08 
1982 25 31 24 20, ' 	19 12 237 461 525 440 87 69 162.50 

Mean 24.69 22.41 17.53 17.31 20.25 72.38 .191.56 274.19 212.19 101.84 44.59 33.50 86.04 

Sdv 5.06 7.23 4.38 3.91 12.13 49.12 74.35 93.76 97.82' 73.75 14.02 10.99 22.28 

Skewness -0.73 1.68 0.10 -0.67 3.49 1.02 0.97 0.15 1.24 3.31 1.28 0.73 1.04 

Kurtosis. 0.45 7.52 -0.24 0.12 15.02 0.54 2.05 0.01 1.77 14.22 3.26 2.34 3.60 
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taken from [Mohanty, 1994] , are furnished in Table (5.3) . 

• Reservoir elevation vs. area vs.. capacity curves, in 

discretized form, at an elevational interval of 5m is furnished 

in Table (5.4). Reservoir dead storage and gross storage 

capacity have been taken as 814.5 and 2300 Mcm respectively. An 

initial reservoir elevation of 1500 Mcm has been considered for 
the study. For non availability of the load-curve, a uniform 

load factor of 100 has been assumed for all the time periods 
of optimization horizon. 

For computing the operating head of the generator, a 

constant tail water elevation of 265.00m, with an average head 

loss of 12m has been taken for the present, analysis. A uniform 

turbine efficiency of 92.0 It and generator efficiency of 97.5 

% have been used. The above assumptions related to the power 

generation are based upon the computations made by HARZA 

Consultants [Project report, 1994] 

5.5.0 COMPUTATIONS 

The computation is carried out by a FORTRAN program, 

consisting of a main program and two sub-routines namely, DDP, 

which carries out the discrete dynamic programming computations 

and a sub-routine BENEF, which is a user supplied sub-routine, 

meant for evaluating the objective function. A function FINT is 

also used for linear interpolation, to find the value of the 

dependent variable (y) corresponding to the independent 

variable (x), from a table of pairs of (x) and (y) values. 

-For the purpose of computations, the entire active storage 

region is divided into a.number of divisions. The optimal state 

trajectory is searched from among the feasible states so that 

the objective function is maximised. 
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Table 5.3 : Showing the elevation-area-capacity 
relationship for the Indravati reservoir 

Serial 
No. 

Elevation 
in M 

Area 
ins . km 

Capacity 
in cub. met. 

1 580 240000: 0 
2 585 450000 1700000 
3 590 2740000 11280000 
4 595 5600000 40000000 
5 600 10700000 74160000 
6 605 16800000 140000000 
7 610 23950000 237690000 
8 615 33290000 380289984 
9 620 44330000 570540032 

10 625 59160000 827150016 
11 630. 74590000 1152960000 
12 635 89970000 1562599936 
13 640 104870000 2052120064 
14 645.5 °  122800000 2710000128 

Table 5.4: Monthly irrigation demand and 
monthly average evaporation 

Serial 
No. 

Month Irrigation 
Demand 

Evaporation 
(MM) 

1 January 231.9 75 
2 February 276 150 
3 March 247.3 175 
4 April 163.2-.' 200 
5 May 115.1. 200 
6 June 86.4 175 
7 July 284.9 75 
8 August 40.8 75 - 
9 September 317.9. 75 
10 October 283.4 -100 
11 November 106.8 100 
12 December 88.9 75 
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5.6.0 DISCUSSION 

Reservoir releases after optimisation through the finally 

accepted DP model are furnished in Table (5.5) along with the 

monthly demands, during the entire period of 32 years. By 

altering the objective or the hypothetical functions, it was 

seen that total deficit is not varying significantly. It was 

further observed that by increasing number of iterations in 

succcessively reducing the corridor width, total deficit is 

distributed among larger .number of time periods with smaller 

deficits. Corresponding power generations and reservoir 

storages are shown in Tables (5.6) and (5.7), for comparison 

with various model performances, to be discussed in subsequent 

chapters. 
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CHAPTER -6 

DPR and DPN Models 
6.1.0 GENERAL 

The assumption behind adoption of a dynamic programming 

with regression (DPR) model or dynamic programming with neural 

net (DPN) is that the deterministic dynamic programming result, 

spanning across the historical flow record of optimization 

horizon, encapsulates a definite pattern between the release 

and some or all of the independent variables like, initial 

storage, inflow and demand. This underlying pattern is unique 

to the system considered and can be filtered through some 

pattern recognition tool. The multiple regression models have 

been widely used in water resources system engineering for 

generating the operating rules. The regression models smoothen 

the values of the release function. A brief outline of the 

multiple regression is furnished in the next section. 

6.2.0 THE MULTIPLE REGRESSION 

When more than one independent variable is being used to 

predict the value of the dependent variable, the analysis is 

termed as multiple regression analysis. In case of regression, 

the best fit line is identified by the least squares method. 

The four basic assumptions underlying a multiple linear 

regression analysis are as follows, 

Assumption 1.There exists some hypothesised underlying 

relationship among y and x„ x2, x3, .... , xP  in the 
form 

E(y) = 30+f31x1+j32x2+. . . . 	 (6.1) 

where E(y) is the regression function. 
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In essence b0„ b, , b2  in equation (6.2) are estimates 
for LO„ ?, , g2  respectively. 

Assumption 2.The distribution of y, x,, x2  follows a normal 
distribution. 

Assumption 3.The variability of y about the regression function 
is the same for any choice of values of x, and x2 , 

i.e., variance is the same for each set of y values. 

This is called equal variance condition or homosced-

astic condition and is indicated by Q,,2 . 

Assumption 4 . The observed Y values are based on a random sample 
from the assumed normal probability distribution and 

that each observation is independent of all other 

observations. 

Mathematically the multiple linear regression analysis canbe 

expressed as follows: 

Total data length be N and Number of parameters be P. 

Then degree of freedom (regression) =p 

Then degree of freedom (error) =N-p-1 

The estimated regression function is 

Y=bo+blxl+b2x2+..... +bpxp 	(6.2) 

b0, b,, b2, .... , b, are choosen by least square methods, with 
the objective of 

Min E (Yi-pi) 2 	(6.3) 

The following parameters are used to judge how good is the 

regression line. 
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SSE=E (yI -ji g ) 2 	 (6 .4) 

SST=> (y1-) 2 	 (6.5) 

SSR=> (2i-y)2 	(6.6) 

SST = SSE +SSR and for best fit SSE - O;SSR/SST - 1 	r2; 

MSE = SSE/ Error DF ; 	MSR = SSR/ regression DF. 

SSR measures the amount of variability in y explained by 

the regression model. The sampling distribution of MSR/MSE 

follows a F-distribution. 

F = MSR/MSE ; when computed F 
tioriship is said to exist. 

> F.~,5 (p, n-p-1) , a linear rela- 

Multiple non-linear regression is also carried out along 

the same steps, with some modifications. Interested readers can 

refer to any standard text book on•multi variate regression 

analysis for this. 

6.2.1 Computation 

Under the DPR model category, two regression procedures 

have been attempted, namely, multiple linear regre.ssion and 

multiple non-linear regression. Although authors on this 

subject have all along suggested a simple linear form to 

express the optimal release [refer Chapter-2), the non-linear 

regression equation was tried in this study, to assess its 

relative performance in comparison to other models. 

Before deriving general operating rules using regression 
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from deterministic DP results, the DP output was divided into 

two sets. The result for first 27 •years, consisting of 324 

patterns was considered for calibration and last 5 years result 

consisting of 60 patterns was kept aside for validation. The 

calibration data set was processed through a WINDOWS based 

statistical package called SYSTAT, for obtaining the multiple 

linear and non-linear equations. 

The expression adopted for linear regression equation is 

Rel (t) =a0+b1*S(t) +b2 *Infl (t) +b3 *Dem(t) . 	( 6.7) 

and the expression adopted for non-linear regression equation 

is 

Re1(t) =p1*(S(t) )2+p3 *(Infl(t) )r'`+P5 *(Dem(t) ) p6 	(6.8) 

The summary result of the output is tabulated below. 

Table (6.1) : Regression Analysis 

Multiple linear regression 

Variable value Standard-error T 

Storage .022 .006 3.76 

Inflow .086 .009 9.43 

Demand .95 .027 35.097 

Constant -23.464 10.189 -2.303 

Analysis of variance 

Source 
	

SS 	DF 
	

MS 	F-ratio 

Regression 
	

3415177.5 3 
	

1138392.5 514.395 

Residual 
	

708179.52 321 
	

2213.061 
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Multiple Non-linear Regression 

Convergence attained after 200 iterations; 

Precision 	 0.01 

Raw R-squared (1-residual/total)= 	0.958 

Corrected R-squared (1-residual/corrected)= 0.794 

Analysis of variance 

Source 	SS 	DF 	MS 

Regression 	.203894X108  6 	3398234.383 

Residual 	738740.08 318 	2323.082 

Hence the regression equations obtained for linear and 

non-linear cases are as follows. 

Rel(t) = -23.464 +.022*S(t)+.086*Inf(t)+.95*Dem(t) 	(6.9) 

and 

Rel(t)=1.875 S (t)°.4fi1 +. 011 Inf (t) 1.269+.105 Dem(t)t3 	(6.10) 

These equations have been built into the simulation model 

and detailed discussion on these results will be made in 

Chapter-8. For evaluating the relative performance of these 

equations, on the validation data, these are compared with the 

output of the DPN model, which will be discussed subsequently. 

6.3.0 DPN MODEL 

In the context of previous discussions, the problem of 

deriving an optimal release -policy has been reduced to 

searching for an appropriate function approximation for optimal 

release, by some suitable pattern recognition tool. This has 

been tried with an artificial neural network architecture. 

6.3.1 Identification of N.N. Architecture 

Proper identification of the neural network architecture 

and topology is of prime importance to neural network 

modelling. Before the training process begins, the architecture 
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needs to be identified, with the following design 

considerations: 

• The structure of the system i.e., numbers of layers 

• The synchrony of the system i.e., the mode of control and 

synchronisation of the processors. 

• Symmetry of inter connections. 

• Feed forward/feed backstructure employed. 

• Transfer or activation function relating input to output. 

• Learning strategy. 

However, all of the above cannot be finalised at the 

beginning. The learning strategy especially may need modi-

fication, through the process of training and testing, when 

the model as well as the modeller, both gain experience by 

successively running the model. This is in fact a trial and 

error procedure. 

For the present study, a feed forward , error back 

propagation network has been adopted under supervised learning 

mode, as it is, so far the most popular of the ANN 

architectures available. The structure of the ANN consisted of 

three layers - the input layer having 3 neurons, the output 

layer with one neuron and a hidden layer with four neurons. The 

number of neurons in the hidden layer was decided after a 

rigorous course of training and testing the data during the 

calibration and validation period. Neurons in the input layer 

acted simply as buffers through which input data was sent. 

Regarding connectivity, every neuron in the hidden layer 

is connected to all the neurons in the preceding layer and with 

the output layer neuron. A BP simulator, coded in C++, is 

implemented for identification, training and testing of the 

neural network, under an UNIX environment. 
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6.3.1.1 Activation function 

The sigmoid function is used for the activation function. 

This function is the most commonly used nonlinear activation 

function. The basic characteristics of the sigmoid function is 

that it is continuous, differentiable everywhere, it is 

monotonically increasing. The output yy is always bounded 

between 0 and 1 and the input to the function can vary between 

±00. Under this threshold function, the output y~ from a neuron 

in the hidden layer becomes 

Y~=f(EW~iXi) -
• 1 	

(6.11
) 

 
1+e -( E WJ1x1) 

here 

Wi; 	= Weight of the connection, connecting jth neuron in the 

hidden layer with ith neuron in the input layer. 
x. 	= Value of the i``' neuron in the preceding layer. 

y; 	= Output from the jd' neuron in the present layer under 
consideration. 

6.3.2 Learning Algorithm 

The learning algorithm adopted for the network is of 

supervisory mode, batch processing type, following the 

generalized delta rule, [Rumelhart, 1986] . Learning in fact, in 
the neural network parlance , refers to gradual adjustment of 

the inter connection weights within the network, to minimize 

the error between the ANN output and the output pattern used 

for training. This process is repeated many times with many 

different input/output tuples until a sufficient accuracy for 

all data sets has been obtained. 

This adjustment of the inter connection weights during 

training, employs a method known as error back propagation. In 
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this the weight associated with each neuron is adjusted by an 

amount proportional to the strength of the signal in the 

connection and the total measure of the error.-The total error 

at the output layer is then reduced by redistributing this 

error value backwards, through the hidden layers until the 

input layer is reached. this process continues for the number 

of sweeps prescribed by the modeller or until reaching a 
prescribed error tolerance level. In this way the back 

propagation algorithm can be seen to be a form of gradient 

descent for finding the minimum value of the multi dimensional 

error function. A detailed step by step account of the 

practical problems encountered during training and testing of 

the ANN is discussed in the subsequent sections. 

6.3.3 Momentum, Noise and Shuffling 

ANN objective function surface is typically non-convex, 

which contains multi local optima. It has extensive regions 

that are insensitive to the variations in the network weights, 

imposed by the generalised delta rule, discussed in Chapter-3. 
This results in some major limitations of the BP algorithm, 

such as, 

1. These are easily trapped by local optima. 

2. The convergence-is an extremely slow process. 

3. The architecture is often ineffective, when searching 

weight spaces of high dimension. 

4. - Performance of BP-ANN simulator* is quite sensitive to the 

initial starting point. 

Many new algorithms have come up to improve upon the BP-

ANN performance and to counteract above limitations. In the 

present study, the first and second limitations 'are managed by 

adding momentum and noise features. 



6.3.3.1 Momentum 

Adding a momentum term to the earlier described training 

law, sometimes results in 'much faster training. This term '  
determines the effect of previous-weight changes on the present 

change in the weight space. Therefore, in addition to improving 

the convergence speed, this-. sometimes enables in dragging a 

solution trapped by local optima, as this keeps the weight 

change process moving. The weight change with inclusion of a 

momentum term is expressed as, 

AW~i (s) =t . 8~x1+a0WJ2 (s-1) 	 (6.12) 

Where 

= learning rate; which provides the step size during the 

gradient descent. 

a 	= a momentum rate term (for this study values between .5 

and .9 have been taken.) 

s 	= sweep; one cycle of training using the complete batch of 
input pattern set. 

6.3.3.2 Noise 

This is another approach to breaking out of local minima, 
whereby. a noise •or -a random number is added to each input 

component of the input vector as it •j applied to the network., 

Provision was kept in the simulator to send the noise to input 

patterns, within a range wished by the user. 

6.3.3.3 Shuffling 

In order to counter the last limitation, authors adopt 

mostly, an initial randomized weight space to start with. This 

helps in breaking the symmetry. In case the convergence is slow 
or found to be locked up, usually the weight matrix is broken 

and a new initial weight matrix randomized between -1 and +1 is 
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given. This process continues until convergence is visible 

during running of the simulator. When this also doesn't work, 

the input patterns are changed, another set,is presented to.the 

simulator. 

In the present study, in place of presenting a new set of 

input pattern, a shuffling strategy is adopted whereby,.. an 

algorithm is generated which simply shuffles the existing input 

pattern and re-sends the same to the simulator. This has been 

found to be very effective to desensitise the input pattern 

sensitivity of the BP algorithm. 

6.3.4 Preparation of Input and Output Data Patterns 

In this study, input to the network are initial storages, 

inflows, and demands while optimal release is the output. These 

values during the calibration period of 27 years, are to be 

filtered from the DP output file, which has a [384 X 11] data 

matrix structure. Further these data cannot be sent,. as such, 

to the BP simulator, because the sigmoid function bounds the 

output between 0 and 1. Usually the strategies adopted for this 

are scaling, normalising and standardising, scaling being the 

simplest. Since the sigmoid function does not impose any 

restriction on input patterns, it is a trial and error 

procedure to select proper 'scaling factors for input patterns 

and output response in such a way that the BP will result in 

speedier and better convergence. 

6.3.4.1 Data Manipulator Program 

All above requirements on frequent data manipulation 

warrant the development of a customised data manipulator 

program. The same is developed, coding through C++ with the 

following features. 

om 



• Usage data_manip <input.filename> <output.filename> 

• Accept a 2-dimensional data matrix through input file. 

• Obtain user options for seasonalisation and the data 

columns where manipulation is desired. 

• Show the max. value of each desired data column. 

• Scale down the selected columns interactively and 

rearrange them as desired. 

• Optionally shuffle the created data set keeping the 

sequence of shuffling in a file <ref.out>. 

The program is a generalized one and can be used for 

similar purposes. The code is given in Annexure-III. 

6.3.4.2 Scaling 

In this case the ultimate scaling factors adopted for the 

input patterns and output responses are 2500 and 500 

respectively. These values are determined after studying 

different combinations. These scaling factors provided faster 

convergence compared to others including the one, where the 

factors were calculated to restrain the patterns exactly 

between 0 and 1. 

6.3.5 Training Strategy 

It was observed during training that, the rate of 

convergence is very fast during initial sweeps, but after some 

sweeps, it is either static or very slowly converging. Keeping 

this fact in mind a phased training schedule is adopted. Under 

this schedule the training process was carried out with a 

higher learning rate and noise term and (depending upon model 
acceptance) , a momentum term, for approximately 500 cycles with 

randomization of initial weight matrix. The weight matrix 

obtained after initial training is considered as initial 

solution, in the next phase of training. As a lower learning 

rate has the ability to skip the hurdles of local optima, 
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although the convergence is slow, gradually reduced learning 

parameters and smaller noise terms were taken during successive 

training. 

The number of neurons in the hidden layer of the 

architecture is finalised after trial and error procedure. If 

the architecture is too small, the network may not have 

sufficient degrees of freedom to learn the process correctly. 

On the other hand, if the network is too large, it may not 

converge during training or it may overt it the data. [Raman and 

chandramaul i , 1996] 

For obtaining the optimum number of neurons in the hidden 

layer, 10 different structures were prepared, starting from 3-

1-1 up to 3-10-1.. Every structure is made to learn till 

saturation the system characteristics, by the phased training 

strategy, described in the previous paragraph. The performance 

of each, was finally tested through a comparison model, 

developed in FORTRAN-77 for comparing the RMS error of the ANN 

structures with those of multiple linear and multiple non-

linear regression. It was found that the number of neurons in 

addition to four, although attain higher minimisation level 

during training, fail to map properly the unseen testing data 

during the validation period. Therefore, the architecture of 3-

4-1 was finalised. The chosen network along with the weight 

matrix is given in Figure (6.1). 

6.3.6 Validation 

The BP simulator used for this. study has two options : 1 

for training, 0 for testing. By activating the testing module 

the input patterns during the validation period.is simulated. 

The output scaled between 0 and 1 was filtered through another 

program written in C++ and the output is routed through the 

comparison program COMPARE.F. This entire job was entered into 

a batching program, for ease in successive trials. 
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Demand 

IFig 6.1 : The ANN architecture selected for modelling the reservoir release 

The Weights Matrix ( Network Architecture 3 -4 - 1) 

1 0.211532 -3.35254 -0.45647 p1.24797 
1 -2.73996 0.267676 0.77974 4.374992 
1 -22.1786 11.01551 -53.6145 3.429683 
2 -3.45711 
.2 -2.99356 
2 -10.0251 
2 3.667947 
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6.3.7 Discussion Of Results 

The releases from multiple linear, multiple non-linear 

regression and the ANN models are tabulated in Table (6.2) 

along with the DP model during validation period of 60 months. 

The model releases are plotted along with demand in Figure 

(6.2) and along with release in Figure (6.3). From the 

plottings it can be seen that the ANN mapping of optimal 

release is better, compared to other two models. For better 

comparison of the estimated releases, statistical properties 

along with RMS Error, evaluated through the comparison model, 

are tabulated in Table (6.3). 

The RMS Error for various models during the validation 

period is computed by the expression 

•Erms 6 (DPrelease—Model release )  Z 	 (6.13) 

It can be inferred from the tabulated information, that the 

ANN model, release has least RMS error; it is better correlated 

with DP release, whereas the regression model releases are more 

correlated with the demand. Regarding the other statistical 

properties like mean, SD, skewness etc., all the models have 

more or less equal performance. 
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Table - 6.2 Comparison of models during the validation period 
of 5 years, from 197 9to 1982 (values are in Mcm) 

ACTUAL 
DEMAND 

D.P. 
RELEASE 

M O D E L RELEASES 
LINEAR NON-LINEAR ANN 

231.9 196.3 247.548 244,2607 267.6945 
276 239.1 284.7412 289.4685 276.3455 

247.3 209.9 252.8736 254.6849 261.6215 
163.2 125.4 168.899 167.1575 203.9365 
115.1 76.8 123.0324 124.4151 140.059 
86.4 47.8 94.887 101.525 85.8345 
284.9 246 - 306.8332 307.2799 306.529 
40.8 1.8 72.0906 . 	85.05382 35.2335 

317.9 278.4 347.8502 352.7576 329.3845 
283.4 243.4 298.9634 301.2706 294.9605 

.106.8 66,.6 126.055 124.8781 143.7365 
88.9 48.3 106.5956 109.9094 100.7125 

231.9 189.4 242.0116 240.2641 264.3125 
276 231.7 280.29 . 285.8531 269.0475 

247.3 202.2 247,1372 250.3679 249.4615 
163.2 117.5 163.8652 162.9733 194.993 
115.1 68.5 115.6424 119.1183 126.2575 
86.4 39.5 90.38181 97.4225 80.7715 

284.9 237.5 291.3486 295.464 268.9715 
40.8 0 705082 83.41406 36.342 

317.9 268.2 334.967 343.1243 300.745 
283.4 233.3 291.915 296.1315 279.076 
106.8 54.6 116.0134 117.9264 128.399 
88.9 36.5 96.0062 102.8386 87.86 
231.9 175.5 232.7764 233.7511 245.494 
276 219 272.4466 279.7533 247.893 

247.3 189.3 238.9992 243.8647 226.462 
163.2 104.3 154.3992 155.4878 170.883 
115.1 55.3 106.6502 111.4401 107.3275 
86.4 86.4 105.2934 105.1635 113.6125 
284.9 285 297.0376 299.1015 277.2565 
40.8 41.6 102.6746 111.695 84.519 

317,9 355,8 372.2178 373.6947 369.6425 
283.4 474.5 301.4712 303.0509 297.404 
106.8 156.2 122.5656 122.7582 136.5835 
88.9 93.2 102.2712 106.9518 96.48 
231.9 246.7 235.8464 236.1624 252.4695 
276 276.1 275.1614 281.6361 255.27 

247.3 247.3 242.6804 245.8517 235.6455 
163.2 163.2 158.3656 157.331 181.068 
115.1 115.1 122.172 120.1104 144.053 
86.4 ' 86.5. 104.9362 105.5456 113.093 

284.9 293.2 342.5894 339.5134 354.515 
40.8 96.6 113.8484 120.4908 101.9595 

317.9 469.4 399.1824 396.0761 405.1555 
283.4 414.7 332.9934 325.4214 353.512 
106.8 '206.6 147.3182 138.6545 170.56 
88.9 93.4 120.3458 118.6117 108.6935 

231.9 4722 253.203 247.5011 273.5825 
276 306.1 286.7 290.0377 281.806 

247.3 247.3 253.127 254.2267 263.1915 
163.2 163.3 167,8076 165.9061 . 203.39 
115.1 115.1 119.2412 121.6849 133.348 
86.4 86.4 88.5376 97.24042 76.5845 
284.9 284.9 327.5414 325.082 336.153 
40.8 298.8 154.808 163.6641 209.5435 

317.9 469.2 446.1698 445.7554 439.9845 
283.4 469.2 397.717 388.4221 432.2005 
106.8 214.3 147.989 139.1199 172.424 
88.9 473.8 127.4838 123.0045 125.093 
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CHAPTER - 7 

Time Series Analysis For River Flow Prediction 

7.1.0 GENERAL 

In time series. analysis, stochastic or time series models 

are fitted to one Or more of the time series describing the 

system for such purposes, as forecasting, generating synthetic 

sequences for use in simulation studies and investigating and 

modelling the underlying characteristics of the system under 

study. One particular area, where time series has played a 
crucial role is the field of water resources. 

In most of the water resources problems, after fitting 

stochastic models to pertinent hydrological time series, such 

as, sequences of river flows, the 'fitted models are employed 

for simulating possible hydrological inputs to the system. 

Subsequent to the construction of the system, stochastic models 

are employed for forecasting the input flows to the system, in 

order to ascertain an optimal operating policy which maximizes 

the project output, subject to physical, environmental, econo-

mical and system constraints. 

The present study herein is aimed at obtaining a suitable 

river flow forecast model for at least one time period in 

advance. For this purpose, the Box and Jenkins ARIMA modelling 

approach and an artificial neural network based approach have 

been considered. 
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7.2.0 BOX AND JENKINS ARIMA MODELLING 

The Box-Jenkins procedure is one of the most popular 

procedures for short term forecasting. The basic assumption 

behind this procedure is that a stationary process can often be 

parsimoniously represented by a mixture of auto-regressive and 

moving average models and a non-stationary process can be 

integrated to yield a stationary model, by adopting 

differencing technique in the appropriate way. 

7.2.1 Stages in ARIMA Modelling 

The practical steps involved in the Box & Jenkins analysis 

and the main stages in setting up the forecasting model, in 

this study, are described herein. 

• Model Identification : The data are examined to see which 
model in the class of ARIMA processes appears to be the 

most appropriate. 

• Estimation . The parameters of the chosen model are 

estimated by least squares approach. 	V 

• Diagnostic Checking : The estimated residual from the

•fitted model is examined to see if it is adequate. 

• Alternative Models 	In order to obtain satisfactory 

model, the above procedure (e.g. steps above), is repeated 

with alternative models. 

7.2.2 The Data 

Historical monthly inflow records into the reservoir for 

a period of 32 years, constituted the basic data. Before model 

identification, the entire flow record has been examined for 
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important statistical parameters, and tests for randomness, 

trend and seasonality are conducted. 

7.2.2.1 Test for randomness and trend 

For checking the randomness of the series , turning Point 

Test has been adopted. The annual average data series having a 

data length of 32, showed randomness and the monthly inflow 

data series having 384 data points showed non-random behaviour. 

Both the time series were tested for trend through kendal's 

rank correlation test and linear regression test. The annual 

data series showed a falling trend. For details of the 

algorithms for these tests see Goel (1997]. The results can be 

briefed as below, in Table (7.1). 

TABLE - 7.1 

Turning Point Test 

Particulars 	No of 	No of 	Turning Value of 

Peaks Troughs Points 	Z 

i.Monthly data 

series 	53 	41 	94 	-19.49 
ii.Average annual 

Flow Series 	9 	9 	18 	-0.86 

Remark: Monthly data series: not random at 5% significance 

level. 

Annual data series: random at 5% significance level. 

Kendal's rank correlation test 

Particulars 	Value of P 
	

Test Statistic 

Monthly data series 	35485 	-1.02103 

Average annual 

(79) 



Flow Series  159 _  -2.88653 

Remark: Monthly data series: There is no trend in data at 5t 

significance level. 

Annual data series:' There is falling trend in data at 5~ 

significance level. 

7.2.3 Plotting of' Time Series 

The inflow data has been tabulated along with the 

statistical parameters, such as, mean, standard deviation, 

skewness, kurtosis etc., in Table (5.2). The - time series plot, 

for the calibration period of first 28 years, is given in 

Figure (7.1). The model ide~?tification was based only upon the 

auto-correlation and partial auto-correlation functions. A plot 

of the ACF and PACF for the original data series before 

adopting any standardisation or differencing schemes, is given 

in figure (7.3 a&b). For the computation of ACF and PACF, 20 

lags have been considered. 

Strong seasonality is shown by the time series plot and by 
the sinusoidal behaviour of the ACF plot. This 'seasonality 

along with a falling trend is indicative of the fact that 

instead of an additive model, a multiplicative model can 

represent properly the seasonal effect. The stability of the 

seasonal effect was examined by plotting the time series, after 

adopting various combinations of standardisation, differencing 

and transformation, and will be discussed later in this 

chapter. Finally a simple standardisation of the original time 

series has been selected, which is of the form, 

X -X 
Z C= `_ r (xt represen tsmean) 	

( 1
)  N 

Where 

Z, 	= variate of the standardised series at time t; 
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ACF plot of the calibration Inflow series 
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Fig -7.3 ,a : Plot of the auto-correlation function of the calibration data series before 
standardisation and differencing . ( Period of 28 years has been kept as the calibration period) 

PACF plot of the calibration Inflow series 

0.7 

0.6 

0.5 

0.4 

0.3 

u 
0.2 

0.1 

0 

-0.1 

-0.2 

-0.3 

-0.4 

Lags 1 to 20 

Fig -7.3,b: Plot of the partial auto-correlation function of the the calibration data series 
before standardisation and differencing. I Period of 28 years has been kept as the calibration period) 
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xt 	= variate of the original time series at time t; 

N 	= total data length. 

7.2.4 Differencing to Attain Stationarity 

The first stage in Box-Jenkins procedure is to difference 
the series {z,}, until a stationary series, say {w,}, is 

obtained. As the series has a falling trend and a seasonal 

pattern completing one cycle every 12 observations, the sample 

auto-correlation function of the series, was examined for 

various integer values of d and D [Box-Jenkins, 1976], where 
for example, 

12 
V Zt=.Zr-Zr -i2 	 (7 : 2) 

It has been found that a 12-lag differencing operator 

removed the annual cycle in the monthly time series but 

introduced periodicities in the continuous spectral density. 

Figure (7.2), showing the time series plot after 

standardisation and differencing and Figure (7.4 a&b), showing 

the corresponding ACF plot confirm this statement. This 

limitation of ARIMA family of models ,has earlier been pointed 

out by many authors [Chatfield et al., 1973],(Delleur et al., 
19781, that whenever the original data are differenced to 

attain.stationarity, spurious auto correlations may sometimes 

be introduced, particularly at lag-12 or in its neighbourhood, 

for monthly data. 

7.2.5 ACF and PACF Computation 

The ACF and PACF up to 20 lags, before and after the 

standardisation and differencing are shown in Table (7.4 a&b), 

along with their confidence limits. The mathematical expression 

adopted for computing the same are given below. 

1. 	w, series is computed by 	wt=VdV SDZ t 	 (7.3) 

Where, 



ACF plot after standardisation and differencing 
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Fig -7.4,a : Plot of the auto-correlation function of the calibration data series after standardisation 
and differencing 

PACF plot after standardisation and differencing 
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Fig - 7.4,b : Plot of the partial auto-correlation function of the calibration data series after 
standardisation and differencing 
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Table- 7.4,a : ACF and PACF.values along with 
95% probability limits for the original inflow. data 
during calibration period 

Lag ACV AC 95% LIMITS 
Lower 	Higher 

PACF 95%Lim 

1 0.61 0.6149 -0.11 0.104 0.6149 0.107 
2 0.19 0.1901 -0.11 0.104. -0.3022 0.107 
3 -0.19 -0.1881 -0.11 0.104 -0.2733 0.107 
4 -0.35 -0.3509 -0.11 0.104 -0.061 0.107 
5 -0.41 -0.4087 -0.11 ' . 0.105 -0.1883 0.107 
6 -0.42 -0.421 -0.11 0.105 ' -0.2573 0.107 
7 -0.4 -0.4043 -0.11 0.105 -0.2597 0.107 
8 -0.34 -0.3378 -0.11 0.105 -0.2804 0.107 
9 -0.16 -0.1555 -0.11 0.105 -0.18 0.107 

10 0.16 0.1643 -0.11 0.105 0.0483 0.107 
11 0.58 0.5796 -0.112 0.105. 0.3934 0.107 
12 0.76 0.7632 -0.112 0.106 ' 	0.3 0.107 
13 0.61 0.6076 -0.112 0.106 0.1397 0.107 
14 0.18 0.1828 -0.112 0.106 -0.103 0.107 
15 -0.16 -0.1596 -0.112 0.106. 0.0095 0.107 
16 -0.34 -0.3396 -0.113 0.106 0.0347 0.107 
17 -0.4 -0.3971 -0.113 0.106 -0.0164 0.107 
18 -0.41 -0.4113 -0.113 0.107 -0.0296 0.107 
19 -0.39 -0.3949 -0.113 0.107 -0.0194 0.107 
20 -0.33 -0.3302 -0.113 0.107 -0.0622 0.107 

No. of data = 336, Mean =83.726, Variance =.952E+02 

Table 7.4,b : ACF and PACF values along with 95%, 

probability limits for the Inflow data after standardisation 
ana aitterencing, auring caiioration 

. ACV 	AC 	95% LU I 

1 0.01 0.0251 ' 	-0.112 0.106 0.0251 0.109 
2 0.03 0.0596 -0.112 0.106 0.059 0.109 
3 -0.05 -0.1167 -0.112 0.106 -0.1201 0.109 
4 -0.01 -0.0234 -0.113 0.106 -0.0209 0.109 
5 0 -0.0009 -0.113 0.106 0.0151 0.109 
6 0 0.0004 -0.113 0.107 -0.0115 0.109 
7 0 0.0012 -0.113 0.107. -0.0048 0.109 
8 0.01 0.0165 -0.113 0.107 0.0189 0.109 
9 0.05 '0.1037 -0.113. 0.107 0.104 0.109 

10 0.01 0.018 -0.114 0.107 0.0096 0.109 
11 -0.01 -0.033 -0.114 0.107 -0.0445 0.109 
12 -0.23 -0.5258 -0.114 0.108 -0.5169 0.109 
13 -0.03 -0.0764 -0.114 0.108 -0.0679 0.109 
14 -0.01 -0.0314 -0.114 0.108 0.0454 0.109 
15 0.03 0.0717 -0.115 0.108 -0.0184 0.109 
16 0 .0.0068 -0.115 0.108 -0.0343 0.109 
17 0 0.0055 -0.115 0.108 0.0072 0.109 
18 0 -0.0005 -0.115 0.109 0.0031 0.109 
19 0 -0.0087 -0.115 0.109 -0.0208 0.109 
20 -0.01 -0.0131 -0.116 0.109 -0.0048 0.109 

No. of data = 324,-  Mean = 	-.015, Variance =.4394E+00 
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t=1,2,3, ...... ,n; d = 0; D =1; s = 12; 

vwt=wt-wt-i 
	 (7.4) 

n = N - d - SD 

vswt=we-wt-s 	, 

2. Mean and variance of the differenced series is obtained by 

n 
w= 2 ~wt 	 (7.7) 

n t=1 

let 	variance S,2 = co 	 (7.8) 

3. Auto-covariance function 

n-k 
ck=  E (wt -w) . (wt ,k-w)  

n t=1 

Where, k = 0,1,2,... , K 	(ie., maximum 20 lags) 

4. Auto-correlation Function : 

_ Ck 1'k-- 	 (7.10) 
Co 

Where, k = 0,1,2, ....... , K 

5. - Partial Auto-correlation Function 

1-1 

ri- E 1 1,~ • r1 _~ 

(7.11) 

1- 	 1 i,j' r i 
=0 

Where, L.H.S. of the equation represents PACF and 1 = 2,3,..,L 



7.2.6 Identifying the Static*teary Process. 

After differencing and examining the ACF and PACF plots, 

the problem remains to find a model in the ARIMA class, with as 
few parameters a:s possible, using parsimony considerations and 

which adequately should describe the series {w,}. The general 

class of mixed autoregressive moving average seasonal model can 

be written as 

~p (B) (DP(B12 ) wC =9q (B)80 (B12 ) at 	 (3.12) 

Where, 

B 	= backward shift operator 

4p , 4p, eq . OQ= polynomials of order p,P,q,Q respectively. 

{aj} 	= independent random variable series with mean zero 

and variance aa2 . 

The first problem encountered is to select reasonable 

values of p,P,q,Q. This is done by mainly examining the sample 

auto-correlation functions, keeping parsimony, overfitting, and 

good diagnostics as the guidelines for selection. Regarding the 

identification of AR and MA parameters from ACF and PACF plot, 

the tips offered by many authors including Box and Jenkins, has 
been adhered to. The criterions adopted and some of the 

observations during the trials, are summarised below. 

Table 7.2 Tips for model identification through ACF and PACF 

Model ACF PACF 

AR (P) Dies out. Cuts off after lag p 

MA (q) cuts off after lag q. Dies out 

ARMA 

(p,q) 

Dies out after lag 

q-p. 

Dies 

p-q. 

out after lag 

if q a p ACf should decay after 

lag q-p 

PACF should decay from, 

beginning. 

If q < p It should drop off from 

beginning 

PACF 

lag p 

should decay after 

-q 
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During identification it was observed that, amongst the 

competing models, by examining only the ACF.(PACF values, the 

properties of the time series could not be detected. Therefore, 

before the final identification, all such competing models are 

tested for residual analysis & diagnostics. During this job, it 

was seen, whether the identified model succeeds in,retaining 

the stationarity and invertibility criteria or not. 	few 

selected trials, along with the residual analysis and other 

pertinent details are tabulated in Table(7.-3). On the basis of 

minimum AIC and Q-statistic, a (0,0,2) X '(0,1,1) mixed ARIMA 

model is selected. 

7.2.7 Initial Parameter Estimation 

The initial estimates of the parameters are obtained from 

the equations, governing their auto-covariance structure. 

Program-2, titled as " Univariate Stochastic Model Preliminary 
Estimation (USPE)", given by Box-Jenkins, in form of an 

algorithm is implemented in FORTRAN-77, to obtain the initial 

estimates. Moving average models present more problem, since 

their rks are nonlinearly related to the Os. During running 
this module, many alternatives were eliminated for not 

satisfying the invertibility condition.The initial estimates 

for non-seasonal MA parameters obtained are 

MAl = -0.0237 	MA2 = -0.0598 

7.2.8 Final Parameter Estimation 

Box-Jenkins [1976], suggest that the approximate maximum 

likelihood estimate(MLE) for the ARIMA model parameters be 

obtained by employing the unconditional sum of squares method. 

The modified sum of squares function is minimised, through a 

recursive procedure, in order to obtain the improved parameter 

estimates. A FORTRAN code employing the program-3, titled as 

"Univariate Stochastic Model Identification" and "The Marquardt 
Algorithm for Nonlinear Least Squares", given by Box-Jenkins, 
is implemented to obtain the least squares estimates of the 
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parameters as, 

Seasonal MA parameter = -0.951 

MA parameter (1) 	_ -0.123, Confidence limit = 0.0551 

MA parameter (2) 	= -0.125, Confidence limit = 0.0552 

7.2.9 Diagnostic Checks 

In the context of previous discussions, the diagnostic 

tests deal with the residual assumptions, in order to 

determine, whether the a,s are independent, homoscedastic and 

normally distributed. However, these estimates, along with the 

residual auto-correlation function, Porte-Manteau test 

statistic and AIC, are calculated , during the implementation 

of the program for final parameter estimation. The RACF values, 

mean and variance. of the a, series and Q-value are shown in 

Table (7 .4 C). 

It was found during diagnostic testing that, a mere data 

transformation couldn't correct dependence of residuals. So, in 

order to attain independence, many times the identification and 

estimation stages have been repeated for determining a suitable 

model. Selected trials are summarized in Table (7.3). 

During diagnostic checks, model adequacy is usually tested 

by overfitting also. This involves fitting a more elaborate 
model, than the one estimated, to see if including one or more 

parameters, greatly improves the fit. The same Table (7.3) on 

diagnostic checks may be referred, to observe the changes in Q-

statistic, AIC or in the residual variance, when the order of 

the AR or MA parameters is increased, one at a time. As it can 

be seen from that table that, any further increase over and 

above those selected, i.e., (0,0,2)X(0,1,1) model, doesn't 

significantly improve the model characteristic, it is 
considered to be final. The RACF values for the identified 

model are furnished in Table(7.4c) and the corresponding plot 

is given in Figure (7.5). 



Table 7.4,c : Auto-correlation function of the residuals, 
Tho O ctntictir_ anri the AIC value for the TS model 

Lag ACV AC RESIDUAL ANALYSIS 
1 -0.003 -0.012 
2 0.001 0.002 
3 -0.005 -0.025 
4 0.002 0.01 Statistics of Residuals 
5 0.004 0.018 Mean : 	-.0001, Var : 	66.1771 
6 0.002 0.008 
7 -0.001 -0.004 
8 0.002 0.01 
9 0.021 0.098. Portmanteau Test Result 

10 0.009 0.041 Q-Statistic = 	11.890, 
11 0.007 0.032 Degrees of Freedom = 17 
12 -0.02 -0.091. 
13 0.022 0.099 
14 0.009 0.04 
15 0.011 0.052 AIC = -481.139 
16 0.003 0.015 
17 0.003 0.012 
18 0.001 0.004 
19 -0.001 -0.004 
20 0.003 0.014 

Fig - 7.5 : The Racf plot for the identified ARIMA (002 X 011) model 

RACF plot for the identified model 

0.25 
0.2 

0.15 
a 

0.05 	 ' 

O) 	 C7 

-0.15 
-0.2 

-0.25 

Lags upto 20 
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7.2.10 Su.mning The Model Selection 

The above computations, starting from obtaining data 

statistics up to RACF analysis, were carried out by computer 

programs, developed in FORTRAN-77. For better identification, 

provision was kept in the programs for instantaneous display of 

the time series plots, in original and after user suggested 

transformations, standardisation and differencing. For a 

detailed and step by step algorithm of the computations 

described above, readers are requested to refer program-1,2,3 

of Box and Jenkins (1976] . 

7.3.0 FORECASTING 

After selection of the multiplicative, seasonal ARIMA 

model and computing the model parameters, the task remaining is 

to use the model to forecast future values of the observed 

inflow time series. It may be borne in mind before forecasting 

that estimation errors in the parameters will not* seriously 

affect the forecasts unless the number of data points, used to 

fit the model, is small. Before forecasting, the model is 

expressed mathematically as per Box-Jenkins notations. 

7.3.1 The Identified Model 

One of the most general form of multiplicative seasonal 

ARIMA (p, d, q) X (P, D, Q) W, model is written as 

- (D PB?W
) 

(1-C 1B-4 2 B 2- ........-4 BP) 
(1-B w) D. (1-B) dZ 	_ 	 (7.13). 
(1-®1B -e2 B 2  - .. ...... -®QB W ) 

(1-01 B-02 B 2 -....... -O gB 4 ) a t  

Which in a short form can be written as 
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4) (B W ) .c(B) . (1-BW) D (1-B) d .xt=®(B) .0(B) .at 	(7.14) 

In the present case 

p = P = O; 	q = 2; 	Q = 1; 	D = 1; 	d = O; 

So along similar lines, the identified model can be expressed 

as 

(1-B12 ) Zt= (1-01B-02B 2 ) (i -e1 B'2 ) at 

	

Zt-Z12= (1-61B-02B2) (at-81at-12) 	(7.15) 

= at-O1at-1-e2at-2-®tat-12 +e1®1at-13 +62e,at-14 

or the final expression can be written as, 

Zt - ZC 12+a -sat-l -eat -®la c-12 +®1 (elaC-13¢e2at-14) 	(7.16) 

Where Z, is the standardised series. 

Equation (7.16) represents the elaborate form, which has 

been used recursively in the forecast algorithm, provided by 

Box-Jenkins in program-4, titled "Univariate Stoch,--.stic Model 

Forecasting" with scope for some generalisation. 

7.3.2 Input Parameters for Forecast 

The following information was provided to the program in 

the form of an input file: the {x~} series during the 

calibration period, total data length, order of differencing 

operators d & D, seasonality S, order and least squares 

estimates of corresponding nonseasonal and seasonal AR and MA 

parameters, maximum lead time of forecast, maximum value of 

backward origin, and least squares estimate of the residual 

variance. Apart from these, the other information, such as, 

data manipulation options like standardisation, differencing 

orders and lags, transformation etc., and the options relating 

to updating the forecast are accepted from the user, during the 
program execution. 
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7.3.3 Difference Equation Approach 

Box and Jenkins approach to forecasting provides three 

different ways to view at an eventual forecast function and its 
updating. These are 

• Forecasts from difference equation approach; 

• Forecasts in integrated form; 

• Forecasts as a weighted average of previous observations 

and forecasts made at previous lead times from: the same 

origin. 

In the present study, for generating the forecasts at various 

lead times, the difference equation approach is used. However, 

for computing the probability limits of forecast and for 

updating the higher .lead time forecasts. the psi weight is 

considered. This is a linear filter, that is supposed to 

transform a white noise into the Zt series. An infinite series 

of as can b represented as, 

	

(B) Z t=at 	 (7.17) 

This is equivalent to  

	

Zt=fir (B) .a 	 (7.18) 

with 	(B) = 	 (7.19) 

Under the difference equation approach, equation (7.16) is 

rewritten for forecast in the following form: 

2(  1) = [Zt+1 ] = 	
7.20 

7't+1-12+a t+1-sla t+1_1 ta t+1-2 -®la t+l-12 +®1 (01aC+l-13{~%~ 

Where, [Z,+1 ] 	is the conditional expectation of Z,+1, taken at 
origin t. 

In the program, the maximum lead value of 14 has been 

kept. The white noise a, is computed by using the concept of 
back-casting, proposed by Box-Jenkins. This concept is useful 

in estimating values of the series, which have occurred before 

(94) 



the first observation was made. 

7.3.4 Updating and Forecasting Error Variance 

In order to determine the updating formulae and to obtain 

the variance of the forecast error a,(1), the 'psi weights' are 

computed for a finite length. The recursive equation used for 

updating the forecasts, is 

= 2c (1+1) +411 . a C*1 	 (7.21) 

where at+, is computed after providing the actual value of Z. 
This provision was kept in the program in an user interface 

mode. The forecast error variance at any lead time 1 is 

calculated by the formula 

V( 1) = [1+4~2+..... +11_12] aa2 	 (7.22) 

7.3.5 Discussion of Results 

The last four year data, kept aside for validation, was 

used for testing the forecast results. Although a maximum lead 

time up to 14 has been kept in the forecasting program, only 

lead--1 forecast values are filtered for 48 months flow data. 
This is done by successively calling the updating provision of 

the program. As the purpose of the study was to compare the 

relative prediction performance of an ANN based forecast model 

with that of the Box and Jenkins multiplicati ,e seasonal model, 
the discussions on the results is shifted to subsequent 

sections in this chapter. 

7.4.0 FORECAST THROUGH ANN MODELLING 

The same error back propagation algorithm and the BP 

simulator used earlier for mapping optimal releases, is used in 

this case also. Hence all the discussions on ANN, training 

strategy, shuffling technique etc. hold good here. However the 

data manipulator program and the comparison models do not hold 

good in this case. Therefore, only the special features and the 
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problems encountered during ANN forecasting of inflow time 

series are discussed below. 

7.4.1 Application of Neural Network Model 

The neural network approach was executed with the historic 

inflow series of Indravati river for 32 years. For training 

purpose, the data set is divided into two parts, i.e., one part 

consisting of first 28 years is used for training the network, 

and last 4 years data was kept aside for validation. The, mean 

square error over the training samples was used as the 

objective function. The MSE is given mathematic._ily for all 

input patterns as, 

N m 

E  = 2N  E E  ( Tpn-op°)  2 	
(7.23 ) 

p=1n=l 

Where, 

Tp„ = target value T„ for the pth pattern; 

Or„ = neural network output value 0, f or the pth  pattern; 
N = total number of patterns; 

m = Total number of output neurons; 

7.4.2 Preparation of Input and Output Data Patterns 

The basic data which was to be appropriately manipulated 

into a number of input and output patterns, was the continuous 

flow record in the form of an one dimensional data matrix. In 

case of an univariate time series, searching for the 

appropriate lags and their algebraic manipulations posed a 

typical problem. In addition to above, the sigmoidal function 

limitation which requires the patterns to be in the range of 0 

and 1, opened many options. Again, Because the identified Box-

Jenkins model is of purely MA nature, a 12-lag differencing 



option became a possible alternative to be included into the 

input pattern. 

So, a customised data manipulation program was written 

[data_manipl.c] in C language with the following provisions. 

• Accept an one dimensional data matrix of any size. 

• Obtain the options for standardisation and differencing. 

Under differencing option interactively obtain the lag 

order. 

• Accept the data length in each pattern and their corres-

ponding lags. 

• Show the maximum and minimum value of the entire sample. 

• Scale down the patterns obtained, between 0 and 1. 

Basically this program maps an one dimensional vector 

space into a multi dimensional one and gives the maximum and 

minimum values. The source code for the same is given in 

Annexure- IV. 

7.4.3 Deciding On Size Of Input and Hidden Layers 

Before deciding about the size of the hidden layer, it is 

necessary to decide on which values should constitute the input 

pattern. A number of trials had to be made to decide this. As 

an initial guess, three consecutive inflow values and two 

consecutive seasonal values have been tried. Gradually number 

of parameters are reduced on parsimony considerations. 

The final input pattern consisted of an output pattern X,,, 
and the input pattern consisted of { X„ X 2 , Xv'., } , where r= 
number of months, 1 to 12. and v = number of years of testing.If 

r-1 < 1 then X, was replaced by X,_,,,2 , and if (r-2) < 1 then 
X~,.2 was replaced by X,2+T_2. This indicated that every piece of 
data was dependent on two previous data values and upon the 

same season of previous year. 
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The number of intermediate units was obtained through a 

trial and error procedure, adopting a similar strategy as 

discussed in Chapter-6. Out of many trial nets where 

intermediate layer neurons varied between 1 to 10, it was 

observed that the 3-8-1 network performed well on the minimum 

MSE criterion during training, testing and during comparison 

with other models. 

7.4.4 Training 

During initial phases of training, it was observed that 

adopting a momentum term blows up the initial weight matrix and 

brings the simulation process to a halt. However adding a noise 

term up to 0.1, helped in speedier convergence. Under the 

phased training programme, for successive improvement of the 

system error, the noise was reduced and gradually momentum was 

introduced incrementally. The entire process of 'training 

consisted of 14 phases and total 4000 cycles. A learning rate 

below 0.4 was found to extremely slow down the process. 

Therefore in all the training process learning rate was made to 

vary between 0.4 to 0.8. The finally chosen architecture is 

given in Figure (7 . 6) 

7.4.5 Testing and Comparison of Results 

When training was considered to be finalised, the weights 

were collected from the training module of the BP simulator to 

test the network and monitor its performance on test samples in 

terms of MSE criterion. In addition to the MSE criterion, two 

other criterions, namely, average percentage error and average 

monthly deviation are kept for monitoring the performance of 

the forecast models. For computing these values on individual 

years of testing and on the entire validation period, another 

time series simulator program is written in FORTRAN-77 and 

included into a batching program, similar to that described in 

Chapter-6. 
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Criterions for performance monitoring : 

Average monthly deviation was computed by following 

expression. 

12 
1  r (Actual Inflow (!)-Model Inflow  (i)) 	(7.24) 
1 2 Y  1=1 

Average percentage deviation and the RMS Error were computed by 

the following expressions. 

1 12  (Actual 	-Model inflow 	Inflow ) • *100 	(7.25) 
12 1  _1 	Actualinflow 

12 
1 12 	(Ac tualinflow-Model inflow )  2 

	 (7:26) 
1=1 

The RMS Error has a bias for higher deviations while the 

average percentage .  deviation has a bias towards low observed 

flows. Quite contrast to above two, the average monthly 

deviation parameter as expressed in equation (7.24) is an 

unbiased interpreter of the forecast performance. Therefore 

above three criterions have been considered to suffice the 

performance monitoring. 

Finally an one-month-ahead forecast of inflow time series 

was generated from 1979 to 1982 and plotted in Figure (7.7) 

The monthly forecasts by ANN and Box-Jenkins model for 

individual years of testing along with the criterions defined 
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YEAR OF TESTING: 	1979 	 YEAR OF TESTING: 	1980 

Actual 
Flow 

Flow by 
ANN 

% Vol 
Deviation 

Flow by 
Box model 

% Vol 
Deviation 

25 17.92 28.34 25.4 1.6 
24 17.01 29.11 21.86 8.92 
14 18.21 30.06 17,85 27.5 
17 14.44 15.07 17,01 0.06 
14 30.65 118.92 18.96 35.43 
28 23.09 17.55 67.91 142.54 
79 107.73 36.37 185.45 134.75 
130 155.68 19.76 253.03 94.64 
106 199.2 87.92 181.75 71.46 
58 66.7 15 80.4 38.62 
32 39.36 23 31.46 1.69 
16 22.26 39.14 30.65 91.56 

CRITERIA ANN BOX 

RMS ERROR 897.01 2879.97 

AVERAGE PERCENTAGE ERROR 38.35 54.06 

AVERAGE MONTHLY DEVIATION 17.69 32.84 

Actual 
Flow 

Flow by 
ANN 

% Vol 
Deviation 

Flow by 
lox mod. 

3L Vol 
Deviation 

20 18 9.99 22.71 13.55 
25 31.57 26.3 20.18 19.28 
12 18.21 51.73 17.71 47.58 
8 17 112.55 17.1 113.75 
8 14.34 79.23 17.34 116.75 

129 32.63 74.7 64.25 50.19 
116 103.28 10.97 192.28 65.76 
277 187.69 32.24 262.92 5.08 
246 222.48 9.56 197.28 19.8 
47 87.43 86.02 111.11 136.4 
34 35.76 5.17 41.39 21.74 
26 19.11 26.5 23.67 8.96 

CRITERIA ANN BOX 

RMS ERROR 1655.83 141555 

AVERAGE PERCENTAGE ERROR 43.75 51.57 

AVERAGE MONTHLY DEVIATION 25.09 25.78 

YEAR OF TESTING : 	1981 	 YEAR OF TESTING: 	1982 

Actual 
Flow 

Flow by 
ANN 

% Vol 
Deviation 

Flow by 
Box model 

% Vol 
Deviation 

19 24.1 26.86 23.59 24.15 
30 20.31 32.29 22.2 26 
25 21.43 14.29 17.58 29.68 
25 14.32 42.73 1864 25.44 
76 14.8 80.53 20.33 73.25 

116 150.97 30.15 77.24 33.41 
306 175.48 42.65 ' 193.81 36.66 
270 257.87 4.49 283.5 5 
317 249.3 21.36 21945 30.77 
159 149.63 6.9 110.9 30.25 
84 55.51 33.92 6084 27.57 
38 37.1 2.37 41,13 8.24 

CRITERIA ANN BOX 

RMS ERROR 232336 249363 

AVERAGE PERCENTAGE ERROR 2813 29.2 

AVERAGE MONTHLY DEVIATION 31 19 34.85 

Actual 
Flow 

Flow by 
ANN 

V. Vol 
Deviation 

Flow by 
lox mod@ 

V. Vol 
Deviation 

25_ 20.85 16.59 26.48 5.92 
31 21.08 32 22.27 28.16 
24 36.16 50.68 18.46 23.08 
20 20.88 4.41 18.93 5.35 
19 68.17 258.77 22.26 17.16 
12 75.84 531.97 71.61 496.75 
237 199.62 15.77 180.42 23.87 
461 346.26 24.89 264.59 42.61 
525 262.51 50 243.7 53.58 
440 . 251.53 42.84 162.6 63.05 
87 106.07 21.92 114 31.03 
69 49.31 28.54 63.9 7.39 

CRITERIA ANN BOX 

RMS ERROR 	' 10541.2 16857 3 

AVERAGE PERCENTAGE ERROR 89.87 665' 

AVERAGE MONTHLY DEVIATION 65.16 76.96 

Table -7.5: showing the comparision of ANN model performance and the Box & Jenkins model performance 

during the validation period of four years along with RMS error, Average percentage errors and Average 
monthly deviations 

(102) 



300 
250 

200 
150 

R 100 

N 50 

in 	0 
. 	1 3 	4 	5 6 	7 	8 	9 	10 	11 

Months 

Box flow 

'-ANN flow 
__Q4 

	ctual flow 

2 

Simulation of river inflow :year - 1979 

Fig - 7.8 : Figure showing the prediction of actual river inflow by the ANN model and the Box-enkins 
model for the year 1979 

Simulation of river inflow : year - 1980 

300 

E250 	 ~: 	 Actual flow 

E 200 	
— ANN flow 

5 	 Sox flow 'y 150 

L 100 	 ~ Q . 

o, 50  

1 	2 	3 	4 	5 	6 	7 	8 	9 	10 	11 	12 

Months 

Fig -7.9:  Figure showing the prediction of actual river inflow by the ANN model and the Box-Jenkins 
model for the year 1980 
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above are furnished in Table(7.5). The corresponding river 

inflow predictions are given in Figure (7.8) through Figure 

(7.11). The bar graph for RMS error, average monthly deviation 

and average percentage error for individual years of testing 

and for entire validation period, have been plotted in Figure 

(7.12), from where a comparison can be made between the ANN and 

Box-Jenkins forecast models. 

7.5.0 DISCUSSION 

A summary table is prepared from the various tables and 

figures to have a quick grasp over the prediction ability of 

the competing forecast models. The same is furnished in Table 

(7.6). The statistical parameters for various model outputs are 

computed in order to see, whether the predictions have been 

able to retain the parent distribution and statistical 

properties or not. The same is furnished in Table (7.7). From 

observing the graphs and the summary Tables (7.6) and (7.7) the 

following inferences are drawn: 

1. The ANN prediction is better correlated with the observed 

inflow for years 1980, 1982 and during entire validation 

period, whereas 	Box and Jenkins model shows better 

performance for years 1979 and 1981. 

2. Average monthly deviation for all the individual years as 

well as for the entire period is less for the ANN model. 

3. For the year 1982, during which the monsoon flows are 

relatively higher ANN prediction is much better than the 

ARIMA model. 

4. Invariably, very high flows are mapped better through the 

ANN forecast model, whereas, extremely low values are 

predicted better through the ARIMA model. 
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Table -7.6 :Showing the comparision of ANN forecast and Box-Jenkins 
•......:..~6 ne ..e. +he nri*nrin'c ,icorl in tho time- series simulator 

Period of RMS ERROR Monthly '/ vol. Deviation Avg. Monthly Deviation 

Testing ANN Box-Jenkins ANN  Box-Jenkins- ANN Box-Jenkins 

1979 897.01 2879.97 38.35 54.06 17.69 32.84 

1980 1655.83 1415.55 43.75 51.57 25.09 25.78' 

1981 2323.36 2493.63 28.13 29.2 31.19 .34.85 

1982 10541.24 16857.32 89.87 66.5 65.16 76.96 

11979-1, 98A 3854.36 591.1.62 50.02 50.33 34.79 42.61 

Table -7.7: Showing the comparision of ANN forecast and Box-Jenkins 
forecast as -per the statistical parameters 

• Period of Mean and Standard Deviation Skewness and Kurtosls Coeff. of Correlation 

Testing Observed ANN Box-jenkin Observed ANN Box Jenkin Observed & Observed & 

flow Estimation Estimation flow Estimation Estimation ANN Box Jenkin 

1 2 3 4 5 6 7 8 9 
1979 45.250 59.354 77.644 1.314 1.508 1.303 0.949 0.973 

39.446 62.059 82.131 0.542- 1.189 0.342 

1980 79.000 65.625 82.328 1.424 1.515 1.174 0.919 0.910 
94.286-- 71.485 87.521 0.807 1.158 -0.057 

1981 122.083 97.568 90.768 0.910 0.746 .1.193 0.932 0.945 
114.295 93.770 91.951 	- -0.813 -1.073 0.147 

1982 162.500 121.523 100.768 1.076 0.937 0.796 0.949 0.930 
199.189 113.383 91.022 -0.665 -0.535 -0.837 

1979-198 .102.208 86.018 87.877 1.841 1.234 1.000 0.914 0.824 
129.549 88.361 85.840 2.725 0.464 -0.467 - 
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CHAPTER -8 

Reservoir Simulation Analysis 

8.1.0 GENERAL 

A modern water resources system may be created, through 

almost infinite combinations of a large number of system 

variables. Conventional methods of analysis including the 

optimization techniques like LP, NLP or DP are practically 

unable to study the behaviour of complex systems in a. 

continuous fashion. These can consider only selected parts of 

the system, generally using historic hydrologic data of a 

limited period of record. However, it is possible to simulate 

by simplified systems, the behaviour of relatively complex 

water resources systems for periods of any desired length, to 

perform numerous and repetitive computations needed for many 

combinations of the system variables, and finally evolve an 

optimal or near-optimal design of the system. 

A simulation model provides a rapid means for evaluating 

the anticipated performance of the system, for the given set of 

design and operating policy parameters. Thus simulation is 
essentially a search technique, which resembles trial and error 

approach, used in traditional operation studies, using which a 

near-optimal solution can be achieved. 

In the present study, the simulation technique has been 

adopted to reproduce the behaviour of the Indravati river basin 

system. The system was-operated according to various models 

considered, such as, linear regression based model, non-linear 

regression based model, conventional standard operating policy 

and the ANN based model. After obtaining the inherent 

characteristics and probable responses of the system for. each 

(108) 



option separately, the best model has been selected. 

8.2.0 PROCEDURE 

For the above purpose, a customised, menu driven, user 

friendly computer program is prepared in FORTRAN language under 
UNIX environment. The following procedure has been adopted for 

conducting the simulation analysis. 

1. Assembling and arranging the basic data in the system in 

a form, easily handled by the computer. 

2. Formulating various operating procedures to serve as 
fundamental control for the simulation. 

3. Code the basic system data and the operation procedu-e in 

FORTRAN language to serve as the fundamental control for 

the simulation. 

8.3.0 ASSEMBLING THE BASIC DATA', 

With reference to the discussions made in the earlier 

chapters, the period of five years ( from 1978 to 1982) was the 

validation period for testing the relative performance of the 

various models under consideration. Hence the monthly river 

inflow record in Mcm, during this validation period constituted 

the. basic hydrologic data input for the simulation model. 

Monthly irrigation demands and evaporation, values, as 

earlier used in the case of DP optimization, have been used in 

this case also. Regarding the system parameters, such as, size 

of the storage reservoir, its upper and lower bounds, MDDL, 

MWL, TWL values, efficiencies relating to power generation, 

power plant capacity, and the discretized values of elevation-

area-capacity curve, the same data, as was used earlier in 

case of DP, has been retained.. 	. 
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The parameters obtained from regression by least squares 

approach, have been built into the customised program, for 

formulating the regression based operation policies. As the 

prime objective of this study is to validate the applicability 

of ANN, the ANN based model parameters have been suitably 

accommodated into the data input structure. For reasons, to be 

described later in subsequent paragraphs, the weight matrix 
generated by the neural network simulator, which represents the 

ultimate certificate of learning on part of a neural network, 

has been kept as an altogether separate input file with its 

original name intact, i.e., < weights.dat > . 

Apart from all above data, the input of prime importance 

that remains, is to define the initial state and initial period 

for starting the simulation process. The .starting period has 

been kept as January, 1978, as it is the starting.month of the 

validation phase. The initial reservoir capacity has been kept 

the same as the dynamic programming optimization scheme, 

i.e.,2127 Mcm. The reason behind selecting this value is that, 

keeping all other system constraints and parameters unchanged, 

this aids in observing the relative performance imitation by 

various models as compared to the initial DP. 

8.4.0 FORMULATION OF OPERATION POLICIES 

The operation policies for multiple regression based 

models have been formulated by framing the corresponding 

release equations. 

A. 	Linear Regression: 

Compute release by using the following equation. 

Cal_rel (t) _ -23 .464 -+ 0.022 * 5(t) + 0.086 * Inf (t) + 

0.95*Dem(t) 	 (8.1) 

t = 1 to 60, 

If Dem(t) > cal rel(t) and reservoir elevation > MDDL. 

then Act_rel-(t) = Dem(t) 	 (8.2a) 
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else Actrel(t) = calrel(t)_ 	 (8.2b) 

B. Non-linear Regression:, 

Compute release by using the following equation. 

Cal_rel (t) = 1 .875* (S (t) ) 0.46' 	+. o.0ll* (Inf (t) )'.269 , 	+ 

0.105* (Dem(t))'.366 . (8.3) 

t = 1 to 60, 

If Dem(t) >'cal rel(t) 	and reservoir - elevation > MDDL 

then 	Act rel (t) = Dern(t) (8.4a) 
else 	Act rel(t) = cal rel(t) (8.4b) 

Where, 

cal rel(t) = Release computed from the corresponding regression 

equation during the period t; 

act rel(t) = Actual release to be made during the time 

period(t); 

C. ANN based Model: 

It is apparent by now, that the neural network does not 

yield any parameters after training, rather the intelligence 

acquired after learning, is.distributed within the network in 

form of connective -weights, which cannot be interpreted to have 
any physical significance. So the model formulation in. this 

case required the embedding of a part of the testing algorithm 

of the ANN simulator, into. this module of the program. The 

weight matrix, freezed after the completion of training, is 

given as an input for this module. 

The algorithm adopted for obtaining release through the 

ANN net is, 

y~= 	 1 
3 	 (8.5) (l+e- ( 	'xi .W(1.i, ) ) 

1=1 

J = 1 to 4 



Where, 

yj 	= Output of j th hidden layer neuron; 

x, 	= Scaled down/normalised value of the ith neuron input 

in the input layer; 

W (l, i, j) = Weight connecting i" neuron in the 1" layer with 'j 
neuron in the (1+1)" layer; 

The above recursive equation connects the input layer 

neurons with those of the hidden layer. 

and 

Zk= 
1 

4 	 (8.6). 
(l+e- ( 	y~W(1; j,k) ) 

-7=1 

where, 

Zk 	= Output of the kth output layer neuron Release during 

time period t is obtained from zk(t) scaling it up 

appropriately. 

The equations 8.2a,b or 8.4a,b have also been implemented in 

this case. These additional constraints are built into the 

model keeping in view the fact that if water is available, it 

will not be a prudent decision to cause irrigation deficit by 

sticking to the model releases. 	V 

D. 	Standard Operating Policy: 

A monthly simulation model based on the, SOP is also 

constructed for the system considered. The SOP is formulated as 
follows. If the available water, during time period t, is less 

than or equal to the demand, then the available water is 

released. In the second case, when the water availability is 

higher than the demand, the quantity equal to the demand only 

is released and the remaining quantity is stored if possible, 

otherwise it is spilled. 
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8.5.0 CODING THE SYSTEM DATA AND OPERATION PROCEDURES 

One of the major limitations, of the application of 

simulation analysis to the design of water resources systems is 

that, it is not flexible in handling various operating 

procedures of the system. The computer can be instructed to 

follow only one operating procedure at a time. Thus provision 

was kept in code, developed in FORTRAN-77, to accept the option 

from user to select any one of the four operating procedures, 

described in the previous section and the system is simulated 

for that operating procedure only.-  The model has to be re-run 

for obtaining the results from some other procedure. 

The additional model specific input data, apart from those -

discussed in section 8.3.0, are obtained in an interactive 

mode. This is especially useful in computing the ANN based 

model simulation and in fact, this is also helpful in 

identification of proper structure of the net and for effective 

training of the architecture. It is always not possible to 

minimise the Sum Square Error surface to attain a hypothetical. 

zero value or to reach a global minima, because of the inherent 

shortcoming of the feed forward BP neural networks.These get 

locked up in local minima points. So every conceivably trained 

architecture has to be routed through the simulation model 

also, after finding its mapping ability. This was accomplished 

by formulating batch programming through UNIX-Macto 

development. 

The scheme adopted for developing this was, 

Step-i 	Training the ANN through ANN simulator -training 

module; 

Step-2 

	

	Testing the ANN through ANN simulator - testing. 

module; 

Step-3 

	

	Filtering the required output from output file or the 

BP simulator. 
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Step-4 	Testing the mapping ability of the trained net in 

comparison to other operating models; 

Step-5 

	

	Sending the output through. the reservoir simulacion 

module, for final testing of the performance. 

As training and testing of an ANN architecture involves 

various options, like changing the structure parameters, 

choosing proper scaling parameters and increasing or decreasing 

testing data length, a number of trial and errors_ had to be 

performed. Therefore, instead of adopting cumbersome exercise 

to attain full compatibility with other programs, some 

developed in FORTRAN and some developec.in C and C++ language, 

an interactive data input mode was preferred. 

As the program developed is a- customised one, the 

regression parameters have been built into the release 

subroutine. However, with minor modifications, the program can 

be implemented for other similar cases by assigning variables 

to the regression parameters. The code generated in FORTRAN.  is 

given in Annexure - V. 

8.6.0 DISCUSSION ON RESULTS 

The simulation model was run for each of the above four 

options and the reservoir working tables are obtained for a 

simulation period of five years. For final comparison of the 

various models, a reservoir behaviour table is prepared with 

the following reservoir attributes, namely, number of times the 

model fails' in meeting the irrigation demand, average deficit, 

number of times reservoir goes empty or becomes full or spills 

in a season within the simulation period, average spill and 

average power generation. 

The statistics of reservoir behaviour are furnished in 

Table (8.1). The corresponding'releases from each model during 

the simulation period is given in Figure (8.1). It may be 

observed from the time series plot of the releases that, all 
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the models are more or less on an equal footing and no major 

deviation occurs amongst them. The reservoir behaviour also 

remains more or less same. For most of the months, the average 

deficits, spills and number of times reservoir has gone empty 

or full, are the same. For a better comprehension of the 

performance appraisal of the models another summary table is 

furnished below in Table 8.2. 

Table 8.2 : Summary of reservoir behaviour by various models in 

comparison to the DP optimisation. 

Criterion 	DP ANN 	_Linear Non _un SOP 

Cumulat. 	15090 14953 14795.8 14822 14590 

Gene rat. 

Cum. 1317 1396 1420 1490 1274 

Deficit 

Cum. 2041 1852 1979 1957 2150 

Spill 

Failure 30 10 10 1: 10 

Months 

Spilling 4 4 4 4 4 

Months 

Some important inferences can be drawn based . upon the 

result obtained from simulation. 	. 

1. DP being an optimization tool, is able -  to generate maximum 

power. However all other models have been able to reach near 

the DP performance, while the ANN model performance is. the 

best_ 

2. SOP gives minimum power generation, but irrigation deficit 

is also the minimum, i.e., even less than the DP performance. 

3. 	The DP model has maximum number of deficit months. But as 
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the total deficit is more or less the same, it is obvious that 

while optimising, the total deficit has been divided into 

larger number of smaller deficits. 

4. 	The performance of the ANN model is better than all other 

models, on all the criterions selected for comparison excepting 

the irrigation deficit, where ANN performance is marginally 

inferior to the standard operating policy. 
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CHAPTER -9 

Summary and Conclusion 

9.1.0 OBJECTIVES AND METHODOLOGY 

Objectives of the multi purpose, Upper Indravati Water 

resources Project are basically two fold : Irrigation and hydro 

power generation. The objective of the present study herein, is 

to assess the application potential of the Artificial Neural 

Network (ANN), in attaining, the above project objectives, 

compared to the conventional models used for the purpose. 

The scope of the present study, for optimal utilisation of 

Indravati Project water, resources is two fold : Time-series 

analysis and prediction and reservoir operation. The study 

related to the reservoir operation' consisted of optimisation 

through Discrete Differential Dynamic Programming (DDDP) 

approach, framing appropriate DPR and DPN models and finally 

screening through a customised simulation model. Time Series 

analysis consisted of identifying an appropriate multiplicative 

seasonal model from among the Box and Jenkins ARIMA family of 

models and predicting one month ahead river inflow into the 

Indravati reservoir. The prediction procedure is repeated 

through a prediction model, developed through the ANN approach, 

under more or less similar conditions. Prediction performance 

is then simulated through a time series simulator. In the final 

step, the best of the alternatives from among the competing 

models have been chosen, in both cases, providing suitable 

justifications. 

9.2.0 AT-SITE RESERVOIR OPERATION 

In order to meet the last objective in section 1.2.0 of 

the introductory chapter of this report , the study on time 
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series analysis for prediction has been included. It serves in 

providing a pragmatic touch to the finalised reservoir 

operation model, i.e., with the help of one-month-ahead 

forecast, an at-site, reservoir operation module can be 

monitored. 

A reservoir operation monitoring scheme can consist of 

obtaining the prediction from the ANN forecast model, feed it 

through the DPN model for obtaining monthly optimal release. 

This can be phased over 30 days in the conventional way. During 

the month end, the inflow data record will be updated with 

actual flow value. This process can be repeated during every 

month end. For future feedback to the system, after the arrival 

of actual record, the deviation should be monitored for 

performance appraisal of the models. When it is considered to 

be obsolete the weight matrix has to be rebuilt by following 

the entire stage of training, testing and validating, as was 

discussed in previous chapters. A tentative model outline for 

a reservoir monitoring scheme is furnished in Figure (9.1). 

93.0 LIMITATIONS OF THE STUDY 

Major constraints for this study were mostly time, 

appropriate tools and relevant literature. The present study 

envisages application of DDDP, ARIMA modelling, system 

simulation and ANN, in a single reservoir, multi objective, 

Water Resources Project. Various new procedures are now 

available to strengthen the. methodologies, procedures and 

loopholes, in constructing the models in above areas. Time 

acted as the major constraint in reaching these procedures. 

Various limitations, encountered while carrying out this study 

were listed below. 

1. 	For optimising the release, DDDP concept has been used in 

the present study. It is clear that a single DDDP iteration 

will typically be much less expensive than a DDP solution. 

However DDDP effort still grows exponentially with .state 
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FIG 9.1 : A TENTATIVE MODEL FOR ATSITE RESERVOIR OPERATION MONITORING SCHEME 
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dimension n and hence not totally free from curse of 

dimensionality. As SIDP is able to sidestep the curse, that 
• could have been tried to reach a better optimisation. 

2. The loss function, used in the final solution of DP 

objective function, is selected from among a limited number of 

trials. Experience and availability of time could have resulted 

in better search for this function. 

3. For the Time-Series modelling through ARIMA approach, it 

could be seen that the spurious autocorrelations generated at 

the seasonal lags could not be removed even after differencing 

and standardisation, as complained by many authors previously.. 

With the, help of better diagnostics and employing 'IACF and 

IPACF criterion, this might have been removed. In this study it 

has been shown that log transformations could not yield better 

results. But by adding Box-Cox transformation algorithm into 

the identification module of the Time-Series program, better 

identification might have been possible. 

4. ANN application potential has been tested in this study in 

the areas of reservoir operation and univariate river flow 

prediction. Within the purview of standard journals available, 

only 'one publication was available in application of ANN in 

reservoir operation having a single objective -(Raman et al. 
1996). Therefore, the present study attempting to accommodate 
two objectives of- irrigation and power generation, is likely to 
contain many seen and unseen errors and omissions. 

5.. 	The EP simulator used for the study is:a customised one, 

based upon the basic fundamentals of generalized, delta rule, 
without having any graphic interface. An instantaneous display. 

of the., error surface and location, of mi'iiima- would give 
possibly, better insight into the error minimisation ability of 

the model.. 'Better alternatives in the BP algorithm like .BPA, 

BPX (available in MATLAB software) or the Linear Least Square 

with SIMplex (LLSSIM) algorithm could have been tried to 
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improve the result. 

6. 	The entire study is based upon the output of DP model. In 

this study, a compromise is made with the prime objective of 

power generation. The maximum generation during any time period 

was fixed at installed capacity of the project. In case of 

availability of the actual load curve, the same could be 

incorporated into the ..DP constraint domain and more realistic 

results could be obtained. 

9.4.0 CONCLUSIONS 

A study of application of ANN has been carried out in 

designing a pragmatic reservoir release scheme for Upper 

Indravati Project. A step-by-step account of problems 

encountered during the identification, construction and imple-

mentation of various models is given across the length of this 

report. 

A new technique of shuffling of the training data set has 

been introduced in this study, for breaking out the input 

pattern sensitivity of the BP algorithm. This has been 

implemented successfully and suggested for further study and 

research. 

The present study successfully demonstrates the utility of 

Artificial Neural Networks to become a strong, effective and 

viable compliment to the existing conventional optimization 

techniques, although not as a complete substitute. The purpose 

of simulation techniques in refining the optimization or 

prediction results has been established. 
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ANNEXURE - I 

PRINCIPAL PROJECT DATA 

Reservoir 

Catchment area 
	 2630 km2  

Catchment area of Indravati river 
	1153 km2  

Catchment area of Indravati river 

at Intake site 	 530 km2  
Area of full reservoir(FRL RL. 642.00m) 110 km2  

Storage 	- live 	 1485.50 Mm3  
- dead 	 314.50 Mm3  

Dams : 

Indravati dam - Masonry Gravity Type. 

Length overall 550 m 

Non over flow sections 426 m 

Spillway 129 m 

Dam crest level EL 645 m 

Width 7.5 m 

Maximum height of dam 45 m 
Spillway crest level EL 629.5m 
Gates, 	radial no. width/height 	7 -15.0 X 12.5 m 
Capacity M.W.L. EL 643.00 11430 Ln3 	/s 

Depletion sluices no - width/height 4 - 	2.0 X 3.0 m 
Discharge M.W.L. EL 643.00 555 m3/s 

Podagada dam - Homogeneous Earthfill 

Length 	 462 m 

Crest level 	 EL 646 m 
Width 	 9.0 m 
Parapet height 	 1.0 m 

Maximum height 	 64 m 

(128) 



Depletion sluices, number - 1 

Diameter 	0 	 1 - 6.2 m dia 

flow, M.W.L. 643.00m 	644 m3  Is 

Kapur dam - Homogeneous Earthfill 

Length 	 537 m 

Crest level 	 EL 646 m 

Width 	 9.0 m 

Parapet height 	 1.0 m 

Maximum height 	 71 in 

Muran dam - Masonry, Gravity 

Length overall 	 494 in 

Non over, flow sections 	 403 in 

Spillway 	 91 in 

Dam crest level 	 EL 	645 in 

Width 	 7.5 in 

Maximum height of dam 	 65 in 

Spillway crest level 	EL 629.5 in 

Gates, radial no. width/height 	5 -15.0 X 12.5 m 

Capacity M.W.L. EL 643.00 	8060 m3 IS 

Dikes - Homogeneous Earthfill 

Dike Number Height 	(m) Crest length (m) 

left 	1 30 553 

2 20 320 

3 15 680 

4 20 0  160 

right 	1 15 463 

2 20 146 

3 25 593 

4 15 535 
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Crest level 	 EL 	646 m 

Width 	 7.0 m 

Parapet height 	 1.0 m 

	

Link Channels Length(m) Bed EL(m) Bedwidth(m) 	Slope 

Gunturkhal 	1523 	613.00 

Kusumpadar 	1550 	620.00 

Developed Head 

Maximum Gross (FRL 642.00, TWL 263.00) 

Minimum Gross (MDDL 625.00, TWL 267.00) 

Water Ways 

Head race Channel 

Length 

Width , Min.  

75 	1:1 

23.5 1.5:1 

379 m 

358 m 

335 m 

37.5 m 

Head race Tunnel - 7.Om ID 

Intake, horizontal inlet type with trash racks 

Gate size : no - width/height 	1 - 5.75 / 8.00m 

Tunnel - Length 	 3,934 m 

design flow 	200 M3/sec 
Lining, concrete 	0.3 m 

Surge Tank - Restrictea orifice type 

Diameter 	 20 m 

Height 	 132 m 

maximum surge levels 	EL 	670.9 m 

minimum surge levels 	EL 	622.2 m 

Lining, concrete 	 0.45 m 

Pressure Tunnels - 2 - 5.25 m ID 

Length 	 298 m 

Lining thickness 	 0.3 m 

Steel liner ASTM A 537 class 2 with stiffners 
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Liner plate thickness 

Penstocks: 4 - 3.50 m ID 

length 

steel shell ASTM A 537 class 2 

Shell plate thickness 

Tail race Channel 

Length 

Width, bed 

Concrete lining thickness 

Discharge, 4 units 

Depth max. flow 

16 mm 

790 m 

max. 	38 mm 

min. 	22 mm 

9 km 

max. 	20 m 

min. 	18 m 

0.15 m 

200 m3/s 
4m 

?ower Generation 

Installed Capacity 	4 - 150 MW units 

Average annual power(100 % load factor) 	252 MW 

Average annual generation 	2.206 G.Wh. 

rrigation Works 

Location - River Hati near Mangalpur 

Head-works : Barrage 

radial Gates : 	 6 - 12 X 6 m 

Length 

Crest level 

Max. Pond level 

Design discharge 

pondage between EL 265 to 260.4 m 

Distribution System 

G.C.A. 

C.C.A. 

Annual Irrigation 

4- 6 X 8 m 

EL 117.00 m 

EL 259.00 m 

EL 265.00 m 

64.3 m3  IS 
604 Ham 

1,35,700 Ha. 

1,28,000 Ha. 

1,85,800 ha. 
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ANNEXURE - III 
#inc.lude <stdio.h> 
#include <iostream.h> 
# include <stdlib.h> 
# include <time.h> 

	

Programmed by 	: Ashutosh Dash 
Date of Last Update : 1-0.11.97 

The program is a customised database having the scope for accepting a 
two-dimensional arrayed data file of any size, scaling down any particular 
column/columns as per user's wish, showing the maximum and minimum value of 
any column, seasonalising the entire data set into 12 output files, randomized 
suffling of the patterns, after recording the sequnce of randomization in an 
output file <ref.out>, and inter changing the columns as per user requirement 
or else purging some of th columns.*/ 

static int array[400];. 
inline int guess (int n) 

return l+int((float(randO)/32768.0)*n); 
} 

void random(int n) 
{ 

timet *t = new timet; 

int seed = int (time(t)) 0 10000; 
srand(seed); 

int x; 
array[0] = guess(n); 
short int z; 
for (int i=1; i<n; i++) 

z = 1; 	- 
while (1) 

x = guess(n); 
for (int j=0; j<i; j++) 

if (x == array [j ]) 
z=0; 

} 
} 
if (z==0) 

Z=1; 
continue; 

} 
else 

array[i] 	x; 
break; 

} 

} 
} 
main(int c, char *v [1) 
{ 

FILE *fptl,*fpt2,*fpt3; 
int n,count=0,countl=0,m,p[12],col,i; 
float data [4001 [12] ,q[12] ,mm[12] 
char tag[9],tagl[9]; 
void season(float (] [12] ,int,int) ; 

if (C != 3) { 
tout < "\nERROR: Argument missing.\n\n"; 
cout << "Usage: " << v[0] << " input_file output_file\n\n°; 
return(l); 

} 
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fptl=fopen(v[1], 
fpt2=fopen(v[2], 
fpt3=fopen(°re-f.out","w"); 

printf("enter the length of data set :"); 
scanf ("'sd" , &n) ; 
printf("\nenter the width of data set :"); 
scanf("ed",&m), 

for(count=0;count<m;count++)mm[count] = -999; 

for(count=0;count<n;count++) 
for(countl=0;countl<m;countl++) 
{ 	fscanf(fptl,' f",&data[count][countl]); 

if (data [count] [countl] > mm [countl] ) mm [countl] = data [count] [countl] 
}} 
cout<<"\n\n Want to segregate data into 12 seasons(y/n) :"; 
cin>>tagl; 
if(tagl[0]=='y') 
{ season(data,n,m);} 
else 

{ 

printf("\n Enter the total no of columns you wish to change 	"); 
scanf("%d",&col); 
printf("\n Total %d columns to change",col); 
for(i=0;i<col;i++)( 

printf("\nenter the od column no ",(i+1)); 
scanf("%d",&p[i]); 
printf ("\n maxm_ value of the column %d . of",p(i] ,mm[p[i] -1]) ; 
printf("\n\n Now enter the transformation factor : "); 
scanf (' %f" , &q (i]) 
} 
for (countl=0;countl<n;countl++) 

for (i=0;i<col;i++) 
data [counts] [p [i] -1] /=q [i] ; 

cout<< Want to randomize the output sequence (y/n) :"; 
cin >> tag; 
if(tag[O]=='n' ) 

for(count=0; count <n; count ++){ 
for(i=0;i<col;i++){ 

fprintf (fpt2, "%f\t",data [count] [p [i] -1]) 
} 
fprintf(fpt2,"\n');  

} 
fclose(fptl); 
fclose(fpt2); 

} 

else if (tag [0] ==' y' ) 

random(n-1) 
for( count =0; count <n; count ++){ 

for(i=0;i<col;i++){ 
fprintf (fpt2, ", f\t" ,data [array [count] ] [p [i] -1]) ; 

} 
fprintf(fpt2,"\n");  

} 
for(i=0;i<n;i++) { 

fprintf(fpt3,"%d\t",array[i]); 
if ((1+1) 0 10 == 0) fprintf(fpt3, "\n\n"); 

} 
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fclose (fptl) 
fclose(fpt2); 
fclose(fpt3); 

void season( float data [400] [12] ,int n, int col) 
{ 
FILE *fpt4,*fpt5,*fpt6,*fpt7,*fpt8,*fpt9, *fpt10, *fptll, *fptl2, *fpt13 
,*fptl4,*fptl5; 
int i; 

fpt4=fopen("jan.dat" "w"); 
fpt5=fopen("feb.dat" "w'); 
fpt6=fopen("mar.dat" "w"); 
fpt7=fopen('apr.dat" "w"); 
fpt8=fopen(,'may.dat","w"); 
fpt9=fopen("jun.dat","w"); 
fptlO=fopen("jul.dat","w"); 
fptll=fopen("aug.dat","w"); 
fptl2=fopen("sep.dat","w"); 
fptl3=fopen("oct.datI', 1 w"); 
fptl4=fopen("nov.dat" "wt'); 
fpt15=fopen("dec.dat","w,'); 

for(int count=0;count<n; count++){ 
if (data [count] [1] ==1. ) 
{ 	for(int i=0;i<col;i++) 

fprintf (fpt4 , "%f\t",data [count] [i]) ; 
fprintf(fpt4,,, \n");}else 

if (data [count] [1] ==2 . ) 
{ 	for(i=0;i<col;i++) 

fprintf (fpt5, "%f\t",data [count] [i]) ; 
fprintf(fpt5,"\n");}else 

if (data [count] [1] ==3 . ) 
{ 	for(i=0;i<col;i++) 

fprintf (fpt6, "%f\t" ,data [count] [i]) ; 
f 

if (data [count] [1] ==4 . )printf(fpt6,"\
n");}else 

 
{ 	for(i=0;i<col;i++) 

fprintf (fpt7, "%f\t" ,data [count] Li]); 
fprintf(fpt7,"\n");}else 

if (data[countJ [1]==5.) 
{ 	for(i=0;i<col;i++) 

,data[  
f 

if (data [count] [1] ==6 . )printf(fpt8,"\n");}else  
{ 	for(i=0;i<col;i++) 

fprintf (fpt9, "%f\t",data[count] [i]) ; 
fprintf(fpt9,"\n");}else 

if (data [count] [1] ==7. ) 
{ 	for(i=0;i<col;i++) 

fprintf (fptlO, "°sf\t" ,data 	; 
fprintf(fpt10,"\n"e 

if (data[count] [1]==8.) 
{ 	for(i=0;i<col;i++) 

fprintf (fptil, "%f\t",data [count] [i]) ; 
fprintf(fptll,"\n");}else 

if (data [count] [1] ==9 . ) 
{ 	for(i=0;i<col;i++) 

fprintf (fptl2, "%sf\t" ,data [count] [i]) 
fprintf(fpt12,"\n");}else 

if (data [count] [1] ==10. ) 
{ 	for(i=0;i<col;i++) 

fprintf(fptl3,"%f\t",data[count][i])_; 

(135) 



ANNEXURE - IV 

-( SOURCE CODE FOR THE DATA_MANIPI PROGRAM DISCUSSED IN CHAPTER-7 

# include <stdio.h> 
# include <math.h> 
float a[400],mean,sdv,min=+999,max=-999.; 
int n, ldif f =0 ; 
/* Programmed by : Ashutosh Dash 

Date of last update : 28.9.97 
Scope: The program accepts a one dimensional array data file and 
converts to multi column output after optionally standardising, 
differencing, scaling the the entire data range into 0 and 1, 
with scope for complete user interface. This program was 'iseful 
in preparing the data into input patterns for ANN modelling. */ 

main () 

FILE *fptl,*fpt2; 
int count=0,l,lag[10],countl; 
void standard(void); 
fptl=fopen("column.in","r"); 
fpt2=fopen("column.out","w"); 
fscanf (fptl, "od od", &n, &l) 
printf ("n and 1 values are %d od°' , n, l) ; 
for(; count<l;count++) fscanf (fptl, "od", &lag[count]) ; 
for(count=0;count<n;count++)fscant(fptl,"tf",&a[count]);  
printf("\n Wish to standardise or difference the data 

(y/n) : ") ; 
if(toupper(getchar()) =='Y' )standard(); 
printf("wish to scale the data between 0 and 1 (y/n)".); 
getchar(); 

if (toupper (getchar ()) ==' Y') { 
for(count=ldiff;count<n;count++) 
{ 

if (a [count] < min) min=a [count] 
if (a [count] >max) max=a [count] ; 

} 
printf ("minimum and maximum values are %f if" ,min, max) ; 
for(count=ldiff;count<n;count++) 

a [count] = (a [count] -min) / (max-mm); 
} 
for (count= (ldiff+lag [0]) ;count<n; count++) 
{ 

for (countl=0 ; countl<l; countl++) 
fprintf (fpt2, "%6 . 2f\t." , a [count-lag [countl] ]) ; 

fprintf(fpt2,"\n"); 
} 
fclose (fptl) 
fclose(fpt2); 
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void standard(void) 

float sum=O; 
int i=0.; 
printf("\n Wish to standardise (y/n) 	:u); 
getchar(); 
if (toupper (getchar ()) =='Y'){ 

for(;i<n;i++) sum-+-=a[i] 
mean=sum/ (float) n; 
for(i=0;i<n;i++) sdv+=pow((a[i]-mean),2.); 
sdv = pow((sdv/(float)n),0.5); 
printf("\n Mean and S.D. are of 96f ",mean,sdv); 
for (i=0; i<n; i++) a[i] = (a [i] -mean) /sdv 

} 
printf("\n Wish to do differencing also (y/n) :"); 
getchar(); 
if (toupper (getchar ()) =='Y') 

printf("\n Enter the lag for differencing : 
scanf ( 1' d" , &ldiff) ; 
for (i=n-1; i>=ldiff; i'--) a[i]  -= a [i-ldiff] ; 

} 
return; 
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ANNEXURE - V 

C  ................................................................. 
c 	SIMULATION STUDY FOR INDRAVATI RESERVOIR 
c 	DATE OF LAST UPDATE : 10.11 .97 
c 	Customised program with options for simulating four different 
c 	reservoir operation policies, namely, Multiple Linear Reression, 
c 	Multiple non-linear Regression. ANN based Model and 
c 	Standard OPerating Policy. 
`` . . . . . . ... . . . . . . . . . . . . . . . . . . . . . . . . . . . . ... . . . . ... . . . I ... A . .  

common/elov/elev(20),area(20).ctor (201.m,smax, &min 
common/relIdem(12),ainf(30.1 2) 
common/ann/n_ layer,amult_in,amult out.layersl5),weights(5,10.10) 
dimension evap(30.12),s init(30,12),def(30.12),el(30,121. 

1 	spil)30,12),a(30.12),relcI30.1 21.ev(121 
2 	.gen(30.12).templ (30.121 

integer fail(30,12).fail_countm 
real netav 
CHARACTER'80 TITLE 
DTIM =30'243800 
anvil = 10"8 

C ............. ■ ...... I ...................... 
c 	Elev Cm), area (sq ml, cap(cu ml, relcicumec), epd(crn) 

OPEN(1,FILE _ ('simul.in')) 
OPEN(2,FILE = ('simul.out')) 

READ(1,1) TITLE 
1 	FORMAT(A) 

write(',113) 
113 	format110x,'illm"1I5m" SIMULATION MODEL HAS FOLLOWING OPTIONS ••"I(Om'////!// 

1 	4x,'1 	MULTIPLE LINEAR REGRESSION MODEL 7 
2 	4x,'2 	MULTI VARIATE NON LINEAR REGRESSION MODEL 'I 
3 	4x,'3 	ANN BASED MODEL V 
4 	4x,'4 OR ANY OTHER NUMBER FOR STANDARD OPERATING POLICY'////2x, 
1 	''II1m"(15mPlease enter your choice :"110m ') 

read('. ')code 
READI1,'Im,ny 
READ(1,') smax,smin,init_month,s init(1.init mo nth) 
read(/,') capins, twl 
read(1, •) (elev(ll,area(II.stor(l.I = 1.m) 
read(1,') (ev(i). i=1,12) 

read(1,') (dem(j),j=1,12) 
doj=1,12 

dem)j) =dem(j) 1.e06 
enddo 

read(1,')(lainf(i,j),j = 1,121,1 = l,ny) 
do i=1,ny 
do j=1,12 
ainf(i,j) =ainf(i,j)' amiI 
enddo 
enddo 

C  ............................................ 
c 	INITIALISATION OF VARIABLES 
C............................................ 

cum_gen = 0 
cumdef = 0 
cum_spil = 0 
fail countm=0 
fail county=0 

C ...........................I................ 
c 	WRITE INPUT DETAILS 
C  . . . . .. . . . . .. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 

WRITE(2,900) TITLE 
900 	FORMAT(//A//20X." • ' INPUT DATA ' 

1 	'All Data are in MKS Units') 
if( code. eq. 1) then 

write(2,')'OPTION : MULTIPLE LINEAR REGRESSION MODEL' 
else if(code.eq.2)then 
write(2,')'OPTION : MULTI VARIATE NON LINEAR REGRESSION MODEL' 

(139) 



else if(code.eq.3Ithan 
write(2,' I'OPTION : ANN BASED MODEL 

c 	This program accepts one input pattern from user and 

c 	sends the data through the neural net and computes 

c 	the output.lnputs are to be compatible with the neural not. 

c 	Neurons in each layer and of course a compatible weights 
c 	matrix in < weights.dat> file are to be given. 	- 

c 	date : 11th sept. 97 

c 	programmed by Ashutosh Dash 
c  I \ Y . . . . . .. . . Y . . . . . . . . i . . . . . . . . . . . . . . . . Y . Y . . .  

open(4,file ='weights.dat') 
write(', ')'Total no. of layers in the neural net 

read(',') n_layer 
write(", ')'Enter the multiplication factor for the input patterns' 

read(',')arnult in 
write(', I' Enter the multiplication factor for the output' 

read('.') arnult_out 
write)", ')'neuron architecture in the neural net 
read('.')llayers(il.i= 1,n layerl 

write I', ')'Weight matrix of neural net 
do k 1,n layer-1 
do i=1,layers(kl 
readl4,')ilop,(weights(k,i,j),j= 1,layers(k+ ill 

write(', ' )ilop,(weightslk,i,j),j = 1 ,layers(k +1)) 

enddo 

enddo 

endif 
write(2,901) fly 

901 	FORMAT(/5X'The number of years for analysis :'i3/ 
1 	5x,'The computational time interval : one month') 

write(2,902) SMAX/anvil. SMIN/anvil 

902 	FORMATI/5x'Maximum storage capacity :'fl1.3' million curn'/ 
1 5x 'Minimum storage capacity :'fl 1 .3' million cum') 

writel2, 907) capins, twl 
907 	format(/' Installed Capacity :'f6.0' MW'/' Tail Water' 

1 ' Level :'f8.3 ' m'1 
write(2,903) (I,ELEVII). AREA(I),STORI11.1=1,ml 

903 	FORMATI/1 Ox,'Elevation - Area - Capacity' 
1 	'Table'/l 
2 	2x,' S N 	Elevation 	Area 	Capacity 
3 	.1 
4 	2x,' 	I m I 	(sqm) 	(cum) 

2 	//)2x,i4,f14.3,2f14.1)) 

911. 	FORMAT(15,i3,F9.1,3f8.1,i3.lx,f6.1.1x,f8.1,f7.1,f9.1,F9.1) 
c ....Y .......................................................... 

c 	STARTING THE SIMULATION 
c Y Y . , Y .. Y .. Y . Y .. Y Y ... I ..... ........ . ..... Y ..... Y .... Y ...... . ... . 

do 555i=1,ny 
writa(2,905) 

905 	FORMAT(//20x,'"" Results of Calculations " ...// 
1 	' YYYY-MM Init-Stor Inflow Demand Release fail', 

2 ' spil av_H 	Pow_G Evap Fin-Stor'/ 
3 	(Mil Cum) Im cum) (Mcm) Im cum) Im cum)', 
4 ' (m) 	(MW) (Mcm) (Mcm)'/) 

if(i .eq. 1) then 
pj = nit month 

also 

P)=1 
end if 

do mj = pj,12 
j=mj 
flag ~ 0- 
temp =0 

ayst = s initli,J) 
10 	call area elevlayst,a(i,j),elli,j)) 

evap(i,j) = a(i,j)' ev (j)/100. 

net_av = s_init(i,j)+ainf(i,j)-evapli,j)-smin 

if(net_av It. 0) then 

temp = net_av 
net av = 0 
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flag =1 
go to 19 
endif 
calculate the model release and fix objective 

tel =release(code.sinit(i,j),ainf(i,j),dem(j) 
if(rel -gt. dem(j)) then 
obj = rel 

else 
obj = dem(j) 
endif 
if(net av jo. obj) relc(i,j) = net av 
if(net_av gt. obj) relc(i,j) = obj 
write('.')'dem tel obj relc',i,j,demljl.rel,obj,relc(i,j) 
net_av = not_av - relc(i,J) 
if(net av .gt. (smax-sminll then 
relc(i,jl = relc)i,j)+net av-(smax-srnin) 
net av =smax-smin 
endif 

	

19 	ayst=ls_init(i,j)+(net av+sminl)/2. 

call area_elevlayst,a(i,j).havg) 
c 	if(abs(havg-el(i,j)) .ge..1) go to 10 

def(i.j) =dem(j)-relc{i,j) 
if(def(i,j).  It. 0) dof(i,j) =0 

fail(i,j) = 0 
if(def(i,j)•gt.0)fail(i,jl = 1 

	

c" 	Generation in kwh(energy). kw(powerl 
oral = relc(i,jl/2592000 	I ra) in cumec, 30'86400=2592000 
gen(i,j) = orel'(havg-twll'8.79 	! 9.80.920.975 = 8.79 
if(gen(i.j).gt.600000) than 

gen(i,j) = 600000.0 
oral =gen(i,j)/(havg-twl)/8.79 
tempi (i,j) = relc(i,j) 

relc(i,j) =oral 2592000 
net av = net_av + (tempi (i,j)-relc(i,j)) + smin 
iflnet av .gt. smaxlthen 
spil(i,j) = (net_av-smaxl 
net_av = smax 
a ndi f 
also if(genfi,j).1e.600000)then 
iflflag.eq.11net_av =temp 
net av = net_av +smin 
endif 
if(j .eq. 12) then 
s init(i+1,1) = net av 
else 

s init(i,J+11 = net_av 
endif .... ...............a........... 

c 	COMPUTE THE CUMULATIVE QUANTITIES 
C 	................................ 

cum_gen=cum gen+gen(i,j) 
cum_def=cum def+def(i,j) 
cum_spil=cum spil+spil(i.j) 
fail_countm = fail_countm + fail(i,j) 

write(', ')'fail count details',i,j,fail(i,j),fail countm 
write (2, 911 li,j, s_init(i,j) /anvil. ainf (i.j)/anvil, 

1 dem(j)/ami(,relc(i,j)/anvil.fail(i,j),spil(i,j)/amif,havg, 
2 gen(i,j)/1000.,evap(i.j)/anvil, net  

enddo 

	

555 	continue 
write 12.1 28) cum_ge n/ 1000., cum_def/1 .e06. 

	

 
1 	cum spil/1,e06,fail_countm 

	

126 	format(2x,'cumulative generation :',f9.2! 

	

1 	2x,'cumulative deficit : ',f9.2/ 

	

2 	2x,'cumulative spillage : ',19.2/ 

	

3 	2x,'total months model failed :',i3/) 
stop 

end 
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function release (code,stor,inflow,dem) 
common/ann/n_layer, amult_in,amult_out,layers (5), weights (5.10,10) 
dimension transit(5,10,10) 
real inf low, input(5,10,10) 
iflcode eq. 1 (then 
release =-23.464 +0.95 dem/1.e06 + .086' inflow/1.e06 
+.022'stor/l .e06 
release =release' 1 .e06 
return 
else if(code .eq- 2) then 
release = (.01 1 'tint low/i  .e06)' ' 1.269 + 
.105' (dem/l .e06)' '1.366  
+ 1 .875' (stor/9 .e06(1  '.461)' 1.e06 
return 

also if (code.eq. 3lthen 

Initialise the input patterns to an array 
input) 1.1.1) = stor/amult_in/1.e06 
input(1,1.2) = inflow/amultin/1.e06 
input{1,1,3) = dem/amult inl1.e06 

write('.')'stor in) dem values',(input(1,1,J),j=1,3) 
starting matrix multiplication and sigmoid function loop 
do n =1,n_layer -1 

i=1 
do j = 1,layers(n + 1 ) 

transit(n,i,j) =0 
do k=1,layers(n) 

transitin,i,j) =transit(n,i,j)+input(n,i,k)'weightsIn,k,j) 
enddo 

input(n+ 1 ,i,j) = 1 ./11 . +expl-transitln,i,j))I 
enddo 

enddo 
if(j.eq.2)then 

input(n_ layer, 1,1) = inputln_ layer. 1.1) `amult_out' 1 .e06 
release =input (nlayer, 1.1) 

write( ''('output release is',release 
return 
else 

write(',')'value of j =',j 

write(', ')'logical error I Please check algorithm i!' 
return 
endif 
endif 

return 
and 

subroutine area_elev(storage1,a,el) 

common/ele v/elev(20); are a(20),stor) 20),m, smax,smin 
iflstorage 1 .gt.smax)then 
storage = smax 
else 
storage =storagel 
endif 
do i=1,m 

c 	write('.') etorage,stor(1).storlm) 

if(storage.lt.stor(1I -or. storage.gt.stor(m)) then 
write(', 22) 

22 	format(2x,'Storage goes beyond range ERROR',/ 
1 	'PROGRAM TERMINATED') 

return 

else if (storage.gt.stor(i) and. storage.lt.stor(i+ 1 ))then 
a 	area(i) + ((area(i + 1)-area)i))/(stor(i+ 1)-storli))) 

1 	(storage-stor(i)) 

el = elevli) + (lelevli + 1)-elev(i))/(stor(i + 1)-storli)11' 
1 	(storage-stor(i) ) 

return 

endif 

enddo 

end 
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<INPUT FILE> - SIMUL.1N" FOR THE SIMULATION MODEL 

SIMULATION STUDIES OF INDRAVATI RESERVOIR 

145 
2300e+06 814.5e+08 1 21 27.e+06 
600.0 265.0 
580 	0.24e+06 	O.00e+06 
585 	0.45e+08 	1.70e+06 
590 	2.74e+06 	11.28e+06 
595 	5.60e+06 	40.00e + 06 
600 	10.7e+06 	74.18e+08 
605 	16.80e+06 	140.00e+06 
610 	23.95e+06 	237.69e+06 
615 	33.29e+06 	380.29e+06 
620 	44.33e+06 	570.54o+06 
825 	59.16e + 06 	827.15e+06 
830 	74.59e+06 	1152.96e+06  
635 	39.97e+08 	1562.60e+06 
640 	104.87e+06 	2052.1 2e+06 
645.5 	122.80e+06 	2710-00e+06 

7.51517.520.020.017.57.5 7.5 7.5 10.0 10.0 7.5 

231.86 276.01 247.30 183.19 115.05 86.43 284.85 40.85 317.86 283.35 106.75 88.88 
45.532799 31.449600 34.819199 36.288002 61.603203 59.818001 332.121813 278.553589 355.104004 149.990402 
116.639999 77.673599 
66.959999 58.060799 37.497601 '44.063999 37.497601 72.576004 211.593597 348.192017 274.752014 155.347198 
82.944000 42.854401 
53.568001 60.480000 32.140800 20.736000 21.427200 334.368011 310.894397 741.918809 837.632019 125.884804 
88.127998 69.638397 
50.889603 72.575996 66.959999 64.800003 203.558411 300.871997 819.590393 723.168030 821.684001 425.865601 
217.727997 101 .779205 
66.959999 74.995201 64.281601 51.840000 50.889603 31.104000 634.780823 1234.742432 1380.800049 1178.495972 
225.503998 184.809601 	 - 

THE OUTPUT FILE <SIMUL.OUT> FOR THE ANN OPTION IN A CURTAILED FORM. 

SIMULATION STUDIES OF INDRAVATI RESERVOIR 

"'INPUT DATA 

All Data are in MKS Units 
OPTION : ANN BASED MODEL 

The number of years for analysis : 5 
The computational time interval : one month 

Maximum storage capacity : 2300.000 million cum 
Minimum storage capacity: 814.500 million cum 

Installed Capacity : 600. MW 
Tail Water Level : 265.000 m 

Elevation - Area - CapacityTable 

S N 	Elevation 	Area 	Capacity 
(m I 	(sqm) 	(cum) 

1 580.000 240000.0 0.0 
2 585.000 450000.0 1700000.0 
3 590.000 2740000.0 11280000.0 

INTERMEDIATE LINES DELETED..... 
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14 	645.500 122800000.0 2710000128.0 

Results of Calculations •' U 

YYYY-MM Init-Stor Inflow Demand Release fail spil avH 	PowG Evap Fin-Stor 
(Mil Cum) (m cum) (Mcm) (m cum) (m cum) (m) 	(MW) (Mcm) (Mom) 

	

1 1 2127.0 45.5 231.9 267.7 0 0.0 639.6 340.0 	8.0 1896.8 

	

1 2 1896.8 31.4 276.0 276.0 0 0.0 637.1 348.3 	15.0 1637.3 

INTERMEDIATE LINES DELETED..... 

"°' Results of Calculations' 	U 

YYYY-MM Init-Ston Inflow Demand Release fail spit av_H 	Pow_G Evap Fin-Stor 
(Mil Cum) (m cum) (Mcml (m cum) Im cum) (ml 	(MW) (Mcm) IMcm) 

3 	1 850.3 53.6 231.9 84.8 	1 0.0 625.1 103.6 4.5 814.5 
3 2 814.5 60.5 278.0 51.7 	1 0.0 624.8 63.1 8.8 814.5 
3 3 814.5 32.1 247.3 ' 21.9 	1 0.0 624.8 26.7 10.2 814.5 
3 4 814.5 20.7 163.2 9.1 	1 0.0 624.8 11.0 11.7 814.5 
3,  5 814.5 21.4 115.1 9.7 	1 0.0 624.8 11.9 11.7 814.5 
3 6 814.5 334.4 88.4 113.7 	0 0.0 626.4 139.3 10.2 1025.0 
3 7 1025.0 310.7 284.9 284.9 0 0.0 628.2 350.8 5.1 1045.7 
3 8 1045.7 741.9 40.8 83.5 0 0.0 632.7 104.1 5.2 1698.9 

INTERMEDIATE LINES DELETED.... 

.510 2300.0 1178.5 283.4 469.2 0 698.1 7142.1 600.0 	11.2 2300.0 
511 2300.0.=225.5 106.8 214.3 0 0.0 642.1 274.1 	.11.2 2300.0 
512 2300.0 184.8 88,9 176.4 0 0.0 642.1 225.6 	8.4 2300.0 

cumulative generation : 14952.63 
cumulative deficit : 1395.91 
cumulative spillage : 1852.08 
total months model failed : 10 
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